ML20214Q043

From kanterella
Jump to navigation Jump to search
Physics Methodology for PWR Reload Design
ML20214Q043
Person / Time
Site: Haddam Neck File:Connecticut Yankee Atomic Power Co icon.png
Issue date: 08/30/1986
From:
NORTHEAST UTILITIES
To:
Shared Package
ML20214Q042 List:
References
NUSCO-152, NUDOCS 8609240155
Download: ML20214Q043 (130)


Text

-- - - ---

e .

L t- NUSCo 152 Physics Methodology for PWR Reload Design l

NORTHEAST UTILITIES THE CONNECTICUT LIGHT AND POWER COMPANY WESTF.RN MASSACHUSETTS ELECTRIC COMPANY ,

HOLYOKE WATER POWER COMPANY NORTHE AST UTILITIES SERVICE COMPANY NORTHE AST NUCLEAR ENERGY COMPANY P.O. Box 270, Hartford, Connecticut.

$@8'18bER8I83$$13 PDR p

I

NUSCo 152 Physics Methodology for PWR Reload Design NORTHEAST UTILITIES THE CONNECTICUT LIGHT AND POWEA CCMPAN*

WESTE4N VASS ECHUSETTS ELECTRIC COMPANv AT S UTl IT S E CE COMPANY NCATHE AST NUCLE AR ENERGY COMPANY P.O. Box 270, Hartford, Conneckicut.

NUSCO - 152 NUSCO TOPICAL REPORT PHYSICS METHODOLOGY FOR PWR RELOAD DESIGN AUGUST 30, 1986 l

l NORTHEAST UTILITIES SERVICE COMPANY REACTOR ENGINEERING BERLIN, CT

DISCLAIMER The information contained in this topical report was prepared for the specific requirements of Northeast Utilities Service Company (NUSCO) and its affiliated companies, and may contain materials subject to privately owned rights. Any use of all or any portion of the information, analyses, methodology or data contained in this topical report by third parties shall be undertaken at such party's sole risk. NUSCO and its affiliated companies hereby disclaim any liability (including but not limited to tort, contract, statute, or course of dealing) or warranty (whether express or implied) for the accuracy, completeness, or l suitability for a particular purpose or merchantability of the l information.

l i

i

ABSTRACT The physics methodology for the design and the analysis of PWR reload cores has been transferred to NUSCO from Westinghouse. NUSCO has used this methodology to model the Haddem Neck reactor core and has compared the results to the actual measurements. The quality of the comparisons demonstrates NUSCO's ability to perform PWR reload design.

ii

TABLE OF CONTENTS r

Page DISCLAIMER i ABSTRACT ii TABLE OF CONTENTS 111

1. INTRODUCTION AND CONCLUSION 1-1 1.1 Objectives 1-1 1.2 Scope 1-2 1.3 Conclusions 1-3
2. PHYSICS CODES 2-1 1

2.1 FIGHT-H 2-1 l 2.2 ARK 2-2 2.3 HAMMER-AIM 2-3 2.4 TORTISE 2-4 2.5 PALADON 2-4 2.6 APOLLO 2-5 ,

3. PHYSICS MODELS 3-1 3.1 Effective Cross Section Models 3-1 3.1.1 Gray Absorber Cross Section Model 3-1 3.1.2 Black Absorber Cross Section Model 3-3 3.2 Homogenization in Space Models 3-3 3.2.1 2-D Discrete 3-4 3.2.2 1-D Discrete 3-5 3.2.3 Nodal Models 3-5
4. PHYSICS MODEL APPLICATIONS 4-1 4.1 Core Power Distributions at Steady State Conditions 4-1 4.1.1 Power Distributions 4-1 4.1.2 Power Peaking 4-2 4.1.3 Fuel Depletion 4-2 4.2 Axial Power Distribution Control 4-2 4.3 Core Reactivity Parameters 4-3 4.3.1 Moderator Reactivity Coefficient 4-4 4.3.2 Doppler Temperature Coefficient 4-4 4.3.3 Total Power Coefficient 4-5 iii

4.3.4 Isothermal Temperature Coefficient 4-5 4.3.5 Boron Reactivity Coefficient 4-5 4.3.6 Xenon Worth 4-6 4.3.7 Samarium Worth 4-6 4.3.8 Control Rod Worth 4-6 4.3.9 Neutron Kinetics Parameters 4-7 4.4 Core Physics Parameters For Transient Analysis 4-7 4.4.1 Shutdown Margin 4-8 4.4.2 Trip Reactivity 4-8 4.4.3 Dropped Control Rod 4-8 4.4.4 Boron Dilution 4-9 4.4.5 Uncontrolled Rod Withdrawal 4-9 4.4.6 Control Rod Ejection 4-9 4.4.7 Steam Line Break 4-9

5. PHYSICS MODEL VERIFICATION 5-1 5.1 Model Benchmarks 5-1 5.1.1 Cycle History 5-1 5.1.2 Burnup Distributions 5-2 5.1.3 Cycle Data Analysis 5-3 5.1.4 Zero Power Physics Tests Data 5-3 5.2 Power Distribution Verification 5-4 5.2.1 Radial Distributions 5-4 5.2.2 Axial Distributions 5-4 5.2.3 Peaking Factors 5-4 5.2.4 Boron Rundown Curves 5-5 5.3 Zero Power Physics Tests Verification 5-6 1

5.3.1 Critical Boron Concentration 5-6 l 5.3.2 Isothermal Temperature Coefficient 5-6 5.3.3 Control Rod Worth 5-6 5.3.4 Ejected Rod Worth 5-7 5.4 Summary 5-7

6. REFERENCES 6-1
7. GLOSSARY 7-1 iv

LIST OF TABLES Pagg 5.1 Haddam Neck Cycle 12 Batch Loading 5-8 5.2 Haddam Neck Cycle 13 Batch Loading 5-9 5.3 Haddam Neck Cycle 14 Batch Loading 5-10 5.4 Haddam Neck Zero Power Physics Tests Acceptance Criteria 5-11 5.5 Conditions For Cycle 12 Comparison in Table 5.7 5-12 5.6 Conditions For Cycle 13 Comparison in Table 5.8 5-13 5.7 Haddam Neck Cycle 12 Power Peaking Factors Comparison Between Measurement (M) and Prediction (P) 5-14 5.8 Haddam Neck Cycle 13 Power Peaking Factors Comparison Between Measurement (M) and Prediction (P) 5-15 5.9 Haddam Neck Cycle 12 Axial Offset Comparison Between Measurement (M) and Prediction (P) 5-16 ,

5.10 Haddam Neck Cycle 13 Axial Offset Comparison l Between Measutement (M) and Prediction (P) 5-17 5.11 Haddam Neck Cycle 12 Boron Rundown Comparison 5-18 5.12 Haddam Neck Cycle 13 Boron Rundown Comparison 5-19 5.13 Critical Boron Comparison for Haddam Neck Cycles 12, 13, and 14 5-20 5.14 Isothermal Temperature Coefficient Comparison For Haddam Neck Plant Cycles 12, 13, and 14 5-21 5.15 Haddam Neck Cycle 12 Rod Worth Comparison 5-22 5.16 Haddam Neck Cycle 13 Rod Worth Comparison 5-23 5.17 Haddam Neck Cycle 14 Rod Worth Comparison 5-24 5.18 Ejected Rod Worth Comparison For Haddam Neck Cycles 12, 13, and 14 5-25 v

l LIST OF FIGURES Pag.e 3.1 Cross Section Models 3-7 3.2 Homogenization for Space Models 3-8 5.1 Haddam Neck Cycle 12 Core Loading Map 5-26 5.2 Haddam Neck Cycle 12 Power History 5-27 5.3 Haddam Neck Cycle 13 Core Loading Map 5-29 5.4 Haddam Neck Cycle 13 Power History 5-30 5.5 Haddam Neck Cycle 14 Core Loading Map 5-32 5.6 to Haddam Neck Cycle 12 Radial Power 5-33 5.18 Distribution Comparison Between TORTISE 5-45 and INCORE 5.19 to Haddam Neck Cycle 13 Radial Power 5-46 5.30 Distribution Comparison Between TORTISE 5-57 and INCORE 5.31 to Haddam Neck Cycle 12 Core Average 5-58 5.43 Axial Power 5-70 5.44 to Haddam Neck Cycle 13 Core Average 5-71 5.55 Axial Power 5-82 5.56 Haddam Neck Cycle 12 F-DELTA-H (MAX) 5-83 5.57 Haddam Neck Cycle 13 F-DELTA-H (MAX) 5-84 5.58 Haddam Neck Cycle 12 FQ (MAX) 5-85 5.59 Haddam Neck Cycle 13 FQ (MAX) 5-86 5.60 Haddam Neck Cycle 12 Axial Offset Comparison Between PALADON and INCORE 5-87 5.61 Haddam Neck Cycle 13 Axial Offset 5-88 5.62 Haddam Neck Cycle 12 Boron Rundown 5-89 5.63 ,faddam Neck Cycle 13 Boron Rundown 5-90 vi

1.0 INTRODUCTION

AND CONCLUSION This Topical Report, detailing PWR physics methods used by NUSCO, is presented to the NRC in fulfillment of regulatory requirements.

This report presents a summary description of the Westinghouse codes and models as they are applied by NUSCO to the reload design of Northeast Utilities' three PWRs, Haddam Neck, Millstone Unit 2, and Millstone Unit 3. Haddam Neck data are presented as demonstration of NUSCO's qualifications to use the Westinghouse methodology.

1.1 Objectives NUSCO has for a long time realized that the in-houre capability to perform design of PWR reload cores is advantageous from several different perspectives:

o understanding of the design, leading to better control of decisions.

o optimization of the design, leading to cognizant involvement in the planning.

o consistency of design methods, leading to a systematic approach to all PWRs.

o quality control of the design, leadir.g to more complete evalu-ations of core safety.

Various physics methodologies were reviewed by NUSCO to determine the one best suited for its needs. In order to satisfy the consis-tency objective, NUSCO decided to use the systematic approach of a NSSS vendor, which provides the following two advantages:

o a systematic physics methodology developed for and previously applied to a large number of designs.

o a physics methodology previously assessed and approved by the NRC.

1-1

The implementation of the above decision has lead to the final licensing strategies:

o NUSCO will demonstrate its proficiency with the acquired physics methodology by modeling and analyzing the Haddam Neck reactor.

o NUSCO will present a Topical Report on the acquired physics methodology as proof of its capability to perform reload designs to the NRC.

1.2 Scope The physics methodology and codes of the Westinghouse Nuclear Fuel Division have been transferred to NUSCO. A detailed description of the computer codes and the models is presented in Sections 2 and 3.

NUSCO has supported operation of the Haddam Neck reactor for over ten years with core follow analyses and parametric studies.

Therefore, NUSCO has accumulated experience in modeling and has acquired measurement data that provide an ample databank for model benchmarking.

Core follow results collected during Haddam Neck Cycles 12 and 13 provide reliable data with which to benchmark power distributions, criticality versus boron rundown, and fuel depletion calculations, in addition, the physics data collected during the startup of Haddam Neck Cycles 12, 13, and 14 provide reliable benchmarks for evaluating the model predictions of control rod worths and temper-ature coefficients. The choice of Cycles 12, 13, and 14 as bench-marks is based upon the following reasons. Cycles 12, 13, and 14 provide the most recent cycles preceeding Cycle 15, which will be the first NUSCO designed cycle. Additionally, the operation of Cycles 12 and 13 included power coastdowns which provided an additional complexity by which the models can be tested.

1-2

The benchmark analysis performed with the models shows that the models produce reliable results. A detailed description of the benchmark analysis and results are presented in Section 5. All methods employed to generate the benchmark analysis, including model development, the codes used, and the procedures employed to generate the application data, are the standard licensed methods used by the Westinghouse Nuclear Fuel Division. It is therefore unnecessary to requantify the calculational uncertainties associated with the methods (Reference 1). In addition, the methods used in the INCORE (Reference 2) code to process predicted power to reaction rate ratios and movable detector trace data (see Section 5.1.2) to obtain peaking factors are also standard to Westinghouse so that the measurement uncertainties associated with this process do not require redetermination.

1.3 Conclusions This report summarizes the work performed by NUSCO as well as the methodology employed to model the Haddam Neck reactor. The modeling includes stainless steel clad and zircaloy clad fuel assemblies, as well as two lengthy temperature / power coastdowns. Data from three operating cycles (12, 13, and 14) are presented. Two earlier cycles (10 and 11) were modeled in order to establish the appropriate burnup distributions.

The principle objective of this Topical Report is to demonstrate to the NRC that NUSCO has the capability to perform physics analyses for reload core design and understands the methodology being employed. This objective can be measured by the quality of results of the analyses performed for Cycles 12, 13, and 14 of the Haddam Neck reactor, as described in Section 5. Therefore, it can be concluded that:

o NUSCO is capable of applying the Westinghouse licensed reload methodology to the design of reload cores for all of Northeast Utilities' PWRs.

1-3

o NUSCO is capable of performing all PWR physics analyses in support of plant safety, operation, and licensing.

1-4

2. PHYSICS CODES This section describes the major Westinghouse codes used by NUSCO as part of the reload design. The codes are used in the same fashion as described in Section 3 of Reference 3.

Although several of the Westinghouse physics codes in this report are titled differently than those contained in the Westinghouse licensed reload methodology topical (Reference 3) and those referenced in FSARs, these codes contain the same fundamental methodology as the licensed versions. The " updated versions" provide engineering enhancements (e.g., larger problem-size capa-bilities, editing improvements, and minor modeling improvements) relative to the original code versions. The updated code versions were described at a meeting between the Westinghouse Nuclear Fuel Division and the NRC Core Performance Branch in October 1984, at which time, the differences between the original and updated code versions were discussed. The NRC Core Performance Branch agreed that the updated code versions were fundamentally the same as the original versions, employing the same fundamental solution algo-rithms as the original versions.

The methods used in reactor physics are traditionally based on the concept of energy-space separability. Therefore, methods treating the energy dependence and methods treating the space dependence have definite purposes and various applications. For the treatment of the energy dependence, the two spectral codes available are ARK and HAMMER. The treatment of the space dependence is performed with the spatial codes TORTISE, PALADON, and APOLLO.

2.1 FIGHT-H FIGHT-H performs a calculation of effective temperatures in a low enriched, sintered PWR UO fuel rd for use fu ARK calculations.

2 The FIGHT-H model accounts for the following effects: the radial variation of pellet conductivity, pellet thermal expansion, heat 2-1

generation rate, elastic deflection of the clad, gap conductance as a function of the initial fill gas, the hot open gap dimension, and the fraction of the pellet circumference over which the gap is closed. References 4 and 5 provide a description of the basis of the FIGHT-H code.

2.2 ARK The ARK computer program calculates the neutron spectrum in a cell of the fuel lattice using the physical fuel conditions and the neutron cross section data. ARK algorithms are based upon the established theoretical models of continuous slowing down using the Selengut-Goertzel treatment, resonance self shielding using Dancoff and Sauer methods, the rmal scattering using Wigner-Wilkins and Amouyal-Benoit-Horowitz methods, nuclide transmutation using linear depletion chains, and exponential matrix formulation.

HUFT type calculations are employed in the fast groups above 0.625 eV, SOF0CATE type calculations are used in the thermal groups, and CINDER-HIC type depletion calculations of fission products and higher order isotopes are used. The radial distribution of tempera-tures in the fuel rod is obtained by solving the steady state heat conduction equation in cylindrical geometry. Monte Carlo derived weighting functions are used to obtain effective temperatures for resonance capture in U-238 and PU-240.

The purpose of ARK is to provide:

o Spectrum weighted 2 group cross sections for the spatial analyzers as a function of burnup.

o Doppler parameters for the spatial analyzers.

o Moderator parameters for the spatial analyzers.

o Detailed isotopics for fuel inventories.

o Delayed neutron parameters.

2-2

References 6, 7, and 8 provide a description of the basis of the ARK code and substantiate its theoretical approach. ARK internally links advanced versions of LEOPARD (Reference 6) and CINDER (Reference 7) to provide burnup-dependent cross sections.

2.3 HAMMER-AIM The HAMMER-AIM code package calculates the neutron spectrum in a burnable absorber cell or a control rod cell in one-dimensional (1-D) space (rotational symmetry). Because of the treatment for these black absorbers, HAMMER algorithms for the thermal energy range are based on integral transport theory. Approximated solutions are obtained with the cosine currents method.

Annular cylindrical geometry is used to describe the heterogeneous cell regions surrounded by a homogeneous extra region (super cell >

configuration). The fission, inelastic, and elastic slowing down sources are used to derive space-energy fluxes and reaction rates.

The resonance absorption of U-238 is spatially corrected by a correlation derived f rom Monte Carlo analyses. Cross sections from ,

various resonances are derived with MUFT resonance formalism, using input L-factors, and the low-lying resonance levels of Ag and In are Doppler broadened.

The AIM module is based on diffusion theory solved by the finite difference approach. The function of AIM is to modify the group averaged cross sections so that the diffusion theory calculated spatial reaction rates closely match the reaction rates as calcu-lated with transport theory in liAMMER.

The purpose of IIAMMER-AIM is to provide transport equivalent 2 group cross sections to diffusion spatial analyzers for black absorbers, either for control rod elements and/or burnable poisons.

References 9 and 10 provide a description of the basis of RAMMER and AIM, respectively.

2-3

2.4 TORTISE The TORTISE computer program calculates the flux distribution and the power distribution in two-dimensional (2-D) space. TORTISE algorithms are based on two-group diffusion theory, solved by the finite difference method with the flux being averaged at the center of the mesh interval.

Spatial analysis is performed in TORTISE with a wide selection of options. Discrete and coarse mesh analyses are possible using full core to octant geometries with various planar geometry choices.

Variations in thermal hydraulic parameters occurring in the lattice are reproduced through feedback adjustments to the fuel temperatures and moderator densities. TORTISE uses macroscopic cross sections and burnup dependent factors generated by the spectral codes.

The applications of TORTISE include the following:

o Radial power distributions.

o Power and burnup histories during fuel lifetime.

o Core reactivity coefficients.

o Control rod integral worths.

o Criticality searches.

o Fuel loading patterns.

Reference 11 provides a description of the basis of the TORTISE code. TORTISE is an advanced version of TURTLE (Reference 11).

2.5 PALADON PALADON is a two/three dimensional (2-D/3-D) nodal analysis program used to predict core reactivity parameters and power distributions.

PALADON algorithms are based on 1-1/2-group diffusion theory, solved with the nodal method. Its theory is derived from codes such as FLARE and TRILUX.

2-4

Spatial analysis may be conducted by PALADON with a wide variety of options from full core to octant geometries with various symmetries.

Variations in thermal hydraulic parameters occurring in the lattice are reproduced through feedback adjustments to the fuel temperatures and modcrator densities, using the approaches established in TORTISE. PALADON uses macroscopic cross sections and burnup dependent factors generated by spectral codes. PALADON is also capable of generating local peaking data.

The applications of PALADON include the following:

o Axial and radial power distributions.

o Differential and integral control rod worths.

o Core reactivity coefficients.

o Criticality searches.

o Fuel loading patterns.

Reference 12 provides a complete description of the basis of the PALADON code.

2.6 APOLLO The APOLLO computer program calculates the flux distributions and the reaction rate distributions in a one-dimensional space as a function of burnup.

The algorithms of APOLLO are based on two-group diffusion theory, solved by the finite difference method as in TORTISE. Although APOLLO considers only a slab geometry, a relatively high number of mesh points is available. Variations in thermal hydraulic param-eters occurring in the lattice are reproduced through feedback adjustments to the fuel temperatures and moderator densities, using the approaches established in TORTISE.

The purpose of the axial APOLLO model is to provide:

2-5

o Differential and integral control rod worths.

o Axial power distributions for F synthesis.

o Trip reactivity curves.

o Load follow capability evaluations.

o Control rod insertion limit verification.

APOLLO uses microscopic and macroscopic cross sections for the compositions present in each mesh interval which result from least-square fits of radially averaged cross sections as a function of burnup.

Reference 13 provides a description of the basis of the APOLLO code.

APOLLO is an advanced version of PANDA (Reference 13).

2-6

3. PHYSICS MODELS '

This section describes how the Westinghouse methodology is used and applied in model development. The major features associated with each model are discussed as well as the interaction between models.

The processing of the cross sections used for each model as well as the codes used are also discussed.

3.1 Effective Cross Section Models ARK and HAMMER provide the effective cross sections required for spatial analyses. The cross section generation covers the range of variation of the most important variables, such as fuel enrichment, fuel burnup, fuel temperature, moderator density, and soluble poison concentrations. ARK generates effective cross sections for gray absorbers, such as fuel, moderator, burnable absorbers, and struc-tural materials. IIAMMER-AIM generates ef fective cross sections for black ,bsorbers, such as control rod materials. Figure 3.1 presents a logic diagram of the cross section models.

1 3.1.1 Gray Absorber Cross Section Model The fuel, moderator, and structural materials are to various degrees transparent to neutrons and are defined as gray absorbers. ARK calculates the effective cross sections for each of these materials as described in Section 2.2.

Each type of core component (fuel, guide thimble, assembly gap, baffle-reflector, instrument thimble) is analyzed with one of the following super cell configurations.

The fuel cell geometry is represented as follows:

FUEL PELLET Fuel, with effective fuel density used.

3-1

CLAD Clad and gap, with the volume fractions determined from clad OD and ID and the fuel pellet OD.

MODERATOR Water, soluble poison, and grids, with the grids homogenized over the entire assembly.

EXTRA REGION Assembly gap.

Instrumentation thimble.

Control rod guide tubes.

Soluble poison.

Grids.

The nonfuel cell geometry is represented as follows:

HOMOGENIZED CELL Water, thimbles, grids, soluble poisons, baffle-reflector, etc.

EXTRA REGION Homogenized fuel cells.

The gray absorber cross section model provides macroscopic two group constants (diffusion, absorption, removal, U-fission and K-fission) to be used by TORTISE. This ' model provides macroscopic two group constants for fuel with and without burnable poisons, guide thimbles with and without burnable poisons, instrumentation thimbles, assembly gap, and the baffle reflector.

The cell-only group constants are computed from microscopic few-group cross sections and cell-only isotopic number densities. The group constants for the spatial codes are boron free, xenon free, and in some cases samarium free.

3-2

Doppler parameters are derived from the reactivity change due to fuel temperature effects on the absorption of U-238 and Pu-240. Tne Doppler parameters are used in the spatial codes to correct for resonance absorption in the fuel as a function of relative power.

3.1.2 Black Absorber Cross Section Model Control rod materials are good thermal neutron absorbers and are defined as black absorbers. HAMMER calculates the effective cross sections for control rod materials as discussed in Section 2.3. The transport calculation yields cross sections and reaction rates for four energy groups and is homogenized over two regions, the cell and the extra region.

The AIM module performs a four-group reaction cste matching over the homogenized cell and extra region, using a very fine space mesh.

The relative absorption and removal rates for each group between cell and extra region are obtained with the transport cross sections. Correction factors are obtained by adjusting the cell absorption and the extra region removal until the AIM reaction rate ratios equal the HAMMER values. Since the TORTISE and AIM mesh spacings are not the same, AIM to TORTISE reaction rate matching is performed to provide a fine to coarse mesh correction.

Further treatment of the cross sections is necessary for application with diffusion codes using coarse mesh spacing. TORTISE unit assemblies are used in conjunction with the control rod cross sections in the generation of PALADON control rod cross sections.

3.2 Homogenization in Space Models The majority of spatial methods used in reactor design do not consider the heterogeneous complexity of fuel latttees and of other reactor components. A homogenization, based on the flux-volume weighting of components within a given region, is used. As shown in 3-3 8

Section 2, TORTISE, PALADON, and APOLLO have various degrees of detail and require different homogenization processes.

The discrete model comprises two approaches: a 2-D TORTISE and a 1-D APOLLO. The homogenization processes for the 2-D and the 1-D models are different, as discussed below. The nodal models are comprised of a 2-D PALADON and a 3-D PALADON model, as discussed below.

Figure 3.2 presents a logic diagram of the homogenization process for the space models.

3.2.1 2-D Discrete In the 2-D discrete (TORTISE), each cell of the fuel lattice is represented as a single point. The 2-D discrete model requires the homogenization for each component (fuel, guide tube, control rod, instrument thimble), for the assembly gap, and for the radial reflector. In the fuel cell, guide tube, instrument tube, and assembly gap, the cross sections provided by ARK are already homogenized. Cross sections for control rods from HAMMER-AIM require additional corrections, as discussed above. These corrections are due entirely to the different mesh spacing definitions between AIM and TORTISE.

Macroscopic cross s ect. ions and microscopic corrections needed to correct the macroscopic cross sections for variations in moderator density, boron concentration, fuel temperature, and xenon and samarium concentrations are determined by ARK. Macroscopic cross sections for water and structural materials, the assembly gap, and the reflector are generated by ARK.

The radial reflector comprises the baffle and the coolant surrounding the reactor core. The baffle constants are derived by weighting the materials' cross sections caiculated with a hard 3-4

i r , .

, i spectrum from a fuel composition and with a sof t ' spectrum from a '

pure moderator. i l

(

The top and bottom reflectors are not explicitly represented in the 2-D model; however, the axial leakage effects are considered in the neutron balance equation by using a burnup dependent axial buckling.

The 2-D discrete, 1/4 core model is used 'to obtain detailed pin power distributions. The 2-D discrete unit assembly model provides the cross section homogenization for the 2-D and 3-D nodal models. ,

k

)

3.2.2 1-D Discrete ,

s In the 1-D discrete (APOLLO) model, each planar s1fce of the core is represented as an axial mesh point. The 1-D discrete model requires radial homogenization of the fuel and the top and bEttom reflectors. s An elevation dependent radial buckling search is performed so that ,

consistency is obtained between the 1-D and 3-D models. The APOLLO model is depleted throughout corn life to evaluate the requiree , ,

l parameters at the limiting points in life, i

) '3 ,

Volumetric averaging of cross sections is performed for the top and bottom reflectors. The 1-D discrete ,nodel is ! applied in the e

analyses of differential and integral worths of control rods, \,

control rod insertion limits, and is used fo'r

  • load follow i

maneuvering studies.

'l 3.2.3 Nodal Models

(

6 The coarse mesh models are comprised of a 2-D PALADON and a 3-D

  • 7 PALADON .nodel. The twogenization process is the same for both .,

models via the.220 dl,screte (TORTISE) model. , ,

r Each fuel assemblp is typically represented by four- radial nodes I'

(2-D/3-D PALADON) rp4 by twenty axial nodes (3-D PALADON). In the 3-D PALADON model, \the core sixial and radial leakage is codeled by g applying individual albedoes to the top and bottom no.ies (axial) and ,

  • 3-5" w i

to each exterior face of the fuel assemblies (radial). The 2-D PALADON model uses the same type of axial buckling treatment as used in TORTISE. The radial treatment is the same as in 3-D PALADON.

The 2-D and 3-D nodal models are used in the analyses of core power distributions during normal steady state operation and to calculate inputs required for safety analysis calculations.

Additionally, the 3-D nodal model provides the source of the homogenized cross sections necessary for the 1-D discrete model.

4 2

)

4 ,

d 1

e 3-6

FIGURE 3.1 CROSS-SECTION MODELS GRAY ABSORBER MODEL -

INPUT; FUELS y INPUT:

FIGHTH V

y ARK

>f,NgF,UEL INPUT:

y O FUEL XS &

$ ARK NONAJEL XS E DATA CONM PSD XS [ BANK BLACK ABSORBER MODEL- U f

INPUT: '

DNT ROD g v HANTAER v

) AIM 4

FIGURE 3.2 HOMOGENIZATION FOR SPACE MODELS HAMMER AIM r----------------------- q l

+ ORT 6E  : r-------- -------]

B A. O DISCRETE I XS EASSY

3D. NODAL '

t hDDc:otJt I

' PALADON g. I APOLLO I v , CORE I CORE  : g p___ _ _ _; ,

L________ _ t _ _ _ _ _ _ _ _i y '

O ', i 1D. DISCRETE l l g I

ad 1 3

3 m

CO i

XS I I I I XS i Y I v I I I 5 E m NODAL g. I ARK

' l E ASSY PALADON I I

I d I I

I I O CORE I i

' I l i I

G A** ' N' I

XS

' I ADJ. I I I I  :

i s- 1 I v 3 I i 1 g I I L__________________________i v 2D/3D. COARSE I I DRTISE '

'> DISCRETE I

I CORF B.A.= BLACK ABSORBER L _ _ _ _ _ _J j G. A.= GR AY ABSORBER 2D. DISCRETE

4. PHYSICS MODEL APPLICATIONS The physics models illustrated in Section 3.0 were developed in order to provide reliable analytical predictions in the following  ;

four major areas:

1 - Core power distributions at steady state conditions.

2 - Axial power distribution control.

3 - Core reactivity parameters.

4 - Core physics parameters for transient analyses.

Often more than one model may be used to perform a specific analysis. The degree of accuracy and/or the range of applications

< required are used as standards in selecting one model instead of another for performing a given analysis.

4.1 Core Power Distributions at Steady State Conditions The application of physics models during steady state operation is directed at the prediction of power distributions, power peaking, and fuel depletion. These calculations are performed at various points during the projected cycle operation and for various control ,

rod bank configurations.

4.1.1 Power Distributions Core power distributions are analyzed by using the following models:

o 2-D discrete (TORTISE) - detailed pin-by pin in 2-D radial geometry.

o 2-D nodal (PALADON) - nodal power distributions in 2-D radial geometry and peak pin and average assembly data.

o 3-D nodal (PALADON) - nodal power distributions radially and axially, and total peaking data.

o 1-D discrete (APOLLO) - core average axial power distributions.

4-1

. _ _ ~ . . - ..

Core power distributions are used for many app?ications, such as fuel loading pattern searches, comparisons with previous operating data for design optimization, and comparisons with the Technical Specifications for design verification and compliance. Two and three-dimensional core power distributions are generated for the Nuclear Design Report throughout the cycle as a function of several control rod bank configurations. The TORTISE model provides input data to the incore instrumentation surveillance program INCORE.

4.1.2 Power Peaking Local power peaking is continuously under review because of the limits imposed by either the Technical Specifications and/or by the fuel design limits. The enthalpy rise factor, Fg , is obtained from the TORTISE model. The planar radial power peaking factor, Fxy, is obtained from the 3-D model. The nuclear heat flux factor, F , is q

obtained from the power distributions derived with the 3-D model or I with a 1-D, 3-D synthesis approach.

All peaking factors are analyzed under various control rod configu-rations and 'for various burnup values and power levels.

Additionally, non-equilibrium xenon distributions are taken into consideration as part of the power shape analyses.

4.1.3 Fuel Depletion Fuel depletion is determined by burnup calculations carried in all models. Specific fuel nuclide inventories are provided by ARK for the corresponding burnup and for an average spectrum.

4.2 Axial Power Distribution Control 1

Axial power distribution control limits are determined based on Westinghouse's Relaxed Axial Offset Control (RAOC) calculational procedure (Reference 14). These limits are represented by a curve of allowed axial offset (A0 is defined as the difference between the 1

4-2

upper and lower excore detector signals, divided by the sum of these two excore detector signals) as a function of core power. The RAOC calculational procedure begins by performing xenon transient simula-tions in ' order to setup the xenon reconstruction model. The APOLLO code is used for the xenon transient simulations which are based upon the chosen A0 limits. Xenon transient simulations are performed at various points in life and at different core power levels. Axial xenon shapes are reconstructed from the xenon reconstruction model in APOLLO and are used to generate axial power shapes. These shapes are used to verify the adequacy of the chosen A0 limits which would then be used as the axial power distribution Technical Specification limits during plant operation.

Constrained by the chosen A0 limits and the power dependent rod insertion limits, APOLLO is used to generate a large number of axial power shapes based on reconstructed axial xenon shapes. These axial power shapes are used to check the kw/ft limits for noraal operation conditions, thermal hydraulic constraints for loss of flow accident simulations, and the peak power and DNB limits for accident

! conditions.

For normal operations, more restrictive A0 limits are chosen if kw/ft limits or thermal hydraulic constraints are exceeded. For accident conditions, analyses are performed to verify that all design limits are met. Therefore, the RAOC procedure will provide axial shape information which is used to verify that all design limits are met.

4.3 Core Reactivity Parameters The core reactivity is affected by conditions occurring in the i reactor, such as temperature and composition variations. Most of these effects are important in safety analyses and therefore the physics models provide the reactivity coefficients, the reactivity worths, and the kinetics parameters as a function of burnup, temperature, and power level.

3 4-3

Reactivity coefficients quantify the rate of reactivity change subsequent to a unit change of an independent variable, such as moderator density, fuel temperature, or boron concentration. All-reactivity coef ficients are defined as the change in reactivity per unit change in the parameter of interest. For most reactivity coefficients, the reactivity is expressed in units of per cent mille (pcm). One pcm is equal to 10-5 Ak/k.

f 4.3.1 Moderator Reactivity Coefficient Changes in the moderator density, resulting from temperature or pressure variations, affect the neutron balance and consequently produce reactivity changes. Given fixed conditions, the moderator reactivity coefficient is derived from the 2-D or 3-D models by varying the moderator temperature around the reference temperature.

The moderator reactivity coefficient is analyzed for various reactor conditions, from HZP and HFP, for various boron concentrations and control rod positions, and at various cycle burnups. The moderator reactivity defect may also be obtained from 2-D or 3-D models.

4.3.2 Doppler Temperature Coefficient Fuel temperature variations cause the resonance absorption (Doppler effect) to change, thus affecting the core reactivity. The Doppler temperature coefficient is derived from 2-D or 3-D models by varying the reactor power, which in turn varies fuel temperature, while holding the moderator temperature constant.

The Doppler coefficient is analyzed at different power levels and for various cycle burnups. The Doppler reactivity defect is also obtained from 2-D and 3-D models by varying the reactor power at various times in life. FIGHT-H provides effective fuel temperatures as a function of power level and burnup.

4-4

4.3.3 Total Power Coefficient Power level variations cause changes in the temperature distributions of the fuel and moderator, thus affecting the core reactivity. The power coefficient is derived from 2-D or 3-D models by varying the reactor power.

The power coefficient is analyzed at different power levels and at various times in life. Tue power coefficient may be derived from the Doppler temperature and the moderator temperature coefficients.

The power defect is also obtained from 2-D or 3-D models by varying the reactor power or by combining the moderator and the Doppler defects.

4.3.4 Isothermal Temperature Coefficient The isothermal temperature coefficient represents the change of reactivity corresponding to a uniform change in the core tempe r-ature. The isothermal temperature coefficient is defined as the sua of the moderator and Doppler temperature coefficients.

The isothermal temperature coefficient is obtained from 2-D or 3-D alculated at various reactor conditions. The models and is isothermal temper..ture coefficient is directly measured during the startup physics to . ting program at BOC.

4.3.5 Boron Reactivity Coefficient The boron reactivity coefficient, often referred to as the differ-ential boron worth, represents the change in reactivity due to a unit change in boron concentration in the moderator. The inverse of the boron reactivity coefficient is the inverse boron worth.

The boron reactivity coefficient is obtained from 2-D or 3-D models for various reactor conditions from HZP to HFP, and as a function of concentration, temperature, burnup, and control rod boron 4-5

configuration. The inverse boron worth is expressed in units of ppm per percent reactivity.

4.3.6 Xenon Worth Xel35 is a dominant neutron absorber due to its large thermal absorption cross section. The 2-D or 3-D models provide the xenon worth and defect as a function of power level and for various burnup conditions.

4.3.7 Samarium Worth The fission product,- Sm149, is an important neutron absorber that reaches an equilibrium concentration early in the fuel cycle.

Samarium depletion is modeled in the design package to properly I

account for peak samarium at beginning of life and changes as a function of core life. The samarium worth and defect are derived from 2-D or 3-D models as a function of burnup.

4.3.8 Control Rod Worth Control rod worths are analyzed using many configurations under various conditions as required by physics startup testing and operations. The reactivity worth is derived from the reactivity change corresponding to two rod positions. Integral rod worths of either single rods and/or rod banks are obtained by using the 2-D or 3-D models. Differential rod worths are obtained from the 1-D or 3-D models.

Integral rod worths are calculated for HZP and HFP conditions at BOC and EOC. For stuck rod analyses, the highest worth of a single rod is determined at BOC and EOC.

4-6

4.3.9 Neutron Kinetics Parameters The kinetics parameters, which include the delayed neutron fractions, decay constants, and the average neutron lifetime are required as input to the plant reactivity computer and are used in the safety analyses.

All kinetics parameters are derived from basic cross section libraries, using ARK for composition dependency and 2-D or 3-D models for the fission distribution in the reactor. The kinetics parameters are evaluated at HZP and HFP conditions at BOC and EOC, and as a function of control rod configuration.

Delayed neutron fractions and half-lives from fissionable and fissile nuclides are stored in the databank for fast and thermal fissions distributed over six groups. The average f raction in each group for the entire core is obtained by weighting the delayed neutron sources by the core power distribution. The same weighting is applied to the averaging of the delayed neutron half-lives. An importance parameter is used to determine the effective delayed neutron fraction.

The mean lifetime of a neutron depends upon the reactor composition (fuel enrichment, burnup, poisons, etc.). ARK provides the neutron lifetime for the fuel in each reactor region. The core average value is determined through a power and volume weighting process.

4.4 Core Physics Parameters for Transient Analysis The physics methodology is applied to the generation of parameters needed for the analysis of transients. This section provides an overview of the determination of the key safety parameters needed during the safety evaluation process for a reload core. Additional details can be found in Section 3 of Reference 19.

4-7

'4.4.1 Shutdown Margin The shutdown margin analysis is performed using all models. The scope of the analysis is to determine the amount of negative reac-tivity by which the core is subcritical at hot shutdown conditions following a reactor trip. It is assumed that the highest worth control rod remains fully withdrawn while xenon and boron concen-trations remain unchanged.

The shutdown margin is obtained by subtracting the required rod worth from the available N-1 rod worth, including uncertainties.

Calculations at HZP and HFP for BOC and EOC conditions are necessary to evaluate the shutdown margin available. The required rod worth accounts for the reactivity ne'essary to compensate for the rod insertion allowance and the 3-D power defect, including flux redistribution.

4.4.2 Trip Reactivity The 1-D APOLLO model is used to analyze the inserted rod worth versus rod position, and thus the shape of the trip reactivity insertion curve. The most limiting shape corresponds to the minimum rate of inserted rod worth as a function of rod position, and generally results from the most bottom skewed axial power shape.

The trip reactivity defines the net amount of negative rod worth available for trip. The 2-D or 3-D models are used for this analysis. The minimum trip reactivity is determined for various power levels, as necessary.

'4.4.3 Dropped Control Rod Core con fi gu ra t ions with single or multiple dropped rods from a given subgroup are analyzed with 2-D or 3-D models. The scope of the analyses is to identify the control rod / rods which cause the 5

4-8

worst powe peaking and to determine the range of rod worths. The analysis is performed for various powe.r conditions at BOC and EOC.

4.4.4 Boron Lilution The analysis of the inadvertent boron dilution is performed with all models. The scope of the analysis is to. determine limiting values of the initial boron concentration, boron worth, and the shutdown margin at various reactor conditions. Typically, BOC values are key parmeters in the analysis.

4.4.5 Un_ controlled Rod Withdrawal The analysis of the uncontrolled rod withdrawal from a subcritical condition and while operating at power is performed with 1-D or 3-D models. The scope of the analysis is to determine the highest differential rod worth and the associated power distributions.

4.4.6 Control Rod Ejection The physics analysis of an ejected rod transient is performed with 3-D models, or with a 1-D, 2-D approach. The scope of the analysis is to determine the largest rod worth and the worst power peaking.

The trip reactivity is evaluated for a combination of two control rods unavailable for trip, one stuck and one ejected. The analysis is performed for various power conditions at BOC and EOC, with rod banks inserted to their limits. Limiting values of Doppler feedback are evaluated along with the appropriate kinetics parameters.

4.4.7 Steam Line Hrcak The physics analysis of a steam line break transient is performed with the 3-D model. The initial portion of the analysis is to obtain reactivity temperature coefficients, kinetics parameters, I control rod and boron worths. The assumed reactor conditions are representative of a non-uniform coolant inlet temperature 4-9

distribution, with the worst rod stuck out. and all remaining rods inserted. Core average statepoints are used from the transient analysis in order to verify the core reactivity balance and power level. The analysis is performed for reactor conditions from various initiating power conditions at EOC. -The resulting power peaking and power level is used in the DNB analysis.

d 4-10

.5. PHYSICS MODEL VERIFICATION i The Haddam Neck reactor is presently operating in Cycle 14. The 1

measurement data accumulated throughout the past cycles provide reliable benchmarks by which to verify the predictive ability of the

- physics models.

The benchmarks are divided into two categories:

o At power measurements.

o Zero Power Physics Tests.

The at power measurements include Cycles 12 and 13 data obtained with the incore instrumentation system during the scheduled surveil-lance program, and the boron concentration measured during cycle depletions. The zero power physics tests results during the-startup 4

of Cycles 12, 13, and 14 are included.

5.1 Model Benchmarks As mentioned in Section 1, data from Cycles 12, 13, and 14 of the Haddam Neck reactor are used to evaluate the predictive ability of the physics models.

5.1.1 Cycle History I Cycle 12 of the Haddam Neck reactor began operation on April 18, 1983 and shutdown on August 1, 1984, after 460 EFPDs. On May 19, 1984, the plant initiated a power / temperature coastdown. The core loading pattern for Cycle 12 is presented in Figure 5.1 and the associated fuel batch characteristics are reported in Table 5.1.

The power history during Cycle 12 is given in Figure 5.2.

Cycle 13 of the Haddam Neck reactor began operation on November 9, 1984 and shutdown on January 4, 1986, after 388 EFPDs. The core loading pattern for Cycle 13 is presented in Figure 5.3, and the 5-1

associated fuel batch characteristics are reported in Table 5.2.

The power history during Cycle 13 is given in Figure 5.4. Four lead test assemblies with zircaloy cladding were loaded in Cycle 13 and will be shuffled in Cycles 14 and 15.

Cycle 14 of the Haddam Neck reactor began operation on May 6,1986, and is expected to continue operation until June 1987. The core loading pattern for Cycle 14 is presented in Figure 5.5 and the associated fuel batch characteristics are reported in Table 5.3.

The power history for Cycle 14 is not included in this report since Cycle 14 is currently in operation.

5.1.2 Burnup Distributions In a standard core design, the burnup distribution at BOC is obtained from the databanks generated in the previous cycles. Since 4

these physics methods were not used to design previous Haddam Neck cycles, the following assumptions were made to create an initial burnup distribution.

In the 2-D discrete model, a representative burnup distribution for a quarter of each fuel assembly (uniform pin burnup within the quarter assembly) was used. This burnup was normalized to the average core burnup from the end of Cycle 9. This distribution was used as the initial burnup distribution for Cycle 10. Further depletion was continued with Cycle 11, which provided the initial pin-by pin distribution for the Cycle 12 model.

In the 3-D nodal model, a representative burnup distribution for each node was assumed and normalized to the average core burnup from the end of Cycle 10. The above distribution was used as the initial .

burnup distribution of Cycle 11. Depletion of Cycle 11 provided the initial burnup distribution for Cycle 12.

4 5-2

5.1.3 Cycle Data Analysis During the operation of each Haddam Neck cycle, the core power distribution is measured every 30 EFPDs with the incore instru-mentation system. The measurements are conducted in support of Technical Specification surveillance requirements.

The measured signal traces generated by the movable incore fission chambers are analyzed with the computer program INCORE. The INCORE code performs the signal-to-power conversion and calculates the 3-D power distribution and the axial offset. Two group fission cross sections for the U-235 lining of the fission chambers are generated by ARK. The flux ratios in each thimble and the power to reaction rate ratios between instrumented and uninstrumented assemblies are generated by the 2-D discrete model (TORTISE). INCORE is provided with unrodded and rodded (Bank B) TORTISE data such that rodded flux maps are processed with the appropriate all rods out and Bank B constants.

5.1.4 Zero Power Physics Tests Data At the beginning of each Haddam Neck cycle, while the reactor is maintained at HZP conditions, the following physics tests are conducted:

o Measurement of critical boron concentrations.

o Measurement of isothermal temperature coefficients.

o Measurement of control rod bank worths.

o Measurement of ejected rod worths.

Table 5.4 contains the ZPPT acceptance criteria which represent the maximum acceptable deviations between measurements and predictions for each parameter of interest.

5-3

5.2 Power Distributions Verification The 2-D and 3-D models for the lladdam Neck core are tested and compared with the benchmarks. The 2-D and 3-D models are verified in their ability to predict radial and axial power distributions, critical boron concentrations, reactivity coefficients, and control rod worths. Most of the model results presented in this section are from the 2-D discrete (TORTISE) model because the TORTISE results are considered the best indicator of model performance.

The comparisons between the predicted and measured power distribu-tions are presented in the radial direction based upon the TORTISE model and in the axial direction based upon the 3-D nodal (PAIADON) model. The power distribution comparisons between the predicted and measured powers (inferred from INCORE) are equivalent to a comparison between the predicted and measured reaction rates.

The burnup steps selected in the predictive calculations are standard values consistent with the automated depletion sequence.

Consequently, burnup values between measurements and predictions do not alwy's exactly agree. However, the discrepancies are relatively small and do not impair the comparisons.

5.2.1 Radial Distributions The predictions performed with the TORTISE model are for ARO config-urations. The comparisons of the predicted power distributions versus the measured distributions for Cycles 12 and 13 are shown in Figures 5.6 through 5.30 at different cycle exposures. The average difference for these comparisons is less than 1.6 percent in all cases and the standard deviation is less than 2 percent.

5.2.2 Axial Distributions The depletion calculations performed with the PALADON model iniclude control rod configurations which are consistent with the average 5-4

insertion during the burnup period. The PALADON calculations are restarted at the measured control rod configuration. The comparison is based on the planar average core power distribution along the core height. This comparison demonstrates PALADON's capability to predict axial power distributions.

The comparisons of predicted power distributions versus the measured distributions for Cycles 12 and 13 are shown in Figures 5.31 through 5.55. It should be noted that in order to provide a more direct graphical comparison, the grid dips were removed from the measured data and the curves were smoothed with a least squares fit.

5.2.3 Peaking Factors Tables 5.7 and 5.8 present the comparisons between measured and predicted Fg and Fq for Cycles 12 and 13, respectively. The largest differences between measured and predicted Fg and Fq are about 3 - and 4 percent, respectively. The average differences are 1.5 and 3.0 percent, respectively. It should be noted that, regard-ing F comparisons, grid spacer effects are inherent in the INCORE values, but not explicitly represented in PALADON. Therefore, biases exist between measured and predicted Fq values due to spacer grid effects. Spacer grid effects are always included in safety calculations and setpoint verification.

The axial offset comparisons between measured and predicted values are shown in Tables 5.9 and 5.10 for Cycles 12 and 13, respectively.

Comparisons of peaking factors and axial offsets are also shown in Figures 5.56 through 5.61.

5.2.4 Boron Rundown Curves The comparisons between measured and predicted boron rundown values during cycle depletions are shown in Tables 5.11 and 5.12 for Cycles 12 and 13, respectively. These comparisons are also shown in 5-5

Figures 5.62 and 5.63. Predicted boron rundown values were calcu-lated by TORTISE.

5.3 Zero Power Physics Tests Verification The physics tests performed on the Haddam Neck reactor at the beginning of each cycle are reported in Section 5.1.3.

5.3.1 Critical Boron The determination of the critical boron concentration is performed with the TORTISE model at the measurement conditions of Cycles 12, 13, and 14. The comparisons between measurements and predictions are reported in Table 5.13. The largest difference is -46 ppm at the beginning of Cycle 12, ARO condition and is well within the critical boron acceptance criterion of 1100 ppm. For a stainless steel clad core, such as Haddam Neck, the boron worth is only about two-thirds that of a typical zircaloy clad core. Therefore, the differences shown are smaller in an absolute reactivity sense.

5.3.2 Isothermal Temperature Coefficient The determination of the isothermal temperature coefficient' is performed with TORTISE at .the measurement conditions of Cycles 12, 13, and 14. The comparisons between measurements and predictions are reported in Table 5.14. The largest difference is -0.87 pcm/*F in Cycle 14, and is well within the acceptance criterion of 14 pcm/*F.

5.3.3 Control Rod Worth The determination of the bank worths is performed with TORTISE at the measurement conditions of Cycles 12, 13, and 14. The comparisons between measurements and predictions are reported in Tables 5.15, 5.16, and 5.17 for Cycles 12, 13, and 14, respectively.

The largest differences are +6.2 percent and +3.2 percent for j 5-6

individual and total bank worths, respectively, and are well within the acceptance criterion of il5 percent and 110 percent, respectively.

5.3.4 Ejected Rod Worth The determination of the ej ected rod worth is performed with 3-D models at the measurement conditions of Cycles 12, 13, and 14. The comparisons between measurements and predictions are reported in Table 5.18. The largest difference is +47 pcm for Cycle 14 and is well within the acceptance criterion of i 100 pcm.

5.4 Summary Section 5 discusses the source of the benchmark data used to demonstrate the predictive capability of the physics models. Data f rom three cycles are included as part of the benchmark.

The comparisons between the at power measurements performed during Cycles 12 and 13 and the TORTISE and 3-D PALADON results demonstrate excellent agreement. These comparisons include radial and axial power distributions, peaking factors, and the boron rundown results.

The startup physics test data comparisons also show very good agreement, with all results well within the stated acceptance criteria.

The excellent agreements between the measurements and predictions reported in Tables 5.7 through 5.18 and Figures 5.6 through 5.63 demonstrate NUSCO's capability to apply the Westinghouse licensed methodology to the design of Northeast Utilities PWRs.

5-7

I i

l l

Table 5.1 Haddam Neck Cycle 12 Batch Loading Initial Number of BOC Exposure Enrichment Batch No. Assemblies (MWD /MTU) (Wt % U-235) 9B(J39)(*) 1 21,680 4.00 12' 52 22,390 4.00 13 52 9,800 4.00 14 52 0 4.00

(*) Discharged at EOC8 and reinserted as the center assembly.

5-8

Table 5.2 Haddam Neck Cycle 13 Batch Loading Initial Number of BOC Exposure Enrichment Batch No. Assemblies (MWD /MTU) (Wt % U-235)

J 9C(J37)(*) 1 21,470 4.00 13 52 24,360 4.00 14 52 11,470 4.00 15A 48 0 4.00 15B I) 4 0 3.41

(#) Discharged at EOC8 and reinserted as the center assembly.

(b)Zircaloy-clad lead test assemblies.

i >

[

5-9

c. _

l r Table 5.3 Haddam Neck Cycle 14 Batch Loading Initial Number of BOC Exposure Enrichment Batch No. Assemblies (MWD /MTU) (Wt % U-235) 9D(J36)(a) 1 21,470 4.00 11(b) 4 32,200 4.00 14 52 23,630 4.00 ISA 44 9,990 4.00 ISB(C) 4 9,840 3.41 16 52 0 4.00

(*) Discharged at EOC8 and reinserted as the center assembly.

(b) Discharged at EOC11~and reinserted in this cycle.

(')Zircaloy-clad lead test assemblies.

5-10

7 ..

Table 5.4 Haddam Neck Zero Power Physics Tests Acceptance Criteria 1

Physics Parameter Maximum Acceptable Difference Critical Boron ARO and B, A, D Banks Inserted 100 ppm 4

Isothermal Temperature Coefficient 4 pcm/ F Individual Bank Worth il5 %

Total Bank Worth 110 %

Ejected Rod Worth 1100 pcm

.i i

i 1

5-11 u

. . - - . . . ._,w.--- .- . , , - , , . - . . . . - - - . - , _ . . , , - . - , - . . - , -.

i Table 5.5 Conditions For Cycle 12 Comparison In Table 5.7 Measurement Prediction Conditions Conditions (INCORE) (PALADON/TORTISE)(*)

1015/299/100(b) 1000/299/100 1728/300/100 2000/300/100 3294/312/100 3000/312/100 4078/312/100 4000/312/100 4810/310/100 5000/310/100 5745/300/100 6000/300/100 7341/310/100 7000/310/100 8158/312/100 8000/312/100 8947/312/100 9000/312/100 9720/310/100 10000/310/100 10680/295/100 10750/295/100 11451/320/96.4 11393/320/96.0(C) 11998/320/88.9 12076/320/88.2

(*)TORTISE burnup steps are equal to PALADON's with all rods out.

( ) Cycle exposure (MWD /MTU)/ Bank B position / percent of rated thermal power. Bank B is the lead control bank. 320 steps is fully withdrawn.

(c)TORTISE burnup for this step is at 11620 MWD /MTU and power level is at 94.4%.

5-12 l

C',

t 1

Table 5.6 ,

Conditions For Cycle 13 Comparison In Table 5.8 i

Measurement Prediction's '

Conditions Conditions (INCORE) (PALADON/TORTISE)(*)-

\ ,

174/310/100(D) 150/310/100 931/307/100 1000/307/100 g 1668/312/100 2000/312/100 3483/311/100 30bO/311/100 4314/312/100 4000/312/100 5019/310/100 5000/310/100 5777/312/100 6000/312/100 7173/310/100 7000/310/100 8056/312/100 8000/312/100 t 8789/308/100 9000/308/100 ,

9635/320/100 9800/320/100 10382/320/94.3 10500/320/91.6 z,

I'

(")TORTISE burnup steps are equal to PALADON's with all rods out.

(b) Cycle exposure (MWD /MTU)/ Bank B position / percent of rated thermal power. Bank B is the lead control bank. 320 steps is fully

withdrawn.

i 5-13 4

Table 5.7 Haddam Neck Cycle 12 Power Peaking Factors Comparison Between Measurement (M) and Prediction (P)

F gg (Max) F q (Max)

Cycle (*)

Ex

(,5Q M(b) p(c) (}")% g(b) p(O k 1015 1.374 1.392 +1.31 1.594 1.628 +2.13 1728 1.362 1.376 +1.03 1.580 1.569 -0.70 3294 1.327 1.362 +2.64 1.516 1.517 +0.07 4078 1.337 1.351 +1.05 1.507 1.495 -0.80 y' 4810 1.331 1.342 +0.83 1.498 1.481 -1.13

, -- 5745 1.324 1.334 +0.76 1.486 1.480 -0.40 7341 1.312 1.325 +0.99 1.473 1.463 -0.68 8158 1.306 1.317 +0.84 1.469 1.455 -0.95 8947 1.300 1.308 +0.62 1.469 1.449 -1.36 9720 1.305 1.299 -0.46 1.458 1.444 -0.96 10680 1.309 1.292 -1.30 1.471 1.460 -0.75 11451 1.306 1.289 -1.30 1.446 1.423 -1.59 11998 1.315 1.292 -1.75 1.486 1.458 -1.88 4

(*) See Table 5.5 for details.

( INCORE values.

(' TORTISE values.

(d) 3D PALADON values.

J

Tchle 5.8 Haddam Neck Cycle 13 Power Peaking Factors Comparison Between Measurement (M) and Prediction (P)

F q (Max)

F g (Max) 5 Cycle (' >

k ~" (P-MMg

  • P 8"## P(c) ( M )% M(b) P(d)

.'(MWD /MT11) M(b)

' ~

-0.22 1.598 1.592

-0.38 174 1.336 1.333 +0.06 - .- . . .

+0.38 1.559 1.560 ~"

931 ~ 1.328 1.333 -0.26

-0.23 1.554 1.550 1668 3483 'N h 1.330 .1.327 1.331 G - 1.376. . -0.38 '1.519 1.535 +1.05

-0.53 c

,4c'

- 1.12 _ _ ~ 1.516 1.508 ,%

? -

4314 1.335 1.'320 1.511 1.490 -1.39 i

' 5019, ~ ;- 1.328~ - '1.312 -1.20 .

1.489~ 1.468 -1.41 /

.T ' 1.326 '1.305 -1.51- .-

4

-1.09 5777 '

1.474' - 1.458 A

  • 7173 1.315 1.301 -1.06 ' -2.03

-1.44 1.475 1.445 8056 1.315 1.295 ,

-2.97 .s

~

-1.75 1.481 1.437 8789 1.315 1.292 ' 1.417 -2.07

~1.291 -1.53 - 1.447

~~

9635 -1.311 1.420 -3.79 1.303 -1.73 1.476

.i 10382 1.326 ,,

< ,- r

- > , ~ . . ,. ., .

. ;s; . , - ,

e ,

(a) See Table 5.6 for details. .,

( INCORE values.

d ~

(c) TORTISE values. -

~ ' '

.~

(d ) .' 3D PALADON valnes. ~

, m..

- w.y W ush e f

_ .r .(-

< +-

t d .

i , _

e-Table 5.9 Haddam Neck Cycle 12 Axial Offset Comparison Between Me.eurement (M) and Prediction (P)

Cycle Exposure (*)

(MWD /MTU) M(b) p(c) (P-M) 1015 +0.29 +0.19 -0.10 1728 -0.53 -0.54 -0.01 3294 -0.16 -0.71 -0.55 4078 -0.13 -1.05 -0.92 4810 -0.36 -1.41 -1.05 5745 -0.9 -2.06 -1.12 7341 -1.39 -1.67 -0.28 8158 -1.36 -1.64 -0.28 8947 -1.96 -1.76 +0.20 9720 -1.25 -1.99 -0.74 10680 -2.31 -3.40 -1.09 11451 +1.53 +1.01 -0.52 11998 +3.12 +3.02 -0.10

(*)See Table 5.5 for details.

(b)INCORE values.

(C)3D PALADON values.

i

c 5-16

. Table 5.10 Haddam Neck Cycle 13 Axial Offset Comparison Between Measurement (M) and Prediction (P)

Cycle Exposure (a)

(MWD /MTU) M(b) p(c) (p,g) 174 -1.24 -1.41 -0.17 931 -1.03 -1.81 -0.78 1668 -2.06 -1.96 ,

+0.10 3483 -2.31 -2.21 +0.10 4314 -1.85 -2.13 -0.28 5019 -2.43 -2.29 +0.14 5777 -1.81 -2.12 -0.31 7173 -1.71 -2.27 -0.56 8056 -1.99 -2.08 -0.09 8789 -2.66 -2.23 +0.43 9635 -0.94 -1.18 -0.24 10382 +1.61 +1.65 +0.04 I"I See Table 5.6 for details.

(b)1NCORE values.

(C)3D PALADON values.

4 5-17 4

Table 5.11 Haddam Neck Cycle 12 Boron Rundown Comparison

. Critical Boron (ppm)

Cycle Exposure Measurement Prediction (,)

(MWD /MTU) (M) (P) (P-M) 500 1120 1114 -6.0 1000 1050 1050 0.0 2000 930 936 +6.0 3000 820. 825 +5.0 4000 725 714 -11.0 5000 620 603 -17.0 6000 500 494 -6.0 7000 385 390 +5.0 8000 275 286 +11.0 9000 175 189 +14.0 10000 65 89 +24.0 10750 0 20 +20.0 I

("}TORTISE values.

I 5-18

l l

l l

Table 5.12

! Haddam Neck Cycle 13 Boron Rundown Comparison l

Critical Boron (ppm)

Cycle Exp;sure Measurement Prediction (,)

(MWD /MTU) (M) (P) (P-M) 500 930 957 +27.0 1000 880 894 +14.0 2000 775 788 +13.0 3000 665 680 +15.0 4000 560 572 +12.0 5000 450 463 +13.0 6000 345 362 +17.0 7000 245 260 +15.0 8000 148 163 +15.0 9000 49 66 +17.0 9500 0 21 +21.0

(* TORTISE values.

5-19

. , - . - - - . . , - - . - - - - , . . , - , . , . , , , - , - . . ~. n- - . - - - . - - . . , . - - , . -

l Table 5.13 Critical Boron Comparison for Haddam Neck Cycles 12, 13 and 14 i

Cycle 12 Cycle 13 Cycle 14 (ppm) (ppm) (ppm)

All Rods Out Measurement (M) 1714 1507 1599 Prediction (P) 1668 1520 1603 (P-M) -46 +13 +4 Banks B, A, D in Measurement (M) 1051 871 888 Prediction (P) 1015 877 898 (P-M) -36 +6 +10 I

s 5-20 1

Table 5.14 Isothermal Temperature Coefficient Comparison for Haddam Neck Cycles 12, 13 and 14 Cycle 12 Cycle 13 Cycle 14 (pcm/*F) (pcm/*F) (pcm/*F)

All Rods Out Measurement (M) -1.65 -3.54 -2.24 Prediction (*) (P) -1.52 -3.59 -2.85 (P-M) +0.13 -0.05 -0.61 Banks B, A, D in Measurement (M) -11.85 -14.15 -12.6 Prediction (*) (P) -11.54 -14.01 -13.47 (P-M) +0.31 +0.14 -0.87

(*)TORTISE values.

5-21

Table 5.15 Haddam Neck Cycle 12 Rod Worth Comparison Measurement Prediction (*) (P-M),*

(M) (P) M Bank B (pcm) 796 793 -0.38 Bank A (pcm) 1799 1900 +5.61 Bank D (pcm) 2057 2048 -0.44 Total (pcm) 4652 4741 +1.91 Delta Boron for Banks B, A, D (ppm) 663 653 -10.0(b)

(*)TORTISE values.

( (P-M) in ppm.

5-22

4 Table 5.16 4

Haddam Neck Cycle 13 Rod Worth Comparison Measurement Prediction (a) (p 3 (M) (P) M t

Bank B (pcm) 780 752 -3.59 Bank A (pcm) 1820 1882 +3.41 Bank D (pcm) 2254 2115 -6.17 Total (pcm) 4854 4749 -2.16 Delta Boron for Banks B, A, D (ppm) 636 643 +7.0(b)

(*)TORTISE values.

(b)(P-M) in ppm.

1 4

4 i

r 5-23

Table 5.17 Haddam Neck Cycle 14 Rod Worth Comparison i

Measurement Prediction (*)-

(P-M (M) (P) M Bank B (pcm) 937 964 +2.88 Bank A (pcm) 1944 2063 +6.12 Bank D (pcm) 2131 2146 +0.70 Total (pcm) 5012 5173 +3.21 Delta Boron for Banks B, A, D (ppm) 711 705 -6.0(b)

(*)TORTISE values.

( }(P-M) in ppm.

i f

r 5-24

Table 5.18 Ejected Rod Worth Comparison for Haddam Neck Cycles 12, 13 and 14 Measurement (M) Prediction (C}(P) (P-M)

Cycle No. Location (pcm) (pcm) (pcm) 12(*} H4 172 189 +17 12(*} D4 143 138 -5 13( } H4 23 21 -2 13( ) D4 10 13 +3 13(* H4 155 166 +11 13(*} D4 101 128 +27 14(b) H4 24 26 +2 14(*) D4 232 279 +47

(*) Rods at Hot Zero Power Insertion Limits.

(b) Rods at Hot Full Power Insertion Limits.

(C)3D PALADON values.

S-25

Key-

  1. = Batch Number 14 14 14 14 14 12 14 14 12 12 13 i

14 13 12 13 13 12

. 14~ 14 12 13 13 12 13 14 12 13 13 12 13 12 14 14 12 13 12 13 12 13 14 12 13 12 13 12 13 9 4

Figure 5.1 Haddam Neck cycle 12 Core Loading Map 5-26

' I 4 ,.l. . .

, i f

l

. 1., l  ! I , f _

2 _ - - =+.,_ -

. L. ;_

^

' ~

. ..+..- . 3 . . . . . . . . ._ .: .._ _

I

..i .. .j .- 7 ,

...h . _ . .._ . .. j._ .. _ . .. , _. .;. .. . _1 . 7

. -- f f .. .,_. _. _ . . . . i ..

- [. . ,

.. j... _ _ .. . _ _ . . _ ..

3 1_,,,,,m . . .

.p . .

, _.( .i-- ... .a.._. _. . . .. .. . . . I_ }_ ___..

_g

_f. ...j... .. . .

j. _

...y

~p .. . .-..

. _. . 1 .;

8 l I

  • 4e T 'i- l < . , l
O

. (.

+.3==-

,. ,i i

. q._

7_

L; i," [ ,' l' -[' l t/)

..g -s==f t- - '--; 9  ;

.4.. ..- ..t 3 }. .. { . .f ,

7[_

' ~

.. 1 -..._!. I' i

[4 _

" i_

-- e t - i i M .. i i i, .a g g.

. . g... .q. ..

g I

W ,

-y - t 4

} , . i g .l . i .. l .i

 ! 5 . .! _.I _

j  !. . !. . .p.. 4.. . . 1 ..

.._r.. .. . ...

_h .

_[ .

' i i

!- l I I l ,j

  • i I

. . _ , , ., .. .. . ,!, L

' . _  ; .e >,

M ~ -. ,! l. O g Epggi;;;=3 N i

.. . l .! __

.j .. . . . . . . _ . . . ! .. 1 j'

- + - -

l d l

. , i  !

l

{ l

-- g w

.. i ,. .. _.

.] , ._ . . . . .! g 2

-v - . - L..  :, . -{ j , , e W g *

.- l l. . . .4 . . . .

.l_ .9.. _h I

y 3

  • ^

I

.,_l

, l. i [ l

l. f' l 3 4 0

h (1.L. -

..*m

.f

'h d

~

8~

,^

i r h . .. l i I f .. .. l l l ' l ...! f.' . . ..b... f .... .. f... .

Ne

m. ., . - .. .y
7. . . . . . . . . -.,.. . . .. ___ ._. .. .. . -. .!_ . . .

.} ]

j

&-  ! [ . . j .. .

O J.

+4+"

p . .j .

+-..

. h. _

T

-p.

~

_j _ .c t -

d " .*.-.. .+..I.

N 7

.m , I I i g

)._ ._ .

.!.)  ! l t

.f.

.!. ..l.

' i i

a

-4 l% .

g-. . , . . _ . .

-3...

.4 3-  ;. g-

. - . . . r n

i

r. L i i i i I  ! -

, , - c.. .o

..--- i .p -' -m j

, ,. t j ,

., . 1. .

-i

>- -.q.., ,  ; t i

! l i i x iO ,.- , j . ,. .

N.

.' n t

( , j I

t. , ,. .j . . . . .

g _

. ! . 3L d . f ." l I f

  • l Q

E j  ;

1

o. 1 ,

i i .

j l' l h

t~ i 3 --

t - ON1 13fbl3&42.-il -37 DAD i-- +-

p. , e .
l.  !.

~ '

f_ . . i. . .__

{ .

g 9

l -  ; _. . . . -

4 . . . .

. .. p .

..j g

...... d ,

7

  • M. l, h7 ..j.-

.i al ,

.. . j

_U_

. i ..

..i.

.{ .. .{ ._...h..

{..f..

.. h

..I~

4 i _

q . ... . , - . _.

_-._, q g

.h  !

.l  ; j g . -- i . - I

. f- .]. .f .I . . . . -

. [.1, q 69  !

e +  : .

l'

-- - ' ' "~

f f~ f . . . . . . .L--..

"l -a

~f x.

4 O

~

O~

O h h b W

. . . . . ..WAM'3. M1.1 3*H mW oggt f y 8 >iNV8 5_n

CY DAILY AVG. MWT & BANK B POSITION 320 .i;

. . . .i.

.p . ]: . [. .j i g  !

. [. { .. .. , p.

g. .. _ [_ . .p .l

_.  ?-

.. g

.h..r-

.q _. ;_._

.f.

.z.[ -

31o--- ' i 1

.; y  ;. 2; .,.[

i q.. . ._.;

.;. .I L 4... .a. +

i :. . p. -. _ _ . .

..j,.: _ . .-..

J

. _ i_ ' _

l i_ L. i 1

.' .:4

@ 399 4_. g _ '

', ;j M_ f

.i _ .. _. _

t h._ . j i  !  : . ;.. .  ; l. .

/ g gr 290

- 4- --

r-1 --+.--

et- .

r- i j i 9 y , -

t- ,, t i  :  ; 1 1

' 1 } l '

<r b +s 1

i- T -- t-t- "l - l '

@ 280- ,. ,

l tj i . U[

} } I, } -[ , -i. - -- J 1 .!

2 270 T '

i _. __ ___. _ _..

1 . [ _. } . EldVRE. n2 _.L._. ElGURE_5.4__._ _

I i  ! i  !

t i ;l!;

+ - -e i 1800: - - - - - -


7g-

g . , r-y)- l o .

.i . i m.__# _ q __ . . .

.. r. . ., ., .;

g i i -

_. cyca n . _. 3. I - ' -

.[ CCA5TDOWN I 4_., . j _ ._ _

g, j L_ .- . y .

_.._ . . . . . _ .. . 4., _. 4 160C i

-t l  ;

.i

. , , 7 74 .p ....._.t, __7_.-

q .. 4 ...;. _ _.r F i .. , . . . _ .m_______... _ . . ,) .

.,' ._i _ . ; ... .  ;!. _-.

1400 - -- 1L --- b - "- ' '

" f.j - - _. _ .

a.

._._.L

.L p._ ._ . ___ j  ;.-.;_._._p

[

, 4  ; __ -. ,

8 , ,

h 7

_y y.. . . . .- 4 '_ _ - - . ... ! _ . . . . . . . ..-

_ _; : L. . . . . _

1 1200 .

i

._7 y _2 __ _ _._ _ _ ... _ q . .__ 4.. . . J.

4 . ._t  ;

i 4 _

.gi _;

^

.u_ L _ . _ .

t  !. . .J - -._ __ _

' . ., ol_ c ! __... _:.. . j . _ _ . . , _

i i:1000 I - - -

..p I!

u_ 1.

._ J _. _

__ mi .

._ ._I i '

_ CYCLE 13_._ _ __

!! CYELE 12  ; -

- i . to i j

_a _ L_ ._4 . _ _ _ _ _ L _ - . _L q ._._ j_ __2_  ; p _.; _ .. .j.. p. [.__.j . l l {_j._ l _._ p. .

u p 4800 _.c_._ __ L_

i & ' i r

_ _ _ _ .2_  :. . . . _ __. .

i + i ..

i  !.

i

.t L i .

lj . .

t ,i ._ 1 i i n ii _j_. i i __! _ i._ ._ . , _ _ _ . .t .

, , , 7 .

7_

{ "x GOO .a

.J __.y i

,' 7 a i i

.4 _ . _ . _ _ _

. p.. .-.y .__t_ ._. _g _.

4_. _; 7

.w___ _ . . - . . . _ _ _ _ _ _ . p._ 1 ,.L. ji_ ;_ __!_.

..h' ~

{ _4.____ .4 ..

! 400 .0,

~'

] }' '

1

-_r.- -W ._.---____F F ,- ---

j i

-j - . _p _ ..a-7g[ i_-

.2_ _4.. . . a.1 , . _ _ _ _ p .. s. _1.. '

j - _; _ _ .. _ . _ _ _

l' _4._ _._.;q__ l. .. ! .

' ' ~ '

200 p.

_4 n p_ j _ _ _ __ _ .L . _._j. j a. ' ! ' 'i

~~ T --

_ [... _ .

,T-- -b'.' 2._

_7 ,

_L. .L ....}_  ? __ ; . }' + . 4 . j_ _ . ._ j l ..

_p I~ _;_ _ . . . L _f_d O

- -.. _ '1._.. - '

JAN l FEB ]- MAR--l APR [- MAY l JUN -l --JUL l ..- AUG [ SEP l OCT _{ NOV l DEC l

! 1984 1

i Figure 5.2 Continued

I i

Key-

  1. = Batch Number 15 15
  • = Zircaloy Clad Assembly 15 15 15 13 15 15 13 13 14 15 14 13 14 14 13

-l 15 15 13 14 14 13 14 15 13 14 14 13 14 13 4

15 15 13 14 13 14 13 14 15 13 14 13 14 13 14 9 Figure 5.3 Haddam Neck Cycle 13 Core Loading Map i

5-29

.- ._ - . . . . _ - . . ~. - . . - - - . . . .- - - - - - .- ._ _- . .

CY DAILY AVG MWT & BANK B POSITION 320 r~ '

4i, i

i-310 2-T,~~

..L ' ,**- I -- -

-.l'4'.

- i-

. i. ~ ~l i

, , ... 4

,i p'- -L i

.i.. 4 d- l. .. ., 4

", d 3 4 -- 1 --

! --+ - -di -I

.ly _19 [ 'g

. iq l

[.

/ 1

-w i-1

+

t O 300 q h. _

l . .

i _

4 . - - . - . . _ _i 1.] . _ .

._,____2. ~ +. ; _na ;3 .{

.e M4 ,

(l b '-/.,~g r d; j

, y 29o ,-

i, - >

bQ 1' 1 i i

' - i Z , -4

, g 4 280- ' ' h - - ,; -

d lii i

- - - - - 1-l-

--E L

I l

! 1- J - - - ' - - - - - - '-

l j t

I

-r------

I f

6 3

270 fi, .- - ..___.L___ _...t..__ ,

1 FIGUR.E. 52. t ... ..

, _ j ._.. ;._. - . _ . _._ FIGURE 5A . .

I I  !

t i -t i j ';

1800- --

p r-

- g -- 1 ---,-- - - - -

--'---e- r  ; t fj L  :

? '-

b

-, 1 i 1 -l 1- 3 ,

5 .. j .. _ _ - . _ _ _ . . ._ _ CYCLE p. -

j  ;  ; i .

.. l . CCASTDOWN 1 r

'.7 1600- i i;-. }-

, i-;j . . . _

~ ' -"

t i

_.1_.._

j.' i

_. __ _ _ _ J. _ ,_ y '

,6 i

i t__

l l 1400 -- i- ---- - - - -a - - - - - - - - - - - - -

'.~-..t~ ~ ~- ~'--

e 4

~, T.' 2

+

~~-~~~~Tii _

.~5.. . . . . . _ _ . . . . . _ . . .h.;. -. .4.n.,,,b,,.-.. . , , . . .

1200 q-t---- -

q__ n_ . . _ _ . - . ' _ . _ . _ .J.- . __ j .._ . .J2.. .q' , _ . . _ . _ . . . _ . . _ . .  ;

._H' L .2.___ __, c) .

.._.]_._..__.

!:1000

,_ ; l Z  !, - -

1  : a - .. ___u_ t -. _. .. . - - . _ _ . _ .

u.. ..:

b >

i CYClr 12' .._. . .I y i _ _ . . -CYCLE 13 _ _ . _ . . .

R

!- . .i . _ _ . . _ . . .i i .u.. . ;i_

r. . 4 i

} F-( 8 0 0 ,

' 1 . ._. jp; ._

3.; -

j .

.+ c_ p .g.q.-. __....____.,._..;.

EE

. ,j._ _t . _ .-_ . ___ ______._p. .. _p .j. -l _y i q;

j yGOO . .

-; i -'

m ,

p__ ._2.. ,

9.

_ _ . . .w . . p. , -

, . . . . . _ .! . _ . _ . . . .. - _ . . . _ . . . . . _ . . w.

. . . . . . . . _ . _ . . _ . _ _ . . _ _ . , . . .. r 400 o ' '

j __4_

_ . ___ 4. . _

.2 .t q. _;.>..._j_m .L _4 __ - . . _.; ~i y- , _,,

_ .p. .i,  ;.

L .

} _ . _ . i..

b 2QQ '

[ _ . _ , . . . .

] 1 _ .-_.2.__ _ . . _ . ._ j. _ .2 .

.. p.._ __ _.. . ,.....

t 4_

.j . . .__

__p _ .;. '

. . _--._. . _..l_; -

. . . _ _ .  ;.! _ . _ ;_ . .,_._.2__..L_

O - i- - 4 L .

JAN l- FEB-] MAR ~~T - APR l In.v~ '

.-JUN .l JUL AUG l SEP l t .OCT _- -l 50% j DEC l-1984 j

i l Figure 5.4 Haddam Neck Cycle 13 Power History 1

[

._ . . _ _. - - - . . i  % -- .. .= _ ._ -

M

~'

.. j . l . . : .. .. . , .. . . .

. . . . - 2 . _. .

.{  :. .;..

^

p .; .

ggZ. .ii." . . .

IP

^

'~f i . . t- t i i I .

i T} .. 4I i .

4

-l I , .

4 g- J E -i  ; -- -- -'

e-I --t--- 1- ---- -- - - - - - - - --+- -'- -f < - - - - - . - . - -- - -- -.-- - - --- . - ---_

Y ' T [ ( i...

.{ . .q.

M 200 --- - - 1- -- ~4-.-- t -

p--e- -+---- I-

-f -

-- t -- -

q , d- - -- -

3 { t i

  • I  ! 4- * +  !

4 280 - d 1- l -- '

f--+- -M d-. '

I 4 --- --- --

- -- d --- -4 ' --i----- -' " --- .

i-L- i b

27C l 7 4 lf (' f ,

't ~ ' - 'l f l I"

  • I' -f' "- !

. ._ :-.. .. -f , _. .._

n.- - -~.+- -.- -

l _. . _ _ . _ . _ . 4  ! a ~~! } f i i S800 -- t

.y , - - - ----

. g - t'-- -

7-lu ' --; .- 7--'

. -. ; i --

o . .

. ' .+ i t

' i j i .

s

%.y! *Q ...!

._L ! i  ! .;_ . ' '

j --

'. j  !

p__y _p  !

l J! .

7

. _ . J.j m. . ; . ;  ; j .. p . , .

...y l . .r _-

1. - _.p . 1. -

}. [

-'.a '

~

, 1600 3

-- 1, a , , , ..

jt .. ]

, T 4 4. a .q . +.

i i

v .

; q_ .-

j q -. 3, _ .

t. [

f l j_. ~~h- .d- I

' . }' .. f .

m' , ' _...i,- 1

_.M. .. l i

t i i -d, i

.. ;. . .i.

MOO

-+  ;

l_ _' > -

a <

. . . _ . u.. p..

p 7

~ ~

h .]' __._. 3 .[2.-j' _ 4 _ _. j r: J '

{_

a

_ h. ._.___ _ z_.

j_ ,

j l_. 7.

[ _._ -_ _

. j -. . f.. ]-j ~

1200 l

, g .. _7 p_.1..__1._ _ _ ; __ . _ y .-_l F. __!

i p

2 j

q

~l F.__i ,  ;

7_.__)

{

DOOO

. j _.. .. . j _ p . y . _, .m ~  ; _ .. _ _

_7._ .,

..;_ _1_i_2+ _J ._ }_ . . _

y _..

j _

_-_ .a - . _:_. .

f.. _

4-

. !g_

i , .

.._q_m._...___ _ _ . . , _ . .___.,. _ _ _ _ _ _ _ . t __ p _ _ _ _ ._1.

-'Y ,

j -t

- --l- -

Z 7_ T- ~ 3  ;

. _pp. _1 se 2.- 4 _ _ _ _u =- u. _ L .. . L._ L:

_  ! _ i  !

.! i - -

F4 800 * '

~

g! . . , ' _ .--_'___=___.1; 22

., j __

..-p __L ___ _L_ . o __. ._

l l

{_7  ;

i-q_ . -.

e

l f-  ;

7 (_. _ H '

]

ii j

x eco i i .

_q

__._ j..._  ; . _ _m.j_ ..{._,.. . . _ . _. 1_ . .. . j - ._ _ , 7._ _. _.j._ _4._

.T- i h Y- ~

^ i

[

A I ~-

400

.f_, __t = [._' __

L 4-_ , ._L _ .. _ ' . .- _. .L

._.y . + . -.

. _ l . - . - - _._f __- l, 7.-. _ - ,

-f -

..i. y

. ,_;._. . _ _.g

~

.._;_ . _1.__ . _ . . .,

j g

.._p;_ _..-

p. _ . - _.

7 4 i . . i ,

!' . , i

._u i.

_-q H j . __j .: . . +. . L-_ .._;..

.. I' ' ~~*~ ~ ~ ~ ~

~ J~~ ~~I'~'-

"i - ~~'

't'

-~* i .

'-'~

i 200 .l 1  ;. . .

i i

.- i .____ p, . i r . . ,

..;__L. _4 - ._.j - _ , .

._. l .  ;

q-_ ~

+ ,  ;

i

_d._._

.___,i._

q_ ...:.__.._...p t

.. }. '

.t_._i_t , _L 1 2._. 1 .~ i. -

_ _ L _. 4 .. , . -

._ t __. . !

2 0" JAN I FEB I MAR APR l MAY- l JUN l JUL. I AUG I SEP l OCT I NOV l DEC IJAN

1985 1

Figure 5.4 Continued 1

s 1-i I

Key-
  1. - = Batch Number 16 11 <

16 16 16 15 i

! 16 16 14 14 15 t

16 16 14 15 15 14 i

l 16 16 14 14 15 14 15 1 16 14 15 15 14 15 14 i

i 16 16 14 15 14 15 14 15 i

15 t

11 15 15 14 15 14 9 i

1 i

Figure 5.5 lladdam Neck Cycle 14 Core Loading Map k

4 j

l 5-32

, FIGURE 5.6 HADDAM NCCK-CYCLE 12 RADIAL POWER DISTRIBUTION TORTISE 1000.0 MWD /MTU - DANK B AT 320 INCORC 1015.0 MWD /MTU - DANK B AT 299 R9 R8 0.648 0.769 0.665 0.803

-0.017 -0.034

-2.530 -4.253 QUAD LOC Pil P10 P9 P8 RP0(TORT) 0.658 0.938 1.148 0.968 KEY RPD(INCR) 0.660 0.941 1.162 0.980 TORT-INCR -0.002 -0.003 -0.014 -0.012 PCT DIFF -0.280 -0.371 -1.242 -1.256 N12 N11 N10 N9 N8 0.686 1.088 0.998 1.034 1.162 0.676 1.085 1.000 1.037 1.164 0.010 0.003 -0.002 -0.003 -0.002 1.514 0.294 -0.222 -0.293 -0.209 M13 M12 H11 M10 M9 H8 0.686 0.887 0.954 1.226 1.215 1.015 0.676 0.863 0.941 1.212 1.217 1.008 0.010 0.024 0.013 0.014 -0.002 0.007 1.514 2.79G 1.328 1.138 -0.179 0.726 L14 L13 L12 L11 L10 LS L8 0.659 1.089 0.953 1.131 1.197 1.066 1.101 0.637 1.064 0.933 1.119 1.186 1.077 1.114 0.022 0.025 0.019 0.012 0.011 -0.011 -0.013

] 3.461 2.358 2.085 1.104 0.900 -1.008 -1.138 K14 K13 K12 K11 K10 K9 K8 0.940 1.002 1.227 1.195 1.011 1.148 0.965 0.911 0.985 1.209 1.185 1.004 1.164 0.986 0.029 0.017 0.018 0.010 0.007 -0.016 -0.021 3.224 1.696 1.471 0.816 0.677 -1.411 -2.107 d15 d14 d13 dia d11 d10 US d8 0.649 1.150 1.037 1.220 1.0G8 1.148 0.965 1.018 0.677 1.156 1.03G 1.216 1.079 1.164 0.979 1.042

-0.028 -0.006 0.001 0.004 -0.011 -0.016 -0.014 -0.024

-4.102 -0.559 0.092 0.314 -1.005 -1.411 -1.462 -2.257 H15 H14 H13 H12 H11 H10 H9 H8 0.769 0.968 1.162 1.015 1.101 0.965 1.018 0.925 0.803 0.980 1.164 1.008 1.114 0.986 1.042 0.937

-0.03+ -0.012 -0.002 0.007 -0.013 -0.021 -0.024 -0.013

-4.253 -1.256 -0.209 0.726 -1.138 -2.107 -2.257 -1.335 AVERAGE DIFFERENCE = 0.0131 STANDARD DEVIATION = 0.0155 5-33

FIGURE 5.7 HADOAM NECK-CYCLE 12 RADIAL POWER DISTRIBUTION TORTISE 2000.0 MWD /MTU - BANK D AT 320 INCORE 1728.0 MWD /MTU - BANK D AT 300 RS R8 0.662 0.785 0.674 0.814

-0.012 -0.029

-1.828 -3.536 OUAD LOC P11 P10 P9 P8 RPD TORT) O.671 0.949 1.15G O.975 KEY RPD(INCR) 0.668 0.948 1.1G7 0.987 TORT-INCR 0.003 0.001 -0.011 -0.012 PCT DIFF O.397 0.080 -0.974 -1.224 N12 N11 N10 N9 N8 0.700 1.096 1.000 1.033 1.159 0.688 1.090 1.000 1.038 1.163 0.012 0.006 -0.000 -0.005 -0.005 1.704 0.580 -0.003 -0.470 -0.420 M13 M12 M11 M10 MS M8 0.700 0.897 0.956 1.215 1.203 1.008 0.688 0.870 0.942 1.204 1.212 1.00G O.012 0.027 0.014 0.011 -0.009 0.002 1.704 3.157 1.458 0.895 -0.758 0.198 L14 L13 Lia Lil L10 Le L8 0.672 1.097 0.955 1.123 1.183 1.055 1.090 0.64G 1.072 0.936 1.114 1.17S 1.06G 1.105 0.026 0.025 0.019 0.003 0.007 -0.011 -0.015 3.955 2.35G 1.999 0.84G 0.567 -1.011 -1.323 K14 K13 K12 K11 K10 K9 K8 0.951 1.004 1.217 1.182 1.001 1.13G O.959 0.917 0.98G 1.202 1.175 0.997 1.153 0.980 0.034 0.018 0.015 0.007 0.004 -0.017 -0.022 3.6G7 1.81G 1.220 0.5G7 0.397 -1.511 -2.205 d15 d14 J13 d12 d11 d10 US US 0.GG3 1.157 1.03G 1.208 1.057 1.13G O.959 1.014 0.687 1.162 1.036 1.211 1.069 1.153 0.973 1.037

-0.024 -0.005 0.000 -0.003 -0.012 -0.017 -0.014 -0.023

-3.532 -0.463 0.011 -0.264 -1.100 -1.511 -1.453 -2.255 H15 H14 H13 H12 H11 H10 HD M8 0.785 0.975 1.159 1.008 1.090 0.959 1.014 0.923 0.814 0.987 1.1G3 1.006 1.105 0.980 1.037 0.932

-0.029 -0.012 -0.005 0.002 -0.015 -0.022 -0.023 -0.009

-3.53G -1.224 -0.420 0.198 -1.323 -2.205 -2.255 -0.998 AVERAGE DIFFERENCE = 0.0127 STANDARD DEVIATION = 0.0154 5-34

FIGUZE G.8 HADDAM NECK-CYCLE la RADIAL POWER DISTRIBUTION TORTISE 3000.0 MWD /MTU - DANK D AT 320 INCORE 3294.0 MWD /HTU - BANK D AT 312 R9 R8 0.673 0.796 0.708 0.837

-0.035 -0.041

-4.977 -4.932 QUAD LOC P11 P10 PS P8 RPDCTORT) 0.681 0.956 1.157 0.978 KEY RPD(INCR) 0.710 0.965 1.164 0.998 TORT-INCR -0.023 -0.009 -0.007 -0.020 PCT DIFF -4.119 -0.068 -0.637 -2.039 N12 N11 N10 N3 N8 0.712 1.101 1.001 1.031 1.155 0.720 1.002 1.004 1.036 1.157

-0.008 0.000 -0.003 -0.005 -0.003 i -1.14G 0.788 -0.334 -0.518 -0.252 H13 M12 M11 M10 M9 H8 0.712 0.905 0.958 1.207 1.193 1.002 0.720 0.904 0.947 1.172 1.190 1.00G

-0.008 0.001 0.011 0.035 0.003 -0.004

-1.14G 0.075 1.125 2.950 0.216 -0.433 l

L14 L13 L12 L11 L10 L9 L8 0.682 1.102 0.95G 1.118 1.173 1.048 1.084 0.689 1.0G7 0.940 1.003 1.144 1.047 1.001

-0.007 0.035 0.01G 0.025 0.029 0.001 -0.007

-1.051 3.243 1.666 2.251 2.498 0.060 -0.G77 K14 K13 K12 K11 K10 K9 K8 0.958 1.005 1.208 1.172 0.995 1.130 0.956 0.036 0.001 1.160 1.143 0.081 1.128 0.DGD 0.022 0.014 0.030 0.020 0.014 0.002 -0.014 2.314 1.37G 3.299 2.501 1.391 0.142 -1.428 d15 d14 d13 d12 d11 d10 US d8 0.673 1.159 1.033 1.198 1.050 1.130 0.957 1.014 0.715 1.158 1.034 1.18G 1.050 1.128 0.073 1.038

-0.042 0.001 -0.001 0.012 -0.000 0.002 -0.01G -0.025

-5.008 0.051 -0.132 0.976 -0.03G 0.142 -1.679 -2.395 H15 H14 H13 H12 H11 H10 HD H8 0.79G 0.078 1.155 1.002 1.084 0.95G 1.014 0.925 0.837 0.008 1.157 1.00G 1.001 0.DG9 1.038 0.033

-0.041 -0.020 -0.003 -0.004 -0.007 -0.014 -0.025 -0.014

-4.D32 -2.030 -0.252 -0.433 -0.677 -1.428 -2.305 -1.52G AVERAGE DIFFERENCE = 0.0149 STANDARD DEVIATION = 0.0197 5-35

FIGURE 5.9 HADDAM NECK-CYCLE 12 RADIAL POWER DISTRIBUTION TORTISE 4000.0 MWD /MTU - SANK B AT 320 INCORE 4078.0 MWO/MTU - BANK B AT 312 R9 R8 0.680 0.803 0.602 0.831

-0.012 -0.028

-1.776 -3.364 GUAD LOC Pil P10 PS P8 RPD(TORT) 0.690 0.959 1.154 0.978 KEY RPD(INCR) 0.687 0.957 1.167 0.993 TORT-INCR 0.003 0.002 -0.013 -0.015 PCT DIFF 0.392 0.246 -1.124 -1.466 N12 N11 N10 N9 N8 0.722 1.102 1.001 1.028 1.149 0.716 1.095 0.995 1.032 1.156 0.006 0.007 0.006 -0.004 -0.007 0.805 0.612 0.649 -0.432 -0.618 H13 M12 H11 M10 MS M8 0.722 0.912 0.959 1.200 1.186 0.999 0.717 0.895 0.946 1.183 1.192 1.001 0.005 0.017 0.013 0.017 -0.006 -0.002 0.665 1.923 1.410 1.430 -0.509 -0.203 L14 L13 L12 L11 L10 L9 LS 0.690 1.103 0.958 1.115 1.167 1.044 1.081 0.670 1.082 0.941 1.101 1.152 1.053 1.096 0.020 0.021 0.017 0.014 0.015 -0.009 -0.015 2.932 1.910 1.841 1.245 1.288 -0.893 -1.396 K14 K13 K12 K11 K10 K9 K8 0.960 1.004 1.201 1.165 0.993 1.128 0.957 0.932 0.986 1.181 1.152 0.985 1.143 0.980 0.028 0.018 0.020 0.013 0.008 -0.015 -0.023 3.037 1.870 1.686 1.114 0.856 -1.328 -2.357 J15 d14 d13 d12 d11 d10 d9 d8 0.681 1.155 1.030 1.190 1.046 1.127 0.960 1.018 0.704 1.163 1.031 1.190 1.056 1.143 0.974 1.042

-0.023 -0.008 -0.001 -0.000 -0.010 -0.016 -0.014 -0.024

-3.303 -0.690 -0.141 -0.006 -0.984 -1.416 -1.397 -2.344 H15 H14 H13 H12 H11 H10 HS H8 0.803 0.978 1.149 0.999 1.081 0.957 1.018 0.931 0.331 0.993 1.15G 1.001 1.006 0.980 1.042 0.940

-0.028 -0.015 -0.007 -0.002 -0.015 -0.023 -0.024 -0.000

-3.364 -1.466 -0.618 -0.203 -1.39G -2.357 -2.344 -0.924 AVERADE DIFFERENCE = 0.0128 STANDARD DEVIATION = 0.0148 5-36

FIGURE 5.10 HADDAM NECK-CYCLE 12 RADIAL POWER DISTRIBUTION TORTISE 5000.0 MWD /MTU - BANK B AT 320 INCORE 4810.0 MWD /MTU - BANK B AT 310 R9 R8 0.684 0.806 0.691 0.832

-0.007 -0.026

-0.999 -3.111 QUAD LOC P11 P10 P9 PS RPD(TORT) 0.69+ 0.957 1.147 0.975 KEY RPD(INCR) 0.683 0.944 1.16+ 0.995 TORT-INCR 0.011 0.013 -0.017 -0.020

PCT DIFF 1.625 1.392 -1.446 -1.996 N12 N11 N10 NS NS 0.729 1.100 0.998 1.02+ 1.144 0.716 1.088 0.989 1.033 1.156 0.013 0.012 0.009 -0.009 -0.012 1.830 1.118 0.925 -0.857 -1.024 M13 M12 M11 M10 M9 M8 i 0.729 0.917 0.960 1.19+ 1.181 0.997 0.716 0.897 0.946 1.181 1.193 1.001 0.013 0.020 0.014 0.013 -0.012 -0.00+

1.830 2.245 1.495 1.115 -0.991 -0.385 L1+ L13 L12 Lil L10 LS LS 0.695 1.101 0.958 1.113 1.163 1.045 1.083

0.675 1.078 0.941 1.101 1.153 1.057 1.095 0.020 0.023 0.017 0.012 0.010 -0.012 -0.012 2.978 E.148 1.821 1.105 0.882 -1.121 -1.127 Kl+ K13 K12 K11 K10 KS K8 0.959 1.001 1.195 1.162 0.995 1.131 0.963 0.934 0.98+ 1.178 1.151 0.988 1.148 0.983 0.025 0.017 0.017 0.011 0.007 -0.017 -0.020 2.692 1.742 1.458 0.970 0.723 -1.466 -2.071 d15 d1+ d13 d12 d11 d10 d9 US

, 0.684 1.147 1.026 1.184 1.046 1.131 0.968 1.028 0.706 1.163 1.033 1.189 1.057 1.148 0.982 1.048

-0.022 -0.016 -0.007 -0.005 -0.011 -0.017 -0.014 -0.020

, -3.102 -1.361 -0.663 -0.406 -1.026 -1.466 -1.411 -1.89+

1 H15 H1+ H13 H12 H11 H10 H9 H8 0.806 0.975 1.144 0.997 1.083 0.963 1.028 0.942 0.832 0.995 1.156 1.001 1.095 0.983 1.048 0.949

-0.026 -0.020 -0.012 -0.004 -0.012 -0.020 -0.020 -0.007

. -3.111 -1.996 -1.02+ -0.385 -1.127 -2.071 -1.894 -0.723

AVERAGE DIFFERENCE = 0.0143 STANDARD DEVIATION = 0.0153 i

5-37

1 l

l FIGURE 5.21 I HADDAM NECK-CYCLE 12 RADIAL POWER DISTRIBUTION TORTISE 6000.0 MWD /MTU - BANK B AT 320 INCORE 5745.0 MWD /MTU - BANK B AT 300 R9 R8 0.689 0.810 0.699 0.840

-0.010 -0.030

-1.403 -3.544 OUAD LOC P11 P10 P9 P8 RPD(TORT) 0.700 0.958 1.142 0.974 KEY RPD(INCR) 0.690 0.948 1.160 0.393 TORT-INCR 0.010 0.010 -0.018 -0.019 PCT DIFF 1.478 1.083 -1.524 -1.886 N12 N11 N10 NS N8 0.737 1.099 0.997 1.021 1.140 0.726 1.086 0.984 1.026 1.148 0.011 0.013 0.013 -0.005 -0.008 1.544 1.225 1.350 -0.459 -0.713

. H13 M12 M11 M10 MS M8 0.737 0.922 0.961 1.189 1.176 0.995 0.726 0.898 0.947 1.175 1.181 0.991 0.011 0.024 0.014 0.014 -0.005 0.004 1.544 2.701 1.507 1.220 -0.395 0.432 L14 L13 L12 L11 L10 L9 L8 0.700 1.099 0.959 1.111 1.159 1.043 1.082 0.683 1.082' O.944 1.099 1.148 1.049 1.093 0.017 0.017 0.015 0.012 0.011 -0.006 -0.011 2.518 1.600 1.G17 1.120 0.987 -0.544 -1.024 K14 K13 K12 K11 K10 K9 K8 0.959 1.000 1.190 1.158 0.995 1.132 0.966 0.939 0.986 1.17G 1.149 0.990 1.149 0.988 0.030 0.014 0.014 0.009 0.005 -0.017 -0.022 2.159 1'.448 1.210 0.812 0.533 -1.452 -2.250 d15 d14 d13 dia d11 010 US US 0.689 1.142 1.023 1.170 1.044 1.131 0.972 1.034 0.715 1.159 1.028 1.181 1.053 1.148 0.987 1.057

-0.026 -0.017 -0.005 -0.002 -0.009 -0.017 -0.015 -0.023

-3.609 -1.439 -0.459 -0.141 -0.827 -1.453 -1.492 -2.149 H15 H14 H13 H12 H11 H10 H9 H8 0.810 0.074 1.140 0.995 1.082 0.966 1.034 0.950 0.840 0.993 1.148 0.991 1.093 0.988 1.057 0.960

-0.030 -0.019 -0.008 0.004 -C.011 -0.022 -0.023 -0.010

. -3.544 -1.886 -0.713 0.432 -1.024 -2.250 -2.149 -1.014 AVERAGE DIFFERENCE = 0.0134 STANDARD DEVIATION = 0.0149 5-38

FIGURC U.12 HA00AM NECK-CYCLE 12 RADIAL POWER DISTRIBUTION TORTISE 7000.0 MWO/MTU - BANK B AT 320 INCORE 7341.0 MWO/MTU - BANK B AT 310

. R9 R8 0.696 0.816 0.705 0.840

-0.009 -0.024

-1.234 -2.837 QUAD LOC P11 P10 P9 P8 RP0(TORT) 0.707 0.960 1.139 0.973 KEY RP0(INCR) 0.700 0.949 1.151 0.990 TORT-INCR 0.007 0.011 -0.012 -0.017 PCT DIFF 1.045 1.166 -1.054 -1.715 N12 N11 N10 N9 NS 0.746 1.099 0.996 1.019 1.135 0.744 1.088 0.984 1.025 1.144 0.002 0.011 0.012 -0.006 -0.003 0.305 1.004 1.222 -0.587 -0.754 M13 M12 M11 M10 MS MS 0.746 0.928 0.962 1.183 1.170 0.993 0.744 0.911 0.949 1.165 1.178 0.996 0.002 0.017 0.013 0.018 -0.008 -0.003 0.305 1.877 1.377 1.532 -0.693 -0.300 L14 L13 L12 L11 L10 L9 LS 0.708 1.100 0.961 1.108 1.154 1.040 1.079 0.691 1.082 0.945 1.094 1.139 1.050 1.093 0.017 0.018 0.016 0.014 0.015 -0.010 -0.014 2.507 1.657 1.700 1.272 1.306 -0.95G -1.242 K14 K13 K12 K11 K10 K9 K8 0.961 0.999 1.184 1.152 0.993 1.129 0.966 0.937 0.978 1.162 1.137 0.980 1.146 0.991 0.024 0.021 0.022 0.015 0.007 -0.017 -0.024 2.570 2.151 1.880 1.308 0.713 -1.495 -2,470 d15 d14 d13 d12 d11 d10 US d6 0.696 1.139 1.021 1.173 1.041 1.129 0.974 1.036 0.718 1.149 1.024 1.174 1.051 1.146 0.991 1.063

-0.022 -0.010 -0.003 -0.001 -0.010 -0.017 -0.017 -0.027

-3.025 -0.882 -0.294 -0.099 -0.955 -1.495 -1.713 -2.545 I

H15 H14 H13 H12 H11 H10 HS H8 0.816 0.973 1.135 0.993 1.079 0.966 1.036 0.953 0.840 0.990 1.144 0.996 1.093 0.991 1.063 0.965

-0.024 -0.017 -0.009 -0.003 -0.014 -0.024 -0.027 -0.012

. -2.837 -1.715 -0.754 -0.300 -1.242 -2.470 -2.545 -1.239 AVERAGE O!FFERENCE = 0.0134 STANDAR0 DEVIATION = 0.0150 5-39

_. __ . ._ m _ _. _. . .. . .. __ _._ . _ . _ _ _ _ . _ _. .

FIGURE 5.13 HAODAM NECK-CYCLE 12 RADIAL POWER OISTRIBUTION 7

TORTISE 8000.0 MWD /MTU - BANK B AT 320 INCORE 8158.0 MWO/MTU - BANK B AT 312 R9 R8 O.701' O.820 O.707 0.839

-0.006 -0.019

-0.901 -2.316 QUAO LOC P11 P10 P9 P8

RPO(TORT) 0.713 0.961 1.134 0.972 KEY RPO(INCR) 0.706 0.953 1.148 0.986 TORT-INCR 0.007 0.007 -0.014 -0.015 l- PCT O!FF 0.938 0.786 -1.186 -1.472 1

,i' N12 N11 NIO N9 N8

{ 0.753 1.098 0.995 1.017 1.131

l. 0.745 1.088 0.985 1.024 1.142 0.008 0.010 0.009 -0.007 -0.011 I

1.020 0.959 0.962 -0.639 -0.929

M13 M12 .M11 M10 MS M8 l 0.753 _ 0.932 0.963 1.178 1.165 0.991
0.745 0.915 0.950 1.165 1.174 0.995 0.008 0.017 0.012 0.013 -0.009 -0.005 1.020 1.804 1.315 1.149 -0.734 -0.455 I

d L14 L13 L12 L11 L10 L9 L8 0.713 1.098 0.961 1.105 1.150 1.039 1.078 0.694 1.080 0.946 1.094 1.139 1.049 1.095 0.019 0.018 0.014 0.011 0.011 -0.010 -0.016 2.683 1.707 1.532 1.045 1.001 -0.911 -1.469 7

K14 K13 K12 K11 K10 K9 K8 0.962 0.997 1.179 1.148 0.993 1.130 0.969 1 0.937 0.980 1.163 1.138 0.986 1.144 0.990

! 0.025 0.016 0.016 0.010 0.00G -0.014 -0.021

[ 2.614 1.681 1.409 0.914 0.657 -1.190 -2.122 d15 d14 d13 dia d11 d19 09 d8 1 0.702 1,13S 1.018 1.168 1.040 1.129 0.978 1.041 l 0.718 1.145 1.023 1.172 1.051 1.144 0.990 1.064 i -0.016 -0.010 -0.005 -0.004 -0.011 -0.015 -0.013 -0.022

! ~2.280 -0.839 -0.444 -0.309 -1.005 -1.277 -1.264 -2.074 H15 H14 H13 H12 H11 H10 H9 H8

0.820 0.972 1.131 0.901 1.078 0.969 1.041 0.960 0.839 0.986 1.142 0.995 1.095 0.990 1.064 0.967

-0.019 -0.015 -0.011 -0.005 -0.016 -0.021 -0.022 -0.008

r. -2.316 ~1.472 -0.929 -0.455 -1.469 -2.122 -2.074 -0.776 AVERAGE O!FFERENCE = 0.0122 STANDARD DEVIATION = 0.0133 I

5-40 i

k

I FIGURE 5.14 HADDAM NECK-CYCLE ~12 'l RADIAL POWER DISTRIBUTION \

TORTISE 9000.0 MWD /MTU - BANK 5 AT -320 INCORE. 8947.0 MWD /MTU - BANK B AT 312 i

(

R9 R8 O.710 0.827 0.712 0.842

-0.002 -0.015

-0.315 -1.795 QUAD- LOC P11 P10 P9 P8 RPD(TORT) 0.721 0.965 1.133 0.973 KEY RPD(INCR) 0.711 0.952 1.145 0.988 TORT-INCR 0.010 0.013 -0.012 -0.015 ) i PCT DIFF 1.374 1.369 -1.030 -1.51+

N12 N11 N10 N9 NS 0.763 1.099 0.995 1.015 1.129 0.75+ 1.083 0.979 1.021 1.140 0.009 0.016 0.016 -0.006 -0.011 1.169 1.494 1.641 .-0.579 -0.991 M13 M12 M11 M10 MS ' M8 0.727 0.938 0.964 1.174 1.160 ,0.990 0.754 0.919 0.949 1.156 1.169 0.995

-0.027 0.019 0.015 0.018 -0.009 -0.005

-3.C10 2.068 1.584' 1.579 -0.749 -0.497 L14 L13 L12 L11 L10 L9 LS 0.722 1.099 0.963 1.103 1.145 1.037 1.077 0.707 1.082 0.947 1.089 1.131 1.045 1.09+

0.015 0.017 0.016 0.01+ 0.01+ -0.008 -0.016 2.083 1.587 1.693 1.302 1.258 -0.755 -1.494 K14 K13 K12 K11 K10 K9 K8 0.968 0.997 1.174 1.144 0.392 1(128 0.970 /s 0.947 0.984 1.158 1.133 0.985 1.143 0.991 0.019 0.013 0.016 0.011 0.007 -0.015 -0.020 (g 2.010 1.328 1.404 0.901 0.717 -1.294 -2.065 dt l

d15 d14 d13 d12 d11 010 49 d6 0.710 1.133 1.017 1.163 1.038 1.128 0.980 1.043 0.723 1.144 1.02+ 1.169 1.049 1.142 0.993 1.065

-0.013 -0.011 -0.007 -0.006 -0.011 -0.014 -0.013 -0.021

-1.831 -0.943 -0.675 -0.492 -1.038 -1.208 -1.304 -2.008 H15 H14 H13 H12 H11 H10 HS H8 0.827 0.973 1.129 0.990 1.077 0.970 1.043 0.964 0.842 0.988 1.140 0.995 1.094 0.991 1.065 0.971

-0.015 -0.015 -0.011 -0.005 -0.016 -0.020 -0.021 -0.007

,1.795 -1.514 -0.991 -0.497 -1.494 -2.065 -2.008 -0.718 s

AVERAGE DIFFERENCE = 0.0132 STANDARD DEVIATION = 0.0142 5-41

FIGURC 5.15 MA00AM NECK-CYCLE 12 RADIAL POWER DISTRIBUTION TORTISE 10000.0 MWD /MTU - BANK B AT 320 INCORE 9720.0 MWD /HTU - BANK B AT 310 R9 R8 0.717 0.833 0.705 0.845 0.012 -0.012 1.724 -1.376 QUAD LOC P11 P10 P9 P8 RPD(TORT) 0.728 0.967 1.130 0.972 KEY RPD(INCR) 0.697 0.944 1.146 0.986 TORT-INCR 0.031 0.023 -0.016 -0.014 PCT DIFF 4.469 2.387 -1.407 -1.458 N12 N11 N10 NS N8 0.771 1.008 0.993 1.012 1.124 0.749 1.083 0.975 1.019 1.140 0.022 0.015 0.018 -0.007 -0.016 2.DG8 1.3G4 1.804 -0.71D -1.415 kM13 M12 M11 M10 MS M8 0.771 0.941 0.964 1.167 1.154 0.986 0.749 0.912 0.947 1.161 1.171 0.992 0.022 0.028 0.017 0.006 -0.017 -0.006 2.968 3.123 1.747 0.508 -1.459 -0.592 L14 L13 L12 L11 L10 L9 L8 0.728 1.098 0.962 1.099 1.139 1.033 1.073 0.696 1.088 0.946 1.093 1.136 1.048 1.096 0.032 0.010 0.016 0.006 0.003 -0.015 -0.023 4.619 0.899 1.643 0.530 0.252 -1.458 -2.071 K14 K13 K12 K11 K10 KD K8 0.068 0.905 1.107 1.137 0.080 1.124 0.0G0 0.943 0.982 1.1G3 1.137 0.08G 1.149 0.994 0.025 0.013 0.004 -0.000 0.003 -0.025 -0.025 2.601 1.283 0.336 -0.012 0.265 -2.186 -2.501 d15 d14 d13 d12 d11 d10 d9 d8 0.717 1.130 1.014 1.156 1.034 1.124 0.980 1.044

0. 72m' 1.146 1.022 1.172 1.052 1.148 0.993 1.068

-0.005 -0.016 -0.008 -0.016 -0.018 -0.024 -0.013 -0.024

-0.668 -1.407 -0.814 ~1.372 -1.737 -2.101 -1.346 -2.270 H15 H14 h13 H12 H11 H10 H9 H8 0.833 0.972 1.124 0.986 1.073 0.969 1.044 0.96G 0.845 0.986 1.140 0.992 1.096 0.994 1.068 0.971

-0.012 -0.014 -0.016 -0.006 -0.023 -0.025 -0.024 -0.005

-1.376 -1.458 -1.415 -0.592 -2.071 -2.501 -2.270 -0.557 AVERAGE DIFFERENCE = 0.0155 STANDARD DEVIATION = 0.0175 5-42

)

c .4

.' i , ,

FIGURE 5.1D' ,

HADOAM. NECK-CYCLE 12 i 4 RADIAL POWER DISTRIBUTION '

  • i 6' 13[3 -

\s II  ; ,

TORTISE 10750.0 MWO/MTU - BANK B AT 320 [^

INCORE 10680.0 MWO/MTU - BANK B AT 295 j l

RS R8 N'-

  • 3 .,

i 0.723 0.839 l h.g/ 0.734 0.863 i'

, -0.009 -0.024

-1.228 -2.749 ,

r t GUA0 LOC P11' P10 e P9 P8 .

RP0(TORT) 0.776 0.971 % 1.130 0.973 KEY RPO(INCR) ,

0.727 .

0.955 1.160 1.009 '

TORT-INCR '

0'009 . 0.016 -0.030 -0.036 ,

PCT DIFF ,

1.243 , 1.651 -2.615 -3.522 f

, , ~ . )i N12 3

N11 N10 ND N8 \ ,,[ e.

0.77u 1.003 0.033 1.011 1.122, -

0.76G 1.083 0.975 1.018 E .17+ , ,

,b ,y (hf 0.0f3 0.010 0.018 -0.007 -31013 s 3 g

-1 '64 (f,N 1.672 0.922 1.811 -0.645 1 f

i g

2 . r

\Md M13 M12 M11 hf C MS 0.779 0.945 0.964 1.162 1.149 0.1[$4 g 0.765 0.936 0.953 m 1.145 1.138 0.939 0.01+ 0.009 0.011

^

O.017 0.011 0.ba5 \. ' ,/ .

1.805 0.948 1.131 1.461 0.946 2.580 e i

L1+ L13 .L12 L11 + L10 LS ,L8 0.736 1.099 0.963 1.096 ' 1.133 1.029 1.G89 0.740

-0.004 1.088 0.011 0.949 0.014 1.07+

0.022 1.108 ,1.077/ 1.075 0.025 *0.031[ -O 005 g g

<' f

-0.547 1.016 1.455 2.000 2.251 LO.256 -0.501 't a "\ .

~

f ll '

K14 K13 K12 K11 K10 F7J + ' ) K8 f ,

0.072 0.005 1.1G3 1.132 0.98G 1.120 q 0,907 _ 4 ,

0.D73 0.003 1.144 1.110 0.DCG 1.137 1.001 .y

-0.001 0.002 0.019 0.022 0.020 -0.017 -f D24 4

-0.136 0.158 1.638 1.975 2.040 -1.514 -2).413 ) .%'

0 J15 d1+ d13 d12 d11 d10 de d8 0.725 1.130 1.012 1.151 1.030 1.120 0.978 1.042 i

\' '

O.740 1.164 1.024 1.136 1.037 1.137 0.931 1.Osa .j .

-0.015 -0.034 -0.012 0.015 -0.007 -0.017 -0.013 ,-0.026 .,

-2.033 -2.952 -1.133 1.301 -0.644 -1.514 -1.354 '-2.420 A T

i H15 H1+ H13 H12 H11 H10 H9 H8 * .

0.839 0.973 1.121 0.984 1.069 0.967 1.042 0.965 s

0.863 1.009 1.134 0.959 1.075 0.991 1.068 0.975 I,' ,\

-0.024 -0.036 -0.013 0.025 -0.005 -0.024 -0.026 -0.01C /3

. -2.749 -3.522 -1.164 2.580 -0.501 -2.413 -2.420 -1.060 l .

AVCRAGE DIFFERENCE = 0.0153 STANDARD DEVIATION = 0.0175 s ,1 f

5-43 m ,

l, -

, 4

. - - - . - - .- . .,_ . - - - - - - . . . , , , . , , , , , . - , . . . _ , - , , . , , . , , .. .,? y .,

FIGUCE O.17 HADOAM NECK-CYCLE 12 RADIAL POWER DISTRIGUTION TORTISE 11620.0 MWD /MTU - BANK B AT 320 INCORE 11451.0 MWD /MTU - BANK B AT 320 R9 R8 0.736 0.853 0.740 0.870

-0.004 -0.017

/ -0.536 -2.C09 OUA0 LOC Pil P10 PS P8 RP0(TORf) 0.745 0.051 1.141 0.982 KEY RP0(INCR) 0.73G O.966 1.159 1.004 TORT-INCR 0.009 0.015 -0.018 -0.022 PCT DIFF 1.230 1.5C0 =1.523 -2.193 N12 N11 N10 N9 N8 0.787 1.109 0.998 1.013 1.122 0.776 1.005 0.980 1.017 1.137 0.011 0.014 0.018 -0.004 -0.015 1.403 1.243 1.844 -0.401 -1.281 M13 M12 M11 M10 MS M8 0.787 0.952 0.966 1.160 1.143 0.978 0.775 0.955 0.957 1.145 1.142 0.980 0.012 -0.003 0.009 0.015 0.001 -0.002 1.535 -0.296 0.958 1.347 0.125 -0.248 L14 L13 L12 L11 L10 LS LS 0.744 1.108 C.984 1.Q91 1.125 1.019 1.050 0.738 1.091 0.954 1.073 1.103 1.024 1.077 0.006 0.017 0.010 0.018 0.022 -0.005 -0.019 d

0.819 1.524 1.067 1.649 1.956 -0.498 -1.747 K14 K13 K12 K11 K10 K9 K8 O.981 0.999 1.160 1.124 0.975 1.106 0.954 0.969 0.994 1.146 1.107 0.959 1.118 0.978

-4 0.012 0.005 0.014 0.017 0.016 -0.012 -0.024 1.251 0.505 1.258 1.496 1.685 -1.116 -2.44G 015 J14 d13 dia d11 410 49 d8 0.736 1.141 1.014 1.145 1.020 1.105 0.964 1.026 0.748 1.160 1.022 1.143 1.031 1.118 0.974~ 1.050

-0.012 -0.019 -0.008 0.002 -0.011 -0.013 -0.010 -0.024

-1.604 -1.608 -0.792 0.212 -1.080 -1.205 -1.017 -2.257 H15 H14 H13 H12 H11 H10 H9 H8 0.853 0.982 1.122 0.978 1.059 0.954 1.026 0.950 0.870 1.004 1.137 0.980 1.077 0.978 1.050 0.955 Lb -0.017 -0.022 -0.015 -0.002 -0.019 -0.024 -0.024 -0.005 IS -2.009 -2.193 -1.281 -0.248 -1.747 -2.446 -2.257 -0.505 i<:

AVERADE DIFFERENCE = 0.0124 STANDARD DEVIATION = 0.0139 i

c 5-44 Pa Y w __ _. .. -

i FIGURE 5.10

% HADDAN NECK-CYCLE 12 i RADIAL POWER DISTRIBUTION TORTISE 12076.0 MWD /MTU - SANK B AT 320 INCORE 11998.0 MWD /MTU - BANK B AT 320 R9 R8 0.739 0.858 0.737 0.874 0.002 -0.016 0.241 -1.811 QUAD LOC P11 P10 PS P8 RP0(TORT) 0.747 0.984 1.145 0.985 KEY RPD(INCR) 0.728 0.957 1.163 1.009 TORT-INCR 0.019 0.027 -0.018 -0.024 PCT DIFF 2.584 2.801 -1.555 -2.419 N12 N11 N10 NS N8 0.789 1.112 0.999 1.013 1.122 0.780 1.006 0.977 1.021 1.140 0.009 0.016 0.022 -0.008 -0.018 1.100 1.479 2.223 -0.829 -1.578 M13 M12 M11 M10 MS M8 0.789 0.955 0.966 1.159 1.141 0.975 0.779 0.951 0.956 1.144 1.150 0.983 0.010 0.004 0.010 0.015 -0.009 -0.008 1.230 0.404 1.027 1.311 -0.785 -0.844 L14 L13 L12 L11 L10 L9 LS 0.747 1.112 0.965 1.090 1.122 1.016 1.054 0.745 1.101 0.954 1.075 1.105 1.023 1.068 0.002 0.011 0.011 0.015 0.017 -0.007 -0.013 0.233 1.016 1.134 1.423 1.554 -0.731 -1.234 K14 K13 K12 K11 410 K9 K8 0.984 1.000 1.159 1.121 0.971 1.102 0.950 0.979 0.9D2 1.143 1.104 0.957 1.113 0.969 0.005 0.008 0.016 0.017 0.014 -0.011 -0.019 0.481 0.772 1.400 1.555 1.443 -0.977 -1.934 d15 d14 d13 J12 d11 d10 09 d6 0.739 1.145 1.014 1.143 1.017 1.102 0.960 1.023 0.750 1.168 1.025 1.148 1.024 1.113 0.968 1.041

-0.011 -0.023 -0.011 -0.005 -0.007 -0.011 -0.008 -0.018

-1.504 -1.978 -1.120 -0.438 -0.730 -0.977 -0.851 -1.687 H15 H14 H13 H12 H11 H10 HS H8 0.858 0.985 1.122 0.975 1.054 0.950 1.023 0.947 0.874 1.009 1.140 0.983 1.068 0.969 1.041 0.948

-0.016 -0.024 -0.018 -0.008 -0.013 -0.019 -0.018 -0.001

. -1.811 -2.419 -1.578 -0.844 -1.23+ -1.934 -1.687 -0.121 AVERAGE DIFFERENCE a 0.0126 STANDARD DEVIATION = 0.0140 5-45 i

. - - n.,

FIOURE O.19 HA00AM NECK-CYCLE 13 RADIAL POWER DISTRIuuTION TORTISE 150.0 MWD /MTU - BANK B AT 320 INCORE 174.0 MWD /MTU - BANK B AT 310 R9 R8 0.688 0.769 0.605 0.785

-0.007 -0.015

-0.942 -1.974 QUAD LOC P11 P10 P9 P8 RPDCTORT) 0.699 0.979 1.166 0.910 KEY RPD(INCR) 0.698 0.976 1.177 0.921 TORT-INCR 0.001 0.003 -0.011 -0.011 PCT DIFF 0.209 0.270 -0.954 -1.237

(

N12 N11 N10 N9 N8 0.714 1.123 0.970 0.975 1.032 0.713 1.120 0.968 0.984 1.043 0.001 0.003 0.002 -0.009 -0.012 0.206 0.244 0.169 -0.950 -1.133 M13 M12 M11 M10 MS M8 0.713 0.875 0.922 1.139 1.174 0.993 0.712 0.864 0.916 1.151 1.185 1.000 0.001 0.011 0.006 0.008 -0.011 -0.007 0.206 1.222 0.611 0.684 -0.947 -0.734 L14 L13 L12 L11 L10 L9 L8 0.699 1.120 0.920 1.099 1.216 1.053 1.082 0.684 1.106 0.911 1.093 1.208 1.060 1.095 0.015 0.014 0.009 0.006 0.008 -0.007 -0.013 2.260 1.241 0.943 0.523 0.645 -0.689 -1.213 K14 K13 K12 K11 K10 K9 K8 0.981 0.070 1.13G 1.21G 1.022 1.182 0.991 0.959 0.958 1.12G 1.208 1.014 1.180 0.003 0.022 0.012 0.010 0.008 0.008 0.002 -0.002 2.254 1.213 0.865 0.645 0.756 0.150 -0.237 d15 d14 d13 dia Ull d10 d9 d8 0.689 1.169 0.976 1.173 1.054 1.182 1.037 1.170 0.703 1.177 0.982 1.179 1.062 1.180 1.036 1.171

-0.014 -0.008 -0.006 -0.006 -0.008 0.002 0.001 -0.002

-1.927 -0.699 -0.647 -0.528 -0.782 0.150 0.066 -0.148 H15 H14 H13 H12 H11 H10 H9 H8 0.769 0.910 1,032 0.903 1.082 0.901 1.170 1.087 0.785 0.921 1.043 1.000 1.005 0.993 1.171 1.077

-0.015 -0.011 -0.012 -0.007 -0.013 -0.002 -0.002 0.010

-1.974 -1.237 -1.133, -0.734 -1.213 -0.237 -0.148 0.901 AVERAGE DIFFERENCE = 0.0077 STANDARD DEVIATION = 0.0091 5-46 n . - --

FIGURE 5.20 HADDAM NECK-CYCLC 13 RADIAL POWER DISTRIDUTION TORTISE 1000.0 MWD /HTU - DANK B AT 320 INCORE 931.0 MWD /HTU - DANK B AT 307 R9 R8 0.683 0.765 0.697 0.794

-0.014 -0.030

-2.037 -3.760 QUA0 LOC P11 P10 P9 P8 RPD(TORT) 0.695 0.971 1.155 0.909 KEY RP0(INCR) 0.694 0.971 1.172 0.925 TORT-INCR 0.001 0.000 -0.017 -0.G16 PCT DIFF 0.115 0.033 -1.452 -1.687

g. N12 N11 N10 NS N8 0.714 1.115 0.971 0.978 1.037 0.717 1.117 0.970 0.986 1.046

-0.003 -0.002 0.001 -0.008 -0.009

-0.451 -0.173 0.137 -0.781 -0.842 M13 M12 M11 M10 MS M8 0.714 0.880 0.927 1.141 1.177 0.999 0.716 0.873 0.924 1.135 1.185 1.002

-0.002 0.007 0.003 0.006 -0.008 -0.003

-0.312 0.859 0.369 0.532 -0.679 -0.272 L14 L13 Lia L11 L10 LD L8 0.695 1.113 0.926 1.104 1.216 1.057 1.088 0.679 1.104 0.917 1.099 1.210 1.059 1.094 0.016 0.009 0.009 0.005 0.006 -0.002 -0.006 2.330 0.824 1.027 0.464 0.489 -0.173 -0.538 K14 K13 K12 K11 K10 K9 K8 0.973 0.971 1.139 1.216 1.024 1.183 0.995 0.953 0.9C1 1.128 1.211 1.016 1.174 0.986 0.020 0.010 0.011 0.005 0.008 0.009 0.009 2.137 1.077 0.980 0.405 0.812 0.764 0.943 d15 d14 d13 dia d11 010 09 d8 0.684 1.158 0.979 1.176 1.057 1.183 1.039 1.171 0.710 1.171 0.984 1.179 1.061 1.173 1.032 1.160

-0.026 -0.013 -0.005 -0.003 -0.004 0.010 0.007 0.010

-3.693 -1.112 -0.478 -0.257 -0.361 0.850 0.700 0.905 H15 H14 H13 H12 H11 H10 HS H8 0.765 0.909 1.037 0.999 1.088 0.995 1.171 1.087 0.794 0.925 1.046 1.002 1.094 0.986 1.160 1.070

-0.030 -0.016 -0.009 -0.003 -0.006 0.009 0.010 0.017

-3.760 -1.687 -0.842 -0.272 -0.538 0.943 0.905 1.603 AVERAGC DIFFERENCE = 0.0087 STANDARD DEVIATION = 0.0109 5-47

FIGURE 5.21 HADOAM NECK-CYCLE 13 RADIAL POWER DISTRIBUTION TORTISE 2000.0 MWD /MTU - DANK B AT 320 INCORE 16G8.0 MWD /MTU - BANK D AT 312 R9 R8 0.700 0.783 0.709 0.806

-0.009 -0.023

-1,234 -2.852 OUAD LOC P11 P10 PS P8 RPD(TORT) 0.708 0.982 1.165 0.920 KEY RPD(INCR) 0.705 0.980 1.177 0.931 TORT-INCR 0.003 0.002 -0.012 -0.011 PCT DIFF 0.463 0.162 -1.011 -1,213 N12 N11 N10 N9 N8 0.728 1.124 0.976 0.982 1.041 0.712 1 113 0.973 0.988 1.049 0.016 0.011 0.003 -0.006 -0.008 2.283 1.012 0.267 -0.651 -0.771 M13 M12 M11 M10 MS M8 0.728 0.891 0.930 1.136 1.168 0.994 0.712 0.874 0.921 1.131 1.182 1.002 0.016 0.017 0.009 0.005 -0.014 -0.008 2.283 1.927 0.948 0.461 -1.177 -0.845 L14 L13 L12 Lil L10 L9 L8 0.708 1.122 0.929 1.097 1.201 1.044 1.076 0.693 1.102 0.917 1.092 1.200 1.052 1.089 0.015 0.020 0.012 0.005 0.001 -0.008 -0.013 2.208 1.841 1.280 0.486 0.087 -0.722 -1.165 K14 K13 K12 K11 K10 K9 K8 0.985 0.976 1.133 1.202 1.011 1.164 0.981 0.966 0.965 1.128 1.201 1.009 1.165 0.983 0.019 0.011 0.005 0.001 0.003 -0.001 -0.002 1.927 1.100 0.463 0.087 0.249 -0.075 -0.246 415 014 d13 d12 J11 d10 US d8 0.701 1.168 0.982 1.167 1.045 1.164 1.022 1.149 0.722 1.177 0.987 1.177 1.054 1.164 1.024 1.154

-0.021 -0.009 -0.005 -0.010 -0.009 0.000 -0.002 -0.005

-2.879 -0.756 -0.550 -0.841 -0.816 0.011 -0.149 -0.420 H15 H14 H13 H12 H11 H10 H9 H8 0.783 0.920 1.041 0.994 1.076 0.981 1.149 1.067 0.806 0.931 1.049 1.002 1.089 0.983 1.154 1.061

-0.023 -0.011 -0.008 -0.008 -0.013 -0.002 -0.005 0.006

-2.852 -1,213 -0.771 -0.845 -1.165 -0.246 -0.420 0.602 AVERAGC DIFFERENCC = 0.0089 STANDARD DEVIATION = 0.0108 5-48

FIGURE 5.22 HA00AM NECK-CYCLE 13 RADIAL POWER DISTRIBUTION TORTISE 3000.0 MWO/MTU - DANK n AT 320 ItJCORC 3983.0 MWD /MTU - IIANK u AT 311 R9 R8 0.711 0.795 0.728 0.830

-0.017 -0.035

-2.300 -4.264 QUAD LOC Pil P10 PS P8 RPD(TORT) 0.716 0.988 1.168 0.926 KEY RP0(INCR) 0.717 0.983 1.183 0.945 TORT-INCR -0.001 0.005 -0.015 -0.019 PCT DIFF -0.093 0.467 -1.243 -2.027 N12 N11 N10 NS N8 0.738 1.127 0.978 0.983 1.042 0.727 1.112 0.970 0.991 1.055 0.011 0.015 0.008 -0.008 -0.012 1.550 1.326 0.791 -0.853 -1.173 M13 M12 M11 M10 M9 M8 0.738 0.898 0.932 1.131 1.162 0.992 0.727 0.885 0.922 1.119 1.172 1.000 0.011 0.013 0.010 0.012 -0.010 -0.008 1.550 1.496 1.084 1.046 -0.822 -0.752 L14 L13 L12 Lil L10 LS L8 0.717 1.124 0.931 1.093 1.192 1.038 1.071 0.706 1.101 0.918 1.082 1.181 1.042 1.082 0.011 0.023 0.013 0.011 0.011 -0.004 -0.011 1.616 2.073 1.418 1.012 0.958 -0.364 -1.021 K14 K13 K12 K11 K10 K9 K8 0.990 0.977 1.129 1.192 1.004 1.155 0.975 0.971 0.968 1.118 1.185 0.996 1.154 0.978 0.019 0.003 0.011 0.007 0.008 0.001 -0.003 1.922 0.898 0.958 0.615 0.753 0.129 -0.294 J15 d14 d13 dia dll d10 US d8 0.712 1.170 0.983 1.161 1.039 1.154 1.014 1.139 0.744 1.183 0.990 1.168 1.046 1.154 1.015 1.141

-0.032 -0.013 -0.007 -0.007 -0.007 0.000 -0.001 -0.002

-4.281 -1.074 -0.752 -0.566 -0.651 0.042 -0.060 -0.213 M15 H14 H13 H12 H11 H10 H9 H8 0.795 0.926 1.042 0.992 1.071 0.975 1.139 1.058 0.830 0.945 1.055 1.000 1.082 0.978 1.141 1.050

-0.035 -0.019 -0.012 -0.008 -0.011 -0.003 -0.002 0.008

. -4.264 -2.027 -1.173 -0.752 -1.021 -0.294 -0.213 0.777 AVERAGE DIFFERENCE = 0.0107 STANDARD DEVIATION = 0.0131 5-49 l

l i

FIOURE G.23 HADOAM NECK-CYCLE 13 RADIAL POWER DISTRIBUTION TORTISE 4000.0 MWD /MTU - BANK B AT 320 INCORE 4314.0 MWO/HTU - BANK B AT 312 R9 R8 O.719 0.803 0.729 0.832

-0.010 -0.029

-1.32+ -3.522 QUAD LOC P11 P10 PS P8 RPD(TORT) 0.723 0.990 1.166 0.929 KEY RP0(INCR) 0.715 0.976 1.181 0.948 TORT-INCR 0.008 0.014 -0.015 -0.019 PCT DIFF 1.181 1.410 -1.231 -2.009 N12 N11 N10 NS N8 0.748 1.127 0.978 0.983 1.042 0.742 1.112 0.965 0.990 1.055

0.006 0.015 0.013 -0.007 -0.012 O.845 1.340 1.330 -0.739 -1.160 a M13 M12 M11 M10 MS M8 I O.747 0.905 0.935 1.128 1.158 0.991 j 0.742 0.89+ 0.925 1.115 1.167 0.997 0.005 0.011 0.010 0.013 -0.009 -0.006 0.710 1.26+ 1.092 1.155 -0.809 -0.638 L14 L13 L12 L11 L10 LS L8 i 0.723 1.125 0.934 1.091 1.185 1.034 1.068 0.716 1.110 0.923 1.081 1.173 1.039 1.078 0.007 0.015 0.011 0.010 0.012 -0.005 -0.010 1.039 1.344 1.20+ 0.935 0.981 -0.446 -0.917 K14 K13 K12 K11 K10 K9 K8 0.992 0.978 1.126 1.185 0.999 1.149 0.972 0.979 0.968 1.113 1.176 0.992 1.151 0.978 0.013 0.010 0.013 0.008 0.007 -0.002 -0.006 1.302 1.014 1.158 0.722 0.672 -0.204- -0.587 d15 d14 d13 dia d11 d10 09 US 0.719 1.168 0.984 1.157 1.035 1.148 1.010 1.133 0.747 1.183 0.991 1.163 1.042 1.150 1.012 1.138

-0.028 -0.015 -0.007 -0.006 -0.007 -0.002 -0.002 -0.005

-3.718 -1.230 -0.739 -0.552 -0.638 -0.20+ -0.243 -0.462 M15 H14 H13 H12 H11 H10 H9 H8 0.803 0.929 1.042 0.991 1.068 0.972 1.133 1.052 0.832 0.948 1.055 0.997 1.078 0.978 1.138 1.045

-0.029 -0.019 -0.012 -0.006 -0.010 -0.006 -0.005 0.007

. -3.E22 -2.009 -1.160 -0.633 -0.917 -0.587 -0.462 0.702 AVERADE DIFFERENCE = 0.0104 STANDARD DEVIATION = 0.0119 l 5-50

FIGUCE 5.24 MADOAM NECK-CYCLE 13 RAOIAL POWER DISTRIBUTION TORTISE 5000.0 MWD /MTU - BANK B AT 320 INCORE 5019.0 MWD /MTU - BANK B AT 310 i

R9 R8 0.724 0.808 0.732 0.836

-0.008 -0.028

-1.128 -3.350 QUAD LOC P11 P10 PS PS RPDCTORT) 0.728 0.989 1.161 0.929 KEY RPD(INCR) 0.717 0.975 1.175 0.947 TORT-INCR 0.011 0.014 -0.014 -0.017 PCT DIFF 1.513 1.435 -1.229 -1.827 N12 N11 N10 N9 N8 0.756 1.125 0.978 0.983 1.043 0.747 1.111 0.966 0.989 1.054 0.009 0.014 0.012 -0.006 -0.011 1.155 1.262 1.249 -0.617 -1.003 M13 M12 M11 M10 MS M8 0.755 0.911 0.937 1.126 1.155 0.991 0.746 0.897 0.927 1.114 1.163 0.995 0.009 0.014 0.010 0.012 -0.008 -0.004 1.157 1.510 1.116 1.077 -0.718 -0.417 L14 L13 L12 L11 L10 LS L8 0.728 1.122 0.936 1.090 1.181 1.033 1.067 0.720 1.110 0.925 1.081 1.171 1.038 1.078 O.008 0.012 0.011 0.009 0.010 -0.005 -0.010 F 1.087 1.083 1.228 0.854 0.818 -0.526 -0.950 K14 K13 K12 K11 K10 K9 K8 0.991 0.977 1.125 1.181 0.998 1.146 0.972 0.081 0.969 1.112 1.172 0.992 1.149 0.980 0.010 0.008 0.013 0.003 0.006 -0.003 -0.008 1.014 0.830 1.170 0.732 0.592 -0.283 -0.769 J15 d14 J13 dia J11 010 US da 0.725 1.163 0.983 1.154 1.033 1.145 1.008 1.130 0.750 1.178 0.990 1.159 1.040 1.149 1.012 1.138

-0.025 -0.015 -0.007 -0.005 -0.007 -0.004 -0.004 -0.008

-3.384 -1.312 -0.718 -0.460 -0.718 -0.370 -0.422 -0.674 H15 H14 H13 H12 H11 H10 HS H8 0.808 0.929 1.043 0.991 1.067 0.972 1.130 1.050 0.836 0.947 1.054 0.995 1.078 0.980 1.138 1.045

-0.028 -0.017 -0.011 -0.004 -0.010 -0.008 -0.008 0.004 i . -3.350 -1.827 -1.003 -0.417 -0.950 -0.769 -0.674 0.429 AVERADE DIFFERENCE = 0.0102 STANDARD DEVIATION = 0.0114

[

l i

5-51

FIGURE 2.25 HA00AM NECK-CYCLE 13 RADIAL POWER DISTRIDUTION TORTISE 6000.0 MWO/MTU - DANK B AT 320 INCORE 5777.0 MWD /MTU - BANK B AT 312 RS R8 0.730 0.813 0.734 0.834

-0.004 -0.021

-0.514 -2.568 OUAD LOC P11 P10 P9 PS RPD(TORT) 0.733 0.989 1.157 0.931 KEY RPD(INCR) 0.721 0.973 1.173 0.948 TORT-INCR 0.012 0.016 -0.016 -0.018 PCT DIFF 1.709 1.610 -1.333 -1.863 N12 N11 N10 N9 N8 0.763 1.123 0.977 0.983 1.044 0.754 1.111 0.966 0.991 1.056 0.009 0.012 0.011 -0.008 -0.012 1.207 1.060 1.109 -0.852 -1.171 M13 M12 M11 M10 MS M8 0.762 0.916 0.939 1.123 1.152 0.991 0.754 0.900 0.928 1.112 1.165 0.997 0.008 0.016 0.011 0.011 -0.013 -0.006 1.074 1.795 1.181 0.968 -1.080 -0.650 L14 L13 L12 Lil L10 LS L8 0.733 1.121 0.938 1.089 1.176 1.031 1.067 0.727 1.111 0.926 1.077 1.165 1.037 1.078 0.006 0.010 0.012 0.012 0.011 -0.006 -0.012 0.863 0.880 1.293 1.114 0.981 -0.554 -1.068 K14 K13 K12 K11 K10 K9 K8 0.991 0.977 1.121 1.176 0.996 1.143 0.973 0.984 0.971 1.110 1.165 0.986 1.144 0.981 0.007 0.00G 0.011 0.011 0.010 -0.001 -0.009 0.670 0.585 0.971 0.981 0.972 -0.12G -0.905 J15 d14 d13 di2 Ull J10 d9 d8 C.731 1.158 0.983 1.151 1.031 1.143 1.007 1.128 0.750 1.177 0.992 1.160 1.037 1.144 1.010 1.138

-0.019 -0.019 -0.009 -0.009 -0.006 -0.001 -0.003 -0.010

-2.517 -1.585 -0.953 -0.737 -0.554 -0.126 -0.254 -0.914 H15 H14 H13 ' H12 H11 H10 HS H8 0.813 0.931 1.044 0.991 1.067 0.973 1.128 1.047 0.834 0.948 1.056 0.997 1.078 0.981 1.138 1.045

-0.021 -0.018 -0.012 -0.006 -0.012 -0.009 -0.010 0.002

. -2.568 -1.863 -1.171 -0.650 -1.068 -0.905 ,-0.914 0.211 AVERAGE DIFFERENCE = 0.0103 STANDARD OEVIATION = 0.0113 5-52

FIGURE 0.22 HADOAM NECK-CYCLE 13 RADIAL POWER DISTRIBUTION TORTISE 7000.0 MWD /MTU - BANK B AT 320 INCORE 7173.0 MWD /MTU - BANK B AT 310 R9 R8 0.737 0.819 0.743 0.840

-0.006 -0.021

-0.751 -2.461 QUAD LOC P11 P10 PS P8 RP0(TORT) 0.739 0.991 1.154 0.932 KEY RP0(INCR) 0.729 0.977 1.166 0.949 TORT-INCR O.010 0.014 -0.012 -0.017 PCT DIFF 1.303 1.431 -1.045 -1.776 N12 N11 N10 N9 NS 0.771 1.121 0.977 0.983 1.043 0.762 1.105 0.963 0.900 1.056 0.003 0.016 0.014 -0.007 -0.013 1.221 1.465 1.460 -0.718 -1.232 M13 M12 M11 M10 M9 M8 0.770 0.821 0.941 1.120 1.149 0.990 0.761 0.903 0.930 1.108 1.158 0.997 0.009 0.012 0.011 0.012 -0.009 -0.007 1.224 1.365 1.212 1.099 -0.789 -0.667 L14 L13 L12 Lil L10 L9 L8 0.739 1.119 0.939 1.087 1.171 1.028 1.065 0.728 1.103 0.929 1.077 1.161 1.034 1.080 0.011 0.016 0.010 0.010 0.010 -0.006 -0.015 1.443 1.469 8 1.10G 0.963 0.848 -0.616 -1.358 K14 K13 K12 K11 K10 KO K8 0.992 0.977 1.118 1.171 0.994 1.139 0.971 O.978 0.969 1.109 1.166 0.989 1.145 0.982 0.014 0.008 0.003 0.005 0.005 -0.006 -0.011 1.428 0.828 0.826 0.412 0.496 -0.529 -1.075 ,

d15 d14 d13 dia d11 010 US U8 0.738 1.155 0.983 1.148 1.029 1.139 1.005 1.124 0.757 1.168 0.991 1.155 1.039 1.144 1.010 1.135

-0.019 -0.013 -0.008 -0.007 -0.010 -0.005 -0.005 -0.010

-2.467 -1.130 -0.818 -0.617 -1.001 -0.442 -0.518 -0.925 H15 H14 H13 H12 H11 H10 H9 H8 0.819 0.932 1.043 0.990 1.065 0.971 1.124 1.044 0.840 0.949 1.056 0.997 1.080 0.982 1.135 1.040

-0.021 -0.017 -0.013 -0.007 -0.015 -0.011 -0.010 0.004

. -2.461 -1.776 -1.232 -0.667 -1.358 -1.075 -0.925 0.345 AVERAGE DIFFERENCE = 0.0106 STANDARD DEVIATION = 0.0113 4

5-53

FIGURE 5.27 MA00AM NECK-CYCLE 13 RADIAL POWER DISTRIBUTION i l

TORTISE 8000.0 MWD /MTU - BANK B AT 320 INCORE 8056.0 MWD /MTU - BANK B AT 312 R9 R8 0.745 0.826 0.755 0.857

-0.010 -0.031

-1.275 -3.617 QUAD LOC P11 P10 PS P8 RPDCTORT) 0.745 0.992 1.151 0.934 KEY RP0(INCR) 0.735 0.979 1.168 0.954 TORT-INCR 0.010 0.013 -0.017 -0.020 PCT DIFF 1.299 1.371 -1.476 -2.134 N12 N11 N10 N9 N8 0.778 1.120 0.977 0.983 1.043 0.760 1.099 0.9G1 0.991 1.058 0.018 0.021 0.016 -0.008 -0.015 2.414 1.945 1.619 -0.776 -1.397 M13 M12 M11 M10 MS M8 0.778 0.925 0.942 1.117 1.145 0.989 0.759 0.905 0.925 1.100 1.157 1.000 0.019 0.020 0.017 0.017 -0.012 -0.010 2.550 2.217 1.825 1.578 -1.050 -1.027 L14 L13 L12 L11 L10 L9 LS 0.745 1.118 0.941 1.085 1.166 1.026 1.063 0.734 1.095 0.924 1.068 1.151 1.034 1.082 0.011 0.023 0.017 0.017 0.015 -0.00f -0.019 1.438 2.138 1.828 1.557 1.295 -0.780 -1.801 K14 K13 K12 K11 K10 K9 K8 0.994 0.97G 1.115 1.1GG 0.991 1.135 0.970 0.979 0.DG7 1.102 1.15G O.984 1.144 0.08G 0.015 0.009 0.013 0.010 0.007 -0.009 -0.01G 1.576 0.880 1.211 0.853 0.750 -0.790 -1.587 J15 J14 d13 di2 d11 d10 d9 d8 0.745 1.153 0.983 1.144 1.026 1.135 1.002 1.120 0.774 1.170 0.993 1.154 1.039 1.144 1.011 1.137

-0.029 -0.017 -0.010 -0.010 -0.013 -0.009 -0.009 -0.016

-3.720 -1.475 -0.978 -0.877 -1.262 -0.700 -0.877 -1.449 H15 H14 H13 H12 H11 H10 H9 H8 0.826 0.934 1. ,,3 0.989 1.063 0.970 1.120 1.041 0.857 0.954 1.058 1.000 1.082 0.986 1.137 1.041

-0.031 -0.020 -0.015 -0.010 -0.019 -0.016 -0.016 -0.000

. -3.617 -2.134 -1.397 -1.027 -1.801 -1.587 -1.449 -0.013 AVERADE DIFFERENCE = 0.0147 STANDARD DEVIATION = 0.0158 5-54

FIGURE S.28 HA00AM NECK-CYCLE 13 RADIAL POWER DISTRIBUTION TORTISE 9000.0 MWD /MTU - BANK B AT 320 INCORE 8789.0 MWD /HTU - BANK B AT 308 R9 R8 0.753 0.834 0.753 0.852

-0.000 -0.018

-0.031 -2.149 OUAD LOC Pil P10 PS P8 RPDCTORT) 0.752 0.995 1.149 0.936 KEY RPD(INCR) 0.735 0.973 1.168 0.958 TORT-INCR 0.017 0.022 -0.019 -0.022 PCT OIFF 2.,308 2.300 -1.607 -2.345 N12 N11 N10 N9 N8 0.787 1.119 0.977 0.982 1.043 0.777 1.100 0.957 0.993 1.062 0.010 0.019 0.020 -0.011 -0.018 1.222 1.725 2.040 -1.093 -1.705 M13 M12 M11 M10 MS M8 0.787 0.930 0.943 1.113 1.141 0.988 0.776 0.912 0.929 1.098 1.158 0.999 0.011 0.018 0.014 0.015 -0.017 -0.010 1.354 1.977 1.490 1.366 -1.438 -1.043 L14 L13 L12 Lil L10 LS L8 0.753 1.117 0.942 1.082 1.160 1.023 1.060 0.740 1.102 0.927 1.071 1.150 1.030 1.072 0.013 0.015 0.015 0.011 0.010 -0.007 -0.011 1.745 1.357 1.604 1.055 0.908 -0.705 -1.046 K14 K13 K12 K11 K10 K9 K8 0.996 0.97G 1.111 1.160 0.988 1.130 0.968 0.982 0.965 1.097 1.152 0.985 1.140 0.979 0.014 0.011 0.014 0.008 0.003 -0.010 -0.011 1.454 1.188 1.277 0.731 0.329 -0.918 -1.093 J15 J14 013 012 d11 d10 09 d8 0.754 1.151 0.982 1.140 1.023 1.130 0.999 1.116 0.769 1.172 0.995 1.153 1.032 1.139 1.009 1.129

-0.015 -0.021 -0.013 -0.013 -0.009 -0.009 -0.010 -0.013

,2.003 -1.776 -1.294 -1.093 -0.899 -0.830 -0.994 -1.182 H15 H14 H13 H12 H11 H10 H9 H8 0.834 0.936 1.043 0.988 1.060 0.968 1.116 1.037 0.852 0.958 1.062 0.999 1.072 0.979 1.129 1.042

-0.018 -0.022 -0.018 -0.010 -0.011 -0.011 -0.013 -0.005

-2.149 -2.345 -1.705 -1.043 -1.046 -1.093 -1.182 -0.517 AVERAGE DIFFERENCE = 0.0133 STANDARD DEVIATION = 0.0142 5-55

FIGURE 5.29 HADOAM NECK-CYCLE 13 RADIAL POWER DISTRIBUTICN TORT I sr.T 9800.0 MWD /HiU - DANK D AT 320 INCORE SG3S.O MWD /MTU - DhNK b AT 320 R9 R8 0.764 0.845 0.763 0.862 0.001 -0.017 0.072 ' -1.919 QUAD LOC P11 P10 P9 P8 RPDCTORTJ 0.762 1.001 1.152 0.941 KEY RPD(INCR) 0.745 0.980 1.166 0.959 TORT-INCR 0.017 0.021 -0.014 -0.018 PCT DIFF 2.248 2.159 -1.192 -1.889 N12 N11 N10 NS N8 0.797 1.123 0.978 0.982 1.044 0.775 1.095 0.958 0.991 1.061 0.022 0.028 0.020 -0.009 -0.017 2.896 2.546 2.131 -0.905 -1.625 M13 M12 N11 M10 M9 M8 0.797 0.936 0.944 1.110 1.136 0.985 0.774 0.920 0.928 1.096 1.152 1.002 0.023 0.016 0.016 0.014 -0.016 -0.017 3.030 1.719 1.695 1.266 -1.367 -1.705 L14 L13 L12 L11 L10 L9 L8 0.762 1.120 0.943 1.079 1.153 1.016 1.054 0.750 1.096 0.929 1.066 1.144 1.026 1.074 0.012 0.024 0.014 0.013 0.009 -0.010 -0.020 1.559 2.178 1.476 1.239 0.817 -1.009 -1.898 K14 K13 K12 K11 K10 K9 K8 1.002 0.978 1.108 1.153 0.981 1.120 0.961 0.988 0.968 1.099 1.149 0.980 1.135 0.978 0.014 0.010 0.009 0.004 0.001 -0.015 -0.017 1.424 1.064 0.804 0.374 0.118 -1.283 -1.771 d15 d14 d13 d12- d11 d10 d9 d8 0.765 1.154 0.982 1.135 1.017 1.120 0.990 1.105 0.779 1.169 0.994 1.150 1.031 1.135 1.003 1.124

-0.014 -0.015 -0.012 -0.015 -0.014 -0.015 -0.013 -0.020

-1.749 -1.278 -1.207 -1.280 -1.397 -1.283 -1.306 -1.773 H15 H14 H13 H12 H11 H10 H9 H8 0.845 0.941 1.044 0.985 1.054 0.961 1.105 1.026 0.862 0.959 1.061 1.002 1.074 0.978 1.124 1.030

-0.017 -0.018 -0.017 -0.017 -0.020 -0.017 -0.020 -0.004

-1.919 -1.889 -1.625 -1.705 -1.898 -1.771 -1.773 -0.427 i AVERhGE DIFFERENCE = 0.0147 STANDARD DEVIATION = 0.0158 5-56

FIGURE 5.30 HA00AM NECK-CYCLE A3 RADIAL POWER DISTRIBUTION TORTISE 10500.0 MWD /MTU - BANK B AT 320 INCORE 10382.0 MWD /MTU - BANK B AT 320 R9 R8 0.773 0.856 0.759 0.856 0.014 -0.000 1.802 -0.044 QUAD LOC P11 P10 P9 P8 RPD(TORT) 0.770 1.010 1.163 0.948 KEY RP0(INCR) 0.740 0.972 1.174 0.966 TORT-INCR 0.030 0.038 -0.011 -0.018 PCT D1FF 4.039 3.948 -0.925 -1.872 N12 N11 N10 NS N8 0.804 1.132 0.982 0.983 1.044 0.795 1.111 0.961 0.994 1.062 0.009 0.021 0.021 -0.011 -0.018 1.170 1.875 2.237 -1.095 -1.707 M13 M12 M11 M10 MD M8 0.803 0.942 0.046 1.108 1.131 0.980 0.704 0.031 0.D36 1.000 1.154 0.007 0.009 0.011 0.010 0.009 -0.023 -0.017 1.173 1.160 1.041 0.816 -1.962 -1.747 L14 L13 L12 L11 L10 L9 L8 0.769 1.130 0.945 1.076 1.146 1.007 1.044 0.765 1.120 0.935 1.069 1.141 1.021 1.058 0.004 0.010 0.010 0.007 0.006 -0.014 -0.014 0.473 0.869 1.044 0.683 0.483 -1.389 -1.331 K14 K13 K12 K11 K10 K9 K8 1.011 0.981 1.10G 1.146 0.971 1.108 0.949 1.007 0.971 1.095 1.137 0.069 1.113 0.962 0.004 0.010 0.011 0.009 0.002 -0.011 -0.013 0.395 1.069 1.006 0.751 0.247 -1.000 -1.355 d15 d14 d13 J12 d1l d10 d9 d8 0.774 1.164 0.983 1.131 1.008 1.108 0.977 1.090 0.774 1.182 0.997 1.147 1.018 1.110 0.987 1.105

-0.000 -0.018 -0.014 -0.016 -0.010 -0.011 -0.010 -0.015

-0.062 -1.518 -1.396 -1.357 -0.997 -1.006 -0.994 -1.366 4 H15 H14 H13 H12 H11 H10 HS H8 0.856 0.948 1.044 0.980 1.044 0.949 1.090 1.012 0.856 0.966 1.062 0.997 1.058 0.962 1.105 1.010

-0.000 -0.018 -0.018 -0.017 -0.014 -0.013 -0.015 0.002

. -0.044 -1.872 -1.707 -1.747 -1.331 -1.355 -1.366 0.192 AVERAGE DIFFERENCE = 0.0125 STANDARD DEVIATION = 0.0145 l

I 5-57

o o

l l ~l l l l } .! -- t- l l

.l .-

/ i, ..

s i m tu r

.g a 1 mm o G) m e cu cv _ o _J C C ww ~

cc gm .. g e i mD g w t-

= rr __ O N s C oo 2 3 a-g rr _. >

C u) o o

-o o l'

oo . - .g s

-_ o ,y g

' i z -

o

tu o o it CC Og o _. g o a- (\1

= zc I -

o (,,,D

.-. CL

__ g LLI l 9- 7 U l

S W O~ Y.

i - O gr3 U U W C

O

-- O T

T n

C (O O .

~

_O cv LD o

.W s __ --)

^-

N g L

o o

1 . 1 . 1 . 1 . I i ,

c d

d '

d ' d '

d '

d d '

ni o m m r cv o

- o o o o o 5-58 83 Mod 76IXU 3AI16138

l l l l l l l l l l l l l l l l l l l

i 1.2a_ __

1.0a_ \

C LU .. --

O 1 0.8R_ __

__J C .. --

X C 0.6a_

g LLI W

LiJ 0.4R_ _

C >

0.2a_ __

u, INCORE- 1728 MWD /NTU-B AT 300 --

h PALADON-2000 MHD/MTU-B RT 300 - --

0.on  ; ;  ; j  ;  ;  ; j  ;  ;  ; j  ; ;  ; j  ;  ;  ;

0.00 20.00 40.00 60.00 80.00 100.00 CORE HEIGHT (%)

FIGURE'5.32 HRDDRM NECK CYCLE 12 CORE AVERAGE RXIAL POWER

:  :  :  :  :  :  : i  :  :  :
:  :  : i l 1.2a _

. _ _ _ m_ . _

I ,

.. I I

1.0a_

E W

A 3 s O

1 0.8a_ --

__J s C l X

C 0.6a_ g _

LLJ

~

N C

y 0.4a _

g LLJ C ..

0.2a_ __

y INCORE- 3294 NHD/NTU-8 AT 312 --

8 PALADON- 3000 MHD/NTU-B RT 312 - -

0.on  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ; j  ;  ;  ;

0.00 20.00 40.00 60.00 80.00 100.00 CORE HEIGHT (%)

FIGURE 5.33 HADDAM NECK CYCLE 12 CORE AVERAGE AXIAL POWER

l l l l l l l l l l l l l l l l l l

1.2a_

4 E

1.0a_.

r uJ ..

O E- 0.8a_

_J \

C ..

X C 0.6a_ g __

La

~

I-C _.

a 0.4a '

uJ C ..

0.2a_

-- INCORE- 4078 MWD /MTU-B AT 312

& PALR00N-4000 MWD /MTU-8 AT 312 - --

~

j 0.0n  ;

j , ,

i j

j  ;  ;  ;

0.00 20.00 40.00 60.00 80.00 100.00 CORE HEIGHT ( %.)

FIGURE 5.34 HRDDAM NECK CTCLE 12 CORE AVERAGE RXIAL POWER

:  :  :  :  : l
:  : l  :  :  : l  :  :  : l l 1.2a_

-: , :- _ ,q _  :

1.0a_

/

T W ..

~I O 1 1 0.8a_. __

_J T \ --

X C / \ __

0.6a_f W 1 b

" 0.4a -

m T ..

0.2a_

INCORE- 4810 MWO/NTU-B AT 310 y --

$ PALA00N-5000 MWO/NTU-B AT 310 - --

0 0"  :  :  :  :  :  :

:  : l  :  : l l  :  : l  : l 0.00 20.00 40.00 60.00 80.00 100.00 CORE HEIGHT (%)

FIGURE 5.35 HADDAM NECK CYCLE 12 CORE AVERAGE AXIAL POWER

n -- ,

o o

I . I . 1 . 1 . l . l . o

. . - i i i g i i g g i o

e C til I

o O oo o ^&

oo .

-- mm o _.]

o C r-- >- ~

c Cc X

, cn a2 -- C i, I i

.i DD g t - F-

= rZ O N N .. C

& C3 o [

33 rr W nn a o T i, 2o o

No . m- g

- nn to - o

,, I (D *\.

[

" i 2 O wa u

,i cc c3 e oC -- l--

cJ J N 9, I

.z c

-. O. (,,3 g

a g,1J I P G y

', o L1J

' M

. . CC

- 1

- o o u L1J

' (_) Z 7

T Q

.. O C

C g

. o (r) 1 o .

0 o LD cu -

= l.LJ C.

-)

O

~

.. s ..

i s

1

\

  • o o

1 . l . 1 . l . . l . o 6 d '

d d d 6 C na o co us y cv o

~ ~ o o o o a 83M0d lUIXU 3AI16138

o o

I . 1 . t

, I I

i I .

i d

a y i i

i i l

l

.- I --

l C Lij 2

O O

o Q.

o.

. - o - .

mm _o _.J o C e-- e- ,_,

CC

- X

-- co co -- C I i Do w t- e-

- I r __ O N N C i oo [

" 3 3 y I r -- >

C

-o o

,, ro o

-'l Oo .

- g

__ r7__g x e

. 2 -

O

LLJ o U

,, cc o

-- e oc -- H N C) J i r zc I -

- ct C)

__ ~ tij i y _.J n

7 O o W

/! .

CC E

- o e U U z g

C O

-- O C

I 1 o o

m

,, __d m LT)

=

W C

D O

Lt.

.. s --

~ o o

I ,  ! ,  ! ,  ! , i l i o

d '

d '

d '

d '

d C d N O m o co e r

.-. o o o o a 83M0d lUIXU 3AI18738

r~

l o

o I i I ,

I .

l .

l . I ,

o I

! I i l i I a l

.. i ..

[

w

.~

2 o O NN o &

mm. o _.J

= D C oo X i to co -- C 1 I el n DD g e-- t-

~~

rE . O "l N N C i oo g-23 1'

Er W mo o C a in o o

-in o . _ g DD- o -

I (D *\. C i z "

O

," Lu o y cc o

.. s og .. g uJ N 9 , zc I -

- o. Q m w I W _I 0

} ..

7 >--

o U o W Y CC 4

--- I __o g a y

U $

.. 6 -

r T

C

.. O s T I

m o (r)

& C .

,, - ,d tn w

4 c

D O

. s ..

  • O N o t , I . l . I , i I e o

d '

d '

d '

d '

d d '

c N o D co r N o

- - o o a o o l

83M0d 16IXU 3 AI16138

o o

I t i , I , f . I a a

  1. l l s ' '

l O

g l l I T i

i --

s 4 L2J Z

O o CL cu (u o

' co co __o J

__ t a g w >-- m TT <

.. cn CD -- C i e o3 y

>- P--

I r .. O I ss C i oo c

r- o o C I

ro o

. ,7 c1 o -

y co c) o

.N. [

i . e o e z "

O a us o To o ,

'8 oT -- F--

U J N

=T 1 - '

q'

- c.

c) 4

.,. M LAJ e

y J r o o .

o ll.J a- r

-g o o

. o z .

e i --

.. I C

O

.. O

~~

s c I

/

, e, o

o Q

TJ

, __o W cu W

7 C -

.. O g

m LL.

s o

N O t , I , t , 1 . . 1 '

o

' ' ' ' d '

d C d d d d o m o o e r N

- - o o o o o s-66 U3M0d 1BIXU 3AI.l.U138

o o

, i f f 9 i o

I '

l '

i i T

I o

==

.. g x

W x

o o O o- o &

-m .

m __. o a J - o e

-G m in g

. , x

.. , o o, --

e

. 4 i o

. o- m

-r o

. rs l

so .. c 8

o .I c o

gro -- g oo o C mo o i .Y No .

m y o__o ,s; e

. z -

a L1J o oo Q

,i

.. oc --

U J r N (

9 , zc I - t

-m o m m y I I o

.. o o

& a

[ E

__ _ o a u

, a w z

j .. - --

g a

O

.. O a

C

, r j

o o

-r o -

r .

. __o tn m

w x

D o

s ..

u.

\ s N -

o o

M i . i ,

i ,

t

, i .

o d

  • 6 d d d
  • d c m o o o =r m o

- o o o o o 83M0d 16IXU 3 AI16138 5-67

LJ o

, i . i . i . O d  !

~

I O

l l 1 I .

/ __

c w

2 O

Ln o e Ln cn a CD N

  • m __o a

__ r t-C o c C, x I

C

.. e CD, p 0-

- z w zN o I _

i N O __ C

, os zz c

E w

o -- >

O tn a T o r- o

'y CD o a m uj e7--g x c

,, , z -

o

,, mo o Co s aC ~~ I-~ g o _.J r ~

zC

, - o. o M LLJ w _a o

. I >-

.. g w 6 . oc e

. , __o

=r a o o w II z

r O

__ O

__ c r

__ ~

O -y o .

l __a w i __ N w

l . c

__ D o

u.

~

N_

a w o i , i . o

' d C

! d  !

d d o m o o o = . .

a a a o o

'~'*

83M0d ~16 I XU 3 A I10138

i ;>

e's l t -- l l l l-- l l l l l '-l i

.. i ~~

/

LtJ Z

o o o oN o e c\a c0

  • co __o _J

. & o C P-- C T

cm X t cn i -- C 3 3 Dr y e-- I rN O

' N o __ C om C 3 E W l

l .. co -- >

i - c) o C y Ln en a 2 ~

  • m w

~

~

i z 7~~$ .N C

O aJ o o

' i cc OC o ~~ }--

I uJ N 1

" =c -

- a_ C)

__ , M LLJ LJ.J J o

y U y

i o 1.LJ

=

[ M /

- U y O O

_ z 1

F r

I C O

._ O

, C

._ f --

N

, o y o ,

. _ cb LD

~

Lij C

._ --)

~

s __

i N. ~

N O

o l , t ,  ! , t . i I '

o

' ' ' d C d '

d d d d m o o w 7 N o

- - o o a o o 4

5-"

83M0d lUIXU 3AI16138

o o

s 1 . I i i g

i i I . I .

I i '

I I I

i '

_o

.=

l - - .

-- ,/ , ..

x LU f ..

x i o o O o b 1[i o (\l mm .

__ m __o a

- o a

& T C

~~ o -- x i a,3

C

! o 1 o- U W r

.. - Is ._ o N o C c1 C 2 I E d g __ y o rw c) o o

o c

0) W .

m g

__ -__o .x.

, e e i

, z -

O td O y n 1 e~

J gg __

u _a N

", zc I -.

.=

. - o_

o l

,, W a o o o o W

[ r

__g a o

- ', o te

_ c

, O 1 .. O C

p r g

O 2

.I. o . .

__ j __o to

, m

,- to x

-)

e li-

~

N 8 d

i ,

d i ,

d i .

d i .

d d

i ,

c a

(\s o o w r m o

~ ~ o o o o o 83 Mod lBIX8 3 AI16138 s-70

,e- e i

'b' /

\t N

) ,'c

,, * '; ' g

. 's,,

s p

(A .Y,i t o'

9l-! d ], J, ,J ' T ,

c ,

l l t j 4 lg,i l l

$- 'r-f' l --

l

-es ...,

j l a , , ~ . \

.+ u- (.

i

,s Q g s j_

, ,t , L'

< t t N -- e,f, e  ;

x1+

p ee' , - 3 4 ,1 g

. ,e s

s

\

s x

' ' t, x }

Wm 1 1 1 to a

4 I

+

s c.,y .g ,

.a_ 2 3

-5 .1 , g i ~  :.s. .

u,3  ;, ;, n, m,a_ _oo ',

e' .u

.t t ,-

i g e- , . - 1

>/ \ a e.

. / <

i X g/I / / '

t C f,

., m tr, .;

.rg <-

e - .- 's =p w 1 i N

)  :

. t ::

s').. >I a s  :

1. , A 's s. } , c

,t aa

! 22 Ir J.

yx

'I ' TC d$ C

-' ', r-

- i.r.

- .A.

o , g

- s w.

, x f .;_g x e

( i i

i z t.u o ma g y a

4

l. .

g , 1 *w.\ D $

. r . , s. 3

, oc 9 U -J ze p[_. '-,, . f

-1 ,4' g

.,  % g2. Q x --

,_, e e,.

a gy ..

w o 8

.i,# 4 1 ..

c >-

n n, _. , a u

/ w.

N ,

o LL.)

s a- r

,e s

e; s , -g a u-W e ,

4 3\ u z y D I\

j /. '-

3 ' g%

, r

, 1 .  !- a

.g y .>

4 a

, .. a -

d a

.s c ,. ,

I

-r

$ s,t 1, o =r 0

s.

g\

s '

s, (- -_g in

?

. . w Ws

.. s ,,3 --

~D '~

  • n a g." M

.. s ,

., I* --

\,

0 g a l , t ,, 1 \. J. _, . s '

I f ' o d e 6 s 6

  • c d '

d t C

w o w>, * ,.w.1 c ,- < .g' s 2 N o s l. b gs6 a e a

, ., .. a s t

~

'/.

5-"

83h0d d6I/b 3 AI16138

'/

..-..s ,

,, q j;; [

'~~y ;, < ;W

... +

"g'

, ]L

] ,

l .c

:  : l  :  :  : l  :  :  : l  :  :  :  : .  :  : --

1.2a_ __

p - M ~= - T m r-i 1.0a_ __

CC s LtJ __ __

O 0- '

0.8a_ __

_J 1

g X

C 0.6a_ __

uJ \

m -.

F--

C 0.ya_

a _

uJ 0-i 0.2a_ __

1 u --

INCORE- 931 MWD /MTU-B AT 307 --

i s' PALADON-1000 NWD/MTU-8 RT 307 - --

0.0n  ;  ; j j j 1

;  ;  ;  ;  ;  ;  ;  ;  ; j  ;  ;  ;

i 0.00 20.00 40.00 60.00 80.00 100.00 CORE HEIGHT F%)

i i

FIGURE 5.45 HADDAM NECK CYCLE 13 CORE AVERAGE AXIAL POWER

l l l l l l l l l l l l l l l l l l l 1.2a- --

1.0a_. --

C L1J __

Z O

E- 0.8a- - --

_J C __

m X

C 0.6a_ --

\

L1J m _-

I--

C

_3 0.4a -

La C __

\

0.2a_ _-

w INCORE- 1668 MWD /MTU-8 AT 312 --

4 PALADON-2000 MHD/MTU-8 AT 312 - --

0.On  ;  ;  ; j  ;

j  ;  ;  ; j  ;  ;  ; j  ;  ;  ;

0.00 20.00 40.00 60.00 80.00 100.00 CORE HEIGHT ( 7. )

FIGURE 5.46 HADDAM NECK CYCLE 13 CORE AVERAGE AXIAL POWER

: l l  :
:  : l  :  :  : l  :  : l l l l 1.2a_

p=.-=. r= .

?- -_ _ __

.. y i e

1.0a_

E /

LLJ __

~I O --

' L 0.8a_

__J C .-

X C 0.6a_

\

Ltj b

C 0.ya g

Lt.1 C

0.2R_

Y

-- INCORE- 3483 HWD/MTU-B AT 311 5 PALADON-3000 MWD /MTU-B AT 311 0.on  ;  ;  ; j  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

40.00 60.00 80.00 100.00 0.00 20.00 CORE HEIGHT (%)

FIGURE 5.tl7 HADDAM NECK CYCLE 13 CORE AVERAGE AXIAL POWER

o o

I ,  ! , I , I , I ,.

i .

I, .

i ,

a.

/ l ..

l I

I C l.L.!

l. --

2 o O OJ OJ o b cr) m _o J D C l

    • ~ 1 11 X

.. mx .. g i I 33 eW w

= zr .. O N N C OO C

. 22 W rr ..

2o o C i

-o o

' (T) o .

m g

~~

    1. e z

~~$ .N C

O

' tu o

[ o o

i mg .. g uJ (O r' zc I -

- CL. (,,9 g

i y I i y U o O o L1J i

CC M

_ o g y y LLJ

" Z

.. i . ..

C o g

.. Q l' C W I w

,\ O y 4

o .

- o LO cu L1J I

g C

-)

O m

k l

o o

! . l . 1 , I , ,

I . o i

t d '

d '

d '

d ' d d '

c nJ o m m 2 cu o

- - e o o o a s-75 83M0d ld I XU 3 A I .LUl38

o o

. 1 . 1 . l . l . O I . 1

. i i

o

. i l g g l

' I g

l l

[ ..

a C i L1J

' 2 O

o 1 o

o

- c. .

J cn cn ._o i CD C e- >- "

CC X gg __ g I I DD U i

rZ .. O

=

N N C ao C

' s2 W rr ._ >

ci o o C

-o o oo . - g

, Ln LD _ o *\. C I (.D

" i z O

" Lu o o cc oG o ~~ W

~~

, U J (O zc I .-+

ir -c C)

P-t Lij Li,j  !

i r U i'

o U o L11 CC f

_ o, g o L1J

() Z g

T 4 ' a i

.. Q

.. C E

.. g 0 - r*

.. ( O .

T

-._o LD N

t.LJ C

\

.. -)

O m

Lt.

o o

a l l . l . I . _ . f . o

' d ' d '

d

  • d '

c d '

d =r nr o N c3 m w . . .

4 l -

o o o a o s-76 83 M0d ~16 I XU 3 A I16138

l l l l l l l l l l l l l l l l l l l 1.2a_ --

-- = -  ;- . . _. __

,_ 7, l

1.0a_ s L-

[

L1.1 ,,

\\ ..

2 O

1 0.8a_ --

i

__I i C ..

! X C 0.6a_ --

i

! u1

, F--

C 4

a 0.4a -

uJ C .

0.2a_ --

w INCORE- 5777 MWD /MTU-8 AT 312 --

$ PALA00N-6000 MHD/MTU-B AT 312 - --

0.0n  ;  ;

, t

j  ;
j  ;  ;  ; j  ;  ;  ;

a 0.00 20.00 40.00 60.00 80.00 100.00 CORE HEIGHT U/.)

FIGURE 5.50 HADDAM NECK CYCLE 13 CORE AVERAGE AX1AL POWER

: l  :  :
:  :  : l  :  :  : l  : l
: l 1.2a_

, - ~ ~ , - ._.

.I

~

4 1.0a_

c __

LL.I __

z o --

1 0.8a_

__J --

C ..

X __

i C 0.6a_

to m ..

4 C _

, a 0.4a '

to C ..

0.2a_

-- INCORE- 7173 MWD /MTU-8 AT 310 f PALA00N-7000 MWD /MTU-8 AT 310 M ~

0.0n  :  ;  ;  ;  ;  ; j  : l  : l 40.00 60.00 '80.00 100.00 0.00 20.00 i

CORE HEIGHT [%)

F]GURE 5.51 HADDRM NECK CYCLE 13 CORE AVERAGE. AXIAL POWER 5

i C

0

_ . _ - 0

. _i _ -

0 1

l l

- R E

W O

l 0

22 0 P 1 1 .

l 33 j0 L

- 8 A T T I AA

- X l BB ; A UU E T T M M ; G l

/ / A

_ DD R

HW E l

M M ; V 60 0 A 50 0 2 00 .

) E 88j0 l

- 6  % R

- N (

O E0 C R0 l - OA , T 3 C L e NA H 1 I P G l

I E E L H C Y

, 0 C 0 E j0 R K l O C 4

E

, C N M

l A

D D

A l

H l

w  ;

2 0 5 w 0 0

5 l

i 2 r- E R

U G

I F

l 0

0

_ - _ _ _ . _ i . _ - 0 a a _. a .

n a -

a _

8 6 4 2 0 2 0 . .

1 1 0 0 0 0 0

,4*

[J2O0 L

L J_C XC J>~&CygT b

1.2a_

.. . .W _ _ . . .

_- ,[ " - - - -

P -~ 'E - um ,M ." - " , -

y

1. 0 0._

C ..

LL1 ..

3 O --

1 0.8&_

_J ~

C ..

X C 0.6&_

Lt1 m ..

N C 0.ya a i b

C ..

0.2a_

y -- INCORE- 8789 MWO/MTU-B AT 308 8 PALA00N-9000 MWO/MTU-B AT 308 0 On  ;  ;  ;  ;  ; ;  ; j j j  ;  ;  ;

40.00 60.00 80.00 100.00 0.00 20.00 CORE HEIGHT (%)

FIGURE 5.53 HADDAM NECK CYCLE 13 CORE AVERAGE AX1AL POWER i

t e

l o

o e

I . I . l . I , I . l ,

o

' ' o I

l i '

i '

7 '

l 8

e C W

3.

o 1 co o GJ nl .

m to __o _.I a3 g t- P-- #

1C

= >

? X

-- m G3 -- C I I

. 'I 3D g si P- P-4

' tt .- O

' N N C

', oo g i 22 U EE -- >

in o o C i

CO o a

y f.D C3 . - g cn a _ _g x

__ e

" , z -

o

' as o mo u

oi gg .. g o ._s M 9, z a:, I .-.

4

- o. Q w

r J L1J d

y U

. o U o L1J k -

CC r

.' __o g o O W

' Z C

O'

-- O C

I y

O LO 8

O .

. __o LD na W

i c,

Q m

L1-N ..

t

' o o

I i I .- 1 . l . . I i o

d '

d '

d ' d

  • d '

d

  • c ns o ao (o  ::r os o

- - o a o e o I

4 83 mod lU I XU 3 A I LU~l38 5-81

l l l l l l l l l l l l l l l l l l l

t

!.2a_

' ~ ' ---

1.0a_ ,

' s

[ --

W l .. ,

3

! O a- t __

0.8a_

, a --

C __

X C 0.6a_

W 1

C 0.ya a

W G ~~

0.2a_

4 INCORE-10382 MWD /HTU-B RT 320 y --

PALADON-10500 MWD /MTU-B RT 320

$ i  ;

i  ;  ;  ;

0.On , , , i  ;

j 40.00 60.00 80.00 100.00 0.00 20.00 CORE HEIGHT (%)

FIGURE 5.55 HADDAM NECK CYCLE 13 CORE AVERAGE AX1AL' POWER

2.0n  ;  ;  ; j  ;  ;  ; j  ;  ;  ;

l  ;  ;  ;

l l l l l l l l 3

1.8a_

, n ..

~

X 1.6a_

. c I .--

l I --

c --

i & ..

i' J --

to 1.4a_

' a N -,

n__ -

E -- - -

u_

g__. _

_s r- _;a-1.2a_ --

w INCORE --

5 w

TORTISE - - - - -

1.0n  ;  ;  ; j  ;  ;  ; j  ;  ;  ; j  ;  ;  ; j  ;  ;  ;

l l l' .:

0 2000 4000 6000 8000 10000 12000

)

l CYCLE EXPOSURE [ MWD /MTU)

! FIGURE 5.56 HADDAM NECK CYLCE 12 F-DELT A-H (MAX) 0

T t

. . f . . . f .

2.On .'

1 .

. I,

. i i . .

i .

I __

1.8a_

i __

. X '

c 1.6a_

{

! I --

I ~~

i __

1 C __

H __

i to 1.4&_ __

O --

I __

E LL

;  : ~- ~

1.2a_

4 ..

w INCORE v

.i e

TORTISE - - - - - -

4 i i .

t .

j 1.On j

]

i 0 2000 4000 6000 8000 10000 i CYCLE EXPOSURE (MWD /MTU) i l FIGURE 5.57 HADDRM NECK CYCLE 13 F-DELTR-H (MAX) i i

0

+ ' _ 1 _ y! .l aItl .

,I 0

,0 2

1 "g.

, 0 0

j l0 0

1 3  ;

)

N :

X EO A RD M OA (

_ CL : 0

, NA

- I P 0 )

F 0

I l0 U 2 8 T 1

.  : M L / E D L C

W Y

- M C

(

E K

- 0 R C

' 0 E i

. l0 U N

' 6 S

l O M

' P A X D D

l E A H
l E L 8 j

g l0 0

0 C

Y 5

5

~ 4 C

~
E R

U

G I

F 0

j 0 l0 2

, \  :

0

. e e _ _ _ - . ___.._ ~

n . e e a _

a -

._a _ .

. a . ~

0 0 8 6 4 - 2 2 1 1 1 1 1 xC7 TO

- - - _ - - - _ ,_ ._..~

_ ,_ ._..~

0

. 0 I

l0 0

1

~ -

l

)

N X

4 EO 0 A

- RDl 0 M I

OA 0 (

CL 8

_ NA 0

I P : )

F

_ U 3 T 1

_- M

_ / E D L C

W

- Y

- 0 M C 0 (

j l0 E K 6

R C E

U N D'"

l S

O P

X M

R D

D l E A H

' 0 E 0 L 9 i

l0 5 4 C .

Y 5 C

E R

U G

I F

0 l0 j

0 2

0

. . . _ . _ - , _ . _ . ~

n . .

. a . a - ,a . a ~

0 8 6 y 2 O. . .

1 1

1 1

2 1 IO wh

o l  ; g_ ,, p . l.-

l . l - l-_l l_.g_g_g l_g g___g _ 'a]

m l..~

~m%

i ...

i N s

~

' o o-P

/ I o

o

- F g

AD LL.

g ..

Ld o O mo oo .. g Zc s C o & - c. o - ,-.

_g g x e r C

.. E g a N -

O 3 g E J

' - U l W U C CC

-- i --8 D r w (f) U O W g

CL

  1. X r Lij C O

LLI C

p .. g

-I I o U

--g r a o :r O W g

LLJ

.. s g

l D o

e u.

O I __o

__ o N

i

! . I . . .

, , , I , , , I . , , , .

c i . .

d ' '

'd * '

' d ' ' '

d ' ' '

c o o o o o o e o e e o e

& *** H & Y I I I

('/.1 J.3 S d do 16 I X U

, 5-87

f . f - > . ' . . . I .

5.On

. -t . . .

i a

l

, . . i j . . i g i i l

g 3, ..

1 3.0a_

8 ..

1.0a_ -

t g --

w ..

LL- ..

LL

/

O ..

i .-

J -1.0a_

i c -

- ~~

! X -~\ -

~

i c 'N /

-- % - - _ _ . w i

j -3.0a_

i --

i i

1 ..

i ..

INCORE l T - --

-~

PALADON -

8 i . i . . i . . i . . .

-5.0n ., .,

i

. .  ; i i . . . ,

2000 4000 6000 8000 1000C O

i CYCLE EXPOSURE [ MWD /MTU) 4 4

FIGURE 5.61 HADDAM NECK CYCLE 13 AXIAL OFFSET

1200  ;  ;  ; j  ;  ;  ; j  ;  ;  ; j  ;  ;  ; j  ;  ;  ; j  ;  ;  ;

1000 __ __

1 .

800 __ __

E O_

Q_ ..

1 o '

Z 600 __ __

O U

\ '

i

. O l CC o 400 __ __

CD s s

3 J

200 __

\ s __

l

\

'hs i

4 "

w MEASUREMENT h TORTISE - -

\ "

O
:  : l  :  :  : l  :  :  : j  :  :  :  !  :  :  : l  :  :  :

i 0 2000 4000 6000 8000 10000 12000

CYCLE EXPOSURE (MWD /MTU)

FIGURE 5.62 HADDAM NECK CYCLE 12 BORON RUNDOWN i

I 1000 t

j  ; ;  ; j  ;  ; ;

I  ;  ;  ;  ;  ;  ; j  ;

i

\ s ..

800 1 __

T, N, I s I N I i

ec: _ ,

'N, 1, z 1 '

1 o

u

,N N -

Z o

400 1 l

cc o

1 '\ ,

CD __ ..

s

-- =+.

200 __ '

y

'N '

I 8

MEASUREMENT TORTISE - -

s

{ t G  :  :  : :  :  :  :  :  ;  :

l l l l l l .

l 0 2000 4000 6000 8000 10000 CYCLE EXPOSURE (MWD /MTU)

FIGURE 5.63 HADDAM NECK CTCLE 13 BORON RUNDOWN

l l

l

6. REFERENCES

)

1. Langford, F. L. and Nath, R. J. , " Evaluation of Nuclear Hot Channel Factor Uncertainties," WCAP-7308-L, April 1969, and Spier, E. M. and Nguyen, T. G., " Update to WCAP-7308-L, Evaluation of Nuclear Hot Channel Factor Uncertainties," March 1984.
2. Mayer, C. E. and Stover, R. L., "INCORE Power Distribution Deter-mination in Westinghouse Pressurized Water Reactors," WCAP-8498, July 1975.
3. Bordelon, F. M., et al, " Westinghouse Reload Safety Evaluation Methodology," WCAP-9272 (Proprietary), March 1978.
4. Poncelet, C. G., et al," LASER - A Depletion Program for Lattice Calculations Based on MUFT and THERMOS," WCAP-6073, April 1966.
5. Olhoeft, J. E., "The Doppler Effect for a Non-Uniform Temperature Distribution in Reactor Fuel Elements," WCAP-2048, July 1962.
6. Barry, R. F., " LEOPARD - A Spectrum Dependent Non-Spatial Depletion Code for the IBM-7094," WCAP-3269-26, September 1963.
7. England, T. R., " CINDER -

A Point Depletion and Fission Product Program," WAPD-TM-334, August 1962.

8. Amster, H., et al, "The Calculation of Thermal Constants Averaged Over a Wigner-Wilkins Flux Spectrum:...SOFOCATE...," WAPD-TM-39, January 1957.

J

9. Suich, J. E. and Honeck, H. C., "The HAMMER System - Heterogeneous Analysis by Multigroup Hethods of Exponentials and Reactors,"

DP-1064, January 1967.

10. Flatt, H. P. and Baller, D. C., " AIM-5-A Multigroup, One-Dimensional Diffusion Equation Code," NAA-SR-4694, March 1960.

6-1

l 1

j 11. Altomare, S., et al, "The TURTLE 24.0 Dif fusion Depletion Code,"

WCAP-7213-P-A (Proprieta ry) and WCAP-7758-A, January 1975.

12. Camden, T. M. et al, "PALADON-Westinghouse Nodal Computer Code,"

WCAP-9485 (Proprietary) and WCAP-9486, December 1978 and Supple-ment 1, WCAP-9485-A (Proprietary) and WCAP-9486-A (Non-Proprietary),

September 1981.

13. Barry, R. F. , et al, "The PANDA Code," WCAP-7048-P-A (Proprietary)

! and WCAP-7757-A, January 1975.

14. Miller, R. W., et al, " Relaxation of Constant Axial Offset Control,"

WCAP-10216-P-A, June 1983.

i 4

l 6-2

l

7. GLOSSARY Definitions of Symbols and Acronyms

-A0 Axial Offset = (P T - Pg ) / (PT+P) B ARI All Rods In

'ARO All Rods Out BOC Beginning of Cycle CZP Cold Zero Power DNB Departure from Nucleate Boiling EFPD Effective Full Power Day EOC End of Cycle F,g Enthalpy Rise Factor F

q Nuclear Heat Flux Peaking Factor F Planar Radial Peaking Factor xy HFP llot Full Power HZP llot Zero Power MOC Middle of Cycle RPD Relative Power Distribution ZPPT Zero Power Physics Tests 7-1

-