NRC 2003-0051, Response to Request for Additional Information (RAI) Regarding Request for Exemptions to 10 CFR 50.61, Appendices G & H to 10 CFR 50, and Approval of PTS Application for Pbnp Unit 2 and Proposed Heatup and Cooldown Limit Curves

From kanterella
Jump to navigation Jump to search
Response to Request for Additional Information (RAI) Regarding Request for Exemptions to 10 CFR 50.61, Appendices G & H to 10 CFR 50, and Approval of PTS Application for Pbnp Unit 2 and Proposed Heatup and Cooldown Limit Curves
ML031920142
Person / Time
Site: Point Beach  NextEra Energy icon.png
Issue date: 06/27/2003
From: Cayia A
Nuclear Management Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
NRC 2003-0051
Download: ML031920142 (97)


Text

NMCh Committed to Nuclear Excellen Point Beach Nuclear Plant Operated by Nuclear Management Company, LLC NRC 2003-0051 10 CFR 50.12 June 27, 2003 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 POINT BEACH NUCLEAR PLANT, UNITS 1 AND 2 DOCKETS 50-266 AND 50-301 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION (RAI) REGARDING REQUEST FOR EXEMPTIONS TO 10 CFR 50.61, APPENDICES G AND H TO 10 CFR 50, AND APPROVAL OF PTS APPLICATION FOR PBNP UNIT 2 AND PROPOSED HEATUP AND COOLDOWN LIMIT CURVES (TAC NOS. MB7926 AND MB7927)

Reference:

1) Letter from NMC to NRC dated March 3, 2003 (NRC 2003-0018)

In reference 1, Nuclear Management Company, LLC (NMC), submitted a request for permanent exemption from certain requirements of 10 CFR 50.61, "Fracture Toughness Requirements for Protection Against Thermal Shock Events", 10 CFR 50, Appendix G, "Fracture Toughness Requirements", and 10 CFR 50, Appendix H, "Reactor Vessel Material Surveillance Program Requirements", for the Unit 2 reactor vessel. This request was submitted in accordance with the provisions of 10 CFR 50.12, "Specific Exemptions".

During teleconferences between Nuclear Regulatory Commission (NRC) staff and PBNP staff on May 8 and May 21, 2003, NRC staff requested additional information in support of the exemption request. The NMC response to the staff's questions are provided in Attachment 1 of this letter. Enclosure (a) provides supporting information for the staffs questions.

No changes to the initially proposed exemption result from this additional information.

This letter contains no new commitments or changes to existing commitments.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on June 27, 2003.

A.J. ia Site i LAS/k d 6590 Nuclear Road

  • Two Rivers, Wisconsin 54241 Telephone: 920.755.2321

NRC 2003-0051 Page 2

Attachment:

1 Response to Requests for Additional Information

Enclosure:

(a) LTR-REA-02-23, Pressure Vessel Neutron Exposure Evaluations, Point Beach Units I and 2; S. L. Anderson, Radiation Engineering and Analysis; February 2002 cc: (w/o enclosure)

Project Manager, Point Beach Nuclear Plant, NRR, USNRC Regional Administrator, Region l1l, USNRC NRC Resident Inspector - Point Beach Nuclear Plant PSCW

ATTACHMENT 1 RESPONSE TO REQUEST FOR ADDmONAL INFORMATION (RAI) REGARDING REQUEST FOR EXEMPTIONS TO 10 CFR 50.61, APPENDICES G AND H TO 10 CFR 50, AND APPROVAL OF PTS APPLICATION FOR PBNP UNIT 2 AND PROPOSED HEATUP AND COOLDOWN LIMIT CURVES POINT BEACH NUCLEAR PLANT, UNITS I AND 2

NRC 2003-0051 Page 1 of 3 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION The following information is provided in response to the Nuclear Regulatory Commission (NRC) staff's request for additional information (RAI) communicated during telephone conferences with the Nuclear Management Company, LLC (NMC) staff on May 8 and May 21, 2003. The staffs questions are repeated below, followed by the NMC response.

NRC Question 1:

Heatup and Cooldown Curves: Provide estimated Peak Neutron Fluence values at the ID surface and 1/4T for limiting components at EOL for uprated conditions.

NMC Response:

The estimated Peak Neutron Fluence values at the ID surface and 1/4T for limiting components at EOL for uprated conditions is contained in Enclosure (a) and listed individually in Table 2 of WCAP-15976 MPBNP Units 1 & 2 Heatup and Cooldown Limit Curves for Normal Operation.

NRC Question 2:

Nuclear Management Company LLC, licensee for the Point Beach Units 1 and 2, in a letter dated March 3, 2003, requested exemptions to 10 CFR 50.61, Appendices G and H to 10 CFR 50 and approval of PTS for Unit 2 and approval of PT curves for both units. The submittal is based on an ATI report regarding the Master Curve" fracture toughness application for Unit 2 and WCAP-1 5976 for the PT curves.

Regarding the values of the fluence used for the Point Beach units as well as the capsules, which were irradiated outside the Point Beach Units, please respond to the following questions:

  • What is the axial position of the limiting intermediate to lower shell circumferential weld (SA-1484) and what is the axial average source used for the calculation of the fluence?
  • WCAP-15976 states that the fluence values used are based on calculations conforming to the guidance in RG 1.190. The values were transferred from the ATI report, which states the values but does not indicate their origin. Please indicate where these values come from and provide the documents, which substantiate the statement regarding RG 1.190.
  • Regarding circumferential weld SA-1484, material/irradiation data from non-Westinghouse plants were used without an integrated surveillance program (ISP).

Please state how the provisions of Appendix H for sharing irradiation data are satisfied?

(Is this the subject of the Appendix H exemption?)

  • Describe the assumptions used in your fluence calculations regarding the removal of the Hafnium rods and the projected power uprate.
  • Will future loadings maintain low leakage configurations?

NRC 2003-0051 Attachment I Page 2 of 3 NMC Response:

The axial position of the limiting intermediate to lower shell circumferential weld (SA-1484) is 15.06 inches below the centerline of the core. The axial average source used for the calculation of the fluence for the limiting intermediate to lower shell circumferential weld (SA-1484) is contained in the following table.

Average Relative Axial Power Distributions Point Beach Unit 2 Distance Relative Axial Power Distribution - F(z)

From Core Cycles 16-25 Bottom (ft) Cycles 1-5 Cycles 6-15 No-Hafnium Hafnium Cycles 26+

0.0 0.531 0.602 0.415 0.380 0.602 0.6 0.750 0.781 0.686 0.760 0.781 1.2 0.970 0.961 0.956 1.139 0.961 2.4 1.092 1.059 1.067 1.263 1.059 3.6 1.121 1.086 1.085 0.899 1.086 4.8 1.129 1.097 1.104 0.784 1.097 6.0 1.126 1.101 1.117 0.844 1.101 7.2 1.114 1.096 1.128 1.240 1.096 8.4 1.087 1.083 1.114 1.276 1.083 9.6 1.039 1.048 1.081 1.271 1.048 10.8 0.863 0.928 0.944 1.118 0.928 11.4 0.663 0.737 0.671 0.765 0.737 12.0 0.464 0.546 0.398 0.411 0.546 Notes:

I - Axial distributions are presented on a relative basis such that the average over the core height is 1.0.

2 - Cycles 1 through 5 operated with non-low leakage fuel management (new fuel assemblies located on the periphery).

3 - Cycles 6 through 15 operated with normal low leakage fuel management (burned fuel placed on the periphery).

4 - Cycles 16 through 25 operated with low leakage fuel management plus part length hafnium power suppression rods located in the twelve peripheral assemblies located on the core flats. Relative axial distributions are tabulated for assemblies with and without the hafnium power suppression rods. A multi-channel synthesis was used in the fluence calculation to account for the varying axial power distributions.

5 - Cycles 26+ represent projection into the future. The assumption used in these projections was that the hafnium power suppression rods were removed and the fuel management reverted back to the designs characteristic of Cycles 6-15.

6 - The circumferential weld location (15.06 inches below core midplane) corresponds to an axial elevation 4.75 ft above the bottom of the active fuel.

NRC 2003-0051 Page 3 of 3

  • The fluence values used in the analyses are provided in Enclosure (a) and are based on calculations conforming to the guidance in RG 1.190.
  • All known material data of the SA-1484 material is included in the B&W Owners Group Master Integrated Reactor Vessel Program (MIRVP). NMC is a member of and participant in this integrated surveillance program (ISP) and shares in the distribution of all material data. The NRC review and approval of the B&W Owners Group MIRVP is documented in a letter from David B. Matthews (NRC) to J. H. Taylor (Framatome ANP), "Babcock & Wilcox Owners Group (B&WOG) Reactor Vessel Working Group Report BAW-1 543A", Revision 4, Supplement 2, "Supplement to the Master Integrated Reactor Vessel Surveillance Program" (TAC No. M98089)," July 11, 1997.
  • The fluence analyses included scenarios for the removal of Hafnium rods and the projected power uprate following the conclusion of Unit 1 cycle 27 and Unit 2 Cycle 25. The fluence values resulting from these scenarios are contained in the tables contained in Enclosure (a).
  • Future fuel loadings are anticipated to maintain low leakage configurations.

NRC Question 3:

Please confirm that fluence calculations performed on the B&W Owner's Group capsules LI &

A3 were performed in accordance with the NRC approved B&W report BAW-2241-P-A. This is of importance because data from capsules LI & A3 were used in the formation of the Master Curve analyses.

NMC Response:

The fluence analyses performed during the LI & A3 capsule work were done in accordance with the NRC approved B&W report BAW-2242-P-A. These analyses are documented in the LI &

A3 capsule reports BAW-2400 "Analysis of the B&W Owners Group Capsule LI" and BAW-2412 "Analysis of the B&W Owners Group Capsule A3."

We have reviewed the analyses documented in reports BAW-2400 and BAW-2412 and have determined that they were appropriately performed.

NRC Question 4:

In ATI-021-030-2003-1 on page 3-1, it is indicated that data was imported from (among others)

BAW-2254 and BAW-2313. These reports were issued in 1995 and 1999, i.e., before the B&W methodology was approved. How do you justify using that data?

NMC Response:

The analyses in reports BAW-2254 and BAW-2313 were issued before the B&W methodology was approved. However, this methodology was subsequently approved by NRC as being acceptable. We have reviewed BAW-2254 and BAW-2313 to ensure that the methodology employed was in accordance with the methodology as later approved by NRC. This was confirmed to be the case and we have therefore determined that the data is acceptable.

ENCLOSURE to NRC 2003-0051 RESPONSE TO REQUEST FOR ADDmONAL INFORMATION (RAI) REGARDING REQUEST FOR EXEMPTIONS TO 10 CFR 50.61, APPENDICES G AND H TO 10 CFR 50, AND APPROVAL OF PTS APPLICATION FOR PBNP UNIT 2 AND PROPOSED HEATUP AND COOLDOWN LIMIT CURVES POINT BEACH NUCLEAR PLANT, UNITS I AND 2 LTR-REA-02-23 Pressure Vessel Neutron Exposure Evaluations Point Beach Units I and 2 S. L. Anderson Radiation Engineering and Analysis February 2002

LTR-REA-02-23 Pressure Vessel Neutron Exposure Evaluations Point Beach Units I and 2 S. L.. Anderson Radiation Engineering and Analysis February 2002 WESTINGHOUSE ELECTRIC COMPANY LLC P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355 1

ffi -

LTR-REA-02-23 1.0 Background In the assessment of the state of embrittlement of light water reactor (LWR) pressure vessels, an accurate evaluation of the neutron exposure of each of the materials comprising the beltline region of the vessel is required. In Appendix G to 10 CFR 50111, the beltline region is defined as "the region of the reactor vessel shell material (including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the reactor core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage". In Appendix H to 10 CFR 501'1, the threshold fast neutron fluence (E > 1.0 MeV) to be used to determine if a specific material is to be included in the beltline region is further defined as 1.OE+17 n/cm2.

Therefore, in order to encompass all areas of the reactor vessel anticipated to accrue a a fast neutron exposure greater than 1.OE+1 7 n/cm 2, plant specific exposure assessments must include evaluations not only at locations of maximum exposure at the inner diameter of the vessel, but, also as a function of axial, azimuthal, and radial location throughout the vessel wall. Regulatory Guide 1.190, 'Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence"1 describes state-of-the-art calculation and measurement procedures that are acceptable to the NRC staff for determining pressure vessel fluence applicable to these beltline locations.

This report describes neutron fluence assessments performed for the Point Beach Units 1 and 2 pressure vessel beltline regions based on the guidance specified in Regulatory Guide 1.190. In these assessments, fast neutron exposures expressed in terms of fast neutron fluence (E > 1.0 MeV) were established for each of the materials comprising the beltline region of the respective pressure vessels.

Exposures of the materials were determined on a plant and fuel cycle specific basis for the first 27 operating cycles at Point Beach Unit 1 and the first 25 operating cycles at Point Beach Unit 2. At the conclusion of fuel cycle 27 (on or about September 2002)

Point Beach Unit 1 is anticipated to have accrued approximately 24.3 effective full power years (efpy) of operation. Likewise at the conclusion of fuel cycle 25 (on or about April 2002) Point Beach Unit 2 is expected to have accrued approximately 23.6 efpy.

Following completion of the plant specific exposure assessments encompassing the fuel cycles designed to date, projections of the future neutron exposure of the pressure vessel beltline materials extending to 54 efpy of operation were performed for both units.

In performing the fluence projections for future operation, several scenarios were assumed in order to provide a matrix of material exposures based on a series of fuel management and power uprate options.

The fuel management strategies employed during the operating lifetime of both Point Beach Unit 1 and Unit 2 can be conveniently subdivided into three general categories as follows:

2

LTR-REA-02-23 Fuel Management Approach Unit I Unit 2 Out-In fuel management strategy with fresh fuel Cycles 1-7 Cycles 1-5 assemblies located on the core periphery.

Conventional low leakage fuel management Cycles 8-16 Cycles 6-15 strategy with burned fuel located on the core periphery.

Conventional low leakage fuel management Cycles 17-27 Cycles 16-25 strategy supplemented with the inclusion of part length hafnium power suppression rods located in the twelve peripheral fuel assemblies spanning the core cardinal axes.

Additionally, an uprate from the current operating core power of 1518.5 MWt to a new core power of 1678.0 MWt is planned for the near future. The following fluence projection scenarios were considered based on the various fuel management strategies and power uprate options:

Case Fuel Management Approach Core Power (MWt)

I Low Leakage With Hafnium Rods 1518.5 for full life Without Uprate 2 Low Leakage Without Hafnium 1518.5 for full life Rods Without Uprate 3 Low Leakage With Hafnium Rods 1518.5 to 1678.0 With Uprate 4 Low Leakage Without Hafnium 1518.5 to 1678.0 Rods With Uprate Based on these four operating scenarios, neutron exposure projections applicable to each of the beltline materials were developed for both Point Beach Units I and 2. In performing the fluence projections for each of these scenarios the power upratings were assumed to occur at the onset of cycle 28 and cycle 25 for Units 1 and 2, respectively.

Results of these plant specific calculations are provided in Section 2.0 of this report.

In addition to the plant specific neutron exposure calculations, dosimetry sets from three (3) in-vessel and twenty (20) ex-vessel sensor sets irradiated at Unit 1 and four (4) in-vessel and twenty (20) ex-vessel sensor sets irradiated at Unit 2 were also re-analyzed using dosimetry evaluation methodologies that follow the guidance provided in Regulatory Guide 1.190. The results of these dosimetry re-evaluations were then used to validate the calculational models that were applied in the plant specific neutron transport analyses of the Point Beach Units. The dosimetry evaluation methodology and comparisons of plant specific calculations with measurement results are provided in Section 3.0 of this report.

3

LTR-REA-02-23 2.0 Neutron Transport Calculations 2.1 Method of Analysis In performing the fast neutron exposure evaluations for the Point Beach Units 1 and 2 reactors, plant specific forward transport calculations were carried out using the three-dimensional flux synthesis technique described in Section 1.3.4 of Regulatory Guide 1.190. For the fuel cycles using either out-in loading patterns or traditional low leakage loading patterns, the following single channel synthesis equation was employed:

p(r,B,z) = (p(r,e)

  • p(r'z) p(r) where +(r,O,z) is the synthesized three-dimensional neutron flux distribution, O(rO) is the transport solution in rO geometry, +(rz) is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and +(r) is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the rO two-dimensional calculation.

For the fuel cycles employing part length hafnium power suppression rods in peripheral fuel assemblies, the axial power distributions in those assemblies differ significantly from the axial power distribution characteristic of the remainder of the reactor core. Therefore, for these fuel cycles the following multichannel synthesis equation was used in the transport calculations:

=p~r,8,) )*>A (r) Bp) (rz)

(PA (r) 1(r where the subscript "AX refers to the region of the reactor core that does not include hafnium power suppression rods and the subscript "BU refers to the region of the core comprised of the peripheral assemblies located on the cardinal axes that contain the part length absorber rods.

For the Point Beach Units I and 2 analyses, all of the transport calculations were carried out using the DORT two-dimensional discrete ordinates code Version 3.1131 and the BUGLE-96 cross-section library 41. The BUGLE-96 library provides a 67 group coupled neutron-gamma ray cross-section data set produced specifically for light water reactor application. In these analyses, anisotropic scattering was treated with a PS legendre expansion and the angular discretization was modeled with an S1e order of angular quadrature.

A plan view of the rO model of the Point Beach Units 1 and 2 reactor geometry at the core midplane is shown in Figure 2.1-1. Since the reactor exhibits octant symmetry only a 0° to 450 sector is depicted. In addition to the core, reactor internals, pressure vessel and primary biological shield, the model also included explicit representations of the 4

LTR-REA-02-23 surveillance capsules, the pressure vessel cladding, and the insulation located external to the pressure vessel.

From a neutronic standpoint, the inclusion of the surveillance capsules and associated support structure in the analytical model is significant. Since the presence of the capsules and structure has a marked impact on the magnitude of the neutron flux as well as on the relative neutron and gamma ray spectra at dosimetry locations within the capsules, a meaningful evaluation of the radiation environment internal to the capsules can be made only when these perturbation effects are properly accounted for in the analysis.

In contrast to the relatively massive stainless steel and carbon steel structures associated with the internal surveillance capsules, the thin walled aluminum capsules used for the measurements in the reactor cavity were designed to minimize perturbations in the neutron flux and, thus, to provide free field data at the measurement locations. Therefore, explicit descriptions of these small capsules in the transport models was not required.

In developing the rO analytical model of the reactor geometry shown in Figure 2.1-1, nominal design dimensions were employed for the various structural components.

Likewise, water temperatures and, hence, coolant density in the reactor core and downcomer regions of the reactor were taken to be representative of full power operating conditions. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures such as fuel assembly grids, guide tubes, etc. The rO geometric mesh description of the reactor model shown in Figure 2.1-1 consisted of 148 radial by 105 azimuthal intervals. Mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the rO calculations was set at a value of 0.001.

A section view of the rz model of the Point Beach Units I and 2 reactors is shown in Figure 2.1-2. The model extended radially from the centerline of the reactor core out to a location interior to the primary biological shield and over an axial span from an elevation 5 inches below the active fuel to 17 inches above the active fuel. The axial extent of the model was chosen to permit the determination of the maximum exposure of vessel materials expected to experience a fast neutron fluence greater than I .Oe+17 nlcM2 (E > 1.0 MeV) over the service life of the respective units.

As in the case of the r,9 model, nominal design dimensions and full power coolant densities were employed in the calculations. In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone.

The stainless steel former plates located between the core baffle and core barrel regions were also explicitly included in the model. The rz geometric mesh description of the reactor model shown in Figure 2.1-2 consisted of 127 radial by 155 axial intervals. Mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the rz calculations was also set at a value of 0.001.

5

lI LTR-REA-02-23 The one-dimensional radial model used in the synthesis procedure consisted of the same 127 radial mesh intervals included in the r~z model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry.

The core power distributions used in the plant specific transport analysis for the Point Beach Units 1 and 2 reactors were taken from the appropriate fuel cycle design reports for the respective units (References 5 through 31 for Unit 1 and 32 through 56 for Unit 2). The data extracted from the design reports included fuel assembly specific initial enrichments, beginning of cycle burnups and end of cycle bumups. Appropriate axial distributions were also extracted from the respective design reports.

In constructing the core source distributions from the fuel assembly specific enrichment and bumup data, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes; and from that fission split, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

6

LTR-REA-02-23 Figure 2.1-1 Point beach Units I and 2 rO Reactor Geometry C

0

<any~~~~~~~~~~

C /~~~~ e l r l II ll I l X X l & - o~

(W) qw u 7

i-I--

LTR-REA-02-23 Figure 2.1-2 Point beach Units 1 and 2 rz Reactor Geometry 200-150 100 50 8 r

0-

-100-

-200 'a a a a a a a r 0 40 s0 120 1S0 200 240 R Axih (cn) 8

LTR-REA-02-23 2.2 Calculated Neutron Exposure of Point Beach Unit I Beitline Materials A schematic of the beltline region of the Point Beach Unit 1 reactor pressure vessel is shown in Figure 2.2-1. In the case of the Unit I pressure vessel, the beltline region is constructed of two (2) shell plates, two (2) longitudinal welds (one in the intermediate shell plate and one in the lower shell plate), two (2) circumferential welds (one joining the intermediate and lower shell plates and one joining the intermediate shell plate to the upper shell forging), and the upper shell forging itself. Each of these seven materials must be considered in the overall embrittlement assessments of the pressure vessel.

Pressure vessel materials not included in this compilation are not anticipated to experience a fast neutron (E > 1.0 MeV) exposure in excess of 1.OE+17 n/cm 2 over the service life of the unit and, therefore, are not included in the definition of the beltline region.

The plant and fuel cycle specific calculated fast neutron (E > 1.0 MeV) fluence experienced by the materials comprising the bettline region of the Point Beach Unit I reactor are presented in Tables 2.2-1 through 2.2-6 for plant operation through the conclusion of the 27th fuel cycle. The data listed in Tables 2.2-1 through 2.2-6 provide a summary of the calculated fast neutron fluence (E > 1.0 MeV) for all Point Beach Unit 1 fuel cycles designed to date.

In Tables 2.2-1 through 2.2-6, cycle specific maximum neutron exposures at the pressure vessel clad/base metal interface are given at azimuthal angles of 00, 150, 300, and 450 relative to the core cardinal axes. The data provided in Tables 2.2-1 through 2.2-6 were taken at the axial location of the maximum exposure experienced by each material based on the results of the three-dimensional synthesized neutron fluence evaluations.

As noted in Section 1.0 of this report, three general fuel management strategies have been employed during the course of the first 27 fuel cycles of operation at Point Beach Unit 1. These three approaches are summarized as follows:

Cycles Fuel Management Approach 1-7 Out-In fuel management strategy with fresh fuel assemblies located on the core periphery.

8-16 Conventional low leakage fuel management strategy with burned fuel located on the core periphery.

17-27 Conventional low leakage fuel management strategy supplemented with the inclusion of part length hafnium power suppression rods located in the twelve peripheral fuel assemblies spanning the core cardinal axes.

9

- - -L LTR-REA-02-23 For Point Beach Unit 1, the hafnium power suppression rods were 72 inches in length and were positioned in the bottom half of the active core region. Thus, the maximum flux reduction impact of the power suppression rods was experienced by the lower shell plate in the 0°-20° azimuthal span as well as by the lower shell longitudinal weld located on the 150 azimuth. Other materials comprising the beltline region of the Point Beach Unit I pressure vessel were impacted to a much lesser degree by the presence of the part length absorber rods.

Projections of calculated fast neutron fluence to be accrued beyond the end of cycle 27 were based on the four potential scenarios described in Section 1.0 of this report. The assumed core power level and core power distributions used in these projections are summarized as follows:

Case I Core Power Distribution Core Power (MWt)

I Average of Cycles 17-27 1518.5 2 Average of Cycles 8-16 1518.5 3 Average of Cycles 17-27 1678.0 4 J Average of Cycles 8-16 1678.0 For operation with hafnium power suppression rods, the core power distribution averaged over the eleven fuel cycles that have contained the suppression rods was assumed to be representative of future fuel cycle designs. For operation without the hafnium suppression rods, a power distribution averaged over the nine fuel cycles employing conventional low leakage (Cycles 8-16) was assumed to be representative of future operation.

Results of the fast neutron (E > 1.0 MeV) fluence projections for the Point Beach Unit 1 beltline materials are provided in Tables 2.2-7 through 2.2-18. In Tables 2.2-7 through 2.2-12, data are provided both with and without the presence of hafnium power suppression rods assuming continued operation at a core power level of 1518.5 MWt. In Tables 2.2-13 through 2.2-18, fluence projections are given both with and without the presence of hafnium suppression rods and assuming a core power uprate to 1678.0 MWt at the onset of cycle 28.

10

LTR-REA-02-23 Figure 2.2-1 Locations of Pressure Vessel Beltline Materials Point Beach Unit 1 CIRcIUF~wffAL SEMS V."ZCAL SEAM Y.

112 I

x 11

LTR-REA-02-23 Table 2.2-1 Intermediate Shell to Lower Shell Circumferential Weld (SA-1 101)

Neutron Fluence (E > 1.0 MeV)

Point Beach Unit 1 Cycle Cumulative Neutron Fluence [nlcmi Fuel Time Time Cycle lefpsJ [efps] 0 Deg. 15 deg. 30 Deg. 45 Deg.

1 4.69E+07 4.69E+07 2.OOE+18 1.20E+18 8.07E+17 6.98E+17 2 2.89E+07 7.58E+07 3.11E+18 1.88E+18 1.27E+18 1.1OE+18 3 3.82E+07 1.14E+08 4.64E+18 2.82E+18 1.92E+18 1.65E+18 4 2.20E+07 1.36E+08 5.62E+18 3.41 E+18 2.34E+18 2.01E+18 5 2.48E+07 1.61 E+08 6.68E+18 4.07E+18 2.81 E+18 2.42E+18 6 2.57E+07 1.87E+08 7.71 E+18 4.71E+18 3.29E+18 2.84E+18 7 2.75E+07 2.14E+08 8.83E+18 5.39E+18 3.77E+18 3.24E+18 8 2.03E+07 2.34E+08 9.52E+18 5.80E+18 4.08E+18 3.53E+18 9 1.88E+07 2.53E+08 1.01E+19 6.15E+18 4.34E+18 3.78E+18 10 2.04E+07 2.74E+08 1.06E+19 6.51 E+18 4.63E+18 4.06E+18 11 1.94E+07 2.93E+08 1.12E+19 6.84E+18 4.86E+18 4.25E+18 12 3.04E+07 3.23E+08 1.20E+19 7.41 E+18 5.28E+18 4.61 E+18 13 2.49E+07 3.48E+08 1.27E+19 7.89E+18 5.65E+18 4.91 E+18 14 2.66E+07 3.75E+08 1.34E+19 8.39E+18 6.03E+18 5.23E+18 15 2.65E+07 4.01 E+08 1.41E+19 8.87E+18 6.39E+18 5.52E+18 16 2.69E+07 4.28E+08 1.48E+19 9.39E+18 6.78E+18 5.83E+18 17 2.61 E+07 4.54E+08 1.53E+19 9.75E+18 7.1 OE+18 6.13E+18 18 2.62E+07 4.81 E+08 1.58E+19 1.01E+19 7.39E+18 6.40E+18 19 2.71 E+07 5.08E+08 1.63E+19 1.05E+19 7.72E+18 6.70E+18 20 2.50E+07 5.33E+08 1.68E+19 1.08E+19 8.03E+18 6.97E+18 21 2.82E+07 5.61 E+08 1.73E+19 1.12E+19 8.38E+18 7.31 E+18 22 2.68E+07 5.88E+08 1.78E+19 1.16E+19 8.72E+18 7.62E+18 23 2.73E+07 6.15E+08 1.83E+19 1.19E+19 9.04E+18 7.93E+18 24 3.1 OE+07 6.46E+08 1.88E+19 1.23E+19 9.40E+18 8.26E+18 25 3.81 E+07 6.84E+08 1.96E+19 1.28E+19 9.90E+18 8.70E+18 26 3.96E+07 7.24E+08 2.02E+19 1.33E+19 1.04E+19 9.13E+18 27 4.47E+07 7.68E+08 2.11 E+19 1.40E+19 1.09E+19 9.64E+18 12

LTR-REA-02-23 Table 2.2-2 Lower Shell Plate (C-1423)

Neutron Fluence (E > 1.0 MeV)

Point Beach Unit I Cycle Cumulative Neutron Fluence [nlcmI Fuel Time Time Cycle [efps) [efps] 0 Den. 15 deg. 30 Deg. 45 Deg.

I 4.69E+07 4.69E+07 2.07E+18 1.24E+18 8.36E+17 7.23E+17 2 2.89E+07 7.58E+07 3.21E+18 1.94E+18 1.32E+18 1.13E+18 3 3.82E+07 1.14E+08 4.78E+18 2.90E+18 1.98E+18 1.70E+18 4 2.20E+07 1.36E+08 5.80E+18 3.52E+18 2.42E+18 2.08E+18 5 2.48E+07 1.61E+08 6.90E+18 4.21E+18 2.91E+18 2.50E+18 6 2.57E+07 1.87E+08 7.97E+18 4.87E+18 3.41 E+18 2.94E+18 7 2.75E+07 2.14E+08 9.14E+18 5.57E+18 3.90E+18 3.36E+18 8 2.03E+07 2.34E+08 9.86E+18 6.01E+18 4.22E+18 3.66E+18 9 1.88E+07 2.53E+08 1.05E+19 6.37E+18 4.51 E+18 3.92E+18 10 2.04E+07 2.74E+08 1.1OE+19 6.75E+18 4.81E+18 4.22E+18 11 1.94E+07 2.93E+08 1.16E+19 7.1OE+18 5.05E+18 4.42E+18 12 3.04E+07 3.23E+08 1.25E+19 7.69E+18 5.50E+18 4.80E+18 13 2.49E+07 3.48E+08 1.32E+19 8.19E+18 5.87E+18 5.1E+18 14 2.66E+07 3.75E+08 1.39E+19 8.70E+18 6.27E+18 5.43E+18 15 2.65E+07 4.01 E+08 1.46E+19 9.21 E+18 6.65E+18 5.74E+18 16 2.69E+07 4.28E+08 1.54E+19 9.73E+18 7.05E+18 6.06E+18 17 2.61E+07 4.54E+08 1.59E+19 1.OIE+19 7.37E+18 6.37E+18 18 2.62E+07 4.81 E+08 1.63E+19 1.04E+19 7.68E+18 6.64E+18 19 2.71 E+07 5.08E+08 1.68E+19 1.08E+19 8.02E+18 6.96E+18 20 2.50E+07 5.33E+08 1.73E+19 1.12E+19 8.34E+18 7.24E+18 21 2.82E+07 5.61E+08 1.78E+19 1.15E+19 8.70E+18 7.58Ei-18 22 2.68E+07 5.88E+08 1.83E+19 1.19E+19 9.04E+18 7.91 E+18 23 2.73E+07 6.15E+08 1.88E+19 1.23E+19 9.38E+18 8.23E+18 24 3.IOE+07 6.46E+08 1.93E+19 1.27E+19 9.75E+18 8.57E+18 25 3.81 E+07 6.84E+08 2.OOE+19 1.32E+19 1.03E+19 9.03E+18 26 3.96E+07 7.24E+08 2.07E+19 1.37E+19 1.07E+19 9.47E+18 27 4.47E+07 7.68E+08 2.15E+19 1.43E+19 1.13E+19 1.OOE+19 13

LTR-REA-02-23 Table 2.2-3 Intermediate Shell Plate (A-981 1)

Neutron Fluence (E > 1.0 MeV)

Point Beach Unit 1 Cycle Cumulative Neutron Fluence [nlcm Fuel Time Time Cycle [efpsa [efps) 0 Deg. 15 deg. 30 Deg. 45 Deg.

I 4.69E+07 4.69E+07 2.01E+18 1.21E+18 8.48E+17 7.33E+17 2 2.89E+07 7.58E+07 3.19E+18 1.93E+18 1.34E+18 1.16E+18 3 3.82E+07 1.14E+08 4.64E+18 2.82E+18 2.03E+18 1.74E+18 4 2.20E+07 1.36E+08 5.63E+18 3.42E+18 2.47E+18 2.12E+18 5 2.48E+07 1.61 E+08 6.69E+18 4.07E+18 2.95E+18 2.54E+18 6 2.57E+07 1.87E+08 7.72E+18 4.72E+18 3.45E+18 2.98E+18 7 2.75E+07 2.14E+08 8.87E+18 5.41 E+18 3.95E+18 3.40E+18 8 2.03E+07 2.34E+08 9.56E+18 5.83E+18 4.27E+18 3.70E+18 9 1.88E+07 2.53E+08 1.01E+19 6.18E+18 4.55E+18 3.96E+18 10 2.04E+07 2.74E+08 1.06E+19 6.50E+18 4.83E+18 4.23E+18 11 1.94E+07 2.93E+08 1.12E+19 6.85E+18 5.08E+18 4.44E+18 12 3.04E+07 3.23E+08 1.20E+19 7.40E+18 5.51EE+18 4.81E+18 13 2.49E+07 3.48E+08 1.27E+19 7.90E+18 5.89E+18 5.12E+18 14 2.66E+07 3.75E+08 1.35E+19 8.42E+18 6.30E+18 5.45E+18 15 2.65E+07 4.01E+08 1.42E+19 8.93E+18 6.68E+18 5.77E+18 16 2.69E+07 4.28E+08 1.49E+19 9.46E+18 7.09E+18 6.09E+18 17 2.61 E+07 4.54E+08 1.57E+19 9.94E+18 7.44E+18 6.42E+18 18 2.62E+07 4.81E+08 1.64E+19 1.04E+19 7.75E+18 6.70E+18 19 2.71 E+07 5.08E+08 1.71E+19 1.09E+19 8.11E+18 7.02E+18 20 2.50E+07 5.33E+08 1.79E+19 1.14E+19 8.44E+18 7.31E+18 21 2.82E+07 5.61 E+08 1.86E+19 1.18E+19 8.82E+18 7.67E+18 22 2.68E+07 5.88E+08 1.94E+19 1.23E+19 9.17E+18 8.OOE+18 23 2.73E+07 6.15E+08 2.01E+19 1.28E+19 9.52E+18 8.33E+18 24 3.10E+07 6.46E+08 2.09E+19 1.33E+19 9.91E+18 8.69E+18 25 3.81 E+07 6.84E+08 2.20E+19 1.40E+19 1.04E+19 9.16E+18 26 3.96E+07 7.24E+08 2.30E+19 1.47E+19 1.09E+19 9.61E+18 27 4.47E+07 7.68E+08 2.43E+19 1.55E+19 1.16E+19 1.02E+19 14

.LTR-REA-02-23 Table 2.2-4 Intermediate Shell (SA-7751812) and Lower Shell (SA-847) Longitudinal Welds Neutron Fluence (E > 1.0 MeV)

Point Beach Unit I Cycle Cumulative Neutron Fl ence [nlcml Fuel Time Time Intermediate Lower Cycle [efps] (efps] Shell Shell I 4.69E+07 4.69E+07 1.21 E+18 1.24E+18 2 2.89E+07 7.58E+07 1.93E+18 1.94E+18 3 3.82E+07 1.14E+08 2.82E+18 2.90E+18 4 2.20E+07 1.36E+08 3.42E+18 3.52E+18 5 2.48E+07 1.61 E+08 4.07E+18 4.21 E+18 6 2.57E+07 1.87E+08 4.72E+18 4.87E+18 7 2.75E+07 2.14E+08 5.41E+18 5.57E+18 8 2.03E+07 2.34E+08 5.83E+18 6.01E+18 9 1.88E+07 2.53E+08 6.18E+18 6.37E+18 10 2.04E+07 2.74E+08 6.50E+18 6.75E+18 11 1.94E+07 2.93E+08 6.85E+18 7.1OE+18 12 3.04E+07 3.23E+08 7.40E+18 7.69E+18 13 2.49E+07 3.48E+08 7.90E+18 8.19E+18 7-14 2.66E+07 3.75E+08 8.42E+18 8.70E+18 15 2.65E+07 4.01 E+08 8.93E+18 9.21E+18 16 2.69E+07 4.28E+08 9.46E+18 9.73E+18 17 2.61E+07- 4.54E+08 9.94E+18 1.01E+19 18 2.62E+07 4.811E+08 1.04E+19 1.04E+19 19 2.71 E+07 5.08E+08 1.09E+19 1.08E+19 20 2.50E+07 5.33E+08 1.14E+19 1.12E+19 21 2.82E+07 5.61E+08 1.18E+19 1.15E+19 22 2.68E+07- 5.88E+08 1.23E+19 1.19E+19 23 2.73E+07 6.15E+08 1.28E+19 1.23E+19 24 3.10E+07 6.46E+08 1.33E+19 1.27E+19 25 3.81E+07 6.84E+08 1.40E+19 1.32E+19 26 3.96E+07 7.24E+08 1.47E+19 1.37E+19 27 4.47E+07 7.68E+08 1.55E+19 1.43E+19 15

LTR-REA-02-23 Table 2.2-5 Intermediate Shell to Upper Shell Circumferential Weld (SA-1426)

Neutron Fluence (E > 1.0 MeV)

Point Beach Unit 1 Cycle Cumulative Neutron Fluence [nlcm_ _

Fuel Time Time Cycle [efpsj [efps] 0 Deg. 15 deg. 30 Deg. 45 Deg.

I 4.69E+07 4.69E+07 1.15E+17 6.93E+16 4.66E+16 4.03E+16 2 2.89E+07 7.58E+07 2.46E+17 1.49E+17 1.01E+17 8.72E+16 3 3.82E+07 1.14E+08 3.45E+17 2.1OE+17 1.44E+17 1.23E+17 4 2.20E+07 1.36E+08 4.09E+17 2.49E+17 1.71E+17 1.47E+17 5 2.48E+07 1.61 E+08 4.95E+17 3.02E+17 2.09E+17 1.80E+17 6 2.57E+07 1.87E+08 5.71 E+17 3.49E+17 2.44E+17 2.11OE+17 7 2.75E+07 2.14E+08 6.56E+ 17 4.01E+17 2.80E+17 2.41 E+17 8 2.03E+07 2.34E+08 7.12E+17 4.35E+17 3.06E+17 2.64E+17 9 1.88E+07 2.53E+08 7.66E+17 4.68E+17 3.31 E+17 2.89E+17 10 2.04E+07 2.74E+08 8.06E+17 4.95E+17 3.53E+17 3.09E+17 11 1.94E+07 2.93E+08 8.55E+17 5.24E+17 3.73E+17 3.26E+17 12 3.04E+07 3.23E+08 9.15E+17 5.65E+17 4.04E+17 3.53E+17 13 2.49E+07 3.48E+08 9.77E+17 6.08E+17 4.36E+17 3.80E+17 14 2.66E+07 3.75E+08 1.04E+18 6.51 E+17 4.70E+17 4.07E+17 15 2.65E+07 4.01 E+08 1.1OE+18 6.95E+17 5.02E+17 4.33E+17 16 2.69E+07 4.28E+08 1.16E+18 7.39E+17 5.35E+17 4.60E+17 17 2.61 E+07 4.54E+08 1.20E+18 7.72E+17 5.68E+17 4.91 E+17 18 2.62E+07 4.81 E+08 1.24E+18 8.04E+17 6.OOE+17 5.21E+17 19 2.71 E+07 5.08E+08 1.28E+18 8.35E+17 6.32E+17 5.50E+17 20 2.50E+07 5.33E+08 1.32E+18 8.65E+17 6.60E+17 5.74E+17 21 2.82E+07 5.61 E+08 1.36E+18 8.94E+17 6.89E+17 6.02E+17 22 2.68E+07 5.88E+08 1.40E+18 9.21 E+17 7.15E+17 6.27E+17 23 2.73E+07 6.15E+08 1.43E+18 9.48E+17 7.40E+17 6.51 E+17 24 3.1OE+07 6.46E+08 1.47E+18 9.80E+17 7.72E+17 6.81 E+17 25 3.81 E+07 6.84E+08 1.53E+18 1.02E+18 8.15E+17 7.19E+17 26 3.96E+07 7.24E+08 1.58E+18 1.06E+18 8.55E+17 7.56E+17 27 4.47E+07 7.68E+08 1.64E+18 1.11E+18 9.01E+17 7.98E+17 16

LTR-REA-02-23 Table 2.2-6 Upper Shell Forging Neutron Fluence (E > 1.0 MeV)

Point Beach Unit 1 Cycle Cumulative Neutron Flu nce InIcm_

Fuel Time Time Cycle [efps] [efps] 0 Deg. 15 de. 30 Deg. 45 Deg.

I 4.69E+07 4.69E+07 1.15E+17 6.93E+16 4.66E+16 4.03E+16 2 2.89E+07- 7.58E+07 2.46E+17 1.49E+17 1.OIE+17 8.72E+16 3 3.82E+07 1.14E+08 3.45E+17 2.1OE+17 1.44E+17 1.23E+17 4 2.20E+07 1.36E+08 4.09E+17 2.49E+17 1.71E+17 1.47E+17 6 2.48E+07 1.61 E+08 4.95E+17 3.02E+17 2.09E+17 1.80E+17 6 2.57E+07 1.87E+08 5.71E+17 3.49E+17 2.44E+17 2.1OE+17 7 2.75E+07 2.14E+08 6.56E+17 4.OIE+17 2.80E+17 2.41 E+ 17 8 2.03E+07 2.34E+08 7.12E+17 4.35E+17 3.06E+17 2.64E+17 9 1.88E+07 2.53E+08 7.66E+17 4.68E+17 3.31E+17 2.89E+17 10 2.04E+07 2.74E+08 8.06E+17 4.95E+17 3.53E+17 3.09E+17 11 1.94E+07 2.93E+08 8.55E+17 5.24E+17 3.73E+17 3.26E+17 12 3.04E+07 3.23E+08 9.15E+17 5.65E+17 4.04E+17 3.53E+17 13 2.49E+07 3.48E+08 9.77E+17 6.08E+17 4.36E+17 3.80E+17 14 2.66E+07 3.75E+08 1.04E+18 6.51E+17 4.70E+17 4.07E+17 15 2.65E+07 4.01E+08 1.1OE+18 6.95E+17 5.02E+17 4.33E+17 16 2.69E+07 4.28E+08 1.16E+18 7.39E+17 5.35E+17 4.60E+17 17 2.61 E+07 4.54E+08 1.20E+18 7.72E+17 5.68E+17 4.91E+17 18 2.62E+07 4.81 E+08 1.24E+18 8.04E+17 6.OOE+17 5.21 E+17 19 2.71E+07 5.08E+08 1.28E+18 8.35E+17 6.32E+17 5.50E+17 20 2.50E+07 5.33E+08 1.32E+18 8.65E+17 6.60E+17 5.74E+17 21 2.82E+07 5.61 E+08 1.36E+18 8.94E+17 6.89E+17 6.02E+17 22 2.68E+07 5.88E+08 1.40E+18 9.21 E+17 7.15E+17 6.27E+17 23 2.73E+07 6.15E+08 1.43E+18 9.48E+17 7.40E+17 6.51E+17 24 3.1OE+07 6.46E+08 1.47E+18 9.80E+17 7.72E+17 6.81EE+17 25 3.81E+07 6.84E+08 1.53E+18 1.02E+18 8.15E+17 7.19E+17 26 3.96E+07 7.24E+08 1.58E+18 1.06E+18 8.55E+17 7.56E+17 27 4.47E+07 7.68E+08 1.64E+18 1.11E+18 9.01E+17 7.98E+17 17

LTR-REA-02-23 Table 2.2-7 Intermediate Shell to Lower Shell Circumferential Weld (SA-1 101)

Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence [n/cm]

Time

[efpyl 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.11E+19 1.40E+19 1.09E+19 9.64E+18 26.0 2.21 E+19 1.47E+19 1.16E+19 1.02E+19 28.0 2.32E+19 1.55E+19 1.23E+19 1.09E+19 30.0 2.44E+19 1.64E+19 1.31E+19 1.16E+19 32.0 2.56E+19 1.72E+19 1.39E+19 1.23E+19 34.0 2.67E+19 1.81 E+19 1.46E+19 1.31E+19 36.0 2.79E+19 1.89E+19 1.54E+19 1.38E+19 38.0 2.90E+19 1.98E+19 1.62E+19 1.45E+19 40.0 3.02E+19 2.06E+19 1.70E+19 1.52E+19 42.0 3.14E+19 2.15E+19 1.77E+19 1.59E+19 44.0 3.25E+19 2.23E+19 1.85E+19 1.66E+19 46.0 3.37E+19 2.32E+19 1.93E+19 1.73E+19 48.0 3.49E+19 2.40E+19 2.OOE+19 1.80E+19 50.0 3.60E+19 2.49E+19 2.08E+19 1.87E+19 52.0 3.72E+19 2.57E+19 2.16E+19 1.94E+19 54.0 3.84E+19 2.66E+19 2.23E+19 2.01E+19 Without Hafnium Suppression Rods Operating Neutron Flueic ln/ci __nk Time (efpyl 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.11E+19 1.40E+19 1.09E+19 9.64E+18 26.0 2.26E+19 1.49E+19 1.17E+19 1.03E+19 28.0 2.43E+19 1.61E+19 1.26E+19 1.10E+19 30.0 2.61E+19 1.73E+19 1.34E+19 1.18E+19 32.0 2.79E+19 1.85E+19 1.43E+19 1.26E+19 34.0 2.96E+19 1.97E+19 1.52E+19 1.33E+19 36.0 3.14E+19 2.08E+19 1.61E+19 1.41E+19 38.0 3.32E+19 2.20E+19 1.70E+19 1.48E+19 40.0 3.49E+19 2.32E+19 1.79E+19 1.56E+19 42.0 3.67E+19 2.44E+19 1.88E+19 1.64E+19 44.0 3.85E+19 2.56E+19 1.97E+19 1.71E+19 46.0 4.02E+19 2.67E+19 2.05E+19 1.79E+19 48.0 4.20E+19 2.79E+19 2.14E+19 1.87E+19 50.0 4.38E+19 2.91 E+19 2.23E+19 1.94E+19 52.0 4.55E+19 3.03E+19 2.32E+19 2.02E+19 54.0 4.73E+19 3.14E+19 2.41 E+19 2.09E+19 Note: The first value listed in the 'Operating Time' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

18

LTR-REA-02-23 Table 2.2-8 Lower Shell Plate (C-1423)

Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit I With Hafnium Suppression Rods Operating Neutron Fluence rnlcm _ _

Time

[efpyl 0 Deg. 1S deg. 30 Deg. 45 Deg.

24.3 2.15E+19 1.43E+19 1.13E+19 1.00E+19 26.0 2.25E+19 1.50E+19 1.20E+19 1.06E+19 28.0 2.36E+19 1.59E+19 1.28E+19 1.13E+19 30.0 2.47E+19 1.67E+19 1.36E+19 1.21E+19 32.0 2.59E+19 1.76E+19 1.44E+19 1.28E+19 34.0 2.70E+19 1.84E+19 1.52E+19 1.35E+19 36.0 2.81 E+19 1.93E+19 1.60E+19 1.43E+19 38.0 2.93E+19 2.01E+19 1.68E+19 1.50E+19 40.0 3.04E+19 2.1OE+19 1.76E+19 1.57E+19 42.0 3.16E+19 2.18E+19 1.83E+19 1.65E+19 44.0 3.27E+19 2.27E+19 1.91 E+19 1.72E+19 46.0 3.38E+19 2.35E+19 1.99E+19 1.79E+19 48.0 3.50E+19 2.44E+19 2.07E+19 1.87E+19 50.0 3.61 E+19 2.52E+19 2.15E+19 1.94E+19 52.0 3.72E+19 2.61E+19 2.23E+19 2.01 E+19 64.0 3.84E+19 2.69E+19 2.31E+19 2.08E+19 Without Hafnium Suppression Rods Operating Neutron Fluence in/cmz_

Time

[efpy] ODeg. 15 deg. 30 Deg. 45 Deg.

24.3 2.15E+19 1.43E+19 1.13E+19 1.OOE+19 26.0 2.30E+19 1.53E+19 1.21E+19 1.07E+19 28.0 2.49E+19 1.65E+19 1.30E+19 1.15E+19 30.0 2.67E+19 1.78E+19 1.39E+19 1.22E+19 32.0 2.85E+19 1.90E+19 1.49E+19 1.30E+19 34.0 3.04E+19 2.02E+19 1.58E+19 1.38E+19 36.0 3.22E+19 2.15E+19 1.67E+19 1.46E+19 38.0 3.41E+19 2.27E+19 1.77E+19 1.54E+19 40.0 3.59E+19 2.39E+19 1.86E+19 1.62E+19 42.0 3.77E+19 2.51E+19 1.95E+19 1.70E+19 44.0 3.96E+19 2.64E+19 2.04E+19 1.78E+19 46.0 4.14E+19 2.76E+19 2.14E+19 1.86E+19 48.0 4.33E+19 2.88E+19 2.23E+19 1.94E+19 50.0 4.51 E+19 3.OOE+19 2.32E+19 2.02E+19 62.0 4.69E+19 3.13E+19 2.41 E+19 2.10E+19 54.0 4.88E+19 3.25E+19 2.51E+19 2.18E+19 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

19

LTR-REA-02-23 Table 2.2-9 Intermediate Shell Plate (A-981 1)

Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence [nkcm _ _

Time

[efpyj 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.43E+19 1.55E+19 1.16E+19 1.02E+19 26.0 2.57E+19 1.64E+19 1.22E+19 1.08E+19 28.0 2.75E+19 1.75E+19 1.31E+19 1.15E+19 30.0 2.92E+19 1.87E+19 1.39E+19 1.23E+19 32.0 3.09E+19 1.98E+19 1.47E+19 1.30E+19 34.0 3.27E+19 2.09E+19 1.55E+19 1.38E+19 36.0 3.44E+19 2.20E+19 1.64E+19 1.45E+19 38.0 3.61E+19 2.32E+19 1.72E+19 1.53E+19 40.0 3.79E+19 2.43E+19 1.80E+19 1.60E+19 42.0 3.96E+19 2.54E+19 1.89E+19 1.68E+19 44.0 4.14E+19 2.65E+19 1.97E+19 1.76E+19 46.0 4.31E+19 2.76E+19 2.05E+19 1.83E+19 48.0 4.48E+19 2.88E+19 2.13E+19 1.91E+19 50.0 4.66E+19 2.99E+19 2.22E+19 1.98E+19 52.0 4.83E+19 3.1OE+19 2.30E+19 2.06E+19 54.0 5.OOE+19 3.21 E+19 2.38E+19 2.13E+19 Without Hafnium Suppression Rods Operating Neutron Fluonce [n/cm _

Time

[efpy 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.43E+19 1.55E+19 1.16E+19 1.02E+19 26.0 2.58E+19 1.65E+19 1.23E+19 1.08E+19 28.0 2.76E+19 1.77E+19 1.32E+19 1.16E+19 30.0 2.93E+19 1.89E+19 1.42E+19 1.24E+19 32.0 3.11E+19 2.01E+19 1.51E+19 1.32E+19 34.0 3.29E+19 2.13E+19 1.60E+19 1.40E+19 36.0 3.47E+19 2.24E+19 1.69E+19 1.48E+19 38.0 3.65E+19 2.36E+19 1.79E+19 1.56E+19 40.0 3.83E+19 2.48E+19 1.88E+19 1.64E+19 42.0 4.OOE+19 2.60E+19 1.97E+19 1.72E+19 44.0 4.18E+19 2.72E+19 2.06E+19 1.80E+19 46.0 4.36E+19 2.84E+19 2.16E+19 1.88E+19 48.0 4.54E+19 2.96E+19 2.25E+19 1.95E+19 50.0 4.72E+19 3.08E+19 2.34E+19 2.03E+19 52.0 4.90E+19 3.20E+19 2.43E+19 2.11E+19 54.0 5.08E+19 3.32E+19 2.53E+19 2.19E+19 Note: The first value listed in the "Operating Time' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

20

LTR-REA-02-23 Table 2.2-10 Intermediate Shell (SA775/812) and Lower Shell (SA-847) Longitudinal Welds Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence [nlcm]

Time Inter. Lower lefpyA Shell Shell 24.3 1.55E+19 1.43E+19 26.0 1.64E+19 1.50E+19 28.0 1.75E+19 1.59E+19 30.0 1.87E+19 1.67E+19 32.0 1.98E+19 1.76E+19 34.0 2.09E+19 1.84E+19 36.0 2.20E+19 1.93E+19 38.0 2.32E+19 2.01E+19 40.0 2.43E+19 2.10E+19 42.0 2.54E+19 2.18E+19 44.0 2.65E+19 2.27E+19 46.0 2.76E+19 2.35E+19 48.0 2.88E+19 2.44E+19 50.0 2.99E+19 2.52E+19 52.0 3.10E+19 2.61E+19 54.0 3.21 E+19 2.69E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nIcmJ Time Inter. Lower Iefpy] Shell Shell 24.3 1.55E+19 1.43E+19 26.0 1.65E+19 1.53E+19 28.0 1.77E+19 1.65E+19 30.0 1.89E+19 1.78E+19 32.0 2.01E+19 1.90E+19 34.0 2.13E+19 2.02E+19 36.0 2.24E+19 2.15E+19 38.0 2.36E+19 2.27E+19 40.0 2.48E+19 2.39E+19 42.0 2.60E+19 2.51 E+19 44.0 2.72E+19 2.64E+19 46.0 2.84E+19 2.76E+19 48.0 2.96E+19 2.88E+19 50.0 3.08E+19 3.OOE+19 52.0 3.20E+19 3.13E+19 54.0 3.32E+19 3.25E+19 Note: The first value listed in the 0Operating Time' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

21

LTR-REA-02-23 Table 2.2-11 Intermediate Shell to Upper Shell Circumferential Weld (SA-1426)

Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Flu nce [n~cm _

Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.64E+18 1.11E+18 9.01E+17 7.98E+17 26.0 1.72E+18 1.17E+18 9.59E+17 8.50E+17 28.0 1.82E+18 1.24E+18 1.03E+18 9.14E+17 30.0 1.91E+18 1.32E+18 1.1OE+18 9.78E+17 32.0 2.01E+18 1.39E+18 1.17E+18 1.04E+18 34.0 2.10E+18 1.46E+18 1.24E+18 1.11E+18 36.0 2.20E+18 1.54E+18 1.31E+18 1.17E+18 38.0 2.29E+18 1.61E+18 1.38E+18 1.23E+18 40.0 2.39E+18 1.68E+18 1.45E+18 1.30E+18 42.0 2.48E+18 1.76E+18 1.52E+18 1.36E+18 44.0 2.58E+18 1.83E+18 1.59E+18 1.42E+18 46.0 2.67E+18 1.90E+18 1.66E+18 1.49E+18 48.0 2.77E+18 1.98E+18 1.73E+18 1.55E+18 50.0 2.86E+18 2.05E+18 1.80E+18 1.62E+18 52.0 2.96E+18 2.12E+18 1.87E+18 1.68E+18 54.0 3.06E+18 2.20E+18 1.94E+18 1.74E+18 Without Hafnium Suppression Rods Operating Neutron Fluence [nIcmz]

Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.64E+18 1.11E+18 9.01E+17 7.98E+17 26.0 1.77E+18 1.20E+18 9.65E+17 8.52E+17 28.0 1.93E+18 1.30E+18 1.04E+18 9.19E+17 30.0 2.09E+18 1.40E+18 1.12E+18 9.85E+17 32.0 2.25E+18 1.51E+18 1.19E+18 1.05E+18 34.0 2.41E+18 1.61E+18 1.27E+18 1.12E+18 36.0 2.57E+18 1.71E+18 1.35E+18 1.18E+18 38.0 2.73E+18 1.81E+18 1.43E+18 1.25E+18 40.0 2.88E+18 1.92E+18 1.50E+18 1.32E+18 42.0 3.04E+18 2.02E+18 1.58E+18 1.38E+18 44.0 3.20E+18 2.12E+18 1.66E+18 1.45E+18 46.0 3.36E+18 2.23E+18 1.73E+18 1.52E+18 48.0 3.52E+18 2.33E+18 1.81E+18 1.58E+18 50.0 3.68E+18 2.43E+18 1.89E+18 1.65E+18 52.0 3.84E+18 2.54E+18 1.96E+18 1.72E+18 54.0 4.OOE+18 2.64E+18 2.04E+18 1.78E+18 Note: The first value listed in the 'Operating Time' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

22

LTR-REA-02-23 Table 2.2-12 Upper Shell Forging Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit I With Hafnium Suppression Rods Operating Neutron Fluence [nIcmrl Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.64E+18 1.11E+18 9.01E+17 7.98E+17 26.0 1.72E+18 1.17E+18 9.59E+17 8.50E+17 28.0 1.82E+18 1.24E+18 1.03E+18 9.14E+17 30.0 1.91E+18 1.32E+18 1.1OE+18 9.78E+17 32.0 2.01 E+18 1.39E+18 1.17E+18 1.04E+18 34.0 2.10E+18 1.46E+18 1.24E+18 1.11E+18 36.0 2.20E+18 1.54E+18 1.31E+18 1.17E+18 38.0 2.29E+18 1.61E+18 1.38E+18 1.23E+18 40.0 2.39E+18 1.68E+18 1.45E+18 1.30E+18 42.0 2.48E+18 1.76E+18 1.52E+18 1.36E+18 44.0 2.58E+18 1.83E+18 1.59E+18 1.42E+18 46.0 2.67E+18 1.90E+18 1.66E+18 1.49E+18 48.0 2.77E+18 1.98E+18 1.73E+18 1.55E+18 60.0 2.86E+18 2.05E+18 1.80E+18 1.62E+18 52.0 2.96E+18 2.12E+18 1.87E+18 1.68E+18 54.0 3.06E+18 2.20E+18 1.94E+18 1.74E+18 Without Hafnium Suppression Rods Operating Neutron Fluence [nlcmI Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.64E+18 i.IIE+18 9.01E+17 7.98E+17 26.0 1.77E+18 1.20E+18 9.65E+17 8.52E+17 28.0 1.93E+18 1.30E+18 1.04E+18 9.19E+ 17 30.0 2.09E+18 1.40E+18 1.12E+18 9.85E+17 32.0 2.25E+18 1.51E+18 1.19E+18 1.05E+18 34.0 2.41E+18 1.61E+18 1.27E+18 1.12E+18 36.0 2.57E+18 1.71 E+18 1.35E+18 1.18E+18 38.0 2.73E+18 1.81 E+18 1.A3E+18 1.25E+18 40.0 2.88E+18 1.92E+18 1.50E+18 1.32E+18 42.0 3.04E+18 2.02E+18 1.58E+18 1.38E+18 44.0 3.20E+18 2.12E+18 1.66E+18 1.A5E+18 46.0 3.36E+18 2.23E+18 1.73E+18 1.52E+18 48.0 3.52E+18 2.33E+18 1.81 E+18 1.58E+18 50.0 3.68E+18 2.43E+18 1.89E+18 1.65E+18 52.0 3.84E+18 2.54E+18 1.96E+18 1.72E+18 54.0 4.OOE+18 2.64E+18 2.04E+18 1.78E+18 Note: The first value listed in the mOperating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

23

LTR-REA-02-23 Table 2.2-13 Intermediate Shell to Lower Shell Circumferential Weld (SA-1 101)

Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence Infcm'l Time

[efpy] ODeg. 15 dog. 30 Deg. 45 Deg.

24.3 2.11E+19 1.40E+19 1.09E+19 9.64E+18 26.0 2.22E+19 1.47E+19 1.16E+19 1.03E+19 28.0 2.34E+19 1.57E+19 1.25E+19 1.11E+19 30.0 2.47E+19 1.66E+19 1.33E+19 1.18E+19 32.0 2.60E+19 1.76E+19 1.42E+19 1.26E+19 34.0 2.73E+19 1.85E+19 1.50E+19 1.34E+19 36.0 2.86E+19 1.94E+19 1.59E+19 1.42E+19 38.0 2.99E+19 2.04E+19 1.67E+19 1.50E+19 40.0 3.12E+19 2.13E+19 1.76E+19 1.58E+19 42.0 3.24E+19 2.23E+19 1.84E+19 1.65E+19 44.0 3.37E+19 2.32E+19 1.93E+19 1.73E+19 46.0 3.50E+19 2.41 E+19 2.01 E+19 1.81E+19 48.0 3.63E+19 2.51 E+19 2.1OE+19 1.89E+19 50.0 3.76E+19 2.60E+19 2.18E+19 1.97E+19 52.0 3.89E+19 2.70E+19 2.27E+19 2.04E+19 54.0 4.02E+19 2.79E+19 2.35E+19 2.12E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nlcm7J Time

[efpy] O Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.11E+19 1.40E+19 1.09E+19 9.64E+18 26.0 2.27E+19 1.50E+19 1.17E+19 1.03E+19 28.0 2.47E+19 1.63E+19 1.27E+19 1.12E+19 30.0 2.66E+19 1.77E+19 1.37E+19 1.20E+19 32.0 2.86E+19 1.90E+19 1.47E+19 1.29E+19 34.0 3.05E+19 2.03E+19 1.57E+19 1.37E+19 36.0 3.25E+19 2.16E+19 1.66E+19 1.46E+19 38.0 3.44E+19 2.29E+19 1.76E+19 1.54E+19 40.0 3.64E+19 2.42E+19 1.86E+19 1.62E+19 42.0 3.83E+19 2.55E+19 1.96E+19 1.71E+19 44.0 4.03E+19 2.68E+19 2.06E+19 1.79E+19 46.0 4.22E+19 2.81 E+19 2.16E+19 1.88E+19 48.0 4.42E+19 2.94E+19 2.25E+19 1.96E+19 50.0 4.61 E+19 3.07E+19 2.35E+19 2.05E+19 52.0 4.81 E+19 3.20E+19 2.45E+19 2.13E+19 54.0 5.01E+19 3.33E+19 2.55E+19 2.21 E+19 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

24

LTR-REA-02-23 Table 2.2-14 Lower Shell Plate (C-1423)

Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit I With Hafnium Suppression Rods Operating Neutron Fluence [nIcm1_

Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.15E+19 1.43E+19 1.13E+19 1.OOE+19 26.0 2.25E+19 1.51E+19 1.21E+19 1.07E+19 28.0 2.38E+19 1.60E+19 1.29E+19 1.15E+19 30.0 2.51 E+19 1.70E+19 1.38E+19 1.23E+19 32.0 2.63E+19 1.79E+19 1.47E+19 1.31 E+19 34.0 2.76E+19 1.88E+19 1.56E+19 1.39E+19 36.0 2.88E+19 1.98E+19 1.65E+19 1.47E+19 38.0 3.01 E+19 2.07E+19 1.73E+19 1.55E+19 40.0 3.13E+19 2.17E+19 1.82E+19 1.63E+19 42.0 3.26E+19 2.26E+19 1.91E+19 1.71E+19 44.0 3.39E+19 2.35E+19 2.OOE+19 1.79E+19 46.0 3.51 E+19 2.45E+19 2.08E+19 1.88E+19 48.0 3.64E+19 2.54E+19 2.17E+19 1.96E+19 50.0 3.76E+19 2.63E+19 2.26E+19 2.04E+19 52.0 3.89E+19 2.73E+19 2.35E+19 2.12E+19 54.0 4.01 E+19 2.82E+19 2.44E+19 2.20E+19 Without Hafnium Suppression Rods Operating Neutron Flu nce [n/cmrn Time

[efpyj ODeg. 15 deg. 30 Deg. 45 Deg.

24.3 2.15E+19 1.43E+19 1.13E+19 1.OOE+19 26.0 2.30E+19 1.53E419 1.21 E+19 1.07E+19 28.0 2.49E+19 1.65E+19 1.30E+19 1.15E+19 30.0 2.67E+19 1.78E+19 1.39E+19 1.22E+19 32.0 2.85E+19 1.9OE+19 1.49E+19 1.30E+19 34.0 3.04E+19 2.02E+19 1.58E+19 1.38E+19 36.0 3.22E+19 2.15E+19 1.67E+19 1.46E+19 38.0 3.41 E+19 2.27E+19 1.77E+19 1.54E+19 40.0 3.59E+19 2.39E+19 1.86E+19 1.62E+19 42.0 3.77E+19 2.51 E+19 1.95E+19 1.70E+19 44.0 3.96E+19 2.64E+19 2.04E+19 1.78E+19 46.0 4.14E+19 2.76E+19 2.14E+19 1.86E+19 48.0 4.33E+19 2.88E+19 2.23E+19 1.94E+19 60.0 4.51 E+19 3.OOE+19 2.32E+19 2.02E+19 62.0 4.69E+19 3.13E+19 2.41E+19 2.IOE+19 64.0 4.88E+19 3.25E+19 2.51E+19 2.18E+19

.Note: The first value listed in the 0Operating Time' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

25

LTR-REA-02-23 Table 2.2-15 Intermediate Shell Plate (A-981 1)

Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence [lncmJ Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.43E+19 1.55E+19 1.16E+19 1.02E+19 26.0 2.59E+19 1.65E+19 1.23E+19 1.08E+19 28.0 2.78E+19 1.78E+19 1.32E+19 1.17E+19 30.0 2.97E+19 1.90E+19 1.41 E+19 1.25E+19 32.0 3.16E+19 2.02E+19 1.50E+19 1.33E+19 34.0 3.36E+19 2.15E+19 1.60E+19 1.42E+19 36.0 3.55E+19 2.27E+19 1.69E+19 1.50E+19 38.0 3.74E+19 2.40E+19 1.78E+19 1.58E+19 40.0 3.93E+19 2.52E+19 1.87E+19 1.67E+19 42.0 4.12E+19 2.64E+19 1.96E+19 1.75E+19 44.0 4.32E+19 2.77E+19 2.05E+19 1.83E+19 46.0 4.51E+19 2.89E+19 2.15E+19 1.92E+19 48.0 4.70E+19 3.02E+19 2.24E+19 2.00E+19 50.0 4.89E+19 3.14E+19 2.33E+19 2.08E+19 52.0 5.08E+19 3.26E+19 2.42E+19 2.17E+19 54.0 5.27E+19 3.39E+19 2.51E+19 2.25E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [n/cmrnz Time

[efpy 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.43E+19 1.55E+19 1.16E+19 1.02E+19 26.0 2.59E+19 1.66E+19 1.24E+19 1.09E+19 28.0 2.79E+19 1.79E+19 1.34E+19 1.18E+19 30.0 2.99E+19 1.92E+19 1.44E+19 1.26E+19 32.0 3.18E+19 2.05E+19 1.55E+19 1.35E+19 34.0 3.38E+19 2.19E+19 1.65E+19 1.44E+19 36.0 3.58E+19 2.32E+19 1.75E+19 1.53E+19 38.0 3.78E+19 2.45E+19 1.85E+19 1.61E+19 40.0 3.97E+19 2.58E+19 1.96E+19 1.70E+19 42.0 4.17E+19 2.71E+19 2.06E+19 1.79E+19 44.0 4.37E+19 2.84E+19 2.16E+19 1.88E+19 46.0 4.56E+19 2.98E+19 2.26E+19 1.97E+19 48.0 4.76E+19 3.11E+19 2.36E+19 2.05E+19 50.0 4.96E+19 3.24E+19 2.47E+19 2.14E+19 52.0 5.16E+19 3.37E+19 2.57E+19 2.23E+19 54.0 5.35E+19 3.50E+19 2.67E+19 2.32E+19 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

26

LTR-REA-02-23 Table 2.2-16 Intermediate Shell (SA775/812) and Lower Shell (SA-847) Longitudinal Welds Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence [nlcmz]

Time Inter. Lower

[efpyj Shell Shell 24.3 1.65E+19 1.43E+19 26.0 1.65E+19 1.51E+19 28.0 1.78E+19 1.60E+19 30.0 1.90E+19 1.70E+19 32.0 2.02E+19 1.79E+19 34.0 2.15E+19 1.88E+19 36.0 2.27E+19 1.98E+19 38.0 2.40E+19 2.07E+19 40.0 2.52E+19 2.17E+19 42.0 2.64E+19 2.26E+19 44.0 2.77E+19 2.35E+19 46.0 2.89E+19 2.45E+19 48.0 3.02E+19 2.54E+19 60.0 3.14E+19 2.63E+19 62.0 3.26E+19 2.73E+19 54.0 3.39E+19 2.82E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nlcm I Time Inter. Lower efPY1 Shell Shell 24.3 1.55E+19 1.43E+19 26.0 1.66E+19 1.54E+19 28.0 1.79E+19 1.68E+19 30.0 1.92E+19 1.81 E+19 32.0 2.05E+19 1.95E+19 34.0 2.19E+19 2.08E+19 36.0 2.32E+19 2.22E+19 38.0 2.45E+19 2.36E+19 40.0 2.58E+19 2.49E+19 42.0 2.71 E+19 2.63E+19 44.0 2.84E+19 2.76E+19 46.0 2.98E+19 2.90E+19 48.0 3.11E+19 3.03E+19 50.0 3.24E+19 3.17E+19 62.0 3.37E+19 3.30E+19 54.0 3.50E+19 3.44E+19 Note: The first value listed in the "Operating Timen column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

27

LTR-REA-02-23 Table 2.2-17 Intermediate Shell to Upper Shell Circumferential Weld (SA-1426)

Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Flu nce [nlcm _

Time lefpyj 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.64E+18 1.11E+18 9.01E+17 7.98E+17 26.0 1.73E+18 1.18E+18 9.65E+17 8.56E+17 28.0 1.83E+18 1.26E+18 1.04E+18 9.26E+17 30.0 1.94E+18 1.34E+18 1.12E+18 9.97E+17 32.0 2.05E+18 1.42E+18 1.20E+18 1.07E+18 34.0 2.15E+18 1.50E+18 1.27E+18 1.14E+18 36.0 2.26E+18 1.58E+18 1.35E+18 1.21E+18 38.0 2.36E+18 1.66E+18 1.43E+18 1.28E+18 40.0 2.47E+18 1.75E+18 1.51E+18 1.35E+18 42.0 2.57E+18 1.83E+18 1.58E+18 1.42E+18 44.0 2.68E+18 1.91E+18 1.66E+18 1.49E+18 46.0 2.78E+18 1.99E+18 1.74E+18 1.56E+18 48.0 2.89E+18 2.07E+18 1.81E+18 1.63E+18 50.0 2.99E+18 2.15E+18 1.89E+18 1.70E+18 52.0 3.10E+18 2.23E+18 1.97E+18 1.77E+18 54.0 3.20E+18 2.31 E+18 2.05E+18 1.84E+18 Without Hafnium Suppression Rods Operating Neutron Fluence [n/cmzJ Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.64E+18 1.11E+18 9.01E+17 7.98E+17 26.0 1.79E+18 1.21E+18 9.71 E+17 8.58E+17 28.0 1.96E+18 1.32E+18 1.06E+18 9.32E+17 30.0 2.14E+18 1.43E+18 1.14E+18 1.01E+18 32.0 2.31 E+18 1.55E+18 1.23E+18 1.08E+18 34.0 2.49E+18 1.66E+18 1.31E+18 1.15E+18 36.0 2.66E+18 1.77E+18 1.40E+18 1.23E+18 38.0 2.84E+18 1.89E+18 1.48E+18 1.30E+18 40.0 3.02E+18 2.OOE+18 1.57E+18 1.37E+18 42.0 3.19E+18 2.12E+18 1.65E+18 1.45E+18 44.0 3.37E+18 2.23E+18 1.73E+18 1.52E+18 46.0 3.54E+18 2.34E+18 1.82E+18 1.59E+18 48.0 3.72E+18 2.46E+18 1.90E+18 1.67E+18 50.0 3.89E+18 2.57E+18 1.99E+18 1.74E+18 52.0 4.07E+18 2.68E+18 2.07E+18 1.81E+18 54.0 4.24E+18 2.80E+18 2.16E+18 1.89E+18 Note: The first value listed in the uOperating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

28

LTR-REA-02-23 Table 2.2-18 Upper Shell Forging Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence [n/cml Time Iefpy1 O Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.64E+18 1.11E+18 9.01E+17 7.98E+17 26.0 1.73E+18 1.18E+18 9.65E+17 8.56E+17 28.0 1.83E+18 1.26E+18 1.04E+18 9.26E+17 30.0 1.94E+18 1.34E+18 1.12E+18 9.97E+17 32.0 2.05E+18 1.42E+18 1.20E+18 1.07E+18 34.0 2.15E+18 1.50E+18 1.27E+18 1.14E+18 36.0 2.26E+18 1.58E+18 1.35E+18 1.21E+18 38.0 2.36E+18 1.66E+18 1.43E+18 1.28E+18 40.0 2.47E+18 1.75E+18 1.51E+18 1.35E+18 42.0 2.57E+18 1.83E+18 1.58E+18 1.42E+18 44.0 2.68E+18 1.91E+18 1.66E+18 1.49E+18 46.0 2.78E+18 1.99E+18 1.74E+18 1.56E+18 48.0 2.89E+18 2.07E+18 1.81E+18 1.63E+18 60.0 2.99E+18 2.15E+18 1.89E+18 1.70E+18 52.0 3.1OE+18 2.23E+18 1.97E+18 1.77E+18 54.0 3.20E+18 2.31E+18 2.05E+18 1.84E+18 Without Hafnium Suppression Rods Operating Neutron Fluence [ncmj Time

[efpyl 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.64E+18 1.11E+18 9.01E+17 7.98E+17 26.0 1.79E+18 1.21E+18 9.71E+17 8.58E+17 28.0 1.96E+18 1.32E+18 1.06E+18 9.32E+17 30.0 2.14E+18 1.43E+18 1.14E+18 1.01E+18 32.0 2.31 E+18 1.55E+18 1.23E+18 1.08E+18 34.0 2.49E+18 1.66E+18 1.31E+18 1.15E+18 36.0 2.66E+18 1.77E+18 1.40E+18 1.23E+18 38.0 2.84E+18 1.89E+18 1.48E+18 1.30E+18 40.0 3.02E+18 2.OOE+18 1.57E+18 1.37E+18 42.0 3.19E+18 2.12E+18 1.65E+18 1.45E+18 44.0 3.37E+18 2.23E+18 1.73E+18 1.52E+18 46.0 3.54E+18 2.34E+18 1.82E+18 1.59E+18 48.0 3.72E+18 2.46E+18 1.90E+18 1.67E+18 50.0 3.89E+18 2.57E+18 1.99E+18 1.74E+18 52.0 4.07E+18 2.68E+18 2.07E+18 1.81 E+18 54.0 4.24E+18 2.80E+18 2.16E+18 1.89E+18 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

29

LTR-REA-02-23 2.3 Calculated Neutron Exposure of Point Beach Unit 2 Beltline Materials A schematic of the beltline region of the Point Beach Unit 2 reactor pressure vessel is shown in Figure 2.3-1. In the case of the Unit 2 pressure vessel, the beltline region is constructed of two (2) ring forgings, two (2) circumferential welds (one joining the intermediate and lower shell forgings and one joining the intermediate shell forging to the upper shell forging), and the upper shell forging itself. Each of these five materials must be considered in the overall embrittlement assessments of the pressure vessel.

Pressure vessel materials not included in this compilation are not anticipated to experience a fast neutron (E > 1.0 MeV) exposure in excess of 1.OE+17 n/cm2 over the service life of the unit and, therefore, are not included in the definition of the beltline region.

The plant and fuel cycle specific calculated fast neutron (E > 1.0 MeV) fluence experienced by the materials comprising the beltline region of the Point Beach Unit 2 reactor are presented in Tables 2.3-1 through 2.3-5 for plant operation through the conclusion of the 25th fuel cycle. The data listed in Tables 2.3-1 through 2.3-5 provide a summary of the calculated fast neutron fluence (E > 1.0 MeV) for all Point Beach Unit 2 fuel cycles designed to date.

In Tables 2.3-1 through 2.3-5, cycle specific maximum neutron exposures at the pressure vessel clad/base metal interface are given at azimuthal angles of 00, 150, 300, and 450 relative to the core cardinal axes. The data provided in Tables 2.3-1 through 2.3-5 were taken at the axial location of the maximum exposure experienced by each material based on the results of the three-dimensional synthesized neutron fluence evaluations.

As noted in Section 1.0 of this report, three general fuel management strategies have been employed during the course of the first 25 fuel cycles of operation at Point Beach Unit 2. These three approaches are summarized as follows:

Cycles Fuel Management Approach 1-5 Out-In fuel management strategy with fresh fuel assemblies located on the core periphery.

6-15 Conventional low leakage fuel management strategy with burned fuel located on the core periphery.

16-25 Conventional low leakage fuel management strategy supplemented with the inclusion of part length hafnium power suppression rods located in the twelve peripheral fuel assemblies spanning the core cardinal axes.

For Point Beach Unit 2, the hafnium power suppression rods were 36 inches in length and were positioned axially such that the center of the suppression rods corresponded to the elevation of the intermediate shell to lower shell circumferential weld. Thus, the 30

LTR-REA-02-23 maximum flux reduction impact of the power suppression rods was experienced by the lower shell circumferential weld in the 00-200 azimuthal. Other materials comprising the beftline region of the Point Beach Unit 2 pressure vessel were impacted to a much lesser degree by the presence of the part length absorber rods.

Projections of calculated fast neutron fluence to be accrued beyond the end of cycle 25 were based on the four potential scenarios described in Section 1.0 of this report. The assumed core power level and core power distributions used in these projections are summarized as follows:

Case II Core Power Distribution Core Power (MWt)

I Average of Cycles 16-25 1518.5 2 Average of Cycles 6-16 1518.5 3 Average of Cycles 16-25 1678.0 4 Average of Cycles 6-16 1678.0 For operation with hafnium power suppression rods, the core power distribution averaged over the ten fuel cycles that have contained the suppression rods was assumed to be representative of future fuel cycle designs. For operation without the hafnium suppression rods, a power distribution averaged over the ten fuel cycles employing conventional low leakage (Cycles 6-15) was assumed to be representative of future operation.

Results of the fast neutron (E > 1.0 MeV) fluence projections for the Point Beach Unit 2 beltline materials are provided in Tables 2.3-6 through 2.3-15. In Tables 2.3-6 through 2.3-10, data are provided both with and without the presence of hafnium power suppression rods assuming continued operation at a core power level of 1518.5 MWt. In Tables 2.3-11 through 2.3-15, fluence projections are given both with and without the presence of hafnium suppression rods and assuming a core power uprate to 1678.0 MWt at the onset of cycle 26.

31

I-LTR-REA-02-23 Figure 2.3-1 Locations of Pressure Vessel Beltline Materials Point Beach Unit 2 CIWEREMIAL SEAIS TOP VIEV x

32

LTR-REA-02-23 Table 2.3-1 Intermediate Shell to Lower Shell Circumferential Weld (SA-1484)

Neutron Fluenoe (E > 1.0 MeV)

Point Beach Unit 2 Cycle Cumulative Neutron Flu nce nlcm Fuel Time Time Cycle [efps) [efpsl 0 Deg. 15 deg. 30 Deg. 45 Deg.

I 4.80E+07 4.80E+07 2.1OE+18 1.27E+18 8.55E+17 7.38E+17 2 3.31 E+07 8.12E+07 3.55E+18 2.14E+18 1.48E+18 1.28E+18 3 2.75E+07 1.09E+08 4.73E+18 2.84E+18 1.98E+18 1.73E+18 4 2.74E+07 1.36E+08 5.81E+18 3.49E+18 2.45E+18 2.13E+18 5 2.79E+07 1.64E+08 6.92E+18 4.19E+18 2.93E+18 2.52E+18 6 2.73E+07 1.91 E+08 7.75E+18 4.75E+18 3.42E+18 2.92E+18 7 2.82E+07 2.19E+08 8.69E+18 5.32E+18 3.85E+18 3.33E+18 8 2.70E+07 2.47E+08 9.63E+18 5.87E+18 4.24E+18 3.70E+18 9 2.50E+07 2.71E+08 1.05E+19 6.39E+18 4.61E+18 4.05E+18 10 3.77E+07 3.09E+08 1.17E+19 7.12E+18 5.17E+18 4.57E+18 11 2.68E+07 3.36E+08 1.24E+19 7.61 E+18 5.57E+18 4.91E+18 12 2.52E+07 3.61 E+08 1.31E+19 8.09E+18 5.92E+18 5.20Ei-18 13 2.55E+07 3.87E+08 1.37E+19 8.54E+18 6.27E+18 5.48E+18 14 2.72E+07 4.14E+08 1.44E+19 9.04E+18 6.66E+18 5.84E+18 15 2.54E+07 4.39E+08 1.51E+19 9.49E+18 7.OOE+18 6.11 E+18 16 2.70E+07 4.66E+08 1.56E+19 9.84E+18 7.30E+18 6.38E+18 17 2.65E+07 4.93E+08 1.61E+19 1.02E+19 7.61E+18 6.67E+18 18 2.67E+07 5.20E+08 1.66E+19 1.06E+19 7.93E+18 6.97E+18 19 2.62E+07 5.46E+08 1.70E+19 1.09E+19 8.24E+18 7.25E+18 20 2.79E+07 5.74E+08 1.76E+19 1.13E+19 8.59E+18 7.58E+18 21 2.84E+07 6.02E+08 1.81E+19 1.17E+19 8.92E+18 7.89E+18 22 2.36E+07 6.26E+08 1.85E+19 1.20E+19 9.25E+18 8.24E+18 23 2.89E+07 6.55E+08 1.90E+19 1.23E+19 9.58E+18 8.56E+18 24 4.94E+07 7.04E+08 1.99E+19 1.30E+19 1.02E+19 9.09E+18 25 4.19E+07 7.46E+08 2.06E+19 1.35E+19 1.07E+19 9.62E+18 33

I LTR-REA-02-23 Table 2.3-2 Lower Shell Forging (122W1 95)

Neutron Fluence (E > 1.0 MeV)

Point Beach Unit 2 Cycle Cumulative Neutron Flu nce [n/cm Fuel Time Time Cycle (efpsj [efps] 0 Deg. 15 deg. 30 Deg. 45 Deg.

1 4.80E+07 4.80E+07 2.15E+18 1.30E+18 8.85E+17 7.65E+17 2 3.31 E+07 8.12E+07 3.65E+18 2.21E+18 1.53E+18 1.33E+18 3 2.75E+07 1.09E+08 4.87E+18 2.94E+18 2.06E+18 1.80E+18 4 2.74E+07 1.36E+08 5.99E+18 3.62E+18 2.54E+18 2.22E+18 5 2.79E+07 1.64E+08 7.15E+18 4.35E+18 3.05E+18 2.62E+18 6 2.73E+07 1.91 E+08 8.01E+18 4.93E+18 3.56E+18 3.04E+18 7 2.82E+07 2.19E+08 8.97E+18 5.51E+18 4.OOE+18 3.46E+18 8 2.70E+07 2.47E+08 9.95E+18 6.09E+18 4.42E+18 3.85E+18 9 2.50E+07 2.71 E+08 1.09E+19 6.63E+18 4.80E+18 4.21E+18 10 3.77E+07 3.09E+08 1.21E+19 7.38E+18 5.38E+18 4.76E+18 11 2.68E+07 3.36E+08 1.28E+19 7.90E+18 5.80E+18 5.11E+18 12 2.52E+07 3.61 E+08 1.35E+19 8.39E+18 6.17E+18 5.41 E+18 13 2.55E+07 3.87E+08 1.42E+19 8.85E+18 6.52E+18 5.70E+18 14 2.72E+07 4.14E+08 1.49E+19 9.36E+18 6.92E+18 6.07E+18 15 2.54E+07 4.39E+08 1.55E+19 9.82E+18 7.28E+18 6.35E+18 16 2.70E+07 4.66E+08 1.61E+19 1.02E+19 7.59E+18 6.63E+18 17 2.65E+07 4.93E+08 1.67E+19 1.06E+19 7.91 E+18 6.94E+18 18 2.67E+07 5.20E+08 1.73E+19 1.1OE+19 8.25E+18 7.24E+18 19 2.62E+07 5.46E+08 1.78E+19 1.14E+19 8.57E+18 7.54E+18 20 2.79E+07 5.74E+08 1.84E+19 1.18E+19 8.93E+18 7.88E+18 21 2.84E+07 6.02E+08 1.90E+19 1.22E+19 9.27E+18 8.20E+18 22 2.36E+07 6.26E+08 1.95E+19 1.25E+19 9.61 E+18 8.56E+18 23 2.89E+07 6.55E+08 2.01E+19 1.29E+19 9.95E+18 8.89E+18 24 4.94E+07 7.04E+08 2.11 E+19 1.37E+19 1.06E+19 9.45E+18 25 4.19E+07 7.46E+08 2.19E+19 1.43E+19 1.11E+19 9.99E+18 34

LTR-REA-02-23 Table 2.3-3 Intermediate Shell Plate (123V500)

Neutron Fluence (E > 1.0 MeV)

Point Beach Unit 2 Cycle Cumulative Neutron Fluence [nlcm Fuel Time Time Cycle (efps] [efpsj 0 Deg. 15 deg. 30 Deg. 46 Deg.

I 4.80E+07 4.80E+07 2.11E+18 1.27E+18 8.98E+17 7.75E+17 2 3.31 E+07 8.12E+07 3.53E+18 2.13E+18 1.54E+18 1.34E+18 3 2.75E+07 1.09E+08 4.67E+18 2.81 E+18 2.06E+18 1.79E+18 4 2.74E+07 1.36E+08 5.77E+18 3.48E+18 2.55E+18 2.22E+18 5 2.79E+07 1.64E+08 6.92E+18 4.19E+18 3.06E+18 2.63E+18 6 2.73E+07 1.91 E+08 7.76E+18 4.76E+18 3.57E+18 3.05E+18 7 2.82E+07 2.19E+08 8.72E+18 5.34E+18 4.02E+18 3.47E+18 8 2.70E+07 2.47E+08 9.67E+18 5.90E+18 4.43E+18 3.86E+18 9 2.50E+07 2.71 E+08 1.06E+19 6.43E+18 4.82E+18 4.23E+18 10 3.77E+07 3.09E+08 1.18E+19 7.15E+18 5.40E+18 4.77E+18 11 2.68E+07 3.36E+08 1.25E+19 7.65E+18 5.82E+18 5.13E+18 12 2.52E+07 3.61 E+08 1.32E+19 8.15E+18 6.19E+18 5.43E+18 13 2.55E+07 3.87E+08 1.38E+19 8.61E+18 6.55E+18 5.73E+18

-14 2.72E+07 4.14E+08 1.46E+19 9.13E+18 6.97E+18 6.11E+18 15 2.54E+07 4.39E+08 1.52E+19 9.60E+18 7.33E+18 6.40E+18 16 2.70E+07 4.66E+08 1.59E+19 1.01E+19 7.65E+18 6.69E+18 17 2.65E+07 4.93E+08 1.66E+19 1.05E+19 7.99E+18 6.99E+18 18 2.67E+07 5.20E+08 1.73E+19 1.1OE+19 8.33E+18 7.31E+18 19 2.62E+07 5.46E+08 1.80E+19 1.14E+19 8.66E+18 7.62E+18 20 2.79E+07 5.74E+08 1.87E+19 1.19E+19 9.03E+18 7.96E+18 21 2.84E+07 6.02E+08 1.94E+19 1.23E+19 9.38E+18 8.30E+18 22 2.36E+07 6.26E+08 2.OOE+19 1.27E+19 9.74E+18 8.67E+18 23 2.89E+07 6.55E+08 2.07E+19 1.32E+19 1.01E+19 9.01E+18 24 4.94E+07 7.04E+08 2.19E+19 1.40E+19 1.07E+19 9.58E+18 26 4.19E+07 7.46E+08 2.29E+19 1.47E+19 1.13E+19 1.01E+19 35

LTR-REA-02-23 Table 2.3-4 Intermediate Shell to Upper Shell Circumferential Weld (21935)

Neutron Fluence (E > 1.0 MeV)

Point Beach Unit 2 Cycle Cumulative Neutron Fluence [n/cm Fuel Time Time Cycle [efps] [efps] 0 Deg. 15 deg. 30 Deg. 45 Deg.

I 4.80E+07 4.80E+07 1.58E+17 9.49E+16 6.40E+16 5.53E+16 2 3.31 E+07 8.12E+07 2.97E+17 1.79E+17 1.24E+17 1.08E+17 3 2.75E+07 1.09E+08 4.06E+17 2.44E+17 1.70E+17 1.49E+17 4 2.74E+07 1.36E+08 5.29E+17 3.19E+17 2.24E+17 1.95E+17 5 2.79E+07 1.64E+08 6.49E+17 3.93E+17 2.76E+17 2.37E+17 6 2.73E+07 1.91 E+08 7.39E+17 4.54E+17 3.29E+17 2.81E+17 7 2.82E+07 2.19E+08 8.40E+17 5.15E+17 3.75E+17 3.24E+17 8 2.70E+07 2.47E+08 9.38E+17 5.73E+17 4.16E+17 3.63E+17 9 2.50E+07 2.71 E+08 1.03E+18 6.28E+17 4.55E+17 4.00E+17 10 3.77E+07 3.09E+08 1.15E+18 6.99E+17 5.11E+17 4.51 E+17 11 2.68E+07 3.36E+08 1.22E+18 7.54E+17 5.55E+17 4.89E+17 12 2.52E+07 3.61 E+08 1.31E+18 8.1OE+17 5.96E+17 5.23E+17 13 2.55E+07 3.87E+08 1.38E+18 8.62E+17 6.35E+17 5.55E+17 14 2.72E+07 4.14E+08 1.46E+18 9.17E+17 6.79E+17 5.95E+17 15 2.54E+07 4.39E+08 1.54E+18 9.76E+17 7.24E+17 6.31 E+ 17 16 2.70E+07 4.66E+08 1.61 E+18 1.02E+18 7.66E+17 6.69E+17 17 2.65E+07 4.93E+08 1.67E+18 1.07E+18 8.05E+17 7.05E+17 18 2.67E+07 5.20E+08 1.72E+18 1.11E+18 8.41 E+17 7.38E+17 19 2.62E+07 5.46E+08 1.78E+18 1.15E+18 8.70E+17 7.65E+17 20 2.79E+07 5.74E+08 1.84E+18 1.18E+18 9.OOE+17 7.93E+17 21 2.84E+07 6.02E+08 1.89E+18 1.22E+18 9.27E+17 8.18E+17 22 2.36E+07 6.26E+08 1.93E+18 1.25E+18 9.54E+17 8.47E+17 23 2.89E+07 6.55E+08 1.99E+18 1.29E+18 9.83E+17 8.74E+17 24 4.94E+07 7.04E+08 2.09E+18 1.36E+18 1.05E+18 9.32E+17 25 4.19E+07 7.46E+08 2.18E+18 1.42E+18 1.1OE+18 9.86E+17 36

LTR-REA-02-23 Table 2.3-5 Upper Shell Forging Neutron Fluence (E > 1.0 MeV)

Point Beach Unit 2 Cycle Cumulative Neutron Fluence [nlcm2 Fuel Time Time Cycle [efps] lefpsj 0 Deg. 15 de. 30 Deg. 45 Deg.

I 4.80E+07 4.80E+07 1.58E+17 9.49E+16 6.40E+16 5.53E+16 2 3.31E+07 8.12E+07 2.97E+17 1.79E+17 1.24E+17 1.08E+17 3 2.75E+07 1.09E+08 4.06E+17 2.44E+17 1.70E+17 1.49E+17 4 2.74E+07 1.36E+08 5.29E+17 3.19E+17 2.24E+17 1.95E+17 5 2.79E+07 1.64E+08 6.49E+17 3.93E+17 2.76E+17 2.37E+17 6 2.73E+07 1.91E+08 7.39E+17 4.54E+17 3.29E+17 2.81E+17 7 2.82E+07 2.19E+08 8.40E+17 5.15E+17 3.75E+17 3.24E+17 8 2.70E+07 2.47E+08 9.38E+17 5.73E+17 4.16E+17 3.63E+17 9 2.50E+07 2.71 E+08 1.03E+18 6.28E+17 4.55E+17 4.OOE+17 10 3.77E+07 3.09E+08 1.15E+18 6.99E+17 5.11E+17 4.51 E+17 11 2.68E+07 3.36E+08 1.22E+18 7.54E+17 5.55E+17 4.89E+17 12 2.52E+07 3.61E+08 1.31 E+18 8.10E+17 5.96E+17 5.23E+17 13 2.55E+07 3.87E+08 1.38E+18 8.62E+17 6.35E+17 5.55E+17 14 2.72E+07 4.14E+08 1.46E+18 9.17E+17 6.79E+17 5.95E+17 15 2.54E+07 4.39E+08 1.54E+18 9.76E+17 7.24E+17 6.31 E+17 16 2.70E+07 4.66E+08 1.61 E+18 1.02E+18 7.66E+17 6.69E+17 17 2.65E+07 4.93E+08 1.67E+18 1.07E+18 8.05E+17 7.05E+17 18 2.67E+07 5.20E+08 1.72E+18 1.11E+18 8.41 E+17 7.38E+17 19 2.62E+07 5.46E+08 1.78E+18 1.15E+18 8.70E+17 7.65E+17 20 2.79E+07 5.74E+08 1.84E+18 1.18E+18 9.OOE+17 7.93E+17 21 2.84E+07 6.02E+08 1.89E+18 1.22E+18 9.27E+17 8.18E+17 22 2.36E+07 6.26E+08 1.93E+18 1.25E+18 9.54E+17 8.47E+17 23 2.89E+07 6.55E+08 1.99E+18 1.29E+18 9.83E+17 8.74E+17 24 4.94E+07 7.04E+08 2.09E+18 1.36E+18 1.05E+18 9.32E+17 25 4.19E+07 7.46E+08 2.18E+18 1.42E+18 1.1OE+18 9.86E+17 37

LTR-REA-02-23 Table 2.3-6 Intermediate Shell to Lower Shell Circumferential Weld (SA-1484)

Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence In/cml Time

[efpy] O De. 15 deg. 30 Deg. 45 Deg.

23.6 2.06E+19 1.35E+19 1.07E+19 9.62E+18 26.0 2.20E+19 1.45E+19 1.16E+19 1.05E+19 28.0 2.31E+19 1.53E+19 1.24E+19 1.12E+19 30.0 2.43E+19 1.62E+19 1.31E+19 1.19E+19 32.0 2.54E+19 1.70E+19 1.39E+19 1.26E+19 34.0 2.66E+19 1.78E+19 1.47E+19 1.34E+19 36.0 2.77E+19 1.87E+19 1.54E+19 1.41E+19 38.0 2.88E+19 1.95E+19 1.62E+19 1.48E+19 40.0 3.OOE+19 2.03E+19 1.70E+19 1.55E+19 42.0 3.11E+19 2.11E+19 1.77E+19 1.63E+19 44.0 3.23E+19 2.20E+19 1.85E+19 1.70E+19 46.0 3.34E+19 2.28E+19 1.93E+19 1.77E+19 48.0 3.46E+19 2.36E+19 2.00E+19 1.84E+19 50.0 3.57E+19 2.45E+19 2.08E+19 1.91E+19 52.0 3.69E+19 2.53E+19 2.15E+19 1.99E+19 54.0 3.80E+19 2.61 E+19 2.23E+19 2.06E+19 Without Hafnium Suppression Rods Operating Neutron Flu nce [n/cm __

Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.06E+19 1.35E+19 1.07E+19 9.62E+18 26.0 2.28E+19 1.50E+19 1.18E+19 1.06E+19 28.0 2.47E+19 1.62E+19 1.27E+19 1.14E+19 30.0 2.66E+19 1.74E+19 1.37E+19 1.22E+19 32.0 2.84E+19 1.86E+19 1.46E+19 1.31E+19 34.0 3.03E+19 1.98E+19 1.55E+19 1.39E+19 36.0 3.22E+19 2.10E+19 1.65E+19 1.47E+19 38.0 3.40E+19 2.22E+19 1.74E+19 1.55E+19 40.0 3.59E+19 2.34E+19 1.83E+19 1.64E+19 42.0 3.77E+19 2.47E+19 1.93E+19 1.72E+19 44.0 3.96E+19 2.59E+19 2.02E+19 1.80E+19 46.0 4.15E+19 2.71 E+19 2.11E+19 1.88E+19 48.0 4.33E+19 2.83E+19 2.21E+19 1.96E+19 50.0 4.52E+19 2.95E+19 2.30E+19 2.05E+19 52.0 4.71E+19 3.07E+19 2.39E+19 2.13E+19 54.0 4.89E+19 3.19E+19 2.49E+19 2.21E+19 Note: The first value listed in the uOperating Time' column is the estimated efpy at the end of cycle 25 (- April 2002).

38

LTR-REA-02-23 Table 2.3-7 Lower Shell Forging (122W195)

Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence [nlcm _ __

Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.19E+19 1.43E+19 1.IIE+19 9.99E+18 26.0 2.35E+19 1.53E+19 1.21E+19 1.09E+19 28.0 2.48E+19 1.62E+19 1.29E+19 1.16E+19 30.0 2.61 E+19 1.72E+19 1.37E+19 1.24E+19 32.0 2.75E+19 1.81E+19 1.44E+19 1.31E+19 34.0 2.88E+19 1.90E+19 1.52E+19 1.39E+19 36.0 3.01E+19 1.99E+19 1.60E+19 1.46E+19 38.0 3.14E+19 2.08E+19 1.68E+19 1.54E+19 40.0 3.27E+19 2.17E+19 1.76E+19 1.61 E+19 42.0 3.40E+19 2.26E+19 1.84E+19 1.69E+19 44.0 3.54E+19 2.35E+19 1.92E+19 1.76E+19 46.0 3.67E+19 2.44E+19 2.00E+19 1.84E+19 48.0 3.80E+19 2.54E+19 2.08E+19 1.91 E+19 S0.0 3.93E+19 2.63E+19 2.16E+19 1.99E+19 62.0 4.06E+19 2.72E+19 2.24E+19 2.06E+19 64.0 4.19E+19 2.81 E+19 2.32E+19 2.14E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nlcm'J l Time

[efpyj 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.19E+19 1.43E+19 1.11E+19 9.99E+18 26.0 2.42E+19 1.57E+19 1.23E+19 1.IOE+19 28.0 2.61 E+19 1.70E+19 1.32E+19 1.19E+19 30.0 2.81E+19 1.82E+19 1.42E+19 1.27E+19 32.0 3.OOE+19 1.95E+19 1.52E+19 1.36E+19 34.0 3.19E+19 2.08E+19 1.61E+19 1.44E+19 36.0 3.38E+19 2.20E+19 1.71E+19 1.53E+19 38.0 3.58E+19 2.33E+19 1.81EE+19 1.61E+19 40.0 3.77E+19 2.45E+19 1.91E+19 1.70E+19 42.0 3.96E+19 2.58E+19 2.00E+19 1.78E+19 44.0 4.15E+19 2.70E+19 2.10E+19 1.87E+19 46.0 4.34E+19 2.83E+19 2.20E+19 1.96E+19 48.0 4.54E+19 2.95E+19 2.29E+19 2.04E+19 50.0 4.73E+19 3.08E+19 2.39E+19 2.13E+19 62.0 4.92E+19 3.21 E+19 2.49E+19 2.21 E+19 54.0 5.11E+19 3.33E+19 2.58E+19 2.30E+19 Note: The first value listed in the 8Operating Timew column is the estimated efpy at the end of cycle 25 (- April 2002).

39

L-LTR-REA-02-23 Table 2.3-8 Intermediate Shell Forging (123V500)

Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Flu nce [nIcm2j Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.29E+19 1.47E+19 1.13E+19 1.01E+19 26.0 2.48E+19 1.59E+19 1.23E+19 1.10E+19 28.0 2.64E+19 1.69E+19 1.31E+19 1.18E+19 30.0 2.80E+19 1.80E+19 1.39E+19 1.26E+19 32.0 2.96E+19 1.90E+19 1.47E+19 1.33E+19 34.0 3.11E+19 2.01E+19 1.55E+19 1.41E+19 36.0 3.27E+19 2.11E+19 1.63E+19 1.49E+19 38.0 3.43E+19 2.21 E+19 1.71E+19 1.56E+19 40.0 3.59E+19 2.32E+19 1.80E+19 1.64E+19 42.0 3.75E+19 2.42E+19 1.88E+19 1.72E+19 44.0 3.91 E+19 2.53E+19 1.96E+19 1.80E+19 48.0 4.07E+19 2.63E+19 2.04E+19 1.87E+19 48.0 4.22E+19 2.73E+19 2.12E+19 1.95E+19 50.0 4.38E+19 2.84E+19 2.20E+19 2.03E+19 52.0 4.54E+19 2.94E+19 2.29E+19 2.10E+19 54.0 4.70E+19 3.05E+19 2.37E+19 2.18E+19 Without Hafnium Suppression Rods Operating Neutron Flu nce InIcmzi Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.29E+19 1.47E+19 1.13E+19 1.01E+19 26.0 2.52E+19 1.61E+19 1.24E+19 1.12E+19 28.0 2.71 E+19 1.74E+19 1.34E+19 1.20E+19 30.0 2.90E+19 1.86E+19 1.44E+19 1.29E+19 32.0 3.09E+19 1.99E+19 1.54E+19 1.37E+19 34.0 3.28E+19 2.11E+19 1.64E+19 1.46E+19 36.0 3.47E+19 2.23E+19 1.73E+19 1.55E+19 38.0 3.66E+19 2.36E+19 1.83E+19 1.63E+19 40.0 3.85E+19 2.48E+19 1.93E+19 1.72E+19 42.0 4.04E+19 2.61 E+19 2.03E+19 1.81EE+19 44.0 4.23E+19 2.73E+19 2.13E+19 1.89E+19 46.0 4.42E+19 2.85E+19 2.22E+19 1.98E+19 48.0 4.61E+19 2.98E+19 2.32E+19 2.07E+19 50.0 4.81E+19 3.10E+19 2.42E+19 2.15E+19 52.0 5.OOE+19 3.23E+19 2.52E+19 2.24E+19 54.0 5.19E+19 3.35E+19 2.62E+19 2.32E+19 Note: The first value listed in the "Operating Time" column is the estimated efpy at the end of cycle 25 (- April 2002).

40

LTR-REA-02-23 Table 2.3-9 Intermediate Shell to Upper Shell Circumferential Weld (21935)

Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppresslon Rods Operating Neutron Fluence Inlcml Time

[efpy] O Deg. 16 deg. 30 Deg. 45 Deg.

23.6 2.18E+18 1.42E+18 1.1OE+18 9.86E+17 26.0 2.33E+18 1.53E+18 1.20E+18 1.07E+18 28.0 2.47E+18 1.62E+18 1.27E+18 1.15E+18 30.0 2.60E+18 1.71E+18 1.35E+18 1.22E+18 32.0 2.73E+18 1.80E+18 1.43E+18 1.29E+18 34.0 2.86E+18 1.89E+18 1.51E+18 1.36E+18 36.0 2.99E+18 1.98E+18 1.59E+18 1.44E+18 38.0 3.12E+18 2.07E+18 1.66E+18 1.51 E+18 40.0 3.25E+18 2.16E+18 1.74E+18 1.58E+18 42.0 3.39E+18 2.26E+18 1.82E+18 1.66E+18 44.0 3.52E+18 2.35E+18 1.90E+18 1.73E+18 46.0 3.65E+18 2.44E+18 1.98E+18 1.80E+18 48.0 3.78E+18 2.53E+18 2.05E+18 1.88E+18 60.0 3.91E+18 2.62E+18 2.13E+18 1.95E+18 52.0 4.04E+18 2.71E+18 2.21E+18 2.02E+18 54.0 4.17E+18 2.80E+18 2.29E+18 2.10E+18 Without Hafnium Suppression Rods Operating Neutron Fluence Inlcm]

Time

[efpy] O Deg. 16 deg. 30 Deg. 45 Deg.

23.6 2.18E+18 1.42E+18 1.10E+18 9.86E+17 26.0 2.42E+18 1.58E+18 1.22E+18 1.09E+18 28.0 2.63E+18 1.71 E+18 1.33E+18 1.18E+18 30.0 2.83E+18 1.84E+18 1.43E+18 1.27E+18 32.0 3.03E+18 1.98E+18 1.53E+18 1.36E+18 34.0 3.24E+18 2.11E+18 1.64E+18 1.45E+18 36.0 3.44E+18 2.25E+18 1.74E+18 1.54E+18 38.0 3.65E+18 2.38E+18 1.84E+18 1.63E+18 40.0 3.85E+18 2.51 E+18 1.94E+18 1.72E+18 42.0 4.06E+18 2.65E+18 2.05E+18 1.82E+18 44.0 4.26E+18 2.78E+18 2.15E+18 1.91 E+18 46.0 4.47E+18 2.91 E+18 2.25E+18 2.OOE+18 48.0 4.67E+18 3.05E+18 2.35E+18 2.09E+18 60.0 4.88E+18 3.18E+18 2.46E+18 2.18E+18 62.0 5.08E+18 3.32E+18 2.56E+18 2.27E+18 54.0 5.28E+18 3.45E+18 2.66E+18 2.36E+18 Note: The first value listed in the "Operating Time' column is the estimated efpy at the end of cycle 25 (- April 2002).

41

LTR-REA-02-23 Table 2.3-10 Upper Shell Forging Calculated Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence InIcmi' Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.18E+18 1.42E+18 1.10E+18 9.86E+17 26.0 2.33E+18 1.53E+18 1.20E+18 1.07E+18 28.0 2.47E+18 1.62E+18 1.27E+18 1.15E+18 30.0 2.60E+18 1.71 E+18 1.35E+18 1.22E+18 32.0 2.73E+18 1.80E+18 1.43E+18 1.29E+18 34.0 2.86E+18 1.89E+18 1.51E+18 1.36E+18 36.0 2.99E+1 8 1.98E+18 1.59E+18 1.44E+18 38.0 3.12E+18 2.07E+18 1.66E+18 1.51E+18 40.0 3.25E+18 2.16E+18 1.74E+18 1.58E+18 42.0 3.39E+18 2.26E+18 1.82E+18 1.66E+18 44.0 3.52E+18 2.35E+18 1.90E+18 1.73E+18 46.0 3.65E+18 2.44E+18 1.98E+18 1.80E+18 48.0 3.78E+18 2.53E+18 2.05E+18 1.88E+18 50.0 3.91 E+18 2.62E+18 2.13E+18 1.95E+18 52.0 4.04E+18 2.71 E+18 2.21 E+18 2.02E+18 54.0 4.17E+18 2.80E+18 2.29E+18 2.10E+18 Without Hafnium Suppression Rods Operating Neutron Fluence [nlcmz _

Time

[efpyl 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.18E+18 1.42E+18 1.10E+18 9.86E+17 26.0 2.42E+18 1.58E+18 1.22E+18 1.09E+18 28.0 2.63E+18 1.71E+18 1.33E+18 1.18E+18 30.0 2.83E+18 1.84E+18 1.43E+18 1.27E+18 32.0 3.03E+18 1.98E+18 1.53E+18 1.36E+18 34.0 3.24E+18 2.11E+18 1.64E+18 1.45E+18 36.0 3.44E+18 2.25E+18 1.74E+18 1.54E+18 38.0 3.65E+18 2.38E+18 1.84E+18 1.63E+18 40.0 3.85E+18 2.51E+18 1.94E+18 1.72E+18 42.0 4.06E+18 2.65E+18 2.05E+18 1.82E+1 8 44.0 4.26E+18 2.78E+18 2.15E+18 1.91E+18 46.0 4.47E+18 2.91E+18 2.25E+18 2.OOE+18 48.0 4.67E+18 3.05E+18 2.35E+18 2.09E+18 50.0 4.88E+18 3.18E+18 2.46E+18 2.18E+18 52.0 5.08E+18 3.32E+18 2.56E+18 2.27E+18 54.0 5.28E+18 3.45E+18 2.66E+18 2.36E+18 Note: The first value listed in the wOperating Time" column is the estimated efpy at the end of cycle 25 (- April 2002).

42

LTR-REA-02-23 Table 2.3-11 Intermediate Shell to Lower Shell Circumferential Weld (SA-1484)

Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence In/cmJ Time

[efpy) o Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.06E+19 1.35E+19 1.07E+19 9.62E+18 26.0 2.21 E+19 1.46E+19 1.17E+19 1.06E+19 28.0 2.34E+19 1.55E+19 1.26E+19 1.14E+19 30.0 2.46E+19 1.64E+19 1.34E+19 1.22E+19 32.0 2.59E+19 1.74E+19 1.42E+19 1.30E+19 34.0 2.72E+19 1.83E+19 1.51E+19 1.38E+19 36.0 2.84E+19 1.92E+19 1.59E+19 1.46E+19 38.0 2.97E+19 2.01E+19 1.68E+19 1.54E+19 40.0 3.1OE+19 2.1OE+19 1.76E+19 1.62E+19 42.0 3.22E+19 2.19E+19 1.85E+19 1.70E+19 44.0 3.35E+19 2.29E+19 1.93E+19 1.77E+19 46.0 3.48E+19 2.38E+19 2.02E+19 1.85E+19 48.0 3.60E+19 2.47E+19 2.1OE+19 1.93E+19 50.0 3.73E+19 2.56E+19 2.18E+19 2.01E+19 62.0 3.86E+19 2.65E+19 2.27E+19 2.09E+19 64.0 3.98E+19 2.75E+19 2.35E+19 2.17E+19 Without Hafnium Suppression Rods Operating Neutron Flu nce (n/cm' Time lefpyl 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.06E+19 1.35E+19 1.07E+19 9.62E+18 26.0 2.31 E+19 1.51 E+19 1.19E+19 1.07E+19 28.0 2.51E+19 1.64E+19 1.30E+19 1.16E+19 30.0 2.72E+19 1.78E+19 14AOE+19 1.25E+19 32.0 2.92E+19 1.91 E+19 1.50E+19 1.34E+19 34.0 3.13E+19 2.05E+19 1.61E+19 1.43E+19 36.0 3.34E+19 2.18E+19 1.71 E+19 1.52E+19 38.0 3.54E+19 2.32E+19 1.81 E+19 1.61 E+19 40.0 3.75E+19 2.45E+19 1.91E+19 1.71E+19 42.0 3.95E+19 2.58E+19 2.02E+19 1.80E+19 44.0 4.16E+19 2.72E+19 2.12E+19 1.89E+19 46.0 4.37E+19 2.85E+19 2.22E+19 1.98E+19 48.0 4.57E+19 2.99E+19 2.33E+19 2.07E+19 50.0 4.78E+19 3.12E+19 2.43E+19 2.16E+19 52.0 4.98E+19 3.25E+19 2.53E+19 2.25E+19 54.0 5;19E+19 3.39E+19 2.64E+19 2.34E+19 Note: The first value listed in the "Operating Time' column is the estimated efpy at the end of cycle 25 (- April 2002).

43

LTR-REA-02-23 Table 2.3-12 Lower Shell Forging (122W1 95)

Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence [nIcm']

Time

[efpyl 0 Deg 15 deg. 30 Deg. 45 Deg.

23.6 2.19E+19 1.43E+19 1.11E+19 9.99E+18 26.0 2.37E+19 1.54E+19 1.22E+19 1.10E+19 28.0 2.51E+19 1.64E+19 1.30E+19 1.18E+19 30.0 2.66E+19 1.75E+19 1.39E+19 1.26E+19 32.0 2.80E+19 1.85E+19 1.48E+19 1.35E+19 34.0 2.95E+19 1.95E+19 1.57E+19 1.43E+19 38.0 3.09E+19 2.05E+19 1.66E+19 1.51E+19 38.0 3.24E+19 2.15E+19 1.74E+19 1.59E+19 40.0 3.39E+19 2.25E+19 1.83E+19 1.68E+19 42.0 3.53E+19 2.35E+19 1.92E+19 1.76E+19 44.0 3.68E+19 2.45E+19 2.01E+19 1.84E+19 46.0 3.82E+19 2.55E+19 2.09E+19 1.92E+19 48.0 3.97E+19 2.65E+19 2.18E+19 2.01E+19 50.0 4.11E+19 2.75E+19 2.27E+19 2.09E+19 52.0 4.26E+19 2.85E+19 2.36E+19 2.17E+19 54.0 4.41 E+19 2.95E+19 2.44E+19 2.26E+19 Without Hafnium Suppression Rods Operating Neutron Flue [nclijcm _ _

Time lefpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.19E+19 1.43E+19 1.IIE+19 9.99E+18 26.0 2.45E+19 1.59E+19 1.24E+19 1.IIE+19 28.0 2.66E+19 1.73E+19 1.35E+19 1.21E+19 30.0 2.87E+19 1.87E+19 1.45E+19 1.30E+19 32.0 3.08E+19 2.01E+19 1.56E+19 1.39E+19 34.0 3.30E+19 2.14E+19 1.67E+19 1.49E+19 36.0 3.51 E+19 2.28E+19 1.77E+19 1.58E+19 38.0 3.72E+19 2.42E+19 1.88E+19 1.68E+19 40.0 3.93E+19 2.56E+19 1.99E+19 1.77E+19 42.0 4.15E+19 2.70E+19 2.10E+19 1.87E+19 44.0 4.36E+19 2.84E+19 2.20E+19 1.96E+19 46.0 4.57E+19 2.98E+19 2.31 E+19 2.06E+19 48.0 4.78E+19 3.12E+19 2.42E+19 2.15E+19 50.0 5.OOE+19 3.25E+19 2.52E+19 2.24E+19 52.0 5.21 E+19 3.39E+19 2.63E+19 2.34E+19 54.0 5.42E+19 3.53E+19 2.74E+19 2.43E+19 Note: The first value listed in the "Operating Time" column is the estimated efpy at the end of cycle 25 (- April 2002).

44

LTR-REA-02-23 Table 2.3-13 Intermediate Shell Forging (123V500)

Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Flu nee [nimz[

Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.29E+19 1.47E+19 1.13E+19 1.01 E+19 26.0 2.50E+19 1.60E+19 1.24E+19 1.11E+19 28.0 2.68E+19 1.72E+19 1.33E+19 1.20E+19 30.0 2.85E+19 1.83E+19 1.42E+19 1.28E+19 32.0 3.03E+19 1.95E+19 1.51E+19 1.37E+19 34.0 3.20E+19 2.06E+19 1.60E+19 1.A5E+19 36.0 3.38E+19 2.18E+19 1.69E+19 1.54E+19 38.0 3.55E+19 2.29E+19 1.78E+19 1.62E+19 40.0 3.73E+19 2.41 E+19 1.87E+19 1.71 E+19 42.0 3.90E+19 2.52E+19 1.96E+19 1.79E+19 44.0 4.08E+19 2.64E+19 2.05E+19 1.88E+19 46.0 4.25E+19 2.75E+19 2.14E+19 1.96E+19 48.0 4.43E+19 2.87E+19 2.23E+19 2.05E+19 50.0 4.60E+19 2.98E+19 2.32E+19 2.13E+19 52.0 4.78E+19 3.1OE+19 2A1E+19 2.22E+19 54.0 4.95E+19 3.21 E+19 2.50E+19 2.30E+19 Without Hafnium Suppression Rods Operating Neutron Flu nce ln/cml Time efpy] O Deg. 15 deg. 30 Deg. 45 De.

23.6 2.29E+19 1.47E+19 1.13E+19 1.01E+.19 26.0 2.54E+19 1.63E+19 1.26E+19 1.13E+19 28.0 2.75E+19 1.77E+19 1.37E+19 1.22E+19 30.0 2.96E+19 1.90E+19 1.47E+19 1.32E+19 32.0 3.17E+19 2.04E+19 1.58E+19 1.41 E+19 34.0 3.38E+19 2.18E+19 1.69E+19 1.51E+19 36.0 3.60E+19 2.31E+19 1.80E+19 1.60E+19 38.0 3.81E+19 2.45E+19 1.91E+19 1.70E+19 40.0 4.02E+19 2.59E+19 2.01E+19 1.79E+19 42.0 4.23E+19 2.73E+19 2.12E+19 1.89E+19 44.0 4.44E+19 2.86E+19 2.23E+19 1.99E+19 46.0 4.65E+19 3.OOE+19 2.34E+19 2.08E+19 48.0 4.86E+19 3.14E+19 2.45E+19 2.18E+19 50.0 5.07E+19 3.27E+19 2.56E+19 2.27E+19 52.0 5.28E+19 3.41E+19 2.66E+19 2.37E+19 54.0 5.49E+19 3.55E+19 2.77E+19 2.46E+19 Note: The first value listed in the 'Operating Time' column is the estimated efpy at the end of cycle 25 (- April 2002).

45

I LTR-REA-02-23 Table 2.3-14 Intermediate Shell to Upper Shell Circumferential Weld (21935)

Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Flu nce [n/cmz]

Time

[efpy] Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.18E+18 1.42E+18 1.1OE+18 9.86E+17 26.0 2.35E+18 1.54E+18 1.21E+18 1.08E+18 28.0 2.50E+18 1.64E+18 1.29E+18 1.16E+18 30.0 2.64E+18 1.74E+18 1.38E+18 1.24E+18 32.0 2.79E+18 1.84E+18 1.46E+18 1.32E+18 34.0 2.93E+18 1.94E+18 1.55E+18 1.40E+18 36.0 3.08E+18 2.04E+18 1.64E+18 1.49E+18 38.0 3.22E+18 2.14E+18 1.72E+18 1.57E.18 40.0 3.37E+18 2.24E+18 1.81E+18 1.65E+18 42.0 3.51 E+18 2.34E+18 1.90E+18 1.73E+18 44.0 3.66E+18 2.44E+18 1.98E+18 1.81E+18 46.0 3.80E+18 2.55E+18 2.07E+18 1.89E+18 48.0 3.95E+18 2.65E+18 2.15E+18 1.97E+18 50.0 4.09E+18 2.75E+18 2.24E+18 2.05E+18 52.0 4.24E+18 2.85E+18 2.33E+18 2.13E+18 54.0 4.38E+18 2.95E+18 2.41E+18 2.21E+18 Without Hafnium Suppression Rods Operating Neutron Fluence [n/cmz]

Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.18E+18 1.42E+18 1.10E+18 9.86E+17 26.0 2.45E+18 1.59E+18 1.24E+18 1.10E+18 28.0 2.67E+18 1.74E+18 1.35E+18 1.20E+18 30.0 2.90E+18 1.89E+18 1.46E+18 1.30E+18 32.0 3.12E+18 2.04E+18 1.58E+18 1.40E+18 34.0 3.35E+18 2.18E+18 1.69E+18 1.50E+18 36.0 3.58E+18 2.33E+18 1.80E+18 1.60E+18 38.0 3.80E+18 2.48E+18 1.92E+18 1.70E+18 40.0 4.03E+18 2.63E+18 2.03E+18 1.80E+18 42.0 4.25E+18 2.78E+18 2.15E+18 1.90E+18 44.0 4.48E+18 2.92E+18 2.26E+18 2.OOE+18 46.0 4.71E+18 3.07E+18 2.37E+18 2.1OE+18 48.0 4.93E+18 3.22E+18 2.49E+18 2.20E+18 50.0 5.16E+18 3.37E+18 2.60E+18 2.30E+18 52.0 5.39E+18 3.51 E+18 2.71 E+18 2.40E+18 54.0 5.61 E+18 3.66E+18 2.83E+18 2.50E+18 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 25 (- April 2002).

46

LTR-REA-02-23 Table 2.3-15 Upper Shell Forging Calculated Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating _ Neutron Flu nce [nlcmi Time

[efpyj O Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.18E+18 1.42E+18 1.10E+18 9.86E+17 26.0 2.35E+18 1.54E+18 1.21E+18 1.08E+18 28.0 2.50E+18 1.64E+18 1.29E+18 1.16E+18 30.0 2.64E+18 1.74E+18 1.38E+18 1.24E+18 32.0 2.79E+18 1.84E+18 1.46E+18 1.32E+18 34.0 2.93E+18 1.94E+18 1.55E+18 1.40E+18 36.0 3.08E+18 2.04E+18 1.64E+18 1.49E+18 38.0 3.22E+18 2.14E+18 1.72E+18 1.57E+18 40.0 3.37E+18 2.24E+18 1.81 E+18 1.65E+18 42.0 3.51 E+18 2.34E+18 1.90E+18 1.73E+18 44.0 3.66E+18 2.44E+18 1.98E+18 1.81E+18 46.0 3.80E+18 2.55E+18 2.07E+18 1.89E+18 48.0 3.95E+18 2.65E+18 2.15E+18 1.97E+18 50.0 4.09E+18 2.75E+18 2.24E+18 2.05E+18 62.0 4.24E+18 2.85E+18 2.33E+18 2.13E+18 54.0 4.38E+18 2.95E+18 2.41 E+18 2.21E+18 Without Hafnium Suppression Rods Operating Neutron Fluence InIcmJ Time (efpyj O Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.18E+18 1.42E+18 1.1OE+18 9.86E+17 26.0 2.45E+18 1.59E+18 1.24E+18 1.10E+18 28.0 2.67E+18 1.74E+18 1.35E+18 1.20E+18 30.0 2.90E+18 1.89E+18 1.46E+18 1.30E+18 32.0 3.12E+18 2.04E+18 1.58E+18 1.40E+18 34.0 3.35E+18 2.18E+18 1.69E+18 1.50E+18 36.0 3.58E+18 2.33E+18 1.80E+18 1.60E+18 38.0 3.80E+18 2.48E+18 1.92E+18 1.70E+18 40.0 4.03E+18 2.63E+18 2.03E+18 1.80E+18 42.0 4.25E+18 2.78E+18 2.15E+18 1.90E+18 44.0 4.48E+18 2.92E+18 2.26E+18 2.OOE+18 46.0 4.71 E+18 3.07E+18 2.37E+18 2.1OE+18 48.0 4.93E+18 3.22E+18 2.49E+18 2.20E+18 50.0 5.16E+18 3.37E+18 2.60E+18 2.30E+18 52.0 5.39E+18 3.51 E+18 2.71 E+18 2.40E+18 54.0 5.61 E+18 3.66E+18 2.83E+18 2.50E+18 Note: The first value listed in the "Operating Timeu column is the estimated efpy at the end of cycle 25 (- April 2002).

47

LTR-REA-02-23 3.0 Neutron Dosimetry Evaluations 3.1 Method of Analysis Evaluations of neutron sensor sets contained in the in-vessel and ex-vessel dosimetry capsules withdrawn to date from the Point Beach Units 1 and 2 reactors were evaluated using the current state of the art least squares methodology.

Least squares adjustment methods provide the capability of combining the measurement data with the neutron transport calculation resulting in a best estimate neutron energy spectrum with associated uncertainties. Best estimates for key exposure parameters such as +(E > 1.0 MeV) along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least squares methods, as applied to reactor dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, Ri-6Rs =EJ(fib+/-3e~ )()g-Fog) relates a set of measured reaction rates, R., to a single neutron spectrum, +g,through the multigroup dosimeter reaction cross-section, ag, each with an uncertainty 8. The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least squares evaluation of the Point Beach Units 1 and 2 dosimetry, the FERRET code[ 57 ] was employed to combine the results of the plant specific neutron transport calculations and sensor set reaction rate measurements to determine best estimate values of exposure parameters along with associated uncertainties.

The application of the least squares methodology requires the following input:

1- The calculated neutron energy spectrum and associated uncertainties at the measurement location.

2- The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.

3- The energy dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the current application, the calculated neutron spectrum at each measurement location was obtained from the results of plant specific neutron transport calculations described in Section 2.0 of this report. The spectrum at each sensor set location was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements. The sensor reaction rates were derived from the measured specific activities of each sensor set and the operating history of the respective reactors. The dosimetry reaction cross-sections were obtained from the SNLRML dosimetry cross-section library[ 581.

48

LTR-REA-02-23 In addition to the magnitude of the calculated neutron spectra, the measured sensor set reaction rates, and the dosimeter set reaction cross-sections, the least squares procedure requires uncertainty estimates for each of these input parameters. The following provides a summary of the uncertainties associated with the least squares evaluation of the Point Beach Units I and 2 dosimetry.

Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, the irradiation history corrections, and the corrections for competing reactions. A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

Reaction Uncertainty Cu"3(n,a)CoN 5%

Fes4(n,p)Mn6 5%

Ni5"(n,p)Coa 5%

U2W (n,f)Cs1 37 10%

Npe (n,f)Cs137 10%

Co59 (ny)Co° 5%

These uncertainties are given at the 1c level.

Dosimetry Cross-Section Uncertainties As noted above, the reaction rate cross-sections used in the least squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least squares adjustment applications. These cross-sections were compiled from the most recent cross-section evaluations and they have been tested with respect to their accuracy and consistency for least squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources. Detailed discussions of the contents of the SNLRML library along with the evaluation process for each of the sensors is provided in Reference 58.

For sensors included in the Point Beach Units 1 and 2 dosimetry sets, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

49

LTR-REA-02-23 Reaction Uncertainty Cu63(n,a)Co6 0 4.08-4.16%

Fe54(n,p)Mn54 3.05-3.11%

Ni58(np)Co58 4.494.56%

U 238(n,f)FP 0.54-0.64%

Np231(n,f)FP 10.32-10.97%

Co59(n,y)Co60 0.79-3.59%

These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

Calculated Neutron Spectrum Uncertainties While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

Mg = R2 +Rg *Rg. *Pg.

where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg. and Rg specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

Pgg = [I-0]6,g + Oe-H where H= (g-g'))

2y 2 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short range correlations over a group range y (0 specifies the strength of the latter term). The value of 8 is 1.0 when g = g' and 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Point Beach Units 1 and calculated spectra was as follows:

Flux Normalization Uncertainty (Rn) 15%

Flux Group Uncertainties (Rg, Rg')

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 29%

(E < 0.68 eV) 52%

Short Range Correlation (0)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E <0.68 eV) 0.5 50

LTR-REA-02-23 Flux Group Correlation Range (y)

(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E<0.68eV) 2 These uncertainty assignments are consistent with an industry consensus uncertainty of 15-20% (Ia) for the fast neutron portion of the spectrum and provide for a reasonable increase in the uncertainty for neutrons in the intermediate and thermal energy ranges.

3.2 Dosimetry Evaluations for Point Beach Unit I During the course of first 27 operating fuel cycles at Point Beach Unit 1, four in-vessel and 20 ex-vessel sensor sets were irradiated at the core midplane elevation and subsequently withdrawn for analysis. A summary of the locations and time of irradiation of each of these multiple foil sensor sets is provided in Table 3.2-1.

In this section, comparisons of the measurement results from each of the sensor set irradiations with corresponding analytical prediction at the measurement locations are presented. These comparisons are provided on two levels. In the first instance calculations of individual sensor reaction rates are compared directly with the measured data from the counting laboratories. This level of comparison is not impacted by the least squares evaluations of the sensor sets. In the second instance, calculated values of neutron exposure rates in terms of +(E > 1.0 MeV) are compared with the best estimate exposure rates obtained from the least squares evaluation.

In Table 3.2-2, comparisons of measured to calculation (M/C) ratios are listed for the threshold sensors contained in in-vessel capsules S, R, and T. Data from capsule V, the first capsule withdrawn from Point Beach Unit 1, was not included in the comparisons, since the original capsule report did not provide sufficient information to upgrade the data evaluation to current methodology and nuclear data. From Table 3.2-2, i is noted that for the individual threshold foils the average M/C ratio ranges from 0.94 to 1.16 with an overall average of 1.03 with an associated standard devistion of 8.1%. In this case, the overall average was based on an equal weighting of each of the sensor types with no adjustments made to account for the spectral coverage of the individual sensors.

In Table 3.2-3 similar comparisons are provided for the twenty sensor sets withdrawn from the core midplane elevation in the reactor cavity. From Table 3.2-3, it is noted that for the individual threshold foils the average MWC ratio ranges from 0.84 to 0.95 with an overall average of 0.88 with an associated standard devistion of 5.6%. As in the case of the in-vessel comparisons, the overall average was based on an equal weighting of each of the sensor types with no adjustments made to account for the spectral coverage of the individual sensors.

In Tables 3.2-4 and 3.2-5, best estimate to calculation (BE/C) ratios for fast neutron flux (E > 1.0 MeV) resulting from the least squares evaluation of each dosimetry set are provided for the in-vessel and ex-vessel irradiations, respectively. For the in-vessel capsules the average BE/C ratio is seen to be 1.02 with an associated uncertainty of 6.7%. The corresponding average BE/C ratio from the ex-vessel irradiations is 0.86 with an uncertainty of 10.6%.

51

LI LTR-REA-02-23 Table 3.2-1 Location and Time of Irradiation for Sensor Sets Withdrawn from Point Beach Unit I Azimuthal Axial Cycles of Capsule ID Location Elevation Irradiation V In-Vessel 13 Deg. Core Midplane I S In-Vessel 23 Deg. Core Midplane 1-3 R In-Vessel 13 Deg. Core Midplane 1-5 T In-Vessel 33 Deg. Core Midplane 1-11 17-1 Ex-Vessel 0 Deg. Core Midplane 17 17-2 Ex-Vessel 15 Deg. Core Midplane 17 17-3 Ex-Vessel 30 Deg. Core Midplane 17 17-4 Ex-Vessel 45 Deg. Core Midplane 17 18-1 Ex-Vessel 0 Deg. Core Midplane 18 18-2 Ex-Vessel 15 Deg. Core Midplane 18 18-3 Ex-Vessel 30 Deg. Core Midplane 18 18-4 Ex-Vessel 45 Deg. Core Midplane 18 19-1 Ex-Vessel 0 Deg. Core Midplane 19 19-2 Ex-Vessel 15 Deg. Core Midplane 19 19-3 Ex-Vessel 30 Deg. Core Midplane 19 19-4 Ex-Vessel 45 Deg. Core Midplane 19 22-1 Ex-Vessel 0 Deg. Core Midplane 20-22 22-2 Ex-Vessel 15 Deg. Core Midplane 20-22 22-3 Ex-Vessel 30 Deg. Core Midplane 20-22 22-4 Ex-Vessel 45 Deg. Core Midplane 20-22 24-1 Ex-Vessel 0 Deg. Core Midplane 23-24 24-2 Ex-Vessel 15 Deg. Core Midplane 23-24 24-3 Ex-Vessel 30 Deg. Core Midplane 23-24 24-4 Ex-Vessel 45 Deg. Core Midplane 23-24 52

LTR-REA-02-23 Table 3.2-2 Comparison of Measure and Calculated Threshold Foil Reaction Rates In-Vessel Capsules - Point Beach Unit 1 MIC Ratio Capsule 63Cu(n,a) 64Fe(np) 5ONi(n,p) Z38U(n,f) 237Np(n,f)

V S 1.01 0.97 0.86 0.91 1.11 R 1.06 1.04 1.03 1.06 1.15 T 1.08 1.01 1.02 1.24 Average 1.05 1.01 0.94 1.00 1.16

% std dev 3.6 3.1 12.8 8.0 5.5 Reaction Average MIC  % Standard Deviation "Cu(n,a) 1.05 3.6 5Fe(n,p) 1.01 3.1 5"Ni(n,p) 0.94 12.8 23 U(nf) 1.00 8.0 237Np(n,f) 1.16 5.5 Linear Average 1.03 8.1 53

LTR-REA-02-23 Table 3.2-3 Comparison of Measure and Calculated Threshold Foil Reaction Rates Ex-Vessel Capsules - Point Beach Unit 1 Reaction Average MIC  % Standard Deviation 63Cu(n,a) 0.92 10.1 54Fe(n,p) 0.85 9.9 58Ni(np) 0.84 10.5 238 U(n,f) 0.85 13.3 2 37 14.7 Np(nf) 0.95 Linear Average 0.88 5.6 54

LTR-REA-02-23 Table 3.2-4 Comparison of Best Estimate and Calculated Neutron Flux (E > 1.0 MeV)

In-Vessel Capsules - Point Beach Unit 1 Capsule BE/C  % Standard Deviation V

S 0.94 7.0 R 1.06 7.0 T 1.06 7.0 Average 1.02 6.7 55

LTR-REA-02-23 Table 3.2-5 Comparison of Best Estimate and Calculated Neutron Flux (E > 1.0 MeV)

Ex-Vessel Capsules - Point Beach Unit 1 Reaction BE/C  % Standard Deviation 17-1 0.75 7.0 17-2 0.80 7.0 17-3 0.87 7.0 17-4 0.91 7.0 18-1 0.73 7.0 18-2 0.84 7.0 18-3 0.95 7.0 18-4 0.96 7.0 19-1 0.75 7.0 19-2 0.84 7.0 19-3 0.94 7.0 19-4 0.98 7.0 22-1 0.74 7.0 22-2 0.81 7.0 22-3 0.91 7.0 22-4 0.94 7.0 24-1 0.70 7.0 24-2 0.85 7.0 24-3 0.94 7.0 24-4 0.96 7.0 Average 0.86 10.6 56

LTR-REA-02-23 3.3 Dosimetry Evaluations for Point Beach Unit 2 During the course of first 25 operating fuel cycles at Point Beach Unit 2, four in-vessel and 20 ex-vessel sensor sets were irradiated at the core midplane elevation and subsequently withdrawn for analysis. A summary of the locations and time of irradiation of each of these multiple foil sensor sets is provided in Table 3.3-1.

In this section, comparisons of the measurement results from each of the sensor set irradiations with corresponding analytical prediction at the measurement locations are presented. These comparisons are provided on two levels. In the first instance calculations of individual sensor reaction rates are compared directly with the measured data from the counting laboratories. This level of comparison is not impacted by the least squares evaluations of the sensor sets. In the second instance, calculated values of neutron exposure rates in terms of +(E > 1.0 MeV) are compared with the best estimate exposure rates obtained from the least squares evaluation.

In Table 3.3-2, comparisons of measured to calculation (MWC) ratios are listed for the threshold sensors contained in in-vessel capsules V, S, R, and T. From Table 3.2-2, it is noted that for the individual threshold foils the average MWC ratio ranges from 0.97 to 1.09 with an overall average of 1.01 with an associated standard devistion of 2.8%. In this case, the overall average was based on an equal weighting of each of the sensor types with no adjustments made to account for the spectral coverage of the individual sensors.

In Table 3.3-3 similar comparisons are provided for the twenty sensor sets withdrawn from the core midplane elevation in the reactor cavity. From Table 3.3-3, it is noted that for the individual threshold foils the average MIC ratio ranges from 0.89 to 0.99 with an overall average of 0.93 with an associated standard devistion of 4.6%. As in the case of the in-vessel comparisons, the overall average was based on an equal weighting of each of the sensor types with no adjustments made to account for the spectral coverage of the individual sensors.

In Tables 3.3-4 and 3.3-5, best estimate to calculation (BE/C) ratios for fast neutron flux (E > 1.0 MeV) resulting from the least squares evaluation of each dosimetry set are provided for the in-vessel and ex-vessel irradiations, respectively. For the in-vessel capsules the average BE/C ratio is seen to be 1.01 with an associated uncertainty of 0.6%. The corresponding average BE/C ratio from the ex-vessel irradiations is 0.91 with an uncertainty of 3.3%.

57

LTR-REA-02-23 Table 3.3-1 Location and Time of Irradiation for Sensor Sets Withdrawn from Point Beach Unit 2 Azimuthal Axial Cycles of Capsule ID Location Elevation Irradiation V In-Vessel 13 Deg. Core Midplane 1 T In-Vessel 23 Deg. Core Midplane 1-3 R In-Vessel 13 Deg. Core Midplane 1-5 S In-Vessel 33 Deg. Core Midplane 1-16 15-1 Ex-Vessel 0 Deg. Core Midplane 15 15-2 Ex-Vessel 15 Deg. Core Midplane 15 15-3 Ex-Vessel 30 Deg. Core Midplane 15 15-4 Ex-Vessel 45 Deg. Core Midplane 15 16-1 Ex-Vessel 0 Deg. Core Midplane 16 16-2 Ex-Vessel 15 Deg. Core Midplane 16 16-3 Ex-Vessel 30 Deg. Core Midplane 16 16-4 Ex-Vessel 45 Deg. Core Midplane 16 17-1 Ex-Vessel 0 Deg. Core Midplane 17 17-2 Ex-Vessel 15 Deg. Core Midplane 17 17-3 Ex-Vessel 30 Deg. Core Midplane 17 17-4 Ex-Vessel 45 Deg. Core Midplane 17 20-1 Ex-Vessel 0 Deg. Core Midplane 18-20 20-2 Ex-Vessel 15 Deg. Core Midplane 18-20 20-3 Ex-Vessel 30 Deg. Core Midplane 18-20 20-4 Ex-Vessel 45 Deg. Core Midplane 18-20 23-1 Ex-Vessel 0 Deg. Core Midplane 21-23 23-2 Ex-Vessel 15 Deg. Core Midplane 21-23 23-3 Ex-Vessel 30 Deg. Core Midplane 21-23 23-4 Ex-Vessel 45 Deg. Core Midplane 21-23 58

LTR-REA-02-23 Table 3.3-2 Comparison of Measure and Calculated Threshold Foil Reaction Rates In-Vessel Capsules - Point Beach Unit 2

_________ MIC Ratio, Capsule r3Cu(na) 'lFe(n,p) 58N!(np) 238U(nf)f 23 1Np(nf)

V 0.92 0.92 1.11 1.05 T 0.95 1.00 0.98 0.98 1.11 R 1.01 0.97 1.00 1.03 1.12 S 1.05 0.92 1.09 1.09 Average 0.98 0.97 0.97 1.05 1.09

% std dev 6.1 4.0 4.3 5.8 2.8 Reaction Average MIC  % Standard Deviation 63Cu(n,a) 0.98 6.1 54Fe(n,p) 0.97 4.0 Ni(n,p) 0.97 4.3 233U(n,f) 1.05 5.8 237Np(nf) 1.09 2.8 Linear Average 1.01 5.7 59

LTR-REA-02-23 Table 3.3-3 Comparison of Measure and Calculated Threshold Foil Reaction Rates Ex-Vessel Capsules - Point Beach Unit 2 MIC Ratio ____237 Capsule 63 Cu(na) 54Fe(np) 58Ni(n,p) 233U(n,f) 23 7Np(n,f) 15-1 0.91 0.87 0.88 0.86 0.94 15-2 1.01 0.94 0.95 0.94 1.03 15-3 0.95 0.94 0.91 0.91 1.03 15-4 1.02 0.92 0.95 0.96 1.09 16-1 0.90 0.84 0.85 0.88 0.97 16-2 0.95 0.87 0.89 0.97 0.98 16-3 1.00 0.93 0.93 0.92 1.01 16-4 1.02 0.95 0.96 0.94 1.15 17-1 0.93 0.87 0.87 0.81 0.99 17-2 0.99 0.92 0.91 0.89 0.91 17-3 0.96 0.91 0.91 0.92 0.99 17-4 1.01 0.93 0.93 0.88 0.95 20-1 0.93 0.85 0.87 0.85 0.87 20-2 0.98 0.87 0.88 0.92 0.95 20-3 0.98 0.87 0.89 0.89 0.98 20-4 0.98 0.86 0.89 0.89 0.98 23-1 0.90 0.89 0.89 0.90 23-2 0.94 0.89 0.90 0.95 23-3 0.92 0.85 0.84 0.96 0.96 23-4 0.91 0.84 0.85 0.94 1.02 Average 0.96 0.89 0.90 0.91 0.99

% std dev 4.3 4.1 3.8 4.5 6.5 Reaction Average M/C  % Standard Deviation 63Cu(n,a) 0.96 4.3 5Fe(n,p) 0.89 4.1 58Ni(n,p) 0.90 3.8 238 U(n,f) 0.91 4.5 237Np(n,f) 0.99 6.5 Linear Average 0.93 4.6 60

LTR-REA-02-23 Table 3.3-4 Comparison of Best Estimate and Calculated Neutron Flux (E > 1.0 MeV)

In-Vessel Capsules - Point Beach Unit 2 Capsule BEIC  % Standard Deviation V 1.01 7.0 S 1.02 7.0 R 1.02 7.0 T 1.01 7.0 Average 1.01 0.6 61

LTR-REA-02-23 Table 3.3-5 Comparison of Best Estimate and Calculated Neutron Flux (E > 1.0 MeV)

Ex-Vessel Capsules - Point Beach Unit 2 Reaction BEIC  % Standard Deviation 15-1 0.88 7.0 15-2 0.95 7.0 15-3 0.94 7.0 15-4 0.96 7.0 16-1 0.87 7.0 16-2 0.92 7.0 16-3 0.94 7.0 16-4 0.98 7.0 17-1 0.87 7.0 17-2 0.90 7.0 17-3 0.93 7.0 17-4 0.91 7.0 20-1 0.87 7.0 20-2 0.92 7.0 20-3 0.92 7.0 20-4 0.92 7.0 23-1 0.89 7.0 23-2 0.91 7.0 23-3 0.89 7.0 23-4 0.90 7.0 Average 0.91 3.3 62

LTR-REA-02-23 Table 3.3-4 Summary of In-Vessel and Ex-Vessel Data Comparions In-Vessel Data Ex-Vessel Data Average Average M/C  % std dev MIC  % std dev 63Cu(n,a) 0.98 6.1 0.96 5.6 "Fe(n,p) 0.97 4.0 0.91 7.2 58Ni(np) 0.97 4.3 0.94 8.6 238U(n,f) 1.05 5.8 0.94 8.4 w7Np(n,f) 1.09 2.8 1.01 8.2 All Reactions 1.01 2.1 0.95 3.4 Combined Data Set Average MIC  % std deva mCu(n,a) 0.97 4.2 54Fe(n,p) 0.94 4.1 58Ni(n,p) 0.95 4.8 23U(nf) 1.00 5.0 237Np(n,f) 1.05 4.2 All Reactions 0.98 2.0 63

LTR-REA-02-23 4.0 Best Estimate Exposure Evaluations In this section the measurement results provided in Section 3.0 are combined with the results of the neutron transport calculations described in Section 2.0 to establish best estimates for the neutron exposure of the Point Beach Units 1 and 2 pressure vessel beltline materials. The best estimate exposures were determined from the following equation:

OBE = K*q(c where: DBE = The best estimate neutron exposure for the material of interest.

K = The plant specific best estimate BE/C bias factor derived from the set of in-vessel and ex-vessel measurements available for each reactor.

Oc= The absolute calculated fast neutron exposure for the material of interest.

In the development of the bias factor (K) for each of the respective reactors, the in-vessel and ex-vessel comparisons were treated as independent data sets and combined linearly to produce an overall value for K.

In the case of Point beach Unit 1 the in-vessel, ex-vessel, and combined BE/C comparisons for neutron flux (E > 1.0 MeV) may be summarized as follows:

BElC  % Uncertainty In-Vessel 1.02 6.7 Ex-Vessel 0.86 10.6 K, 0.94 6.1 The corresponding data comparisons applicable to Point Beach Unit 2 are as follows:

BE/C  % Uncertainty In-Vessel 1.01 0.6 Ex-Vessel 0.91 3.3 K2 0.96 1.6 Resultant best estimate fluence projections for Point Beach Unit 1 are listed in Tables 4-1 through 4-12 for each of the beltline materials. Projections are provided for fuel management scenarios with and without hafnium power suppression rods and with and without uprated core power. Corresponding fluence projections for Point Beach Unit 2 are given in Tables 4-13 through 4-22.

64

LTR-REA-02-23 Table 4-1 Intermediate Shell to Lower Shell Circumferential Weld (SA-1 101)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit I With Hafnium Suppression Rods Operating Neutron Flu nce In/cm _

Time lefpy) 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.98E+19 1.31E+19 1.02E+19 9.04E+18 26.0 2.07E+19 1.38E+19 1.09E+19 9.57E+18 28.0 2.18E+19 1.45E+19 1.15E+19 1.02E+19 30.0 2.29E+19 1.54E+19 1.23E+19 1.09E+19 32.0 2.40E+19 1.61E+19 1.30E+19 1.15E+19

.34.0 2.50E+19 1.70E+19 1.37E+19 1.23E+19 36.0 2.62E+19 1.77E+19 1.44E+19 1.29E+19 38.0 2.72E+19 1.86E+19 1.52E+19 1.36E+19 40.0 2.83E+19 1.93E+19 1.59E+19 1.43E+19 42.0 2.95E+19 2.02E+19 1.66E+19 1.49E+19 44.0 3.05E+19 2.09E+19 1.74E+19 1.56E+19 46.0 3.16E+19 2.18E+19 1.81E+19 1.62E+19 48.0 3.27E+19 2.25E+19 1.88E+19 1.69E+19 50.0 3.38E+19 2.34E+19 1.95E+19 1.75E+19 52.0 3.49E+19 2.41E+19 2.03E+19 1.82E+19 54.0 3.60E+19 2.50E+19 2.09E+19 1.89E+19 Without Hafnium Suppression Rods Operating _ eutron Fluence [Incm _

Time

[efpy o Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.98E+19 1.31 E+19 1.02E+19 9.04E+18 26.0 2.12E+19 1.40E+19 1.10E+19 9.66E+18 28.0 2.28E+19 1.51E+19 1.18E+19 1.03E+19 30.0 2.45E+19 1.62E+19 1.26E+19 1.11E+19 32.0 2.62E+19 1.74E+19 1.34E+19 1.18E+19 34.0 2.78E+19 1.85E+19 1.43E+19 1.25E+19 36.0 2.95E+19 1.95E+19 1.51E+19 1.32E+19 38.0 3.11E+19 2.06E+19 1.59E+19 1.39E+19 40.0 3.27E+19 2.18E+19 1.68E+19 1.46E+19 42.0 3.44E+19 2.29E+19 1.76E+19 1.54E+19 44.0 3.61 E+19 2.40E+19 1.85E+19 1.60E+19 46.0 3.77E+19 2.50E+19 1.92E+19 1.68E+19 48.0 3.94E+19 2.62E+19 2.01E+19 1.75E+19 60.0 4.11E+19 2.73E+19 2.09E+19 1.82E+19 52.0 4.27E+19 2.84E+19 2.18E+19 1.89E+19 54.0 4.44E+19 2.95E+19 2.26E+19 1.96E+19 Note: The first value listed in the 0Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

65

I1~~

LTR-REA-02-23 Table 4-2 Lower Shell Plate (C-1423)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Flu nce [n/cm'_

Time

[efpyW O Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.02E+19 1.34E+19 1.06E+19 9.38E+18 26.0 2.11E+19 1.41E+19 1.13E+19 9.94E+18 23.0 2.21 E+19 1.49E+19 1.20E+19 1.06E+19 30.0 2.32E+19 1.57E+19 1.28E+19 1.14E+19 32.0 2.43E+19 1.65E+19 1.35E+19 1.20E+19 34.0 2.53E+19 1.73E+19 1.43E+19 1.27E+19 36.0 2.64E+19 1.81E+19 1.50E+19 1.34E+19 38.0 2.75E+19 1.89E+19 1.58E+19 1.41E+19 40.0 2.85E+19 1.97E+19 1.65E+19 1.47E+19 42.0 2.96E+19 2.04E+19 1.72E+19 1.55E+19 44.0 3.07E+19 2.13E+19 1.79E+19 1.61E+19 46.0 3.17E+19 2.20E+19 1.87E+19 1.68E+19 48.0 3.28E+19 2.29E+19 1.94E+19 1.75E+19 50.0 3.39E+19 2.36E+19 2.02E+19 1.82E+19 52.0 3.49E+19 2.45E+19 2.09E+19 1.89E+19 54.0 3.60E+19 2.52E+19 2.17E+19 1.95E+19 Without Hafnium Suppression Rods Operating Neutron Fluence In/cmz]

Time lefpyl 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.02E+19 1.34E+19 1.06E+19 9.38E+18 26.0 2.16E+19 1.44E+19 1.14E+19 1.OOE+19 28.0 2.34E+19 1.55E+19 1.22E+19 1.08E+19 30.0 2.50E+19 1.67E+19 1.30E+19 1.14E+19 32.0 2.67E+19 1.78E+19 1.40E+19 1.22E+19 34.0 2.85E+19 1.89E+19 1.48E+19 1.29E+19 36.0 3.02E+19 2.02E+19 1.57E+19 1.37E+19 38.0 3.20E+19 2.13E+19 1.66E+19 1.44E+19 40.0 3.37E+19 2.24E+19 1.74E+19 1.52E+19 42.0 3.54E+19 2.35E+19 1.83E+19 1.59E+19 44.0 3.71 E+19 2.48E+19 1.91E+19 1.67E+19 46.0 3.88E+19 2.59E+19 2.01E+19 1.74E+19 48.0 4.06E+19 2.70E+19 2.09E+19 1.82E+19 50.0 4.23E+19 2.81E+19 2.18E+19 1.89E+19 52.0 4.40E+19 2.94E+19 2.26E+19 1.97E+19 54.0 4.58E+19 3.05E+19 2.35E+19 2.04E+19 Note: The first value listed in the "Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

66

LTR-REA-02-23 Table 4-3 Intermediate Shell Plate (A-981 1)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit I With Hafnium Suppression Rods Operating Neutron Fluence [nIcm'I Time

[efpy O Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.28E+19 1.45E+19 1.09E+19 9.57E+18 26.0 2.41E+19 1.54E+19 1.14E+19 1.01E+19 28.0 2.58E+19 1.64E+19 1.23E+19 1.08E+19 30.0 2.74E+19 1.75E+19 1.30E+19 1.15E+19 32.0 2.90E+19 1.86E+19 1.38E+19 1.22E+19 34.0 3.07E+19 1.96E+19 1.45E+19 1.29E+19 36.0 3.23E+19 2.06E+19 1.54E+19 1.36E+19 38.0 3.39E+19 2.18E+19 1.61 E+19 1.44E+19 40.0 3.56E+19 2.28E+19 1.69E+19 1.50E+19 42.0 3.71E+19 2.38E+19 1.77E+19 1.58E+19 44.0 3.88E+19 2.49E+19 1.85E+19 1.65E+19 46.0 4.04E+19 2.59E+19 1.92E+19 1.72E+19 48.0 4.20E+19 2.70E+19 2.OOE+19 1.79E+19 50.0 4.37E+19 2.80E+19 2.08E+19- 1.86E+19 52.0 4.53E+19 2.91 E+19 2.16E+19 1.93E+19 54.0 4.69E+19 3.01E+19 2.23E+19 2.OOE+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nlcm _

Time f1p O Deg. 16 deg. 30 Deg. 45 Deg.

24.3 2.28E+19 1.45E+19 1.09E+19 9.57E+18 26.0 2.42E+19 1.55E+19 1.15E+19 1.01E+19 28.0 2.59E+19 1.66E+19 1.24E+19 1.09E+19 30.0 2.75E+19 1.77E+19 1.33E+19 1.16E+19 32.0 2.92E+19 1.89E+19 1.42E+19 1.24E+19 34.0 3.09E+19 2.00E+19 1.50E+19 1.31 E+19 36.0 3.26E+19 2.1OE+19 1.59E+19 1.39E+19 38.0 3.42E+19 2.21E+19 1.68E+19 1.46E+19 40.0 3.59E+19 2.33E+19 1.76E+19 1.54E+19 42.0 3.75E+19 2.44E+19 1.85E+19 1.61E+19 44.0 3.92E+19 2.55E+19 1.93E+19 1.69E+19 46.0 4.09E+19 2.66E+19 2.03E+19 1.76E+19 48.0 4.26E+19 2.78E+19 2.11E+19 1.83E+19 50.0 4.43E+19 2.89E+19 2.20E+19 1.90E+19 52.0 4.60E+19 3.00E+19 2.28E+19 1.98E+19 54.0 4.77E+19 3.11E+19 2.37E+19 2.05E+19 Note: The first value listed in the "Operating Time' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

67

LTR-REA-02-23 Table 4-4 Intermediate Shell (SA775/812) and Lower Shell (SA-847) Longitudinal Welds Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Flu nce [n/cmJ Time Inter. Lower

[efpy] Shell Shell 24.3 1.45E+19 1.34E+19 26.0 1.54E+19 1.41 E+19 28.0 1.64E+19 1.49E+19 30.0 1.75E+19 1.57E+19 32.0 1.86E+19 1.65E+19 34.0 1.96E+19 1.73E+19 36.0 2.06E+19 1.81E+19 38.0 2.18E+19 1.89E+19 40.0 2.28E+19 1.97E+19 42.0 2.38E+19 2.04E+19 44.0 2.49E+19 2.13E+19 46.0 2.59E+19 2.20E+19 48.0 2.70E+19 2.29E+19 50.0 2.80E+19 2.36E+19 52.0 2.91 E+19 2.45E+19 54.0 3.01E+19 2.52E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nIcm]

Time Inter. Lower

[efpyW Shell Shell 24.3 1.45E+19 1.34E+19 26.0 1.55E+19 1.44E+19 28.0 1.66E+19 1.55E+19 30.0 1.77E+19 1.67E+19 32.0 1.89E+19 1.78E+19 34.0 2.OOE+19 1.89E+19 36.0 2.10E+19 2.02E+19 38.0 2.21 E+19 2.13E+19 40.0 2.33E+19 2.24E+19 42.0 2.44E+19 2.35E+19 44.0 2.55E+19 2.48E+19 46.0 2.66E+19 2.59E+19 48.0 2.78E+19 2.70E+19 50.0 2.89E+19 2.81 E+19 52.0 3.OOE+19 2.94E+19 54.0 3.11E+19 3.05E+19 Note: The first value listed in the 'Operating Time' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

68

LTR-REA-02-23 Table 4-5 Intermediate Shell to Upper Shell Circumferential Weld (SA-1426)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence [nlcm'I Time

[efpy] O Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.54E+18 1.04E+18 8.45E+17 7A9E+17 26.0 1.61E+18 1.1OE+18 9.OOE+17 7.97E+17 28.0 1.71 E+18 1.16E+18 9.66E+17 8.57E+17 30.0 1.79E+18 1.24E+18 1.03E+18 9.17E+17 32.0 1.89E+18 1.30E+18 1.10E+18 9.76E+17 34.0 1.97E+18 1.37E+18 1.16E+18 1.04E+18 36.0 2.06E+18 1.44E+18 1.23E+18 1.10E+18 38.0 2.15E+18 1.51 E+18 1.29E+18 1.15E+18 40.0 2.24E+18 1.58E+18 1.36E+18 1.22E+18 42.0 2.33E+18 1.65E+18 1.43E+18 1.28E+18 44.0 2.42E+18 1.72E+18 1.49E+18 1.33E+18 46.0 2.50E+18 1.78E+18 1.56E+18 1.40E+18 48.0 2.60E+18 1.86E+18 1.62E+18 1.45E+18 50.0 2.68E+18 1.92E+18 1.69E+18 1.52E+18 52.0 2.78E+18 1.99E+18 1.75E+18 1.58E+18 54.0 2.87E+18 2.06E+18 1.82E+18 1.63E+18 Without Hafnium Suppression Rods Operating Neutron Flu nce InIcml Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.54E+18 1.04E+18 8.45E+17 7.49E+17 26.0. 1.66E+18 1.13E+18 9.05E+17 7.99E+17 28.0 1.81E+18 1.22E+18 9.76E+17 8.62E+17 30.0 1.96E+18 1.31E+18 1.05E+18 9.24E+17 32.0 2.11E+18 1.42E+18 1.12E+18 9.85E+17 34.0 2.26E+18 1.51E+18 1.19E+18 1.05E+18 36.0 2.41 E+18 1.60E+18 1.27E+18 1.11E+18 38.0 2.56E+18 1.70E+18 1.34E+18 1.17E+18 40.0 2.70E+18 1.80E+18 1.41 E+18 1.24E+18 42.0 2.85E+18 1.89E+18 1.48E+18 1.29E+18 44.0 3.OOE+18 1.99E+18 1.56E+18 1.36E+18 46.0 3.15E+18 2.09E+18 1.62E+18 1.43E+18 48.0 3.30E+18 2.19E+18 1.70E+18 1.48E+18 50.0 3.45E+18 2.28E+18 1.77E+18 1.55E+18 52.0 3.60E+18 2.38E+18 1.84E+18 1.61E+18 54.0 3.75E+18 2.48E+18 1.91E+18 1.67E+18 Note: The first value listed in the "Operating lime' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

69

LTR-REA-02-23 Table 4-6 Upper Shell Forging Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit I With Hafnium Suppression Rods Operating Neutron Fluence [nIcm"]

Time

[efpyl O Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.54E+18 1.04E+18 8.45E+17 7.49E+17 26.0 1.61E+18 1.1OE+18 9.OOE+17 7.97E+17 28.0 1.71E+18 1.16E+18 9.66E+17 8.57E+17 30.0 1.79E+18 1.24E+18 1.03E+18 9.17E+17 32.0 1.89E+18 1.30E+18 1.1OE+18 9.76E+17 34.0 1.97E+18 1.37E+18 1.16E+18 1.04E+18 36.0 2.06E+18 1.44E+18 1.23E+18 1.1OE+18 38.0 2.15E+18 1.51E+18 1.29E+18 1.15E+18 40.0 2.24E+18 1.58E+18 1.36E+18 1.22E+18 42.0 2.33E+18 1.65E+18 1.43E+18 1.28E+18 44.0 2.42E+18 1.72E+18 1.49E+18 1.33E+18 46.0 2.50E+18 1.78E+18 1.56E+18 1.40E+18 48.0 2.60E+18 1.86E+18 1.62E+18 1.45E+18 50.0 2.68E+18 1.92E+18 1.69E+18 1.52E+18 52.0 2.78E+18 1.99E+18 1.75E+18 1.58E+18 54.0 2.87E+18 2.06E+18 1.82E+18 1.63E+18 Without Hafnium Suppression Rods Operating Neutron Fluence [nicm2]

Time

[efpyl O Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.54E+18 1.04E+18 8.45E+17 7.49E+17 26.0 1.66E+18 1.13E+18 9.05E+17 7.99E+17 28.0 1.81 E+18 1.22E+18 9.76E+17 8.62E+17 30.0 1.96E+18 1.31E+18 1.05E+18 9.24E+17 32.0 2.11 E+18 1.42E+18 1.12E+18 9.85E+17 34.0 2.26E+18 1.51E+18 1.19E+18 1.05E+18 36.0 2.41 E+18 1.60E+18 1.27E+18 1.IIE+18 38.0 2.56E+18 1.70E+18 1.34E+18 1.17E+18 40.0 2.70E+18 1.80E+18 1.41 E+18 1.24E+18 42.0 2.85E+18 1.89E+18 1.48E+18 1.29E+18 44.0 3.OOE+18 1.99E+18 1.56E+18 1.36E+18 46.0 3.15E+18 2.09E+18 1.62E+18 1.43E+18 48.0 3.30E+18 2.19E+18 1.70E+18 1.48E+18 50.0 3.45E+18 2.28E+18 1.77E+18 1.55E+18 52.0 3.60E+18 2.38E+18 1.84E+18 1.61E+18 54.0 3.75E+18 2.48E+18 1.91E+18 1.67E+18 Note: The first value listed in the "Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

70

LTR-REA-02-23 Table 4-7 Intermediate Shell to Lower Shell Circumferential Weld (SA-1 101)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit I With Hafnium Suppression Rods Operating Neutron Flu nce [nlcmzl Time efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.98E+19 1.31E+19 1.02E+19 9.04E+18 26.0 2.08E+19. 1.38E+19 1.09E+19 9.66E+18 28.0 2.20E+19 1.47E+19 1.17E+19 1.04E+19 30.0 2.32E+19 1.56E+19 1.25E+19 1.11E+19 32.0 2.44E+19 1.65E+19 1.33E+19 1.18E+19 34.0 2.56E+19 1.74E+19 1.41E+19 1.26E+19 36.0 2.68E+19 1.82E+19 1.A9E+19 1.33E+19 38.0 2.80E+19 1.91E+19 1.57E+19 1.41E+19 40.0 2.93E+19 2.OOE+19 1.65E+19 1.48E+19 42.0 3.04E+19 2.09E+19 1.73E+19 1.55E+19 44.0 3.16E+19 2.18E+19 1.81E+19 __1.62E+19 46.0 3.28E+19 2.26E+19 1.89E+19 1.70E+19 48.0 3.41 E+19 2.35E+19 1.97E+19 1.77E+19 50.0 3.53E+19 2.44E+19 2.04E+19 1.85E+19 52.0 3.65E+19 2.53E+19 2.13E+19 1.91 E+19 54.0 3.77E+19 2.62E+19 2.20E+19 1.99E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [n/cm)

Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.98E+19 1.31E+19 1.02E+19 9.04E+18 26.0 2.13E+19 1.41E+19 1.10E+19 9.66E+18 28.0 2.32E+19 1.53E+19 1.19E+19 1.05E+19 30.0 2.50E+19 1.66E+19 1.29E+19 1.13E+19 32.0 2.68E+19 1.78E+19 1.38E+19 1.21E+19 34.0 2.86E+19 1.90E+19 1.47E+19 1.29E+19 36.0 3.05E+19 2.03E+19 1.56E+19 1.37E+19 38.0 3.23E+19 2.15E+19 1.65E+19 1.44E+19 40.0 3.41 E+19 2.27E+19 1.74E+19 1.52E+19 42.0 3.59E+19 2.39E+19 1.84E+19 1.60E+19 44.0 3.78E+19 2.51 E+19 1.93E+19 1.68E+19 46.0 3.96E+19 2.64E+19 2.03E+19 1.76E+19 48.0 4.15E+19 2.76E+19 2.11E+19 1.84E+19 50.0 4.32E+19 2.88E+19 2.20E+19 1.92E+19 52.0 4.51 E+19 3.00E+19 2.30E+19 2.OOE+19 64.0 4.70E+19 3.12E+19 2.39E+19 2.07E+19 Note: The first value listed in the 'Operating Time' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

71

LTR-REA-02-23 Table 4-8 Lower Shell Plate (C-1423)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit I With Hafnium Suppression Rods Operating Neutron Fluence [nlcmz]

Time efpy Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.02E+19 1.34E+19 1.06E+19 9.38E+18 26.0 2.11 E+19 1.42E+19 1.14E+19 1.OOE+19 28.0 2.23E+19 1.50E+19 1.21E+19 1.08E+19 30.0 2.35E+19 1.59E+19 1.29E+19 1.15E+19 32.0 2.47E+19 1.68E+19 1.38E+19 1.23E+19 34.0 2.59E+19 1.76E+19 1.46E+19 1.30E+19 36.0 2.70E+19 1.86E+19 1.55E+19 1.38E+19 38.0 2.82E+19 1.94E+19 1.62E+19 1.45E+19 40.0 2.94E+19 2.04E+19 1.71E+19 1.53E+19 42.0 3.06E+19 2.12E+19 1.79E+19 1.60E+19 44.0 3.18E+19 2.20E+19 1.88E+19 1.68E+19 46.0 3.29E+19 2.30E+19 1.95E+19 1.76E+19 48.0 3.41 E+19 2.38E+19 2.04E+19 1.84E+19 50.0 3.53E+19 2.47E+19 2.12E+19 1.91E+19 52.0 3.65E+19 2.56E+19 2.20E+19 1.99E+19 54.0 3.76E+19 2.65E+19 2.29E+19 2.06E+19 Without Hafnium Suppression Rods Operating Neutron Fluence liicmzl Time

[efpy] O Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.02E+19 1.34E+19 1.06E+19 9.38E+18 26.0 2.16E+19 1.44E+19 1.14E+19 1.OOE+19 28.0 2.34E+19 1.55E+19 1.22E+19 1.08E+19 30.0 2.50E+19 1.67E+19 1.30E+19 1.14E+19 32.0 2.67E+19 1.78E+19 1.40E+19 1.22E+19 34.0 2.85E+19 1.89E+19 1.48E+19 1.29E+19 36.0 3.02E+19 2.02E+19 1.57E+19 1.37E+19 38.0 3.20E+19 2.13E+19 1.66E+19 1.44E+19 40.0 3.37E+19 2.24E+19 1.74E+19 1.52E+19 42.0 3.54E+19 2.35E+19 1.83E+19 1.59E+19 44.0 3.71 E+19 2.48E+19 1.91E+19 1.67E+19 46.0 3.88E+19 2.59E+19 2.01 E+19 1.74E+19 48.0 4.06E+19 2.70E+19 2.09E+19 1.82E+19 50.0 4.23E+19 2.81 E+19 2.18E+19 1.89E+19 52.0 4.40E+19 2.94E+19 2.26E+19 1.97E+19 54.0 4.58E+19 3.05E+19 2.35E+19 2.04E+19 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

72

LTR-REA-02-23 Table 4-9 Intermediate Shell Plate (A-981 1)

Best estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit I

. With Hafnium Suppression Rods Operating Neutron Fluence [n/cm' Time

[efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.28E+19 1.45E+19 1.09E+19 9.57E+18 26.0 2.43E+19 1.55E+19 1.15E+19 1.01E+19 28.0 2.61 E+19 1.67E+19 1.24E+19 1.10E+19 30.0 2.79E+19 1.78E+19 1.32E+19 1.17E+19 32.0 2.96E+19 1.89E+19 1.41 E+19 1.25E+19 34.0 3.15E+19 2.02E+19 1.50E+19 1.33E+19 36.0 3.33E+19 2.13E+19 1.59E+19 1.41 E+19 38.0 3.51 E+19 2.25E+19 1.67E+19 1.48E+19 40.0 3.69E+19 2.36E+19 1.75E+19- 1.57E+19 42.0 3.86E+19 2.48E+19 1.84E+19 1.64E+19 44.0 4.05E+19 2.60E+19 1.92E+19 1.72E+19 46.0 4.23E+19 2.71E+19 2.02E+19 1.80E+19 48.0 4.41E+19 2.83E+19 2.10E+19 1.88E+19 50.0 4.59E+19 2.95E+19 2.19E+19 1.95E+19 52.0 4.77E+19 3.06E+19 2.27E+19 2.04E+19 54.0 4.94E+19 3.18E+19 2.35E+19 2.11E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [n/cmJ Time

[efpy 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 2.28E+19 1.45E+19 1.09E+19 9.57E+18 26.0 2.43E+19 1.56E+19 1.16E+19 1.02E+19 28.0 2.62E+19 1.68E+19 1.26E+19 1.11E+19 30.0 2.80E+19 1.80E+19 1.35E+19 1.18E+19 32.0 2.98E+19 1.92E+19 1.45E+19 1.27E+19 34.0 3.17E+19 2.05E+19 1.55E+19 1.35E+19 36.0 3.36E+19 2.18E+19 1.64E+19 1.44E+19 38.0 3.55E+19 2.30E+19 1.74E+19 1.51E+19 40.0 3.72E+19 2A2E+19 1.84E+19 1.59E+19 42.0 3.91E+19 2.54E+19 1.93E+19 1.68E+19 44.0 4.1OE+19 2.66E+19 2.03E+19 1.76E+19 46.0 4.28E+19 2.80E+19 2.12E+19 1.85E+19 48.0 4.47E+19 2.92E+19 2.21E+19 1.92E+19 50.0 4.65E+19 3.04E+19 2.32E+19 2.01 E+19 52.0 4.84E+19 3.16E+19 2.41E+19 2.09E+19 54.0 5.02E+19 3.28E+19 2.50E+19 2.18E+19 Note: The first value listed in the "Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

73

LTR-REA-02-23 Table 4-1 0 Intermediate Shell (SA775/812) and Lower Shell (SA-847) Longitudinal Welds Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence [n/cm"]

Time Inter. Lower Wefpy Shell Shell 24.3 1.45E+19 1.34E+19 26.0 1.55E+19 1.42E+19 28.0 1.67E+19 1.50E+19 30.0 1.78E+19 1.59E+19 32.0 1.89E+19 1.68E+19 34.0 2.02E+19 1.76E+19 36.0 2.13E+19 1.86E+19 38.0 2.25E+19 1.94E+19 40.0 2.36E+19 2.04E+19 42.0 2.48E+19 2.12E+19 44.0 2.60E+19 2.20E+19 46.0 2.71 E+19 2.30E+19 48.0 2.83E+19 2.38E+19 50.0 2.95E+19 2.47E+19 52.0 3.06E+19 2.56E+19 54.0 3.18E+19 2.65E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nfcm I Time Inter. Lower

[efpyj Shell Shell 24.3 1.45E+19 1.34E+19 26.0 1.56E+19 1.44E+19 28.0 1.68E+19 1.58E+19 30.0 1.80E+19 1.70E+19 32.0 1.92E+19 1.83E+19 34.0 2.05E+19 1.95E+19 36.0 2.18E+19 2.08E+19 38.0 2.30E+19 2.21 E+19 40.0 2.42E+19 2.34E+19 42.0 2.54E+19 2.47E+19 44.0 2.66E+19 2.59E+19 46.0 2.80E+19 2.72E+19 48.0 2.92E+19 2.84E+19 50.0 3.04E+19 2.97E+19 52.0 3.16E+19 3.1OE+19 54.0 3.28E+19 3.23E+19 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

74

LTR-REA-02-23 i

Table 4-11 Intermediate Shell to Upper Shell Circumferential Weld (SA-1426)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence [nkcm'i Time

[efpy O Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.54E+18 1.04E+18 8.45E+17 7.49E+17 26.0 1.62E+18 1.11E+18 9.05E+17 8.03E+17 28.0 1.72E+18 1.18E+18 9.76E+17 8.69E+17 30.0 1.82E+18 1.26E+18 1.05E+18 9.35E+17 32.0 1.92E+18 1.33E+18 1.13E+18 1.OOE+18 34.0 2.02E+18 1.41 E+18 1.19E+18 1.07E+18 36.0 2.12E+18 1.48E+18 1.27E+18 1.14E+18 38.0 2.21E+18 1.56E+18 1.34E+18 1.20E+18 40.0 2.32E+18 1.64E+18 1.42E+18 1.27E+18 42.0 2.41E+18 1.72E+18 1.48E+18 1.33E+18 44.0 2.51 E+18 1.79E+18 1.56E+18 14AOE+18 46.0 2.61 E+18 1.87E+18 1.63E+18 1.46E+18 48.0 2.71E+18 1.94E+18 1.70E+18 1.53E+18 50.0 2.80E+18 2.02E+18 1.77E+18 1.59E+18 52.0 2.91E+18 2.09E+18 1.85E+18 1.66E+18 54.0 3.OOE+18 2.17E+18 1.92E+18 1.73E+18 Without Hafnium Suppression Rods Operating Neutron Fluence [nlcml Time

[efpy O Deg. 16 deg. 30 Deg. 45 Deg.

24.3 1.54E+18 1.04E+18 8.45E+17 7A9E+17 26.0 1.68E+18 1.14E+18 9.11E+17 8.05E+17 28.0 1.84E+18 1.24E+18 9.94E+17 8.74E+17 30.0 2.01E+18 1.34E+18 1.07E+18 9.47E+17 32.0 2.17E+18 1.45E+18 1.15E+18 1.01E+18 34.0 2.34E+18 1.56E+18 1.23E+18 1.08E+18 36.0 2.50E+18 1.66E+18 1.31E+18 1.15E+18 38.0 2.66E+18 1.77E+18 1.39E+18 1.22E+18 40.0 2.83E+18 1.88E+18 1.47E+18 1.29E+18 42.0 2.99E+18 1.99E+18 1.55E+18 1.36E+18 44.0 3.16E+18 2.09E+18 1.62E+18 1.43E+18 46.0 3.32E+18 2.20E+18 1.71E+18 1iA9E+18 48.0 3.49E+18 2.31 E+18 1.78E+18 1.57E+18 50.0 3.65E+18 2.41E+18 1.87E+18 1.63E+18 62.0 3.82E+18 2.51 E+18 1.94E+18 1.70E+18 64.0 3.98E+18 2.63E+18 2.03E+18 1.77E+18 Note: The first value listed in the "Operating Time' column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

75

LTR-REA-02-23 Table 4-12 Upper Shell Forging Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 1 With Hafnium Suppression Rods Operating Neutron Fluence InIcmi Time

[efpy 0 Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.54E+18 1.04E+18 8.45E+17 7.49E+17 26.0 1.62E+18 1.11E+18 9.05E+17 8.03E+17 28.0 1.72E+18 1.18E+18 9.76E+17 8.69E+17 30.0 1.82E+18 1.26E+18 1.05E+18 9.35E+17 32.0 1.92E+18 1.33E+18 1.13E+18 1.OOE+18 34.0 2.02E+18 1.41 E+18 1.19E+18 1.07E+18 36.0 2.12E+18 1.48E+18 1.27E+18 1.14E+18 38.0 2.21 E+18 1.56E+18 1.34E+18 1.20E+18 40.0 2.32E+18 1.64E+18 1.42E+18 1.27E+18 42.0 2.41 E+18 1.72E+18 1.48E+18 1.33E+18 44.0 2.51 E+18 1.79E+18 1.56E+18 1.40E+18 46.0 2.61 E+18 1.87E+18 1.63E+18 1.46E+18 48.0 2.71E+18 1.94E+18 1.70E+18 1.53E+18 50.0 2.80E+18 2.02E+18 1.77E+18 1.59E+18 52.0 2.91E+18 2.09E+18 1.85E+18 1.66E+18 54.0 3.OOE+18 2.17E+18 1.92E+18 1.73E+18 Without Hafnium Suppression Rods Operating Neutron Flu nce [nicm _ _

Time

[efpyJ o Deg. 15 deg. 30 Deg. 45 Deg.

24.3 1.54E+18 1.04E+18 8.45E+17 7.49E+17 26.0 1.68E+18 1.14E+18 9.11E+17 8.05E+17 28.0 1.84E+18 1.24E+18 9.94E+17 8.74E+17 30.0 2.01E+18 1.34E+18 1.07E+18 9.47E+17 32.0 2.17E+18 1.45E+18 1.15E+18 1.01E+18 34.0 2.34E+18 1.56E+18 1.23E+18 1.08E+18 36.0 2.50E+18 1.66E+18 1.31E+18 1.15E+18 38.0 2.66E+18 1.77E+18 1.39E+18 1.22E+18 40.0 2.83E+18 1.88E+18 1.47E+18 1.29E+18 42.0 2.99E+18 1.99E+18 1.55E+18 1.36E+18 44.0 3.16E+18 2.09E+18 1.62E+18 1.43E+18 46.0 3.32E+18 2.20E+18 1.71E+18 1.49E+18 48.0 3.49E+18 2.31 E+18 1.78E+18 1.57E+18 50.0 3.65E+18 2.41 E+18 1.87E+18 1.63E+18 52.0 3.82E+18 2.51 E+18 1.94E+18 1.70E+18 54.0 3.98E+18 2.63E+18 2.03E+18 1.77E+18 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 27 (- Sept. 2002).

76

LTR-REA-02-23 Table 4-13 Intermediate Shell to Lower Shell Circumferential Weld (SA-1484)

Best estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence [nIcmzJ l Time (efpy] 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 1.98E+19 1.30E+19 1.03E+19 9.27E+18 26.0 2.12E+19 1.40E+19 1.12E+19 1.01E+19 28.0 2.23E+19 1.47E+19 1.19E+19 1.08E+19 30.0 2.34E+19 1.56E+19 1.26E+19 1.15E+19 32.0 2.45E+19 1.64E+19 1.34E+19 1.21E+19 34.0 2.56E+19 1.71 E+19 1.42E+19 1.29E+19 36.0 2.67E+19 1.80E+19 1.48E+19 1.36E+19 38.0 2.77E+19 1.88E+19 1.56E+19 1.43E+19 40.0 2.89E+19 1.96E+19 1.64E+19 1.49E+19 42.0 3.OOE+19 2.03E+19 1.71 E+19 1.57E+19 44.0 3.11E+19 2.12E+19 1.78E+19 1.64E+19 46.0 3.22E+19 2.20E+19 1.86E+19 1.71E+19 48.0 3.33E+19 2.27E+19 1.93E+19 1.77E+19 S0.0 3.44E+19 2.36E+19 2.OOE+19 1.84E+19 52.0 3.56E+19 2.44E+19 2.07E+19 1.92E+19 54.0 3.66E+19 2.51E+19 2.15E+19 1.98E+19 Without Hafnium Suppression Rods Operating Neutron Fluence In/cml Time Iefpyl 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 1.98E+19 1.30E+19 1.03E+19 9.27E+18 26.0 2.20E+19 1.45E+19 1.14E+19 1.02E+19 28.0 2.38E+19 1.56E+19 1.22E+19 1.1OE+19 30.0 2.56E+19 1.68E+19 1.32E+19 1.18E+19 32.0 2.74E+19 1.79E+19 1.41 E+19 1.26E+19 34.0 2.92E+19 1.91E+19 1.49E+19 1.34E+19 36.0 3.1OE+19 2.02E+19 1.59E+19 1.42E+19 38.0 3.28E+19 2.14E+19 1.68E+19 1.49E+19 40.0 3.46E+19 2.25E+19 1.76E+19 1.58E+19 42.0 3.63E+19 2.38E+19 1.86E+19 1.66E+19 44.0 3.82E+19 2.50E+19 1.95E+19 1.73E+19 46.0 4.OOE+19 2.61 E+19 2.03E+19 1.81E+19 48.0 4.17E+19 2.73E+19 2.13E+19 1.89E+19 50.0 4.35E+19 2.84E+19 2.22E+19 1.98E+19 52.0 4.54E+19 2.96E+19 2.30E+19 2.05E+19 54.0 4.71E+19 3.07E+19 2.40E+19 2.13E+19 Note: The first value listed in the *Operating Time' column is the estimated efpy at the end of cycle 25 (- April 2002).

77

I-LTR-REA-02-23 Table 4-14 Lower Shell Forging (122W1 95)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence [nlcmz]

Time

[efpyl 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.11E+19 1.38E+19 1.07E+19 9.63E+18 26.0 2.26E+19 1.47E+19 1.17E+19 1.05E+19 28.0 2.39E+19 1.56E+19 1.24E+19 1.12E+19 30.0 2.51 E+19 1.66E+19 1.32E+19 1.19E+19 32.0 2.65E+19 1.74E+19 1.39E+19 1.26E+19 34.0 2.77E+19 1.83E+19 1.46E+19 1.34E+19 36.0 2.90E+19 1.92E+19 1.54E+19 1.41E+19 38.0 3.03E+19 2.00E+19 1.62E+19 1.48E+19 40.0 3.15E+19 2.09E+19 1.70E+19 1.55E+19 42.0 3.28E+19 2.18E+19 1.77E+19 1.63E+19 44.0 3.41 E+19 2.26E+19 1.85E+19 1.70E+19 46.0 3.54E+19 2.35E+19 1.93E+19 1.77E+19 48.0 3.66E+19 2.45E+19 2.OOE+19 1.84E+19 50.0 3.79E+19 2.53E+19 2.08E+19 1.92E+19 52.0 3.91E+19 2.62E+19 2.16E+19 1.98E+19 54.0 4.04E+19 2.71 E+19 2.24E+19 2.06E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [n/cmJ Time

[efpy] o Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.11E+19 1.38E+19 1.07E+19 9.63E+18 26.0 2.33E+19 1.51E+19 1.19E+19 1.06E+19 28.0 2.51 E+19 1.64E+19 1.27E+19 1.15E+19 30.0 2.71E+19 1.75E+19 1.37E+19 1.22E+19 32.0 2.89E+19 1.88E+19 1.46E+19 1.31E+19 34.0 3.07E+19 2.OOE+19 1.55E+19 1.39E+19 36.0 3.26E+19 2.12E+19 1.65E+19 1.47E+19 38.0 3.45E+19 2.24E+19 1.74E+19 1.55E+19 40.0 3.63E+19 2.36E+19 1.84E+19 1.64E+19 42.0 3.82E+19 2.49E+19 1.93E+19 1.71E+19 44.0 4.OOE+19 2.60E+19 2.02E+19 1.80E+19 46.0 4.18E+19 2.73E+19 2.12E+19 1.89E+19 48.0 4.37E+19 2.84E+19 2.21 E+19 1.97E+19 50.0 4.56E+19 2.97E+19 2.30E+19 2.05E+19 52.0 4.74E+19 3.09E+19 2.40E+19 2.13E+19 54.0 4.92E+19 3.21 E+19 2.49E+19 2.22E+19 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 25 (- April 2002).

78

LTR-REA-02-23 Table 4-15 Intermediate Shell Forging (123V500)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence rn/cm]

Time

[efpy O Deg. 15 deg. 30 Deg. 45Deg.

23.6 2.21E+19 1.42E+19 1.09E+19 9.73E+18 26.0 2.39E+19 1.53E+19 1.19E+19 1.06E+19 28.0 2.54E+19 1.63E+19 1.26E+19 1.14E+19 30.0 2.70E+19 1.73E+19 1.34E+19 1.21 E+19 32.0 2.85E+19 1.83E+19 1.42E+19 1.28E+19 34.0 3.OOE+19 1.94E+19 1.49E+19 1.36E+19 36.0 3.15E+19 2.03E+19 1.57E+19 1.44E+19 38.0 3.30E+19 2.13E+19 1.65E+19 1.50E+19 40.0 3.46E+19 2.24E+19 1.73E+19 1.58E+19 42.0 3.61E+19 2.33E+19 1.81E+19- 1.66E+19 44.0 3.77E+19 2.44E+19 1.89E+19 1.73E+19 46.0 3.92E+19 2.53E+19 1.97E+19 1.80E+19 48.0 4.07E+19 2.63E+19 2.04E+19 1.88E+19 50.0 4.22E+19 2.74E+19 2.12E+19 1.96E+19 62.0 4.37E+19 2.83E+19 2.21E+19 2.02E+19 54.0 4.53E+19 2.94E+19 2.28E+1g 2.1OE+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nIcmz]

Time lefpyJ O Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.21E+19 1.42E+19 1.09E+19 9.73E+18 26.0 2.43E+19 1.55E+19 1.19E+19 1.08E+19 28.0 2.61 E+19 1.68E+19 1.29E+19 1.16E+19 30.0 2.79E+19 1.79E+19 1.39E+19 1.24E+19 32.0 2.98E+19 1.92E+19 1.48E+19 1.32E+19 34.0 3.16E+19 2.03E+19 1.58E+19 1.41E+19 36.0 3.34E+19 2.15Ei19 1.67E+19 1.49E+19 38.0 3.53E+19 2.27E+19 1.76E+19 1.57E+19 40.0 3.71 E+19 2.39E+19 1.86E+19 1.66E+19 42.0 3.89E+19 2.51E+19 1.96E+19 1.74E+19 44.0 4.08E+19 2.63E+19 2.05E+19 1.82E+19 46.0 4.26E+19 2.75E+19 2.14E+19 1.91 E+19 48.0 4.44E+19 2.87E+19 2.24E+19 1.99E+19 50.0 4.63E+19 2.99E+19 2.33E+19 2.07E+19 52.0 4.82E+19 3.11E+19 2.43E+19 2.16E+19 54.0 5.OOE+19 3.23E+19 2.52E+19 2.24E+19 Note: The first value listed in the 'Operating Time" column Is the estimated efpy at the end of cycle 25 (- April 2002).

79

LTR-REA-02-23 Table 4-16 Intermediate Shell to Upper Shell Circumferential Weld (21935)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence [nIcm _ _

Time

[efpyl O De. 15 deg. 30 Deo. 45 Deoe 23.6 2.1OE+18 1.37E+18 1.06E+18 9.50E+17 26.0 2.24E+18 1.47E+18 1.16E+18 1.03E+18 28.0 2.38E+18 1.56E+18 1.22E+18 1.11E+18 30.0 2.51 E+18 1.65E+18 1.30E+18 1.18E+18 32.0 2.63E+18 1.73E+18 1.38E+18 1.24E+18 34.0 2.76E+18 1.82E+18 1.45E+18 1.31E+18 36.0 2.88E+18 1.91E+18 1.53E+18 1.39E+18 38.0 3.01E+18 1.99E+18 1.60E+18 1.45E+18 40.0 3.13E+18 2.08E+18 1.68E+18 1.52E+18 42.0 3.27E+18 2.18E+18 1.75E+18 1.60E+18 44.0 3.39E+18 2.26E+18 1.83E+18 1.67E+18 46.0 3.52E+18 2.35E+18 1.91EE+18 1.73E+18 48.0 3.64E+18 2.44E+18 1.98E+18 1.81E+18 50.0 3.77E+18 2.52E+18 2.05E+18 1.88E+18 52.0 3.89E+18 2.61 E+18 2.13E+18 1.95E+18 54.0 4.02E+18 2.70E+18 2.21E+18 2.02E+18 Without Hafnium Suppression Rods Operating Neutron Fluence In/cmz Time

[efpyl O Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.1OE+18 1.37E+18 1.06E+18 9.50E+17 26.0 2.33E+18 1.52E+18 1.18E+18 1.05E+18 28.0 2.53E+18 1.65E+18 1.28E+18 1.14E+18 30.0 2.73E+18 1.77E+18 1.38E+18 1.22E+18 32.0 2.92E+18 1.91E+18 1.47E+18 1.31E+18 34.0 3.12E+18 2.03E+18 1.58E+18 1.40E+18 36.0 3.31 E+18 2.17E+18 1.68E+18 1.48E+18 38.0 3.52E+18 2.29E+18 1.77E+18 1.57E+18 40.0 3.71 E+18 2.42E+18 1.87E+18 1.66E+18 42.0 3.91E+18 2.55E+18 1.98E+18 1.75E+18 44.0 4.10E+18 2.68E+18 2.07E+18 1.84E+18 46.0 4.31 E+18 2.80E+18 2.17E+18 1.93E+18 48.0 4.50E+18 2.94E+18 2.26E+18 2.01E+18 50.0 4.70E+18 3.06E+18 2.37E+18 2.1OE+18 52.0 4.89E+18 3.20E+18 2.47E+18 2.19E+18 54.0 5.09E+18 3.32E+18 2.56E+18 2.27E+18 Note: The first value listed in the 'Operating Time" column is the estimated efpy at the end of cycle 25 (- April 2002).

80

LTR-REA-02-23 Table 4-17 Upper Shell Forging Best Estimate Neutron Fluence (E > 1.0 MeV) Projections Without Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence InIcml Time

[efpy] O De. 15 deg. 30 Deg. 45 De.

23.6 2.1 OE+18 1.37E+18 1.06E+18 9.50E+17 26.0 2.24E+18 1.47E+18 1.16E+18 1.03E+18 28.0 2.38E+18 1.56E+18 1.22E+18 I.IIE+18 30.0 2.51E+18 1.65E+18 1.30E+18 1.18E+18 32.0 2.63E+18 1.73E+18 1.38E+18 1.24E+18 34.0 2.76E+18 1.82E+18 1.45E+18 1.31E+18 36.0 2.88E+18 1.91E+18 1.53E+18 1.39E+18 38.0 3.01E+18 1.99E+18 1.60E+18 1.45E+18 40.0 3.13E+18 2.08E+18 1.68E+18 1.52E+18 42.0 3.27E+18 2.18E+18 1.75E+18 1.60E+18 44.0 3.39E+18 2.26E+18 1.83E+18 1.67E+18 46.0 3.52E+18 2.35E+18 1.91E+18 1.73E+18 48.0 3.64E+18 2.44E+18 1.98E+18 1.81 E+18 50.0 3.77E+18 2.52E+18 2.05E+18 1.88E+18 52.0 3.89E+18 2.61 E+18 2.13E+18 1.95E+18 54.0 4.02E+18 2.70E+18 2.21E+18 2.02E+18 Without Hafnium Suppression Rods Operating Neutron Fluence tnlcm7I Time

[efpyl O Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.1OE+18 1.37E+18 1.06E+18 9.50E+17 26.0 2.33E+18 1.52E+18 1.18E+18 1.05E+18 28.0 2.53E+18 1.65E+18 1.28E+18 1.14E+18 30.0 2.73E+18 1.77E+18 1.38E+18 1.22E+18 32.0 2.92E+18 1.91E+18 1.47E+18 1.31 E+18 34.0 3.12E+18 2.03E+18 1.58E+18 1.40E+18 36.0 3.31 E+18 2.17E+18 1.68E+18 1.48E+18 38.0 3.52E+18 2.29E+18 1.77E+18 1.57E+18 40.0 3.71 E+18 2.42E+18 1.87E+18 1.66E+18 42.0 3.91E+18 2.55E+18 1.98E+18 1.75E+18 44.0 4.IOE+18 2.68E+18 2.07E+18 1.84E+18 46.0 4.31E+18 2.80E+18 2.17E+18 1.93E+18 48.0 4.50E+18 2.94E+18 2.26E+18 2.01 E+18 50.0 4.70E+18 3.06E+18 2.37E+18 2.IOE+18 52.0 4.89E+18 3.20E+18 2.47E+18 2.19E+18 54.0 5.09E+18 3.32E+18 2.56E+18 2.27E+18 Note: The first value listed in the 0Operating Time" column is the estimated efpy at the end of cycle 25 (- April 2002).

81

LTR-REA-02-23 Table 4-18 Intermediate Shell to Lower Shell Circumferential Weld (SA-1484)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Flu nce [nkrmnJ Time Iefpy] o Deg. 15 deg. 30 Deg. 45 Deg.

23.6 1.98E+19 1.30E+19 1.03E+19 9.27E+18 26.0 2.13E+19 1.41E+19 1.13E+19 1.02E+19 28.0 2.25E+19 1.49E+19 1.21E+19 1.10E+19 30.0 2.37E+19 1.58E+19 1.29E+19 1.18E+19 32.0 2.50E+19 1.68E+19 1.37E+19 1.25E+19 34.0 2.62E+19 1.76E+19 1.45E+19 1.33E+19 36.0 2.74E+19 1.85E+19 1.53E+19 1.41 E+19 38.0 2.86E+19 1.94E+19 1.62E+19 1.48E+19 40.0 2.99E+19 2.02E+19 1.70E+19 1.56E+19 42.0 3.10E+19 2.11E+19 1.78E+19 1.64E+19 44.0 3.23E+19 2.21E+19 1.86E+19 1.71E+19 46.0 3.35E+19 2.29E+19 1.95E+19 1.78E+19 48.0 3.47E+19 2.38E+19 2.02E+19 1.86E+19 50.0 3.59E+19 2.47E+19 2.1OE+19 1.94E+19 52.0 3.72E+19 2.55E+19 2.19E+19 2.01E+19 54.0 3.83E+19 2.65E+19 2.26E+19 2.09E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nkmi Time

[efpyW 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 1.98E+19 1.30E+19 1.03E+19 9.27E+18 26.0 2.23E+19 1.45E+19 1.15E+19 1.03E+19 28.0 2.42E+19 1.58E+19 1.25E+19 1.12E+19 30.0 2.62E+19 1.71E+19 1.35E+19 1.20E+19 32.0 2.81E+19 1.84E+19 1.45E+19 1.29E+19 34.0 3.02E+19 1.98E+19 1.55E+19 1.38E+19 36.0 3.22E+19 2.1OE+19 1.65E+19 1.46E+19 38.0 3.41 E+19 2.24E+19 1.74E+19 1.55E+19 40.0 3.61E+19 2.36E+19 1.84E+19 1.65E+19 42.0 3.81 E+19 2.49E+19 1.95E+19 1.73E+19 44.0 4.01E+19 2.62E+19 2.04E+19 1.82E+19 46.0 4.21 E+19 2.75E+19 2.14E+19 1.91E+19 48.0 4.40E+19 2.88E+19 2.24E+19 1.99E+19 50.0 4.61 E+19 3.01E+19 2.34E+19 2.08E+19 52.0 4.80E+19 3.13E+19 2.44E+19 2.17E+19 54.0 5.OOE+19 3.27E+19 2.54E+19 2.25E+19 Note: The first value listed in the 'Operating Time' column is the estimated efpy at the end of cycle 25 (- April 2002).

82

LTR-REA-02-23 Table 4-19 Lower Shell Forging (122W195)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence [nlcm¶J Time

[efpy] Deg. 5 deg. 30 Deg. 45 Deg.

23.6 2.11E+19 1.38E+19 1.07E+19 9.63E+18 26.0 2.28E+19 1.48E+19 1.18E+19 1.06E+19 28.0 2.42E+19 1.58E+19 1.25E+19 1.14E+19 30.0 2.56E+19 1.69E+19 1.34E+19 1.21E+19 32.0 2.70E+19 1.78E+19 1.43E+19 1.30E+19 34.0 2.84E+19 1.88E+19 1.51E+19 1.38E+19 36.0 2.98E+19 1.98E+19 1.60E+19 1.45E+19 38.0 3.12E+19 2.07E+19 1.68E+19 1.53E+19 40.0 3.27E+19 2.17E+19 1.76E+19 1.62E+19 42.0 3AOE+19 2.26E+19 1.85E+19 1.70E+19 44.0 3.55E+19 2.36E+19 1.94E+19 1.77E+19 46.0 3.68E+19 2.46E+19 2.0IE+19 1.85E+19 48.0 3.83E+19 2.55E+19 2.IOE+19 1.94E+19 60.0 3.96E+19 2.65E+19 2.19E+19 2.01 E+19 62.0 4.1OE+19 2.75E+19 2.27E+19 2.09E+19 54.0 4.25E+19 2.84E+19 2.35E+19 2.18E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nkm Time

[efpy O Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.IIE+19 1.38E+19 1.07E+19 9.63E+18 26.0 2.36E+19 1.53E+19 1.19E+19 1.07E+19 28.0 2.56E+19 1.67E+19 1.30E+19 1.17E+19 30.0 2.77E+19 1.80E+19 1.40E+19 1.25E+19 32.0 2.97E+19 1.94E+19 1.50E+19 1.34E+19 34.0 3.18E+19 2.06E+19 1.61 E+19 1.44E+19 36.0 3.38E+19 2.20E+19 1.71 E+19 1.52E+19 38.0 3.58E+19 2.33E+19 1.81E+19 1.62E+19 40.0 3.79E+19 2.47E+19 1.92E+19 1.71E+19 42.0 4.OOE+19 2.60E+19 2.02E+19 1.80E+19 44.0 4.20E+19 2.74E+19 2.12E+19 1.89E+19 46.0 4.40E+19 2.87E+19 2.23E+19 1.98E+19 48.0 4.61E+19 3.OIE+19 2.33E+19 2.07E+19 50.0 4.82E+19 3.13E+19 2.43E+19 2.16E+19 52.0 5.02E+19 3.27E+19 2.53E+19 2.25E+19 64.0 5.22E+19 3.40E+19 2.64E+19 2.34E+19 Note: The first value listed in the 'Operating Time" column Is the estimated efpy at the end of cycle 25 (- April 2002).

83

LTR-REA-02-23 Table 4-20 Intermediate Shell Forging (123V500)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence [ncmz]

Time

[efpyl 0 Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.21E+19 1.42E+19 1.09E+19 9.73E+18 26.0 2.41E+19 1.54E+19 1.19E+19 1.07E+19 28.0 2.58E+19 1.66E+19 1.28E+19 1.16E+19 30.0 2.75E+19 1.76E+19 1.37E+19 1.23E+19 32.0 2.92E+19 1.88E+19 1.45E+19 1.32E+19 34.0 3.08E+19 1.98E+19 1.54E+19 1.40E+19 36.0 3.26E+19 2.10E+19 1.63E+19 1.48E+19 38.0 3.42E+19 2.21 E+19 1.71E+19 1.56E+19 40.0 3.59E+19 2.32E+19 1.80E+19 1.65E+19 42.0 3.76E+19 2.43E+19 1.89E+19 1.72E+19 44.0 3.93E+19 2.54E+19 1.98E+19 1.81E+19 46.0 4.09E+19 2.65E+19 2.06E+19 1.89E+19 48.0 4.27E+19 2.77E+19 2.15E+19 1.98E+19 50.0 4.43E+19 2.87E+19 2.24E+19 2.05E+19 52.0 4.61 E+19 2.99E+19 2.32E+19 2.14E+19 54.0 4.77E+19 3.09E+19 2.41 E+19 2.22E+19 Without Hafnium Suppression Rods Operating Neutron Fluence [nkcmz] _

Time

[efpyj o Deg. 15 deg. 30 Deg. 45 Dea 23.6 2.21 E+19 1.42E+19 1.09E+19 9.73E+18 26.0 2.45E+19 1.57E+19 1.21E+19 1.09E+19 28.0 2.65E+19 1.71E+19 1.32E+19 1.18E+19 30.0 2.85E+19 1.83E+19 1.42E+19 1.27E+19 32.0 3.05E+19 1.97E+19 1.52E+19 1.36E+19 34.0 3.26E+19 2.1OE+19 1.63E+19 1.45E+19 36.0 3.47E+19 2.23E+19 1.73E+19 1.54E+19 38.0 3.67E+19 2.36E+19 1.84E+19 1.64E+19 40.0 3.87E+19 2.50E+19 1.94E+19 1.72E+19 42.0 4.08E+19 2.63E+19 2.04E+19 1.82E+19 44.0 4.28E+19 2.76E+19 2.15E+19 1.92E+19 46.0 4.48E+19 2.89E+19 2.25E+19 2.OOE+19 48.0 4.68E+19 3.03E+19 2.36E+19 2.1OE+19 50.0 4.88E+19 3.15E+19 2.47E+19 2.19E+19 52.0 5.09E+19 3.29E+19 2.56E+19 2.28E+19 54.0 5.29E+19 3.42E+19 2.67E+19 2.37E+19 Note: The first value listed in the 'Operating Time' column is the estimated efpy at the end of cycle 25 (- April 2002).

84

LTR-REA-02-23 Table 4-21 Intermediate Shell to Upper Shell Circumferential Weld (21935)

Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Fluence [nlcm _ _

Time

[efpy] ODeg. 15 deg. 30 Deg. 45 Deg.

23.6 2.10E+18 1.37E+18 1.06E+18 9.50E+17 26.0 2.26E+18 1.48E+18 1.17E+18 1.04E+18 28.0 2.41E+18 1.58E+18 1.24E+18 1.12E+18 30.0 2.54E+18 1.68E+18 1.33E+18 1.19E+18 32.0 2.69E+18 1.77E+18 1.41E+18 1.27E+18 34.0 2.82E+18 1.87E+18 1.49E+18 1.35E+18 36.0 2.97E+18 1.97E+18 1.58E+18 1.44E+18 38.0 3.10E+18 2.06E+18 1.66E+18 1.51E+18 40.0 3.25E+18 2.16E+18 1.74E+18 1.59E+18 42.0 3.38E+18 2.25E+18 1.83E+18 1.67E+18 44.0 3.53E+18 2.35E+18 1.91E+18 1.74E+18 46.0 3.66E+18 2.46E+18 1.99E+18 1.82E+18 48.0 3.81E+18 2.55E+18 2.07E+18 1.90E+18 50.0 3.94E+18 2.65E+18 2.16E+18 1.98E+18 52.0 4.09E+18 2.75E+18 2.24E+18 2.05E+18 54.0 4.22E+18 2.84E+18 2.32E+18 2.13E+18 Without Hafnium Suppression Rods Operating Neutron Flu nce [nIcm]

Time

[efpy ODeg. 15 deg. 30 Deg. 45 Deg.

23.6 2.1OE+18 1.37E+18 1.06E+18 9.50E+17 26.0 2.36E+18 1.53E+18 1.19E+18 1.06E+18 28.0 2.57E+18 1.68E+18 1.30E+18 1.16E+18 30.0 2.79E+18 1.82E+18 1.41E+18 1.25E+18 32.0 3.01E+18 1.97E+18 1.52E+18 1.35E+18 34.0 3.23E+18 2.1OE+18 1.63E+18 1.45E+18 36.0 3.45E+18 2.24E+18 1.73E+18 1.54E+18 38.0 3.66E+18 2.39E+18 1.85E+18 1.64E+18 40.0 3.88E+18 2.53E+18 1.96E+18 1.73E+18 42.0 4.09E+18 2.68E+18 2.07E+18 1.83E+18 44.0 4.32E+18 2.81 E+18 2.18E+18 1.93E+18 46.0 4.64E+18 2.96E+18 2.28E+18 2.02E+18 48.0 4.75E+18 3.1OE+18 2.40E+18 2.12E+18 50.0 4.97E+18 3.25E+18 2.51E+18 2.22E+18 52.0 6.19E+18 3.38E+18 2.61 E+18 2.31 E+18 54.0 5.41E+18 3.53E+18 2.73E+18 2.41 E+18 Note: The first value listed in the "Operating Time' column is the estimated efpy at the end of cycle 25 (- April 2002).

85

LTR-REA-02-23 Table 4-22 Upper Shell Forging Best Estimate Neutron Fluence (E > 1.0 MeV) Projections With Uprate Point Beach Unit 2 With Hafnium Suppression Rods Operating Neutron Flu nce InIcmn Time

[efpy] O Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.1OE+18 1.37E+18 1.06E+18 9.50E+17 26.0 2.26E+18 1.48E+18 1.17E+18 1.04E+18 28.0 2.41 E+18 1.58E+18 1.24E+18 1.12E+18 30.0 2.54E+18 1.68E+18 1.33E+18 1.19E+18 32.0 2.69E+18 1.77E+18 1.41E+18 1.27E+18 34.0 2.82E+18 1.87E+18 1.49E+18 1.35E+18 36.0 2.97E+18 1.97E+18 1.58E+18 1.44E+18 38.0 3.10E+18 2.06E+18 1.66E+18 1.51 E+18 40.0 3.25E+18 2.16E+18 1.74E+18 1.59E+18 42.0 3.38E+18 2.25E+18 1.83E+18 1.67E+18 44.0 3.53E+18 2.35E+18 1.91E+18 1.74E+18 46.0 3.66E+18 2.46E+18 1.99E+18 1.82E+18 48.0 3.81E+18 2.55E+18 2.07E+18 1.90E+18 50.0 3.94E+18 2.65E+18 2.16E+18 1.98E+18 52.0 4.09E+18 2.75E+18 2.24E+18 2.05E+18 54.0 4.22E+18 2.84E+18 2.32E+18 2.13E+18 Without Hafnium Suppression Rods Operating Neutron Fluence [nIcmI Time

[efpyI O Deg. 15 deg. 30 Deg. 45 Deg.

23.6 2.1OE+18 1.37E+18 1.06E+18 9.50E+17 26.0 2.36E+18 1.53E+18 1.19E+18 1.06E+18 28.0 2.57E+18 1.68E+18 1.30E+18 1.16E+18 30.0 2.79E+18 1.82E+18 1.41 E+18 1.25E+18 32.0 3.01 E+18 1.97E+18 1.52E+18 1.35E+18 34.0 3.23E+18 2.10E+18 1.63E+18 1.45E+18 36.0 3.45E+18 2.24E+18 1.73E+18 1.54E+18 38.0 3.66E+18 2.39E+18 1.85E+18 1.64E+18 40.0 3.88E+18 2.53E+18 1.96E+18 1.73E+18 42.0 4.09E+18 2.68E+18 2.07E+18 1.83E+18 44.0 4.32E+18 2.81E+'18 2.18E+18 1.93E+18 46.0 4.54E+18 2.96E+18 2.28E+18 2.02E+18 48.0 4.75E+18 3.1OE+18 2.40E+18 2.12E+18 50.0 4.97E+18 3.25E+18 2.51 E+18 2.22E+18 52.0 5.19E+18 3.38E+18 2.61E+18 2.31E+18 54.0 5.41 E+18 3.53E+18 2.73E+18 2.41 E+18 Note: The first value listed in the "Operating Time" column is the estimated efpy at the end of cycle 25 (- April 2002).

86

LTRRAI02623 5.0 References

1. Code of Federal Regulations Title 10 Part 50, NDomestic Licensing of Production and Utilization Facilities".
2. Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence", U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.
3. RSICC Computer Code Collection CCC-650, 'DOORS 3.1, One-, Two-, and Three-Dimensional Discrete Ordinates NeutrontPhoton Transport Code System,'

August 1996.

4. RSIC Data Library Collection DLC-185, OBUGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derived from ENDF/B-VI for LWR Shielding and Pressure Vessel Dosimetry Applications," March 1996.
5. L. R. Scherpereel, Core Physics Characteristics of the Point Beach Nuclear Plant (Unit 1, Cyclel)," WCAP-7430, December 1969.
6. E. J. Piplica, OThe Nuclear Design - Core Management of the Point Beach Unit 1 Nuclear Reactor - Cycle 2,n WCAP-8120, March 1973.
7. E. J. Piplica and J. P. Hawrylak, 'The Nuclear Design - Core Management of the Point Beach Unit 1 Nuclear Reactor - Cycle 3,' WCAP-8325, May 1974.
8. D. J. Franks, "The Nuclear Design - Core Management of the Point Beach Unit I Nuclear Reactor - Cycle 4,w WCAP-8652, November 1975.
9. A. Saeed and K. A. Forcht, 'The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor - Cycle 5,' WCAP-8120, September 1976.
10. A. Saeed and K. A. Forcht, "The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor - Cycle 6," WCAP-91 31, August 1977.
11. A. Saeed and K. A. Forcht, 'The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor - Cycle 7,0 WCAP-9368, August 1978.
12. K. A. Forcht, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor - Cycle 8,0 WCAP-9548, August 1979.
13. M. L. Hubbard, et al, "The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor- Cycle 9A,w WCAP-9841, January 1981.
14. P. W. Robertson and J. L. Stem, "The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor - Cycle 10," WCAP-9974, October 1981.
15. R. D. Jones and J. L. Cole, 'The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor- Cycle 11,n WCAP-10191, November 1982.
16. R. D. Jones and J. L Cole, 'The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor- Cycle 12,' WCAP-10497, March 1984.

87

l IIL LTR-REA-02-23

17. R. D. Jones, et al, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor - Cycle 13,' WCAP-1 0799, May 1985.
18. R. D. Jones, et al,, "The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor - Cycle 14," WCAP-1 1118, April 1986.
19. D. M. Chapman, et al, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor - Cycle 15," WCAP-1 1487, May 1987.
20. D. M. Chapman, et al, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor - Cycle 16," WCAP-11754, March 1988.
21. D. M. Chapman, et al, "The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor- Cycle 17,' WCAP-12194, March 1989.
22. D. M. Chapman, et al, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor- Cycle 18," WCAP-1 2524, March 1990.
23. D. M. Chapman, et al, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor - Cycle 19,' WCAP-1 2903, March 1991.
24. T. P. Phelps, et al, "The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor- Cycle 20,' WCAP-13204, March 1992.
25. T. P. Phelps, et al, "The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor - Cycle 21," WCAP-13653, March 1993.
26. T. P. Phelps and R. T. Smith, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor - Cycle 22,' WCAP-1 3989, March 1994.
27. T. P. Phelps and R. T. Smith, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor- Cycle 23,' WCAP-14294, March 1995.
28. R. T. Smith and M. A. Kotun, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor- Cycle 24,' WCAP-14609, March 1996.
29. R. T. Smith, et al, "The Nuclear Design and Core Management of the Point Beach Unit I Nuclear Reactor - Cycle 25, WCAP-1 5045, June 1998.
30. M. A. Kotun, et al, "The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor - Cycle 26," WCAP-1 5326, October 1999.
31. M. A. Kotun, et al, "The Nuclear Design and Core Management of the Point Beach Unit 1 Nuclear Reactor - Cycle 27,' WCAP-1 5661, April 2001.
32. L. R. Scherpereel, "Core Physics Characteristics of the Point Beach Nuclear Plant (Unit 1,Cyclel),' WCAP-7430, December 1969.
33. J. P. Hawrylak, 'Revised Cycle 2 Nuclear Design Characteristics for Point Beach Unit 2,' WCAP-8418, Reviion 1, November 1974.

88

LTR-REA-02-23

34. J. P. Hawrylak and S. A. Antin, "The Nuclear Design - Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 3," WCAP-8759, March 1976.
35. J. P. Hawrylak and J. L. Dauberman, "The Nuclear Design - Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 4,' WCAP-8934, February 1977.
36. J. P. Hawrylak and K. A. Forcht, *The Nuclear Design - Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 5,' WCAP-9275, February 1978.
37. E. H. Pilzer and K. A. Forcht, *The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 6," WCAP-9493, April 1979.
38. W. J. Scherder and K. A. Forcht, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 7," WCAP-9667, February 1980.
39. R. T. Smith and J. L. Stem, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 8," WCAP-9846, March 1981.
40. R. T. Smith and J. L. Stem, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 9," WCAP-1 0048, March 1982.
41. R. T. Smith and R. D. Jones, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor- Cycle 10," WCAP-10278, March 1983.
42. W. A. Boyd, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 11 Rev. 1,' WCAP-10583, Rev-1, August 1984.
43. R. T. Smith, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 12 REV. 1," WCAP-10897, Rev. 1, November 1985.
44. R. T. Smith, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 13," WCAP-1 1288, November 1986.
45. R. T. Smith, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 14," WCAP-1 1571, September 1987.
46. R. T. Smith, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 15," WCAP-1 1903, September 1988.
47. R. T. Smith, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor- Cycle 16," WCAP-1 2362, September 1989.
48. R. T. Smith, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor- Cycle 17," WCAP-1 2683, September 1990.
49. J. A. Hoemer, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 18," WCAP-1 3063, September 1991.

89

LTR-REA-02-23

50. J. A. Hoemer, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 19,' WCAP-1 3467, September 1992.
51. B. R. Beebe, et al, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 20,' WCAP-1 3843, September 1993.
52. R. T. Smith and B. R. Beebe, 'The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 21," WCAP-14158, September 1994.
53. R. T. Smith, 'The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor- Cycle 22," WCAP-14458, September 1995.
54. R. T. Smith, "The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 23,' WCAP-14735, September 1996.
55. R. T. Smith, et al, 'The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 24,' WCAP-1 5155, January 1999.
56. R. D. Erwin, et al, 'The Nuclear Design and Core Management of the Point Beach Unit 2 Nuclear Reactor - Cycle 25,' WCAP-1 5593, October 2000.
57. RSIC Computer Code Collection PSR-145, 'FERRET Least-Squares Solution to Nuclear Data and Reactor Physics Problems,n January 1980.
58. RSIC Data Library Collection DLC-178, 'SNLRML Recommended Dosimetry Cross-Section Compendium,
  • July 1994.

90