NRC 2003-0067, Reactor Vessel Closure Head Penetration Repair Relief Requests MR 03-018-1 and MR 02-018-2 Supplement 2 and Response to Request for Additional Information
| ML032230299 | |
| Person / Time | |
|---|---|
| Site: | Point Beach |
| Issue date: | 07/31/2003 |
| From: | Cayia A Nuclear Management Co |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| NRC 2003-0067 | |
| Download: ML032230299 (107) | |
Text
NM_
Committed to Nuclear Excellence Point Beach Nuclear Plant Operated by Nuclear Management Company, LLC NRC 2003-0067 10 CFR 50.55a(a)(3)(i) 10 CFR 50.55a(g)(5)(iii)
July 31, 2003 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 POINT BEACH NUCLEAR PLANT, UNITS 1 AND 2 DOCKETS 50-266 AND 50-301 REACTOR VESSEL CLOSURE HEAD PENETRATION REPAIR RELIEF REQUESTS MR 03-018-1 AND MR 02-018-2 SUPPLEMENT 2 AND RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION
Reference:
(1)
Letter from NMC to NRC dated August 28, 2002 (serial NRC 2002-0073)
(2)
Letter from NMC to NRC dated April 10, 2003 (serial NRC 2003-0034)
In Reference 1, Nuclear Management Company, LLC (NMC) submitted Relief Requests MR 02-018-1 and MR 02-018-2 for PBNP Unit 1 (TAC Nos. MB6184 and MB6185). The requested relief may become necessary in the event that flaws requiring repair in reactor vessel closure head (RVCH) penetrations are discovered during upcoming inspections, in accordance with our response to NRC Bulletin 2002-02, uReactor Pressure Vessel Head and Vessel Head Penetration Nozzle Inspection Programs".
Reference 2 provided additional information in support of the relief request and expanded its applicability to PBNP Unit 2. As such, NMC proposed that the requested relief be approved for both units. Enclosed with reference 2 were copies of supporting calculation packages prepared by Framatome ANP, LLC ("FRA-ANP"). As Calculation Packages 32-5019398-00, 32-5019396-00, and 32-5020244-00 contained information proprietary to FRA-ANP, they were supported by an affidavit signed on September 30, 2002 by FRA-ANP, the owner of the information.
During subsequent conference calls between NMC representatives and NRC staff, the NRC requested additional information in support of the relief requests. The enclosures to this letter contain the NMC response to the staff's questions.
NRC staff also questioned certain aspects of the proprietary classification imposed by FRA-ANP on the information in their calculation packages. The specific calculation packages were:
Calculation Package 32-5019398-01, OPB-1 CRDM Nozzle IDTB Weld Anomaly Flaw Evaluations", dated February 28, 2003 (Non-Proprietary);
Calculation Package 32-5019396-01, 'PB-1 CRDM Nozzle IDTB J-Groove Weld Flaw Evaluation', dated February 28, 2003 (Non-Proprietary); and, Calculation Package 32-5020244-01, NPoint Beach 1 CRDM Temperbead Bore Weld Analysis",
dated February 28, 2003 (Non-Proprietary) 6590 Nuclear Road
- Two Rivers, Wisconsin 54241 Ao Telephone: 920.755.2321
NRC 2003-0067 Page 2 FRA-ANP subsequently informed NMC that some of the Information in the first two of the above three calculation packages was inappropriately classified as proprietary. Therefore, the following revised copies of the non-proprietary versions of the FRA-ANP calculation packages are enclosed with this letter. These two non-proprietary packages replace the corresponding originally submitted packages in their entirety. The technical information in these revised packages is unchanged, only the proprietary classifications were corrected.
Calculation Package 32-5019398-02, "PB-I CRDM Nozzle IDTB Weld Anomaly Flaw Evaluations", dated July 28, 2003 (Non-Proprietary);
Calculation Package 32-5019396-02, "PB-1 CRDM Nozzle IDTB J-Groove Weld Flaw Evaluation", dated July 28, 2003 (Non-Proprietary)
Also included in the enclosures to this letter is a second FRA-ANP proprietary authorization affidavit, supporting Calculation Packages 32-5019396-02 and 32-5019398-02. The affidavit sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (b)(4) of 10 CFR 2.790 of the Commission's regulations.
Accordingly, it is respectfully requested that the information, which is proprietary to FRA-ANP, be withheld from public disclosure in accordance with 10 CFR 2.790. Correspondence regarding the proprietary aspects of the Items listed above, or the supporting FRA-ANP Affidavit, should reference the affidavit and be addressed to J. F. Mallay, Director Regulatory Affairs, Framatome ANP, Inc., 3315 Old Forest Road, P.O. Box 10935, Lynchburg, Virginia, 24506-0935.
NMC requests NRC review and approval of these relief requests, for both units, by October 9, 2003. If necessary, NMC personnel will be available to meet with your staff to discuss any concerns you may have.
Any statements of intent made in this submittal are provided for Information purposes and are not considered to be regulatory commitments.
Site nt LAS ~nd : Response to Request for Additional Information Enclosures cc:
(with enclosures)
Project Manager, Point Beach Nuclear Plant, NRR, USNRC cc:
(w/o enclosures)
Regional Administrator, Region IlIl, USNRC NRC Resident Inspector - Point Beach Nuclear Plant PSCW
ATTACHMENT I RESPONSE TO REQUEST FOR ADDIONAL INFORMATION (RAI)
REGARDING RELIEF REQUEST SUBMITTALS MR 02-018-1 AND MR02-018-2 DATED AUGUST 23,2002 AND APRIL 10, 2003 POIT BEACH NUCLEAR PLANT, UNITS i AND 2
NRC 2003-0067 Page 1 RESPONSE TO NRC REQUEST FOR ADDITIONAL INFORMATION The following information is provided in response to the Nuclear Regulatory Commission staffs request for additional information (RAI) on NMC's August 28, 2002 and April 10, 2003 Relief Request submittal, as discussed during several telephone conferences between NRC and NMC staff. The staffs questions were germane to both PBNP units.
The NRC staffs questions are restated below, with the NMC response following. The NMC response is based on the attached calculation packages s provided by Framatome ANP
("FRA-ANP") and applies to both PBNP units.
NRC Question 1:
Please provide the following for Unit 2:
Construction Code Year Inservice Inspection Year Code of Record with Addenda Interval Number Specific Code Sections for which Unit 2 relief is being sought NMC Response:
Unit 2 Construction Code Year:
ASME Section III - 1968, with Winter 1968 Addenda Unit 2 Inservlce Inspection Year Code of Record with Addenda:
1998 Edition of ASME Section Xi with all addenda through 2000 Unit 2 Interval Number:
Fourth inspection interval Specific Code Sections for which the Unit 2 relief Is being sought:
As stated in the August 28, 2002 submittal, NMC requests relief from ASME Xl IWA-3300(b),
IWB-3142.4 and IWB-3420, which would require characterization of a flaw existing in the remnant of the J-groove weld that will be left on the Point Beach Unit 2 Reactor Vessel Closure Head (RVCH) if a control rod drive mechanism (CRDM) nozzle must be partially removed.
Although references to Unit 1 in the August 28, 2002 submittal may be interchanged with Unit 2, it needs to be noted that the Unit 1 vessel was fabricated IAW 1965 Section III (as stated in the August 28, 2002 submittal), and the Unit 2 vessel was fabricated to 1968 A68 Section III NRC Question 2:
In your April 10, 2003 letter responding to the staffs RAI, in calculation summary sheet 32-5019398-00, PB-1 CRDM Nozzle IDTB Weld Anomaly Flaw Evaluations, page 4, the statement is made: "This weld repair establishes a new pressure boundary above the original J-groove weld, except In some cases away from the center of the head where the new weld partially overlaps the original weld."
NRC 2003-0067 Attachment I Page 2 Recent experience at ANO-1 and North Anna, where weld repairs cracked at the junction of the Alloy 52 and Alloy 182 boundary after one cycle of operation have come to light. Taking into considerations the lessons learned from this occurrence, please discuss the actions that will be taken in the area of monitoring the repair for structural and lead integrity when the new repair weld overlaps the remnant J-groove weld.
NMC Response:
The intended service life of this proposed repair is one fuel cycle. The possible overlap that may occur on a repair will not constitute the entire length of the new Alloy 52 weld. Using a conservative confluence of minimum tolerances there will be a satisfactory ligament where the new Alloy 52 weld does not overlap the old Alloy 182 weld and is attached to the low-alloy steel RV head. The actual length of the overlap will be minimized by taking field measurements of RV head thickness and J-groove weld depth instead of using the conservative tolerance values.
The potential for a preexisting flaw to propagate along the boundary between the new Alloy 52 and the low alloy steel (first pass diluted zone) has been considered and is described below.
There have been numerous repairs of Alloy 600 locations in U.S. PWRs using Alloy 52. Many of these repairs resulted in the interface between low alloy steel and an Alloy 52 weld being exposed to primary coolant (examples include 150+ CE PZR nozzle repairs, FRA-ANP's CRDM IDTB process, miscellaneous hot leg and PZR instrument nozzles). Extensive industry operating experience has shown Alloy 52 to be highly resistant to PWSCC, without any such 1 st diluted layer cracking as described above. The actual geometry of the overlap in the Point Beach CRDM repair is expected to result in a low crack driving force in the 1st diluted layer due to the small size (-0.070") of such a layer and restraint by surrounding materials. Also, the Alloy 52 weld is applied with an ambient temperature temperbead GTAW process, which minimizes the residual tensile stresses contributing to the crack driving force.
In addition to the evidence described above, the proposed repair weld will have its structural leak integrity verified by volumetric NDE, thereby giving assurance of no pressure boundary leakage.
ENCLOSURES to NRC 2003-0067 Calculation Package 32-5019398-02, "PB-1 CRDM Nozzle IDTB Weld Anomaly Flaw Evaluations', dated July 28, 2003 (Non-Proprietary);
Calculation Package 32-5019396-02, "PB-1 CRDM Nozzle IDTB J-Groove Weld Flaw Evaluation", dated July 28, 2003 (Non-Proprietary);
Framatome ANP proprietary authorization AFFIDAVIT
FRAMATOME ANP CALCULATION
SUMMARY
SHEET (CSS)
Document Identifier 32 - 5019398 - 02 Title PB-I CRDM NOZZLE IDTB WELD ANOMALY FLAW EVALUATIONS PREPARED BY:
REVIEWED BY:
METHOD: 0 DETAILED CHECK 0
INDEPENDENT CALCULATION 4AME D.E. KILLIAN SIGNATURE foo&llcz4x'
NAME H.P. GUNAWARDANE SIGNATURE nTLE ADVISORY ENGR.
DATE 7f71o3 TITLE ENGINEER II DATE
- 12. S/ ID3 OST REF.
RENTER 41629 PAGE(S)
TM STATEMENT:
REVIEWER INDEPENDENCE Afr" -W AXWA PURPOSE AND
SUMMARY
OF RESULTS:
Revision 2: This revision is a non-proprietary version of Revision 0.
The purpose of this analysis is to perform a fracture mechanics evaluation of a postulated weld anomaly In the Point Beach Unit 1 CRDM nozzle ID temper bead weld repair. The postulated anomaly Is a 0.100 inch semi-circular flaw extending 360 Jegrees around the circumference at the "triple poinr location where there Is a confluence of three materials; the Alloy 600 lozzle, the Alloy 52/152 weld, and the low alloy steel head. The anomaly Is assumed to propagate In each of two directions an the uphill and downhill sides of the nozzle. The analysis predicts fatigue crack growth in an air environment since the anomaly is located on the outside surface of the new weld, just below the bottom of the severed CRDM tube. Flaw acceptance Is based on the 1998 with 2000 Addenda ASME Code Section Xl criteria for applied stress intensity factor (IWB-3612) and limit load (IWB-3642).
The results of the analysis demonstrate that a 0.100 Inch weld anomaly is acceptable for a 25 year design life for the CRDM iozzle ID temper bead weld repair. Significant fracture toughness margins have been demonstrated for each of the two flaw Propagation paths considered In the analysis. The minimum fracture toughness margin Is 9.57, compared to the required nargin of 410 per iWB-3612. Fatigue crack growth is minimal. The maximum final flaw size is I
] inch. The margin on limit oad Is 8.47, compared to the required margin of 3.0 per IWB-3642.
THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:
THE DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED WORK CODE/VERSIONIREV CODENERSIONIREV YES 3j NO Page 1
of 50
p%
FRAMATOME ANP 32-5019398-02 RECORD OF REVISIONS Description Revision Affected Paaes Date 0
All 1
All Original release Revision 1 is a non-proprietary version of Revision 0.
Revision 2 Is a non-proprietary version of Revision 0 that includes more information than Revision 1.
9/02 2/03 2
All 7/03 2
A FRAMATOME ANP 32-5019398-02 TABLE OF CONTENTS Section Title Page
1.0 INTRODUCTION
4 2.0 ASSUMPTIONS.....................................
5 3.0 WELD ANOMALY....................................
6 4.0 MATERIAL PROPERTIES.....
8........................
5.0 APPLIED STRESSES....................................
11 6.0 FRACTURE MECHANICS METHODOLOGY................................................................... 20 7.0 ACCEPTANCE CRITERIA....................................
22 8.0 FLAW EVALUATIONS....................................
23 9.0
SUMMARY
OF RESULTS....................................
47
10.0 CONCLUSION
48
11.0 REFERENCES
49 3
FRAMATOME ANP 32-5019398-02
1.0 INTRODUCTION
The CRDM nozzle ID temper bead weld repair is described by the design drawing (Reference 1).
This weld repair establishes a new pressure boundary above the original J-groove weld, except in some cases away from the center of the head where the new weld partially overlaps the original weld. There are seven steps Involved In the repair design, as depicted in Reference 1. These steps are:
1 )
Thermal sleeve cutting
- 2)
Roll expansion
- 3)
Nozzle removal and weld prep machining
- 4)
Welding
- 5)
Grinding/machining and NDE
- 6)
Original weld grinding
- 7)
Thermal sleeve re-attachment During the welding process (step 4), a maximum 0.1 inch weld anomaly may be formed due to lack of fusion at the "triple point', as shown In Figure 1. The anomaly is conservatively assumed to be a "crack-like" defect, 360 degrees around the circumference at the "triple pointr location. The technical requirements document (Reference 2) provides additional details of the ID temper bead weld repair procedure. The purpose of the present fracture mechanics analysis is to provide justification, In accordance with Section Xi of the ASME Code (Reference 3), for operating with the postulated weld anomaly at the triple point. Predictions of fatigue crack growth are based on a design life of 25 years.
4
I-'
FRAMATOME ANP 32-5019398-02 2.0 ASSUMPTIONS Listed below are assumptions that are pertinent to the present fracture mechanics evaluation.
- 1)
The anomaly is assumed to include a "crack-1ike" defect, located at the triple-point location and extending all the way around the circumference. For analytical purposes, a continuous circumferential flaw is located in the horizontal plane at the top of the weld. Another continuous flaw is located in the cylindrical plane between the weld and reactor vessel (RV) head.
- 2)
In the radial plane, the anomaly is assumed to Include a quarter-circular crack-like defect (see Figure 1). For analytical purposes, a semi-circular flaw is used to represent the radial cross-section of the anomaly.
- 3)
It is assumed that the weld residual stresses due to the new repair weld are negligible and therefore can be neglected in the present analysis, as discussed in Reference 5.
- 4)
An RTNDT value of 60 OF is conservatively assumed for the SA-302 Grade B low alloy reactor vessel head material. This value is commonly used to conservatively represent low alloy ferritic steels.
5
FRAMATOME ANP 32-5019398-02 3.0 WELD ANOMALY The anomaly is located in the triple point region as shown in Figure 1 below.
A MAX TRIPLE POINT 20*
MIN raw K-(.10 MAX POSSIBLE LACK OF FUSION ANOMALY)
AS-WELDED SURFACE SHALL BE SUITABLE FOR PT Figure 1. Weld Anomaly In Temper Bead Weld Repair The region is called a "triple point' since three materials intersect at this location. The materials are:
a) the alloy 600 CRDM nozzle material, b) the new ERNiCrFe-7 filler weld material,* and c) the low alloy steel RV head material.
- Per Reference 7, Specification 5.14, Par. A7.4.3, "Filler metal of this classification is used for welding nickel-chromium-iron alloy (ASTM B163, B166, B167, and B168 having UNS Number N06690)." This UNS number is associated with Alloy 690 material.
6
FRAMATOME ANP 32-5019398-02 3.1 Postulated Flaw The triple point weld anomaly Is assumed to be semi-circular in shape with an Initial radius of 0.10", as indicated in Figure 1. It is further assumed that the anomaly extends 360° around the nozzle. Three flaws are postulated to simulate various orientations and propagation directions for the anomaly. A circumferential flaw and an axial flaw on the outside surface of nozzle would both propagate in a horizontal direction toward the inside surface. A cylindrically oriented flaw along the interface between the weld and head would propagate downward between the two components. The horizontal and vertical flaw propagation directions are represented in Figure 2 by separate paths for the downhill and uphill sides of the nozzle, as discussed below. For both these directions, fatigue crack growth will be calculated considering the most susceptible material for flaw propagation.
Horizontal Direction (Paths 1 and 2):
Flaw propagation Is across the CRDM tube wall thickness from the OD of the tube to the ID of the tube. This is the shortest path through the component wall, passing through the new Alloy 690 weld material. However, Alloy 600 tube material properties or equivalent are used to ensure that another potential path through the HAZ between the new repair weld and the Alloy 600 tube material Is bounded.
For completeness, two types of flaws are postulated at the outside surface of the tube. A 3600 continuous circumferential flaw, lying in a horizontal plane, is considered to be a conservative representation of crack-like defects that may exist in the weld anomaly.
This flaw would be subjected to axial stresses in the tube. An axially oriented semi-circular outside surface flaw is also considered since it would lie in a plane that is normal to the higher circumferential stresses. Both of these flaws would propagate toward the inside surface of the tube.
Vertical Direction (Paths 3 and 4):
Flaw propagation Is down the outside surface of the repair weld between the weld and RV head. A continuous surface flaw is postulated to lie along this cylindrical interface between the two materials. This flaw, driven by radial stresses, may propagate along either the new Alloy 690 weld material or the low alloy steel head material.
7
FRAMATOME ANP 32-5019398-02 4.0 MATERIAL PROPERTIES The region of interest for the present flaw evaluations is at the triple point, where three different materials intersect. These materials are the CRDM nozzle material, the new weld material and the reactor vessel head material.
The Point Beach Unit 1 CRDM nozzles are made from Alloy 600 material to ASME specification SB-167 for tubular products (Reference 2). The new weld, as noted in Section 3.0, Is made from Alloy 690 type material. The portion of the reactor vessel head that contains the CRDM nozzles is fabricated from SA-302 Grade B (Reference 2).
4.1 Yield Strength Values of yield strength, Sy., are obtained from the 1989 Edition of the ASME Code (Reference 9), as listed below.
SA-302 Grade B Low Alloy Steel Plate Material (RV Head)
Room temperature 50.0 ksl Operating temperature of 600 OF 43.8 ksi SB-1 63 Material N06690 (used for Alloy 52 Weld Metal)
Room temperature 40.0 ksi Operating temperature of 600 0F 31.1 ksi SB-167 Material N06600 (Alloy 600 Material)
Room temperature 35.0 ksi Operating temperature of 600 'F 27.9 ksi 8
/A FRAMATOME ANP 32-5019398-02 4.2 Fracture Toughness 4.2.1. Low Alloy Steel RV Head Material The fracture toughness curve in Figure A-4200-1 of Reference 3 will be used for SA-302 Grade B material. This curve is specifically applicable to SA-533 Grade B Class 1 plate material and SA-508 Class 2 and 3 forging material [3]. Welding Research Council Bulletin 175 (4] states that this curve may also be used for other steels as long as the specified minimum yield strength does not exceed 50 ksi. It Is therefore appropriate to use the Section Xl curve to represent the fracture toughness of the Point Beach Unit 1 SA-302 Grade B reactor vessel head.
At an operating temperature of about 600 0F, the K.a fracture toughness value for this material (using an assumed RTNDT of 60 OF) Is above 200 ksli4n. An upper bound value of 200 ksilin will be conservatively used for the present flaw evaluations.
4.2.2. Alloy 600 and Alloy 690 Materials In Table 7 of Reference 12, Mills provides fracture toughness data for unirradiated Alloy 600 material at 24 OC (75 OF) and 427 OC (800 OF) In the form of crack initiation values for the J-Integral, Jc. Using linear interpolation and the LEFM plane strain relationship between Jc and fracture toughness, Kc, KC= I-v2 the fracture toughness at an operating temperature of 600 OF is derived as follows:
Note:
v=0.3 1 kN/m = 1 kN/m + 4.448 N/lb x 0.0254 mrin = 0.00571 kip/in Mills [12]
Code [9]
Temp.
J.
Jc E
ic (F)
(kN/m)
(kipAn)
(ksi)
(ksi4in) 75 382 2.18 31000 273 600 522 2.98 28700 307 800 575 3.28 27600 316 Since brittle fracture is not a credible failure mechanism for ductile materials like Alloy 600 or Alloy 690, these fracture toughness measures, provided for Information only, are not considered In the present flaw evaluations. However It should be noted that the fracture toughness measures of these ductile materials is significantly greater than the fracture toughness measure of the low alloy RV head material reported In Section 4.2.1.
9
A FRAMATOME ANF 32-5019398-02 4.3 Fatigue Crack Growth Flaw growth due to fatigue is characterized by da C,(&K,)n dN where C. and n are constants that depend on the material and environmental conditions, AK, Is the range of applied stress Intensity factor in terms of ksi'Iin, and da/dN Is the incremental flaw growth in terms of inches/cycle. For the embedded weld anomaly considered In the present analysis, it is appropriate to use crack growth rates for an air environment. Fatigue crack growth is also dependent on the ratio of the minimum to the maximum stress intensity factor; i.e.,
R = (K,)min / ()max SA-302 Grade B Low Alloy Steel Plate Material (RV Head)
From Article A-4300 of the 1998 Edition of Section Xi with addenda through 2000 (Reference 3),
the fatigue crack growth constants for subsurface flaws in an air environment are:
n = 3.07 CO= 1.99x 101 S where S = 25.72 ( 2.88 - R )407 for O*R*1 Alloy 600 and Alloy 690 Materials (used for Alloy 52 Weld Metal)
Fatigue crack growth rates for austenitic stainless steels are used to predict flaw growth in the these nickel-chromium-Iron components. From Article C-3210 of the 1998 Edition of Section Xl with addenda through 2000 (Reference 3), the fatigue crack growth constants for subsurface flaws In an air environment are:
n = 3.3 C.= CxS C = lo[ -10.009 1 8.12E-4xT-1.13E-6xT 2 + 1.02E-9xT3 where S= 1.0 for R0 0
= 1.0 + 1.8R for 0< R0.79 0.79 < R < 1.0
= -43.35 + 57.97R for 10
kA FRAMATOME ANP 32-5019398-02 5.0 APPLIED STRESSES The applied stresses are the cyclic stresses that contribute to fatigue crack growth. Fatigue stresses are obtained from a CRDM temper bead design stress analysis (Reference 6) that considered seven transient loading conditions:
Stress Table 1
2 3
4 5
6 7
Transient Heatup and Cooldown Plant Loading and Unloading 10% Step Load Changes 50% Step Load Reduction Reactor Trip Loss of Flow Loss of Load Occurrences in 40 years 200 cycles 3,000 cycles*
2,000 cycles 200 cycles 400 cycles 80 cycles 80 cycles
- Based on a realistic estimate of plant loading and unloading cycles for a non-load following plant.
To simplify the present flaw evaluations while minimizing conservatism, these transients will be grouped into three sets, as listed below. The bounding stresses for the remaining transients (after heatup/cooldown and plant loading/unloading) will be used to conservatively represent these additional cyclic loads.
Group 1
Transient Heatup and Cooldown Plant Loading and Unloading Remaining Transients Cycles /40 Years 200 Cycles I Year 5
2 3
3,000 2,760 75 69 Stresses are available from Reference 6 for the four crack propagation paths illustrated in Figure 2. Paths 1 and 3 are located on the downhill (00) side of the nozzle and Paths 2 and 4 are on the uphill (1800) side. Stresses are reported in a cylindrical coordinate system relative to the CRDM nozzle and Include the three component directions (axial, hoop and radial) needed to calculate mode I stress intensity factors for the various postulated flaws. Stresses are provided at four uniform Increments along each propagation path.
The length of Paths 1 and 2 is 0.5195" and the lengths of Paths 3 and 4 are 1.4513" (downhill side) and 0.9814" (uphill side), respectively. These path lengths are from a finite element model of an earlier design where the Inside surface of the weld was remediated. The horizontal distance between the triple point and the machined weld surface In the present design is (4.000" - 2.818") / 2 = 0.691 -
(Reference 1)
Since the actual weld thickness Is greater than the analyzed thickness, It Is conservative to use the Reference 6 stresses in the present flaw evaluations.
11
A FRAMATOME ANP 32-5019398-02 The uvertical" propagation paths extend from the triple point location to the lower portion of the weld at the surface of the enlarged (4.250") bore. As such, the line is slightly offset from the vertical. It may still be used, however, to represent stresses along this potential propagation path between the weld and head. On the downhill side, Path 3 extends all the way to the bottom of the weld. On the uphill side, Path 4 extends only to the top of the J-groove weld prep (top of butter) since no credit is taken for the integrity of the new-to-old weld overlap in the structural model.
Since stresses are generally higher on the uphill side of the nozzle and the length of Path 4 is less than Path 3 (smaller distance to form a potential leak path), the stresses for Paths 2 and 4 will be used to evaluate postulated flaws at the triple point weld anomaly.
This figure is not pertinent to thjs document.
d U "o P zZ ~ 71Z6/o (for legibility concerns)
Figure 2. Illustration of Crack Propagation Paths on the Finite Element Stress Model 12
A FRAMATOME ANP 32-5019398-02 Table 1. Stresses for Heatup and Cooldown (from Reference 6)
Horizontal Flaw Propagation Paths Triple Point Location Path No: PATHI Lengths 0.51953 Location:
0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Time
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY--
--SZ--
-- SX--
-- SY--
-- SZ--
1 0.001 2
2 3
4.4 4
6 5
7.8549 6
8.6 7
10.4 Path No: PATH2 Lengths 0.51953 Location:
0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51.953 Time
-- BY--
-- SZ--
-- SX--
--SY--
-SZ-
-- SX--
--SY--
-- SZ-
X-S
--SY--
-SZ-
--SX--
--SY--
-YSZ-1 0.001 2
2 3
4.4 4
6 5
7.8549 6
8.6 7
10.4 Triple Point Location Vertical Flaw Propagation Paths Path No: PATH3 Length-1.4513 Location:
0.0 0.0 0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885 1.0885 1.0885 1.4513 1.4513 1.4513 Time
-- SX--
-- SY--
--SZ--
- -SX--
--SY--
-- SZ- -
- -SX--
-- SY--
-- SZ--
-- SX--
--SY--
-S SX-
-SY
-Sz--
1 0.001 2
2 3
4.4 4
6 S
7.8549 6
8.6 7
10.4 Path No: PATH4 Lengths 0.98139 Location:
0.0 0.0 0.0 0.24535 0.24535 0.24535 0.4907 0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139 Time
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY- -
-- SZ--
-- SX--
-- Y--
S
-- SX--
-SY--
-SZ X--
- -SY--
-SZ 1
0.001 2
2 3
4.4 4
6 S
7.8549 6
8.6 7
10.4 Legend for stress indicators: SX = radial stress SY -
hoop stress SZ =
axial stress 13
A FRAMATOME ANP R2-5SQ193A8-2
-- - M-L
Table 2. Stresses for Plant Loading and Unloading (from Reference 6)
Horizontal Flaw Propagation Paths Triple Point Location Path No: PATH1 Location:
Time 1
0.001 2
0.3333 3
3 4
3.3333 Path NO: PATH2 Location:
Time 1
0.001 2
0.3333 3
3 4
3.3333 Length- 0.51953 0.0 0.0 0.0
-- SX--
-- SY--
--SZ--
Length- 0.51953 0.0 0.0 0.0
-- SX--
-- SY--
-- SZ--
0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
0.38965 0.38965
--SY--
-- SZ--
0.38965 0.38965
-- SY--
-- SZ--
0.51953 O.S1953
-- SX--
-- SY--
0.51953 0.51953
-- SX--
-- SY--
0.51953
-- SZ--
0.51953
--SZ-0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965
-- sx-.
-- SY--
-- Sz--
-- sx--
-- SY--
-- SZ--
-- SX--
Triple Point Location Vertical Flaw Propagation Paths Path No: PATS3 Location:
Time 1
0.001 2
0.3333 3
3 4
3.3333 Path No: PATH4 Location:
Time 1
0.001 2
0.3333 3
3 4
3.3333 Length= 1.4513 0.0 0.0 0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
--SY--
-- SZ--
-- SX--
Length- 0.98139 0.0 0.0 0.0 0.24535 0.24535 0.24535 0.4907 0.4907 0.4907 0.73604
--SX--
--SY--
--SZ--
-- SX--
--BY--
--SZ--
--SX--
--SY--
--SZ--
--SX--
1.0885 1.0885
--SY--
--8Z--
0.73604 0.73604
-- SY--
-- SZ--
1.4513 1.4513
-- SX--
-- SY--
0.98139 0.98139
-- SX--
-- SY--
1.4513
-- SZ--
0.98139
-- SZ--
Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 14
A FRAMATOME ANP 32-5019398-02 Table 3. Stresses for 10% Step Load Changes (from Reference 6)
Path NO: PATHI Length- 0.51953 Location:
0.0 0.0 I
Time
--SX--
--SY--
1 0.001 2
0.027778 3
0.0625 Horizontal Flaw Propagation Paths 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976
--SZ--
-- SX--
-- SY--
--SZ--
--SX--
--BY--
--SZ--
Triple Point Location 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953
-- SX--
--SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
4 1
5 1.025 Path No: PATH2 Location:
Time 1
0.001 2
0.027778 3
0.0625 4
1 S
1.025 Length- 0.51953 0.0
-- SX--
0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953
-- SY--
--SZ--
--SX--
--SY--
--SZ--
--SX--
--SY--
--SZ--
--SX--
--SY--
--SZ--
--SX--
--SY--
--SZ--
Triple Point Location Vertical Flaw Propagation Paths Path NO: PATH3 Location:
Time 1
0.001 2
0.027778 3
0.0625 4
1 5
1.025 Path No: PATH4 Location:
Time 1
0.001 2
0.027778 3
0.0625 4
1 5
1.025 Length-1.4S13 0.0 0.0
-- SX--
-- SY--
0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885
--8Z--
--SX--
-- 8Y--
--SZ--
-- SX--
--SY--
--SZ- -
--8X--
1.0885 1.0885 1.4513 1.4513 1.4513
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
Length. 0.98139 0.0 0.0 0.0 0.24535 0.24535 0.24535 0.4907
-- SX--
-- BY--
-- SZ--
-- SX--
-- SY--
-- SZ-- --
SX--
0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139
-- SY--
-- SZ--
-- SX
-- -- SY--
-- SZ--
-- SX--
-- SY--
Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 15
A FRAMATOME ANP 32-5019398-02 Table 4. Stresses for 50% Step Load Reduction (from Reference 6)
Path No: PATHI Location:
Time 1
0.001 2
0.05 3
0.23333 Path No: PATH2 Location:
Time 1
0.001 2
0.05 3
0.23333 Horizontal Flaw Propagation Paths Length- 0.519S3 0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965
-- SX--
-- SY--
--SZ--
-- SX--
-- SY--
-- BZ--
-- SX--
-- SY--
-- SZ--
--SX--
Length. 0.51953 0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965
-- sx--
-- SY--
-- sz--
-- sx--
-- SY--
-- Sz--
-- SX--
-- SY--
-- SZ--
-- SX--
Triple Point Location 0.38965 0.38965 0.51953 0.51953 0.51953
-- SY--
--SZ--
--SX--
-- SY--
--SZ--
0.38965 0.38965 0.51953 0.51953 0.51953
-- SY--
-- sz--
-- sx--
-- BY--
-- SZ--
TriDle Point Location Vertical Flaw Propagation Paths Path No: PATH3 Location:
Time 1
0.001 2
0.05 3
0.23333 Path No: PATH4 Location:
Time 1
0.001 2
0.05 3
0.23333 Length-1.4513 0.0 0.0
--SX--
-- SY--
Length- 0.98139 0.0 0.0
--SX--
-- SY--
0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885 SZ--
--SX--
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
1.088S 1.0885 1.4513 1.4S13 1.4513
-- SY--
-- SZ--
--SX--
-- SY--
--SZ--
0.0 0.24535 0.24535 0.24535 0.4907
--SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139
-- SY--
--SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 16
At FRAMATOME ANP 32-5019398-02 Table 5. Stresses for Reactor Trip (from Reference 6)
Horizontal Flaw Propagation Paths Triple Point Location Path No: PATH1 Location:
Time 1
0.001 2
0.016667 3
0.025 Path No: PATH2 Location:
Time 1
0.001 2
0.016667 3
0.025 Length- 0.51953 0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953
--sx--
-- SY--
--SZ--
--SX--
--8Y--
--SZ--
--SX--
--SY--
--SZ--
--SX--
--SY--
--SZ--
--SX--
-- SY--
--SZ--
Length- 0.51953 0.0 0.0 0.0 0.12988 0.12988 0.12988 0.2S976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953
--sx--
-SY--
-- SZ--
-- SX--
--SY--
-- SZ--
--SX--
--SY--
-- SZ--
--SX--
--SY--
--SZ--
--SX--
--SY--
--SZ--
Trigle Point Location Vertical Flaw Propagation Paths Path No: PATH3 Locations Time 1
0.001 2
0.016667 3
0.025 Path No: PATH4 Location:
Time 1
0.001 2
0.016667 3
0.025 Length-1.4513 0.0 0.0
--SX--
-- SY--
0.0 0.36283 0.36283 0.36283 0.7256S 0.72565 0.72565 1.0885
-- 9Z--
--Sx--
--SY--
--SZ--
--SX--
--SY--
--SZ--
--SX--
1.0885 1.0885 1.4513 1.4513 1.4513
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
o0a
__S Length. 0.9813!
0 0.0 SX--
-- BY--
R 0.0 0.24535 0.24S35 0.24535 0.4907
--SZ--
--8X--
--SY--
--SZ--
--SX--
0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139
--SY--
--SZ--
-- SX--
-- 8Y--
-- SZ--
-- SX--
-- SY--
-- SZ--
Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 17
A FRAMATOME ANP 32-0n1q3QR-0l2 Table 6. Stresses for Loss of Flow (from Reference 6)
Horizontal Flaw Propagation Paths Path No: PATH1 Location:
Time 1
0.001 2
0.006667 3
0.04034 Path No: PATH2 Location:
Time 1
0.001 2
0.006667 3
0.04034 Lengths 0.51953 0.0 0.0
-- SX--
--SY--
Lengths 0.51953 0.0 0.0
-- SX--
-- SY--
0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965
-- SZ--
-- sx--
-- SY--
-- SZ--
-- sx--
-- SY--
-- SZ--
-- SX--
0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965
-- SZ--
--SX--
SY--
-- SZ--
-- SX--
--SY--
-- SZ--
-- SX--
Triple Point Location 0.38965 0.38965 0.51953 0.51953 0.51953
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
0.38965 0.38965 0.51953 0.51953 0.51953
-- SY--
-- SZ--
--SX--
-- SY--
-- SZ--
Triple Point Location Vertical Flaw Propagation Paths Path No: PATH3 Location:
Time I
0.001 2
0.006667 3
0.04034 Path No: PATH4 Location:
Time 0.001 2
0.006667 3
0.04034 Length. 1.4513 0.0 0.0
-- SX--
---By- -
Length. 0.90139 0.0 0.0
-- SX--
-- SY- -
0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885
-- SZ--
--SX--
-- By- -
-- SZ--
- -SX--
- -SY--
-- SZ--
-- SX--
1.0885 1.0885 1.4513 1.4513 1.4513
-- SY--
-- SZ--
-- sX--
-- SY--
-- SZ--
0.0 0.24535 0.24535 0.24535 0.4907
--SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 18
A FRAMATOME ANP 32-501 9398Q-0 Table 7. Stresses for Loss of Load (from Reference 6)
Horizontal Flaw Propagation Paths Path No: PATHI Location:
Time 1
0.001 2
0.002778 3
0.04444 Path No: PATH2 Location:
Time 1
0.001 2
0.002778 3
0.04444 Length- 0.5195:
0.0 0.0
--Sx--
-- SY--
Lengthu 0.S195' 0.0 0.0
-- SX--
-- SY--
I 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965
- sz-
- -sx-
-- SY--
-- sz-
-- sx-
-- SY--
--sz--
-- Sx-
-- sy--
SZ
-S-0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965
-- SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY--
-- SZ--
-- SX--
-- SY-. --
SZ--
Triple Point Location 0.51953 0.51953 0.51953
-- SX--
-- SY--
-- SZ--
0.51953 0.51953 0.51953 SX--
-- SY--
-- SZ--
Triple Point Location Vertical Flaw Propagation Paths Path No: PATH3 Location:
Time 1
0.001 2
0.002778 3
0.04444 Path No: PATH4 Location:
Time 1
0.001 2
0.002778 3
0.04444 Length. 1.4513 0.0 0.0
-- SX--
-- SY--
0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885
-- SZ--
--SX--
-- SY--
-- SZ--
- -SX-
-- SY--
SZ--
-- SX--
1.0885 1.08B5 1.4513 1.4513 1.4513
-- SY--
-- SZ--
-- SX--
-- By--
-- SZ--
O.C
-- S Length. 0.98135 0
0.0 SX- -
-- SY--
0.0 0.24535 0.24535 0.2453S 0.4907
-- SZ--
--SX--
-- SY--
-- SZ--
-- SX--
0.4907 0.4907 0.73604 0.73604 0.73604
-- SY--
-- SZ---
-SX--
-- Sy--
--SZ--
0.98139 0.98139 0.98139
-- SX--
-- SY--
-- SZ--
Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 19
A FRAMATOME ANP 32-5019398-02 6.0 FRACTURE MECHANICS METHODOLOGY This section presents several aspects of linear elastic fracture mechanics (LEFM) and limit load analysis (to address the ductile Alloy 600 and Alloy 690 materials) that form the basis of the present flaw evaluations. As discussed in Section 3.1, flaw evaluations are performed for flaw propagation Paths 2 and 4 in Figure 2.
Path 2 represents a section across the new Alloy 52 weld metal which is equivalent to the thickness of the CRDM tube wall. Since the weld anomaly is located at the base of the OD of the CRDM tube and is assumed to be all the way around the circumference, a stress intensity factor (SIF) solution for a 360 degree circumferential crack on the OD of a circular tube is deemed appropriate. Therefore, the SIF solution of Buchalet and Bamford (Reference 13) is used in the analysis. However, this solution Is applicable for a 360-degree part-through ID flaw.
To develop an SIF solution for a 360 degree part-through OD flaw, an F function is determined based on SIF solutions of Kumar (References 14 and 15). The appropriate F function for an internal as well as an external circumferential flaw In a cylinder subjected to remote tension are determined first. The ratio of the F functions of the external flaw to the internal flaw is considered to be the appropriate multiplication factor for the Buchalet and Bamford SIF solution, to extend its application to an external crack. The materials to be considered for this path are the Alloy 600 tube material or the Alloy 52 weld metal. A limit load analysis for an external circumferential flaw in a cylinder subjected to remote tension (Reference 15) is also performed for applied loads on the CRDM tube.
An axially oriented semi-circular OD surface flaw is also considered in the evaluation, as illustrated by the schematic below.
Flaw Propagation Path Componept Wadl t
Semi-Etllp-tical L )
Flaw
- where, a = Initial flaw depth = 0.100 inch I 2c = flaw length
= 0.200 Inch t = wall thickness
= 0.591 Inch An axial flaw Is considered since the stresses In the CRDM penetration region are primarily due to pressure and therefore the hoop stresses are more significant. The SIF solution by Raju &
Newman (Reference 10) for an external surface crack in a cylindrical vessel Is used in the evaluation. The fatigue flaw growth analysis for the axial crack is also performed using the austenitic stainless steel properties.
20
A FRAMATOME ANP 32-5019398-02 The Irwin plasticity correction is also considered in the SIF solutions discussed above. This plastic zone correction is discussed in detail in Section 2.8.1 of Reference 11. The effective crack length Is defined as the sum of the actual crack size and the plastic zone correction:
ae =a+ry where ry for plane strain conditions (applicable for this analysis) is given by:
ry =
K 6,n Jays Path 4 represents the interface between the new repair weld and the RV head material. The potential for flaw propagation along this interface is likely if radial stresses are significant between the weld and head. This assessment utilizes an SIF solution for a continuous surface crack in a flat plate from Appendix A of Section Xl (Reference 3). Crack growth analysis Is perfonned considering propagation through the Alloy 52 weld metal or the low alloy steel head material, whichever is limiting.
21
A FRAMATOME ANP 32-5019398-02 7.0 ACCEPTANCE CRITERIA For low alloy steel materials such as the reactor vessel head material, the evaluation will be performed to the IWB-3612 acceptance criteria of Section Xl of the Code (Reference 3). The following considerations are made to address the flaw acceptance criteria for highly ductile materials such as Alloy 600 and Alloy 690 type materials. The initial flaw depth to thickness ratio for the postulated weld anomaly is about 20%. Fatigue crack growth Is minimal for Alloy 600 or Alloy 690 materials in an air environment. The only acceptance criterion on flaw size is the industry developed 75% through-wall limit on depth (Reference 8):
a S0.75 t
For the shallow cracks considered in the present analysis, this criterion is easily met.
Another acceptance criterion for ductile materials is demonstration of sufficient limit load margin.
From IWB-3642 (Reference 3), the required safety margin, based on load, is a factor of 3 for normal and upset operating conditions. Stress Intensity factors are also evaluated considering the required fracture toughness margin of J1 0 for normal and upset operating conditions.
22
A FRAMATOME ANP 32-5019398-02 8.0 FLAW EVALUATIONS The evaluation of the postulated external circumferential flaw for propagation along Path 2 is contained in Tables 8 and 9. The fatigue crack growth analysis is provided In Table 8 and a limit load analysis is presented In Table 9.
The evaluation of an external axial flaw for fatigue crack growth along Path 2 Is contained in Table 10.
A continuous surface flaw between the repair weld and the RV head Is analyzed for fatigue crack growth along Path 4 in Table 11.
The fatigue crack growth analyses (in Tables 8, 10, and 11) uniformly distribute the applied cycles over the 25 year service life by linking the incremental crack growth due to various loading conditions.
23
Framatome ANP 32-5019398-02 Table 8.
Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 INPUT DATA Geometry:
Outside diameter, Inside diameter, Thickness, Flaw depth, Do =
4.000 In.
Di =
2.818 in.
t 0.591 In.
RUt =
2.384 a =
0.100 in.
alt =
0.169 Flaw Size:
Environment:
Temperature, T =
600 F
Material Strength:
Yield strength, v =
27.9 ksi PB-I Clrc Flaw NP.xls 24 Circ. Input
Frarnatome ANP 32-5019398-02 Table 8.
Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)
Variation of F Function between Continuous External and Continuous Internal Circumferential Flaws Using Solutions by V. Kumar et al.
Source:
EPRI NP-1931 Topical Report, Section 4.3 for F Function for An internal Circumferential Crack Under Remote Tension (Ref. 14).
The applied KI equation Is given by the expression:
KI = e-4(x*e)*F(a/b, RI/Ro) where C = P/(7t(RoA2 - RiA2) and F Is a function of a/b and Ri/Ro or b/Ri.
For this application:
alb =
0.169 bIRi =
0.419 By extrapolation from Table 4-5 of EPRI-1931, F Is estimated to be:
F=
1.11 Source:
GE Report SRD-82-048, Prepared for EPRI Contract RP-1237-1, Fifth & Sixth Semi-Annual Report, Section 3.5 for F Function (Ref. 15).
For the external circumferential crack, the expressions for KI and a are as defined above for the Internal circumferential crack.
From Figure 3-11, the F function for:
a/b =
0.169 Rl/Ro =
0.705 Is estimated to be, F =
1.25 Multiplying Factor:
To estimate the stress intensity factor for an external circumferential crack from the solution for an Internal circumferential crack under remote tension, the appropriate multiplying factor Is:
1.13 PB-1 Circ Flaw NP.xls 25 SIF Factor
Framatome ANP 32-501939M2 Table S.
Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)
CIRCUMFERENTIAL FLAW STRESS INTENSITY FACTOR FOR HEATUP AND COOLDOWN STRESSES Basis:
Buchalet and Bamford solution for continuous circumferential flaws on the Inside surface of cylinders (Ref. 13)
KI = 4 (n*a) * ( Ao F. + (2a/x) Al F2 + (a2/2) A2 F3 + (4a3Y(3in) A3 F4]
- where, F1 = 1.1259 + 0.2344(a/t) + 2.2018(a/t) 2
- 0.2083(a/t) 3 72 a 1.0732 + 0.2677(a/t) + 0.6661(a/t) 2
+ 0.6354(a/t)3 F3
- 1.0528 + 0.1065(a/t) + 0.4429(a/t) 2
+ 0.6042(a/t) 3 F4 a 1.0387 - 0.0939(a/t) + 0.6018(a/t)2
+ 0.3750(a/t) 3 and the through-wall stress distribution Is described by the third order polynomial, S(x) = Ao + Aix + A2x2 + A3x3.
Applicablility.
Rt = 10 a/t s 0.8 Axial Stresses:
Wall Normal/Upset Cond.
Position Stresses 1 x
SS*
Shutdown (in.)
(ksi)
(ksi) 0.00000 0.14775 0.29550 OA4325 0.59100
- Heatup/Cooldown transient at 6.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (steady state) using stresses for Path 2 Stress Coefficlents:
Norma/Upset Stress Loading C nditions Coeff.
NUI NU2 (ksi)
)
AO Al A2 A3 PB-1 Circ Flaw NP.xls 26 HUCD Circ. Kl
Framatome ANP 32-5019398-02 Table 8. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Contd)
CIRCUMFERENTIAL FLAW STRESS INTENSITY FACTOR FOR PLANT LOADING AND UNLOADING STRESSES Basis:
Buchalet and Bamford solution for continuous circumferential flaws on the Inside surface of cylinders (Ref. 13)
KI = 4(n*a) * { AO F, + (2a/x) A1 F2 + (a212) A2 F3 + (4a3)I(37c) A3 F4]
- where, F1 = 1.1259 + 0.2344(a/t) + 2.2018(a/t) 2
- 0.2083(a/t)3 F2 = 1.0732 4 0.2677(a/t) + 0.6661(a/t) 2
+ 0.6354(g/t)3 F3 a 1.0528 + 0.1065(a/t) + 0.4429(A/t) 2
+ 0.6042(a/t)3 F4
- 1.0387 - 0.0939(a/t) + 0.6018(a/t) 2
+ 0.3750(a/t)3 and the through-wall stress distribution is described by the third order polynomial, S(x) = AO + Aix + A2X2 + A3x3.
Applicablility.
RRt=10 aft t 0.8 Axial Stresses:
Wall Normal/Upset Cond.
Position Stresses {6 x
PU*
PL**
(in.)
(ksi)
(ksi) 0.00000 0.14775 0.29550 0.44325 0.59100
- Plant LoadinglUnloading transient at 3.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant unloading) using stresses for Path 2
- Plant Loading/Unloading transient at 0.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant loading) using stresses for Path 2 Stress Coefficients:
Normal/Upset Stress Loading Conditions Coeff.
NU1 NU2 (ksi)
(ksi)
AO A2 A3 I_
PB-1 Circ Flaw NP.xls 27 PUPU Circ. Kl
Framatome ANP 32-5019398-02 Table 8.
Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Contd)
CIRCUMFERENTIAL FLAW STRESS INTENSITY FACTOR FOR REMAINING TRANSIENT STRESSES Basis:
Buchalet and Bamford solution for continuous circumferential flaws on the inside surface of cylinders (Ref. 13)
Ki = 4(x-a) * (AO F, + (2agn) Al F2 + (a2/2) A2 F3 + (4a3)I(3n) A3 F4 1
- where, F1 a 1.1259 + 0.2344(a/t) + 2.2018(a/t)2
- 0.2083(a/t) 3 F2 = 1.0732 + 0.2677(a/t)
+ 0.6661(a/t) 2
+ 0.6354(a/t)3 F3
- 1.0528 + 0.1065(a/t)
+ 0.4429(a/t) 2 + 0.6042(a/t) 3 F4 a 1.0387 - 0.0939(a/t) + 0.6018(a/t) 2
+ 0.3750(a/t) 3 and the through-wail stress distribution is described by the third order polynomial, S(x) = AO + Aix + A2x2 + A3x3.
Applicablility:
RRt = 10 a/t s 0.8 Axial Stresses:
Wall Normal/Upset Cond.
Position Stresses 1 x
LL1
- LL2**
(in.)
(ks)
(ksi) 0.00000 0.14775 0.29550 0.44325 0.59100
- Loss of Load transient at 0.00278 hours (max. stress) using stresses for Path 2
- Loss of Load transient at 0.0444 hours0.00514 days <br />0.123 hours <br />7.34127e-4 weeks <br />1.68942e-4 months <br /> (min. stress) using stresses for Path 2 Stress Coefficients:
NormaVUpset Stress Loading Conditions Coeff.
NUI NU2 (ksl)
(ksl)
A, Al A2 A3 PB-I Circ Flaw NP.xls 28 Rem. Trans. Circ. KI
Framatome ANP 32-5019398-02 Table 8. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)
CIRCUMFERENTIAL FLAW FATIGUE CRACK GROWTH FOR HEATUP AND COOLDOWN TRANSIENT Basis:
Aa = AN
- C0(AKl)
Transient frequency:
200 cycles over 40 years AN =
5 cycles/year Operating nme
, -- (yr.)
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 NUI NU2 Cycle a
Kl(a)max Kl(a)mln AKI R
(in-)
(kesi-An) pksibln)
(ksi-An) 0 0.10000 15.68 0.00 15.68 0.00 5
15.69 0.00 15.69 0.00 10 15.69 0.00 15.69 0.00 15 15.69 0.00 15.69 0.00 20 15.69 0.00 15.69 0.00 25 15.69 0.00 15.69 0.00 30 15.69 0.00 15.69 0.00 35 15.69 0.00 15.69 0.00 40 15.69 0.00 15.69 0.00 45 15.69 0.00 15.69 0.00 50 15.69 0.00 15.69 0.00 55 15.70 0.00 15.70 0.00 60 15.70 0.00 15.70 0.00 65 15.70 0.00 15.70 0.00 70 15.70 0.00 15.70 0.00 75 15.70 0.00 15.70 0.00 80 15.70 0.00 15.70 0.00 85 15.70 0.00 15.70 0.00 90 15.70 0.00 15.70 0.00 95 15.70 0.00 15.70 0.00 100 15.71 0.00 15.71 0.00 105 15.71 0.00 15.71 0.00 110 15.71 0.00 15.71 0.00 115 15.71 0.00 15.71 0.00 120 15.71 0.00 15.71 0.00 125 15.71 0.00 15.71 0.00 S
CO Aa ry (in.)
1.00 1.96E-10 8.62E-06 0.017 1.00 1.96E-10 8.63E-06 0.017 1.00 1.96E-10 8.63E-06 0.017 1.00 1.96E-10 8.63E-06 0.017 1.00 1.96E-10 8.63E-06 0.017 1.00 1.96E-10 8.63E-06 0.017 1.00 1.96E-10 8.64E-06 0.017 1.00 1.96E-10 8.64E-06 0.017 1.00 1.96E-10 8.64E-06 0.017 1.00 1.96E-10 8.64E-06 0.017 1.00 1.96E-10 8.64E-06 0.017 1.00 1.96E-10 8.65E-06 0.017 1.00 1.96E-10 8.65E-06 0.017 1.00 1.96E-10 8.65E-06 0.017 1.00 1.96E-10 8.65E-06 0.017 1.00 1.96E-10 8.65E-06 0.017 1.00 1.96E-10 8.65E-06 0.017 1.00 1.96E-10 8.66E-06 0.017 1.00 1.96E-10 8.66E-06 0.017 1.00 1.96E-10 8.66E-06 0.017 1.00 1.96E-10 8.66E-06 0.017 1.00 1.96E-10 8.66E-06 0.017 1.00 1.96E-10 8.67E-06 0.017 1.00 1.96E-10 8.67E-06 0.017 1.00 1.96E-10 8.67E-06 0.017 1.00 1.96E-10 8.67E-06 0.017 NUI a,
Kl(a.)max (ksl4in) 16.17 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18.
16.18 16.18 16.18 16.18 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.20 PB-1 Circ Flaw NP.2ds 29 HUCD Circ. FCG
Frarnatome ANP 32-5019398-02 Table 8.
Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Contd)
CIRCUMFERENTIAL FLAW FATIGUE CRACK GROWTH FOR PLANT LOADING AND UNLOADING TRANSIENT Basis:
As = AN C0(AKl)r Transient frequency:
3000 cycles over 40 years AN =
75 cycleslyear Operating rlime (yr.),,
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle 0
75 150 225 300 375 450 525 600 675 750 825 900 975 1050 1125 1200 1275 1350 1425 1500 1575 1650 1725 1800 1875 fin.)
(ksihn)
(ksNtn) 15.26 12.38 15.26 12.38 15.26 12.38 15.26 12.38 15.26 12.38 15.26 12.38 15.26 12.38 15.26 12.38 15.28 12.38 15.26 12.38 15.27 12.39 15.27 12.39 15.27 12.39 15.27 12.39 15.27 12.39 15.27 12.39 15.27 12.39 15.27 12.39 15.27 12.39 15.27 12.39 15.27 12.39 15.28 12.40 15.28 12.40 15.28 12.40 15.28 12A0 15.28 12.40 NUI NU2 a
Kl(a)max Kl(a)min AKI (ksi4n) 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 C
C C
C C
C C
C C
C C
C C
C C
C C
C C
R S
C.
Aa (in.)
1.81 3.68 7.20E-10 1.77E-06 0.016 1.81 3.68 7.20E-10 1.77E-06 0.016 1.81 3.68 7.20E-10 1.77E-06 0.016 1.81 3.68 7.20E-10 1.77E-06 0.016 1.81 3.68 7.21E-10 1.77E-06 0.016 D.81 3.68 7.21E-10 1.77E-06 0.016 D.81 3.68 7.21E-10 1.77E-06 0.016 1.81 3.68 7.21E-10 1.77E-06 0.016 D.81 3.68 7.21E-10 1.77E-06 0.016 1.81 3.68 7.21E-10 1.77E.06 0.016 D.81 3.68 7.21E-10 1.77E-06 0.016 D.81 3.69 7.21E-10 1.77E-06 0.016 D.81 3.69 7.21E-10 1.77E-06 0.016 D.81 3.69 7.22E-10 1.78E-06 0.016 0.81 3.69 7.22E-10 1.78E-06 0.016
).81 3.69 7.22E-10 1.78E-06 0.016
).81 3.69 7.22E-10 1.78E-06 0.016 D.81 3.69 7.22E-10 1.78E-06 0.016 0.81 3.69 7.22E-10 1.78E-06 0.016 1.81 3.69 7.22E-10 1.78E-06 0.016 0.81 3.69 7.22E-10 1.78E-06 0.016 0.81 3.69 7.22E-10 1.78E-06 0.016
).81 3.69 7.23E-10 1.78E-06 0.016
).81 3.69 7.23E-10 1.78E-06 0.016 0.81 3.69 7.23E-10 1.78E-06 0.016 0.81 3.69 7.23E-10 1.78E-06 0.016 NUI
- a.
KI(a,)max (ksiNin) 15.66 15.66 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.68 15.68 15.68 15.68 15.68 15.68 15.68 15.68 15.68 15.68 PB-i1 Circ Flaw NP.xis 30 PLPU Circ. FCG
Framatorne ANP 32-5019398-02 Table 8.
Evaluation of Continuous External CIrcumferential Flaw for Fatigue Crack Growth Along Path 2 (Contd)
CIRCUMFERENTIAL FLAW FATIGUE CRACK GROWTH FOR REMAINING TRANSIENTS Basis:
aa = AN C0(AKI)r Transient frequency:
2760 cycles over 40 years AN =
69 cydes/year Operating Time (yr.
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle 0
69 138 207 276 345 414 483 552 621 690 759 828 897 966 1035 1104 1173 1242 1311 1380 1449 1518 1587 1656 1725 NU1 NU2 a
Kl(a)max Kl(a)min AKI O
nn.)
(ks n) 17.18 17.18 17.19 17.19 17.19 17.19 17.19 17.19 17.19 17.19 17.20 17.20 17.20 17.20 17.20 1720 1720 1720 1721 1721 17.21 17.21 17.21 17.21 17.21 17.21 (ksi'Jin) 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.75 9.75 9.75 9.75 9.75 9.75 9.75 (ksiln) 7.45 7.45 7.45 7.45 7A5 7.45 7.45 7.45 7.45 7.45 7.45 7.46 7.46 7.46 7.46 7.46 7.46 7A6 7.46 7.46 7.46 7A6 7.46 7.46 7.46 7.46 C
C a
0 a
a a
0 0
0 0
a a
0 0
0 0
0 0
0 0
0 R
S Co a
on.)
.57 2.02 3.95E-10 2.06E-05 0.020
.57 2.02 3.95E-10 2.06E-05 0.020
.57 2.02 3.95E-10 2.06E-05 0.020 i.57 2.02 3.95E-10 2.06E-05 0.020 i.57 2.02 3.95E-10 2.06E-05 0.020
).57 2.02 3.95E-10 2.06E-05 0.020
).57 2.02 3.95E-10 2.06E-05 0.020
).57 2.02 3.95E-10 2.06E-05 0.020
).57 2.02 3.95E-10 2.06E-05 0.020 1.57 2.02 3.95E-10 2.06E-05 0.020
'.57 2.02 3.95E-10 2.06E-05 0.020
'.57 2.02 3.95E-10 2.07E-05 0.020
).57 2.02 3.95E-10 2.07E-05 0.020
).57 2.02 3.95E-10 2.07E-05 0.020
).57 2.02 3.95E-10 2.07E-05 0.020
).57 2.02 3.95E-10 2.07E-05 0.020
).57 2.02 3.95E-10 2.07E-05 0.020
).57 2.02 3.95E-10 2.07E-05 0.020
).57 2.02 3.95E-10 2.07E-05 0.020
).57 2.02 3.95E-10 2.07E-05 0.020
).57 2.02 3.95E-10 2.07E-05 0.020
.57 2.02 3.95E-10 2.07E-05 0.020
.57 2.02 3.95E-10 2.07E-05 0.020
.57 2.02 3.95E-10 2.07E-05 0.020
.57 2.02 3.95E-10 2.07E-05 0.020
.57 2.02 3.95E-10 2.07E-05 0.020 NUl
- a.
KI(a)max (ksi/in) 17.86 17.86 17.86 17.86 17.86 17.86 17.86 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 17.88 PB-1 Cin; Flaw NP.As 31 Rem. Trans. Circ. FCG
Framatome ANP 32-5019398-02 Table 9.
Limit Load Analysis for a Continuous External Circumferenital Flaw LIMIT LOAD Basis:
GE Report SRD-82-048, Combined Fifth and Sixth Semi-Annual Report by V. Kumar et al, Section 3.5 (Ref. 15).
For remote tension loading, Po = 2/43*a,*(Rck Ri2) where Rc= Ro - a and a, =
27900 psi (conservatively using the minimum yield strength)
Ro=
In.
a=
in.
Rc=
in.
Ri =
in.
Then Po=[
Ibs A bounding axial tube load on the CRDM tube is the hydrostatic test load:
P = (nRi2 )*ph where Ph = hydrostatic test pressure
1.25 times the design pressure Pd
p psig (Ref. 2)
Then
]psig and P= r z Ibs The limit load safety margin Is:
Po/P =
8.47 This safety margin Is greater than the value of 3 required by Article IWB-3642 of Section Xl (Reference 3).
PB-1 Circ Flaw NP.xAs 32 Circ. Limit Load
Framatome ANP 32-5019398-02 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 INPUT DATA Geometry.
Outside diameter, Inside diameter, Thickness, Do =
Di =
t=
Rift =
4.000 2.818 0.591 2.384 in.
in.
In.
Flaw Size:
Flaw depth, 8 =
0.100 att =
0.169 In.
Environment:
Temperature, T=
600 F
cys=
27.9 ksi Material Strength:
Yield strength, PB-1 Axial Flaw NP.xIs 33 Axial Input
Framatome ANP 32-5019398-02 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 AXIAL FLAW STRESS INTENSITY FACTOR FOR HEATUP AND COOLDOWN STRESSES Basis:
Raju & Newman, "Stress Intensity Factors for Internal & External Surface Cracks In Cylindrical Vessels (Ref. 10)
KI = 'd(nrQ) * [GoAo a0° 5 +GI Al a1 5 +G2 A2a25 + G3 A3 a3 5 ]
- where, per Table 4, for an external surface crack and for tR = 0.25, aft = 0.2, 24Ii = 1, and alc = 1.0 Go 1.030 GI 0.720 G2 0.591 G3 0.513 and Q =
2.464
= (1 + I A64*(alc)AI.65) and the through-wall stress distribution Is described by the third order polynomial, S(x) = Ao + A.x + A2x2 + A3x3.
Hoop Stresses:
Wall NormalVUpset Cond.
Position Stresses 16 x
SS*
Shutdown (in.)
(ksi)
(ksi) 0.00000 0.14775 0.29550 0.44325 0.59100
- Heatup/Cooldown transient at 6.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (steady state) using stresses for Path 2 Stress Coefficients:
Normal/Upset Stress Loading C nditions Coeff.
NUI NU2 (ksi)
(ksi)
AO A2 A3 PB-1 Axial Flaw NP.xIs 34 HUCD Axial Kl
Framatome ANP 32-5019398-02 Table 10. Evaluation of an External Akial Flaw for Fatigue Crack Growth Along Path 2 AXIAL FLAW STRESS INTENSITY FACTOR FOR PLANT LOADING AND UNLOADING STRESSES Basis:
Raju & Newman, "Stress Intensity Factors for Internal & External Surface Cracks in Cylindrical Vessels (Ref. 10)
KI = ¶J(n1Q) * [GoAO a0 ' +Gl A, a1" +G2 A2 a25 + G3 A3 a3 ' ]
- where, per Table 4, for an external surface crack and for t/R = 0.25, aft = 0.2, 2Vn = 1, and a/c = 1.0 Go=
GI=
1.030 0.720 G2 0 0.591 G.=
0.513 and Q =
2.464
= (1 + 1.464*(alc)A1.65) and the through-wall stress distribution is described by the third order polynomial, S(x) = AD + Ajx + A2X2 + AX3.
Hoop Stresses:
Wall Normal/Upset Cond.
Position Stresses [61 x
PUT PL*
(in.)
(ksi)
(ksi) 0.00000 0.14775 0.29550 0.44325 0.59100
- Plant Loading/Unloading transient at 3.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant unloading) using stresses for Path 2
- - Plant Loading/Unloading transient at 0.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant loading) using stresses for Path 2 Stress Coefficients:
Normal/Upset Stress Loading Conditions Coeff.
NUI NU2 (ksi)
(ksi)
AO A2 A3 PB-1 Axial Flaw NP.xAs 35 PI-PU Axial KI
Framatome ANP 32-5019398-02 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 AXIAL FLAW STRESS INTENSITY FACTOR FOR REMAINING TRANSIENT STRESSES Basis:
Raju & Newman, "Stress Intensity Factors for Internal & External Surface Cracks in Cylindrical Vessels (Ref. 10)
KI = 4l(1i:/)
- [Go AO a005 +GI Al a"c +G2 A2a2
+ G3 A3 93.5
- where, per Table 4, for an external surface crack and for t/R = 0.25, alt = 0.2. 2$hr = 1, and a/c = 1.0 Go G, =
GI =
Go =
1.030 0.720 0.591 0.513 and 0Qu 2.464
= (1 + 1.464*(a/c)A1.65) and the through-wall stress distribution Is described by the third order polynomial, S(x) = AD + Aix + A2x2 I A3x3.
Hoop Stresses:
Wall Normal/Upset Cond.
Position Stresses [6 x
LLI*
LL2**
(in.)
(ksl)
(ksi) 0.00000 0.14775 0.29550 OA4325 0.59100 I
- Loss of Load transient at 0.00278 hours (max. stress) using stresses for Path 2 Loss of Load transient at 0.0444 hours0.00514 days <br />0.123 hours <br />7.34127e-4 weeks <br />1.68942e-4 months <br /> (min. stress) using stresses for Path 2 Stress Coefficients:
Normal/Upset Stress Loading Conditions Coeff.
NUI NU2 (ksi)
(ksi)
AO A2 A3 PB-1 Axial Flaw NP.sxi 36 Rem. Trans. Axial KI
FDramatome ANP 32-5019398-02 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 (Contd)
AXIAL FLAW FATIGUE CRACK GROWTH FOR HEATUP AND COOLDOWN TRANSIENT Basis:
Aa = AN
- C0(AKI)"
Transient frequency:
200 cycles over 40 years aN =
5 cycles/year Operating lime (yr.).
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle 0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 NUI NU2 a
KI(a)max Ki(a)min (in.)
(kslln)
(knsiin) 0.10000 13.79 0.00 13.80 0.00 13.80 0.00 13.80 0.00 13.80 0.00 13.80 0.00 13.80 0.00 13.80 0.00 13.80 0.00 13.80 0.00 13.80 0.00 13.81 0.00 13.81 0.00 13.81 0.00 13.81 0.00 13.81 0.00 13.81 0.00 13.81 0.00 13.81 0.00 13.81 0.00 13.82 0.00 13.82 0.00 13.82 0.00 13.82 0.00 13.82 0.00 13.82 0.00 AKI (ksil-n) 13.79 13.80 13.80 13.80 13.80 13.80 13.80 13.80 13.80 13.80 13.80 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.82 13.82 13.82 13.82 13.82 13.82 R
S CO Aa ry (In.)
0.00 1.00 1.96E-10 5.64E-06 0.013 0.00 1.00 1.96E-10 5.65E-06 0.013 0.00 1.00 1.96E-10 5.65E-06 0.013 0.00 1.00 1.96E-10 5.65E-06 0.013 0.00 1.00 1.96E-10 5.65E-06 0.013 0.00 1.00 1.96E-10 5.65E-06 0.013 0.00 1.00 1.96E-10 5.65E-06 0.013 0.00 1.00 1.96E-10 5.66E-06 0.013 0.00 1.00 1.96E-10 5.66E-06 0.013 0.00 1.00 1.96E-10 5.66E-06 0.013 0.00 1.00 1.96E-10 5.66E-06 0.013 0.00 1.00 1.96E-10 5.66E-06 0.013 0.00 1.00 1.96E-10 5.66E-06 0.013 0.00 1.00 1.96E-10 5.66E-06 0.013 0.00 1.00 1.96E-10 5.67E-06 0.013 0.00 1.00 1.96E-10 5.67E-06 0.013 0.00 1.00 1.96E-10 5.67E-06 0.013 0.00 1.00 1.96E-10 5.67E-06 0.013 0.00 1.00 1.96E-10 5.67E-06 0.013 0.00 1.00 1.96E-10 5.67E-06 0.013 0.00 1.00 1.96E-10 5.67E-06 0.013 0.00 1.00 1.96E-10 5.68E-06 0.013 0.00 1.00 1.96E-10 5.68E-06 0.013 0.00 1.00 1.96E-10 5.68E-06 0.013 0.00 1.00 1.96E-10 5.68E-06 0.013 0.00 1.00 1.96E-10 5.68E-06 0.013 NUI a,
Kl(a,)max 14.44 14.44 14.44 14.44 14.45 14.45 14A5 14.45 14.45 14.45 14.45 14.45 14.45 14.46 14.46 14.46 14.46 14.46 14.46 14A6 14.46 14.46 14.46 14.47 14.47 14.47 PB-1 Axial Flaw NP.xls 37 HUCD Axial FCG
Framatome ANP 32-501 9398-02 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)
AXIAL FLAW FATIGUE CRACK GROWTH FOR PLANT LOADING AND UNLOADING TRANSIENT Basis:
Aa = AN
- QAKl)r Transient frequency.
3000 cycles over 40 years AN =
75 cycles/year Operating Time (yr.)
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycie 0
75 150 225 300 375 450 525 600 675 750 825 900 975 1050 1125 1200 1275 1350 1425 1500 1575 1650 1725 1800 1875 NUI NU2 a
KI(a)max KI(a)min AKI (in.)
(ka1.n)
(ksi.n)
(ks3 7n) 14.01 10.15 3.87 14.02 10.15 3.87 14.02 10.15 3.87 14.02 10.15 3.87 14.02 10.15 3.87 14.02 10.15 3.87 14.02 10.15 3.87 14.02 10.15 3.87 14.02 10.16 3.87 14.02 10.16 3.87 14.03 10.16 3.87 14.03 10.16 3.87 14.03 10.16 3.87 14.03 10.16 3.87 14.03 10.16 3.87 14.03 10.16 3.87 14.03 10.16 3.87 14.03 10.16 3.87 14.04 10.16 3.87 14.04 10.16 3.87 14.04 10.17 3.87 14.04 10.17 3.87 14.04 10.17 3.87 14.04 10.17 3.87 14.04 10.17 3.87 14.04 10.17 3.87 R
S C.
Aa rr (In.)
0.72 2.30 4.51E-10 2.93E-06 0.013 0.72 2.30 4.51E-10 2.93E-06 0.013 0.72 2.30 4.511E-10 2.93E-06 0.013 0.72 2.30 4.51E-10 2.93E-06 0.013 0.72 2.30 4.51 E-1 0 2.93E-06 0.013 0.72 2.30 4.51 E-10 2.93E-06 0.013 0.72 2.30 4.51 E-10 2.94E-06 0.013 0.72 2.30 4.51E-10 2.94E-06 0.013 0.72 2.30 4.51E-10 2.94E-06 0.013 0.72 2.30 4.51E-10 2.94E-06 0.013 0.72 2.30 4.51E-10 2.94E-06 0.013 0.72 2.30 4.51E-10 2.94E-06 0.013 0.72 2.30 4.51E-10 2.94E-06 0.013 0.72 2.30 4.51E-10 2.94E-06 0.013 0.72 2.30 4.51E-10 2.94E-06 0.013 0.72 2.30 4.51E-10 2.94E-06 0.013 0.72 2.30 4.51 E-10 2.94E-06 0.013 0.72 2.30 4.51 E-10 2.95E-06 0.013 0.72 2.30 4.51E-10 2.95E-06 0.013 0.72 2.30 4.51E-10 2.95E-06 0.013 0.72 2.30 4.51E-10 2.95E-06 0.013 0.72 2.30 4.51E-10 2.95E-06 0.013 0.72 2.30 4.51E-10 2.95E-06 0.013 0.72 2.30 4.51 E-10 2.95E-06 0.013 0.72 2.30 4.51E-10 2.95E-06 0.013 0.72 2.30 4.51E-10 2.95E-06 0.013 NUl a,
Ki(a,)max (ksn) 14.73 14.73 14.73 14.73 14.73 14.73 14.73 14.73 14.74 14.74 14.74 14.74 14.74 14.74 14.74 14.74 14.74 14.75 14.75 14.75 14.75 14.75 14.75 14.75 14.75 14.76 PB-I Axial Flaw NP.xls 38 PLPUAxial FCG
Framatome ANP 32-5019398-02 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)
AXIAL FLAW FATIGUE CRACK GROWTH FOR REMAINING TRANSIENTS Basis:
Aa AN *C0 (AKI)r Transient frequency:
2760 cycles over 40 years AN =
69 cycles/year Operating rime (yr.)
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle 0
69 138 207 276 345 414 483 552 621 690 759 828 897 966 1035 1104 1173 1242 1311 1380 1449 1518 1587 1656 1725 (on.)
(ksli-n) 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.04 15.04 15.04 15.04 15.04 15.04 15.04 15.04 15.05 15.05 NUl N1.2 a
KI(a)nmax KI(a)mln AKI (ksi4m) 8.66 8.66 8.66 8.66 8.66 8.66 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.68 8.68 8.68 8.68 8.68 8.68 (ksitin) 6.35 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.37 6.37 6.37 6.37 6.37 6.37 6.37 NU1 R
S CO AS ry a,
KI(ae)max (in.)
(kshain) 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 0.58 2.04 3.99E-10 1.24E-05 0.015 15.94 0.58 2.04 3.99E-10 1.24E-05 0.015 15.94 0.58 2.04 3.99E-10 1.24E-05 0.015 15.94 0.58 2.04 3.99E-10 1.24E-05 0.015 15.94 PB-1 Acial Flaw NP.xls 39 Rem. Trans. A)dal FCG
Framatome ANP 32-5019398-02 Table 11. Evaluation ofa Continuous Surface Crack for Fatigue Crack Growth Along Path 4 INPUT DATA Geometry.
Plate thickness, t =
0.981 in.
Flaw Size:
Flaw depth, a
0.100 In.
a/t =
0.102 Environment:
Temperature, T =
600 F
Material Strength:
Yield strength, ay 27.9 ksi PB-1 Cylind Flaw NP.xls 40 Cylind. Input
Framatome ANP 32-5019398-02 Table 11. Evaluatlon of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Cont'd)
PLATE SURFACE FLAW STRESS INTENSITY FACTOR FOR HEATUP AND COOLDOWN STRESSES Basis:
Analysis of Flaws, 1995 ASME Code, Section Xl, Appendix A (Ref. 16)
Ki = [ Ao Go + Al GI - A2G2 + A3 G3] 4(na/Q) where and For Q = 1 + 4.593*(a/I)A1.65 - qy qy= [(AO Go +Al G. +A 2 G2 +A 3 G 3)/y12 /6 a/t =
Go=
GI =
0.0 (continuous flaw) 0.1 1.1945 0.7732 G2 =
0.5996 G3 =
0.5012 Stresses are described by a third order polynomial fit over the flaw depth, S(x) = AO + AI(x/a) + A2(xla)2 + A3(xla)3 Radial Stresses:
Wall Normaal/Upset Cond.
Position Stresses [6]
x SS*
Shutdown (in.)
(ksi)
(ksl) 0.00000 0.24535 0.49070 0.73604 0.98139
- Heatup/Cooldown transient at 6.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (steady state) using stresses for Path 4 Stress Coefficients:
a =
0.100 in.
Normal/Upset Stress Loading Co ditions Coeff.
NU1 NU2 (ksi)
(ksi)
AO Al A2 A3 PB-1 Cylind Flaw NP.xis 41 HUCD Plate KI
Framatome ANP 32-5019398-02 Table 11. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Cont'd)
PLATE SURFACE FLAW STRESS INTENSITY FACTOR FOR PLANT LOADING AND UNLOADING STRESSES Basis:
Analysis of Flaws, 1995 ASME Code, Section Xl, Appendix A (Ref. 16)
K! = [ A: Go + Al G1 + A2 G2 + A3 G3) 4(italQ) where and o = I + 4.59 3*(aA)AJ1.65 - qy qy= [(AO Go+A 1 GI +A 2 G2 +A 3 GO)cay.] 2 /6 For a1 =
0.0 at <=
0.1 (continuous flaw)
Go =
GI =
G2 =
G3 =
1.1945 0.7732 0.5996 0.5012 Stresses are described by a third order polynomial fit over the flaw depth, S(x) = AO + Al(x/a) + A2(x/a)2 + A3(X/a)
Radial Stresses:
Wall Normal/Upset Cond.
Position Stresses [6 x
PU*
PL" (in.)
(ksi)
(ksl) 0.00000 0.24535 0.49070 0.73604 0.98139
- Plant Loading/Unloading transient at 3.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant unloading) using stresses for Path 4 Plant Loading/Unloading transient at 0.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant loading) using stresses for Path 4 Stress Coefficients:
8 =
0.100 In.
Normal/Upset Stress Loading Conditions Coeff.
NUI NU2 (ksi)
(ksl)
A, Al A2 A3
_I PB-I Cylind Flaw NP.xls 42 PLPU Plate Kl
Framatome ANP 32-5019398-02 Table 11. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Cont'd)
PLATE SURFACE FLAW STRESS INTENSITY FACTOR FOR REMAINING TRANSIENT STRESSES Basis:
Analysis of Flaws, 1995 ASME Code, Section Xi, Appendix A (Ref. 16)
KI = [ AO Go + Al GI + A2 G2 + A3 G3 l I(ia/Q) where and For Q = I + 4.593-(aAl)AI.65 - qy qy = ( (AoGo +Al GI + A2 G2+A 3 G3)lc a, 2I/6 an=
ant =
0.0 (continuous flaw) 0.1 Go =
1.1945 GI =
0.7732 G2 =
0.5996 G3 =
0.5012 Stresses are described by a third order polynomial fit over the flaw depth, S(x) = AO + A1(x/a) + A2(x/a)2 + A3(xla)3 Radial Stresses:
Wall Normal/Upset Cond.
Position Stresses M6 x
LLI*
LL2*
(in.)
(ks])
(ksi) 0.00000 0.24535 0.49070 0.73604 0.98139
- Loss of Load transient at 0.00278 hours (max. stress) using stresses for Path 4
- Loss of Load transient at 0.0444 hours0.00514 days <br />0.123 hours <br />7.34127e-4 weeks <br />1.68942e-4 months <br /> (min. stress) using stresses for Path 4 Stress Coefficients:
a =
0.100 In.
Nornal/Upset Stress Loading Conditions Coeff.
NUI NU2 (ksi)
(ks)
AO A2 A3 P8-1 Cylind Flaw NP.xls 43 Rem. Trans. Plate VJ
iFramatomne ANP 32-501939802 Table 11. Evaluatfon of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Contd)
CONTINUOIIS SURFACE FLAW FATIGUE CRACK GROWMH FOR HEATUP AND COOLDOWN TRANSIENT Basis:
Aa = AN
- C0(AKI)
Transient frequency:
200 cycles over 40 years AN =
5 cycles/year Operating Time 0
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle NU1 NU2 a
a KI(a)max KI(a)mln AKI 0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 (In.)
(ksi-n) 0.10000 1.000 17.32 1.000 17.32 1.000 17.33 1.000 17.33 1.000 17.33 1.000 17-34 1.000 17.34 1.000 17.34 1.000 17.34 1.000 17.35 1.000 17.35 1.000 17.35 1.000 17.36 1.000 17.36 1.000 17.36 1.000 17.37 1.000 17.37 1.000 17.37 1.000 17.38 1.000 17.38 1.000 17.38 1.000 17.38 1.000 17.39 1.000 17.39 1.000 17.39 1.000 17.40 (ksiAn)
(kshln) 0.00 17.32 0.00 17.32 0.00 17.33 0.00 17.33 0.00 17.33 0.00 17.34 0.00 17.34 0.00 17.34 0.00 17.34 0.00 17.35 0.00 17.35 0.00 17.35 0.00 17.36 0.00 17.36 0.00 17.36 0.00 17.37 0.00 17.37 0.00 17.37 0.00 17.38 0.00 17.38 0.00 17.38 0.00 17.38 0.00 17.39 0.00 17.39 0.00 17.39 0.00 17.40 C
C C
C C
C C
0 a
0 a
C C
C a
C a
0 0
0 0
0 0
R S
C.
Aa C
0 y
Q(a.)
(in.)
.00 1.00 1.96E-10 1.20E-05 0.204 0.796 1.00 1.00 1.96E-10 1.20E-05 0.204 0.796
.00 1.00 1.968-10 1.20E-05 0.204 0.796 1.00 1.00 1.96E-10 1.20E-05 0.204 0.796 P.00 1.00 1.96E-10 1.20E-05 0.204 0.796
.00 1.00 1.96E-10 1.20E-05 0.204 0.7986
.00 1.00 1.96E-10 1.20E-05 0.204 0.796 1.00 1.00 1.96E-10 1.20E-05 0.204 0.796
.00 1.00 1.96E-10 1.20E-05 0.204 0.796 1.00 1.00 1.96E-10 1.202-05 0.204 0.796
.00 1.00 1.96E-10 1.20E-05 0.204 0.796 1.00 1.00 1.96E-10 1.20E-05 0.204 0.796 o.00 1.00 1.96E-10 1.20E-05 0.204 0.796 1.00 1.00 1.962-10 1.211E-05 0.204 0.796
).00 1.00 1.96E-10 1.21E-05 0.204 0.796 1.00 1.00 1.96E-10 1.21 E-05 0.204 0.796
).00 1.00 1.962-10 1.21E-05 0.204 0.796 1.00 1.00 1.96E-10 1.21E-05 0.204 0.796
).00 1.00 1.96E-10 1.21E-05 0.204 0.796
).00 1.00 1.96E-10 1.21 E-05 0.204 0.796
).00 1.00 1.96E-10 1.21E-05 0.204 0.796
).00 1.00 1.96E-10 1.21E-05 0.204 0.796
).00 1.00 1.96E-10 1.21E-05 0204 0.796
).00 1.00 1.96E-10 1.21E-05 0.204 0.796
.00 1.00 1.96E-10 1.21E-05 0.204 0.796
).00 1.00 1.96E-10 1.21E-05 0.204 0.796 KI(a.)max (ksi-An) 19.42 19.42 19.43 19.43 19.43 19.44 19.44 19.44 19.45 19.45 19.45 19.46 19.46 19.46 19.47 19.47 19.47 19.48 19.48 19.48 19.49 19.49 19.49 19.50 19.50 19.50 PB-1 Cylind Flaw NP.ds 44 HUCD SS FCG
Framatorne ANP 32-5019398M2 Table 11. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Contd)
CONTINUOUS SURFACE FLAW FATIGUE CRACK GROWTH FOR PLANT LOADING AND UNLOADING TRANSIENT Basis:
&a = QN
- C(AKIr Transient frequency:
3000 cycles over 40 years AN =
75 cycles/year Operating Time (yr.)
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle (in.)
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050 1125 1200 1275 1350 1425 1500 1575 1650 1725 1800 1875 (ksi-An)
(ksi'in) 1.000 18.25 12.08 1.000 18.25 12.09 1.000 18.28 12.09 1.000 18.26 12.09 1.000 18.26 12.09 1.000 18.27 12.09 1.000 18.27 12.10 1.000 18.27 12.10 1.000 18.28 12.10 1.000 18.28 12.10 1.000 18.28 12.10 1.000 18.29 12.11 1.000 18.29 12.11 1.000 18.29 12.11 1.000 18.30 12.11 1.000 18.30 12.12 1.000 18.30 12.12 1.000 18.31 12.12 1.000 18.31 12.12 1.000 18.31 12.12 1.000 18.32 12.13 1.000 18.32 12.13 1.000 18.32 12.13 1.000 18.33 12.13 1.000 18.33 12.13 1.000 18.33 12.14 NU1 NU2 a
a KI(a)max KI(a)min AKI (ksiin) 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.18 8.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.20 R
S C.
Aa q,
0(a.)
KI(a.)max (in.)
(ksihin) 0.66 2.19 4.29E-10 1.30E-05 0.227 0.773 20.76 0.66 2.19 4.29E-10 1.30E-05 0.227 0.773 20.76 0.66 2.19 4.29E-10 1.30E-05 0.227 0.773 20.77 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.77 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.77 0.66 2.19 4.29E-10 1.31 E-05 0.227 0.773 20.78 0.66 2.19 4.29E-10 1.31 E-05 0.227 0.773 20.78 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.78 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.79 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.79 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.80 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.80 0.66 2.19 4.29E-10 1.31 E-05 0.227 0.773 20.80 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.81 0.66 2.19 4.29E-10 1.31 E-05 0.227 0.773 20.81 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.81 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.82 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.82 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.83 0.66 2.19 4.29E-10 11.32E-05 0.227 0.773 20.83 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.83 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.84 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.84 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.84 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.85 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.85 PB-i Cylind Flaw NP.xAs 45 PLPU SS FCG
Framatome ANP 32-501 9398-02 Table 11. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Contd)
CONTINUOUS SURFACE FLAW FATIGUE CRACK GROWTH FOR REMAINING TRANSIENTS Basis:
Aa = AN
- C0(AKI)"
Transient frequency:
2760 cycles over 40 years AN =
69 cycles/year Operating Time (yr.)_
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle (in.)
0 69 138 207 276 345 414 483 552 621 690 759 828 897 966 1035 1104 1173 1242 1311 1380 1449 1518 1587 1656 1725 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (ksiln) 18.17 18.17 18.18 18.18 18.18 18.19 18.19 18.19 18.20 18.20 18.20 18.21 18.21 18.21 18.22 18.22 18.22 18.23 18.23 18.23 18.24 18.24 18.24 18.25 18.25 18.25 NU1 NU2 a
Q Kl(a)max KI(a)min AKI (ksi2n.
12.31 12.31 12.31 12.31 12.31 12.32 12.32 12.32 12.32 12.33 12.33 12.33 12.33 12.33 12.34 12.34 12.34 12.34 12.35 12.35 12.35 12.35 12.35 12.36 12.36 12.36 tsWlAn) 5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.89 5.89 5.89 5.89 5.89 5.89 R
S C.
Aa qy (in.)
0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2;22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.03E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0.68 2.22 4.34E-10 1.04E-05 0.225 0(a.)
KI(a.)max (ksiJn) 0.775 20.64 0.775 20.64 0.775 20.65 0.775 20.65 0.775 20.66 0.775 20.66 0.775 20.66 0.775 20.67 0.775 20.67 0.775 20.67 0.775 20.68 0.775 20.68 0.775 20.69 0.775 20.69 0.775 20.69 0.775 20.70 0.775 20.70 0.775 20.70 0.775 20.71 0.775 20.71 0.775 20.71 0.775 20.72 0.775 20.72 0.775 20.73 0.775 20.73 0.775 20.73 PB-I Cylind Flaw NP.,ds 46 Rem. Trans. SS FCG
A FRAMATOME ANP 32-5019398-02 9.0
SUMMARY
OF RESULTS The flaw evaluation results for 25 years of fatigue crack growth are as follows.
9.1 Propagation of a Continuous External Circumferential Flaw Along Path 2 a) Fatigue crack growth analysis:
Initial flaw size, a, = 0.100 in.
Final flaw size, a,= [
] in.
Stress Intensity factor at final flaw size, K, (ad) = 17.9 ksi1in Fracture toughness Ka= 200 ksi-lin Fracture toughness margin, Ka I K = 11.2 > 410 b) Limit load analysis:
Limit load, PO =
Ibs Bounding axial tube load, P(appl) =
l lbs Limit load margin, Po / P(appl) =
8.47 > 3.0 9.2 Fatigue Crack Growth of a Semi-Circular External Axial Flaw Along Path 2 Initial flaw size, a, = 0.100 in.
Final flaw size, af= [
I In.
Stress Intensity factor at final flaw size, K (age) = 15.9 ksi4in Fracture toughness Ka 1 = 200 ksi4in Fracture toughness margin, Ka /1K
= 12.6 > 410 9.3 Fatigue Crack Growth of a Continuous Cylindrical Flaw Along Path 4 Initial flaw size, a; = 0.100 in.
Final flaw size, af= I I in.
Stress Intensity factor at final flaw size, K (ad) = 20.9 kshlin Fracture toughness Ka= 200 ksi'/in Fracture toughness margin, K/ I Kg = 9.57 > 410 47
A FRAMATOME ANP 32-5019398-02
10.0 CONCLUSION
The results of the analysis demonstrate that the 0.10 inch weld anomaly is acceptable for a 25 year design life of the CRDM ID temper bead weld repair. Significant fracture toughness margins have been demonstrated for both of the flaw propagation paths considered in the analysis. The minimum fracture toughness margins for flaw propagation Paths 2 and 4 have been shown to be 11.2 and 9.57, respectively, as compared to the required margin of 110 for normal and upset operating conditions per Section Xi, IWB-3612 (Reference 3). Fatigue crack growth Is minimal. The maximum final flaw size Is 1
] Inch (considering both flaw propagation paths). A limit load analysis was also performed considering the ductile Alloy 600/Alloy 690 materials along flaw propagation Path 2. The analysis showed limit load margin of 8.47 for normal and upset operating conditions, as compared to the required margin of 3.0 per Section Xl, IWB-3642 (Reference 3).
48
FRAMATOME ANP 32-5019398-02
11.0 REFERENCES
- 1. Framatome ANP Drawing 02-5019702E-2, uPoint Beach Unit I CRDM Nozzle ID Temper Bead Weld Repair.'
- 2. Framatome ANP Document 51-5017195-05, "Point Beach 1 & 2 CRDM Nozzle ID Temper Bead Weld Repair Requirements," September 2002.
- 3. ASME Boiler and Pressure Vessel Code, Section Xi, Rules for Inservice Inspection of Nuclear Power Plant Components, 1998 Edition with Addenda through 2000.
- 4. Welding Research Council, Bulletin No. 175, "PVRC Recommendations on Toughness Requirements for Ferritic Materials," New York, August 1972.
- 5. Framatome ANP Document 51-5012728-03, Weld Anomaly Considerations in the CRDM ID Temper Bead Weld Repair," October 2001.
- 6. Framatome ANP Document 32-5020244-01, "Point Beach 1 CRDM Temperbead Bore Weld Analysis," February 2003.
- 7. ASME Section II, Part C, "Specification for Welding Rods, Electrodes, and Filler Metals,'
1999 Addenda.
- 8. Framatome ANP Document 38-1288355-00, uFlaw Acceptance Criteria."
- 9. ASME Boiler and Pressure Vessel Code, Section 1II, Rules for Construction of Nuclear Power Plant Components. Division I - Appendices, 1989 Edition with No Addenda.
- 10.
I.S. Raju and J.C. Newman Jr., "Stress Intensity Factors for Internal and External Surface Cracks In Cylindrical Vessels," Transactions of the ASME. Journal of Pressure Vessel Technolo v, pp. 293-298, Vol. 104, November 1982.
- 11.
T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, 1991.
- 12.
W.J. Mills, 'Fracture Toughness of Two NI-Fe-Cr Alloys," Hanford Engineering Development Laboratory Document HEDL-SA-3309, April 1985.
- 13.
C.B. Buchalet and W.H. Bamford, "Stress Intensity Factor Solutions for Continuous Surface Flaws in Reactor Pressure Vessels," Mechanics of Crack Growth, ASTM STP 590, American Society for Testing and Materials, 1976, pp. 385-402.
- 14.
EPRI Topical Report, EPRI NP-1931, "An Engineering Approach for Elastic-Plastic Fracture Analysis," Research Project 1237-1, prepared by V. Kumar et al of General Electric Company, July 1981.
49
/A FRAMATOME ANP 32-501 i QnQ84
- 15.
General Electric Report; SRD-82-048, "Estimation Technique for the Prediction of Elastic-Plastic Fracture of Structural Components of Nuclear Systems," by V. Kumar et al, Contract RP1237-1, Combined Fifth and Sixth Semi-Annual Report, March 1982.
50
A
=RAMATOME ANP CALCULATION
SUMMARY
SHEET (CSS)
1 Document Identifier 32 - 5019396 - 02 Title PB-1 CRDM NOZZLE IDTB J-GROOVE WELD FLAW EVALUATION PREPARED BY:
REVIEWED BY:
METHOD: Z DETAILED CHECK al INDEPENDENT CALCULATION 4AME D.E. KILLIAN SIGNATURE
^
S NAME H.P. GUNAWARDANE SIGNATURE TL A IRE /
R nTLE ADVISORY ENGR.
DATE
_7'ZS03 TITLE ENGINEER 11 Ior DATE
+I
-8
/
b ZOST ZENTER 41629 REF.
PAGE(S)
TM STATEMENT:
REVIEWER INDEPENDENCE 48 Qis WA (J'
PURPOSE AND
SUMMARY
OF RESULTS:
Revision 2: This revision is a non-proprietary version of Revision 0.
The purpose of the present analysis Is to assess the suitability of leaving degraded J-groove weld material in the Point Beach Unit 1 reactor vessel head following the repair of a CRDM nozzle by the ID temper bead weld procedure. It is postulated that a small flaw in the head would combine with a large stress corrosion crack in the weld to form a radial oomer flaw that would propagate into the low alloy steel head by fatigue crack growth under cyclic loading conditions.
Based on an evaluation of fatigue crack growth into the low alloy steel head and considering the Section Xl requirements of the ASME Code for fracture toughness, a postulated I
]" radial crack In the Alloy 182 J-groove Neld would be acceptable for 25 years of operation.
THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:
THE DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED WORK CODEVERSION/REV CODE/YERSION/REV YES z
NO Page I
of 48
A FRAMATOME ANP 32-5019396-02 RECORD OF REVISIONS Revision Affected Paces 0
All 1
All DescriDtion of Revision Original release Revision I is a non-proprietary version of Revision 0.
Revision 2 Is a non-proprietary version of Revision 0 that includes more Information than Revision 1.
Date 9/02 2103 7/03 2
All 2
A FRAMATOME ANP 32-5019396-02 CONTENTS Section Heading Paae 1.0 Introduction..........................................................................................................4 2.0 Geometry and Flaw Model
.6 3.0 Material Properties
.8 4.0 Fracture Mechanics Methodology.10 5.0 Applied Stresses.11 6.0 Flaw Evaluations.18 7.0 Summary of Results.47 8.0 References.48 3
A FRAMATOME ANP 32-5019396-02 1.0 Introduction Due to the susceptibility of Alloy 600 partial penetration nozzles to primary water stress corrosion cracking (PWSCC), a repair procedure has been developed for reactor vessel head control rod drive mechanism (CRDM) nozzles at Point Beach Unit 1 (PB-1) wherein the lower portion of a degraded nozzle Is removed by a boring procedure and the remaining portion of the nozzle is welded to the low alloy steel reactor vessel head above the original Alloy 182 J-groove attachment weld, as shown in Figure 1. This repair design Is more fully described by the design drawing 11]
and the technical requirements document 12]. Except for a chamfer at the comer, the original J-groove weld will not be removed. Since a potential flaw In the J-groove weld can not be sized by currently available non-destructive examination techniques, It must be assumed that the Tas-left condition of the remaining J-groove weld includes degraded or cracked weld material extending through the entire J-groove weld and Alloy 182 butter material. The purpose of the present analysis is to determine from a fracture mechanics viewpoint the suitability of leaving degraded J-groove weld material in the vessel following the repair of a CRDM nozzle.
From analysis of similar CRDM nozzle penetrations in B&W-designed reactor vessel heads [3],
it is known that hoop stresses In the J-groove weld are generally about two times the axial stress at the same location. Since It is expected that this same trend would apply to the PB-1 nozzles, the preferential direction for cracking would be axial, or radial relative to the nozzle. It is postulated that a radial crack In the Alloy 182 weld metal would propagate by PWSCC, through the weld and butter, to the interface with the low alloy steel head. It is fully expected that such a crack would then blunt and arrest at the butter-to-head interface [4]. Since the height of the original weld along the bored surface Is about 13/43, a radial crack depth extending from the corner of the weld to the low alloy steel head would be very deep. Ductile crack growth through the Alloy 182 material would tend to relieve the residual stresses in the weld as the crack grew to its final size and blunted. Although residual stresses In the head material are low (and even compressive) [7], it is assumed that a small flaw could initiate In the low alloy steel material and grow by fatigue. For the present analysis of the remaining J-groove weld, it is postulated that a small flaw in the head would combine with the stress corrosion crack In the weld to form a large radial comer flaw that would propagate into the low alloy steel head by fatigue crack growth under cyclic loading conditions associated with heatup and cooldown.
4
A FRAMATOME ANP 32-501 9396_02 Figure 1. ID Temper Bead Weld Repair 5
A FRAMATOME ANP 32-5019396-02 2.0 Geometry and Flaw Model It Is postulated that a radial flaw Is present In the low alloy steel head, extending from the chamfered corner of the remaining J-groove weld to the interface between the butter and head.
Analytically, this flaw is crudely simulated using the corner flaw model shown below in Figure 2.
I Stress Line Figure 2. Comer Flaw Model The flaw depth, "a", Is the radius to the crack front. The stress line shown in the figure above depicts a typical direction for consideration of a one-dimensional variation of stress through the area represented by the corner flaw model.
Since a large flaw would have to be postulated if the J-groove weld was left in its original configuration after removal of the nozzle In the ID temper bead repair procedure, the design drawing [1] specifies a chamfer at the inside comer of the remaining weld to limit the height of the weld along the bored surface, from the inside comer to the low alloy steel head, to I ]". This configuration was modeled In a three-dimensional finite element structural analysis [6] to determine operating stresses throughout the remaining weld, nozzle, and head. The finite element model of the outermost nozzle location includes a detailed geometrical representation of the remaining J-groove weld prep around the penetration. Stresses are reported along a line originating at the Inside comer (Point 0) and oriented about 300 relative to the vertical bored surface on the downhill and uphill sides of the nozzle, as shown in Figure 3. The modeled distance along the line, from Point 0 to the interface between the butter and head, is used to represent the depth of the postulated comer flaw. From Reference 6, the Initial flaw depth Is a = [
l In. on the downhill side and a = [
] in. on the uphill side 6
A FRAMATOME ANP qg-csnl wiw-nq VV a
s SE This figure is not pertinent to this document AZ/,t&
c 7/e74k5/os (or legibility concerW)
Figure 3. Orientation of Stress Unes 7
A FRAMATOME ANP 32-5019396-02 3.0 Material Properties The portion of the reactor vessel head that contains the CRDM nozzles Is fabricated from SA-302 Grade B [2].
Yield Strength From the ASME Code, Section 1II, Appendix I [8], the specified minimum yield strength for the head material is 50.0 ksi below 100 OF and 43.8 ksi at 600 OF. The value at 600 OF is used as a conservative lower bound for yield strengths at operating temperatures less than 600 OF.
Reference Temperature A reference temperature of 60 OF is used for the RTNDT of the SA-302 Grade B low alloy reactor vessel head material. This value is commonly used to conservatively represent low alloy ferritic steels.
Fracture Toughness The lower bound Ka curve of Section Xl, Appendix A, Figure A-4200-1 [91, which can be expressed as Ka = 26.8 + 12.445 exp [ 0.0145 (T - RTNDT) 1,
[9 (Article A-4200)1 represents the fracture toughness for crack arrest, where T Is the crack tip temperature and RTNDT is the reference nil-ductility temperature of the material. K1. is In ksi4in, and T and RTNDT are in 'F. In the present flaw evaluations, K1, Is limited to a maximum value of 200 ksihin (upper-shelf fracture toughness). Using the above equation with an RTNDT of 60 "F, Kta equals 200 ksi'dn at a crack tip temperature of 242 OF.
8
A FRAMATOME ANP 32-5019396-02 Fatigue Crack Growth Flaw growth due to cyclic loading is calculated using the fatigue crack growth rate model from Article A-4300 of Section Xl [9],
da =-C(AKf) dN where AK, Is the stress Intensity factor range in ksi4in and daldN Is in Inches/cycle. The crack growth rates for a surface flaw will be used for the evaluation of the comer crack since it is assumed that the degraded condition of the J-groove weld and butter exposes the low alloy steel head material to the primary water environment.
Fatigue Crack Growth Rates for Low Alloy Femtic Steels in a Primary Water Environment Source:
ASME Code, Section Xl, 1998 Edition through 2000 Addenda [9] (Corrected)
AKI = Klna - Klan R = Klmin I KlmaX O* R* 0.25:
AK < 17.74, n = 5.95 CO= 1.02x 10-12x S S = 1.0 AK, 17.74, n = 1.95 C =1.O1xlo'7 xS S= 1.0 0.25*s R
- 0.65:
AK < 17.74 [ (3.75R + 0.06) 1 (26.9R - 5.725) r25 n = 5.95 Co= 1.02x101 2 x5 S = 26.9R - 5.725 AK, 2 17.74 [(3.75R + 0.06) I (26.9R - 5.725) ]0J2, n= 1.95 CO= 1.01 x10xS S = 3.75R + 0.06 0.65*s R < 1.0:
AK, < 12.04, n = 5.95 CO= 1.02 x 1012 x S S= 11.76 AKaŽ 12.04, n= 1.95 C.
1.O1x le 7 xS S =2.5 9
A FRAMATOME ANP 32-5019396-02 4.0 Fracture Mechanics Methbdology The comer crack is analyzed using the following stress intensity factor solution:
K, = Fn{aO.706(A 0 +Ap)+0.537 2,Al +0.448(-2 )2A +0.393(4)A 3 ]
[Ref. 10, Eqn. (G-2.2)l where a is the depth of the crack and Ap is a term added to the Reference 10 solution to account for pressure on the crack face.
The stress distribution in the radial direction is described by the third-order polynomial, v = AO + A1x + A2x2 + A3x3,
[Ref. 10, Eqn. (G-2.1)]
where x Is measured from the inside comer.
Irwin Plasticity Correction The Irwin plasticity correction Is used to account for a moderate amount of yielding at the crack tip. For plane strain conditions, this correction is defined by r1 (K, (a) ry~~~~
- where, K,(a) = stress intensity factor based on the actual crack length, a, Cy = material yield strength.
A stress intensity factor, K,(a.), is then calculated based on the effective crack length,
- a. =a+ry.
10
A FRAMATOME ANP 32-5019396-02 5.0 Applied Stresses Operational stresses are obtained from the results of a three-dimensional linear finite element analysis of the outermost CRDM nozzle head penetration that addresses the configuration after repair by the ID temper bead weld procedure of Reference 1. Stresses are available from Reference 6 at the 00 (downhill) and 1800 (uphill) sides of the nozzle bore for seven transients:
plant heatup and cooldown, plant loading and unloading, 10% step load increase and decrease, 50% step load reduction, reactor trip, loss of flow, and loss of load. Stresses were reported in a cylindrical coordinate system relative to the nozzle so that the stress directions remain constant around the nozzle. For the most part, the largest hoop stresses at the crack tip are at the downhill side of the nozzle bore (00 location). These stresses are perpendicular to the crack face and tend to open the comer crack. The operational stresses from Reference 6, calculated for the outermost CRDM nozzle location, conservatively bound the stresses at all other nozzle locations.
Table 1 presents the maximum and minimum hoop stresses for each transient. Due to the dominating Influence of pressure on stress, stresses remain positive for all transient conditions.
Stresses are listed in Table 1 for the downhill (00) location as a function of the radial position along the stress line shown in Figures 2 and 3. Nine positions are used to report stresses along the stress line: the first 4 positions are within the weld material, the fifth position Is at the butter/head interface, and the last 4 positions are located in the reactor vessel head base metal.
11
A FRAMATOME ANP 32-5019396-02 Table 1. Operational Hoop Stresses on Downhill Side [6]
Parameter Loading Condition Transient Heatup/Cooldown Plant Loading/Unloading 10% Load Changes 50% Load Reduction Time 0.001 hr.
6.0 hr.
0.333 hr.
3.333 hr.
0.0625 hr.
1.025 hr.
0.05 hr.
0.233 hr.
Temperature 100 °F 540 °F 612 OF 547 OF 587 OF 602 OF 590 OF 548 OF Pressure
[
]psig t
]psig
[
]psig
[
Ipsig
[
]psig
[
Ipsig
[
]psig
[
]psig x (in.)*
SY (psi)
SY (psi)
SY (psi)
SY (psi)
SY (psi)
SY (psi)
SY (psi)
SY (psi) 0.0000~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.0000 f
1
[
]
C
]
[
]
[
]
1 I
[
1
[
]
0.2022 C
]
[
]
[
]
i'
'i
[
I C
I
[
]
[
]
0.2022~
0.4043
[
]
[
]
l I
[
]
l
]
C I
[
I
[
]
0.6065
[
]
[
]
C
]
C
]
[
]
[
]
[
]
C I
0.8087 t
]
[
]
C
[
]
[
i
[
]
[
]
C
]
1.1043
[
]
[
]
[
]
C I
C
]
[
]
[
]
[
]
1.3999
[
]
[
]
[
]
[
]
[
]
[
]
1 1
[
I 1.6955.
[
]
[
]
I ]
I
_ ]
I C
I
]
]
1.9911
[
I
[
]
[
I C
1 C
I C
]
[
]
[
I
- Cumulative distance along path line PW_0 in Reference 6.
12
A FRAMATOME ANP 32-5019396-02 Table 1. Operational Hoop Stresses on Downhill Side [6] (Cont'd)
Parameter Loading Condition Transient Reactor Trip Loss of Flow Loss of Load Time 0.01 67 hr.
0.025 hr.
0.001 hr.
0.0403 hr.
0.00278 hr.
0.0444 hr.
Temperature 550 OF 547 OF 612 OF 528 OF 655 OF 550 OF Pressure
[
I psig
[
I psig I
]
psig I
]
psig
[
] psig
[
P g x (in.)*
SY (psi)
SY (psi)
SY (psi)
SY (psi)
SY (psi)
SY (psi) 0.0000
[
]
C
]
[
]
[
]
[
]
[
]
0.2022
[
]
[
1
[
J
[
]
C
]
[
J 0.4043
[
]
[
3 C
l C
I
[
]
C
]
0.66 0.6065 l
3
[
]
[
I
[
l
[
l
[
l 0.8087
[
]
C
]
C
]
C I
[
3
[
3 1.1043
[
]
C
]
C
]
[
]
[
3 C
]
1.3999
[
]
C I
I I
C
]
t
]
C I
1.6955
[
]
C
]
C l
C
]
C
]
C
]
1.9911
[
]
[
3 C
3 C
]
C
]
C
]
- Cumulative distance along path line PW_0 in Reference 6.
13
A FRAMATOME ANP 32-5019396-02 Residual stresses are not considered in the present flaw evaluations since a crack that has propagated all the way through the weld and butter would tend to relieve these stresses. A three-dimensional elastic-plastic finite element analysis was performed by Dominion Engineering, Inc. (7] to simulate the sequence of steps involved in arriving at the configuration of the CRDM nozzle and RV head after completion of the ID temper bead repair. This analysis simulated the heatup of the weld, butter, and adjacent material during the welding process and the subsequent cooldown to ambient temperature, a pre-service hydro test, and operation at steady state conditions. After the steady state loads were removed, and the structure was again at ambient conditions, the lower portion of the nozzle was deleted from the model, the new ID temper bead repair weld was added using an 8-pass weld simulation, and the J-groove weld was chamfered by removing selected elements. The stresses associated with this repair configuration are the residual stresses corresponding to an unflawed structure.
The residual stresses from the Dominion Engineering analysis are listed in Table 2 and plotted In Figure 5. These stresses are In the original weld, after chamfering. Although the residual hoop stress in the weld region Is high, up to about [
] psi, the stress decreases to zero within the butter region and is compressive in the head. These stresses would be relieved as the crack propagates through the weld, so that only the operating stresses from Table 1 need be considered when evaluating a crack at the butter-to-head Interface.
14
Framatome ANP 32-5019396-02 Table 2.
Residual Hoop Stresses In the Unflawed Structure After Nozzle Removal, 8-Pass Weld Simulation, and Chamfer [7]
ANSYS Load Step:
20011 Global Coordinates Hoop Node X
Z AS<1)
Location Stress (in.)
(in.)
(in.)
(psi) 1309 2.0000 66.802 0.000 Inside Surface of Weld 1412 2.1810 66.961 0.241 Weld 1615 2.3895 67.162 0.530 Weld/Butter Interface 1818 2.6315 67.425 0.887 Butter/Head Interface 1918 2.6694 67.648 1.113 Head 2018 2.7072 67.871 1.339 Head 2118 2.7451 68.093 1.565 Head 2218 2.7830 68.316 1.791 Head 2318 2.8209 68.539 2.017 Head 2418 2.8587 68.762 2.243 Head 2518 2.9163 69.100 2.586 Head 2618 2.9815 69.484 2.976 Head 2718 3.0556 69.920 3.418 Head (1) Distance along a stress line, originating at the Inside corner of the chamfered weld, and passing through the "outside corner" of the J-groove weld prep (see Figure 4).
15
FRAMATOME ANP 32-5019396-02 Stress Line for t
~
~Stressesl Figure 4. Weld GeometrY After Chamfer 16
Framatome ANP 32-5019396-02 Figure 5. Residual Hoop Stresses After Weld Repair a,
co, 2!
00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Distance from Surface, in.
3.5 4.0 17
A FRAMATOME ANP 32-5019396-02 6.0 Flaw Evaluations A fracture mechanics analysis Is performed considering fatigue crack growth over 25 years of service to determine a final flaw size for calculating stress intensity factors for comparison with the fracture toughness requirements of Section Xl. Article IWB-3612 [10] requires that a safety factor of 910 be used when comparing the applied stress Intensity factor to the material fracture toughness. Calculations are performed for a postulated radial comer crack on the downhill side of the outermost CRDM nozzle head penetration.
The actual fracture mechanics calculations are presented In Tables 3 through 9 for the seven transients considered In the finite element stress analysis [6]. Operational hoop stresses perpendicular to the plane of the postulated crack are obtained from Table 1. Fatigue crack growth is calculated on a yearly basis using the following pattern for accumulating cycles:
Table Transient Cycles /40 Years Cycles / Year 3
Heatup and Cooldown 200 5
4 Plant Loading and Unloading 3,000 75 5
10% Step Load Changes 2,000 50 6
50% Step Load Reduction 200 5
7 Reactor Trip 400 10 8
Loss of Flow 80 2
9 Loss of Load 80 2
These cycles are distributed uniformly over the 25 year service life by linking the incremental crack growth between Tables 3 through 9.
18
Framatome ANP 32-5019396-02 Table 3. Evaluation of CRDM Nozzle Comer Crack for HeatuplCooldown INPUT DATA Initial Flaw Size:
Material Data:
- Depth, a = [
] In.
Yield strength, Sy =
43.8 ksi Reference temp.,
RTndt =
60 F
Upper shelf tough.
=
200 ksi4in Kla = 26.8 + 12.445 exp [ 0.0145 (T - RTndt) 3 Kla is limited to the upper shelf toughness.
Applied Loads:
Loading Conditions SS*
HU**
Temperature (F) 540 100 Pressure (ksi)
Kla (ksi'4n)
Position 200 49 x
Hoop Stress (in.)
(ksi)
(ksi) 0.0000 0.2022 OA043 0.6065 0.8087 1.1043 1.3999 1.6955 1.9911
- Heatup/Cooldown Transient at 6.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (steady state)
Heatup/Cooldown Transient at 0.001 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> (low temperature)
PB-I CRDM HU-CD NP.xls 19
Framatome ANP 32-5019396-02 Table 3. Evaluation of CRDM Nozzle Comer Crack for Heatup/Cooldown (Cont'd)
STRESS INTENSITY FACTOR Kl(a) = 41(na) 1 0.706(AO+Ap) + 0.537(2ah%)A1 + 0.448(a2/2)A2 + 0.393(4a3/3n)A3 where the through-wall stress distribution Is described by the third order polynomial, S(x) = AO + Aix + A2x2 + A3x3, defined by:
Stress Loading Conditions Coeff.
(ksi)
Ao Al A2 A3 Effective crack size:
a, = a + 1I(61c)*[KI(a)ySyJ2 Effective stress intensity factor KI(ae) = 4(Qae) [ 0.706(A0+Ap) + 0.537(2a./n)A1 + 0.448(a, 2/2)A 2 + 0.393(4a,3/3nr)A 3 ]
PB-i CRDM HU-CD NP.xis 20
Framatome ANP 32-5019396-02 Table 3. Evaluation of CRDM Nozzle Corner Crack for Heatup/Cooldown (Contd)
FATIGUE CRACK GROWTH Transient
Description:
200 cycles over 40 years AN =
5 cycles/year Operating Time
( yr.)
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle 0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 Ss a
Kl(a)
(in.)
(kslin) 41.63 41.77 41.91 42.05 42.20 42.34 42.48 42.61 42.75 42.89 43.03 43.16 43.30 43.43 43.57 43.70 43.83 43.97 44.10 44.23 44.36 44.49 44.62 44.74 44.87 45.00 HU Kl(a)
(ks~in) 7.34 7.37 7.39 7.42 7.44 7.47 7.49 7.52 7.54 7.56 7.59 7.61 7.64 7.66 7.68 7.71 7.73 7.75 7.78 7.80 7.82 7.85 7.87 7.89 7.91 7.94 aKI Aa (ksi~n)
(Cm.)
34.28 0.00050 34A0 0.00050 34.52 0.00050 34.64 0.00051 34.75 0.00051 34.87 0.00051 34.98 0.00052 35.10 0.00052 35.21 0.00052 35.33 0.00053 35.44 0.00053 35.55 0.00053 35.66 0.00054 35.77 0.00054 35.88 0.00054 35.99 0.00055 36.10 0.00055 36.21 0.00055 36.32 0.00056 36.43 0.00056 36.54 0.00056 36.64 0.00057 36.75 0.00057 36.85 0.00057 36.96 0.00058 37.06 0.00058 Ss as HU a,
Ss KI(a)
(in.)
(in.)
(ksiln) 42.58 42.72 42.86 43.00 43.14 43.27 43.41 43.55 43.68 43.82 43.95 44.09 44.22 44.35 44A9 44.62 44.75 44.88 45.00 45.13 45.26 45.38 45.51 45.63 45.76 45.88 (ksNin) 7.35 7.37 7.40 7.42 7.45 7.47 7.50 7.52 7.55 7.57 7.59 7.62 7.64 7.67 7.69 7.71 7.74 7.76 7.78 7.81 7.83 7.85 7.87 7.90 7.92 7.94 HU SS HU Kl(a.)
Margin = Kla / Kl(a.)
4.70 4.68 4.67 4.65 4.64 4.62 4.61 4.59 4.58 4.56 4.55 4.54 4.52 4.51 4.50 4.48 4.47 4.46 4.44 4.43 4A2 4.41 4.39 4.38 4.37 4.36 6.67 6.65 6.63 6.60 6.58 6.56 6.54 6.52 6.50 6.48 6.46 6.44 6.42 6.40 6.38 6.36 6.34 6.32 6.30 6.28 6.26 6.24 6.23 6.21 6.19 6.17 PB-i CRDM HU-CD NP.xWs 21
Framatome ANP Table 3. Evaluation of CRDM Nozzle Comer Crack for Heatup/Cooldown (Cont'd)
FRACTURE TOUGHNESS MARGINS Period of Operation:
Time =
25.00 years Final Flaw Size:
a = [
] in. (after loss of load transient)
Margin = Kla / Kl(a) 32-5019396-02 Loading Conditions SS HU Fracture Toughness, Kla 200 49 Kl(a) 45.12 7.96 a,
Kl(a.)
46.00 7.96 Actual Margin 4.35 6.16 Required Margin 3.16 3.16 ksl-Vin ksbdin PB-I CRDM HU-CD NP.xAs 2-2
Framatome ANP 32-5019396-02 Table 4. Evaluation of CRDM Nozzle Comer Crack for Plant Loading/Unloading INPUT DATA Initial Flaw Size:
- Depth,
] in.
Material Data:
Yield strength, SY =
43.8 ksi Reference temp.,
Upper shelf tough.
RTndt=
60 F
=
200 ksi-Vin Kla = 26.8 + 12.445 exp [ 0.0145 (T - RTndt) ]
KWa is limited to the upper shelf toughness.
Applied Loads:
Loading Conditions PU*
PLY Temperature (F) 547 612 Pressure, p (ksl)
Kla (ksNin)
Position 200 200 x
Hoop Stress (in.)
(ksi)
(ksi) 0.0000 0.2022 0.4043 0.6065 0.8087 1.1043 1.3999 1.6955 1.9911
- Plant Loading/Unloading Transient at 3.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant unloading)
Plant Loading/Unloading Transient at 0.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant loading)
PB-I CRDM Load-Unload NP.xls 23
Framatome ANP 32-5019396-02 Table 4. Evaluation of CRDM Nozzle Comer Crack for Plant Loading/Unloading (Cont'd)
STRESS INTENSITY FACTOR Kl(a) =
0(ia)
[O.706(Ao+Ap) + 0.537(2ahr)A 1 + 0.448(a2/2)A 2 + 0.393(4a3/3iX)A 3]
where the through-wall stress distribution is described by the third order polynomial, S(x) = AO + Ajx + A2x2 + A3x3, defined by:
Stress Loading Conditions Coeff.
PU PL (ksi)
(ksi)
AO A,
A2 A3 Effective crack size:
- a. = a + 1l(61C)*[Kl(a)ISyl2 Effective stress intensity factor:
KI(aj) = I(itaj) [ 0.706(AO+Ap) + 0.537(2a,/k)Aj + 0.448(a. 2/2)A2 + 0.393(4a,3/3,n)A3 I PB-1 CRDM Load-Unload NP.xis 24
Framatome ANP 32-5019396-02 Table 4. Evaluation of CRDM Nozzle Comer Crack for Plant Loading/Unloading (Conrd)
FATIGUE CRACK GROWTH Transient
Description:
3000 cycles over 40 years AN =
75 cycles/year Operating Time (yr.
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycie 0
75 150 225 300 375 450 525 600 675 750 825 900 975 1050 1125 1200 1275 1350 1425 1500 1575 1650 1725 1800 1875 PU a
Kl(a)
(In.)
(ksi-41n) 49.86 50.01 50.15 50.30 50.45 50.59 50.74 50.88 51.02 51.16 51.30 51.44 51.58 51.72 51.85 51.99 52.12 52.25 52.38 52.51 52.64 52.77 52.89 53.02 53.14 53.26 PL Kl(a)
(ksil-in) 28.92 29.03 29.15 29.27 29.38 29.50 29.61 29.73 29.84 29.95 30.07 30.18 30.29 30.40 30.51 30.63 30.74 30.85 30.96 31.06 31.17 31.28 31.39 31.50 31.60 31.71 AKI PU Aa a.
(kshfin)
(in.)
20.94 0.00638 20.97 0.00640 21.00 0.00643 21.04 0.00645 21.07 0.00648 21.10 0.00650 21.13 0.00653 21.16 0.00655 21.18 0.00657 21.21 0.00660 21.24 0.00662 21.26 0.00664 21.29 0.00667 21.31 0.00669 21.34 0.00671 21.36 0.00673 21.38 0.00675 21.41 0.00677 21.43 0.00679 21.45 0.00681 21.47 0.00683 21.49 0.00885 21.50 0.00687 21.52 0.00688 21.54 0.00690 21.55 0.00692 (in.)
PL PU PL PU PL
- a.
Kl(aj)
Kl(a.)
Margin = Kla/ Kl(a.)
(in.)
(ksi'tin)
(ksliqn) 51.25 29.30 3.90 6.83 51.39 29.41 3.89 6.80 51.53 29.53 3.88 6.77 51.67 29.65 3.87 6.75 51.81 29.76 3.86 6.72 51.94 29.88 3.85 6.69 52.08 29.99 3.84 6.67 52.21 30.11 3.83 6.64 52.35 30.22 3.82 6.62 52.48 30.33 3.81 6.59 52.61 30.45 3.80 6.57 52.74 30.56 3.79 6.54 52.87 30.67 3.78 6.52 53.00 30.78 3.77 6.50 53.12 30.89 3.76 6.47 53.25 31.01 3.76 6.45 53.37 31.12 3.75 6.43 53.49 31.23 3.74 6.40 53.61 31.34 3.73 6.38 53.73 31.44 3.72 6.36 53.85 31.55 3.71 6.34 53.97 31.66 3.71 6.32 54.09 31.77 3.70 6.30 54.20 31.87 3.69 6.27 54.31 31.98 3.68 6.25 54.43 32.09 3.67 6.23 PB-i CRDM Load-Unload NP.xis 25
Framatome ANP 32-5019396-02 Table 4. Evaluation of CRDM Nozzle Corner Crack for Plant Loading/Unloading (Cont'd)
FRACTURE TOUGHNESS MARGINS Period of Operation:
Final Flaw Size:
Margin = Kla I KI(aj)
Time =
25.00 years a =[
] in. (after loss of load transient)
Loading Conditions PU PL Fracture Toughness, Kla 200.0 200.0 ksi'Iin Kl(a) 53.37 31.81 ksi1in a,
KI(aj) 54.53 32.18 ksi'Jin Actual Margin 3.67 6.21 Required Margin 3.16 3.16 PB-1 CRDM Load-Unload NPxls 26
Framatome ANP 32-5019396-02 Table 5. Evaluation of CRDM Nozzle Corner Crack for 10% Step Load Changes INPUT DATA Initial Flaw Size:
- Depth, E=
] in.
Material Data:
Yield strength, S =
43.8 ksi Reference temp.,
Upper shelf tough.
RTndt =
60 F
=
200 ksifin Kla = 26.8 + 12.445 exp 10.0145 (T - RTndt) l Kla Is limited to the upper shelf toughness.
Applied Loads:
Loading Conditions 10SI*
1OSD**
Temperature (F) 587 602 Pressure, p (ksi)
Kla (ksHlin)
Position 200 200 x
Hoop Stress (in.)
(ksi)
(ksi) 0.0000 0.2022 0.4043 0.6065 0.8087 1.1043 1.3999 1.6955 1.9911
- 10% Step Load Change at 0.0625 hours0.00723 days <br />0.174 hours <br />0.00103 weeks <br />2.378125e-4 months <br /> (step Increase) 10% Step Load Change at 1.025 hours2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> (step decrease)
PB-1 CRDM 10% Step Load NP.xls 27
Framatome ANP 32-5019396-02 Table 5. Evaluation of CRDM Nozzle Comer Crack for 10% Step Load Changes (Cont'd)
STRESS INTENSITY FACTOR Kl(a) = 4 (wa) [ 0.706(Ao+Ap) + 0.537(2a/h)A, + 0.448(a2/2)A2 + 0.393(4a3I37)A 3 where the through-wall stress distribution Is described by the third order polynomial, S(x) = AO + Aix + A2x2 + A3x3, defined by:
Stress Loading Conditions Coeff.
1OSI 10SD (ksi)
(ksi)
AO A1 A2 A3 Effective crack size:
- a. = a + 1I(6Ir)*[KI(a)ISY]2 Effective stress Intensity factor:
KI(a.) = 4nt1a.) [ 0.706(Ao+Ap) + 0.537(2a./I)AI + 0.448(a.2/2)A 2 + 0.393(4a. 3/3in)A 3]
PB-CRDM 10% Step Load NP.xIs 28
i-ramatome ANP 32-5019396-02 Table 5. Evaluation of CRDM Nozzle Corner Crack for 10% Step Load Changes (Conrd)
FATIGUE CRACK GROWTH Transient
Description:
2000 cycles over 40 years AN =
50 cycles/year Operating Time (yr.)
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle 0
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 10SI a
Kl(a)
(in.)
(ksain) 41.82 41.96 42.09 42.23 42.36 42.50 42.63 42.77 42.90 43.03 43.16 43.29 43.42 43.54 43.67 43.80 43.92 44.05 44.17 44.29 44.41 44.53 44.65 44.77 44.89 45.00 IOSD KI(a)
(ksbiin) 38.45 38.58 38.71 38.85 38.98 39.11 39.24 39.37 39.50 39.63 39.75 39.88 40.01 40.13 40.26 40.38 40.50 40.62 40.75 40.87 40.99 41.10 41.22 41.34 41.46 41.57 AKI 10SI Aa ae (ksi33n) 0n.)
3.37 0.00000 3.38 0.00000 3.38 0.00000 3.38 0.00000 3.39 0.00000 3.39 0.00000 3.39 0.00000 3.40 0.00000 3.40 0.00000 3.40 0.00000 3.40 0.00000 3.41 0.00000 3.41 0.00000 3.41 0.00000 3.41 0.00000 3.42 0.00000 3.42 0.00000 3.42 0.00000 3.42 0.00000 3.42 0.00000 3.43 0.00000 3.43 0.00000 3.43 0.00000 3.43 0.00000 3.43 0.00000 3.43 0.00000 (in.)
ISD 10SI ae Kl(a.)
(in.)
(ksihhn) 42.73 42.87 43.00 43.13 43.27 43.40 43.53 43.66 43.78 43.91 44.04 44.16 44.29 44.41 44.53 44.65 44.77 44.89 45.01 45.13 45.25 45.36 45.48 45.59 45.70 45.81 (ksi4n) 39.20 39.34 39.47 39.60 39.73 39.86 39.98 40.11 40.24 40.36 40.49 40.61 40.74 40.86 40.98 41.10 41.22 41.34 41.46 41.58 41.69 41.81 41.92 42.04 42.15 42.26 10SD 10SI 10SD Kl(a.)
Margin = Kla / Kl(ae) 4.68 4.67 4.65 4.64 4.62 4.61 4.59 4.58 4.57 4.55 4.54 4.53 4.52 4.50 4.49 4.48 4.47 4.45 4.44 4.43 4.42 4.41 4.40 4.39 4.38 4.37 5.10 5.08 5.07 5.05 5.03 5.02 5.00 4.99 4.97 4.95 4.94 4.92 4.91 4.89 4.88 4.87 4.85 4.84 4.82 4.81 4.80 4.78 4.77 4.76 4.75 4.73 PB-1 CRDM 10% Step Load NP.xls 29
'I
Frarnatome ANP Table 5. Evaluation of CRDM Noizle Comer Crack for 10% Step Load Changes (Contd)
FRACTURE TOUGHNESS MARGINS Period of Operation:
Time =
25.00 years Final Flaw Size:
a = [
3 In. (after loss of load transient)
Margin = Kla / KI(aj)
ILoading Conditions l
I0SI 10SD 32-5019396-02 Fracture Toughness, Kla 200.0 200.0 ks!
Kl(a) 45.01 41.57 ksi ae Kl(a) 45.82 42.26 ks!
Actual Margin 4.37 4.73 Required Margin 3.16 3.16 b/in kin PB-1 CRDM 10% Step Load NP.xAs 30
Framatome ANP 32-5019396-02 Table 6. Evaluation of CRDM Nozzle Comer Crack for 50% Step Load Reduction INPUT DATA Initial Flaw Size:
- Depth, 2 =
[
JIn.
Material Data:
Yield strength, SY =
43.8 ksl Reference temp.,
Upper shelf tough.
RTndt =
60 F
=
200 ksi~in Kla = 26.8 + 12.445 exp [0.0145 (T - RTndt)
Kla Is limited to the upper shelf toughness.
Applied Loads:
Loading Conditions 5OSR1*
50SR2*
Temperature (F) 548 590 Pressure, p (ksl)
Kfa (ksbtin)
Position 200 200 x
Hoop Stress (in.)
(ksl)
(ksi) 0.0000 0.2022 0.4043 0.6065 0.8087 1.1043 1.3999 1.6955 1.9911
- 50% Step Load Reduction at 0.233 hours0.0027 days <br />0.0647 hours <br />3.852513e-4 weeks <br />8.86565e-5 months <br /> (max. stress) 50% Step Load Reduction at 0.05 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> (min. stress)
PB-1 CRDM 50% Step Load NPtxls 31
Framatome ANP 32-5019396-02 Table 6. Evaluation of CRDM Nozzle Comer Crack for 50% Step Load Reduction (Cont'd)
STRESS INTENSITY FACTOR Kl(a) = 4(na) 0.706(Ao+Ap) + 0.537(2ahr)A 1 + 0.448(a2/2)A 2+ 0.393(4a3/3iX)A 3 j where the through-wall stress distribution Is described by the third order polynomial, S(x) = Ao + Ax+A2 ix
+ A3x3, defined by:
Stress Loading Conditions Coeff.
50SRI 50SR2 (ksi)
(ksi)
AO A.,
A2 A3 Effective crack size:
- a. = a + 1/(6n)*[KI(a)ISYJ2 Effective stress intensity factor:
Kl(a.) = 4(na.) [ 0.706(A0+Ap) + 0.537(2a./%)A. + 0.448(a.2/2)A 2 + 0.393(4a.3 /3i)A 3 I PB-i1 CRDM 50% Step Load NP.xls 32
Frarnatome ANP 32-501 9396-02 Table 6. Evaluation of CRDM Nozzle Comer Crack for 50% Step Load Reduction (Contd)
FATIGUE CRACK GROWTH Transient
Description:
200 cycles over 40 years AN =
5 cycles/year Operating Time (yr.)
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle 0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 50SRI 50SR2 a
Ki(a)
Kl(a)
(in.)
(ksl'Iin)
(ksi-An) 43.12 38.95 43.25 39.09 43.39 39.22 43.52 39.36 43.66 39.49 43.79 39.63 43.92 39.76 44.05 39.89 44.18 40.02 44.31 40.15 44.43 40.28 44.56 40.41 44.69 40.54 44.81 40.67 44.94 40.80 45.06 40.92 45.18 41.05 45.30 41.17 45.42 41.30 45.54 41.42 45.66 41.54 45.78 41.66 45.90 41.78 46.01 41.90 46.13 42.02 46.24 42.14 (kshlin)
(in.)
4.17 0.00000 4.17 0.00000 4.17 0.00000 4.16 0.00000 4.16 0.00000 4.16 0.00000 4.16 0.00000 4.16 0.00000 4.16 0.00000 4.15 0.00000 4.15 0.00000 4.15 0.00000 4.15 0.00000 4.14 0.00000 4.14 0.00000 4.14 0.00000 4.14 0.00000 4.13 0.00000 4.13 0.00000 4.13 0.00000 4.12 0.00000 4.12 0.00000 4.11 0.00000 4.11 0.00000 4.11 0.00000 4.10 0.00000 (In.)
AKI 50SRI 50SR2 50SRI 50SR2 50SR1 50SR2 Aa a,
ae Kl(a)
Kl(a.)
Margin = Kla / Kl(a,)
(in.)
(ksiln)
(ksl41n) 44.07 39.74 44.20 39.88 44.33 40.01 44.46 40.14 44.59 40.28 44.72 40.41 44.85 40.54 44.97 40.67 45.10 40.80 45.22 40.92 45.34 41.05 45.47 41.18 45.59 41.30 45.71 41.43 45.83 41.55 45.95 41.68 46.06 41.80 46.18 41.92 46.30 42.04 46.41 42.16 46.52 42.28 46.64 42.40 46.75 42.52 46.86 42.64 46.97 42.75 47.08 42.87 4.54 4.52 4.51 4.50 4.49 4.47 4.46 4.45 4.43 4.42 4.41 4.40 4.39 4.38 4.36 4.35 4.34 4.33 4.32 4.31 4.30 4.29 4.28 4.27 4.26 4.25 5.03 5.02 5.00 4.98 4.97 4.95 4.93 4.92 4.90 4.89 4.87 4.86 4.84 4.83 4.81 4.80 4.78 4.77 4.76 4.74 4.73 4.72 4.70 4.69 4.68 4.67 PB-I CRDM 50% Step Load NP.,ds 33
Framatome ANP Table 6. Evaluation of CRDM Nozzle Comer Crack for 60% Step Load Reduction (Cont'd)
FRACTURE TOUGHNESS MARGINS Period of Operation:
Time =
25.00 years Final Flaw Size:
a =[
] in. (after loss of load transient)
Margin = Kla I Kl(aj) 32-5019396-02 TLoading Conditions 50SR1 50SR2 Fracture Toughness, Kla 200.0 200.0 KI(a) 46.24 42.14 Kl(a.)
47.08 42.87 Actual Margin 4.25 4.67 Required Margin 3.16 3.16 ksihin ksli4n ksl~ln PB-1 CRDM 50% Step Load NP.xls 34
Framatome ANP 32-5019396-02 Table 7. Evaluation of CRDM Nozzle Corner Crack for Reactor Trip INPUT DATA Initial Flaw Size:
- Depth, a =
] in.
Material Data:
Yield strength, SY =
43.8 ksl Reference temp.,
Upper shelf tough.
RTndt =
60 F
=
200 ksihin Kla = 26.8 + 12.445 exp [ 0.0145 (T - RTndt) J Kla Is limited to the upper shelf toughness.
Applied Loads:
Loading Conditions RTI*
RT2*
Temperature (F) 547 550 Pressure, p (ksl)
Kla (ksiiin)
Position 200 200 x
Hoop Stress (in.)
(ksl)
(ksi) 0.0000 0.2022 0.4043 0.6065 0.8087 1.1043 1.3999 1.6955 1.9911
- Reactor Trip TransIent at 0.025 hours2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> (max. stress)
Reactor Trip Transient at 0.0167 hours0.00193 days <br />0.0464 hours <br />2.761243e-4 weeks <br />6.35435e-5 months <br /> (min. stress)
PB-I CRDM Reactor Trip NP.xIs 35
Framatome ANP 32-5019396-02 Table 7. Evaluation of CRDM Nozzle Corner Crack for Reactor Trip (Cont'd)
STRESS INTENSITY FACTOR Kl(a) = -l(nra) ( 0.706(AO+Ap) + 0.537(2ahn)AI + 0.448(a2/2)A 2 + 0.393(4a3/3ir)A3 ]
where the through-wall stress distribution Is described by the third order polynomial, S(x)= AO + A1x + A2x2 + A3x3, defined by.
Stress Loading Conditions Coeff.
RTI RT2 (ksi)
(ksi)
Ao A1 A2 A3 Effective crack size:
- a. = a + 1I(6n)*[Kl(a)ySyJ2 Effective stress Intensity factor:
Kl(a) = 4(FIa) [ 0.706(AO+Ap) + 0.537(2a,/n)AI + 0.448(a. 212)A2 + 0.393(4a. 3/3-n)A 3]
PB-1 CRDM Reactor Trip NP.xls 36
Framatome ANP 32-501 9396-02 Table 7. Evaluation of CRDM Nozzle Comer Crack for Reactor Trip (Conrd)
FATIGUE CRACK GROWTH Transient
Description:
400 cycles over 40 years AN =
10 cycles/year Operating Time 0
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle 0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 RTI RT2 a
KI(a)
Kl(a)
(in-)
(kal-An)
(kshlin) 46.23 43.60 46.36 43.71 46.48 43.83 46.60 43.94 46.72 44.06 46.84 44.17 46.95 44.28 47.07 44.39 47.18 44.50 47.30 44.60 47.41 44.71 47.52 44.82 47.63 44.92 47.74 45.02 47.85 45.13 47.95 45.23 48.06 45.33 48.16 45.43 48.27 45.52 48.37 45.62 48.47 45.72 48.57 45.81 48.67 45.90 48.76 46.00 48.86 46.09 48.95 46.18 (kslin)
(in.)
2.63 0.00000 2.64 0.00000 2.65 0.00000 2.65 0.00000 2.66 0.00000 2.67 0.00000 2.67 0.00000 2.68 0.00000 2.69 0.00000 2.69 0.00000 2.70 0.00000 2.70 0.00000 2.71 0.00000 2.72 0.00000 2.72 0.00000 2.73 0.00000 2.73 0.00000 2.74 0.00000 2.74 0.00000 2.75 0.00000 2.75 0.00000 2.76 0.00000 2.76 0.00000 2.77 0.00000 2.77 0.00000 2.77 0.00000 RTI aa a,
RT2 ae (in.)
(n) (ksi-An)
(kshfin) 47.21 44.42 47.32 44.53 47.44 44.64 47.55 44.75 47.66 44.85 47.77 44.96 47.88 45.06 47.99 45.17 48.09 45.27 48.20 45.37 48.30 45.47 48.40 45.57 48.50 45.66 48.60 45.76 48.70 45.85 48.80 45.95 48.90 46.04 48.99 46.13 49.08 46.22 49.18 46.31 49.27 46.40 49.36 46.49 49.45 46.57 49.54 46.66 49.62 46.74 49.71 46.82 RT1 RT2 RTI RT2 KI(a)
Kl(a.)
Margin = Kla / KI(a.)
AKI 4.24 4.23 4.22 4.21 4.20 4.19 4.18 4.17 4.16 4.15 4.14 4.13 4.12 4.11 4.11 4.10 4.09 4.08 4.07 4.07 4.06 4.05 4.04 4.04 4.03 4.02 4.50 4.49 4.48 4.47 4.46 4.45 4.44 4.43 4.42 4.41 4.40 4.39 4.38 4.37 4.36 4.35 4.34 4.34 4.33 4.32 4.31 4.30 4.29 4.29 4.28 4.27 PB-I CRDM Reactor Trip NP.xls 37
Framatome ANP Table 7. Evaluation of CROM Nozzle Corner Crack for Reactor Trip (Cont'd)
FRACTURE TOUGHNESS MARGINS 32-5019396-02 Period of Operation:
Final Flaw Size:
Margin = Kla / Kl(a.)
Time =
a =
25.00 years
[
] in. (after loss of load transient)
Loading Conditions RT1 RT2 Fracture Toughness, Kla 200.0 200.0 Kl(a) 48.95 46.18 as Kl(a.)
49.71 46.83 Actual Margin 4.02 4.27 Required Margin 3.16 3.16 ksi4in ksiqin ksl-41n PB-1 CRDM Reactor Trip NP.xls 38
Framatome ANP 32-5019396-02 Table 8. Evaluation of CRDM Nozzle Comer Crack for Loss of Flow INPUT DATA Initial Flaw Size:
Material Data:
Applied Loads:
- Depth, a= [
] in.
Yield strength, SY =
43.8 ksl Reference temp.,
RTndt =
60 F
Upper shelf tough.
=
200 ksi4in Kla = 26.8 + 12.445 exp [ 0.0145 (T - RTndt) I Kla is limited to the upper shelf toughness.
Loadin Conditions LF1*
LF2**
Temperature (F) 528 612 Pressure, p (ksi)
Kla (ksilin)
Position 200 200 x
Hoop Stress (in-)
(ksi)
(ksl) 0.0000 0.2022 0.4043 0.6065 0.8087 1.1043 1.3999 1.6955 1.9911
- Loss of Flow Transient at 0.0403 hours0.00466 days <br />0.112 hours <br />6.66336e-4 weeks <br />1.533415e-4 months <br /> (max. stress)
- Loss of Flow Transient at 0.001 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> (min. stress)
PB-I CRDM Loss of Flow NP.xIs 39
Framatome ANP 32-5019396-02 Table 8. Evaluation of CRDM Nozzle Comer Crack for Loss of Flow (Cont'd)
STRESS INTENSITY FACTOR KI(a) = 4(ira) [ 0.706(Ao+Ap) + 0.537(2aln)A1 + 0.448(a2/2)A2 + 0.393(4a3 /3nr)A 3 where the through-wall stress distribution Is described by the third order polynomial, S(x) = AO + AIx + A2x2 + A3x3, defined by, Stress Loading Conditions Coeff.
LF1 LF2 (ksi)
(ksi)
Ao A1 A2 A3 Effective crack size:
- a. = a + 1I(6ir)[Kl(a)IS. 12 Effective stress Intensity factor:
KI(aj) = 4(ira,) [ 0.706(AO+Ap) + 0.537(2ah/)A 1 + 0.448(a.2/2)A2 + 0.393(4ae3I3-)A 3]
PB-CRDM Loss of Flow NP.xls 40
Framatome ANP 32-5019396-02 Table 8. Evaluation of CRDM Nozzle Corner Crack for Loss of Flow (Cont'd)
FATIGUE CRACK GROWTH Transient
Description:
80 cycles over 40 years aN=
2 cycles/year Operating Time (yr.)
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cycle 0
2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 ILF1 a
Kl(a)
(in.)
(ksivln) 57.41 57.56 57.71 57.86 58.01 58.16 58.30 58.44 58.59 58.73 58.87 59.00 59.14 59.28 59.41 59.54 59.67 59.80 59.93 60.05 60.18 60.30 60.42 60.54 60.66 60.78 LF2 KI(a)
AKI LF1 Aa ae (ksl'41n)
(ksalin)
(in.)
40.69 16.72 0.00012 40.83 16.73 0.00012 40.96 16.75 0.00012 41.10 16.77 0.00012 41.23 16.78 0.00012 41.36 16.80 0.00012 41.49 16.81 0.00012 41.62 16.82 0.00012 41.75 16.84 0.00012 41.88 16.85 0.00012 42.01 16.86 0.00012 42.13 16.87 0.00012 42.26 16.88 0.00012 42.38 16.89 0.00013 42.51 16.90 0.00013 42.63 16.91 0.00013 42.75 16.92 0.00013 42.87 16.93 0.00013 43.00 16.93 0.00013 43.12 16.94 0.00013 43.23 16.94 0.00013 43.35 16.95 0.00013 43.47 16.95 0.00013 43.59 16.96 0.00013 43.70 16.96 0.00013 43.81 16.96 0.00013 (In.)
LF2 as LF1 LF2 LF1 LF2 Kl(a)
Kl(aj) Margin = Kla / KI(a.)
(in.)
(ksl4ln)
(ksin) 59.22 41.54 59.36 41.67 59.49 41.81 59.63 41.94 59.76 42.06 59.89 42.19 60.02 42.32 60.14 42.45 60.27 42.57 60.39 42.70 60.51 42.82 60.64 42.94 60.75 43.07 60.87 43.19 60.99 43.31 61.10 43.43 61.22 43.55 61.33 43.66 61.44 43.78 61.55 43.90 61.65 44.01 61.76 44.12 61.86 44.24 61.96 44.35 62.06 44.46 62.16 44.57 3.38 3.37 3.36 3.35 3.35 3.34 3.33 3.33 3.32 3.31 3.31 3.30 3.29 3.29 3.28 3.27 3.27 3.26 3.26 3.25 3.24 3.24 3.23 3.23 3.22 3.22 4.81 4.80 4.78 4.77 4.75 4.74 4.73 4.71 4.70 4.68 4.67 4.66 4.64 4.63 4.62 4.61 4.59 4.58 4.57 4.56 4.54 4.53 4.52 4.51 4.50 4.49 PB-1 CRDM Loss of Flow NP.xls 41
Framatome ANP Table 8. Evaluation of CROM Nozzle Comer Crack for Loss of Flow (Cont'd)
FRACTURE TOUGHNESS MARGINS Period of Operation:
Time =
25.00 years Final Flaw Size:
a = [
] in. (after loss of load transient)
Margin = Kla / KI(aj) 32-5019396-02 Loading Conditions LF1 LF2 Fracture Toughness, Kla 200.0 200.0 Kl(a) 60.78 43.82 as KI(a) 62.16 44.57 Actual Margin 3.22 4.49 Required Margin 3.16 3.16 ksi-in kshdin ksi4in PB-1 CRDM Loss of Flow NP.xIs 42
Framatome ANP 32-5019396-02 Table 9. Evaluation of CRDM Nozzle Comer Crack for Loss of Load INPUT DATA Initial Flaw Size:
Material Data:
- Depth, a-=
] in.
Yield strength, SY =
43.8 ksi Reference temp.,
RTndt =
60 F
Upper shelf tough.
=
200 ksHiin Kla = 26.8 + 12.445 exp [ 0.0145 (T - RTndt) ]
Kla Is limited to the upper shelf toughness.
Applied Loads:
Loading Conditions LL1*
LL2*
Temperature (F) 655 550 Pressure, p (ksi)
Kla (ksi-lin)
Position 200 200 x
Hoop Stress (in.)
(ksi)
(ksi) 0.0000 0.2022 0.4043 0.6065 0.8087 1.1043 1.3999 1.6955 1.9911
- Loss of Load Transient at 0.00278 hours (max. stress)
- Loss of Load Transient at 0.0444 hours0.00514 days <br />0.123 hours <br />7.34127e-4 weeks <br />1.68942e-4 months <br /> (min. stress)
PB-I CRDM Loss of Load NP.xIs 43
Framatome ANP 32-5019396-02 Table 9. Evaluation of CkDMi Nozzle Comer Crack for Loss of Load (Cont'd)
STRESS INTENSITY FACTOR Kl(a) = 4((wa) [ 0.706(Ao+Ap) + 0.537(2a/h)AI + 0.448(a2/2)A 2 + 0.393(4a3/3n)A3 1 where the through-wall stress distribution Is described by the third order polynomial, S(x) = AO + Ajx + A2x2 + A3x3, defined by:
Stress Loading Conditions Coeff.
LL1 LL2 (ksi)
(ksi)
AO Al A2 A3 Effective crack size:
a, = a + 1/(67c)*[Kl(a)ySY] 2 Effective stress intensity factor:
KI(a.) = 4(ixa.) ( 0.706(Ao+Ap) + 0.537(2ah/)A, + 0.448(a*2/2)A 2 + 0.393(4a.3/3in)A 3)
PB-1 CRDM Loss of Load NP.xis 44
Framatome ANP 32-501 9396-02 Table 9. Evaluation of CRDM Nozzle Comer Crack for Loss of Load (Contd)
FATIGUE CRACK GROWTH Transient
Description:
80 cycles over 40 years AN =
2 cycles/year Operating Time (yr.)
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LL1 a
KI(a) 112 KI(a)
Cycle AKI LLI Aa as 112 as 0
2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 (n) (ksl4in)
(ksivin)
(kshl4in)
(in.)
47.76 36.78 10.98 0.00004 47.93 36.88 11.06 0.00004 48.10 36.97 11.13 0.00004 48.27 37.06 11.21 0.00004 48.44 37.16 11.28 0.00004 48.61 37.25 11.36 0.00005 48.77 37.34 11.44 0.00005 48.94 37.43 11.51 0.00005 49.10 37.51 11.59 0.00005 49.27 37.60 11.67 0.00005 49.43 37.69 11.74 0.00006 49.59 37.77 11.82 0.00006 49.75 37.86 11.89 0.00006 49.91 37.94 11.97 0.00006 50.07 38.03 12.05 0.00006 50.23 38.11 12.12 0.00007 50.39 38.19 12.20 0.00007 50.54 38.27 12.27 0.00007 50.70 38.35 12.35 0.00007 50.85 38.43 12.42 0.00007 51.00 38.50 12.50 0.00007 51.15 38.58 12.58 0.00007 51.30 38.65 12.65 0.00007 51.45 38.73 12.73 0.00007 51.60 38.80 12.80 0.00007 51.75 38.87 12.88 0.00007 (in.)
LLI 112 LLI 112 KI(a.)
KI(a,)
Margin = Kla / KI(a.)
(in.)
(ksisin)
(ksivin) 49.23 37.27 49.40 37.36 49.57 37.45 49.73 37.54 49.90 37.63 50.06 37.71 50.22 37.80 50.38 37.88 50.54 37.97 50.70 38.05 50.86 38.13 51.01 38.21 51.17 38.29 51.32 38.37 51.48 38.45 51.63 38.53 51.78 38.60 51.93 38.68 52.08 38.75 52.22 38.83 52.37 38.90 52.52 38.97 52.66 39.04 52.80 39.11 52.94 39.18 53.08 39.24 4.06 4.05 4.04 4.02 4.01 4.00 3.98 3.97 3.96 3.94 3.93 3.92 3.91 3.90 3.89 3.87 3.86 3.85 3.84 3.83 3.82 3.81 3.80 3.79 3.78 3.77 5.37 5.35 5.34 5.33 5.32 5.30 5.29 5.28 5.27 5.26 5.24 5.23 5.22 5.21 5.20 5.19 5.18 5.17 5.16 5.15 5.14 5.13 5.12 5.11 5.11 5.10 PB-1 CRDM Loss of Load NP.xls 45
Framatome ANP 32-5019396-02 Table 9. Evaluation of CRDM Nozzle Comer Crack for Loss of Load (Contd)
FRACTURE TOUGHNESS MARGINS Period of Operation:
Final Flaw Size:
Time =
25.00 years a = C
] In.
Margin = Kla I Kl(a,)
Loading Conditions LLI 112 Fracture Toughness, Kla 200.0 200.0 ksl Kl(a) 51.75 38.87 ksl a,
KI(a,)
53.08 39.24 ksl Actual Margin 3.77 5.10 Required Margin 3.16 3.16
!-An 4Vin rh-ln PB-1 CRDM Loss of Load NP.xls 46
A FRAMATOME ANP 32-5019396-02 7.0 Summary of Results A fracture mechanics analysis has been performed to evaluate a postulated large radial crack in the remnants of the original J-groove weld (and butter) at the CRDM nozzle reactor vessel head penetration. Results of this analysis are summarized below for the controlling transient.
Loss of Flow Temperature, Initial flaw size, T = 528 0F a = 1
] in.
] in.
Final flaw size after 25 years, af = 1 Flaw growth, Stress intensity factor at final flaw size, Fracture toughness, Safety margin:
af - ai = 0.192 in.
K1 = 62.16 kslin Kla = 200.0 ksiin Kla I KI = 3.22 > 410 = 3.16 Conclusion Based on an evaluation of fatigue crack growth Into the low alloy steel head, the above results demonstrate that a postulated radial crack in the Alloy 182 J-groove weld would be acceptable for 25 years of operation, considering the following transient frequencies:
Transient Heatup and Cooldown Plant Loading and Unloading 10% Step Load Changes 50% Step Load Reduction Reactor Trip Loss of Flow Loss of Load Freguencv (cycles/year) 5 75 50 5
10 2
2 47
A FRAMATOME ANP 32-5019396-02 8.0 References
- 1. Framatome ANP Drawing b2-5019702E-2, "Point Beach Unit 1 CRDM Nozzle ID Temper Bead Weld Repair."
- 2.
Framatome ANP Document 51-5017195-05, "Point Beach I & 2 CRDM Nozzle ID Temper Bead Weld Repair Requirements," September 2002.
- 4.
Framatome ANP Document 51-5012047-00, "Stress Corrosion Cracking of Low Alloy Steel," March 2001.
- 5.
(not used)
- 6.
Framatorme ANP Document 32-5020244-01, "Point Beach 1 CRDM Temperbead Bore Weld Analysis," February 2003.
- 7.
Framatome ANP Document 38-1290142-00, "NMC Letter Dated September 24, 2002,
Subject:
Dominion Engineering Calculations," September 2002.
- 8.
ASME Boiler and Pressure Vessel Code, Section i1I, Rules for Construction of Nuclear Power Plant Components. Division 1 - Appendices, 1989 Edition with No Addenda.
- 9. ASME Boiler and Pressure Vessel Code, Section Xl, Rules for Inservice Inspection of Nuclear Power Plant Components, 1998 Edition with Addenda through 2000.
- 10.
Marston, T.U., "Flaw Evaluation Procedures - Background and Application of ASME Section Xl, Appendix A," EPRI Report NP-719-SR, August 1978.
48
AFFIDAVIT COMMONWEALTH OF VIRGINIA
)
CITY OF LYNCHBURG
)
- 1.
My name is James F. Mallay. I am Diredor, Regulatory Affairs, for Framatome ANP CFANP"), and as such I am authorized to execute this Affidavit.
- 2.
1 am familiar with the criteria applied by FANP to determine whether certain FANP Information is proprietary. I am faniliar with the policies established by FANP to ensure the proper application of these criteria.
- 3.
1 am familiar with the Information contained In two calculation summary sheets (32-5019396-02 and 32-5019398-02) describing flaw evaluations on CRDM nozzles for Point Beach, Unit 1. These two documents are being provided to the NRC by Nuclear Management Company In response to a letter from the NRC of April 10, 2003. These two calculation summary sheets are referred to herein as "Documents. Information contained In these Documents has been classified by FANP as proprietary In accordance with the policies established by FANP for the control and protection of proprietary and confidential Information.
- 4.
These Documents contain information of a proprietary and confidential nature and Is of the type customarily held In confidence by FANP and not made available to the public.
Based on my experience, I am aware that other companies regard information of the Idnd contained in these Documents as proprietary and confidential.
- 5.
These Documents have been made available to the U.S. Nuclear Regulatory Commission in confidence with the request that the Information contained In these Documents be withheld from public disclosure.
- 6.
The following acteria are customarily applied by FANP to determine whether Information should be classified as proprietary:
(a)
The Information reveals details of FANP's research and development plans and programs or their results.
(b)
Use of the Information by a competitor would permit the competitor to significantly reduce Its expenditures, In time or resources, to design, produce, or market a similar product or service.
(c)
The Information Includes test data or analytical techniques concerning a process, methodology, or component, the application of which results In a competitive advantage for FANP.
(d)
The Information reveals certain distinguishing aspects of a process, methodology, or component, the exclusive use of which provides a competitive advantage for FANP In product optimization or marketability.
(e)
The information is vital to a competitive advantage held by FANP, would be helpful to competitors to FANP, and would likely cause substantial harm to the competitive position of FANP.
- 7.
In accordance with FANP's policies governing the protection and control of Information, proprietary Wormation contained in these Documents has been made available, on a limited basis, to others outside FANP only as required and under suitable agreement providing for nondisclosure and limited use of the Information.
- 8.
FANP policy requires that proprietary Information be kept In a secured file or area and distnbuted on a need-t-know basis.
- 8.
The foregoing statements are true and correct to the best of my knowledge, Information, and belief.
SUBSCRIBED before me this MY6 day of A
.A 2003.
Ella F. Carr-Payne NOTARY PUBUC, STATE OF VIRGINIA MY COMMISSION EXPIRES: 8131105
-'~-
ELLA F.
CARR-PAYNE