RS-10-184, Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink

From kanterella
Jump to navigation Jump to search

Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink
ML103120556
Person / Time
Site: Byron  Constellation icon.png
Issue date: 11/08/2010
From: Hansen J
Exelon Generation Co, Exelon Nuclear
To:
Office of Nuclear Reactor Regulation, Document Control Desk
References
RS-10-184
Download: ML103120556 (92)


Text

Exelon Generation 4300 Winfield Road Warrenville,ll60555 RS-10-184 November 8, 2010 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Byron Station, Units 1 and 2 Facility Operating License Nos. NPF-37 and NPF-66 NRC Docket Nos. STN SO-454 and STN 50-455

Subject:

Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink

References:

1. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "License Amendment Regarding Ultimate Heat Sink," dated June 30,2009
2. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink," dated January 2S, 2010
3. Letter from M. J. David (U.S. NRC) to C. G. Pardee (Exelon Generation Company, LLC), "Byron Station, Unit Nos. 1 and 2 - Request for Additional Information Related to License Amendment Regarding Ultimate Heat Sink (TAC Nos. ME1669 and ME1670)," dated August 18, 2010 In Reference 1, Exelon Generation Company, LLC (EGG) requested a license amendment for Byron Station, Units 1 and 2, to revise Technical Specifications (TS) to add additional essential service water (SX) cooling tower requirements as a function of SX pump discharge temperature to reflect results of a revised analysis for the ultimate heat sink (UHS). In Reference 3, the NRC requested additional information to complete the review of the proposed license amendment and requested a 4S-day response. EGC requested to extend the response submittal date on October 14, 2010, and the NRC agreed to an extension until November 1,2010. Subsequently, an additional extension was sought by EGC on November 1, 2010, and the NRC revised the due date to November 12, 2010.

This response is subdivided as follows:

  • Attachment 1 provides the response to the request for additional information from Reference 3.

November 8, 2010 U.S. Nuclear Regulatory Commission Page 2

  • Attachment 2 contains the proposed changes to the affected Technical Specifications pages.
  • Attachment 3 provides additional references to support Attachment 1.
  • Attachment 4 lists the regulatory commitment made in this submittal.

EGC has reviewed the information supporting a finding of no significant hazards consideration and the environmental consideration that were previously provided to the NRC in Attachment 1 of Reference 1. The additional information provided in this submittal does not affect the bases for concluding that the proposed license amendment does not involve a significant hazards consideration. In addition, the additional information provided in this submittal does not affect the bases for concluding that neither an environmental impact statement nor an environmental assessment needs to be prepared in connection with the proposed amendment.

A regulatory commitment is contained in Attachment 4. If you should have any questions concerning this letter, please contact Ms. Lisa Schofield at (630) 657-2815.

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 8th day of November 2010.

Attachments:

1. Response to Request for Additional Information
2. Revised Markup of Proposed Technical Specifications Pages
3. Additional References
4. Summary of Regulatory Commitments

ATTACHMENT 1 Response to Request for Additional Information NRC Request 1

1. The scenarios presented in your June 30, 2009, January 25, 2010, and July 1, 2010, submittals, which established the proposed revisions to TS 3.7.9 LCO, ACTIONS, and Surveillance Requirements (as stated in your January 25, 2010, submittal), assumed SX flow rates with the trains of each unit being cross connected and the opposite unit crosstie valves closed. Two SX pumps are running in the accident unit and one SX pump is running in the non-accident unit.

However, the updated final safety analysis report (UFSAR) currently states that the redundant SX loops can be operated as two separate loops in each unit, and TS Bases B 3.7.8 has provision to cross tie each unit's trains and also cross-tie the units as stated below:

UFSAR Section 9.2.1.2, Essential Service Water System, states that the essential service water system is divided into two redundant loops for each unit. The system may be operated with the loops cross-tied or as two separate loops.

TS Bases B 3.7.8 states that the SX system includes provisions to crosstie the trains (unit-specific crosstie), as well as provisions to crosstie the units (opposite-unit crosstie). The opposite-unit crosstie valves (1 SX005 and 2SX005) must both be open to accomplish the opposite-unit crosstie. The system is normally aligned with the unit-specific crosstie valves open and the opposite-unit crosstie valves closed.

a. Are the proposed revisions to TS 3.7.9 (LCO, ACTIONS and Surveillance Requirements) satisfactory for keeping basin temperature below 100°F when the SX system is aligned as two separate loops in one or both units? Are the proposed revisions to TS 3.7.9 satisfactory for maintaining basin temperature below 100°F when the SX system is aligned with the unit crosstie valves open? Please explain. If not, what course of action should be implemented such that the proposed revisions to TS 3.7.9 ensure the basin temperature will not exceed 100°F for all SX system operating alignments?
b. Do any procedures, UFSAR sections, or TS Bases need revision to ensure that the proposed revisions to TS 3.7.9 are satisfactory for all system operating alignments and modes of operation in your UFSAR and TS Bases? Please explain.
c. If the trains were operating as two separate 100ps1 as stated in UFSAR Section 9.2.1.2, discuss the validity of the proposed revision to TS 3.7.9 when the assumed single failure is a loss of an emergency diesel generator (EDG). Loss of an EDG could result in each unit's single SX pump (after a loss-of-coolant accident (LOCA)) drawing from the same tower with less than four fans running in that tower (depending on which fans are out of service). If this lineup is valid, discuss how the calculation would account for stratification or uneven mixing in the basin.

1: Assumes two separate loops means the returns to the cooling towers are also separate by closing valve 1SX011.

Page 1

ATTACHMENT 1 Response to Request for Additional Information Response 1

a. The Essential Service Water (SX) system is normally operated with the unit-specific train crosstie valves open and one of the unit crosstie valves closed. In the unlikely event that both opposite-unit crosstie valves are open for the postulated loss of offsite power (LOOP)/LOCA event, there would be some redistribution of flow within the SX system.

Based on sensitivity runs using the Byron SX system flow model, the net change in overall system flow and flow through the essential service water cooling tower (SXCT) cells is very small and would not significantly impact the previous analysis of basin temperature.

Additionally, the operating procedures for post-LOCA alignment of the component cooling (CC) system would align the Unit 0 CC heat exchanger (HX) to the accident unit. This operator action includes verifying/closing one of the unit crosstie valves (1 SX005 or 2SX005). Thus, the proposed revisions to Technical Specification (TS) 3.7.9 are satisfactory for maintaining basin temperature below 100 of when the SX system is aligned with the unit crosstie valves open.

With the loops separated, a postulated single failure that results in only one SX pump operating on the accident unit (EDG failure or SX pump failure) could result in water flow to only one SXCT. Depending on which SXCT fans are operable and the outside air wet bulb temperature, it is possible that the one SXCT with water flow could have less than the required number of operable SXCT fans available for cooling. An analysis (see Attachment

3) has been performed that shows for this postulated scenario, four SXCT fans on the SXCT with water flow are capable of maintaining basin temperature below 100 of. This issue is addressed further in Response 1.c. below.
b. The procedures, UFSAR sections, and TS Bases that are affected by the proposed revisions to TS 3.7.9 will be changed in accordance with existing license amendment procedures.

Changes to the TS Bases were previously submitted in Reference 1 and will be updated to reflect the currently proposed TS revisions. Bounding SX pump discharge temperature limits based on the analyses for the proposed TS have been put in place. Additionally, administrative controls have been put into place to require all eight SXCT fans to be operable when SX trains are separated.

c. If the SX trains were separated on both units and an accident occurred on one unit, a failure of one of the SX pumps or EDG on the accident unit could result in SX flow to only one of the two SXCTs. The same train SX pumps could be operating on the accident and non-accident units, and with the trains separated, essentially no flow would be provided to one of the SXCTs. The current and proposed TS on UHS operation allow up to two SXCT fans to be out of service without entering an LCO. In the scenario described above, if one or two of the out of service SXCT fans is on the SXCT with SX flow, the remaining SXCT fans would not have adequate heat removal capacity to maintain the SX basin water temperature below 100 of for design basis weather conditions.

Calculations indicated that with no SXCT fans out of service and the SX trains separated, the UHS temperature could be maintained at less than 100 of with four SXCT fans operating on the SXCT with flow. In this scenario, only one of the two SXCTs has significant water flow. Minimal mixing would occur between the SX basins; therefore, only half of the Page 2

ATTACHMENT 1 Response to Request for Additional Information SX basin water mass is considered available for heat storage in the calculations for the scenarios with SX trains separated.

A revision to the proposed TS is necessary to accommodate more restrictive SXCT fan requirements when either unit is operating with the SX trains in a split condition. Proposed TS Table 3.7.9-1 has been modified to indicate it applies to SXCT fans when SX trains on both units are in a cross-tied configuration, and a new Table 3.7.9-2 has been added to address when the SX trains on either unit are completely split. The Limiting Condition for Operations, Condition A, and Surveillance Requirement 3.7.9.2 have been modified to account for the addition of new Table 3.7.9-2. Also, Condition 8 has been modified to allow 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> to restore one or two inoperable SXCT fans to operable status while operating SX in a split configuration. In this condition, six operable SXCT fans are capable of mitigating the design basis accident with suspension of the single failure design criterion while in a TS Action as discussed in Generic Letter 80-30.

NRC Request 2 Assumption 3.4 of Appendix H of calculation M-MSD-009 (attachment 4 of the June 30, 2009 submittal) states that half of the reactor containment fan cooler (RCFC) heat load on the accident unit is shed at or prior to 30 minutes. Section 8 of Appendix H states, "Results are valid only if half of the RCFC heat load on the accident unit is shed at, or prior to, 30 minutes.

Procedures would have to be changed to implement this operator action."

Shedding the heat load from two of the four RCFCs would cause higher steam/air temperatures in containment for the remaining two operating RCFCs and thus increase their heat removal rate. Therefore, reducing the heat load contribution of the RCFCs by half seems to be a liberal assumption, especially since the same amount of energy has to be removed from containment whether two or four RCFCs are in operation after a LOCA. Securing two of the four RCFCs would seem to make the peak basin temperature occur later and higher than assuming that the half the heat input from containment to the basin was eliminated. As shown in the June 30, 2009, submittal (page 6 of 11), 4 of the 5 scenarios that establish the proposed TS 3.7.9 ACTIONS have a peak basin temperature above 99.5 DF.

Please justify assumption 3.4 in light of the fact that the calculated maximum basin temperatures already peak very close to 100DF.

Response 2 Shedding two of the four RCFCs would result in a slow down in the rate of cooldown in containment and a higher heat removal rate from the two operating RCFCs. Attachment 3 of this document contains Calculation ATD-0063, Revision 0048, "Heat Load to the Ultimate Heat Sink During a Loss of Coolant Accident." As discussed in Assumption 3.2 of the calculation:

When two of four of the RCFCs are secured, the RCFC heat removal is assumed to be 50% of the RCFC heat removal of four RCFCs. With two RCFCs operating, the post-accident rate of containment cooldown will be less than when four RCFCs are assumed to be in operation. This would result in higher steam/air temperatures Page 3

ATTACHMENT 1 Response to Request for Additional Information entering the RCFC coils and some increase in heat removal for the two operating RCFCs. For calculating the peak UHS temperatures, the period of interest is the first 6000 seconds (See scenarios 5,6,7, and B of NED-M-MSD-009 [Ref. 4.31]). With four RCFCs operating the calculated containment steam/air temperature drops from 1BB.7 OF to 149.9 OF from time = 1799 seconds to time 5999 seconds (See Table 6 of the base (Rev. 4) calculation). With only two RCFCs and the same SX supply temperature, the drop in temperature over the same time period would be approximately one half or - 20 OF. The calculated maximum heat input from the RCFCs was conservatively based on an assumed SX supply temperature of 32 OF

[Ref. 4.51]. During the time period of concern, the SX temperature will actually be approaching the SX supply design temperature of 100 OF. This provides approximately 6B OF of margin in the approach temperature for the RCFC, which is greater than the expected 20 OF increase in the approach temperature due to securing two of the four RCFCs. Thus assuming 50% of the RCFC load is conservative.

The peak basin temperatures calculated are conservative because of the low SX supply temperature used in calculating the RCFC heat input to the UHS. The low SX temperature used to calculate heat input from the RCFCs offsets the higher heat removal rate due to the higher steam/air temperatures in containment for the remaining two operating RCFCs.

NRC Request 3 The proposed revisions to TS 3.7.9, when basin temperatures are above BO OF and fans are running in high speed, bound the current TS 3.7.9, whose basis considered the loss of an EDG as a Single failure. Since scenarios BC1 and BD1 present new TS, the loss of an EDG might not be bounded by scenario BC1 and/or scenario BD1 (above BO OF). Scenarios BC1 and BD1 each have a loss of 2 cooling tower fans and half the RCFC heat load. The loss of an EDG also results in loss of 2 cooling tower fans and half the RCFC heat load, as well as the loss of an SX pump in the accident unit.

a. Verify that the proposed revisions to TS 3.7.9 determined by scenarios BC1 and BD1 keep basin temperature below 100 OF if the single failure after a LOCA is a loss of an EDG. Please explain.
b. Review and discuss other single failures that need to be considered, if any, for the proposed revisions to TS 3.7.9, which were based on scenarios BC1 and BD1.

Response 3

a. A postulated failure of an EDG for Scenarios BC1 and BD1 would have the following impact:

o The SX pump on the accident unit powered by the failed EDG would not be running, which would result in lower flows to the SXCT cells. With lower water flows, the heat removal rate in the SXCT improves, which will lower the SX basin temperature.

Page 4

ATTACHMENT 1 Response to Request for Additional Information o The RCFCs on the accident unit powered by the failed EOG would not be running. In Scenarios BC1 and B01 , the heat input is from four RCFCs until operator action is assumed to be taken at, or prior to, 21 minutes. Thus, the peak heat input for a postulated EOG failure would be lower with loads later in the event becoming higher, since cool down of containment steam/air is slower.

o One train of ECCS on the accident unit powered by the failed EOG would not be running. With only one train of ECCS in operation, the peak residual heat removal (RHR) HX heat load to the UHS would be lower with loads later in the event becoming higher, since cooldown of containment sump water is slower.

o The SXCT configuration would be unchanged. A postulated failure of an EOG would result in the same number of failed SXCT fans and SX riser valves as the breaker failure currently postulated in Scenarios BC1 and B01.

The net result of a postulated EOG failure for Scenarios BC1 and B01 would be a lower peak basin temperature due to the lower peak load and improved tower performance.

b. As discussed in the January 25, 2010, response to NRC Request 5, the postulated active failures considered are: 1) containment spray pump failure, 2) SXCT fan failure, 3) EOG failure, 4) SX pump failure, and 5) SXCT bypass valve failure.

A containment spray pump failure results in slightly higher heat input from the accident unit which would be more than offset by the full cooling from the two SXCT fans that were postulated to fail in Scenarios BC1 and B01. The current analysis evaluates SXCT fan failures. The impact of an EOG failure is discussed in the response to NRC Request 3.a.

above. Failure of an SX pump results in lower flows to the SXCT cells which improves the heat removal rate in the SXCT and lowers the calculated SX basin temperature. SXCT bypass valve failures were evaluated in Scenarios 11, 12, and 13 in Reference 1.

NRC Request 4 Using the heat load given by the licensee in calculation M-MSO-009, the NRC staff performed an independent analysis and found a basin peak temperature above 100°F for scenarios BC and BO at approximately 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> after a LOCA. The heat load used by the NRC staff, being the same as in M-MSO-009, is half the actual containment heat load as noted in question 2, above.

What peak basin temperature does the licensee calculate for scenarios BC and BO (during cool down of the non-accident unit)? If basin temperature would exceed 100°F, what course of action is necessary to prevent basin temperature from exceeding 100°F for a LOCA and non-accident unit cool down?

Page 5

ATTACHMENT 1 Response to Request for Additional Information Response 4 When the time scale is extended for Scenarios 8C and 80 a second spike in basin temperature occurs when the non-accident unit is shutdown. The following peak basin temperatures were obtained:

Maximum Basin Time of Maximum Temperature Scenario Temperature (OF) (Minutes) 8C 101.3 634 80 (Riser Valves Open for Failed 101.3 634 Fans) 80 (Riser Valves Closed for 101.7 628 Failed Fans)

When the time scale is extended for all of the scenarios, two additional scenarios exceed 100° F during cool down of the accident unit. The following peak basin temperatures were obtained:

Maximum Basin Time of Maximum Scenario Temperature (OF) Temperature (Minutesl 8C1 100.5 647 8C2 100.9 636 The heat input from the non-accident unit RHR is based on placing the RHR in operation 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> after the start of the event. The RCS cool down rate is conservatively assumed to be 50 OF/hr. If required, the start of RHR cooling can be delayed on the non-accident unit and/or the cool down rate slowed. The appropriate procedures will be revised to caution operators on the non-accident unit to monitor the SX temperature and to manage the heat load inputs to the UHS from the non-accident unit to maintain the SX pump discharge temperature S 100 OF. The revision of the procedures is presented as a regulatory commitment in Attachment 4.

References:

1. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "License Amendment Regarding Ultimate Heat Sink," dated June 30,2009 Page 6

ATTACHMENT 2 Revised Markup of Proposed Technical Specifications Pages Byron Station Units 1 and 2 Facility Operating License Nos. NPF-37 and NPF-66 REVISED TECHNICAL SPECIFICATIONS PAGES 3.7.9-1 3.7.9-5 3.7.9-6

UHS 3.7.9 3.7 PLANT SYSTEMS 3.7.9 Ultimate Heat Sink (UHS) and the SX cooling tower fans shall be LCO 3.7.9 The UHS shall be OPERABLE ./ .II>

OPERABLE and operating as specified in Table 3.7.9-1 or Table 3.7.9-2.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTIONS CONDITION REQU I RED ACTI ON COMPLETION TIME A. QAe pe~tl~peEl SOO~~Ag PL+/- IJep~BI pema~A~Ag +/- houp to'/Jep faA iAoperab~e. re~uireEl QP~~gb~

soo~ i A9 tOl,ver faRs are sapab~e of beiRg pov.iereEl b:Y aR QP~~~gb~ emepgeAEry' povJer sourse.

AN{:)

A.2 ~store re~uireEl 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> soo~ i Rg tOl/l!er faR to QP~~Agb~ status.

\

.g. One or more basin Restore both basin 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />

\ level(s) < 60%. 1evel s to ~ 60%.

\ \ (continued)

I E.1 I

I IE I I Replace with INSERT 3.7.9-1 BYRON - UNITS 1 &2 3.7.9 - 1 Amendment 106

INSERT 3.7.9-1 A. One or more OPERABLE A.1 Initiate actions to operate Immediately cooling tower fan(s) not OPERABLE cooling tower running in high speed as fan(s) in high speed.

required by Table 3.7.9-1 or Table 3.7.9-2.

B. One required cooling tower B.1 Verify remaining required 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> fan inoperable. OPERABLE cooling tower fans are capable of being AND powered by an OPERABLE emergency Operating SX in power source.

Table 3.7.9-1 configuration.

AND OR B.2 Restore required cooling 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> One or two required cooling tower fans to OPERABLE tower fan(s) inoperable. status.

AND Operating SX in Table 3.7.9-2 configuration.

C. Two inoperable cooling C.1 Restore cooling tower fan 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> tower fans not required to configuration such that be OPERABLE by Table two inoperable cooling 3.7.9-1 that are powered tower fans are not by the same electrical powered by the same division. electrical division.

AND Outside air wet bulb temperature> 76°F.

D. Essential Service Water D.1 Be in MODE 3. 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> (SX) pump discharge temperature> 96°F. AND D.2 Be in MODE 5. 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />

SURVEILLANCE REQUIREMENTS SURVEI LLANCE FREQUENCY SR 3.7.9.1 Verify water level in each cooling tower 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> basin is ~ 60%.

SR 3.7.9.2 Veri fy essenti al servi ce 'Hater pURlP 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> discharge water teRlperature is:

a. < gO°F;
b. < 90°F, with all required cooling tm."er fans runni ng on hi gh speed; or
c. < 96°F, ',./i th > 7 cool i ng to'/Jer fans running on high speed.

SR 3.7.9.3 Verify river water level is > 670.6 ft MSL 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and ~ 702.0 ft MSL.

SR 3.7.9.4 Operate each required cooling tower fan on 31 days high speed for ~ 15 minutes.

SR 3.7.9.5 Verify each SX makeup manual, power 31 days operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in the open position, is in the correct position.

SR 3.7.9.6 Verify that each SX makeup pump starts on a 31 days simulated or actual low basin level signal and operates for ~ 30 minutes.

(continued)

'-----I Verify cooling tower fan requirements in Table 3.7.9-1 or Table 3.7.9-2 are met.

BYRON - UNITS 1 &2 3.7.9 - 5 Amendment 106

SURVEILLANCE REQUIREMENTS (continued)

SURVEI LLANCE FREQUENCY SR 3.7.9.7 Verify each diesel driven SX makeup pump 31 days fuel oil day tank level ~ 47%.

SR 3.7.9.8 Cycle each testable valve in the SX makeup 18 months pump flow path through at least one complete cycle of full travel.

SR 3.7.9.9 Verify fuel oil properties are tested in In accordance accordance with and maintained within the with the Diesel limits of the Diesel Fuel Oil Testing Fuel Oi 1 Program. Testing Program SR 3.7.9.10 ----------------~()lrE:----------------

()nly required when two inoperable cooling tower fans are powered by the same electrical division .

Verify outside air wet bulb 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> temperature is.s 76°F.

Add I~SE:Rlr 3.7.9-2 as a new page BYRON - UNITS 1 &2 3.7.9 - 6 Amendment 106

INSERT 3.7.9-2 Table 3.7.9-1 (page 1 of 1)

Cooling Tower Fan Requirements with SX Trains on Both Units Crosstied SX PUMP DISCHARGE REQUIREMENTS TEMPERATURE REGION 6 cooling tower fans are required to be OPERABLE Either 6 required OPERABLE cooling tower fans running in high speed, or 7 cooling tower fans are required to be OPERABLE 6 required OPERABLE cooling tower fans running in high speed 7 required OPERABLE cooling tower fans running in high speed 8 required OPERABLE cooling tower fans running in high speed Add INSERT 3.7.9-3 as a newpage

INSERT 3.7.9-3 Table 3.7.9-2 (page 1 of 1)

Cooling Tower Fan Requirements with SX Trains on Either Unit Split SX PUMP DISCHARGE REQUIREMENTS TEMPERATURE REGION 8 cooling tower fans are required to be OPERABLE 8 required OPERABLE cooling tower fans running in high speed

ATTACHMENT 3 Additional References

1. Calculation NED-M-MSD-009, Revision 8B, "Byron Ultimate Heat Sink Cooling Tower Basin Temperature Calculation: Part IV"
2. Calculation ATD-0063, Revision 004B, "Heat Load to the Ultimate Heat Sink During a Loss of Coolant Accident"

ATTACHMENT 3 Additional References

1. Calculation NED-M-MSD-009, Revision 8B, "Byron Ultimate Heat Sink Cooling Tower Basin Temperature Calculation: Part IV"

CC-AA-309-1001 Revision 6 ATTACHMENT 2 Design Analysis Minor Revision Cover Sheet Page 1 Design Analysis (Minor Revision) I Last Page No.

  • C14 Analysis No.:
  • NED-M-MSD-009 Revision: 2 8B

Title:

  • 371386 Revision: S 0 Statlon(s): 1 Byron Unit No.:' 1 and 2 Safety/QA Class:
  • Safety Related System Code(s):'o SX Is this Design Analysis Safeguards InformaUon? 11 Yes 0 No 181 If yes. see SY-AA-101-1 06 Does this Design AnalysIs contain Unverified Assumptions? .2 Yes 0 No 181 If yes, ATIIAR#: NA This Design Analysis SUPERCEDES: .. NA in its entirety.

DescrlpUon of Changes (list affected pages): **

NED-M-MSD-009 was revised to include additional Scenarios BE and BE1. These scenarios are Included to respond to a B/1B/1 0 NRC Request for Additional Information (RAI) related to an Ultimate Heat Sink Ucense Amendment Request The Senior Manager Design Engineering, Bill Jacobs, approved use of a minor revision for this "Key Calculation" on 9/30/10. This minor revision includes main body pages 1-13, Appendix A (36 pages), Appendix B (2 pages), and Appendix C (14 pages).

I Disposition of Changes: 1&

U:

See page 10 of this minor revision for disposition of change.

Pre parer: ** Andrew A. Carmean Print Name (OIIL{/to Date Method of Review: 17 Detailed Review 181 Alternate Calculations 0 Testing 0 Reviewer: 11 Steve M. Dawson PrInt Name

~11~ Sign Name IO/t<l/tO Dale Review Independent review 181 Peer review 0 Notes: '"

A I t1fJt'a /oI!#JP!1>

(ForEx18mllAnaIpM Only)

j~

--:p External Approver: Michael A. Nena d-21

/ctl-7ZOIl>

PrlntN_

Exelon Reviewer 21 'J). S'AJ<(i,ElJT bAA A Sign tflome

_f '

rintName

"' S I/lNarne Dale Exelon Approver: 22 Ed\>Jo:ta ~\bY\a\",

Print Name

~11LJ'-~~ I~A" SI nltame

,01 f~ I, ~

Dal'll

CC-AA-1 03-1 003 Revision 6 Page 1 of 1 fascimile ATTACHMENT 2 Owners Acceptance Review Checklist for External Design Analysis Page 1 of 1 DESIGN ANALYSIS NO. NED-MSD-MSD-009 REV.B8 Page-+/-.,A Yes No N/A

1. Do assumptions have sufficient documented rationale? [81 D D Are assumptions compatible with the way the plant is operated and with the
2. licensing basis? The purpose of the minor revision is to establish limits [81 D D for a new licensing basis.

Do all unverified assumptions have a tracking and closure mechanism in 3.

place? D D [81

4. Do the design inputs have sufficient rationale? t8l D D Are design inputs correct and reasonable with critical parameters identified, if 5.

appropriate?

[81 D D Are design inputs compatible with the way the plant is operated and with the

6. licensing basis? The purpose of the minor revision is to establish limits [81 D D for a new licensing basis.
7. Are Engineering Judgments clearly documented and justified? D D [81 Are Engineering Judgments compatible with the way the plant is operated 8.

and with the licensing basis? D D t8l Do the results and conclusions satisfy the purpose and objective of the

9. Design Analysis?

[81 D D Are the results and conclusions compatible with the way the plant is operated

10. and with the licensing basis? The purpose of the minor revision is to D D establish limits for a new licensing basis.

Have any limitations on the use of the results been identified and transmitted to the appropriate organizations? Analysis results are Input to a letter 11.

responding to NRC questions on a LAR. The results have been sent to

[81 D D Licensing.

Have margin impacts been identified and documented appropriately for any 12.

negative impacts (Reference ER-AA-2007)?

[81 D D Does the Design Analysis include the applicable design basis 13.

documentation? t8l D D Have all affected design analyses been documented on the Affected 14.

Documents List (ADL) for the associated Configuration Change?

[81 D D Do the sources of inputs and analysis methodology used meet committed 15.

technical and regulatory reqUirements? t8l D D Have vendor supporting technical documents and references (including GE 16.

DRFs) been reviewed when necessary? D D t8l EXELON REVIEWER:]) SA,e.tiEAlT ~j~

Print / SIgn '

DATE: ItJ/'

t

)/20/D I

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 2 1.0 PURPOSE This minor revision is issued to include additional Scenarios 8E and 8E1. The new scenarios evaluate the potential condition where the SX system trains are operating as two separate loops. If the SX trains were separated on both units, an accident occurs on one unit, a failure of one of the SX pump or EDG on the accident unit could result in SX flow to only one of the two SX cooling towers (the same train SX pumps could be operating on the accident and non-accident units and with the trains separated little flow would be provided to one of the cooling towers). The new scenarios will evaluate if four fans on one of the two SX cooling towers can maintain basin temperature below the SX cooling tower basin design temperature of 100°F. These new scenarios are included to respond to an 8/18/2010 NRC request of Additional Information (RAI) related to an UHS LAR [Ref. 4.1].

2.0 DESIGN INPUTS The design inputs specified in Appendix H of Revision 8 of this calculation apply to the present minor revision except the following:

2.1 The accident scenarios used in this minor revision of the calculation are modified from UHS-01 [Ref. 4.8] Attachment B to respond to an 8/18/10 NRC Request for Additional Information (RAI) related to an Ultimate Heat Sink License Amendment Request [Ref.

4.1] and are discussed in more detail in Sections 7.3.1 through 7.3.2.

2.2 The PIPE-FLO model from BYR96-259, Rev. 2 [Ref. 4.5] is used to develop flow through the two trains of the SX cooling tower for each accident scenario. See Section 7.1 for additional information.

2.3 Cooling tower performance curves for scenarios 8E and 8E1 are based on the model and methodology of BYR97-127, Rev. 1 [Ref. 4.4].

2.4 With the SX trains separated and no flow in one of the SX trains, only half of the SX water inventory is available for heat storage. Thus the input for basin mass will be changed to 1.068 x 10 gallons x 0.5 = 0.534 x 10sgallons.

6 2.5 With only one SX train operating on the accident unit, the heat input to the UHS from the accident unit will be from one train of ECCS and two RCFCs. The heat input for this condition is obtained from Attachment A of ATD-0063, Rev. 004C [Ref. 4.2].

3.0 ASSUMPTIONS All assumptions in Appendix H of Revision 8 of this calculation apply to the present minor revision except the following:

3.1 For Scenarios 8E and 8E1 the fraction of flow cooled through the operating cells in Tower B is zero, thus the tower performance curve used for Tower B has no impact on the calculated basin temperature. In these cases, the same tower performance curve is used for both towers.

3.2 For Scenario 8E1, no cooling is credited prior to fan initiation at 10 minutes. Note, this Is assumption 3.3 from Revision 8 and is unchanged.

3.3 The heat loads taken from Attachment A of ATD-0063, Rev. 004C [Ref. 4.2] does not have any unverified assumptions.

CALCULATION NO. NEO-M-MSO-009 REVISION NO. 88 PAGE 3

4.0 REFERENCES

4.1 Byron 1 & 2 - Additional RAI for Ultimate Heat Sink License Amendment Request (ME1669-70), Accession Number ML102160190, dated 8/18/2010.

4.2 BYR-10-065, Rev. 0, This TOOl transmits ATD-0063, Rev. 004C, "Heat Load to the Ultimate Heat Sink During a Loss of Coolant Accident."

4.3 RS-09-054, "License Amendment Regarding Ultimate Heat Sink," Byron letter to the NRC, dated 6/30109.

4.4 BYR97-127, Rev. 1, "Byron Ultimate Heat Sink Cooling Tower Performance Calculations. n 4.5 BYR96-259, Rev. 2, "SX System FLO-Series Analysis." (Note, minor revisions 2A, 2B, and 2C do not significantly impact the modeL) 4.6 PIPE-FLO Version 9.1, Engineered Software Incorporated (S&L Program No. 03.7.100-9.1).

4.7 MRUESC model for Byron Cooling Tower. Validation Report SWR-805, Rev. 1, dated 12/17/91, Chron 177547.

4.8 Attachment B to UHS-01, Rev. 4, "Ultimate Heat Sink Design Basis LOCA Single Failure Scenarios."

5.0 IDENTIFICATION OF COMPUTER PROGRAMS The maximum service water temperature was determined by running Mathcad Version 11.2a, Program Number 03.7.548-11.2.

All computer runs using Mathcad were made on Sargent and Lundy L.L.C. PC No.

ZL4868 from Controlled File Path: C:\Program Files\MathSoft\Mathcad 11 Enterprise Edition\.

The hydraulic models were run using PIPE-FLO Version 9.1, Program Number 03.7.100-9.1 [Ref. 4.6].

All computer runs for PIPE-FLO are made on Sargent and Lundy L.L.C. PC No. ZL4868 from Controlled File Path: C:\Program Files\Engineered Software\PIPE-FLO Professiona/\

The UHS cooling tower performance results for Attachment C were found using the MRUESC model for the Byron Cooling Tower [Ref. 4.7] run in MS-DOS via VMware Player. The MRLlESC model executable has been validated by Exelon under the Exelon Quality Assurance Program.

All computer runs for the MRUESC model are made on Sargent and Lundy L.L.C. PC No. ZL4868.

6.0 METHOD OF ANALYSIS Minor revision 8B of this calculation will use the ESW cooling tower transient model from Revision 8 of this calCUlation to calculate the basin temperature response for additional

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 4 Scenarios BE and BE1. Changes to the Revision B Mathcad model required to perform the Revision BB analysis are summarized as follows and shown in Appendix C:

1) For Scenarios BE and BE1 new flow rates were generated using PIPE-FLO [Design Input 2.2]. The lineup encompasses a single failure of either one SX pump or EDG occurring on the accident unit, resulting in operation of the 1A and 2A pumps and no supply flow is provided to the B SX trains on either unit. PIPE-FLO model BA from BYR 96-259 [Ref. 4.5} and Appendix H of Revision B of this calculation was used as a starting point for PIPE-FLO models BE and BE1. The SX system trains are completely separated and the CC HX flow is set to 16,000 gpm for CCHX-1 (CCHX-1 increases from B,Ooo gpm to 16,000 gpm from Scenario BA) and CCHX-2 (CCHX-2 is unchanged from Scenario BA).
2) Tower performance curves were generated for Scenarios BE and BE1 using MRUESC [Design Input 2.3]. For Tower B in both scenarios, there are no active cells. In this case, the same tower performance curve is used for both towers (see Assumption 3.1).

The Byron ESW cooling tower performance is acceptable if the calculated basin temperature is at or below the SX cooling tower basin design temperature of 100°F.

6.1 Scenario Descriptions Scenarios BE and BE1 were developed by modifying the scenarios in Attachment B of UHS-01 [Ref. 4.B] to account for a single failure of either one SX pump or EDG occurring on the accident unit, resulting in operation of the 1A and 2A pumps and no supply flow is provided to the B SX trains on either unit. The following is a short description of each scenario. Note that from a hydraulic standpoint, the Pre-lOCA and Post-LOCA configurations are the same, unless operator action is taken to open or close valves.

Also, since no cooling is credited prior to fan operation at 10 minutes for Scenario BE1 (see Assumption 3.2) only the Post-LOCA configuration is shown below. Furthermore, fan operation does not affect the hydraulic analysis.

Scenario BE Cells OOS: None SX Pumps: One running on each unit (pre-LOCA)

Train A is completely separated from Train B Single failure: EDG - loss of power to SX pump 1B [Ref. 4.2]

Post-LOCA Cooling Tower Configuration (SX Pumps: one on Unit 1, one on Unit 2)

All fans running initially Tower A: 4 riser valves open, 0 bypass valves open Tower A: 4 active cells, 0 OOS cell Tower B: 4 riser valves open, 0 bypass valves open Tower B: 4 active cells, 0 OOS cell, 0 failed cells Scenario BE1 Cells OOS: None SX Pumps: One running on each unit (pre-LOCA)

Train A is completely separated from Train B Single failure: EDG - Loss of power to SX pump 1B [Ref. 4.2]

Post*lOCA Cooling Tower Configuration (SX Pumps: one on Unit 1, one on Unit 2)

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGES Following 10 minute operator action to start fans and open riser valves

° Tower A: 4 riser valves open, 0 bypass valves open Tower A: 4 active cells, OOS celis Tower B: 4 riser valves open, 0 bypass valves open Tower B: 4 active celis, 0 OOS celis, 0 failed cells 6.2 Resistance Values The flow rates for the scenarios described in Section 6.1 were run by setting the SX pumps to 100% head and inserting a resistance value (K) into each riser and bypass line that is closed to achieve the desired flow rate of at least 250 gpm for each riser valve leakage and at least 375 gpm for each bypass valve leakage (see methodology from BYR96-259 [Ref. 4.5]). The SX pumps were run at 100% head (as opposed to 95%) with valve leakage modeled. Initial basin temperatures were used for fluid density (96°F for Scenario 8E and 82°F for Scenario 8E1). PIPE-FLO model 8A from BYR 96-259 [Ref.

4.5] and Appendix H of Revision 8 of this calculation was used as a starting point for PIPE-FLO models 8E and 8E1. Even though cooling tower efficiency improves with lower flow rates, more leakage (less flow to the active tower cells and more bypass around the active tower cells) is conservative, as it yields higher basin temperatures. This was confirmed in undocumented runs. The K values used to model valve leakage for each scenario are shown in Table 6-1. The results for each scenario are shown in Tables 7-1 and documented in Appendix A.

The resistance values (K) for each scenario are shown below in Table 6-1.

Table 6 Resistance Values (K) for Each Scenario Scenario Scenario Additional Resistance (K) 8E 8E1 Resistance to Riser Valve OSX162A Pipe 857) - -

Resistance to Riser Valve OSX162B Pipe 859 - -

Resistance to Riser Valve OSX162C Pipe 861 - -

Resistance to Riser Valve OSX162D (Pipe 863 - -

Total Bypass Line Resistance to "A" Tower (Pipe 864) 90,000 90,000 Resistance to Riser Valve OSX162E Pipe 849) - -

Resistance to Riser Valve OSX162F Pipe 851 - -

Resistance to Riser Valve OSX162G Pipe 853 - -

Resistance to Riser Valve OSX162H Pipe 855 - -

Total Bypass Line Resistance to "B" Tower (Pipe 856) 90,000 90,000 6.3 Tower Performance Curves The tower performance curves are shown in Figures 8-1 through 8-2 for each scenario.

These figures plot THot vs TCold for each tower performance curve for each cooling tower as provided by the methodology in BYR97-127 [Ref. 4.4]. For each scenario, two pOints were selected from the applicable tower performance curve (see Appendix B) to provide a linear approximation of tower performance over the range of T Hot and TCold temperatures expected for that scenario. The selected points are checked against final results to confirm their applicability to the actual temperature range. These points are listed as Th1, Th2, Th3, Th4, Tc1, Tc2, Tc3, and Tc4 in the Mathcad models.

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 6 7.0 NUMERICAL ANALYSIS 7.1 PIPE-FLO Results The results of all scenario PIPE-FLO runs are summarized in Table 7-1.

Table 7 PIPE-FLO Results of All Scenarios Post-LOCA Scenario Scenario SX Component (gpm) 8E 8E1 SX Pump1A 24,779 24,778 SX Pump 1B 0 0 RCFC1A 2,791 2,790 RCFC 1B 0 0 RCFC1C 2,656 2,656 RCFC 10 0 0 SX Pump2A 22,860 22,859 SX Pump 2B 0 0 RCFC2A 3,119 3,119 RCFC 2B 0 0 RCFC2C 3,236 3,236 RCFC20 0 0 Flow to Riser Valve OSX162A 11,829 11,829 Flow to Riser Valve OSX162B 11,692 11,691 Flow to Riser Valve OSX162C 11,628 11,628 Flow to Riser Valve OSX1620 11,613 11,613 Total Bypass line Flow to "A" Tower 837 837 Flow to Riser Valve OSX162E 0 0 Flow to Riser Valve OSX162F 0 0 Flow to Riser Valve OSX162G 0 0 Flow to Riser Valve OSX162H 0 0 Total Bypass line Flow to "B" Tower 0 0 7.2 Cooling Tower Performance The SX flow through each of the riser valves for Scenarios 8E and 8E1 are shown in the table below.

Table 7-2' Riser flow rate for Scenarios 8E and 8E1 SX Component Scenario Scenario 8E 8E1 Flow to Riser Valve OSX162A (gpm) 11,829 11,829 Flow to Riser Valve OSX162B (gpm) 11,692 11,691 Flow to Riser Valve OSX 162C (gpm) 11,628 11,628 Flow to Riser Valve OSX 1620 (gpm) 11,613 11,613 Flow to Riser Valve OSX162E (gpm) 0 0 Flow to Riser Valve OSX162F (~lPm) 0 0 Flow to Riser Valve OSX162G (gpm) 0 0 Flow to Riser Valve OSX162H(gpmJ 0 0

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 7 Table 7-3: Average Flow Rate per Cell for Each Cooling Tower IMinus Drain Line Losses)

Average Flow Scenario Scenario per Active Cell 8E 8E1 Tower A 11,441 11,440 TowerB 0 0 7.3 Flow Rate Analysis As discussed in BYR96-259 [Ref. 4.5] and BYR97-127 [Ref. 4.4], leakage is taken into account when determining the average flow rates. The table below shows the applicable flow rates for each scenario.

Table 7-4: FI ow Rate A nalys I Is Scenario 8E Scenario 8E1 11,829 + 11 ,692 + 11,628 + 11,829 + 11,691 + 11 ,628 Flow through operating cells in T1 =

11,613 - 1000 45,762 =

+ 11,613 -1000 45,761 11,829 + 11,692 + 11,628 + 11,829 + 11,691 + 11,628 Total flow through T1 =

11,613 + 837 47,599 =

+ 11,613 + 837 47,598 Flow through operating cells in T2 0 0 Total flow through T2 0 0 Average flow per cell in T1 11,441 11,440 Average flow per cell in T2 0 0 Flow to RCFC 1A 2,791 2,790 Flow to RCFC 1A + RCFC 18 =

2,791 + 0 2,791 =

2,790 + 0 2,790 7.3.1 Accident Scenario 8E This scenario is the same setup as Scenario 8A from Revision 8 of this calculation, with the exception that the system lineup is modified to account for a failure of an EDG.

The single failure considered for Scenario 8E is the loss of an SX pump or and EDG.

The initial conditions assume a basin temperature of 96°F (maximum basin temperature aI/owed when eight fans are operable and running in high speed) with one SX pump running on each unit. This scenario assumes zero tower cells are out of service (OOS).

Initially, all fans are running and all the bypass valves are closed.

The total heat load to be used for this scenario is the "Total Heat Load to the UHS with 1 ECCS Train and 2 RCFCs" shown in Attachment A of ATD-0063, Rev. OO4C [Ref. 4.2J.

There is one set of parameters f, a, M1, 81, M2, B2, a, and 13 that are needed to determine the basin temperature response.

The UHS tower flows, based on Scenario 8E are shown in Table 7-1. The Thot vs T cold relationship is illustrated in Figure 8-1.

Determination of f, A, M1, B1, M2, 82, a, and 13.

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 8 f11, f12 :

= Flow through operating cells in T I Total flow through Tl including bypass flow

= 45,762gpm =0.961 47,599 gpm f21, f22 Flow through operating cells in T2

=----------~~----=-----------

Total flow through T2 including bypass flow

= 0 gpm =0.000 Ogpm This is equal to the total flow to T1 and T2, (47,599 + 0) gpm = 47,599 gpm M11,B11,M12,B12:

Based on an average flow of 11,441 gpm per cell in T1 , the tower performance for T1 is generated using a flow of 11,441 gpm (Figure 8-1). Based on the TH, Tc values (as determined from the TH values calculated for tower operation in Design Input 2.3), [(126.60, 98.60), (118.57, 96.57)], Mathcad calculates M11, M12 and B11, B12 from the tower performance inputs.

M21. B21. M22. B22:

Based on an average flow of 0 gpm per cell in T2, the tower performance for T2 will be the same as for T1 (see Assumption 3.1). Based on the TH, Tc values

[(126.60,98.60), (118.57, 96.57)], Mathcad calculates M21, M22 and B21, B22 from the tower performance inputs.

a1, a2:

= Flow to Tl = 47,599 gpm =1.000 Total SX flow, Q 47,599 gpm

~:

13 is estimated as the fraction of load to Tower 1.

FiowtoRCFC1A = (2,791)gpm -1.000 Flow to RCFC 1A + Flow to RCFC 1B (2,791 + 0) gpm Based on the parameters f, Q, M1, B1, M2, B2, a, and 13 determined above, the coefficients A, B. and C in Eq (3), renamed A1/A2. 01/02. and C1/C2 here. are calculated by Mathcad.

The output from the MathCAO calculation for this scenario is shown on pages C1 through C7. The maximum basin temperature. Tb max

  • is calculated to be 98.2°F with an initial basin temperature of 96°F. The temperature at 30 minutes is calculated to be 97.6°F

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 9 with an initial basin temperature of 96°F. Both of these values are at or below the acceptance limit of 100°F.

7.3.2 Accident Scenario 8E1 This scenario is the same setup as Scenario 8E with the exception that no fans are running initially. No cooling is credited prior to fan initiation at 10 minutes (see Assumption 3.2).

The single failure considered for Scenario 8E1 is the loss of an SX pump or and EDG.

The initial conditions assume a basin temperature of 82°F (maximum basin temperature allowed when eight fans are operable and not initially running in high speed) with one SX pump running on each unit. This scenario assumes zero tower cells are out of service (OOS). Initially, no fans are running and all the bypass valves are closed.

The total heat load to be used for this scenario is the "Total Heat Load to the UHS with 1 ECCS Train and 2 RCFCs" shown in Attachment A of ATD-0063, Rev. 004C [Ref. 4.2J.

There is one set of parameters f, Q, M1, B1, M2, B2, a, and J3 that are needed to determine the basin temperature response.

The UHS tower flows, based on Scenario 8E1 are shown in Table 7-1. The That VS Teald relationship is illustrated in Figure 8-2.

Determination off, Q, M1, B1, M2, B2, a, and 13.

f11,f12 :

= Flow through operating cells in T1 Total flow through T1 including bypass flow

= 45,761 gpm =0.961 47,598gpm f21,f22 :

= Flow through operating cells in T2 Total flow through T2 including bypass flow

= 0 gpm =0.000 Ogpm This is equal to the total flow to T1 and T2, (47,598 + 0) gpm =47,598 gpm M11, B11, M12, B12:

Based on an average flow of 11,440 gpm per cell in T1, the tower performance for T1 is generated using a flow of 11,440 gpm (Figure 8-2). Based on the TH, Tc values (as determined from the TH values calculated for tower operation in Design Input 2.3), [(126.60, 98.60), (118.57,96.57)], Mathcad calculates M11, M12 and B11, B12 from the tower performance inputs.

CALCULATION NO. NEO-M-MSO..Q09 REVISION NO. 88 PAGE 10 M21. B21. M22, B22:

Based on an average flow of 0 gpm per cell in T2, the tower performance for T2 will be the same as for T1 (see Assumption 3.1). Based on the TH, Tc values

[(126.60,98.60), (118.57,96.57)], Mathcad calculates M21, M22 and B21, B22 from the tower performance inputs.

a1. a2:

=__FI_ow_to_T_1_ = 47,598gpm =1.000 Total SX flow, Q 47,598 gpm

~:

13 is estimated as the fraction of load to Tower 1.

= Flow to RCFC 1A = (2,790) gpm =1.000 Flow to RCFC 1A + Flow to RCFC 1B (2,790 + 0) gpm Based on the parameters f, Q, M1, B1, M2, B2, a, and ~ determined above, the coefficients A, B, and C in Eq (3), renamed A1/A2, 01/02, and C1/C2 here, are calculated by Mathcad.

The output from the MathCAO calculation for this scenario is shown on pages C8 through C14. The maximum basin temperature, Tb mru" is calculated to be 98.2°F with an initial basin temperature of 82°F. The temperature at 30 minutes is calculated to be 98.0°F with an initial basin temperature of 82°F. This value is below the acceptance limit of 100°F.

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 11 8.0 RESULTS AND CONCLUSIONS The results for Scenarios 8E and 8E1 are summarized below.

Tab eS.1 - S ummarvofS cenarlos Basin Wet Bulb Initial Basin Max Basin Cells Temperature Scenario Temperature Temperature Temperature OOS (OF) at 30 (OF) (OF) (OF) minutes 98.2 8E None 82 96 97.6 (at 560 min) 98.2 8E1 None 82 82 98.0 (at 38 min)

The new calculations show that with a failure of an EDG. the calculated maximum basin temperature remains less or equal to the SX system design temperature of 100QF.

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 12 Figure 8-1: Scenario 8E 8E Tower A, 11441 gpm, Twb 103 101 99 97 95 E."

.J 93 91 89 87 85 ~I---------,----------~--------~------------------------------.--------- __________ ~

90 100 110 120 130 140 150 160 170 Thad"F)

CALCULATION NO. NED-M-MSD-009 REVISION NO. 86 PAGE 13 (Final Page)

Figure 8-2: Scenario 8E1 -8E1 Tower A, 11440 gpm, Twb 82°F 103 101 99 97 95 .

Li:'

l..

J 93 91 89 87 85 90 100 110 120 130 140 150 160 170 Thot (OF)

CALCULATION NO. NED*M*MSD-009 REVISION NO. 88 APPENDIX A Page A1 System: Scenario BE 10106/10 2:09 pm Uneup: Scenario BE Company: Sargent & Lundy LLC rev: 10104/10 4:40 pm Project:

Aim pressure: 14.7 psi a LIST REPORT Total System Volume: 737326 9a'ons Pressure drop calculations: Darcy-Welsbach method.

Calculated: 15 iterations AV9 Deviation: 0.006545 %

SPECIFICATIONS Specification Material I Schedule Roughness Sizing Design Limits BBSX (STD) ByronPipes-NHL I STD 0.036 in not specified Valves: standard C: 100 BBSX (XS) ByronPipes-NHL I XS 0.036 in not specified Valves: standard c: 100 Steel Sch. 10 Steel A53-B36.10 110 0.036 in nol specified Valves: standard C: 140 Steel Sch. 20 Steel A53-B36.10 120 0.036 in nol specified Valves: standard C: 140 Sleel Sch. 30 Steel A53-B36.10 130 0.036 In nol specified Valves: standard C: 140 Sleel Sch. 40 Steel AS3-B36.10 140 0.036 in not specified Valves: standard C: 140 Sleel Sid Steel A53-B36.1 0 I 20 0.036 In not specified Valves: standard C: 140 FLUID ZONES Fluid Zone Fluid Temp Pressure Density Vlscoslly Pv/Pc or k

('F) (psi g) (lbII!') cP (psi a)

Waler Water 96 14.7 62.27 0.7118 0.8412/3198 PIPE-FLO 2005 pgl

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA2 PIPELINES 10/06/10 2:09 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (ft)

Specification Fluid Zone Size Length K (in) (ft)

AA SXPump lA 24779 8.153 (R751) 1.583 BBSX(STD) Water 36 71.2 1.054 12 BU CR Ref. Cond OA 1119 7.183 2.282 15,93 Steel Sch. 40 Water 8 229,5 9.66 154 BF BG 1453 5.918 7,397 4,444 Steel Sch. 40 Water 10 70,35 5,837 155 BG BH 2791 6.499 1.032 2.387 Steel Sch. 30 Water 14 129 0,644 156 BH BI 4157 9.68 0,835 1,932 Steel Sch. 30 Waler 14 42.14 0.352 157 BI BJ 5447 9,575 8,618 6,809 Steel Sch. 30 Water 16 205.5 0,804 158 BJ ConI. Ref. lA xxx BBSX(STD) Waler 12 17,25 1,295 160 Conl Ref. lA BM o o a a Steel Sch. 20 Water 12 23.5 1.835 161 BJ BM 5447 9,575 0.611 1.414 Steel Sch. 30 Waler 16 12.66 0,749 162 BM BT 5447 9.575 (6.859) 2.48 Steel Sch. 30 Waler 16 47 0,833 164 BT BY 7171 7.912 (8,013) 0.960 Steel Sch. 20 Waler 20 37 0.454 165 BX BY 1478 6.D18 0,458 1.059 Steel Sch. 40 Water 10 5.33 1,707 166 BY GO 8649 9.642 (5.383) 3.295 Steel Sch. 20 Water 20 43.5 1.705 167 BO BP 1725 7.024 11.28 4,699 Steel Sch. 40 Water 10 125.4 1.97 168 BP DGJWC-1A 1725 7,024 7.159 26.72 Steel Sch. 40 Waler 10 118,5 30,98 170 DG.JWC-1A BS 1725 7,024 21.93 50,63 SleeI Sch. 40 Water 10 111.5 62.45 171 BS BT 1725 7,024 (6.451) 4.325 Steel Sch. 40 Water 10 82,25 2.916 172 BO fA 20 0.222 (1.186) 0,006 Steel Sch. 40 Water 6 81,33 2.002 173 IA IB xxx Steel Sch. 40 Waler 6 0.25 0.633 176 AA SXPump2A 22860 7,521 (8,473) 2,226 BBSX(STD) Waler 36 97,75 1,875 178 SXPump2A CD 22860 7,521 1.876 1.381 BBSX{STD) Waler 36 33.8 1.345 179 CD CE 22860 7,521 1,243 2.877 BBSX(STD) Water 36 0.01 3.278 180 CE CF 22860 7,521 0.140 0.323 BBSX(STD) Water 36 6,2 0,326 181 CF DA 6746 7.443 23,02 3.75 SleeI Sch. 20 Waler 20 145.8 2,257 182 DA DO 390,8 0.910 3.678 0.010 Sleel Sch. 30 Water 14 8.5 0,606 183 DO DP 20 0.047 o o Steel Sch. 30 Waler 14 3,25 0.439 233 DA DB 6355 11.17 16.95 1623 Steel Sch. 30 Waler 16 227,5 3.975 PIPE-FLO 2005 pg2

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA3 PIPELINES 10/06/10 2:09 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (ft)

Specification Fluid Zone Size Length K (in) (ft) 234 DB DC 4805 11.19 0.715 1.684 Steel Sen. 30 Water 14 26.07 0263 235 DC 00 3119 7.263 1.514 3.502 Steel Sen. 30 Water 14 144 0.934 236 DO DE 1545 6.292 (4.811) 1.658 Steel Sen. 40 Water 10 36.95 1.47 25 CR Ref. Cond OA BX 1119 7.183 20.27 63.98 Steel Sen. 40 Water 8 248.6 68.82 3 SX Pump lA AD 24779 8.153 2.407 2.609 BBSX(STD) Water 36 18.75 2.403 327 DF OG 1545 6.292 6.634 4.7 Steel Sen. 40 Water 10 64.54 5.505 328 DG OH 3119 7.263 1.339 3.098 Steel Sen. 30 Water 14 130.7 0.749 329 DH 01 4805 11.19 1.248 2.887 Steel Sen. 30 Water 14 42.43 0.503 330 DI OJ 6355 11.17 12.42 15.66 Steel Sch. 30 Waler 16 223.5 3.757 331 OJ Cont. Ref2A 1040 2.951 0.965 0.384 BBSX(STD) Water 12 20.75 2.288 333 Cont. Ref2A OM 1040 2.951 0.048 0.312 BBSX(STO) Water 12 24.5 1.656 334 OJ OM 5316 9.344 2.461 5.694 Steel Sen. 30 Water 16 9.25 4.024 335 OM DN 6355 11.17 (1.983) 1.462 Steel Sch. 30 Water 16 18.5 0.397 336 ON OU 6355 11.17 (4.466) 1.917 Steel Sen. 30 Water 16 31.5 0.38 337 OU OV 6355 7.011 (8.246) 0.422 Steel Sen. 20 Water 20 29.75 0.123 339 OV GC 6726 7.42 (4.674) 4.935 Steel Sen. 20 Water 20 246 2.222 340 OP 00 o o 5.943 o Steel Sen. 40 Water 10 101.3 2.816 341 00 OGJWC*2A xxx Steel Sen. 40 Water 10 112.8 32.21 343 OGJWC*2A OT o o (0.756) o Steel Sen. 40 Water 10 115.8 69.77 344 OT OU o o (7.564) o Steel Sen. 40 Waler 10 52.25 2.138 345 OP JA 20 0.222 0.544 0.009 Steel Sen. 40 Water 6 110.8 3.04 348 AF AG 16110 5.301 0.161 0.373 BBSX(STD) Water 36 42.25 0.569 349 AG HA 16110 7.698 2.515 1.568 BBSl<<STD) Water 30 8.25 1.635 351 HA HB 16000 7.646 8.494 1.153 BBSX(STO) Water 30 62.75 0.736 356 HB CCHX*l 16000 7.646 0.115 0.267 BBSX(STD) Water 30 12.25 0.19 364 CCHX*l HE 16000 7.646 (2.861) 1.631 BBSX(STD) Water 30 55.75 1.323 367 HE GF 16110 7.698 0.424 0.982 BBSX(STD) Water 30 13.6 0.952 PIPE*FLO 2005 pg3

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA4 PIPELINES 10/06110 2:09 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ftlsec) (psi) (It)

Spetification Fluid Zone Size length K (in) (tt) 368 GF GE 16110 3.871 0.053 0.122 BBSX(STD) Water 42 20.75 0.407 369 CF CG 16114 5.302 0.033 0.077 BBSX (STD) Water 36 4.5 0.146 370 CG HF 16114 7.7 0.602 1.393 BBSX(STD) Water 30 3.75 1.482 372 HF CCHX-2 16000 7.646 13.04 1.909 BBSX(STD) Water 30 110.8 1.159 384 CCHX-2 HI 16000 7.646 (4.448) 0.309 BSSX(STD) Water 30 17.5 0.191 387 HI GI 16000 7.646 0.792 1.833 BBSX(STO) Water 30 12 1.919 388 GI GH 16000 3.844 0.013 0.029 BBSX(STO) Water 42 8.5 0.081 389 GH GE 16114 3.872 0.228 0.527 BBSX(STD) Water 42 123 1.579 390 GE GO 32224 5.964 0.047 0.110 BBSX(XS) Water 48 14.75 0.129 391 GO GC 40874 7.565 0.144 0.333 BBSX(XS) Water 48 32.25 0.222 393 GC GB 47600 8.809 15.87 7.468 BBSX(XS) Water 48 956.2 1.678 394 AH SXPump lB xxx BBSX(STD) Water 36 71.3 1.054 396 SXPump 18 AK xxx Steel Sch. 20 Water 24 7.22 0.651 397 AK AL o o a a BBSX(STO) Water 36 0.01 3.278 398 AL AM o o a a BBSX(STD) Water 36 6.25 0.322 399 EA AM <--:> 0.235 o (22.69) o Steel Sid Water 20 149 2.446 4 AD AE 24779 8.153 1,461 3.38 BBSX(STD) Water 36 0.01 3.278 400 EN EA <--> 6.296 0.Q15 (1.621) o Steel Sch. 30 Water 14 3.75 0.606 401 EO EN <-~ 5.548 0.013 o a Steel Sch. 30 Water 14 2 0,457 402 EO EP o o 10.01 a Steel Sch. 40 Water 10 137 2.558 403 EP OGJWC-1B xxx Steel Sch. 40 Water 10 223.8 32.8 405 OGJWC-1B ES xxx Steel Sch. 40 Water 10 209 43.4 406 ES ET o o (10.37) a Steel Sch. 40 Water 10 86.5 2.916 407 EV EN 0.748 0.003 (1.405) a Steel Sch. 40 Water 10 5.75 0.868 423 EV CR Ref. OB xxx Steel Sch. 40 Water 8 233 9.791 425 CR Ref. OB EY xxx Steel Sch. 40 Water 8 254.5 107.9 463 EZ EY 0.748 0.003 a o Steel Sch. 40 Water 10 4.5 1.78 PIPE-FLO 2005 pg4

CALCULATION NO. NEO-M-MSO-009 REVISION NO. 88 APPENDIX A Page A5 PIPELINES 10/0611 a 2:09 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (fIIsec) (psi) (ft)

Specification Fluid Zone Size Length K (in) (tt) 464 EA EB 6.061 0.011 9.401 o Steel Sch. 30 Waler 16 141 3.161 465 EB EC 5.973 0.014 o a Steel Sch. 30 Waler 14 26 0.265 466 EC ED 4.375 0.010 (0.432) a Steel Sch. 30 Water 14 145.6 0.932 467 ED EE 2.276 0.009 (5.856) a Sleel Sch. 40 Water 10 4B.75 1.216 5 AE AF 24779 8.153 0.166 0.383 BBSX(STO) Waler 36 6.75 0.326 514 EH EI 5.973 0.014 2.593 a Sleel Sch. 30 Water 14 62 0.832 538 EG EH 4.375 0.010 o a Sleel Sch. 30 Water 14 127 0.748 560 EF EG 2.276 0.009 5.403 o Steel Sch. 40 Water 10 69.57 5.919 561 EI EJ 6.061 0.011 3.025 a Steel Sch. 30 Waler 16 149.5 2.368 562 EJ Cant. Ref. lB xxx BBSX(STO) Water 12 27.25 1.491 564 ConI. Ret. lB EM o a 0.692 a BBSX(STO) Water 12 32.75 2.28 565 EJ EM 6.061 0.011 0.043 a Steel Sch. 30 Water 16 13.5 1.147 566 EM ET 6.061 0.011 (10.74) a Steel Sch. 30 Water 16 44.75 0.523 568 ET EU 6.061 0.007 a a Steel Sch. 20 Waler 20 11.75 0.265 569 EU EZ 20.51 0.023 (6.375) a Steel Sch. 20 Water 20 17.5 0.333 570 IC EO <-> 5.548 0.036 0.432 a Sleel Sch. 40 Water 8 97 3.09 571 COOLING WATER BOO .. IC <-> 5.548 0.062 1.081 a Steel Sch. 40 Water 6 16 7.422 6 AF BA 8669 9.564 23.43 4.714 Steel Sid Water 20 85.1 2.094 60 SA B8 5447 9.575 14.66 11.41 Sleel Sch. 30 Waler 16 214.2 3.871 602 IG IF <-> 5.548 0.062 o a Steel Sch. 40 Water 6 2 0.112 603 IG IH 14.45 0.161 0.649 0.001 Steel Sch. 40 Water 6 22 0.812 604 IH EU 14.45 0.161 (2.483) 0.004 Steel Sch. 40 Water 6 99 2.903 605 AH SXPump2B xxx BBSX (STO) Water 36 87 1.875 607 SX Pump 2B CK xxx Sleel Sch. 20 Water 24 6.B2 0.416 608 CK CL o a o a BBSX(STO) Water 36 0.01 3.278 609 CL CM o o o o SBSX(STO) Water 36 5.75 0.322 61 88 8C 4157 9.68 0.612 1.416 Steel Sch. 30 Water 14 29.25 0.296 PIPE-FLO 2005 pg5

CALCULATION NO. NED*M*MSD-009 REVISION NO. 88 APPENDIX A PageA 6 PtPELlNES 10106/10 2:09 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (tt)

Specilicalion Fluid Zone Size Length K (in) (ft) 610 FA CM o Steel Sch. 20 Water

<-> 0.323 (22.65) o 20 87.75 1.986 611 FA Fa o Steel Sch. 30 Water 0.402 1.729 o 14 4 0.607 612 Fa FR o o o Steel Sch. 30 o

Waler 14 3.25 0.457 613 FR FS xxx Steel Sch. 40 Waler 10 83 2.371 614 FS OGJWC-2B xxx Steel Sch. 40 Water 10 162.3 31.43 616 OGJWC-2B FV o o (1.621) o Steel Sch. 40 Water 10 142.3 125.2 617 FV FP o o Steel Sch. 40 Water (8.752) o 10 59.5 2.595 62 BC SO 2791 6.499 1.215 2.811 Steel Sch. 30 Waler 14 144.4 0.932 63 SO BE 1453 5.918 (4.002) 1.551 Sleel Sch. 40 Water 10 50.04 1.188 670 FB FA Steel Sch. 30 Waler

<-> 0.724 0.001 (9.439) o 16 136.9 2.988 671 FC FB <-> 0.482 0.001 o o Sleel Sch. 30 Water 14 27.57 0.299 672 FO FC <-> 0.253 o (0.004) o Steel Sch. 30 Water 14 145.8 0.932 673 FE FO <-> 0.126 o 5.446 o Steel sm. 40 Water 10 46.25 1.224 7 SA SN 3223 3.556 3.751 0.179 Steet Sch. 20 Water 20 6.5 0.819 711 FJ FI Steel Sch. 30 Waler

<-> 0.462 0.001 (2.593) o 14 59 0.628 725 FI FH 0.253 o o o Sleel Sch. 30 Water 14 133.5 0.751 747 FH FF Steel Sch. 40

<-> 0.126 o (6.267) o Water 10 65.35 5.466 748 FK FJ Steel Sch. 30 Water

<-> 0.724 0.001 (3.025) o 16 152.3 2.379 749 FK ConI. Ref2B xxx BBSX(STO ) Water 12 27.75 1.375 751 ConI. Ref2B FN xxx SBSX(STO ) Waler 12 30.75 1.93 752 FN FK Steel Sch. 30

<-> 0.724 0.001 o o Water 16 15.25 4.447 753 FO FN Steel Sch. 30 Water

<-> 0.724 0.001 3.35 o 16 15.75 0.288 754 FP FO Steel Sch. 30 Waler

<-> 0.724 0.001 7.348 o 16 30.75 0.259 759 FW Steel Sch. 20 FP <--> 0.724 a o o Water 20 7.25 0.265 760 FW FX Steel sm. 20 Waler 19.28 0.021 (6.375) o 20 23.5 0.265 761 FR JB o o Steel Sch. 40 Water (0.497) o 8 106.5 3.998 762 JB COOLING WATER BOO.. o o (1.081) o Steel sm. 40 Waler 6 22.25 7.422 PIPE-FLO 2005 pg6

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA7 PIPELINES 10/06/10 2:09 pm Pipeftne From To Status Flow Velocity dP Hl (USgpm) (Illsec) (psi) (tt)

Specification Fluid Zone Size length K (In) (tt) 792 JE JF a o (2.593) o Sleet Sch. 40 Water 6 16.5 1.557 793 JF FW 20 0.222 (1.723) 0.014 Steel Sch. 40 Water 6 170.8 5.01 794 AM AO 0.235 o o o BBSX(STD) Water 36 45 0.146 795 AO AN 0.073 o o o BBSX(STD) Water 36 2.5 0.097 8 BN BO 1745 4.063 0.053 0.124 Steel Sch. 30 Water 14 1.83 0.44 809 AP CC HX-Q 0.161 a 12.53 o BBSX(STD) Water 30 107.3 1.705 810 CC HX-Q HK 0.161 o o a BBSX (STD) Water 30 0.Q1 a 811 HK HL 0.161 o (3.134) o BBSX(STD) Water 30 27.75 1.532 812 HM HL <-> 0.001 o o a BBSX(STO) Water 30 12.5 0.394 813 HM GG 0.072 o (1.405) o BBSX(STD) Water 30 24.75 1.179 814 HL HN 0.163 o (1.405) o BBSX(STD) Water 30 89.75 0.919 815 HN GJ 0.485 o o o BBSX(STD) Water 30 10.5 0.952 816 GG GF xxx BBSX(STD) Water 42 23.25 0.766 817 GJ GI xxx BBSX(STO) Water 42 29 0.547 818 EZ GL 19.77 0.022 (6.008) o Steel Sch. 20 Water 20 213.5 2.221 819 GG GK <-> 0.072 o o o BBSX(STD) Water 42 104.8 1.34 820 GJ GK <--> 0.485 o o o BBSX(STD) Water 42 19.75 0.92 821 GK GL 0.557 o 0.800 o BBSX(XS) Water 48 45.75 0.48 822 CM CN 0.323 a a o BBSX(STO) Water 36 4.5 0.146 823 CN AQ 0.323 o o o BBSX(STD) Wa1er 30 3 1.482 837 GL GM <--> 20.32 0.004 0.605 o BBSX(XS) Water 48 23.75 0.222 838 FX GM 19.68 0.022 (5.403) o Steel Sch. 20 Water 20 12.5 1.091 839 GM GN 40 0.007 o o BBSX(XS) Water 48 2.25 0.045 840 GN GO 40 0.007 11.24 o BBSX (XS) Water 48 1107 1.623 841 CN CG xxx BBSX(STO) Water 36 90.25 1.315 842 AN AG xxx BBSX(STO) Water 36 47.25 0.509 843 FG(A) AA 47640 8.817 (19.55) 7.93 BBSX(XS) Water 48 1021 1.744 PIPE-FLO 2005 pg7

CALCULATION NO. NED-M-MSD-009 REVISION NO. B8 APPENDIX A PageAB PIPELINES 10/06/10 2:09 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (tt)

Specification Fluid Zone Size Length K (in) (tt) 845 FG(S) AH o o (22.98) o SSSX(XS) Waler 48 1266 1.717 847 GS GA 47600 8.809 8.577 5.346 SSSX(XS) Waler 4B 747.6 0,902 848 GO GP 40 0.007 6.267 o SSSX(XS) Water 48 810.6 0.462 849 GP CeliE 10.26 0.008 14.65 o Steel Sch. 20 Waler 24 120.1 5.487 850 GP KE 29.74 0.006 o o BBSX(XS) Waler 48 43 0.101 851 KE Cell F 9.988 0.008 14.65 o Steel Sch. 20 Water 24 120.1 5.487 852 KE KF 19.75 0.004 o o SBSX(XS) Waler 48 43 0.101 853 KF CeliG 9.93 0,008 14.65 o Sleel Sch. 20 Waler 24 120.1 5.487 854 KF KG 9.824 0.002 o o BBSX(XS) Waler 48 43 0.101 855 KG CeliH 9.824 0.007 14.65 a Sleel Sch. 20 Water 24 120A 5.487 856 KG KH o o o a BBSX(XS) Water 48 153.2 90000 857 GA CeliA 11829 8.947 lB.52 B.948 Sleel Sch. 20 Water 24 90.92 6.172 858 GA KA 35770 6.62 0.090 0.207 BBSX(XS) Water 48 43 0.101 859 KA CeO B 11692 B.842 18.43 8.741 Sleel Sch. 20 Water 24 90.92 6.172 860 KA KB 24079 4.456 0.041 0.094 BSSX(XS) Waler 48 43 0.101 861 KB CeR C 11628 B.794 18.39 B.647 Sleel Sch. 20 Water 24 90.92 6.172 862 KB KC 12450 2.304 0.010 0.022 BSSX(XS) Water 48 35.75 0.101 863 KC Cell D 11613 8.783 18.38 8.624 Steel Sch, 20 Waler 24 90.92 6.172 864 KC KO 837.2 0.155 14.49 33.52 BBSX(XS) Water 48 7.25 90000 865 AO AP 0.161 o o o BBSX(STD) Water 30 5.5 2.071 866 AP AO xxx BBSX(STD) Waler 30 7 0,B9 867 IB IH xxx steel Sch. 40 Waler 6 10.5 11.59 870 BP EP xxx Steel Sch. 40 Water 10 4.75 1.007 871 BS ES xxx Steel Sch. 40 Water 10 4.75 1.477 874 DO FS xxx Sleel Sch. 40 Waler 10 10.5 1.464 875 DT FV xxx Sleel Sch. 40 Water 10 12 1.665 897 KH basin-5 xxx Sleel Sch. 20 Watsr 24 92.83 2,46 PIPE-FLO 2005 pg8

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A9 PIPELINES 10/06110 2:09 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (ft)

Specification Fluid Zone Size Length K (in) (It)

B9B KH basin-4 xxx Steel Sell. 20 Water 24 77.4 3.097 899 KO basln-4(OOl } 477 0.361 3.46 0.006 Steel Sell. 20 Water 24 63.92 2.027 9 BN BU 1478 6.018 1.717 0.722 Steel Sell. 40 Water 10 6 1.086 900 KO New Pipe 360.2 0.272 2.378 0.002 Steel Sell. 20 Water 24 29.58 1.312 900-1 New Pipe Basin-3 360.2 0.397 1.082 0.004 Steel Sch. 20 Waler 20 22 1.189 DO AFp-2B LOOP (939) COOLING WATER BOO.. JE XXX Steel Sch. 40 Water 8 0.01 303 DOAFp-1B LOOP (938) IF COOLING WATER BOO .. <-> 5.548 0.036 (0.430) 0.004 Sleel Sell. 40 Water 8 0.01 220 RCFC-1A (914) BO BG 1338 8.585 27.49 76.6 Steel Sell. 40 Water 8 0.01 67 RCFC-1A (915) BE BF 1453 9.328 24.09 70.6 Steel Sell. 40 Water 8 0.01 52.3 RCFC-1B (922) ED EG 2.099 0.013 (5.186) o Steel Sch. 40 Water 8 0.01 74.2 RCFC-1B (923) EE EF 2.276 0.015 (4.733) o Steel Sell. 40 Water 8 0.01 78.3 RCFC-1C (912) BB BI 1290 8.278 31.18 85.14 Steel Sell. 40 Water 8 O.ot 60.1 RCFC-1C (913) BC BH 1386 8.767 29.73 81.8 Sleel Sch. 40 Water 8 0.01 68.6 RCFC-1D (920) EB EI 0.066 a (3.025) o Steel Sell. 40 Water 8 0.01 76.8 RCFC-1D (921) EC EH 1.598 0.010 (5.619) o Steel Sch. 40 Water 8 0.01 84.4 RCFC-2A (918) DO OG 1574 10.1 21.07 61.74 Sleel Sch. 40 Water 8 0.01 39 RCFC'2A (919) DE OF 1545 9.917 19.24 55.38 Steel Sell. 40 Water 8 0.01 36.3 RCFC-2B (926) FH Fo <-> 0.127 o 5.619 o Steel Sell. 40 Water 8 0.01 46.5 RCFC-2B (927) FF FE <-> 0.126 a 6.44 o Steel Sch. 40 Water 8 0.01 44.1 RCFC-2C (916) DB 01 1550 9.947 25.88 72.91 Steel Sch. 40 Water 8 0.01 47.5 RCFC-2C (917) DC oH 1686 10.82 23.92 68.34 Sleel Sch. 40 Water 8 0.01 37.6 RCFC-20 (924) FJ FB <-> 0.242 0.002 3.021 o Steel Sch. 40 Water 8 0.01 58.1 RCFC-20 (925) FI FC <-> 0.229 0.001 5.614 o Steel Sch. 40 Water 8 0.01 54.2 SX CC'S & 0C-1A (932) HA HE 110.1 2.777 55.25 113.1 Steel Sch. 40 Water 4 0.01 945 SX CC'S & 0C-1 B (934) AN HM 0.073 0.002 9.617 o Sleel Sch. 40 Water 4 0.01 937.1 SX CC'S & OC-2A (933) HF GH 1143 2.883 60.31 120.5 Steel Sch. 40 Water 4 0.01 935.1 SX CC'S & OC-2B (935) AQ HN 0.323 0.008 8.212 0.001 Steel Sell. 40 Water 4 0.01 1026 PIPE*FLO 2005 pg9

CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 APPENDIX A Page A10 PIPELINES 10106110 2:09 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (flisec) (psi) (tt)

Specification Fluid Zone Size Length K (in) (II)

Train 1A (928) BU BX 356.8 2.303 34.47 106.3 Sleel Sch. 40 Water 6 0.01 1292 TRAIN 18 (930) EY EV <-> 0.746 0.005 10.7 0 Steel Sch. 40 Water 8 0.01 1142 TRAIN 2A (929) DO DV 370.8 2.38 39.34 114.3 Steel Sch. 40 Water a 0.01 1301 TRAIN 2B (931) FO FX 0.402 0.003 (9.357) 0 Steel Sch. 40 Water 8 0.01 1326 PIPE-FLO 2005 pg 10

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A11 NODES 10/06/10 2:09 pm Node Elev Status Pressure Grade (ttl (psi g) (II)

AA 354.33 19.55 399.6 AD 335.75 103.2 574.5 AE 335.75 101.7 571.1 AF 335.75 101.6 570.7 AG 335.75 101.4 570.3 AH 354.33 22.98 407.5 AK 335.75 41.77 432.4 AL 335.75 41.77 432.4 AM 335.75 41.77 432.4 AN 335.75 41.77 432.4 AO 335.75 41.77 432.4 AP 335.75 41.77 432.4 AO 335.75 41.77 432.4 BA 385.25 78.12 566 BB 408.22 63.27 554.6 BC 408.22 62.65 553.2 BO 408.22 61.44 550.4 BE 397.41 65.44 548.8 BF 382.55 41.35 478.2 BG 395.22 33.95 473.8 BH 395.22 32.92 471.4 BI 395.22 32.08 469.5 BJ 408.35 23.47 462.6 BM 408.35 22.86 461.2 BN 393.75 74.37 565.8 BO 393.75 R32 565.7 BP 415.16 63.04 561 BS 409.25 23.26 463.1 BT 390 29.71 458.7 BU 397 72.66 565.1 BX 370.5 38.18 458.8 BY 370.5 37.73 457.8 CO 335.75 105.7 580.3 CE 335.75 104.5 577.5 CF 335.75 104.3 577.1 CG 335.75 104.3 577.1 CK 335.75 41.77 432.4 CL 335.75 41.77 432.4 CM 335.75 41.77 432.4 CN 335.75 41.77 432.4 COOLING WATER BOOSTER PUMP*l .388.5 18.97 432.4 COOLING WATER BOOSTER PUMP*2 .. 388.5 18.97 432.4 OA 385.25 81.31 573.4 DB 408.25 64.36 557.2 DC 408.22 63.64 555.5 DO 408.22 62.13 552 DE 395.43 66.94 550.3 OF 384.57 47.7 494.9 DG 395.22 41.07 490.2 DH 395.22 39.73 487.1 Dt 395.22 38.48 484.2 OJ 408.3 26.06 468.6 OM 408.3 23.6 462.9 ON 402.25 25.58 461.4 DO 393.75 77.64 573.4 DP 393.75 77.64 573.4 DO 407.5 71.69 573.4 DT 407.5 22.48 459.5 DU 390 30.05 459.5 DV 370.5 38.29 459.1 EA 388.25 19.08 432.4 EB 410 9.681 432.4 PIPE-FLO 2005 pg 11

CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 APPENDIX A Page A12 NODES 10106110 2:09 pm Node Elev Status Pressure Grade (II) (psi g) (II)

EC 410 9.661 432.4 ED 409 10.11 432.4 EE 395.45 15.97 432.4 EF 384.5 20.7 432.4 EG 397 15.3 432.4 EH 397 15.3 432.4 EI 403 12.71 432.4 EJ 410 9.682 432.4 EM 410.1 9.638 432.4 EN 392 17.46 432.4 EO 392 17.46 432.4 EP 415.15 7.455 432.4 ES 409.25 10.01 432.4 ET 385.25 20.38 432.4 EU 385.25 20.38 432.4 EV 395.25 16.06 432.4 EY 370.5 26.75 432.4 EZ 370.5 26.75 432.4 FA 388.15 19.13 432.4 FB 409.99 9.686 432.4 FC 409.99 9.686 432.4 FD 410 9.682 432.4 FE 397.4 15.13 432.4 FF 382.5 21.57 432.4 FH 397 15.3 432.4 FI 397 15.3 432.4 FJ 403 12.71 432.4 FK 410 9.681 432.4 FN 410 9.681 432.4 FO 402.25 13.03 432.4 FP 385.25 20.38 432.4 FQ 392.15 17.4 432.4 FR 392.15 17.4 432.4 FV 405.5 11.63 432.4 FW 385.25 20.38 432.4 FX 370.5 26.75 432.4 GA 398.5 18.52 441.3 GB 384 27.1 446.7 GC 354.75 42.97 454.2 GO 354.75 43.11 454.5 GE 354.75 43.16 454.6 GF 354.75 43.21 454.7 GG 354.75 33.56 432.4 GH 354.75 43.39 455.1 GI 354.75 43.4 455.2 GJ 354.75 33.56 432.4 GK 354.75 33.56 432.4 GL 356.6 32.76 432.4 GM 358 32.16 432.4 GN 358 32.16 432.4 GO 384 20.92 432.4 GP 398.5 14.65 432.4 HA 340 98.88 568.8 HE 354.75 43.63 455.7 HF 335.75 103.7 575.7 HL 358 32.16 432.4 HM 358 32.16 432.4 HN 354.75 33.56 432.4 IC 391 17.89 432.4 IF 389.5 18.54 432.4 IH 391 17.9 432.4 JB 391 17.89 432.4 PIPE-FLO 2005 pg 12

CALCULATION NO. NED-M*MSD-009 REVISION NO. 88 APPENDIX A Page A13 NODES 10106/10 2:09 pm Node Elev Status Pressure Grade (tt) (psi g) (tt)

JE 395.25 16.06 432.4 KA 398.5 18.43 441.1 KB 398,5 18,39 441 KC 398.5 18,38 441 KD 398.5 3.892 407.5 KE 398,5 14,65 432,4 KF 398.5 14,65 432.4 KG 398,5 14,65 432.4 KH 398,5 14.65 432.4 New Pipe 404 1,514 407,5 PIPE-FLO 2005 pg 13

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A14 PUMPS 10106/10 2:09 pm Pump Flow Status Total head dP Speed NPSHa Suction Discharge Suction Discharge (USgpm) (ft) (psi) (rpm) (ft) (psi g) (psi g) (ft) (ft)

SXPump lA 24779 (179.1) (77.41) 97.55 28.3 105.6 332.5 332.79

<no catalog data available>

SX Pump 2A 22860 (184.4) (79.69) 96.91 28.03 107.6 332.5 332.79

<no catalog data available>

COMPONENTS Component Flow Sta1us Head Loss dP Inlet Outlet Inlet Outlet (USgpm) (ft) (psi) (psi g) (psi g) (ft) (ft)

CC HX-O 0.161 0 0 29.24 29.02 364.75 365.25 CCHX-l 16000 24.5 10.59 53.31 40.77 358.5 363 CC HX-2 16000 24.5 10.59 90.66 79.48 364 365.35 Cont. Ref2A 1040 4.998 2.16 25.09 23.65 410.15 408.5 Cont. Ref. lA Off 410.1 408.35 Cant. Ref. lB Off 410.1 408.5 CR Ref. Cond OA 1119 26.37 11.4 70.37 58.45 386.35 387.56 DGJWC-1A 1725 20.58 8.893 55.88 45.19 405 409.15 DGJWC-2A Off 405.5 409.25 DGJWC-2B Off 405.5 409.25 CONTROlS Control SeiValue Elev Flow Status dP HL Inlet Outlet (ft) (USgpm) (psi) (ft) (psi g) (psi g)

HB FCV: 16000 358.5 16000 36.96 85.52 90.39 53.42

<no catalog data avaUable>

HI FCV: 16000 354.75 16000 39.74 91.95 83.93 44.19

<no catalog data avaUable>

HK FCV: Fully open 365.25 0.161 0 0 29.02 29.02

<no catalog dala available>

PIPE-FLO 2005 pg 14

CALCULATION NO. NED-M-MSO-O09 REVISION NO. 88 APPENDIX A Page A15 TANKS 10106110 2:09 pm Tank Surface Pressure Level Bottom Elevation status Flow Pressure Grade (psi g) (It) (It) (USgpm) (psi) (It)

Basin-3 0 406.5 360.2 0.432 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (It) 900-1@01t 360.2 0.432 407.5 Inflllite tanklno geometry basin-4{OO1} 0 406.5 471 0.432 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade(ft) 899@Oft 471 0.432 407.5 Infmite lanklno geometry CeliA 0 0 432.4 11829 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (It) 857@Oft 11829 0 432.4 Infinite lanklno geometry CeliB 0 0 432.4 11692 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade(ft) 859@Oft 11692 0 432.4 Infinite lanklno geometry CeliC 0 0 432.4 11628 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (II) 861@01t 11628 0 432.4 InfinKe lanklno geometry CeliO 0 0 432.4 11613 0 432.4 Connecting pipeHnes Flow (US gpm) Pressure (psi g) Grade (fI) 863@Oft 11613 0 432.4 Infinite lanklno geometry CeliE 0 0 432.4 10.26 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 849@Oft 10.26 0 432.4 Infinite lanklno geometry CeliF 0 0 432.4 9.988 0 432.4 Connecting pipeHnes Flow (US gpm) Pressure (psi g) Grade(ft) 851@Oft 9.988 0 432.4 InfR1ite lanklno geometry CellG 0 0 432.4 9.93 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade(ft) 853@Oft 9.93 0 432.4 Inflllite lanklno geometry CeflH 0 0 432.4 9.824 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (II) 855@Oft 9.824 0 432.4 Infinite lanklno geometry FG(A) 0 0 407.5 -47640 0 407.5 Connecting pipelines Aow (US gpm) Pressure (psi g) Grade(ft) 643@Oft 47640 0 407.5 Inf",ite lanklno geometry PIPE-FLO 2005 pg 15

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A16 TANKS 10106110 2:09 pm Tank Suriace Pressure level Bottom Elevation Status Flow Pressure Grade (psi g) (II) (II) (USgpm) (psi) (tI)

FG(B) 0 0 407.5 0 0 407.5 Connecting pipeHnes Flow (US gpm) Pressure (psi g) Grade (II) 845@0f! 0 0 407.5 Inflllne tanklno geometry DEMANDS Demand Set Value Flow Rate Pressure Elev Status Grade (US gpm) (psi g) (tt) (tt)

IA Flow out 20 75.51 391 565.7 IG Rowin 20 18.54 389.5 432.4 JA Flow out 20 77.09 395 573.4 JF Flow in 20 18.66 389.25 432.4 PIPE-FLO 2005 pg 16

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA17 NOTES 10/0611 0 2:09 pm SPECIFICATIONS FLUID ZONES PIPELINES NODES PUMPS COMPONENTS CONTROLS TANKS DEMANDS PIPE-FLO 2005 pg17

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A18 System: Scenario BE 1 10/06/10 2:10 pm Lineup: Scenario BE 1 Company: Sargent & Lundy LLC rev: 10/05/10 9:54 am Project:

Aim pressure: 14.7 psi a LIST REPORT Total System Volume: 737326 gallons Pressure drop calculations: Darcy-Weisbach method.

Calculated: 15 iterations Avg Deviation: 0.006583 %

SPECIFICATIONS Specification Material I Schedule Roughness Sizing Design limijs BBSX(STD) ByronPlpes-NHL I STD 0.036 in not specified Valves: standard C: 100 BBSX(XS) ByronPipes-NHL I XS 0.036 In not specified Valves: standard C: 100 Steel Sch. 10 Steel A53-836. 10 110 0.036 in not specified Valves: standard C: 140 Steel Sch. 20 Steet A53-836.1 0 I 20 0.036 in notspacified Valves: standard C: 140 Steel Sch. 30 Steel A53-B36.10 130 0.036 in not specified Valves: standard C: 140 Steel Sch. 40 Sleel A53-836.10 140 0.036 in not specified Valves: standard C: 140 Steel Sid Steet A53-B36.10 120 0.036 in not specified Valves: standard C: 140 FLUID ZONES Fluid Zone Fluid Temp Pressure Density Viscosity Pv/Pc or k (OF) (psi g) (lb/ft') cP (psi a)

Water Water 82 14.7 62.33 0.8362 05413/3198 PIPE-FLO 2005 pg 1

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A19 PIPELINES 10/06/10 2:10 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (ft)

Specification Fluid Zone Size length K (in) (ft)

AA SXPump lA 24778 8.152 (8.758) 1.584 BBSX(STD) Water 36 71.2 1.054 12 BU CR Ref. Cond OA 1119 7.182 2.286 15.93 Sleel Sch. 40 Waler 8 229.5 9.66 154 BF BG 1453 5.917 7.404 4.445 Steel Sch. 40 Water 10 70.35 5.837 155 BG BH 2790 6.498 1.034 2.389 Steel Sch. 30 Waler 14 129 0.644 156 BH BI 4156 9.678 0.836 1.933 Sleel Sch. 30 Water 14 42.14 0.352 157 BI BJ 5446 9.573 8.627 6.812 Sleel Sch. 30 Water 16 205.5 0.804 158 BJ Cont. Ref.1A xxx BBSX(STD) Water 12 17.25 1.295 160 Cont. Ref. lA BM o o o o Steel Sch. 20 Water 12 23.5 1.835 161 BJ BM 5446 9.573 0.612 1.414 Steel Sch. 30 Water 16 12.66 0.749 162 BM BT 5446 9.573 (6.865) 2.481 Steel Sch. 30 Water 16 47 0.833 164 BT BY 7170 7.911 (8.02) 0.960 Sleel Sch. 20 Water 20 37 0.454 165 BX BY 1478 6.017 0.458 1.059 Steel Sch. 40 Water 10 5.33 1.707 166 BY GO 8648 9.541 (5388) 3.295 Sleel Sch. 20 Water 20 43.5 1.705 167 BO BP 1725 7.023 11.3 4.702 SleeI Sch. 40 Water 10 125.4 1.97 168 BP DGJWC-IA 1725 7.023 7.164 26.72 Steel Sch. 40 Water 10 118.5 30.98 170 DGJWC-IA BS 1725 7.023 21.94 50.62 Steel Sch. 40 Water 10 111.5 62.45 171 BS BT 1725 7.023 (6.456) 4.326 Sleel Sch. 40 Water 10 82.25 2.916 172 BO IA 20 0.222 (1.187) 0.006 Steel Sch. 40 Waler 6 81.33 2.002 173 IA IB xxx SleeI Sch. 40 Water 6 0.25 0.633 176 AA SXPump2A 22859 7.521 (8.48) 2.227 BBSX(STD) Water 36 97.75 1.875 178 SXPump2A CD 22859 7.521 1.878 1.381 BBSX(STD) Water 36 33.8 1.345 179 CO CE 22859 7.521 1.244 2.877 BBSX(STO) Waler 36 0.01 3.278 180 CE CF 22859 7.521 0.140 0.323 BBSX(STO) Water 36 6.2 0.326 181 CF DA 6745 7.441 23.04 3.751 Steel Sch. 20 Waler 20 145.8 2.257 182 DA DO 390.8 0.910 3.682 0.010 Steel Sch. 30 Water 14 8.5 0.606 183 DO DP 20 0.047 o o Steel Sell. 30 Water 14 3.25 0.439 233 DA DB 6354 11.17 16.97 16.23 Steel Sch. 30 Water 16 227.5 3.975 PIPE-FLO 2005 pg 2

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA20 PIPELINES 10106/10 2:10 pm Pipeine From To Status Flow Velocity dP HL (USgpm) (fUsee) (psI) (ft)

Specification Fluid Zone Size Length K (In) (II) 234 DB DC 4805 11.19 0.716 1.685 Steet Sen. 30 Water 14 26.07 0.263 235 DC DO 3118 7.262 1.516 3.504 Steel Sch. 30 Water 14 144 0.934 236 DO DE 1545 6.29 (4.816) 1.658 Steel Sch. 40 Water 10 36.95 1.47 25 CR Ref. Cood OA BX 1119 7.182 20.28 63.95 Steel Sch. 40 Water 8 248.6 68.82 3 SX Pump 1A AD 24778 8.152 2.409 2.609 BBSX(STD) Waler 36 18.75 2.403 327 OF DG 1545 6.29 6.64 4.699 Steel Sen. 40 Waler 10 64.54 5.505 328 OG OH 3118 7.262 1.341 3.1 Steel Sch. 30 Water 14 130.7 0.749 329 OH 01 4805 11.19 1.249 2.887 Steel Sen. 30 Waler 14 42.43 0.503 330 01 OJ 6354 11.17 12.43 15.66 Steel Sch. 30 Water 16 223.5 3.757 331 OJ Cont Ref2A 1039 2.951 0.966 0.384 BBSX(STD) Water 12 20.75 2.288 333 Cont. Ref2A OM 1039 2.951 0.048 0.312 BBSX(STD) Waler 12 24.5 1.656 334 OJ OM 5315 9.343 2.462 5.692 Steel Sch. 30 Waler 16 9.25 4.024 335 OM ON 6354 11.17 (1.985) 1.463 Steel Sch. 30 Water 16 18.5 0.397 336 ON OU 6354 11.17 (4.47) 1.917 Steel Sch. 30 Waler 16 31.5 0.38 337 OU OV 6354 7.01 (8.253) 0.422 Steel Sch. 20 Water 20 29.75 0.123 339 OV GC 6725 7.419 (4.678) 4.937 Steel Sch. 20 Water 20 246 2.222 340 OP DO o o 5.948 o Steel Sch. 40 Water 10 101.3 2.816 341 DO OGJWC-2A xxx Steel Sch. 40 Waler 10 112.8 32.21 343 OGJWC-2A OT o o (0.757) o Steel Sch. 40 Waler 10 115.8 69.77 344 OT OU o o (7.57) o Steel Sch. 40 Water 10 52.25 2.138 345 OP JA 20 0.222 0.545 0.009 Steel Sch. 40 Water 6 110.8 3.04 348 AF AG 16110 5.301 0.161 0.373 BBSX(STO) Water 36 42.25 0.569 349 AG HA 16110 7.698 2.517 1.568 BBSX(STD) Water 30 8.25 1.635 351 HA HB 16000 7.646 8.502 1.154 BBSX(STD) Water 30 62.75 0.736 356 HB CC HX-l 16000 7.646 0.116 0.267 BBSX(STD) Water 30 12.25 0.19 364 CCHX-l HE 16000 7.646 (2.863) 1.632 BBSX(STD) Water 30 55.75 1.323 367 HE GF 16110 7.698 0.425 0.982 BBSX (STD) Water 30 13.6 0.952 PIPE-FLO 2005 pg3

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A21 PIPELINES 10106/10 2:10 pm PipeWne From To Slatus Flow Velocity dP HL (USgpm) (ft/sec) (psi) (tI)

Specification Fluid Zone Size Length K (In) (tI) 368 GF GE 16110 3.871 0.053 0.122 BBSX(STD) Water 42 20.75 0.407 369 CF CG 16114 5.302 0.033 0.071 BBSX(STD) Water 36 4.5 0.146 370 CG HF 16114 7.7 0.602 1.393 BBSX(STD) Water 30 3.75 1.482 372 HF CC HX-2 16000 7.646 13.05 1.91 BBSX(STD) Waler 30 110.8 1,159 384 CCHX-2 HI 16000 7.646 (4.452) 0.309 BBSX(STD) Wale, 30 17.5 0.191 387 HI GI 16000 7.646 0.793 1.833 BBSX(STD) Water 30 12 1,919 388 GI GH 16000 3.644 0.013 0.030 BBSX(STD) Water 42 8.5 0,081 389 GH GE 16114 3.872 0.228 0.528 BBSX(STD) Water 42 123 1.579 390 GE GO 32224 5.964 0.048 0.110 BBSX(XS) Water 48 14.75 0,129 391 GO GC 40872 7.564 0.144 0.333 BBSX(XS) Waler 48 32.25 0.222 393 GC GB 47597 8.809 15.89 7.473 BBSX(XS) Water 48 956.2 1.678 394 AH SXPump lB xxx BBSX(STD) Water 36 71.3 1.054 396 SXPump lB AK xxx Steel Sch. 20 Water 24 7.22 0.651 397 AK AL o o o o BBSX(STD) Water 38 0.01 3,278 398 AL AM o o o o BBSX(STD) Water 36 6.25 0.322 399 EA AM <-> 0.234 o (22.71) o SleelStd Water 20 149 2.446 4 AD AE 24778 8.152 1.462 3.38 BBSX(STD) Waler 36 0.01 3,278 400 EN EA <-> 6.332 0.Q15 (1.622) o Steel Sch. 30 Water 14 3.75 0.606 401 EO EN <-> 5.583 0.013 o o Steel Sch. 30 Water 14 2 0.457 402 EO EP o o 10.01 o Steel Sch. 40 Water 10 137 2.558 403 EP OGJWC..1B xxx Steel Sch. 40 Water 10 223.8 32.8 405 DGJWC*1B ES xxx Steel Sch. 40 Water 10 209 43.4 406 ES ET o o (10.38) o Steel Sch. 40 Water 10 86.5 2.916 407 EV EN <-> 0.749 0.003 (1.406) o Steel Sch. 40 Water 10 5.75 0,868 423 EV CR Ref.OB xxx Steel Sch. 40 Water 8 233 9.791 425 CRRef.OB EY xxx Steel Sch. 40 Water 8 254.5 107.9 463 EZ EY 0.749 0.003 o o Steel Sch. 40 Water 10 4.5 1.78 PIPE-FLO 2005 pg4

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA22 PIPELINES 10106110 2:10 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (It)

SpecifICation Fluid Zone Size length K (in) (ft) 464 EA EB 6.098 0.011 9.409 o Steel Sell. 30 Water 16 141 3.161 465 EB EC 5.988 0.014 o o Steel Sell. 30 Waler 14 28 0.265 466 EC ED 4.382 0.010 (0.433) o Steel Sell. 30 Water 14 145.8 0.932 467 ED EE 2.281 0.009 (5.862) o Steel Sell. 40 Waler 10 48.75 1.216 5 AE AF 24778 8.152 0.166 0.383 BBSX(STD) Water 36 6.75 0.326 514 EH EI 5.988 0.014 2.596 o Steel Sell. 30 Water 14 62 0.832 538 EG EH 4.382 0.010 o o Steel Sell. 30 Water 14 127 0.748 560 EF EG 2.281 0.009 5.407 o Steel Sell. 40 Water 10 69.57 5.919 561 EI EJ 6.098 0.011 3.028 o Steel Sell. 30 Water 16 149.5 2.388 562 EJ Cont. Ref. 1B xxx BBSX(STD) Water 12 27.25 1.491 564 Cont. Ref.1B EM o o 0.692 o BBSX(STD) Water 12 32.75 2.28 565 EJ EM 6.098 0.011 0.043 o Steel Sell. 30 Water 16 13.5 1.147 566 EM ET 6.098 0.011 (10.75) o Steel Sell. 30 Water 16 44.75 0.523 568 ET EU 6.098 0.007 o o Steel Sell. 20 Water 20 11.75 0.265 569 EU EZ 20.51 0.023 (6.381) o Steel Sch. 20 Water 20 17.5 0.333 570 IC EO <-~> 5.583 0.036 0.433 o Steel Sch. 40 Water 8 97 3.09 571 COOliNG WATER SOO .. IC <--> 5.583 0.062 1.082 o Steel Sell. 40 Water 6 16 7.422 6 AF BA 8668 9.563 23.45 4.715 Steel Std Water 20 85.1 2.094 60 BA BB 5446 9.573 14.87 11.41 Steel Sch. 30 Water 16 214.2 3.871 602 IG IF 5.583 0.062 o o Steel Sch. 40 Water 6 2 0.112 603 IG IH 14.42 0.160 0.649 0.001 Steel Sch. 40 Waler 6 22 0.812 604 IH EU 14.42 0.160 (2.486) 0.004 Steel Sch. 40 Waler 6 99 2.903 605 AH SX Pump 2B xxx BBSX(STD) Waler 36 87 1.875 607 SXPump2S CK xxx Steel Sell. 20 Water 24 6.82 0.416 608 CK CL o o o o BBSX(STD) Water 36 0.01 3.278 609 CL CM o o o o BSSX(STD) Water 36 5.75 0.322 61 BS BC 4156 9.678 0.613 1.417 Steel Sell. 30 Waler 14 29.25 0.296 PIPE*FLO 2005 pg5

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A23 PIPELINES 10106/10 2:10 pm PipeUne From To Status Flow Velocity dP HL (USgpm) (Illsee) (psi) (It)

Specification Fluid Zone Size Length K (in) (II) 610 FA CM 0.323 o (22.67) a Steel Sch. 20 Water 20 87.75 1.986 611 FA FQ 00402 o 1.73 o Steel Seh. 30 Waler 14 4 0.607 612 FQ FR o o o o Steel Sch. 30 Waler 14 3.25 0.457 613 FR FS xxx Steel Sch. 40 Waler 10 83 2.371 614 FS DGJWC-2B xxx Steel Seh. 40 Water 10 162.3 31.43 616 DGJWC-2B FV o o (1.622) a Sleel Seh. 40 Water 10 142.3 125.2 617 FV FP o o (8.76) o Sleel Sch. 40 Water 10 59.5 2.595 62 BC BD 2790 6.498 1.217 2.813 Sleel Sch. 30 Water 14 144.4 0.932 63 BD BE 1453 5.917 (4.005) 1.552 Sleel Sch. 40 Water 10 50.04 1.188 670 FB FA <-> 0.725 0.001 (9.448) o Sleel Sch. 30 Waler 16 138.9 2.988 671 FC FB <-> 0.482 0.001 o o Steel Sch. 30 Watar 14 27.57 0.299 672 FD FC <-> 0.253 o (0.004) o Steel Sch. 30 Waler 14 145.8 0.932 673 FE FD <-> 0.126 o 5.451 o Steel Sch. 40 Waler 10 46.25 1.224 7 BA BN 3222 3.555 3.755 0.179 Sleel Sch. 20 Waler 20 6.5 0.819 711 FJ FI <-> 0.482 0.001 (2.596) a Steel Seh. 30 Water 14 59 0.628 725 FI FH <-> 0.253 o o o Sleel Sch. 30 Waler 14 133.5 0.751 747 FH FF <--> 0.126 o (6.273) o Sleel Sch. 40 Water 10 65.35 5.466 748 FK FJ <-> 0.725 0.001 (3.028) o Sleel Sch. 30 Waler 16 152.3 2.379 749 FK Cont. Rel2B xxx BBSX(STD) Waler 12 27.75 1.375 751 Conl Rel2B FN XXX BBSX(STD) Waler 12 30.75 1.93 752 FN FK <-> 0.725 0.001 o o Steel Sch. 30 Water 16 15.25 4.447 753 FO FN <--> 0.725 0.001 3.353 o Sleel Sch. 30 Water 16 15.75 0.288 754 FP FO <-> 0.725 0.001 7.354 o Steel Sch. 30 Waler 16 30.75 0.259 759 FW FP <-> 0.725 o o o Sleel Sch. 20 Water 20 7.25 0.265 760 FW FX 19.28 0.021 (6.381) o Steel Sch. 20 Water 20 23.5 0.265 761 FR JB o o (0.497) o Sleel Seh. 40 Water 8 106.5 3.998 762 JB COOLING WATER BOO .. o o (1.081) o Sleel Seh. 40 Water 6 22.25 7.422 PIPE-FLO 2005 pg6

CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 APPENDIX A PageA24 PIPELINES 10106/10 2:10 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (ft)

Specification Fluid Zone Size Length K (in) (II) 792 JE JF o o (2.596) o Steel Sch. 40 Water 6 16.5 1.557 793 JF FW 20 0.222 (1.724) 0.014 Sleel Sch. 40 Water 6 170.8 5.01 794 AM AD 0.234 o o o BBSX(STO) Water 36 4.5 0.146 795 AO AN 0.075 o o o BBSX(STO) Water 36 2.5 0.097 8 BN BO 1745 4.063 0.053 0.124 Steel Sch. 30 Water 14 1.83 0.44 809 AP CCHX~ 0.159 o 12.55 o B8SX(STO) Water 30 107.3 1.705 810 CCHX~ HK 0.159 o o o 88SX(STO) Water 30 0.01 o 811 HK HL 0.159 o (3.136) o 8BSX(STO) Water 30 27.75 1.532 812 HM HL <-> 0.008 o o o 88SX(STO) Water 30 12.5 0.394 813 HM GG 0.067 o (1.406) o 88SX(STO) Water 30 24.75 1.179 814 HL HN <-> 0.167 o (1.406) o 88SX(STO) Water 30 89.75 0.919 815 HN GJ 0.490 o o o 88SX(STO) Water 30 10.5 0.952 816 GG GF xxx 8BSX(STO) Water 42 23.25 0.766 817 GJ GI xxx 8BSX (STO) Water 42 29 0.547 818 EZ GL 19.77 0.022 (6.013) o Steel Sch. 20 Water 20 213.5 2.221 819 GG GK <-> 0.067 o o o 88SX(STO) Water 42 104.8 1.34 820 GJ GK <-> 0.490 o o o BBSX(STO) Water 42 19.75 0.92 821 GK GL <-> 0.557 o 0.800 o 88SX(XS) Water 48 45.75 0.48 822 CM CN 0.323 o o o B8SX(STO) Water 36 4.5 0.146 823 CN AQ 0.323 o o o 88SX(STO) Water 30 3 1.482 837 GL GM <-> 20.32 0.004 0.606 o 88SX(XS) Water 48 23.75 0.222 838 FX GM 19.68 0.022 (5.407) o Steel Sch. 20 Water 20 12.5 1.091 839 GM GN .40 0.007 o o BBSX(XS) Water 48 2.25 0.045 840 GN GO 40 0.007 11.25 o BBSX(XS) Water 48 1107 1.623 841 CN CG xxx BBSX(STO) Water 36 90.25 1.315 842 AN AG xxx BBSX(STO) Water 36 47.25 0.509 843 FG(A) AA 47637 8.816 (19.57) 7.935 BBSX(XS) Water 48 1021 1.744 PIPE-FLO 2005 pg7

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA25 PIPELINES 10106110 2: 10 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (ft)

Specification Fluid Zone Size Length K (In) (ft) 845 FG(B) AH o o (23) a BBSX (XS) Water 4B 1266 1.717 847 GB GA 47597 B.809 8,587 5.349 BBSX(XS) Water 48 747.6 0.902 848 GO GP 40 0.007 6.273 o BBSX(XS) Water 48 810.6 0.462 849 GP Cell E 1025 O.OOB 14,67 o Steel ScI1. 20 Water 24 120.1 5,487 650 GP KE 29.75 0.006 o a BBSX(XS) Watar 48 43 0.101 851 KE Cell F 9.949 0.008 14,67 o Steel ScI1. 20 Water 24 120.1 5.487 652 KE KF 19.81 0.004 o a BBSX (XS) Water 48 43 0.101 853 KF CallG 9.905 0.007 14.67 a Steel ScI1. 20 Water 24 120.1 5.487 854 KF KG 9.901 0.002 a o BBSX(XS) Water 48 43 0.101 855 KG CeIlH 9.901 0.007 14.67 o Steel Sch. 20 Water 24 120.1 5.487 856 KG KH o o o o BBSX(XS) Water 48 153.2 90000 857 GA CelIA 11829 8,846 18.54 8.949 Steel ScI1. 20 Water 24 90.92 6.172 858 GA KA 35768 6.62 0.090 0.207 BBSX(XS) Water 48 43 0.101 859 KA CeliB 11691 8.842 18.45 8.741 Steel ScI1. 20 Water 24 90.92 6.172 860 KA KB 24077 4.456 0.041 0.094 BBSX(XS) Water 48 43 0.101 861 KB CeUC 11628 8.794 18,41 8.647 Steel ScI1. 20 Water 24 90.92 6.172 862 KB KC 12450 2.304 0,010 0.023 BBSX(XS) Water 48 35.75 0.101 863 KC CeliO 11613 8.783 18.4 8.624 Steel ScI1. 20 Water 24 90.92 6.172 864 KC KO 837.2 0.155 14.5 33.52 BBSX(XS) Water 48 7.25 90000 865 AO AP 0.159 o o o BBSX(STO) Water 30 5.5 2.071 866 AP AQ xxx BBSX (STO) Water 30 7 0.89 867 IB IH xxx Steel ScI1. 40 Water 6 10.5 11.59 B70 BP EP xxx Steel ScI1. 40 Water 10 4.75 1.007 871 BS ES xxx Steel Sch. 40 Water 10 4.75 1.477 874 DO FS xxx Steel ScI1. 40 Water 10 10.5 1.464 875 OT FV xxx Steel ScI1. 40 Water 10 12 1.665 897 KH basin-5 xxx Steel ScI1. 20 Water 24 92.83 2.46 PtPE-FLO 200S pg8

CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 APPENDIX A PageA26 PIPELINES 10/06/10 2:10 pm Pipeline From To Stalus Flow Veloc~y dP HL (USgpm) (ft/sec) (psi) (ft)

Specificatio n Fluid Zone Size Length K (in) (ft) 898 KH basin-4 xxx Steel Sch. 20 Water 24 77.4 3.097 899 KD basin-4(OOl) 477 0.361 3.463 0.006 steel Sch. 20 Waler 24 63.92 2.027 9 BN BU 1478 6.017 1.718 0.722 Steel Sch. 40 Water 10 6 1.086 900 KD New Pipe 360.2 0.272 2.38 0.002 Steel Sch. 20 Water 24 29.58 1.312 900-1 New Pipe Basin-3 360.2 0.397 1.083 0.004 Steel Sch. 20 Waler 20 22 1.189 DO AFP-2B LOOP (939) COOLING WATER BOO.* JE xxx Sleel Sch. 40 Water 8 0.01 303 DDAFP-1B LOOP (938) IF COOLING WATER BOO .. <-> 5.583 0.036 (0.431) 0.004 Sleel Sch. 40 Water 8 0.01 220 RCFC-1A (914) BD BG 1337 6.583 27.5 76.57 Sleel Sch. 40 Water 8 0.01 67 RCFC-1A (915) BE BF 1453 9.327 24.1 70.58 Steel Sch. 40 Water 8 0.01 52.3 RCFC-l B (922) ED EG Sleel Sch. 40 Water 2.101 0.013 (5.191) o 8 0.01 74.2 RCFC-1B (923) EE EF Sleel Sch. 40 Water 2.281 0.015 (4.737) o 8 0.01 78.3 RCFC-1C (912) BB BI 1290 6.277 31.2 85.13 Steel Sch. 40 Water 8 0.01 80.1 RCFC-1C (913) BC BH 1366 8.766 29.75 81.78 Sleel Sch. 40 Water 8 0.01 68.6 RCFC-1D (920) EB EI 0.110 o (3.028) o Sleel Sch. 40 Waler 8 0.01 76.8 RCFC-1D (921) EC EH Steel Sch. 40 Water 1.606 0.010 (5.624) o 8 0.01 84.4 RCFC-2A (918) DO DG 1574 10.1 21.07 61.72 Steel Sch. 40 Waler 8 0.01 39 RCFC-2A (919) DE OF 1545 9.915 19.25 55.36 Sleel Sch. 40 Water 8 0.01 36.3 RCFC-2B (926) FH FD <--> 0.127 o 5.624 o Steel Sch. 40 Water 8 0.D1 46.5 RCFC-2B (927) FF FE <-> 0.126 o 6.446 o Steel Sch. 40 Water 8 0.01 44.1 RCFC-2C (916) DB 01 1550 9.946 25.9 72.89 Steel Sch. 40 Water 8 0.01 47.5 RCFC-2C (917) DC OH 1686 10.82 23.93 68.32 Sleel Sch. 40 Waler 8 0,01 37.6 RCFC-2D (924) FJ FB Sleel Sch. 40 Water

<--> 0.243 0.002 3.024 o 8 0.01 58.1 RCFC-2D (925) FI FC <->

Sleel Sch. 40 Water 0.229 0.001 5.619 o 8 0.01 54.2 SX CC'S & 0C-1A (932) HA HE 110.1 2.777 55.29 113.1 Sleel Sch. 40 Waler 4 0.01 945 SX CC'S & 0C-1B (934) AN HM Sleel Sch. 40 Water 0.075 0.002 9.625 o 4 0.01 937.1 SX CC'S & OC-2A (933) HF GH 114.3 2.882 60.36 120.5 Steel Sch. 40 Water 4 0.01 935.1 SX CC'S & OC-2B (935) AQ HN 0.323 0.008 8.22 0.001 Sleel Sch. 40 Waler 4 0.01 1026 PIPE-FLO 2005 pg9

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA27 piPELINES 10/06/10 2:10 pm Pipeline From To Status Flow Velocity dP HL (USgpm) (ft/sec) (psi) (tt)

Specification FluldZooe Size Length K (in) (tt)

Train lA (928) BU BX 358.8 2.303 34.5 106.2 Steel Sell. 40 Water 0.01 1292 TRAIN lB (930) EY EV <-> 0.749 0.005 10.71 0 Sleet Sell. 40 Waler B 0.01 1142 TRAIN 2A (929) DO DV 370.8 2.38 39.37 114.3 Steel Sell. 40 Water 8 0.01 1301 TRAIN 2B (931) FO FX 0.402 0.003 (9.366) 0 Steel Sell. 40 Water 8 0.01 1326 PIPE-FLO 2005 pg 10

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA28 NODES 10106110 2:10 pm Node Elev Status Pressure Grade (It) (psi g) (It)

M 354.33 19.57 399.6 AD 335.75 103.3 574.5 AE 335.75 101.8 571.1 AF 335.75 101.6 570.7 AG 335.75 101.5 570.3 AH 354.33 23 407.5 AI< 335.75 41.81 432.4 AL 335.75 41.81 432.4 AM 335.75 41.81 432.4 AN 335.75 41.81 432.4 AO 335.75 41.81 432.4 AP 335.75 41.81 432.4 AQ 335.75 41.81 432.4 SA 385.25 78.19 566 BB 408.22 63.32 554.6 BC 408.22 62.71 553.2 BO 408.22 61.49 550.4 BE 397.41 65.5 548.8 BF 382.55 41.39 478.2 BG 395.22 33.99 473.8 BH 395.22 32.96 471.4 BI 395.22 32.12 469.5 BJ 408.35 23.49 462.7 BM 408.35 22.88 461.2 BN 393.75 74.44 565.8 BO 393.75 74.39 565.7 BP 415.16 63.09 561 BS 409.25 23.29 463.1 BT 390 29.75 458.8 BU 397 72.72 565.1 BX 370.5 38.22 458.9 BY 370.5 37.77 457.8 CO 335.75 105.8 580.3 CE 335.75 104.6 577.5 CF 335.75 104.4 577.1 CG 335.75 104.4 577.1 CK 335.75 41.81 432.4 CL 335.75 41.81 432.4 CM 335.75 41.81 432.4 CN 335.75 41.81 432.4 COOLING WATER BOOSTER PUMp*l .. 388.5 18.99 432.4 COOLING WATER BOOSTER PUMP*2 .. 388.5 18.99 432.4 DA 385.25 81.39 573.4 DB 408.25 64.41 557.2 DC 408.22 63.7 555.5 DO 408.22 62.18 552 DE 395.43 67 550.3 OF 384.57 47.75 494.9 DG 395.22 41.11 490.2 OH 395.22 39.77 487.1 01 395.22 38.52 484.3 OJ 408.3 26.09 468.6 OM 408.3 23.62 462.9 ON 402.25 25.61 461.4 DO 393.75 77.7 573.4 OP 393.75 77.7 573.4 DO 407.5 71.76 573.4 OT 407.5 22.51 459.5 OU 390 30.08 459.5 DV 370.5 38.33 459.1 EA 388.25 19.1 432.4 EB 410 9.69 432.4 PIPE-FLO 2005 pg 11

CALCULATION NO. NEO-M-MSO-O09 REVISION NO. 88 APPENDIX A Page A29 NODES 10/06110 2:10 pm Node Elev Status Pressure Grade (ft) (psi g) (II)

EC 410 9.69 432.4 ED 409 10.12 432.4 EE 395.45 15.9B 432.4 EF 384.5 20.72 432.4 EG 397 15.31 432.4 EH 397 15.31 432.4 EI 403 12.72 432.4 EJ 410 9.69 432.4 EM 410.1 9.847 432.4 EN 392 17.48 432.4 EO 392 17.48 432.4 EP 415.15 7.462 432.4 ES 409.25 10.01 432.4 ET 385.25 20.4 432.4 EU 385.25 20.4 432.4 EV 395.25 16.07 432.4 EY 370.5 26.78 432.4 EZ 370.5 26.78 432.4 FA 388.15 19.14 432.4 FB 409.99 9.695 432.4 FC 409.99 9.695 432.4 FD 410 9.69 432.4 FE 397.4 15.14 432.4 FF 382.5 21.59 432.4 FH 397 15.31 432.4 FI 397 15.31 432.4 FJ 403 12.72 432.4 FK 410 9.69 432.4 FN 410 9.69 432.4 FO 402.25 13.04 432.4 FP 385.25 20.4 432.4 FQ 392.15 17.41 432.4 FR 392.15 17.41 432.4 FV 405.5 11.84 432.4 FW 385.25 20.4 432.4 FX 370.5 26.78 432.4 GA 398.5 18.54 441.3 GB 384 27.12 44S.7 GC 354.75 43.01 454.2 GO 354.75 43.15 454.5 GE 354.75 43.2' 454.6 GF 354.75 43.25 454.7 GG 354.75 33.59 432.4 GH 354.75 43.43 455.1 GI 354.75 43.44 455.2 GJ 354.75 33.59 432.4 GK 354.75 33.59 432.4 GL 356.6 32.79 432.4 GM 358 32.19 432.4 GN 358 32.19 432.4 GO 384 20.94 432.4 GP 398.5 14.67 432.4 HA 340 98.97 568.8 HE 354.75 43.68 455.7 HF 335.75 103.8 575.7 HL 358 32.19 432.4 HM 358 32.19 432.4 HN 354.75 33.59 432.4 IC 391 17.91 432.4 IF 389.5 18.56 432.4 IH 391 17.91 432.4 JB 391 17.91 432.4 PIPE-FLO 2005 pg 12

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A30 NODES 10106/10 2:10 pm Node Elev Status Pressure Grade (ft) {psi g) (II)

JE 395.25 16.08 432.4 KA 396.5 18.45 441.1 KB 398.5 18.41 441 KC 398.5 18.4 441 KD 398.5 3.896 407.5 KE 398.5 14.67 432.4 KF 398.5 14.67 432.4 KG 398.5 14.67 432.4 KH 398.5 14.67 432.4 New Pipe 404 1.516 407.5 PIPE*FlO 2005 pg 13

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A3i PUMPS 10106110 2:10 pm Pump Flow Status Total h.... d dP Speed NPSHa SUction Discharge Suction Discharge (USgpm) (H) (psi) (rpm) (It) (psi g) (psi g) (H) (It)

SX Pump lA 24778 (179.1) (77.48) 98.21 28.33 105.7 332.5 332.79

<no catalog data avaHabte>

SX Pump 2A 22859 (184.4) (79.76) 97.57 28.05 107.7 332.5 332.79

<no catalog data avaMabte>

COMPONENTS Component Flow Status Head Loss dP Inlet Outlet Inlet Outlet (USgpm) (It) (psi) (psi g) (psi g) (It) (It)

CC HX-O 0.159 0 0 29.27 29.05 364.75 365.25 CC HX-l 16000 24.5 10.6 53.36 40.82 358.5 363 CC HX-2 16000 24.5 10.6 90.74 79.56 384 365.35 Conl Ref2A 1039 4.996 2.161 25.12 23.67 410.15 408.5 Cont. Ref.1A Off 410.1 408.35 Cont. Ref. lB Off 410.1 408.5 CR Ref. Cond OA 1119 26.36 11.4 70.44 58.51 386.35 387.56 OGJWC-1A 1725 20.57 8.899 55.93 45.23 405 409.15 OGJWC-2A Off 405.5 409.25 OGJWC-2B Off 405.5 409.25 CONTROLS Control SelValue Elev Flow Slalus dP HL Inlet Outlet (It) (USgpm) (psi) (It) (psi g) (psi g)

HB FCV: 16000 358.5 16000 36.99 85.5 90.47 53.48

<no catalog data avatlab4e>

HI FCV: 16000 354.75 16000 39.77 91.94 84.01 44.24

<no catalog data avaMabte>

HK FCV: FuMy open 365.25 0.159 0 0 29.05 29.05

<no catalog data avaWabte>

PIPE-FLO 2005 pg 14

CALCULATION NO. NED*M*MSD-009 REVISION NO. 88 APPENDIX A Page A32 TANKS 10/06/10 2;10 pm Tank Surface Pressure Level Bottom Elevation Status FloW Pressure Grade (psi g) (ft) (ft) (US gpm) (psi) (It)

Basin-3 0 406.5 360.2 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (It) 900-1@01t 360.2 0.433 407.5 Infinite tank/no geometry basin-4{ool } 0 406.5 477 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (It) 899@01l 477 0.433 407.5 Infinite tank/no geometry CatlA 0 0 432.4 11829 0 432.4 Connecting plpeNnes Flow (US gpm) Pressure (psi g) Grade (ft) 857@01t 11829 0 432.4 Infinile tankino geometry CellB 0 0 432.4 11691 0 432.4 Connecting pipeNnes Flow (US gpm) Pressure (psi g) Grade (ft) 859@Oft 11691 0 432.4 Infinile tank/no geometry Celie 0 0 432.4 11628 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (II) 861@01l 11628 0 432.4 Infinile tank/no geomeby CeliO 0 0 432.4 11613 0 432.4 Connecting plpeNnes Aow(USgpm) Pressure (psi g) Grade (ft) 863@01l 11613 0 432.4 Infinite tank/no geomeby CeliE 0 0 432.4 10.25 0 432.4 Connecting pipetines Flow (US gpm) Pressure (psi g) Grade (It) 849@Oft 10.25 0 432.4 Infinite tank/no geometry CelIF 0 0 432.4 9.949 0 432.4 Connecting pipelines Aow (US gpm) Pressure (psi g) Grade (II) 851@01l 9.949 0 432.4 Inflnfte tank/no geometry CellG 0 0 432.4 9.905 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (II) 853@Oft 9.905 0 432.4 Infinite tank/no geometry CellH 0 0 432.4 9.901 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (II) 855@Oft 9.901 0 432.4 Infinite tank/no geometry FG(A) 0 0 407.5 47637 0 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (II) 843@Ofl 47637 0 407.5 Infonite tank/no geometry PIPE-FLO 2005 pg 15

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A33 TANKS 10106110 2:10 pm Tank Surface Pressura Level Bottom Elevation Starus Row Pressure Grade (psi g) (tt) (It) (USgpm) (psi) (tt)

FG(B) 0 0 407.5 0 0 407.5 Connecting pipeNnes Flow (US gpm) Pressure (psi g) Grade (tt) 845@Olt 0 0 407.5 Infmlte tank/no geometry DEMANDS Demand SelVatue Flow Rate Pressure Elev Status Grade (USgpm) (psi g) (ft) (ft)

IA Row out 20 75.57 391 565.7 IG Flow in 20 18.56 389.5 432.4 JA Row out 20 77.16 395 573.4 JF Flow in 20 18.67 389.25 432.4 PIPE-FLO 2005 pg 16

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA34 NOTES 10106/10 2:10 pm SPECIFICATIONS FLUID ZONES PIPELINES NODES PUMPS COMPONENTS CONTROLS TANKS DEMANDS PIPE*FLO 2005 pg 17

CALCULATION NO. NEO-M-MSO-O09 REVISION NO. 88 APPENDIX A Page A35 CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 APPENDIX A Page A36 u

.£i' c:

LULU "

o 0

}

  • c 'C

~

u)Ul 8

B

5~

(FINAL PAGE OF APPENDIX A)

CALCULATION NO. NED-M-MSD-009 REVISION NO. 8B APPENDIX B Page B1 scenario 8E.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 10:52:09 INPUT DATA BAROMETRIC PRESS (In HgA) 29.92 MINIMUM MAXIMUM INCREMENT DESIGN WATERFLOW (GPM) 11441 11441 1 12500 INLET WET BULB (F) 82.00 82.00 1.00 78.00 INLET REL HUMIDITY (%) 75.00 75.00 1.00 75.00 RANGES (F) 10.00 40.00 3.00 23.20 OUTPUT DATA WF2 Water Flow to Tower (GPM)

DB1 Air Inlet Dry Bulb (F)

TWB1 Air Inlet Wet Bulb (F)

RGE cooling Range (F)

TWB2 Air outlet Wet Bulb (F)

EVAP Evaporation (% of WF2)

CFM volumetric Air Flow Rate at Fan (CFM)

L/G Water-To-Air Loading (lb/hr-water / lb/hr-dry air)

KAV/L cooling Tower Thermal Transfer Coefficient CW Predicted cold Water Temperature (F)

WF2 DB1 RH1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L CW 11441 88.91 75.00 82.00 10.00 98.64 0.85 641829 2.23 1.798 90.62 11441 88.91 75.00 82.00 13.00 102.75 1.09 641831 2.27 1.788 92.42 11441 88.91 75.00 82.00 16.00 106.58 1.34 641832 2.31 1.778 93.99 11441 88.91 75.00 82.00 19.00 110.16 1.60 641833 2.34 1. 769 95.36 11441 88.91 75.00 82.00 22.00 113.51 1.85 641829 2.38 1. 759 96.57 11441 88.91 75.00 82.00 25.00 116.66 2.11 641830 2.42 1. 750 97.64 11441 88.91 75.00 82.00 28.00 119.64 2.37 641831 2.45 1. 741 98.60 11441 88.91 75.00 82.00 31. 00 122.46 2.63 641832 2.49 1. 732 99.46 11441 88.91 75.00 82.00 34.00 125.14 2.90 641833 2.53 1.723 100.24 11441 88.91 75.00 82.00 37.00 127.69 3.16 641831 2.57 1. 714 100.96 11441 88.91 75.00 82.00 40.00 130.12 3.43 641830 2.61 1. 705 101. 62 Page 1

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX 8 Page 82 scenario 8E1.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 10:50:03 INPUT DATA BAROMETRIC PRESS (In HgA) 29.92 MINIMUM MAXIMUM INCREMENT DESIGN WATERFLOW (GPM) 11440 11440 1 12500 INLET WET BULB (F) 82.00 82.00 1.00 78.00 INLET REL HUMIDITY (%) 75.00 75.00 1.00 75.00 RANGES (F) 10.00 40.00 3.00 23.20 OUTPUT DATA WF2 water Flow to Tower (GPM)

DB1 Air Inlet Dry Bulb (F)

TWB1 Air Inlet Wet Bulb (F)

RGE cooling Range (F)

TWB2 Air Outlet Wet Bulb (F)

EVAP Evaporation (% of WF2)

CFM volumetric Air Flow Rate at Fan (CFM)

L/G Water-To-Air Loading (lb/hr-water / lb/hr-dry air)

KAV/L cooling Tower Thermal Transfer coefficient CW predicted cold water Temperature (F)

WF2 OBI RH1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L cw 11440 88.91 75.00 82.00 10.00 98.64 0.85 641848 2.23 1. 798 90.62 11440 88.91 75.00 82.00 13.00 102.75 1.09 641846 2.27 1. 788 92.42 11440 88.91 75.00 82.00 16.00 106.58 1.34 641847 2.30 1. 778 93.99 11440 88.91 75.00 82.00 19.00 110.16 1.60 641851 2.34 1. 769 95.35 11440 88.91 75.00 82.00 22.00 113.51 1.85 641851 2.38 1. 759 96.57 11440 88.91 75.00 82.00 25.00 116.66 2.11 641847 2.42 1. 750 97.64 11440 88.91 75.00 82.00 28.00 119.64 2.37 641848 2.45 1. 741 98.59 11440 88.91 75.00 82.00 31. 00 122.46 2.63 641848 2.49 1. 732 99.46 11440 88.91 75.00 82.00 34.00 125.13 2.90 641850 2.53 1. 723 100.24 11440 88.91 75.00 82.00 37.00 127.69 3.16 641847 2.57 1. 714 100.96 11440 88.91 75.00 82.00 40.00 130.12 3.43 641848 2.61 1. 705 101. 61 page 1 (FINAL PAGE OF APPENDIX 8)

CALCULATION NO. NEO*M-MSO-o09 REVISION NO. 88 APPENOIXC Page C1 Scenario 8E (BDG Failure)

Two Tower Model - (Heat load for Power Uprate)

EDG Failure (Loss of SX Pump 2B) with no Cells OOS gal 6 ORIGIN!!! I in!!! I L Ibm!!! 1M F == lQ sec == IT gpm:= - . ~:= Ibm*F MBTU:= BTU* 10 mill Cooling Tower Performance 126.6 ) 98.6 )

Thl:= ( *F Tel:= ( *F 118.57 96.57 126.6) 98.6 )

Th2:= ( *F Te2:= ( *F 118.57 96.57 126.6) 98.6 )

Th3 := ( *F Tc3:= ( *F 118.57 96.57 126.6) 98.6 )

Th4:= ( *F Te4:= ( *F 118.57 96.57

CALCULATION NO. NED*M*MSD-009 REVISION NO. 88 APPENDIX C Page C2 Uprate Heat lQad (£42) 83 0.00 83 0.17 426 0.35 426 0.50 426 0.75 426 2.00 426 2.17 426 2.33 426 2.50 426 3.32 426 4.98 426 6.65 426 8.32 426 9.98 426 11.50 426 11.65 426 13.32 426 14.98 426 16.65 MBTIJ L2:= 426 T2 := 18.32 *min hr 611 19.98 609 21.65 607 23.32 589 29.98 541 39.98 502 49.98 469 59.98 432 83.32 390 116.65 340 166.65 277 333.32 252 480.00 560 480.17 550 540.00 544 600.00 541 627.50 538 660.00 477 660.17 472 732.00

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C3 SX System Flow rate QI := 47599*gpm (Total flow to T1 and T2 gpm)

Q2 := 47599'gpm (Total flow to T1 and T2 gpm)

Basin Mass 6 (Design input 2.4)

V:=0.534*10 *gal Ibm BTU 6 p:= 8.33*- C :=1*-- Mb = 4.45 x 10 Ibm gal P F.lbm Fans (Active/Total) Time Constant V V tl:=- t2:=-

fll := 0.961 fl2:= 0.961 QI Q2 f21 := 0.000 f22:= 0.000 Fraction of flow to Tower 1 Fraction of heat load to Tower 1 al := 1.000 a2:= 1.000 ~I := 1.000 132:= 1.000 Find Slopes and Intercepts of cooling towers 1 and 2 Mil := slopetThl, Tcl) Bll:= intercept(ThI. Tcl) MI2 := slope(Th3. Tc3) BI2 := intercept(Th3. Tc3)

M21 := slope(Tb2, Tc2) B21:= intercept(Th2, Tc2) M22 := slope(Th4, Tc4) B22 := intercept(Th4, Tc4)

Mil = 0.253 Bll = 66.595 F MI2 = 0.253 B 12 = 66.595 F M21 = 0.253 B21 = 66.595 F M22 = 0.253 B22 = 66.595 F

CALCULArlON NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C4 Calculate Intermediate Constants AI:= ( ~I}[I- al*[(I- fll) + fll*Mll] - (I - al).(1- f21 + f21*M21)]

A2 := ( ~)[ I - a2*[( 1 - f12) + fl2* M12] - (I - (2).(1 - f22 + f22* M22)]

pl*(l - f11 + f11*Mll) + (I - pJ).(l - f21 + f21*M21)

D I := -'---'--------'-----'--'--'---------'-

Mb*Cp p2*(l - f12 + f12*MI2) + (J - p2)*(l - f22 + f22*M22)

D2:=-'---'---------'------'--'--'---------'-

Mb*Cp al*f1I*Bll + (I - aI).f1l.B21 CI := Q I * - - - - - ' - - - - - - ' - - -

V u2*f1"*Bl" + (I - (2).f2?B2?

C2 := Q2* - - -- -

V 1 -8 F Al = -0.06-min Dl =6.34 x 10 --

BTU CI=5.7-F min I -8 F A2= -0.06- D2 = 6.34 x 10 --

C2= 5.7-F min BTU min Integrating to Solve for Basin Temperature Ubi := 96*F i:= 1 .. 299 H:= .I*min st.:= j*H 1

.i.,:= 300 .. 7000 ,!;J.,:= .I*min st.:= i*H 1

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C5 Results ,1= I, 20 .. 7000 107 104.88 102.75 100.63 u.. Ubi 0 98.5 96.38 94.25 92.13 90 4 4 4 4 0 1.10 2.10 3.10 4.10 stj Basin Temperature Response vs. Time (sec) use uprate heat load maximum := maximum +- 0 for i E 100 .. 7000 max(Ub) = 98.17F @t=560min maximum +- max(Ub j) if max(Ub )  ;?: maximum i

Ub = 97.6 F 300 maximum = 98.17 F index:= index +- 0 maximum+- 0 for i E 100 .. 7000 maximum +- max(Ub j) if max(Ub j)  ;?: maximum index +- i if ma~Ubj)  ;?: maximum 3

Ubjndex = 98.17 F st. d = 33588 sec index = 5.6 x 10 III ex

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C6 Basin Temperature and UHS Heat Load vs. Time

,.i..:= 1,26 .. 1000 linterp(T2, L2, S\)

Ub. MBTU st.

I I F hr min 96 83 0.1 95.96 426 2.6 95.99 426 5.1 96.01 426 7.6 96.03 426 10.1 96.05 426 12.6 96.07 426 15.1 96.08 426 17.6 96.26 610.86 20.1 96.7 607.86 22.6 97.06 602.19 25.1 97.35 595.43 27.6 97.58 588.42 30.1 97.75 576.42 32.6 97.87 564.42 35.1 97.94 552.42 37.6

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX C Page C7

,1= 1,20 .. 7000 1000.-------------------------------------------~

800 600 Iinterp{ T2, L2, slj)

(M::U) 400 200 O~------------------------------------------~

4 4 4 4 4 o 5000 1 010"' 1.5 010"' 2 010 205 010 3 010 305 010 4 010 st; Post LOeA Time (sec)

UHS Accident Heat Load Profile L42

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C8 Scenario BEl (EDG Failure)

Two Tower Model - (Heat load for Power Uprate)

EDG Failure (Loss of SX Pump 2B) with no Cells 005 and no fans initally running gal 6 ORIGIN == I in == IL Ibm == IMF == IQ see == IT gpm:= - . lll!1:= Ibm*F MBTU:= BTU* 10 mm Cooling Tower Performance 126.59) 98.59)

Thl:= ( *F Tel:= ( *F 118.57 96.57 126.59) 98.59)

Th2:= ( *F Te2:= ( *F 118.57 96.57 126.59) Te3:= (98.59).F Th3:= ( *F 118.57 96.57 126.59)

Th4:= ( *F Te4:= ( 98.59) *F 118.57 96.57

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C9 Uprate Heat load (L42) 83 ( 0.00 83 0.17 426 0.35 426 0.50 426 0.75 426 2.00 426 2.17 426 2.33 426 2.50 426 3.32 426 4.98 426 6.65 426 8.32 426 9.98 426 11.50 426 11.65 426 13.32 426 14.98 426 16.65 MBTU L2 := 426 .-- T2:= 18.32 *min hr 611 19.98 609 21.65 607 23.32 589 29.98 541 39.98 502 49.98 469 59.98 432 83.32 390 116.65 340 166.65 277 333.32 252 480.00 560 480.17 550 540.00 544 600.00 541 627.50 538 660.00 477 660.17 472 732.00

CALCULATION NO. NED-M-MSO-O09 REVISION NO. 88 APPENDIXC Page C10 SX System Flow rate QI := 47598*gpm (Total flow to T1 and T2 gpm)

Q2 := 47598*gpm (Total flow to Tl and T2 gpm)

Basin Mass 6 (Design Input 2.4)

V:= 0.534*10 *gal Ibm BTU 6 p:= 8.33*- C :=1*-- Mb = 4.45 x 10 Ibm gal P F.lbm Fans (Active/Total) Time Constant V V

,1:=- ,2 := -

fll := 0.961 fl2:= 0.961 QI Q2 t21:= 0.000 f22:= 0.000 Fraction of flow to Tower 1 Fraction of heat load to Tower 1 al := 1.000 a2:= 1.000 ~I := 1.000 P2:= 1.000 Find Slopes and Intercepts of cooling towers 1 and 2 Mil := slope(Thl, Tcl) BII:= intercept(ThI, Tel) MI2 := slope(Th3. Tc3) B12:= intercept(Th3, Tc3)

M21:= slope(Th2,Tc2) B21:= intercept(Th2,Tc2) M22 := slope(Th4, Tc4) B22 := intercept(Th4, Tc4)

Mll = 0.252 Bll = 66.706 F MI2 = 0.252 BI2 = 66.706F M21 = 0.252 B21 = 66.706F M22 = 0.252 B22 = 66.706 F

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C11 Calculate Intermediate Constants AI:= ( ~1}[1 _ al*[(l- fll) + fll*MII] - (I - aJ)'(I- f21 + f21.M21)]

A2:= ( ~}[I - a2.[(1- fl2) + f12*MI2] - (J - (2)*(1 - f22+ f22.M22)]

~2*(1 - fl2 + f12*MI2) + (t - 132).( I - f22 + f22*M22) 02 := =..::.::..~-=-=---..:..::..:::...;...:.;..~:.....:..;:...-..!:.::::....:..::....--.;;:::::....--=..:.-:.;::.::.::.

Mb'Cp aI*fll*Bll + (I - aI).f2I*B2I CI:= QI.----..;.y----.;---

a.2*fl2*B12 + (I - (2).f22.B22 C2 := Q2*----~-...:.--

y I -8 F F Al =-0.06- 01 = 6.32x 10 --

mm BTU CI=5.71-min I -8 F A2=-0.06-. 02 = 6.32 x 10 -- F mm BTU C2 = 5.71-min Integrating to Solve for Basin Temperature UbI := 82*F i:= 1 .. 99 H:= .I*min st.:= i*H 1

._ ( Iinterp( T2 , L2 , sti) )

Vb. 1'- lJb. + *H 1+ 1 Mb'Cp

..!,;= 100 .. 299 Ji.:= .1* min st.:= j*H 1

..!,;= 300 .. 7000 Ji.:= .1* min st. := i*H 1

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C12 Results 1..,:= 1,20 .. 7000 107 104.88 102.75 100.63 i;'- Ubi 98.5 96.38 94.25 92.13 90 0 1.104 2.104 3.104 4.104 sti Basin Temperature Response vs. Time (sec) use uprate heat load maximum := maximum +- 0 for i E 100 .. 7000 max(Ub) = 98.19 F @t=38.3 min maximum +- ma~Ubi) if ma~Ubi) ~ maximum Ub = 98F 300 maximum = 98.19F Ub = 97.5F lOO index := index +- 0 maximum+- 0 for i E 100 .. 7000 maximum +- m~Ubi) if m~Ubi) ~ maximum index +- i if m~Ubi) ~ maximum Ub.Index = 98.19 F st.illdex = 2298 sec index = 383

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C13 Basin Temperature and UHS Heat Load vs. Time 1.;= 1,26 .. 1000 Ub. MBTU st.

I hr I

F min 82 83 0.1 85.72 426 2.6 89.71 426 5.1 93.7 426 7.6 97.52 426 10.1 97.32 426 12.6 97.15 426 15.1 97 426 17.6 97.05 610.86 20.1 97.36 607.86 22.6 97.62 602.19 25.1 97.83 595.43 27.6 97.99 588.42 30.1 98.1 576.42 32.6 98.16 564.42 35.1 98.19 552.42 37.6

CALCULATION NO. NEO-M-MSO-o09 REVISION NO. 88 APPENOIXC Page C14

,!.i= 1,20 .. 7000

\OOOr------------------------------------------,

800 600 linterp{ n, L2. sti)

(M~~U) 400 200 o~----------------------------------------~

4 4 4 4 4 4 4 o 5000 \.\0 \.5.\0 2.\0 2.5'\0 3'10 3.5'\0 4'10 sti Post LOCA Time (sec)

UHS Accident Heat Load Profile L42 (FINAL PAGE OF APPENDIX C)

ATTACHMENT 3 Additional References

2. Calculation ATD-0063, Revision 0048, "Heat Load to the Ultimate Heat Sink During a Loss of Coolant Accident"

CC-AA*309..1001 Revision 4 ATTACHMENT 2

[)UIgn Analysis Minor Revision Cover Sheet P 1 o.qn Analysis (Mnor R..,lslon, Anatpls Nc.; ATO.0053 EClECR No.:

  • 311388 Statlon(a):: , Byron UnlNo.:~ 1 and 2 smtvlQA aBS: ' SR IyIaIm Coft($): '" $X

~ .. 0..,

Is this D_un AM.,.1s ~rds Information?"

~.~n lJ'mIe~

This ~ AftiaIyW SUPERCEDE&:

AtoIYmplOn$? 1'$

v_o V-181 Nor8l No tfyu,u@SY~101-1oe rr Vea, AWAR#:: 794928-02 NA in Us entirety.

ATD-0063 Rev. 004 W9S tavia@d to ~ 1he I1isc:ellaneclI** beet load from 1he abendoned ret:yae evapoflitor~" Additional)' a n.w tab,. !he toW nut load 10 d'le UHS

  • calculated anumlng

~ action ia1a~n 10 reduce the hea input 10 the UHS from the RCFCa in the event ~Jited singde fdum of electr1c3 ~" multin !he loss at two apar.!!lble SXCl D.poa~ of Changes: >lI See attadled pag_ b the revised hNt load Input.

i PeermiewO 1,$... bl_~~1

&ternM Approver. )'J M~A NenI

&akm RlWiewer lH

CC...AA-309 Revision 1 Page 1 of 1 ATTACHMENT 2 OWners Acceptance Review CMckIht for Emma. Design Analysla Page 1 of1 REV: OI4B CALC PAGE NO.: 1.

Yes No NlA

. . .mptiona 1!f 0 0 2, AIe*aumptiOnt ~pd!Be baIis? If 0 3, Do h deagl1 inputs have ~t rDnale? H 0

4. Ar8 duign I'IpUbi ~ ~nabll:1 Jl 0 Are delign inpult ~I& wit! "'I h plimt iI opemtsd and the J!(l' bnlllg balis1 Ar8 Eng~ Judgrnentl dnrIy dooumerMd and judfied? o Are e:ngfneerlng*JudgmtWl_ compatible with llelclMlng b4i11iI?

the -'I ~ pIMt is opwaled o

lhl and col'ldulkml ~1h1 p~ and ~ the An~?

Are condIJliont compItible the w.; I'll pfant it ~ 'd

,. wllh lhe b4i1III'? .,

O(\!ll)l the DeeigI1 Anel'fllt include the appbb\e dnfgn b4i1_ ,. 0 da:::urmmtdcm? ~

11. HlIWe IR'f li~ on Ie _ appn:!pria organlDtkm?

weofh reeub been ~ and hnlmitted o  ;(

Ale there un~ "JmiP~11 o o aI un\WIhd aMUmptllms Nwe a traddng ad elol!wre 10 o o 14.

HaIMd a~ design ~s bean ~nltd on ~A~

Documenm Lilt (ADL) for the ~ted Change? o

~ dlopufS and analysis meahodology oM ~nt tec:hniai requ~nm and ~ ~fS? (If lie input IOUreet or

15. a , . . mI1hodolcg'f SRI beIed on en 01A-CF-dete methodoklg'f or code.

additionat reI::'iOndlilitOOn may required site hE *'ce eoml1'litted to a mm~

Have wm:klr wpporting tec:hnical doeumenb and referencet

~~~~1 IOOIIJOJRg o o t ,

DATE!

ICALCULATION NO. A11).0013 REVISION NO. 0041 PAG!2 r

PURPOSE ATD-0063 ~~ heat load from the abandoned recycle M.llIIIOiI't~dN ~.. ~Ry anN Ihe ~ hut bad m 1M UHS Is caJculad auumiftg Opel'eklr idkm is ~ to ~ beat input to the UHS the RCFCs in the event postuIad

~ca b~ raul In 1M Ion of two ~* fans.

DeSIGN INPUTS boron ~ MtaPOrn:w II no longer ued ~ 4.1). PIping. 3nd components ~_ wih the teMoe water supply and return for the tecyde ewporlton tla bMft ~nlld in ~ [Rti. 4.4]. Therefore 1M hefJt bad for It!e fll!iI!'!i~w~ ~ Is UlfO.

2.2 The ndM:eI~MIiOI~

liMed in Table 3.

The ~ and ~ent unit heat load inputs rome from Referef1Ge1 12, and 16 the bam

_::ulaltiOft as !Is. in Table e.

3.0 ASIUMPT10N8 For tie lOCAJLOOP event Wilt! Siftgr8 taifutee d~bed above. it II ~ that ~ will 5hed hMt !mid by ~uring two of RCFCs on lOCA untt within 30 mlnuta.. The time to tum 01 RCFCs was ~ 'lritft the opaqb'8 and determined to be reasona*. deCision to ~ure RCFCs

~Mna a lOCM.OOP want woUld ol'liy neoHafY fOr the In'IIting single failure of SX ~

11a..... rilhiiNi in UH&o1 (Ret 4.2] under the m<<:lSl severe design baSis ~ oonditiClnl (mmnum wet temperature,. Cummtty, there II no procedOOll guidance Ie iShed the RCFC load at minuta Guida~ woUld need to be added to the appro_. proceduree ~f1Ge of minor ~I"L (UHVDUF1ED) 3.2 ~ two of folX Of the RCFCS ere aecured. the RCFC heat refl1O\l'el is aQ~ to be of the RCFC

h. . ren'IfMII of RCFCs. 'iNIb two RCFOI ~tlng Ihe post4CCIMnlra of comalnment oooidown will be . . falX RCFC8 are MilUmed to be in operation. This would fWUil in highlf ~Ir tempe~ entaing N RCFC and somI mCfMM in hHl ~ fa' the two ~ng RCFCa.

Hn caliculating peak UHS .m~ the period of Interest is Ihe tnt fJOOO aaoonds (8M sa!lnanos 5. 8. 1, and 8 of NE~ (Ref. 4.3J). With RCFCa operating the calWlad aJl$inment Irtearnfair temperature drops from 188.7"f to 149.9"F from tiIrIIt III 1199 MCOOds to time::

5_ ~nds (Sea TatH 6 of the bale (Rev, 4) calCUls6)n). WIth only two RCFCa, end same SX su~ ~. drop in ttlmperature CWfW Ihe same ~ period 'would be ~m_y one hal or ... 2()'l'F, Ttle c:aleuiallad fl'leXimum hMt itiput from the RCFC8 WBii con~ly besed on It! illiilUmed SX supply blmpeffiJre 3n [Rfilf. 4.6t During Ihe tIr'M period of ~ 1M SX 18m~ wil actually be a~ng Ihe SX supply _ign ~ of 100"E ThiS provi<lel ~ 68~

~ In the approach te~re for U. RCfC. which. greaterlhM Ihe ~ 2CfF IRtreaM In the appl'Oileb blmperalUre due to ~ng two of the four RCFCs. Thue asuming SO~ at the RCFC load rlOOnlef\ldva 4.0 REFERNCES 4.1 UFSAR ~~ 9, December 2002, Sedon 9.3,4,2 4.2 UHS-Ot RM', 4, 'UIimIte ~ Sink DMign Bail 4.3 Nt:;LJ*M~M~J..OO, RfiW" B. "Byron '"" .."'r.....'"

l...l 4.4 'ui:i'i~"a RM', 0, 'AbaooonABEw~I'AS WSC~ts, 4.5 D. ~BYRONISRAIDWOOD UN.T 1 - Uprtli8 ~ lOCA Mus and Enetg)'

~ And Containment I~ An~ Using B&W Replacement Steam Generaklr,"

[ CALCULATION NO. ATD-OOI3 5.0 METHOD OF ANALYSII RlMSION No.. 0048

PAGE 3 I

In Table 3 of the main body of ChIs aalculttlon the miscellaneous heat loads are IIRId. A total mltoellaneou8 heat load of 103 )( 1r1 BIuItW' (fer both lOCA and ncwH.OCA units)

  • ueed jn this calcu~ aIIhough ¥IMn aI of the heat loads Mtsummed the total Is 90.7 x 10' Btulhr. ihIs dWferlnce (12.3 x lU'" BtuItlr)
  • eking with subbacting a13)( 1at Btur'hr for the feCYde ev8l,XlnltOr package si1ce it was retinJd i\ ptaoe [Ref.*s 4.1 and *.*J. ytalds a rtMsed toIII mlscelaneaus heal toad of 82..51 x 1d' Btv.thr.. A new Table 9 will be Q'eated by f8IriIi1g Table 8 from lie main body of tt1iI calcuratioo UIing the reduced mlSCldaneous heat load.

OtI1ng peliOds at limiting \lIMIher concttlons. in order to rnaII'ttUllhe SX oooIlng rower beain _~

rea 1I18n 10C1'F dwing the postulated _gIe fallwes of elec:tJicat breakers seMng 1I1e SX syst8m components occurtIng conctJrrent with a lOCA and a lOOP on one unit wtth the oppoeite unit In nonnet shutdown. some heat load to the UHS may need to be .tied. In U1iI caM. it i8 assumed tmi: hllff of the RCFC heat load on the lOCA unit is Shed in 30 ml..... by SICUIlng two at four RCFCs (tee Assumptions 3.1 and U). In NeD-M-MSD-09 [Ref.... 3J the postuIat8d failure of an emergency diesel genet_ also c:onsicktra two of fout RCFCs to be inCIpetabIe (SCenario 3A). In tetm& of comainment cooing. Ihta IC8I'IIIrio with two of four RCFCs aand III bounded by the fall.... of an emergency dlelef generatot. A new Table 10 WiI be genef8led for the accident heat toad with redUCed RCFC heat load input starting at 30 minUIM. A new Table 11 will be aNted lor thllotIl UHS hut load Input with the reduCed milSCeleneoU15 heat roed and the redueed RCFC heet Joed,.

6.0 NUllERfCAl ANALY8I8 6.1 Nt'<< Aq;;ident Heat Loaa wjtb Redyced BCfC Inpyt In Table 8 of the bale (Rev. ") calculation, the accident heat loads are listed. The total heat load Is dl!M8tmlned by summing the RCFC heat removal heat Joad and the RHR HX heat kJed. Starting at 1799 sec:ondI (-30 minutes); half of the RCFC "atlo8d is ramcMld from the total hut toad. 1MIen Ihe time scale dkt not cotncide wlth the Table 8 time ecaie, n.... ln4etpolatiOn wee I,J$$(J. For exel'1'1Pe. at 28,800 secondt, the RCFC heat load was IntBrpofated bItInen 19.999 IICOnds and 29,m seconds. Art

~ of shedding half at the RCFC heat fOad 10t 1799 secondS is ShOwn beloW:

Half at the RCFC Heat Load ;: 348,2~,956 f 2 :; 113,123,478 BTUIhf Total Heat loed ;: 173,123,478 + 271,418,088;; ~,601,566 BTUIhr 7.0 RESUlTS AND CONCLUSIONS The new Table 9 sOOws the tatat UHS heat bad wtIh the reduced rNscaIIaneous heat kIad only. The new Table 10 showe the accident heat road with RCFC heat load teduCtion only. The newTabie 11 shows the tobJI UHS hut load with the reduced niscdlneous heat *oIId and the nllduced RCFC heat load.

I PAGE 4 I

CALCULATION NO. ATI).(IOI3 REVISION NO. 004B LoR Only

ICALClILAT10N NO. ATD-OOI3 REVISION NO. 0048 PAGEl I

ICALCULATION NO. ATD-OOI3 REVISION NO. ONS PAGEl I

  • No~

tteat RHR Heat load Heat load wfIh RCFC Red~

Mise Heat Load from Bath Unilla

\ )

ATTACHMENT 4 Supporting Calculation The following list identifies those actions committed to by Exelon Generation Company, LLC, (EGC) in this submittal. Any other actions discussed in the submittal represent intended or planned actions by EGC, are described only for information, and are not regulatory commitments.

COMMITMENT TYPE ONE-TIME PROGRAM-ACTION MATIC COMMITTED DATE (YES/NO) (YES/NO)

COMMITMENT OR "OUTAGE" EGC will revise appropriate Upon implementation of No Yes procedures to caution operators on the proposed change the non-accident unit to monitor Essential Service Water temperature during the cooldown and to manage the heat load inputs to the Ultimate Heat Sink from the non-accident unit to maintain Essential Service Water pump discharge temperature $.100 of.