ML20216F495
ML20216F495 | |
Person / Time | |
---|---|
Site: | Haddam Neck File:Connecticut Yankee Atomic Power Co icon.png |
Issue date: | 06/15/1987 |
From: | NORTHEAST UTILITIES SERVICE CO. |
To: | |
Shared Package | |
ML20216F465 | List: |
References | |
NUSCO-152-ADD, NUSCO-152-ADD-01, NUSCO-152-ADD-1, NUDOCS 8706300878 | |
Download: ML20216F495 (18) | |
Text
7-yc ~
! . y k
4 NUSCO - 152 ADDENDUM 1-I .,
i NUSCO TOPICAL REPORT.
p.
1 t:
8 i
PHYSICS METHODOLOGY -l o
FOR PWR RELOAD DESIGN JUNE 15, 1987 t
t_
i NORTHEAST UTILITIES SERVICE COMPANY REACTOR ENGINEERING q BERLIN, CT :
l 63 h78B{$6g213 Cg O pg)R C
i .--
1.0" INTRODUCTION' L This data ' package summarizes the. comparison of at power measurements to . predictions for Haddam Neck, Cycle 14. It is being supplied :'in .
response to an NRC request. The overall quality of.the data comparisons'are very 'similar to that provided for Cycles.12.and 13.
'These comparisons confirm the conclusions in NUSCO-152, that NUSCO is a qualified user of Westinghouse physics' methodology as applied to the reload design for Northeast Utilities' three PWRs, Haddam Neck, Millstone Unit 2, and Millstone Unit 3.
i.
2.0" PHYSICS MODEL VERIFICATION 2.1._ Cycle 14 of the Haddam Neck reactor began operation on May 6,1986, and is expected to shutdown for refueling in July, 1987. The power.
history for the first half of the cycle is given in Figure 1.
2.2 Cycle' Data Analysis Data from INCORE measurements is presented through 6000 MWD /MTU burnup. The boron rundown data is presented through 7000 MWD /MTU.
I 2.3 Power Distribution Verification The' comparisons between the predicted and measured power distributions 1 l
are presented in the radial direction based upon the TORTISE model and !
in the axial direction based upon the' 3-D nodal- (PALADON) model. The power distribution comparisons between the predicted and measured powers (inferred from11NCORE) are equivalent to a' comparison between
.the predicted and_ measured reaction rates.
1.
The burnup_ steps selected in the predictive calculations are'standardi values- consistent with the automated depletion sequence.-
Consequently, burnup values between measurements and predictions . do not always exactly- agree 4 - However, the discrepancies are relatively-small and'do not impair the comparisons. -Table l'provides a summary l of the conditions used for the' data comparisons. !
i l
2.3.1 Radial Distributions j 1
The predictions performed with the TORTISE model are for ' A11 Rods Out (ARO) configurations. . The comparisons of the predicted power distributions versus the measured distributions for Cycle 14 are i l
shown in Figures 2 through 6 at different cycle exposures.- The i average difference for these comparisons is less than 1.5 percent.in all cases and the standard deviation is less than 1.7 percent. {
. i 2.3.2 Axial Distributions and Peaking Factors j The depletion calculations performed with 'the PALADON model include control rod configurations which are consistent with the average insertion during the burnup period. The PALADON calculations are ;
restarted at the measured control rod configuration. Tables 2 and 3 f i'
i
l-present the compar1 sons between measured and predicted core average axial peaking f actor (FZ) and Axial Offset ( AO) for Cycle 14. The largest differences between measured and predicted FZx end A0 are 2.0-percent and. 0.98 .A0 unito, respectively. These comparisons i
demonstrate PA ADON's capability to predict axial power distributions.
s Tables 4 and 5 pr9sent the comparison between measured and predicted enthalpy rise f actor (FDH) and nuclear- heat flux peaking f actor (FQ) for Cycle 14, respectively. The largest differences between measured and predicted FDH and FQ are about 1.6 and 3.7 percent ,
respectively. It-should be noted that, regarding FZ and FQ comparisons, grid spacer effects are inherent in the INCORE values, ,
but not explicitly represented in PALADON. Therefore,~ biases exist ,
c between measured and predicted FZ and FQ values due to spacer grid ,
effects. Spacer grid effects are always included in safety calculations and setpoint verification. !
2.4 Boron Rundown Curve The comparisons between the measured and predicted boron rundown curve is shown in Figure 7 for Cycle 14. The predicted boron rundown values were calculated by TORTISE. The data are presented in a graphical format due to the scatter in the measured values. The average difference is approximately 20 ppm. It should be noted that for a stainless steel core, such as Haddam Neck, the boron worth is only about two-thirds that of a typical zircaloy clad core. Therefore, the differences shown are smaller in an absolute reactivity sense.
1 I
3.0 SUMMA?Y, t
This addendum to NUSCO-152 provides additional data comparisons for Haddam Neck,. Cycle 14. All comparisons demonstrate similar results to !
those presented in the original topical report. The conclusion that
'ROSCO is capable of applying Westinghouse licensed reload physics methodology in support of all of Northeast Utilities' PWRs remains i
valid.
i e
a 4
1 l
1 i
i 1
i 1
_3_ j i
1
)
I
. I i
TABLE 1 i CONDITIONS FOR HADDAM NECK CYCLE 14 COMPARISON i
MEASUREMENT PREDICTION CONDITIONS CONDITIONS (INCORE) (PALADON/TORTISE)("}
1353/304/100(b) 1000/304/100 2074/312/100 2000/312/100 2734/315/100 3000/315/100 5190/312/100 5000/312/100 5982/310/100 6000/310/100 (a) Although TORTISE and PALADON cases are at the same burnup points, the TORTISE cases are with all rods out.
( Cycle exposure in MWD /MTU / Bank B position / percent of rated thermal power. Bank B is the lead control bank. 320 j steps is fully withdrawn. ;
i
..a .
W. V p 2-M s g ,M, i f,1[ '
s, o
J^ 4 p"
([$& jf ' ?[
~
f
- f
+
3-
- q. _[
.7 i; y Y TABLE 2-L HADDAM NECK CYCLE 14 CORE FZ (MAX) COMPARISON' BETWEEN MEASUREMENT (M) AND PREDICTION (P) s ~,f l' p -
,. y
'\'
q'4
%g'
>. ;' s
,t
' ~
.CORB F_Z-(MAX)
). CY'C T,,E EXPOSURE (d)
-(, MWD /MTU M(b) i-Y',-
d)' (P-M')%
M e
/ . I11'% ,
L. 1353 ~ 9 1.110 '1.?7 h 0.0:
ys
%' r 2074-t.
C I?1$7
,i w 1.144.
..(
/
W.1 '
- - e a y'
.f 2734' 1.138. 1.124-- -1.2 y' 5190- -
1.128= ' 1'.105 - -2.0 .+ '
5982 L1.[22 1.1073 =
..-l.7 w
xy 4.
('&
,*4 f, q.
s ,. . .r- ,, . ,
- g. '
+
- )4 /
4
,1
. . . . , *g - '
(a)' *l 7 % See Table-1 for-details t 7
1 1 L., 5 h-F (b) INCORE values
% i d '
.( , 1 ...
N (c) y PALADON lalues -A $
r . \ 3 y V sq ,. , a s
]\
(,
& f "'p '
b a 1.. Y y<- [ <. t ,
. , .e
, , , 7- o 1-t 5 134 sN. ,-
j *J ,
j y
- , s
(' ,, 4. - ,
[ /,
h
\ \ ,
s
.,; s E k J'
} ' g. \+
't!f0 ' N< ,
t-
"(
g' < ii , ,
.V r l, ,
i
' ?f
- x , , , 'y *
(k
~
i v ,' s:
'k k. \ f- (
(l y 'i ' f j'
.\J 3 >-
3 s i
)) 5 s
, j
< 1 3 ,
{. (( ?}
's t,
. If ' ' '
1
. . - . , . , "l
, .c t
. c
- 1 TABLE 3 1
A - f' ',
] if-;i <
'n ..
HADDAM'NECKLCYCLE 14 AXIAL OFFSET COMPARISON BETWEEN MEASUREMENT (M) Ah? PREDICTION (P)
~ AXIAL OFFSET (%)
CYCLE EXPOSURE (a)'
' (MWD /MTU). g(b) p(e) .(P-M) 1353- ' 0. 81.
=-0.76' O D05 -
2074 1-0.70 -0.93 -0.23 s
'2734- :-0.05' -1.03 -0.98 L 5190 - 1. 7 4 - -1.46- - 0. 2 8 .
5982 -1.51 -1.67 -0.16 (a)' See Table 1 for details (b) INCORE. values ~
(c) PALADON values n
).
[.
c, .
E::.
v.
TABLE 4 HADDAM NECK CYCLE 14 FDH'(MAX) COMPARISON BETWEEN MEASUREMENT (M) AND PREDICTION'(P).
FDH (MAX)
CYCLE EXPOSURE (a)
(MWD /MTU) M P
. P-M)%'
M 1353 1.386 1.388 0.1 m
2074 1.382 .1.365 -1.2 2734 1.361 1.348 -1.0 5190 1.352 1.330 ' -1.6 5982 1.345 1.323 -1.6 (a) See Table:1 for details
() 'INCORE values (c). TORTISE values i
j w
- 1 TABLE 5-HADDAM NECK CYCLE 14'FQ (MAX) COMPARISON BETWEEN MEASUREMENT (M) AND PREDICTION (P)
FQ (MAX)
~
'CYCLEEXPOSURE(a) ( p_g) % -
~
(MWD /MTU) M(b). p(c) g p;
T1353' 1.592 l'.572 .-l.3-2074; ' 1'.580 1.522 -3.7 2734' ' 1.545 1.504 -2.7 5190' 1.526- 1.475 -3.3 5982 '1.512 1.467 -3.0 (a) See Table'l for details (D) INCORE values *
(c) PALADON values-i l
I i
)
m
(*
7
,'i-l b I' ' t 8 4 1 l_ il j t
., i- 1- 1 t i i i .i i- i
~,- l i
] % d"l' .y d-. _
l jq _.
t ; __.; _
- j. ,
, r--
.q .3 __ , .._, _ ; __q _ q __ .q ._ _ _ . ,
iJ#- ' .1 i i i
! t i ! 1 i i.,,,_, , . LJ
. t .
-i -
i i i , i i i i _1.
~
,o
.. 4 >
. 1 i.
i _ L .J .._J ' t- i J J i i i i
. i_
- I >
> 1 s i , i 6 t i .. i
.o i i i e i i i ; ..
~~~"l~i' ,. , . j. a . . . . .
., .$ y .j i , .Z
__ j _.=r 3 '
. 1
, , , , g , i '-- -
, e- c , ,
D i t t i i 6 i .,- i i
. ,' - > . . 4 , . .. . _ . i.. , 9: i , i i u
> -e i i 1 :- , _; , , i , ,
o
'M ! ? I I i !
) ! ! ! .
"~' % - t i i i i > 4 i i i.
~~
~
~ ~t !. ~~ i
! ---l l V l t l ,
il i e-, i 1 , I i i i , , , b
.} l t ,a, 6 i s ; , s i i. m
' ' + ' i +
\
2 _ , c .._. 4, .. -
l
- 9. t ip i ,
t ! , --
, , ., , .j- , ,
!"' 7". i i i i i i i i 6 ! !
e.% - ,1- -
-t i- i - t i , s1 4 ,
s._
i i i , , . <
i ^- , , ,
o -- .__.g_, _, , . . . . ,, .4 . . . i .,. .- ; m ., - - - -
I 4 i ! t , l 8 * ' i 4 l 1
' s f 3r -
2 ' '
i 4 i i -- i CD*
i i
i i
4 . i i 1
, # i J
D 1
g' __ _"5 i
y " '
i i -,
> i 4
+
i i i i i i
i i i i
o i .
t i ! ce r'"
>= l - " " "
, , , , G>~
a.
u_ ,
, i
- Z 1 'i ~M~ ! l . i .~ i ; i ,.. I t i t i ~~~'-~~'~'@
O -
a u; . __.--
g , , ,
. ;a. .
t p!
i i
, _ _ _._ _ _ _ _ . . _ _ _ _ _ _ m_ ' ,
- =_ __ -
i i i 4 .
g , r "'- T, _ . j .3. e . j .., ,
) .; s i 's - i 1' i i y I
- . ..i
- i. 3mj .I . 4-4 1.t .1 . 1 i -1 i
i i 1 l
y .; , i r i- i -
4 . . t ( i i __ ;
4 i , ., - i 1 =- . rj . r i 1 -; i i - 1 .
)
t : , , .
.! . 4 M - i .) !
t U )
, "n -- 7 .. i 3- j .,
.3 -
i i ,
@ 1 e2 . . .
3 ; , =a . . -
. .i .
q 1 4c~ q,a~
1 _ 4m . . _
+. _ . .
i i 9 g a.- #
2 , , . . - - i 1
.a -
i
_4 .,, ..... j.
4 - - -
. , . - . j . ; _: . ..
, e ;
- l. ... -
4 ---A - ;
p .a-,
s - - :- 5-- --i < l
<-a .; .a -
g as.y 3.; y.
g,j a 3g _y ,, g y g . ,
3 - .
} s. 2 , .
j i
&3;y.__
? -
-J . -. - ;' -' +- = .- -
,..- r ! 8
[' ~ ':
= ',
r- . :-1, 2 '/.- r f. i a .:s .
. t
" .is a. -r -i . -j L; j_: A' s J. -
.:.4 - :6 s .. . - - :as- ..; .m .p r s esaS j.,.A- --
4 : -
.d -i . .
4 4 .- . a -
a- j
_ z .:f - ;- : .i ' i: _.2 g j
, j f".-
, A- ,
, ,j ~ '
,, ?
Ik . *j * . 9 . **
y* '.l j s y.. . _' t t. : 2 - ; r.: -
.R . 3 . .~t 'L'. .
~
..m < , s .
. . . . m ,
_. ; " j-
- j '
) j jn - i
- t "1 '/.3 1 -
~
I " -
" :p ^ ] .r i (- - .a 4 -1 m -- e t . 1 7 ')
- j -- 1.-j - =; . y 3 - z. 4., - .- .. j .
4 J j . ..i )
~
. . . 2: --
l
!!1E8 E 8 o
8
, g 8 o g 8 8
~ )
- _ R_ _
mn, .. . . ..m .,.w m. im
.v m 1
a
- . . . - - _~
w i _ _ _--, ;
! s ,
, , , , .u W
o 1
, ,. ,. , , ,.,i 1
4 .
. . _ -._v, 5 { t . t . j 9 i , ' -
t : i
._ _.. i ,
,. , , ,. , 4, , ,
- _ - _ _ . . .'. ___i .
} i : -
_- . , H
_. ___. u o
N ,
. _ . - -_ , -_. }
J t f .
8 1
I i 1 .
c.
. . . . . _ . . .. . .._ .o x
p . - .. .
2 x - ._. .. . . . _ , . -
-. o3-
__ .4 O ? ~~~~ '
n.,f- . -. . . . _ _ _ . . _ . . . . . - . . , . _ . . . . . _ . . . . .
~[_ _. .
o ,o o :
_. C'. . . . . . . _ . . S,.
z 3 2 -
< ... . .. . o_a-.__._.._.._._..__._.. . _ . . . _ . . .
we n w
. . . . . _ . _ . . . . . . . _ . _ . _ . . _ . . . . . _ ._-- _ _. . Z-3 o . _ ._
O .. _ _ _ . _ I-
) ; .. . .. .-... _d . . . . . . -_
_._.a. ,
v___ - .-
_. __. .s . . .. . ;. . .a . . ;. .
w I
.e
- h .I,. . . _. . 'as ,. E
$ c
. ... . . . . . 4 __ _ - .
.D..,-.._-..__.-- Q L.
~. .. -- . . _. .- Y ... . . . . . . . . - u..._
u -
. .E. . _ . .
4 t -
. . . .....~.._..__......u. .. . .. .
$RaE!! 8 q) e 8
C e
8 v
8 Qi 8
O v .
. i a o N... ., ..,...
8 CD 8
C 8
v 8
N
. . -. . I, >l otst .t .
' FIGURE Ez
, , ~HADDAM NECK-CYCLE 14' CADIAL POWER DISTRIBUTION
'TORTISE 3000.0 MWD /MTU - BANK B AT 320 INCORE 1353.0 MWD /MTU - BANK B AT 304 R9 R8 0.547 0.436 0.564. 0.455'
-0.017 -0.019
-3.020 -4.182 )
GUAD LOC P11 Pio P9 P8 RPD(TORT) 0.676 0.929 1.106 1.006 KEY RPD(INCR) 0.695 0.953 1.135 1.035 TORT-INCR -0.019 -0.024 -0.029 -0.029 PCT DIFF- -2.740 -2.525 -2.561 -2.808 N12 N11 N10 N9 NS 0.786 1.137 0.982 0.992 1.083 0.807 1.153 0.996 1.006 1.100
-0.021 -0.016 -0.014 -0.014 -0.017.
-2.608 -1.394 -1.412 -1.398 -1.552 MIS M12 H11 M10 M9 M8 0.785 1.'142 0.933 1.145 1.219 1.076 0.783 1.119 0.920 1.127 1.231 1.088 0.002 0.023 0.013 0.018 -0.012 -0.012 0.249 2.049 1.407 1.591 -0.981 -1.109 L14 L13 L12 L11 L10 L9 L8 0.676 1.135 0.927 0.897 1.110 1.094 1.250 0.675 1.130 0.912 0.883 1.091 1.084 1.236 0.001 0.005 0.015 0.014 0.019 0.010- 0.014 0.142 0.436 1.638 1.579 1.735 0.916 1.126 K14 K13 K12 Kil K10 KS K8 0.929 0.981 1.142 1.109 1.045 1.215 1.062 0.927 0.974 1.122 1.086 1.023 1.193 1.046 i 0.002 0.007 0.020 0.023 0.022 0.022 0.016 1 0.209 0.712 1.776 2.111 2.144 1.838 1.523 ,
J15 d14 d13 d12 J11 J10 09 48 0.548 1.107 0.993 1.222 1.100 1.230 1.039 1.130 0.557 1.123 1.000 1.226 1.093 1.221 1.031 1.112
-0.009 -0.016 -0.007 -0.004 0.007 0.009 0.008 0.018
-1.622 -1.431 -0.706 -0.333 0.634 0.731 0.769 1.612 H15 H14 H13 H12 H11 H10 M9 H8 0.437 1.008 1.085 1.080 1.261 1.093 1.213 1.050 0.445 1.028 1.098 1.089 1.261 1.094 1.212 1.034
-0.008 -0.020 -0.013 -0.009 0.000 -0.001 0.001 0.016
-1.804 -1.952 -1.190 -0.833 -0.006 -0.098 0.076 1.541 AVERAOC O!FFERENCE = 0.0136 STANDARD DEVIATION = 0.0155 i
FIOURE 3 HADDAM NECK-CYCLE 14 RADIAL POWER DISTRIBUTION a' i TORTISE 2000.0 MWD /MTU - BANK B AT 320-IN00RE 2074.0 MWD /MTU - BANK B AT 312 R9 R8 8 0.562- 0.449 0.582 -0.453
-0.020~ -0.004 !
-3.436 -0.883 OUAD LOC- P11 P10 P9 P8 f RPD(TORT) 0.690 0.942 1.117 1.016 KEY RPD(INCR) 0.714 0.975 .1.134 1.023 TORT-INCR -0.024 -0.033 -0.017 -0.007 PCT DIFF -3.361 -3.385 -1.499 -0.684 I N12 N11 N10 N9 N8 0.799 1.147 0.988 0.994 1.083 0.825 1.166 1.008 1.007 1.092
-0.026 -0.019 -0.020 -0.013 -0.009 l 6
-3.151 -1.629 -1.984 -1.291 -0.824 M13 M12 M11 M10 M9 M8 0.798 1.151 0.930 1.142 1.209 1.067 0.775 1.128 0.927 1.131 1.221 1.079 0.023 0.023 0.012 0.011 -0.012 -0.012 2.968 2.039 1.295 0.973 -0.983 -1.112 L14 L13 L12 L11 L10 L9 L8 0.690 1.145 0.932 0.899 1.102 1.080 1.230 0.671 1.112 0.916 0.889 1.092 1.083 1.245 0.019 0.033 0.016 0.010 0.010 -0.003 -0.015 2.832 2.968 1.747 1.125 0.916 -0.277 -1,205 K14 K13 K12 K11 K10 K9 K8 0.943 0.988 1.139 1.100 1.032 1.195 1.046 0.917 0.969 1.122 1.088- 1.023 1.185 1.042
'O.026 0.019 0.017 0.012 0.009 0.010 0.004 2.835 1.961 1.515 1 103 0.880 0.844 0.384
- d15 J14 d13 d12 J11 d10 US V8 0.563 1.119 0.996 1.211 1.086 1.208 1.022 1.111 0.545 1.113 1.000 1.219 1.090 1.215 1.028 1.108 0.018 0.006 -0.004 -0.008 -0.004 -0.007 -0.006 0.003 {
3.303 0.539 -0.400 -0 656 -0.367 -0.576 -0.584 0.271 H15 H14 H13 H12 H11 H10 H9 H8 i 0.449 1.018 1.085 1.071- 1.240 1.074 1.190 1.032 0.435 1.023 1.102 1.088 1.257 1.091 1.208 1.030 0.014 -0.005 -0.017 -0.017 -0.017 -0.017 -0.018 0.002 3.218 -0.489 -1.543 -1.562 -1.352 -1.558 -1.490 0.194 AVERAGE DIFFERENCE = 0.0145 STANDARD DEVIATION = 0.0165
1;. '
FIGURE O-
.HADDAM NaCK-CYCLE 10 4'
. RADIAL POWER DISTR 28UTION
.TORTISE- 3000.0 MWD /MTU - BANK B AT 320 INCORE 2734.0 MWD /MTU - BANK B AT 315
- R9 R8 0.575 0.459 0.583 D.469
-0.008 -0.010
-1.375- -2.135
~OUAD . LOC P11 P10 P9 P8 RPD(TORT) 0.701 0.951' 1.123 1.023' KEY RPD(INCR) 0.710 .O.967 1.144 .1.043 TORT-I NCR -' -0.009 -0.016 -0.021 -0.020 ,
PCT DIFF -1.270 -1.657 -1.838 -1.920.
N12. N11 'N10' N9 NS 0.808 1.151 -0.992 0.996 1.082
- 0.819 '1.162 1.005 1.012- 1.102
-0.011. -0.011 -0.013 -0.016 -0.020
-1.346 -0.949 -1.296 -1.584 -1.817 MIS M12 M11 M10 MS M8 0.807 1.154 0.942 1.138 1.201 1.061 0.788 1.128 0.928 1.129 1.224 1.083' O.019 0.026 0.014 0.009 -0.023 -0.022 '
2.409 2.302 1.506 0.795 -1.882 -2.034 L14 L13 L12- L11 L10 LS L8 D.701 1.149 0.936 0.901 1.096 1.071 1.216 0.683 1.125 0.918 0.889 1.087 1.075 1.229 0.018 0.024 0.018 -0.012 0.009 -0.004 -0.013 2.633 2.131 1.958 1.347 0.825 -0.375 -1.060 K14 K13 K12 K11 K10 K9- K8 0.952 0.992 1.136 1.095 1.025 1.181 1.035 0 930 0.972 1.119 1.081 1.015 1.171 1.030 0.022 0.020 0.017 0.014 0.010 0.010 0.005 2.363 2.055 1.517 -1.293 0.983 0.851 0.483 d15 d14 d13- dia d11 d10 09 d8 0.576- 1.125 0.998 1.203 1.076 1.194 1.011 1.100 0.579 1.131 0.999 1.211 1.076 1.199 1.015 1.096
-0.003 -0.006 -0.001 -0.008 D.000 -0.005 - 0. 0'D4 0.004
-0.521 -0.533 -D.103 -0.663 -0.003 -0.420 -0.397 0.362 H15 H14 H13 H12 H11 H10 M9 H8 D.460 1.026 1.085 1.064 1.225 1.061 1.175 1.022 ;
D.463 1.041 1.096 1.079 1.238 1.077 1.192 1.018
-0.003 -D.015 -0.011 -0.015 -0.013 -0.016 -0.017 0.004
-0.650 -1.443 -1.006 -1.393 -1.053 -1.488 -1.429 0.390 AVERAGE DIFFERENCE = 0.0126 STANDARD DEVIATION = 0.0143 l
1 l
l i
FIOURE 5 HADDAM NECK-CYCLE 10 RADIAL POWER DISTRIBUTIDM TORTISE 5000.0 MWD /MTU - BANK B AT 320
'INCORE -5190.0 MWD /MTU - BANK B AT: 312.
R9' R8 0.595 0.477 0.601 0.488
-0.006 -0.011.
-0.995 -2.250 QUAD. LOC: P11 Pio 'PS P8 RPD(TORT) 0.712 0.958 1.126 1'.033 KEY RPD(INCR) 0.719 0.966 1.143. 1.053 TORT-INCR. -0.007 -0.008. -0.017 -0.020 PCT DIFF -0.970 -0.824 -1.484 -1.896 N12 N11 N10 NS N8 0.811 1.143 0.993 1.000 1.084 0.820 1.146 0.996 1.011 1.105
-0.009 -0.003 -0.003 -0.011 -0.021
-1.094 -0.258 -0.297 -1.084 -1'897 M13' M12 M11 M10 MS M8 0.810 1.144 0.943 1.135 1.194 1.059-1.124 1.079 i 0.802 1.132 0.934 1.208 0.008 0.012 0.000 0.011 ~-0.014 -0.020 1.001 1.064 0.967 0.982 -1.155. -1.850 ,
L14 L13 L12 L11 L10 L9 L8 0.710 1.139 0.936 0.907 1.096 1.066 1.206 O.703 1.126 0.926 0.898 1.083 1.055 1.229
~0.007 0.013 0.010 0.003 0.013 0.011 -0.023 0.999 1.158 1.084 1.006 1.204 1.046 -1.868 K14 K13 K12 K11 K10 K9 K8 0.956 0.991 1.131 1.093 1.023- 1.175 1.033- 1 0,945 0.977 1.116 1.078 1.011' 1.160 1.025 )
0.014-0 011 0.015 0.015 0.012 0.015 0.008 1.168 1.437 1.348 1.395 1.191 1.297 0.784 J15 d1+ d13 d12 d11 d10 09 d8 j 0.594 1.123 0.998 1.193 1.068 1.185 1.010 1.099 ]
0.606 1.137 1.002 1.196 1.066 1.185 1.010 1.000 . 1
-0.012 -0.014 -0.004 -0.003 0.002 0.000' O.000 0.009
-1.977 -1.228 -0.395 -0.247 0.191 0.004 0.004 0.829 H15 H14 His H12 H11 H10 H9 H8 0.477 1.031 1.082 1.058 1.211 1.055 1.169 1.022 0.486 1.052 1.093 1.068 1.218 1.067 1.180 1.014 1 '
-0.009 -0.021 -0.011 -0.010 -0.007 -0.012 -0.011 0.008
-1.848 -1.993 -1.003 -0.933 -0.571 -1.121 -0.929 0.793 1
i AVERAGE DIFFERENCE = 0.0101 STANDARD DEVIATION = 0.0113
- 1 FIGURE 6
.HADDAM NECK-CYCLE 14 RADIAL POWER DISTRIBUTION TORTISE 6000.0 MWD /MTU - BANK B AT 320 INCORE 5982.0 MWD /MTU - SANK B AT 310 i
I RS R8 D.604 0.486' ,
0.606 0.495
-0.002 -0.009 l
-0.336 -1.824 ;
QUAD LOC- P11 P10 PS P8 RP0(TORT) 0.716 0.960 1.125 1.035 KEY RPD(INCR) 0.720 0.964 1.144 1.060' TORT-INCR -0.004 -0.004 -0.019 -0.025 PCT DIFF -0.561 -0.421 -1.666 -2.364 :
N12 N11 N10 N9 N8 0.814 1.139 0.993 1.000 1.083 0.818 1.139 0.992 1.012 1.109
-0.004 0.000 0.001. -0.012 -0.026
-0.495 -0.006 0.095 ' -1.191 -2,350.
M13 M12 M11 M10 M9 M8 0.812' 1.140 0.943 1.133 1.191 1.057 0.805 1.123 0.930 1.117 1.206 1.082 0.007- 0.017 0.013 0.016 -0.015 -0.025 0.864 1.508 1.392 1.427 -1.249 -2.316 L14 L13 L12 L11 L10 LS L8 0.715 1.136 0.937 0.910 1.095 1.064 1.201 0,708 1.125 0.923 0.896 1.078' 1.051 1.224 0.007 0.011 0.014 0.014 0.017 0.013 -0.023 0.983 0.972 1.511 1.557 1.571 1.231 -1.885 K14 K13 K12 K11 K10 KS K8 0.9F. 0.991 1.129 1.092 1.022 1.171 1.032 0.941 0.978 1.111 1.074 1.007 1.159 1.027 0.003 0.013 0.018 0.018 0.015 0.012 0.005 0'943
. 1.323 1.614 1.670 1.484 1.030 0.481 ;
i d15 d14 d13 J12 dal d10 JS d6 0.603 1.123 0.90S 1.189 1.065 1.180 1.009 1.098 0.619 1.144 1.006 1.196 1.063 1.183 1.011 1.092
-0.016 -0.021 -0.007 -0.007 0.002 -0.003 -0.002 0.006
-2.590 -1.841 -0.701 -0.591 0.182 -0.259 -0.203 0.544 H15 H14 H13 H12 H11 H10 H9 H8 ]
0.485 1.033 1.082 1.056 1.206 1.052 1.166 1.022 0.497 1.061 1.097 1.070 1.213 1.066 1.179 1.017 l
-0.012 -0.028 -0.015 -0.014 -0.007 -0.014 -0.013 0.005
-2.420 -2.645 -1.373 -1.314 -0.583 -1.319 -1.108 0.486 i
AVERAGE DIFFERENCE a 0.0113 STANDARD DEVIATION = 0.0132 !
l
)
i
)
I
0 0
0 8
0 I - 0 P ,
D x 0
U E 7 -
RE x N UIS R ..
EO x NT B -
, F xa x 0 O x
0 xe .
0 N 6
x O I
x T x C
- x N
- U 0
F x , 0 A E 0 x 5 S x A x
N -
) O I
x U T 7 T
x 0 M A E R
- 0 / R m 0 D T U x 4 W N G x M E I
x (
F
- P C -
U N x N O -
x R C -
x 0 U g
0 0 B N x 3 O x R x ,
O x B --
x 4 x 1 x 0 E x 0 0 L _
E 2 C x
,x ^
Y C _ _
x K _
x C m x
E _
o N
' o o
M A
x D x D -
e A x H _
0 0 0 0 0 @ 0 0 0 0 0 4 2 0 8 6 2 1 _
1 gn.9 :. Noo z0@m !:otb
- j _
_-