ML20059E610
| ML20059E610 | |
| Person / Time | |
|---|---|
| Site: | Haddam Neck File:Connecticut Yankee Atomic Power Co icon.png |
| Issue date: | 11/17/1993 |
| From: | NORTHEAST UTILITIES SERVICE CO. |
| To: | |
| Shared Package | |
| ML20059E598 | List: |
| References | |
| NUSC-152-ADD, NUSC0-152-ADD, NUSCO-152-ADD-03, NUSCO-152-ADD-3, NUDOCS 9401120061 | |
| Download: ML20059E610 (94) | |
Text
{{#Wiki_filter:- NUSCO - 152 ADDINDUM 3 ~ NUSCO 1 TOPICAL REPORT NS Md"ObF W Nes.oix., i z. i os 4 for PWR Reload Design i gk "*t. Northeast Utilities servi < e comeany i Northeast Nuc lear Analysis Sa1 ion Utilities System Berlin, CT i O b t)$a 13 P PDR
,;,~~ v,: il il 4 ',1 )U N1 i N USCO TOPICAL ~ REPORT Physics Methodology 1 ~. a. c v... ; for PWR Reload Design t II l4, \\ N' l ) j s / Northeast
- s. m o,,,, <
s ( g., u,.u _ s,.q,<,,, f]f Utilities System =, = =, P PDR
i l NUSCO - 152 t ADDENDUM 3 NUSCO TOPICAL REPORT I e PHYSICS METHODOLOGY FOR PWR RELOAD DESIGN f P t 4 November 17,1993 i NORTHEAST UTILITIES SERVICE COMPANY NUCLEAR ANALYSIS SECTION BERLIN, CT i
DISCLAIMER The information contained in this topical report was prepared for the specific requirements of Northeast Utilities Service Company (NUSCO) and its affiliated companies, and may contain materials subject to privately owned rights. Any use of all or any portion of the information, analyses, methodology or data contained in this topical report by third parties shall be undertaken j at such party's sole risk. NUSCO AND ITS AFFILIATED COMPANIES HEREBY DISCLAIM ANY LIABILITY (INCLUDING BUT NOT LIMITED TO TORT, CONTRACT, STATUTE, OR COURSE OF DEALING) OR WARRANTY (WHETHER EXPRESSED OR IMPLIED) FOR THE ACCURACY, COMPLETENESS, OR SUITABILITY FOR A PARTICULAR PURPOSE OR MERCHANTABILITY OF THE INFORMATION. i [ i i
ABSTRACT ] Since 1986 NUSCO has performed core reload design for the Haddam Neck reactor cycles 15 through 18 using Westinghouse's ARK /TORTISE software package. In an effort to remain technically current, NUSCO has upgraded to the PHOENIX-P/ANC Westinghouse' core reload design software package and plans to apply this new software package to Northeast Utilities' j PWRs. The physics methodology (software) for the design and the analysis of PWR reload cores l has been licensed by NUSCO from the Westinghouse Nuclear Manufacturing Division. NUSCO ~ has used the PHOENIX-P/ANC methodology to model the Haddam Neck reactor core and has compared the results to actual measurements. The quality of the comparisons demonstrates. NUSCO's ability to perform PWR reload design with the PHOENIX-P/ANC software package. i k i i i I I L + f ii a
TABLE OF CONTENTS Section Page DISCLAIMER ..i ABSTACT........ ii TABLE OF CONTENTS ......... iii LIST OF TABLES v LIST OF FIGURES... ... vi
1.0 INTRODUCTION
.........1 1.1 OBJECTIVE 1 1.2 SCOPE..... ...1 2.0 PHYSICS CODES....................... 2 2.1 FIGHT-H .2 2.2 PHOENIX-P.. 2 l 2.3 ANC. 3 2.4 APOLLO.............. .4 i 3.0 PHYSICS METHODOLOGY. ..5 3.1 CROSS SECTION LIBRARY.. ......5 l l 3.2 PHOENIX-P LATTICE MODELING ......5 l 3.2.1 Fuel Cell Model... .......6 3.2.2 Discrete Bumable Absorber Models. .......6 3.2.3 Control Rod Cell Model. ............6 3.2.4 Structural Cell Models.. ....7 1 l 3.3 BAFFLE-REFLECTOR MODELING......... ..............7 ) l 3.4 THREE-DIMENSIONAL NODAL MODEL... 7 1 3.5 ONE-DIMENSIONAL DIFFUSION THEORY MODEL.................. 8 4.0 PHYSICS MODEL APPLICATIONS....... .......9 4.1 CORE POWER DISTIBUTIONS AT STEADY STATE CONDITIONS............. ..........9 4.1.1 Power Distributions............ .9 4.1.2 Power Peaking................. .....................9 4.1.3 Fuel Depletion............ ....... 10 4.2 AXIAL POWER DISTIBUTION CONTOL. .............10 4.3 CORE REACTIVITY PARAMETERS........ ........11 4.3.1 Moderator Temperature Coefficient. . 11 4.3.2 Doppler Temperature Coefficient. . 11 4.3.3 Total Power Coefficient... 12 4.3.4 Isothermal Temperature Coefficient... 12 iii i 1
TABLE OF CONTENTS (Continued) Section Page 4.3.5 Earon Reactivity Coefficient. 12 f 4.3.6 Xenon and Samarium Worth 12 l 4.3.7 Control Rod Worth 13 4.3.8 Neutron Kinetics Parameters 13 5.0 PHYSICS MODEL VERIFICATION 14 5.1 CYCLE HISTORY 14 5.2 ZERO POWER PHYSICS TESTS 15 l 5.2.1 Critical Boron Concentration 15 l 5.2.2 Moderator Temperature Coefficient 15 5.2.3 Control Rod Worth 15 5.3 POWER OPERATION 16 i 5.3.1 Radial Power Distributions 17 l 5.3.2 Axial Power Distributions. 17 5.3.3 Peaking Factors. 17 5.3.4 Boron Rundown Curves 18 5.4
SUMMARY
18 g
6.0 REFERENCES
84 l ,o iv
LIST OF TABLES 5.1 Haddam Neck Cycle 15 Batch Loading.. 19 5.2 Haddam Neck Cycle 16 Batch Loading......... 20 5.3 Haddam Neck Cycle 17 Batch Loading... . 21 5.4 Haddam Neck Cycle 18 Batch Loading... .. 22 5.5 Haddam Neck Zero Power Physics Tests Acceptance and Review Criteria 23 5.6 Haddam Neck Cycles 15,16,17, and 18 Critical Boron Comparison....... . 24 ( 5.7 Haddam Neck Cycles 15,16,17, and 18 } Moderator Temperature Coefficient...... ...... 25 i 5.8 Haddam Neck Cycle 15 Rod Worth Comparison.......... 26 5.9 Haddam Neck Cycle 16 Rod Worth Comparison.................... 27 5.10 Haddam Neck Cycle 17 Rod Worth Comparison.... .... 28 5.11 Haddam Neck Cycle 18 Rod Worth Comparison... ........29 j 5.12' Haddam Neck Cycle 15 Axial Offset Comparison... 30 l 5.13 Haddam Neck Cycle 16 Axial Offset Comparison................... 31 - 5.14 Haddam Neck Cycle 17 Axial Offset Comparison. ...................32 5.15 Haddam Neck Cycle 15 Power Peaking Factor Comparison. . 33 5.16 Haddam Neck Cycle 16 Power Peaking 1 Factor Comparison................... .... 34 5.17 Haddam Neck Cycle 17 Power Peaking Factor Comparison................. . 35 v
LIST OF FIGURES 5.1 Haddam Neck Cycle 15 Loading Pattern..... .................. 36 5.2 Haddam Neck Cycle 16 Loading Pattern.. 37 5.3 Haddam Neck Cycle 17 Loading Pattern.... 38 5.4 Haddam Neck Cycle 18 Loading Pattern...................... . 39 5.5 Haddam Neck Cycle 15 Radial Power Distribution at 297 MWD /MTU.. ... 40 5.6 Haddam Neck Cycle 15 Radial Power Distribution at 1866 MWD /MTU . 41 5.7 Haddam Neck Cycle 15 Radial Power Distribution at S212 MWD /MTU... .. 42 5.8 Haddam Neck Cycle 15 Radial Power Distribution at 9424 MWD /MTU ... 43 5.9 Haddam Neck Cycle 15 Radial Power Distribution at 11948 MWD /MTU.. 44 5.10 Haddam Neck Cycle 16 Radial Power Distribution at 440 MWD /MTU......... .... 45 l 5.11 Haddam Neck Cycle 16 Radial Power Distribution ) at 1881 MWD /MTU.. .........46 j 5.12 Haddam Neck Cycle 16 Radial Power Distribution at B016 MWD /MTU....... .....47 l 1 5.13 Haddam Neck Cycle 16 Radial Power Distribution at 7689 MWD /MTU.. . 48 5.14 Haddam Neck Cycle 16 Radial Power Distribution at 9471 MWD /MTU.... ........49 i 5.15 Haddam Neck Cycle 17 Radial Power Distribution at 229 MWD /MTU............. .. 50 5.16 Haddam Neck Cycle 17 Radial Power Distribution at 1872 MWD /MTU.. .... 51 vi
LIST OF FIGURES (Continued) ] 5.17 Haddam Neck Cycle 17 Radial Power Distribution . 52 at 6158 MWD /MTU..... 5.18 Haddam Neck Cycle 17 Radial Power Distribution ....... 53 at 7756 MWD /MTU 5.19 Haddam Neck Cycle 17 Radial Power Distribution at 11138 MWD /MTU. 54 5.20 Haddam Neck Cycle 18 Radial Power Distribution .. 55 at 140 MWD /MTU.. 5.21 Haddam Neck Cycle 15 Axial Power Distribution 56 i at 297 MWD /MTU... 5.22 Haddam Neck Cycle 15 Axial Power Distribution at 1866 MWD /MTU. ... 57 5.23 Haddam Neck Cycle 15 Axial Power Distribution ..... 58 at S212 MWD /MTU l 5.24 Haddam Neck Cycle 15 Axial Power Distribution ..... 59 at 9424 MWD /MTU........ 5.25 Haddam Neck Cycle 15 Axial Power Distribution at 11948 MWD /MTU............ . 60 5.26 Haddam Neck Cycle 16 Axial Power Distribution at 440 MWD /MTU.............. ..............61 5.27 Haddam Neck Cycle 16 Axial Power Distribution I .... 62 at 1881 MWD /MTU.... 5.28 Haddam Neck Cycle 16 Axial Power Distribution at 6016 MWD /MTU .... 63 5.29 Haddam Neck Cycle 16 Axial Power Distribution at 7669 MWD /MTU..... . 64 l 5.30 Haddam Neck Cycle 16 Axial Power Distribution at 9471 MWD /MTU.... ...........65 ) j vii f
LIST OF FIGURES (Continued) 5.31 Haddam Neck Cycle 17 Axial Power Distribution 66 at 229 MWD /MTU.... 5.32 Haddam Neck Cycle 17 Axial Power Distribution 67 at 1872 MWD /MTU............ 5.33 Haddam Neck Cycle 17 Axial Power Distribution 68 at 6158 MWD /MTU. 5.34 Haddam Neck Cycle 17 Axial Power Distribution .... 69 l at 7756 MWD /MTU. 5.35 Haddam Neck Cycle 17 Axial Power Distribution 70 at 11138 MWD /MTU................ 5.36 Haddam Neck Cycle 18 Axial Power Distribution 71 at 140 MWD /MTU...... 72 l 5.37 Haddam Neck Cycle 15 Axial Offset Vs. Burnup.......... i 5.38 Haddam Neck Cycle 16 Axial Offset Vs. Burnup 73 5.39 Haddam Neck Cycle 17 Axial Offset Vs. Burnup 74 5.40 Haddam Neck Cycle 15 F,s Vs. Burnup..................... .... 75 5.41 Haddam Neck Cycle 16 F,g Vs. Burnup.... 76 5.42 Haddam Neck Cycle 17 F,s Vs. Bumup........ 77 5.43 Haddam Neck Cycle 15 F Vs. Burnup..... ..................... 78 o 5A4 Haddam Neck Cycle 16 F Vs. Burnup........ 79 o 5.45 Haddam Neck Cycle 17 F Vs. Bumup 80 a 5.46 Haddam Neck Cycle 15 Critical Boron Concentration Vs. Bumup.. 81 5.47 Haddam Neck Cycle 16 Critical Boron Concentration Vs. Burnup. 82 5.48 Haddam Neck Cycle 17 Critical Boron -i ...................... 83 i Concentration Vs. Burnup.... viii P y , ~,
1.0 INTRODUCTION
This addendum to NUSCO topical report #152 [1] docurnents NUSCO's ability to perform. reload core design using the current PHOENIX-P/ANC Westinghouse methodology for Northeast Utilities
- PWRs. Haddam Neck data will be used to benchmark the new software package, and comparisons will also be made with previous ARK /TORTISE results.
1.1 OBJECTIVE The objective of this report is to demonstrate NUSCO's ability to perform PWR core reload analyses using the PHOENIX-P/ANC methodology supplied by the Westinghouse Nuclear Manufacturing Division. l b 1.2 SCOPE Since 1986 NUSCO has performed reload core design for the Haddam Neck plant using l the Westinghouse ARK /TORTISE software package. in an effort to remain technically current, NUSCO has upgraded to the Westinghouse PHOENIX-P/ANC software package. Descriptions of the computer codes and the physics models in this package are presented in Sections 2 and 3. Core follow results from operation of Haddam Neck cycles 15,16,17, and 18 provide a large database with which to benchmark power distributions, boron rundown curves, and fuel depletion calculations. In addition, physics data collected during startup testing of Haddam Neck cycles 15,16,17, and 18 provide reliable benchmarks for evaluating the model predictions of control rod worths and temperature coefficients. Since the reload designs for cycles 15,16,17, and 18 were performed by NUSCO using the ARK /TORTISE methodology, these results can also be compared to PHOENIX-P/ANC, where applicable. Complete core follow data from cycle 18 will not be presented since, at the time of this report, only a few months worth of operating data was available. i All methods employed {model development, computer codes, etc.) to generate the results appearing in this report are the standard licensed methods used by the Westinghouse Nuclear Manufacturing Division. Therefore, requantification of the calculational uncertainties associated with ti,e methods is unnecessary [2]. In addition, the methods i used in the INCORE code [3] to process measured data are also standard to Westinghouse such that the measurement uncertainties associated with this process do not require redetermination. l 1
2.0 PHYSICS CODES This section describes the major Westinghouse codes used by NUSCO as part of the reload design. The codes are used in the same fashion as described in Section 3 of Westinghouse's licensed reload methodology topical report [4]. Although the codes described in this section are not named in the Westinghouse licensed reload methodology topical, the FIGHTH and APOLLO codes contain the same methodology as the licensed versions. These " updated versions" contain engineering enhancements sech as larger problem size and editing improvements relative to the original code versions. The updated code versions were described at a meeting between the Westinghouse Nuclear Fuel Division and the NRC Core Performance Branch in October 1984. During this meeting, the differences between the original and updated code versions were discussed. l The NRC Core Performance branch agreed that the updated code versions were fundamentally the same as the original versions, employing the same fundamental solution algorithms as the orioinal versions. The two remaining codes, PHOENIX-P and ANC, contain significant improvements to the methodoiogies diNussed in the 1984 meeting between Westinghouse and the NRC. PHOENIX-F l5 a two-dimensional multigroup lattice physics code which does not rely on the spatial / spectral interaction assumptions inherent in previous methodology. ANC, a three-dimensional code, utilizes the non-linear nodal expansion method, the equivalence theory for cross section homogenization, and a rod power recovery model. Topical reports qua;ifying PHOENIX-P and ANC for reload design have been approved by the NRC [5,6]. 2.1 FIGHT-H FIGHT-H performs a calculation of effective temperatures in a low enriched, sintered, PWR UO2 fuel rod for use in Phoenix-P calculations. The FIGHT-H model accounts for the following effects: radial variation of pellet thermal conductivity and heat generation rate, pellet thermal expansion, elastic deflection of the clad, gas gap conductance as a function of initial fill gas, variation of the hot open gap dimension, and the fraction of the pellet circumference over which the gap is closed due to pellet cracking. References 7 and 8 provide a description of the basis of the FIGHT-H code. 2.2 PHOENIX-P PHOENIX-P is a two dimensional multigroup transport theory code used to dt velop lattice physics constants for PWR core modeling. The flux distribution is solved using a two step. process. First, a 42 energy group nodal calculation couples individual subcell regions (pellet, clad, and moderator) as well as surrounding pins by using a method based on collision probabilities and heterogeneous response fluxes. The nodal solution generates a detailed local flux distribution which is later used to homogenize the assembly geometry. The next step solves for the assembly angular flux distribution by using an S, discrete ordinates transport calculation. For this calculation, the assembly geometry is homogenized using the flux distribution from the nodal calculation, and the energy 2
a l 1 dependence is reduced to 6 energy groups. The discrete ordinates solution is then used to normalize the fluxes calculated in the nodal solution. These normalized fluxes are used to determine reaction rates and to deplete the fuel and burnable absorbers. A standard B1 calculation is employed to correct cross sections for the critical spectrum and to j provide accurate fast group diffusion constants. PHOENIX-P accesses a 42 group cross section library which has been developed from ENDF/B-V files. The group structure was explicitly designed to retain important resonance parameters during group collapse from the fine group data. The PHOENIX-P library has the neutronic data necessary to model fuel, fission products, coolant, cladding, structural materials, and absorber materials found within a PWR core. A detailed discussion of the methodology and models incorporated in PHOENIX-P is i I contained in Reference 9. 2.3 ANC The Advanced Nodal Code (ANC) employs a nodal expansion method to solve the 2-group diffusion equations in 3 dimensions. This method determines partial currents and i average neutron fluxes for a node by utilizing continuous homogeneous neutron flux profiles described by fourth order polynomial expansions in the x, y, and z directions across the node. Discontinuity factors are used to modify the homogeneous cross y sections to preserve the node surface fluxes and currents that would be obtained from an l equivalent heterogenous model. A pin power recovery model couples an analytic solution to the two group diffusion equations with the pin power information from PHOENIX-P. Using this method, ANC accurately reconstructs the results of fine mesh models. A detailed description of the ANC methodology is provided in Reference 10. ANC can be used to perform two or three dimensional calculations with several options. Full core to eighth core geometry configurations are available in addition to various symmetry options. Changes in fuel temperature and moderator density are modeled by providing feedback adjustments for macroscopic cross sections. Fuel and bumable absorber depletion and xenon and samarium buildup and decay are modeled. ANC is primarily used for the following applications: Axial and radial power distributions. Differential and integral control rod worths. l Core reactivity coefficients. Critical core configurations and shutdown margins. Fuel and burnable absorber loading pattems. l l u 3 1 ______-_____-_-_-______________________-__-______________-A
l 2.4 APOLLO The APOLLO code calculates flux distributions and reaction rate distributions in a one-dimensional slab as a function of burnup. APOLLO models are produced through radially - collapsing a three-dimensional ANC model. A burnup and elevation dependent radial i buckling search is then performed to normalize the APOLLO model to the ANC model. The algorithms of APOLLO are based on two-group diffusion theory with a finite difference solution method. Although APOLLO considers slab geometry, a relatively high number of mesh points is available. Variations in thermal-hydraulic parameters occurring in the lattice are reproduced through feedback adjustments to fuel temperatures and moderator densities. The purpose of the axial APOLLO modelis to provide: Differential and integral control rod worths.- Axial power distributions for Fq synthesis. Trip reactivity curves. Load follow capability evaluations. Control rod insertion limit verification. APOLLO uses microscopic and macroscopic cross sections for the compositions present in each mesh interval. These cross sections result from least-square fits of radially averaged cross sections as a function of burnup. Reference 11 provides a description of the basis for the APOLLO code. ) 4 l
3.0 PHYSICS METHODOLOGY Previously, NUSCO had performed core reload design calculations for the Haddam Neck reactor using Westinghouse's ARK /TORTISE methodology. As a result of NUSCO's intent to employ the state-of-the-art licensed analysis methods used by Westinghouse, NUSCO upgraded to the PHOENIX-P/ANC core design methodology. l This section briefly describes the Westinghouse methodology used by NUSCO to perform reload core design calculations. The major features associated with each model are l discussed as well as the interaction between models. This methodology was used to generate the results presented in Section 5. Descriptions of the individual computer codes are given in Section 2. Lattice physics parameters for unit assembliss and baffle-reflector cross sections are calculated with the two-dimensional multi-group transport theory code, PHOENIX-P. Fuel and clad temperatures are generated with the FIGHTH code. The core is modeled in three dimensions with the advanced nodal code, ANC, which is used to predict reactivity, power distributions, and other relevant core characteristics. In addition, the one-dimensional diffusion theory code, APOLLO, is used to calculate differential control rod worths and axial power distributions for the heat flux hot channel factor (Fa) synthesis to establish operational limits. The cross section library as well as several major code models are discussed in the following sections. All models are representative of current Westinghouse practices. 3.1 CROSS SECTION LIBRARY PHOENIX-P uses a 42 energy group microscopic cross section library which has been collapsed from the ENDFBN fine group library. The library was designed to capture integral properties of the multigroup data during group collapse, enabling proper modeling l of important resonance parameters and to provide the overall accuracy needed in design calculations. In addition, the library has been developed in a manner consistent with existing Westinghouse methodologies and accumulated experience in core design. The generation and benchmarking of the PHOENIX-P library are described in detail in Reference 9. 3.2 PHOENIX-P LATTICE MODELING In PHOENIX-P, the fuel, discrete absorbers, and structural components within a sing!c ruel assembly are represented in their exact lattice configuration. Homogenized two-group } microscopic cross sections discontinuity factors, and pin factors are generated as a i function of burnup for input to ANC. Microscopic cross sections are generated for isotopes and materials represented explicitly in ANC. These include xenon, samarium, soluble boron, water, and burnable absorbers. Branch calculations are performed at selected burnups to obtain constants for rodded assemblies. 1 PHOENIX-P allows a three region cylindrical cell description for each cell within the lattice. 5
Since most lattice cells consist of more than three subregions, material preservation principles are employed to construct a three region cell representation. The third or outer region of each cell, defined by the fuel pin pitch, has a common composition in all cells in a given lattice problem. The grids are modeled by smearing the grid material uniformly over this common outer region. Only grids in the active fuel are smeared. The following sections describe the different types of cell models. 3.2.1 Fuel Cell Model The innermost region of a fuel rod cell is defined by the fuel pellet outer radius. The second region is defined by the clad outer radius and includes the gap. For fresh fuel, the appropriate number densities are specified for the uranium isotopes and oxygen. For burned fuel, isotopic information for the depletion and decay chains modeled in PHOENIX-P is obtained from previous depletion calculations. Fuel pellets with integral fuel burnable absorber (IFBA) are not explicitly modeled with a coating on the pellet; instead, the B' material is smeared into the clad region. PHOENIX-P corrects for reactivity differences due to modeling the absorber in the clad instead of on the pellet. 3.2.2 Discrete Burnable Absorber Cell Models Two types of discrete burnable absorber (BA) cells are encountered in typical design applications: Pyrex glass and wet annular burnable absorber (WABA). Due to the innermost region, the cell representation of these bas is significantly different. The Pyrex BA is voided in the central region while the WABA contains moderator material. In addition the amount of material as well as the surface area of the absorber must be preserved. For a Pyrex BA, the void, inner clad, and BA pellet material are smeared into the first region with a radius equal to the BA pellet outer radius. Region 2 represents the BA outer clad, gap, guide tube, and materials. Note that the small volume of moderator between - the BA outer clad and the guide tube is modeled as if it is outside the guide tube. Since the zircaloy guide tube material is nearly transparent to neutrons, this is a minor approximation. In the case of WABAs, both the inner and outer surfaces of the absorber are important since a fast neutron can pass through the absorber, become thermalized in the inner water region, and be absorbed. Region 1 of the cellis defined as moderator materialwith an outer radius equivalent to the BA pellet inner radius, and region 2 is defined as pure pellet material with an outer radius equivalent to the BA pellet outer radius. The inner clad, inner gap, outer clad, guide tube materials are smeared into the moderator region to preserve materials. 3.2.3 Control Rod Cell Model Control rod cells are modeled the same as Pyrex BA cells. The only distinction is the 6
dimension and m' terialin the pellet region. Control rods are modeled in PHOENIX-P by specifying a trace amount of U-238 in with the control rod absorber material. This action triggers a resonance calculation in the Ag-In-Cd by PHOENIX-P. 3.2.4 Structural Cell Models Structural cells are cells that contain neither a strong absorber nor material that is depletable. These include guide tubes, instrumentation tubes, water displacer rods, and stainless steel and zircatoy rods. Typically, these cells can be represented with three or fewer regions and do not require any special neutronic considerations. Sleeves are accounted for by calculating an effective guide tube thickness that preserves the sleeve volume. 3.3 BAFFLE-REFLECTOR MODELING A one-dimensional slab calculation is performed with PHOENIX-P to generate baffle-reflector cross sections for ANC. The model consists of a series of fuel cells approximating two fuel assemblies, assembly / baffle gap, baffle, reflector, core barrel, thermal pad, and moderator. A set of homogenized cross sections for ANC is obtained j which reflect the complex spectrum variation which exists between the fuel assembhes, baffle, and reflector. ] 3.4 THREE-DIMENSIONAL NODAL MODEL The homogenized cross sections, discontinuity factors, and pin factors generated on a cycle specific basis with PHOENIX-P depletion calculations are used to model the three-dimensional core in ANC. Each fuel assembly is represented by four radial nodes. To obtain an accurate pin power recovery solution, the burnup graoient :Phin each node is represented in ANC. A burnup gradient algorithm matches node corner and surface average bumups. Axially heterogeneous features such as axial blankets and part length burnable absorbers are explicitly represented using the variable axial mesh capability in ANC. Generally,20 to 24 axial mesh intervals produce accurate axial power distributions. Axial zoning of burnup dependent fuel cross sections is used to account for spectrum effects induced by axial burnable absorber and fuel burnup gradients. Previous cycle bumable absorber history effects are also accounted for by using different sets of fuel cross sections. 4 Three-dimensional ANC calculations are used to predict core power distributions, peaking j factors, critical boron concentrations, control rod worths, and reactivity coefficients. The i three-dimensional model can also be collapsed to two-dimensions for certain calculations (e.g., selection of the highest worth stuck rod) where a three-dimensional representation j is not necessary. 7 1
3.5 ONE-DIMENSIONAL DIFFUSION THEORY MODEL The three-dimensional ANC model is radially homogenized to generate a one-dimensional APOLLO model, Cross sections are flux and volume weighted, and a burnup and elevation dependent radial buckling search is performed to normalize the APOLLO model to ANC. The axial mesh is redefined to comprise 40 or more axial intervals. The one-dimensional diffusion theory model is used for calculations where additional detail is desirable in the axial direction. These include generation of differential and integral control rod warth curves, determination of control rod insertion limits, and analysis of axial power distributions to establish limits on axial offset during power operation. i 8 .1
4.0 PHYSICS MODEL APPLICATIONS The physics methodology discussed in Section 3 was developed in order to provide reliable analytical predictions in the following four major areas: Core power distributions at steady state conditions. Axial power distribution control limits Core reactivity parameters. Core physics parameters for transient analysis. Often more than one model may be used to perform a specific analysis. Selection of the appropriate model depends upon the degree of accuracy and range of application required for a given analysis, f 4.1 CORE POWER DISTIBUTIONS AT STEADY STATE CONDITIONS The application of physics models during steady state operation is directed at the prediction of power distributions, power peaking, and fuel depletion. These calculations are performed for various points during the projected cycle and for various control rod bank configurations. 4.1.1 Power Distributions l Global core power distributions are obtained as a function of burnup from three- { dimensional ANC depletion calculations. Calculations are also performed at selected burnups for various power levels and control rod configurations. Peak rod powers and hot i channel factors are generated by pin power reconstruction within ANC using rod-by-rod power distributions from single assembly, two-dimensional PHOENIX-P fine mesh calculations. The ANC model also provides input data to the incore instrumentation surveillance program INCORE. 4.1.2 Power Peaking Local power peaking is continuously under review because of the limits imposed by Technical Specifications and/or by fuel design limits. The factors used to measuro local power peaking include: the heat flux hot channel factor F, defined as the maximum local heat flux on the o surface of a fuel rod divided by the average fuel rod heat flux. the nuclear enthalpy rise hot channel factor, F,, defined as the ratio of the integral of linear power along the rod with the highest integrated power to the average rod 9
power. the planar radial power peaking factor, F (Z), defined as the ratio of the peak pin n power density to the average pin power density in the horizontal plane at elevation z. For steady state conditions, these factors are obtained from three-dimensional ANC calculations using pin power reconstruction. Peaking factors are analyzed under various control rod configurations and at several burnup values and power levels. Additionally, non-equilibrium xenon distributions are taken into consideration as part of the power shape analysis. 4.1.3 Fuel Depletion Three-dimensional fuel depletion calculations are performed with ANC. Rod-by-rod burnup distributions are obtained from the ANC depletions, and specific fuel nuclide inventories are obtained from two-dimensional single assembly PHOENIX-P dep!stion calculations. l 4.2 AXIAL POWER DISTRIBUTION CONTROL Axial power distribution control limits are determined based on Westinghouse's Relaxed Axial Offset Control (RAOC) calculation procedure [12]. These limits are represented by a curve of allowed axial offset as a function of core power. Axial offset (AO) is defined as the difference between the upper and lower excore detector signals, divided by the sum of the signals. The RAOC procedure begins by performing xenon transient simulations to setup the xenon reconstruction model. The one-dimensional APOLLO code is used for the xenon transient simulations based upon chosen AO limits. Xenon transient simulations are performed at various points in life and at different core power levels. Axial xenon shapes are reconstructed by APOLLO and are used to generate axial power shapes. These axial shapes are synthesized with height dependent planar radial power distributions from three-dimensional ANC calculations. Next, the axial power shapes are used to verify the adequacy of the chosen AO limits. When verified, these AO limits would then be used as the axial power distribution Technical Specification limits during e plant operation. While constrained by the chosen AO limits and the power dependent rod insertion limits, APOLLO is used to generate a large number of axial power shapes based on reconstructed axial xenon shapes. These axial power shapes are used to check the kw/ft limits for normal operation conditions, the thermal hydraulic constraints for loss of flow accident simulations, and the peak power and DNB limits for accident conditions. For normal operations, more restrictive AO limits are chosen if kw/ft limits or thermal hydraulic constraints are exceeded. For accident conditions, analyses are performed to verify that all design limits are met. Therefore, the RAOC procedure will provide axial power shape information which is used to verify that all design limits are met. P 10 4 I i i
l 1 l 1 4.3 CORE REACTIVITY PARAMETERS l 1 The core reactivity is affected by changes occurring in the reactor, such as temperature and composition variations. Most of these effects are important in safety analyses, and therefore, the physics models provide the reactivity coefficients, the reactivity worths, and j the kinetics parameters as a function of burnup, temperature, and power level. Reactivity coefficients quantify the rate of reactivity change subsequent to a unit change of an independent variable, such as, moderator density, fuel temperature, or boron concentration. All reactivity coefficients are defined as the change in reactivity per unit change in the parameter of interest. For most reactivity coefficients, the reactivity is expressed in units of per cent mille (pcm). One pcm is equal to 10 Ak/k. j 4 4.3.1 Moderator Temperature Coefficient The moderator temperature coefficient (MTC) is defined as the change in reactivity per degree change in moderator temperature. The MTC is sensitive to the values of the moderator density, moderator temperature, soluble boron concentration, fuel burnup, and the presence of control rods and/or burnable absorbers which reduce the required soluble boron concentration and increase the leakage of the core. The MTC may be positive or negative depending on the magnitude of change of the individual components of this coefficient. The MTC is calculated using the ANC core model described in Section 3.4 by varying the moderator temperature around a reference temperature. The moderator temperature coefficient is analyzed for various reactor conditions, from hot zero power (HZP) to hot full power (HFP), for various boron concentrations and control rod positions, and at various. cycle burnups. The moderator temperature defect is also obtained using the ANC core model. 4.3.2 Doppler Temperature Coefficient The Doppler temperature coefficient is primarily a consequence of the Doppler broadening of U-238 and Pu-240 resonance absorption peaks. This coefficient represents the change - in reactivity per degree change in the effective fuel temperature. The Doppler temperature coefficient is calculated.with ANC by varying the reactor power, which in tum varies the fuel temperature, while holding the moderator temperature . constant. Effective fuel temperatures as a function of power level and burnup are provided by FIGHTH. The coefficient is analyzed at different power levels and for various cycle burnups. A Doppler reactivity defect is also obtained from the three-dimensional ANC model by varying reactor power at specific times during the cycle. 11
4.3.3 Total Power Coefficient The total power coefficient represents the combined effect of moderator temperature and fuel temperature changes for an associated change in core power level. l The total power coefficient is calculated using ANC by varying the core power level around a reference value while allowing the inlet temperature to change in accordance with the inlet program for the plant. The power coefficient is analyzed at different power levels and at various times in core life. The power defect is also obtained using the ANC model by varying the reactor power. 4.3.4 isothermal Temperature Coefficient The isothermal temperature coefficient (iTC) represents the change of reactivity corresponding to a uniform change in the core temperature. The ITC is also defined as the sum of the moderator and Doppler temperature coefficients. ITCs are obtained from three-dimensional ANC calculations usually performed for HZP conditions. Using the ANC core model, ITCs are calculated explicitly by varying both the moderator temperature and the fuel temperature about a uniform reference temperature. Additionally, the ITC is directly measured during the startup physics testing program at BOC. The isothermal temperature defect (ITD) refers to the change in reactivity between hot zero power temperatures and temperatures below hot zero power. ITDs are needed as a function of temperature and burnup for various rod pattems to establish shutdown boron concentration requirements. They are calculated with the ANC model using cross sections generated with PHOENIX-P at specific temperatures between hot zero power and 68 F. 4.3.5 Boron Reactivity Coefficient The boron reactivity coefficient, often referred to as the differential boron worth, represents the change in reactivity due to a unit change in the soluble boron concentration. The inverse of the boron reactivity coefficient is the inverse boron worth. The coefficient provides a means of determining the change in soluble boron concentration necessary to - compensate for a given reactivity change. The boron reactivity coefficient is calculated using the ANC core model by varying the boron concentration about a reference value and computing the reactivity change. Boron worths are calculated as a function of boron concentration, power level, temperature, bumup, and control rod configuration. 4.3.6 Xenon and Samarium Worth The fission products Xe-135 and Sm-149 are dominant neutron absorbers due to their large thermal absorption cross sections. Since Xe-135 is produced directly from fission 12
l l and through lodine decay, it initially builds up and then decays following a reduction in power or shutdown. Sm-149 is a stable isotope produced by promethium decay. Following a reactor shutdown, its concentration increases, and upon restart it gradually returns to its equilibrium value. Equilibrium xenon and samarium worths are calculated by ANC at various power levels and core bumups. Changes in their worth and axial fluctuations in isotopic concentrations ( during transient operation are obtained using the ANC and/or APOLLO models. I J 4.3.7 Control Rod Worth Control rod worths are analyzed using many rod configurations under various conditions as required by startup physics testing and operations. The reactivity worth is derived from the reactivity change corresponding to the difference between two rod positions. Integral rod worths of either single rods and/or rod banks are calculated using the ANC model. Differential rod worths are obtained with the ANC and/or APOLLO models. 4.3.8 Neutron Kinetics Parameters Neutron kinetics parameters, which include delayed neutron fractions, decay constants, and the prompt neutron lifetime, are required as input to the plant reactivity computer and to various safety analyses. All kinetics parameters are derived from basic cross section libraries, using PHOENIX-P for composition dependency and ANC for the fission distribution in the reactor. The kinetics parameters are evaluated at hot full power and hot zero power conditions for vari-ous cycle burnups and control rod configurations. Delayed neutron fractions and de.:ay constants for fissionable and fissile nuclides are stored in the databank for fast 'and thermal fissions and for each of the six delayed neutron energy groups. The core averaged delayed neutron fractions are obtained by weighting the delayed neutron fractions by the core power distribution. The core average decay constants are calculated in a similar manner. A delayed neutron importance factor is used to determine an effective core average delayed neutron fraction. The prompt neutron lifetime also depends upon the core composition (fuel enrichment, burnup, absorbers, etc.). Single assembly PHOENIX-P calculations provide the neutron lifetime for the fuel in each core region. The core average value is determined through a power and volume weighting process. 13
r 5.0 PHYSICS MODEL VI;RIFICATION The Haddam Neck reactor is presently operating in Cycle 18. Verification of the physics models described in Section 4 was performed by directly comparing ANC model predictions to rneasured plant data. Operating data from cycles 15,16, and 17. and i startup testing data from cycles 15,16,17, and 18 were used as the basis for the comparisons. Previous cycle design calculations with ARK /TORTISE are provided as an additional comparison with which to verify the PHOENIX /ANC reload design methodology. Cycle 16 measured rod worths and temperature coefficient data are not included in this report. Subsequent to the completion of the startup physics testing program, a small 'L negative voltage bias was discovered in the signal that was supplied to the reactivity } computer. This bias is believed to have caused reactivity to be overpredicted by about i 5%. The overprediction does not invalidate the startup test results; however, it is considered too large of an effect to use this data for benchmarking purposes. Therefore, ) only comparisons between ANC and TORTISE predictions of rod worths and temperature coefficients are presented for this cycle. Since only a few months worth of data was available at the time of this report, a limited amount of cycle 18 operating data has been presented. A summary of each cycle's i history is provided below. 5.1 CYCLE HISTORY i Cycle 15 of the Haddam Neck reactor began operation on March 26,1988 and shutdown j on September 2,1989 after 355 EFPDs ol operation. The cycle 15 core loading pattern is shown in Figure 5.1, and the cycle batch loading is listed in Table 5.1. Cycle 15 contained 4 Zircaloy lead test assemblies. Cycle 16 of the Haddam Neck reactor began operation on August 8,1990 and shutdown on October 17,1991 after 358 EFPDs of operation. The fuel for this cycle required reconstitution. The cycle 16 core loading pattern is shown in Figure 5.2, and the cycle batch loading is listed in Table 5.2. Cycle 16 contained only stainless steel clad assemblies. Cycle 17 of the Haddam Neck reactor began operation on March 15,1992 and shutdown on May 15,1993 after 412 EFPDs of operation. The cycle 17 core loading pattern is shown in Figure 5.3, and the cycle batch loading is listed in Table 5.3. Cycle 17 contained two batches of stainless steel clad assemblies and one batch of zircaloy clad assemblies. Cycle 18 of the Haddam Neck reactor began operation on July 20,1993 and is expected to continue operating until October 1994. The cycle 18 core loading pattern is shown in 1 Figure 5.4, and the cycle batch loading is listed in Table 5.4. Cycle 18 contained one batch of stainless steel clad assemblies and two batches of zircaloy clad assemblies. ) 14 i
5.2 ZERO POWER PHYSICS TESTS At the beginning of each Haddam Neck cycle, while the reactor is maintained at HZP conditions, the following physics tests are performed: Measurement of critical boron concentrations. Measurement of control rod bank worths. Measurement of isothermal temperature coefficients. Table 5.5 contains the Zero Power Physics Test acceptance and review criteria which represent the maximum acceptable deviations between measurement and prediction for each parameter of interest. Review criteria set parameter limits which, when exceeded, allow the testing process to continue but require a review by the design organization. However, exceeding the acceptance criteria constitutes a failure and requires formal evaluation and disposition of the problem prior to completion of the test. 5.2.1 Critical Boron Concentration Critical boron concentration measurements for cycles 15,16,17 and 18 were taken with all rods out and with banks B, A, and D fully inserted. ANC model predictions were made at the same core conditions present during measurements. Measured critical boron concentrations are compared to ANC predictions in Table 5.6. TORTISE predictions are also included in Table 5.6 for comparison between methodologies. All differences between ANC predictions and measured data fall within the review and acceptance criteria listed in Table 5.5. 5.2.2 Moderator Temperature Coefficient Although the ITC is directly measured in startup physics testing, moderator temperature coefficients (MTCs) are presented in this portion of the report. The MTC is derived from the measured ITC by adjusting it for the fuel temperature coefficient. MTCs were derived for all rods out and with Banks B, A, and D fully inserted into the core. Table 5.7 compares the " measured" MTC for both rodded and unrodded conditions to ANC model predictions and previous TORTISE predictions. All differences between ANC predictions and measured data fall within the review and acceptance criteria listed in Table 5.5. 5.2.3 Control Rod Worth Control rod worth measurements for cycles 15,17, and 18 were obtained using the boron dilution technique. ANC predictions for rod worth were performed at the same core conditions present during measurement. Tables 5.8, 5.10, and 5.11 show the comparisons between measured worth, ANC predicted worth, and TORTISE predicted worth for cycles 15,17, and 18 respectively. Table 5.9 lists ANC and TORTISE predicted 15
rod worth for cycle 16. A.s discussed earlier, measured rod worths are unavailable for cycle 16. All differences between ANC predictions and measured bank worths are within the criteria set forth in Table 5.5.
- l Control rod worth measurements are taken through the plant's reactivity computer. For -
l cycles 15,17, and 18 the reactivity computer utilized delayed neutron data derived from ARK /TORTISE predictions. Incorporating PHOENIX-P/ANC predicted delayed neutron data into the reactivity computer would result in a small percentage change (approx.1% i to 2%) in the overall measured bank worths. The effect of using PHOENIX-P/ANC delayed neutron data is not included in the presented control rod worth data. l l 5.3 POWER OPERATION l l I During the operation of each Haddam Neck cycle, the core power distribution is measured every 30 EFPDs with the incore instrumentation system. The measurements are conducted in support of Technical Specification surveillance requirements. The measured signal traces generated by the movable incore fission chambers are analyzed with the INCORE computer code [3]. The INCORE code performs signal-to-power conversion and infers the core three-dimensional power distribution and the axial offset. Two-group fission cross sections for the U-235 lining of the fission chambers are generated by PHOENIX-P. Flux ratios in each thimble and the power to reaction rate ratios between instrumented and uninstrumented assemblies are generated by ANC. INCORE is provided with unrodded and rodded (Bank B) ANC data such that rodded flux maps are processed with the appropriate constants. This section presents comparisons between ANC predictions and INCORE measurements for the following parameters: radial power distribution as a function of bumup. axial power distribution as a function of bumup. peaking factors, F and F,g. o l axial offset. in addition, boron rundown measurements are compared to ANC predictions. Burnup steps selected in the ANC calculations are standard values consistent with the automated depletion sequence. Consequently, bumup values between measurements and predictions do not always agree. However, the differences between the presented measured and predicted burnups are small and do not impare the comparisons. l 1 16
~ i 5.3.1 Radial Power Distributions All ANC model predictions were performed with Bank B positions identical to those at the i time of the incore measurements. Comparisons between ANC predicted radial power distributions and measured radial power distributions are shown in Figures 5.5 through 5.20 for cycles 15,16,17 and 18. Power distributions are shown at several burnup intervals during the life of the cycle with the exception of cycle 18 (BOL only). Results are presented in a quarter core format since the core loading for each cycle is symmetric. Cycle 15 utilizes mirror symmetry while cycles 16,17, and 18 employ cyclic symmetry. r in all cases the average difference for the comparisons is less than 1.5 percent. The [ standard deviation for these cases is less than 1.7 percent. 5.3.2 Axial Power Distributions Measured axial power distributions corresponding to the radial power distributions presented in the previous section are compared to ANC model predictions. Figures 5.21 through 5.36 show the predicted and measured axial power shapes for cycles 15,16,17, and 18. Again, the burnup intervals are identical to those presented in the radial power distributions. As shown in the figures, flux depressions in the measured data occur due to the presence of spacer grids along the length of the core. ANC doe.0 not model these i grids explicitly and does not include these local effects in the predicted axial power l distribution. Axial offset is the difference in the integrated power in the top half of the core minus the integrated power in the bottom half of the core, divided by the total core power and expressed in percent. The final value of the axial offset indicates whether power is tilted to the top half or bottom half of the core. Tables 5.12 through 5.14 tabulate the measured and predicted axial offset for cycles 15,16, and 17. The data in these tables is also plotted in Figures 5.37 through 5.39 for further comparison. 5.3.3 Peaking Factors Tables 5.15 through 5.17 list the comparisons between measured and predicted F and a F,g for cycles 15,16, and 17. Peaking factor data listed in these tables is also plotted in Figures 5.40 through 5.45 for additional comparison. Cycle exposures are those at the time of the incore measurements. All ANC predictions shown are at cycle exposures comparable to the measured exposure values. The largest absolute differences between measured and predicted F and F,s are approximately 3.1% and 1.7%, respectively. In a the case of F comparisons, grid spacer effects are inherent in the INCORE values but a not explicitly represented in ANC. As a result, predicted F values are expected to be o lower than corresponding measured values by approximately one percent. This effect can be seen in the tables. Spacer grid effects are always included in safety calculations and setpoint verification. l 17 r a b -,e s
i 5.3.4 Boron Rundown Curves During the course of a cycle, boron measurements are taken daily, regardless of rod position. To obtain the all rods out critical boron concentration, raw measurements are corrected for the boron worth of a partially inserted rod bank. Rod corrected boron concentrations are plotted against ANC all rods out predictions in Figures 5.46 through 5.48 for cycles 15,16, and 17. All boron data presented in the figures has been taken from equilibrium, full power core conditions. Figures 5.46 through 5.48 also include a boron concentration which has been corrected for both rod insertion and boron (B-10) depletion. Depletion of the B-10 isotope occurs when there is very little borated makeup water supplied to the primary coolant system. For instance, a typical depletion scenario 3 would include long runs at full power with a very low rate of reactor coolant system leakage. Currently, boron concentration measurements are performed at the plant while t isotopic analysis of the samples is performed offsite. Results from isotopic analysis of samples from cycles 15,16, and 17 were used to generate a best estimate continuous B-10 depletion correction for each of the above operating cycles. ANC boron rundown predictions assume a constant natural isotopic abundance of B-10 relative to total boron. i i 5.4
SUMMARY
Pre :kSons using Westinghouse's PHOENIX-P/ANC methodology were compared to meaoc ements taken during startup testing and during power operation of Haddam Neck cycles 15,16,17, and 18. Startup predictions were also compared to previous design predictions with the ARKTTORTISE methodology. Overall, the ANC predictions agreed well with measurements. All ANC startup testing predictions fell within the required review and acceptance criteria listed in Table 5.5. Comparisons between power operation measurements and ANC predictions for boron rundown, peaking factors, and power l Jistributions show excellent agreement. The agreement between measurements and predictions demonstrate NUSCO's ability to perform PWR core reload design with the PHOENIX-P/ANC Westinghouse methodology. i f i i r 18
~ 1 1 i i Table 5.1 Haddam Neck Cycle 15 Batch Loading Number of BOC Exposure Inlllal Enrichment Batch No. Assemblies (MWD /MTU) (wt% U-235) 15A 44 21423 4.00 SS 15 B") 4 21855 3.41 ZR 15CW 1 12285 4.00 SS' 16 52 9044 4.00 SS 17 56 0 4.00 SS OTircaloy-clad lead test assemblies.
- Discharged at EOC13 and reinserted as the center assembly.
i Note: SS = Stainless steel clad fuel. ZR = Zircaloy clad fuel. f 6 9 t 4 19 =
I 1 l Table 5.2 Haddam Neck Cycle 10 Batch Loading i t Number of BOC Exposure initial Enrichment Batch No. Assemblies (MWD /MTU) (wt% U-235) 14B 4 32980 4.00 SS 15C 1 25461 4.00 SS 16A 48 23807 4.00 SS 17A 48 11493 4.00 SS -i 18A 52 0 4.00 SS 18B 4 0 3.00 SS Note: SS = Stainless steel clad fuel. ZR = Zircaloy clad fuel. ) 1 l } .l ) 1 20
\\ Table 5.3 Haddam Neck Cycle 17 Batch Loading Number of BOC Exposure initial Enrichment Batch No. Assemblies (MWD /MTU) (wt% U-235) 16B 1 25843 4.00 SS 17A 48 22796 4.00 SS 178 4 9614 4.00 SS 18A 52 9159 4.00 SS 18B 4 11795 3.00 SS 19A 32 0 3.90 ZR 19B 16 0 3.60 ZR Note: SS = Stainless steel clad fuel. ZR = Zircaloy clad fuel. M I i I i 21 s t
l
l I Table 5.4 Haddam Neck Cycle 18 Batch Loading i Number of BOC Exposure initial Enrichment Batch No. Assemblies (MWD /MTU) (wt% U-235) 16C 1 26010 4.00 SS 178 4 17421 4.00 SS 18A 52 22132 4.00 SS 19A 32 10711 3.90 ZR 19B 16 14657 3.60 ZR 20A 40 0 3.90 ZR 20B 12 0 3.60 ZR Note: SS = Stainless steel clad fuel, t ZR = Zircaloy clad fuel. B 22
Table 5.5 Haddam Neck Zero Power Physics Tests Acceptance and Review Criteria P Maximum Difference Physics Parameter Acceptance
- Review
- Critical Boron Concentration i100 ppm i 50 ppm Temperature Coefficients i 4 pcmf'F i 2 pcm/ F Individual Bank Worth i 15 %
i 10 % Total Bank Worth 1 10 % 1 10 %
- If the review criteria is not met but the acceptance criteria is met, the test is considered successful with respect to the Technical Specifications. However, the cause of the difference should be investigated. If the acceptance criteria is not met, entry into Mode 1 operation will not be permitted without prior resolution.
l L [ l s f f 23 -r-
1 Table 5.6 Haddam Neck Cycles 15,16,17, and 18 Critical Boron Comparison Case Cycle Measurement TORTISE ANC (ANC-Meas.) l (ppm) (ppm) (ppm) @pm) ) All rods out 15 1834 1813 1826 -8 16 1599 1584 1609 10 17 1756 1738 1734 -22 18 1809 1813 1803 -6 i Banks B,A,D in 15 1098 1102 1082 -16 16 895 885 881 -14 17 1075 1058 1036 -39 18 1206 1199 1183 -23 24
l l Table 5.7 Haddam Neck Cycles 15,16,17, and 18 Moderator Temperature Coefficient Case Cycle Measurement TORTISE ANC (ANC-Meas.) (pcmf'F) (pcm/ F) (ocm/"F) (ocm/*F) All rods out 15 1.55 0.82 0.79 -0.76 16
- N/A
-1.61 -1.50 N/A 17 0.95 0.37 0.20 -0.75 18 3.12 2.38 2.03 -1.09 Banks i B,A,D in 15 -7.65 -9.27 -8.73 -1.08 16
- H/A
-11.53 -10.68 N/A 17 -9.95 -10.21 -9.70 -0.25 18 -8.12 -7.63 -7.19 0.93
- no measurement available (see page 14).
f ? 'l 25
Table 5.8 Haddam Neck Cycle 15 Rod Worth Comparison Bank Measured TORTISE ANC (ANC-Measured)% (pcm) 1pcm) (pcm) Measured Bank B 1085 1074 1089 0.4 % i Bank A 2007 1938 2008 0.0 % Bank D 2175 2139 2202 1.2% l Bank C 'N/A 1698 1738 N/A Banks B, A, 5267 5151 5299 0.6% D in Delta Boron for Banks 736 ppm 711 ppm 744 ppm 1.1 % B,A,D in
- Measurement of Bank C worth is not part of the startup testing program.
l s F 26
Table 5.9 Haddam Neck Cycle 16 Rod Worth Comparison Bank Measured TORTISE ANC (ANC-TORTISE)%
- (pcm)
(pcm) (pcm) TORTISE BankB N/A 956 962 0.6% Bank A N/A 2103 2174 3.4 % Bank D N/A 2095-2150 2.6% Bank C N/A 1214 1232 1.5 % Banks B, A, D N/A 5354 5286 2.6% in Delta Boron for Banks 704 ppm 699 ppm 728 ppm
- 3.4 %
B,A,D in I
- measured rod worth data unavailable (see page 14).
- % Difference = 100% x (ANC-Measured)/ Measured 27
) Table 5.10 Haddam Neck Cycle 17 Rod Worth Comparison i i Bank Measured TORTISE ANC (ANC-Measured)% (pcm) (ocm) (pcm) Measured Bank B 837 842 846 1.1 96 Bank A 1992 1863 1947 -2.3% Bank D 2407 2386 2317 -3.7% Bank C
- N/A 1242 1281 N/A l
Banks B, A, D 5236 5091 5110 -2.4% in Delta Baron for Banks 681 ppm 680 ppm 698 ppm 2.5% B,A,D in
- Measurement of Bank C worth is not part of the startup testing program.
1 l + f 28
Table 5.11 Haddam Neck Cycle 18 Rod Worth Comparison Bank Measured TORTISE ANC (ANC-Measured)% (Dem) (pcm) (pcm) Measured Bank B 825 800 797 -3.4% Bank A 1792 1785 1811 1.1% Bank D 2412 2332 2365 -1.9% Bank C
- N/A 1585 1598 N/A-Banks B, A, D 5028 4917 4973
-1.1 % In 1 Delta Boron for Banks 603 ppm 614 ppm 620 ppm 2.7% B,A,D in
- Measurement of Bank C wor 1h is not part of the startup testing program.
S b t 29 i 1 ) I
Table 5.12 Haddam Neck Cycle 15 Axlal Offset Comparison Cycle Exposure
- INCORE
- ANC (MWD /MTU)
(Measured) (Predicted) (ANC-INCORE) 297 1.10 1.41 0.31 1094 -1.34 -0.58 0.76 1866 -0.99 0.02 1.01 3470 -0.72 -0.01 0.71 5212 -1.28 -0.21 1.07 6086 -1.39 -0.48 0.91 6989 -1.22 -0.13 1.09 9424 -1.08 0.18 1.26 10281 -1.00 -0.33 0.67 11130 -1.16 -0.08 1.08 11948 -0.65 0.31 0.96 Axlal offset in percent (%). b t 30 ~ - -.,
Table 5.13 Haddam Neck Cycle 16 Axial Offset Comparison i Cycle Exposure
- INCORE
- ANC (MWD /MTU)
(Measured) (Predicted) (ANC-INCORE) 440 -1.15 0.16 1.31 1084 -1.06 -0.36 0.70 1881 -1.25 -0.53 0.72 2628 -1.25 -0.75 -0.50 l 4415 -1.83 -0.65 1.18 5173 -1.77 -1.00 0.77 6016 -2.03 -1.33 0.70 0873 -2.25 -1.27 0.98 7689 -1.79 -1.47 0.32 8686 -2.02 -1.57 0.45 i 9471 -1.47 -1.61 -0.14 Axial offset in percent (%). 1 31 i
Table 5.14 Haddam Neck Cycle 17 Axlal Offset Comparison Cycle Exposure
- INCORE
- ANC (MWD /MTU)
(Measured) (Predicted) (ANC-INCORE) 229 0.93 1.61 0.68 315 0.90 0.97 0.07 1122 0.15 0.48 0.33 1872 -0.46 -0.12 0.34 2653 -0.95 -0.69 0.26 4389 -1.45 -0.85 0.60 5289 -1.69 -1.24 0.45 6158 -1.89 -1.22 0.67 7001 -2.12 -1.45 0.67 7756 -1.60 -1.44 0.16 8626 -2.76 -1.71 1.05 10366 -1.67 -1.52 0.15 11138 -1.74 -1.60 0.14 8 Axial offset in percent (%). 32
~ D Table 5.15 Haddam Neck Cycle 15 Power Peaking Factor Comparison F n(Max) Fo W ax) Cycle Exposure (P-M)% (P-M)% (MWD /MTU) M(') P(*) M M(*) P(*) M 297 1.392 1.386 -0.43 1.639 1.611 -1.71 1094 1.370 1.381 0.80 1.609 1.592 -1.06 1866 1.351 1.361 0.73 1.565 1.560 -0.32 3470 1.321 1.344 1.71 1.524 1.526 0.13 5212 1.310 1.327 1.28 1.498 1.472 -1.74 6086 1.305 1.320 1.14 1.485 1.453 -2.15 6989 1.297 1.313 1.22 1.465 1.431 -2.32 9424 1.280 1.302 1.69 1.433 1.419 -0.98 10281 1.279 1.296 1.31 1.432 1.415 -1.19 11130 1.271 1.286 1.17 1.424 1.398 -1.83 11948 1.275 1.281 0.47 1.424 1.393 -2.18 (a) INCORE values. (b) ANC values. i 33
Table 5.16 Haddam Neck Cycle 16 Power Peaking Factor Comparison F,(Max) F (Max) o Cycle Exposure (P-M)% (P-M)% (MWD /MTU) M(*) PN M M'*) PN M 440 1.386 1.376 -0.72 1.614 1.607 -0.43 1084 1.368 1.365 -0.22 1.601 1.597 -0.25 i 1881 1.350 1.340 -0.75 1.581 1.590 0.57 2628 1.342 1.329 -0.98 1.564 1.558 -0.38 4415 1.329 1.325 -0.30 1.527 1.520 -0.46 5173 1.326 1.323 -0.23 1.517 1.504 -0.86 6016 1.322 1.320 -0.15 1.505 1.487 -1.20 6873 1.314 1.315 0.08 1.497 1.475 -1.47 7689 1.311 1.309 -0.15 1.479 1.465 -0.95 8686 1.305 1.305 0.00 1.478 1.457 -1.42 9471 1.302 1.300 -0.15 1.4 61 1.450 -0.75 (a) INCORE values. l (b) ANC values. 1 34
Table 5.17 Haddam Neck Cycle 17 Power Peaking Factor Come.<-' son F,(Max) Fo (Max) Cycle Exposure (P-M)% (P-M)% (MWD /MTU) M(*) P(6) M M(*) P(*) M 299 1.338 1.337 -0.07 1.637 1.657 1.22 315 1.333 1.324 -0.68 1.629 1.617 -0.74 1122 1.337 1.328 -0.68 1.610 1.601 -0.56 1872 1.339 1.336 -0.22 1.597 1.588- -0.56 2653 1.335 1.330 -0.38 1.568 1.553 -0.96 4389 1.324 1.323 -0.08 1.518 1.521 0.20 5289 1.317 1.314 -0.23 1.510 1.499 -0.73 6158 1.306 1.306 0.00 1.497 1.477 -1.34 7001 1.302 1.295 -0.54 1.494 1.462 -2.14 i 7756 1.296 1.291 -0.39 1.468 1.451 -1.16 8626 1.295 1.283 -0.94 1.485 1.439 -3.10 10366 1.277 1.279 0.16 1.440 1.429 -0.76 11138 1.272 1.270 -0.16 1.443 1.416 -1.87 4 (a) INCORE values. (b) ANC values. I r I 35
Figure 5.1: Haddam Neck Plant Cycle 15 Core leading Pattem 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 17 17 17 R 17 17 17 15A' 17 17 17 P 17 17 15A 15A 16 15A 15A 17 17 N 17 17 15A 16 16 16 16 16 15A 17 17 M 17 17 15A 151) 16 15A 16 15A 16 ISD 15A 17 17 l, i 17 15A 16 16 15A 16 16 16 15A 16 16 15A 17 K 17 17 15A 16 15A 16 16 15A 16 16 15A 16 15A 17 17 3 17 15A 16 16 16 16 15A 15C 15A 16 16 16 16 15A 17 H' 17 17 15 A - 16 15A 16 16 15A 16 16 15A 16 15A 17 17 G 17 15A 16 16 15 4 16 16 16 15A 16 16 15A 17 F i 17 17 ISA 15D 16 15A 16 - 15 A 16 158 15A 17 17 E I 1 17 17 15A 16 16 16 16 16 15A 17 17' D 17 17 - 15A ISA 16 15A 15A 17 17 ' C i 17 17 17 15A 17 17 17 B 17 17 17 A Batch
- assemblics Initial w/o U235 1
15A 44 4.00 15B 4 3.41 15C 1 4.00 16 52 4.00 17 56 4.00 36
Figure 5.2: IIaddam Neck Plant Cycle 16 Core leading Pattem 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 t 18A 14B 18A R 18A 18A 18A 17 18A 18A 18A P 18A 18A 16 16 17 16 16 ISA 18A N 18A 18A 16 17 17 16 17 17 16 18A 18A M 18A 18A 16 16 17 16 18B 16 17 16 16 18A IBA L 18 A 16 17 17 16 17 16 17 16 17 17 16 18A K 18 A 18A 16 17 16 17 17 17 17 17 16 17 16 18A 18 A 3 i 14B 17 17 16 188 16 17 15C 17 16 1811 16 17 17 148 H 18A 18A 16 17 16 17 17 17 17 17 16 17 16 18A 18^ ' G' 18A 16 17 17 16 17 16 17 16 17 17. 16 18A F i 18A 18A 16 16 17 16 18B 16 17 16 16 18A 18A E i IBA 18A 16 17 17 16 17 17 16 18A 18^ D 18A IBA 16 16 17 16 16 18A 18A C l l { 18A 18A 18A 17 ISA IBA 18A B 18A 14B 18A .A-Batch
- assemblies - Initial w/o U235 i
14B 4 4.00 15C 1 4.00 16 48 4.00 .17 48 4.00 18A 52 4.00 ISB 4 3.00 y
i r Figure 5.3: liaddam Neck Plant Cycle 17 Core leading Pattem t t t l 15 14 13 12 11 10 9 8 7 6 5 4 3 2 i f 19A 17B 19^ R 19A 19A 19B 17A 19B 19A 19A P 19A 198 17A 17A 18A 17A 17A 19B 19A N j 19A 18A 17A ISA 18A 17A IBA 18A 17A 18A 19A M 19A 19H 17A 17A 18A 17A 18A 17A 18A 17A 17A 19B 19A L I 19A 17A IBA 184 17A 18A 18B 18A 17A 18A 18A 17A 19A K . { t 19A 19B 17A 18A 17A 18A 18A 18A 18A 18A 17A 18A 17A 19B 19A } 17B 17A 18A 17A 18A 18B 18A 16B 18A 18B 18A 17A 18A 17A 17B H 19A 198 17A 18A 17A 18A ISA 18A 18A 18A 17A 18A 17A 19B 19A G 19A 17A 18A 18A 17A 18A 18B 18A 17A 18A 18A 17A 19A F 4 19A 19B 17A 17A ISA 17A 18A 17A 18A 17A 17A 19B 19A E 19A 18A 17A 18A 18A 17A 18A 18A 17A 18A 19A p 19A 19B 17A 17A 18A 37A 17A 19B 19A C .l 19A 19A 19B 17A 19B 19A 19A B l 19A 17B 19^ A' ~ Batch
- assemblics Initial w/o U235 16B 1
- 4.00 -
1 17A 48 4.00 n 17B 4 4.00 18A 52 '4.00 18B 4 3.00 19A 32 3.90 19B 16 3.60. l 38 l m 4'wrt-p 3-e W
1 Figure 5.4: Haddam Neck Plant Cyc!c 18 Core loading Pattern 1 i I 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 i j 20A 18A 20^ R 20A 20A 20A 18A 20A 20A 20A P l 20A 200 18A 18A 20B 18A IBA 20B 20A N 20A 19B 19B 19A 18A 18A 18A 19A 19B 19B 20A M l 20A 2011 19B 18A 19A 19A 17B 19A 19A 18A 19B 20B 20A L 20A 18A 19A 19A 18A 19A 18A 19A ISA liA 19A 18A 20A N 20A 20A 18A 18A 19A 19A 18A 19B 18A 19A 19A 18A 18A 20A 20A I 18A 18A 20B 18A 17B 18A 19B 16C 19B 18A 17B 18A 208 18A 18A H 20A 20A 18A 18A 19A 19A 18A 19B 18A '19A 19A 18A 18A 20A 20^ G i 20A 18A 19A 19A 18A 19A 18A 19A IBA 19A 19A 18A 20A F j 20A 20B 19B 18A 19A 19A 17B 19A 19A 18A 19B 20B 20A E j 1 20A 1911 19 8 19A 18A 18A 18A 19A 193 19B 20A' D 20A 20B 18A 18A 208 18A IBA 20B 20A C 20A 20A 20A 18A 20A 20A 20A B' 20A 18A - 20A A Batch
- Assemblies Initial w/o U235 16C 1
4.00-17B 4 4.00 18A 52 ~ 4.00 19A 32 3.90 19B 16 3.60 i 20A 40 3.90 l 20B 12 3.60 39 i i
.. =...... ~.. - ~ f i E i FIGURE 5.5 HADDAM NECK-CYCLE 15 RADIAL POWER DISTRIBUTION i ANC 500.0 MWD /MTU - BANK B AT 312-INCORE 297.0 MWD /MTU - BANK B AT 312 1 R9 R8 0.555 0.654 i 0.562 0.657 l -0.007 -0.003-I -1.28 -0.49 OUAD LOC Pil P10 -P9 P8 t RPD( ANC) 0.625 0.867 1.036 0.851 KEY RPD(INCR) 0.633 0.879 1.045 0.854 ANC-1NCR -0.008 -0.012 -0.009 -0.003 ~ ~ PCT DIFF -1.30 -1.40 -0.89 -0.38 N12 N11 N10 N9 NB 0.748 1.107 0.976 0.972 1.134 0.759 1.119 0.986 0.981 1.139' -0.011 -0.012 -0.010 -0.009 -0.005 -1.48 -1.11 -1.05 -0.95 -0.47 M13 M12 M11 M10 M9 M8 0.747 1.137 1.031 1.240 1.204 1.210 0.731 1.107 1.011 1.218 1.212L 1.214 f 0.016 0.030 0.020 0.022 -0.008 -0.004 2.15 2.68 1.94 1.77. -0.69 -0.36- -I t Lid L13 L12 L11 L10 L9 LB O.623 1.103 1.026 0.913 1.226 1.042 1.238 0.609 1.079 1.000 0.896 1.204 1.041 1.243 .) 0.014 0.024 0.026 0.017 0.022 0.001 -0.005 'l 2.26 2.19 2.57 1.86 1.79 0.06 -0.44 Kid K13 K12 K11 K10 K9 KB j 0.865 0.972 1.235 1.220 1.051 1.152 1.167 0.846 0.962 1.201 1.197 1.036 1.159 1.194 0.019 0.010 0.034 0.023 0.015 -0.007 -0.027 2.21 1.01 2.80 1.89 1.41 -0.64 -2.29 J15 J14 J13 J12 J11 J10 J9 J8 0.553 1.032 0.969 1.201 1.041 1.156 1.123 0.962 0.585 1.047 0.970 1 202 1.045' 1.168 1.136 0.984 -0.032 -0.015 -0.001 -0.001 -0.004 -0.012 -0.013 -0.022 -5.50 -1.47 -0.14 -0.12 -0.42 -1.06 -1.18 -2.27 . H15 H14 N13 H12 H11 H10 H9 H8 0.652 0.848 1.131 1.207 1.240 1.182 1.014 1.029. ') 0.689 0.870 1.140 1.217 1.254 1.206 1.035 1.053 I -0.037 -0.022 -0.009 -0.010 -0.014 -0.024 -0.021 -0.024 -5.40 -2.56 -0.82 -0.85 -1.15 -2.02 -2.06 -2.31 I AVERAGE DIFFERENCE = 0.015 STANDARD DEVIATION = 0.017 ] i 40 i ~-.
' I FIGURE 5.6 HADDAM NECK-CYCLE 15 RADIAL POWER DISTRIBUTION i ANC 2000.0 MWD /MTU - BANK B AT 305 INCORE 1866.0 MWD /MTU - BANK B AT 305 R9 R8 0.576 0.679 0.585 0.686 -0.009 -0.007 -1.55 -1.03 OUAD LOC Pil P10 P9 P8 i RPD( ANC) 0.640 0.886 1.055 0.866 J KEY RPD(INCR) 0.650 0.900 -1.068 0.874 ANC-INCR -0.010 -0.014 -0.013 -0.008 PCT DIFF -1.55 -1.56 -1.22 -0.92 N12 N11 N10 N9 NB 0.758 1.116 0.979 0.973 1.129 0.772 -1.123 0.985 0.979 1.139 { -0.014 -0.007 -0.006 -0.006 -0.010 -1.82 -0.63 -0.62 -0.62 -0.88 - i M13 M12 Mil M10 M9 M8 t 0.758 1.136 1.029 1.229 1.185 1.182 0.753 1.103 1.005 1.201 1.187 1.191 O.005 0.033 0.024 0.028 -0.002 -0.009 0.66 2.98 2.38 2.32 -0.18 -0.76 i Lid L13 L12 L11 L10 L9 LB 0.639 1.113 1.025 0.911 1.211 . 1.027 1.214 ~ 0.635 1.107 1.000 0.891 1.185 1.017 1.224 0.004 0.006 0.025 0.020 0.026 0.010 -0.010 0.62 0.53 2.49 2.24 2.19 0.98 -0.82 j K14 K13 K12 K11 K10 K9 K8 0.884 0.977 1.224 1.206 1.040 1.139' 1.152 0.879 0.978 1.203 1.182 1.019 1.134 1.159 O.005 -0.001 0.021 0.024.. 0.021 0.005 -0.007 0.56 -0.11 1.74 2.02 2.05 0.43 -0.61 J15 J14 J13 J12 J11 J10 J9 JB 0.575 1.054 0.971 1.183 1.026 1.143 1.114 0.957 0.614 1.077 0.978 1.192 1.027 1.143 1.115 0.964 -0.039 -0.023 -0.007 -0.009 -0.001 0.000 -0.001 :-0.007 l -6.36 -2.14 ' -0.72 -0.76 -0.10 -0.01 -0.10 -0.73 H15 H14 H13 H12-H11 H10 H9 H8 { 0.679 0.865 1.128 1.181 1.216 1.166 1.008 1.028 O.724 0.892 1.142 1.193 1.226 1.174 1.015 1.035 -0.045 -0.027 -0.014 -0.012- -0.010 -0.008 - -0.007 -0.007 -6.22 -3.03 -1.23 -1.01 -0.82 -0.69 -0.70 -0.68 AVERAGE DIFFERENCE = 0.013 STANDARD DEVIATION = 0.017 41 e ve sa n r -.,m~ r- .c
i FIGURE 5.7 HADDAM NECK-CYCLE 15 RADIAL POWER DISTRIBUTION i ANC 5000.0 MWD /MTU - BANK B AT 314 l INCORE 5212.0 MWD /MTU - BANK B AT 314 R9 RB 0.622 0.731 0.627 0.735 -0.005 -0.004 -0.76 -0.51 i QUAD LOC Pil P10 P9 PB RPD( ANC) 0.673 0.918' 1.083 0.869 i KEY RPD(INCR) 0.679 0.925 1.090 0.901 l ANC-INCR -0.006 -0.007 -0.007 -0.032 I PCT DIFF -0.85 -0.72 -0.60 -3.52 N12 N11 N10 N9 N8 0.785 1.122 0.986 0.978 1.130 0.791 1.129 0.991 0.983 1.135 -0.006 -0.007 -0.005 -0.005 -0.005 -0.72 -0.58 -0.47 -0.47 -0.40 l M13 M12 M11 M10 M9 M8 0.784 1.144 1.027 1.203 1.160 1.159 { 0.771 1.120 1.011 1.186 1.165 1.165 0.013 0.024 0.016 0.017 -0.005 -0.006 1.72 2.18 1.62 1.47 -0.39 -0.48 L Lid L13 L12 Lil L10 L9 LB .i 0.673 1.121 1.023 0.906 1.181-1.000' 1.175 0.662 1.102 1.003 0.893 1.165 1.000 1.182 O.011 0.019 0.020 0.013 0.016 0.000 -0.007 1.70 1.76 2.03 1.49 1.41 0.04 -0.55 E K14 K13 K12 K11 K10 K9 KB 0.917 0.985 1.200 1.177 1.017 1.105 1.115 0.902 0.978 1.182 1.161 1.005 1.110 1.129 [ 0.015 0.007 0.018 0.016 0.012 -0.005 -0.014 1.70 0.75 1.56 1.42 1.23- -0.41 -1.20 t J15 J14 J13 J12 J11 J10 J9-J8 ? f 0.622 1.083 0.977 1.158 1.000-1.108 1.084 0.939 0.655. 1.099 0.980 1.162 1.004 1.115 1.091 0.951' i -0.033 -0.016 -0.003 -0.004 -0.004 -0.007 -0.007 -0.012 -5.00 -1.42 -0.27 -0.31 -0.36 -0.59. -0.60 -1.22 H15 H14 H13 H12 H11 H10 H9 H8 0.731' O.896 1.129' '1.159. 1.178 1.126 0.987 1.011 .i f 0.769 0.918 1.140 1.168 1.187 1.139 0.998 1.024 -0.038 -0.022 -0.011~ -0.009 -0,009 -0 013 -0.011 -0.013 -4.91 -2.36 ' -0.93 -0.73 -0.72 -1.10 -1.07 -1.23 AVERAGE DIFFERENCE = 0.011 STANDARD DEVIATION = 0.014 0 42 { t -m. m -~
m .~ _. i i t t Y FIGURE 5.0 l EADDAM NECK-CYCLE 15 i RADIAL POWER DISTRIBUTION f ANC 9000.0 MWD /MTU - BANK B AT 316 INCORE 9424.0 MWD /MTU - BANK B AT 316 a R9 RB 0.660 0.766 0.661 0.769 -0.001 -0.003 + -0.15 -0.39 QUAD LOC P11 P10 P9 PB RPD( ANC) 0.702 0.935 1.089 0.913 KEY RPD(INCR) 0.703 0.937 1.092 0.917 I ANC-INCR -0.001 -0.002 -0.003 -0.004 i PCT DIFF -0.14 -0.21 -0.27 -0.43 N12 N11 NIO N9 NB j 0.805 1.112 0.987 0.900 1.125 E 0.807 1.111 0.985 0.980 1 129 -0.002 0.001 0.002 0.000 -0.004 -0.24 0.10 0.21 0.01 -0.35 M13 Ml2 M11 M10 M9 MB [ 0.805 1.136 1.024 1.183 1.141 1.141 0.798 1.113 1.006 1.163 1.140 1.146 i 0.007 0.023 0.018 0.020 0.001 -0.005 i 0.88 2.07 1.79 1.72 0.09 -0.43 Lid L13 L12 Lil L10 L9 L8 r 0.702 1.111 1.021 0.908 1.165 0.990 1.152 0.696 1.102 1.002 0.895 1.143 0.989 1.156 i 0.006 0.009 0.019 0.013 0.017 0.001 -0.004 0.87 0.82 1.90 1.46 1,49 0.11 -0.34 t K14 K13 K12 K11 K10 K9 K8 'l 0.935 0.986 1.181 1.161 1.000 1.089 1.095 0.927 0.984 1.165 1.147 0.997 1.097 .1.108 h 0.008 0.002 0.016 0.014 0.011 -0.008 -0.013 0.87 0.21 1.38 1.23 1.11 -0.72 -1.17 J15' J14 J13 J12 J11 J10 J9 JB-t 0.660 1.089 0.979 1.140 0.989 1.091 1.072 0.939 .[ 0.694 1.105 0.984 1.145 0.997 1.101 1.002 0.950 -0.034 .-0.016 -0.005 -0.005 -0.008 -0.010 -0.010 -0.011 -4.89 -1.44 -0.50 -0.43 -0.80 -0.90 -0.92 -1.15 i e H1S H14 H13 H12 H11 H10 H9 HB 0.766 0.913 1.125 1.141
- 1.153 1.104 0.984 1.012 0.806 0.935 1.135 1.151 1.165 1.118 0.996 1.024
'l -0.040 -0.022' -0.010 -0.010 -0.012 -0.014 -0.012 --0.012 -4.96 -2.35 -0.88 -0.86 -1.03 -1.25 -1.20 -1.17 l AVERAGE DIFFERENCE = 0.010 STANDARD DEVIATION = 0.013 t 43 i i t i f
.~ L FIOURE 5.9 HADDAM NECK-CYCLE IS RADIAL POWER DISTRIBUTION j ANC 12000.0 MWD /MTU - BANK B AT 320 l INCORE 11948.0 MWD /MTU - BANK B AT 320 [ s R9 R8 0.687 0.790 0.688 0.791 .f -0.001 -0.001 -0.14 -0.12 l QUAD LOC P11 P10 P9 PB RPD( ANC) 0.729 0.955 1.098 0.925 KEY RPD(INCR) 0.730 0.956 1.100 0.926 ANC-INCR -0.001 -0.001 -0.002 -0.001 l PCT DIFF -0.13 -0.10 -0.18 -0.10 i N12 N11 NIO N9 NB O.830 1.119 0.991 0.991 1.118 0.831 1.122 0.994 0.983 1.119 e -0.001 -0.003 -0.003 -0.002 -0.001 -0.12 -0.26 -0.30 -0.20 -0.09 P M13 M12 M11 M10 M9 MR 0.829 1.142 1.027 1.170 1.123 1.121 - e 0.816 1.117 1.010 1.151 1.126 1.123 0.013 0.025 0.017 0.019 -0.003 -0.002 1.60 2.24 1.69 1.65 -0,26 -0.17 Lid L13 L12 Lil L10 L9 L8 0.729 1.118 1.024 0.910 1.149 0.976 1.127 f 0.717 1.100 1.003 0.896 1.134 0.980 1.128 0.012 0.018 0.021 0.014 0.015 -0.004 -0.001 r 1.68 1.64 2.10 1.57' 1.33 -0.40 -0.08 L Kid K13 K12 K11 K10 K9 RB O.955 0.990 1.168 1.146 0.995 1 067 1.071 1 0.939 0.984 1.149 1.131 0.986 1.081 1.096 l 0.016 0.006 0.019 0.015 0.009 -0.014 -0.025 y 1.71 0.61 1.66 1.33 0.92 -1,29 -2.28 l t J15 J14 J13 J12 J11 J10 J9 JB 0.687 1.099 0.981 1.123 0.976 1.069 1.051 0.927 0.719 1.112 0.983 1.126 0.984 1.084 1.066 0.949 -0.032 .-0.013 -0.002 -0.003 -0.008 -0.015 -0.015 -0.022 -4.45 -1.17 -0.20 -0.26 -0.01 -1.38 -1.40 -2.31 H15 H14 H13 H12 H11 H10 H9 HB i 0.790 0.926 1.118 1.121 1.128-1.080 0.969 1 000 0.827 0.946 1.128 1.131 1.141 1.101 0.988 1.024 f -0.037 -0.020 -0.010 -0.010 -0.013 -0.021 -0.019 -0.024' j l_ -4.47 -2.11 -0.88 -0.88 -1.14 -1.90 -1.92 -2.34 AVERAGE DIFFERENCE = 0.011 STANDARD DEVIATION = 0.014- } c 44 i b .-v w s
,. ~. - ... - ~ _.. -- - FIGURE 5.10 l HADDAM NECK-CYCLE 16 RADIAL POWER DISTRIBUTION ANC 500.0 MWD /MTU - BANK B AT 310 INCORE 440.O MWD /MTU - BANK B AT 310 R9 R8 0.542 0.422 0.539 0.402 0.003 0.020 0.55 4.97 QUAD LOC Pil P10 P9 PB RPD( ANC) 0.678 0.929 1.104 0.970 KEY RPD(INCR) 0.702 0.962 1.099 0.957 ANC-INCR -0.024 -0.033 0.005 0.013 + PCT DIFF -3.42 -3.44 0.45 1.35 N12 N11 N10 N9 N8 0.795 1.134 0.936 0.998 1.107 0.825 1.160 0.957 1.002 1.103 l -0.030 -0.026 -0.021 -0.004 0.004 -3.64 -2.25 -2.20 -0.41 0.36 M13 M12 M11 M10 M9 MB 0.796 1.157 0.934 1.006 1.207 1.045 i 0.792 1.139 0.924 1.076 1.204 1.041 0.004 0.010 0.010 0.010 0.003 0.004 0.50 1.57 1.08 0.92 0.24 0.38 L14 L13 L12 Lil L10 L9 LB 0.678 1.134 0.934 0.915 1.147 1.098 1.195 0.675 1.129 0.922 0.907 1.138 1.103 1.200 0.003 0.005 0.012 0.008 0.009 -0.005 -0.005 0.44 0.44 1.30 0.88 0.78 -0.46 -0.42 K14 K13 K12 K11 K10 K9 KB 0.929 0.936 1.006 1.148 1.011 1.247 1.104 0.925 0.935 1.076 1.137 1.004 1.256 1.115 0.004 0.001 0.010 0.011 0.007 -0.009 -0.011 0.43 0.10 0.92 0.96 0.69 -0.72 -0.99 J15 J14 J13 J12 J11 J10 J9 J8 0.544 1.105 0.997 1.207 1.099_ 1.248 1.203 1.185 i 0.519 1.092 0.994 1.203 1.102 1.257 1.212 '1.198 j 0.025 0.013 0.003 0.004 -0.003 -0.009. -0.009 -0.013 1 4.81 1.18 0.30 0.33 -0.28 -0.7) -0.75 -1.09 H15 .H14 H13 H12 hil H2 3 H9 H8 j 0.422 0.970 1.107 1.045 1.195 1.104 1.185 1.039 'I 0.402 0.957 1.103 1.041 1.200 1.115 1.~198 1.057 I 0.020 0.013 0.004 0.004 -0.005 -0.011 -0.013 -0.018 4.97 1.35 0.36 0.38 -0.42 -0.99 -1.09 -1.71 AVERACE DIFFERENCE ' = 0.011 STANDARD DEVIATION = 0.013 45
~, - ~ ? FIGURE 5.11 .i HADDAM NECK-CYCLE 16 RADIAL POWER DISTRIBUTION ANC 2000.0 MWD /MTU - BANK B AT 312 '[ INCORE 1881.0 MWD /MTU - BANK B AT 312 R9 R8 0.562 0.435 5 0.565 0.430 -0.003 0.005 -0.53 1.17 OUAD Loc Pil P10 P9 PB RPD( ANC) 0.700 0.951 1.122 0.982 KEY RPD(INCR) 0.716 0.973 1.122 0.977 i ANC-INCR -0.016 -0.022 0.000 0.005 ) PCT DIFF -2.23 -2.26 0.00 ~ 0.52 l } N12 N1-N10 N9 NB 0.817 1.152 0.944 1.001 1.108 O.837 1.167 0.956 1.002 1.106 i -0.020 -0.015 -0.012 -0.001 0.002 -2.39 -1.28 -1.25 -0.10 0.18 i i M13 M12 Mil M10 M9 M8 0.017 1.172 3.939 1.081 1.195 1.036-l 0.815 1.157 0.930 1.072 1.192 1.033 0.002 0.015 0.009 0.009 0.003 0.003 6 0.25 1.30 0.97 0.84 0.26 0.29 i L14 L13 L12 Lil L10 L9 L8 0.700 1.152 0.939 0.913 '1.133 1.079 1.185 0.698 1.148 0.929. 0.905 1.123 1.081 1.190 0.002 0.004 0.010 0.008 0.010 -0.002 -0.005 3 0.29 0.35 1.08 0.89 0.89 -0.18 -0.42 Kid K13 K12 K11 K10 K9 K8 0.951 0.944 1.082 1.133 0.991 1.215 1.076 0.948 0.944 1.073 1.124 0.985 1.220 1.004 O.003 0.000 0.009 0.009 0.006 -0.005 -0.008 0.32 0.00 0.84 0.80 0.61 -0.41 -0.73 J15 J14 J13 J12 J11 J10 J9 J8 O.564 1.123 1.000 1.194 1.080 1.216 1.166 1.149 I 0.558 1.117 0.998 1.192 1.082 1.221 1.171 1.157 O.006 0.006 0.002 0.002 -0.002 -0.005 -0.005 -0.008 l 1.08 0.54 0.20 0.17 -0.18 -0.41 -0.42 -0.69 H15 H14 H13 H12 H11-H10 H9 HB 0.435 0.982 1.108 1.036 1.185 1.076 1.249 1.008 [ 0.430 0.977 1.106 1.033 1.190 1.004 1.157 1.018 I 0.005 0.005 0.002 0.003 -0.005 -0.008 -0.000 -0.010 1.17 0.52 0.18 0.29 -0.42 -0.73- -0.69 -0.98 .l f 1 AVERAGE DIFFERENCE = 0.007 STANDARD DEVIATION = 0.008 l i 46 t y.w,.r,,w--.n, 3 m-- 4--
~. 1 l ~f FIGURE 5.12 HADDAM NECK-CYCLE 16 i RADIAL POWER DISTRIBUTION I ANC 6000.0 MWD /MTU - BANK B AT 310 INCORE 6016.0 MWD /MTU - BANK B AT 310 f R9 RB l 0.604 0.470-0.607 0.467 ij -0.003 0.003 -0.49 0.64 l 1! QUAD LOC P11 P10 P9 PB '} RPD( ANC) 0.727 0.974 1.135 0.999 i KEY RPD(INCR) 0.743 0.993 1.133 0.994 ANC-INCR -0.016 -0.019 0.002 0.005 i PCT DIFF -2.15 -1.91 0.18 0.50 't N12 N11 N10 N9 No 'f 0.833 1.150 0.955 1.009 1.111 0.851 1.162 0.965 1.009 1.107 -0.018 -0.012 -0.010 0.000 0.004 I -2.11 -1.03 -1.03 0.00 0.36 M13 M12 M11 M10 M9 M8 f -i 0.833 1.163 0.944 1.077 1.180 1.028 6 0.826 1.155 0.940 1.072 1.176 1.024 f 0.007 0.000 0.004 0.005 0.004 0.004 0.85 0.69 0.43 0.47 0.34 0.39 L14 L13 L12 Lil L10 L9 L8 0.729 1.150 0.944 0.921 1.121 1.060 1.160- -[ 0.722 1.140 0.938 0.917 1.117 1.061 1.165 { 0.007 0.010 0.006 0.004 0.004 -0.001 -0.005 0.97 0.88 0.64 0.44 0.36 -0.09 -0.43 I i Kid K13 K12 K11 K10 K9 K8 0.974 0.955 1.077 1.122 0.97f 1.178 1.047 0.965 0.952 1.072 1.118 0.974 1.183 1.055 0.009 0.003 0.005 0.004 0.002 -0.005 -0.006 0.93 0.32 0.47 0.36 0.21 -0.42 -0.76 J15 J14 J13 J12 J11 J10 J9 J8 0.606 1.135 1.000 1.180 1.061 1.179 1.121 1.106 0.6s1 1.128 1.004 1.175 1.063 1.184 1.127 1.115 ~ 0.005 0.007 0.004 0.005 -0.002 -0.005 -0.006 -0.009 0.03 0.62 0.40 0.43 -0.19 -0.42 -0.53 -0.81 f H15 H14 H13-H12 H11 H10 H9 HB 0.470 0.999 1.111 1.028 1.160 1.047 1.106 0.979 =; 0.467 0.994 1.107 1.024 1.165 1.055 1.125 0.990 0.003 0.005 0.004 0.004 -0.005 -0.008 -0.009 -0.011 0.64 0.50 0.36 0.39 -0.43 -0.76 -0.81 -1.11 l 4 t AVERAGE DIFFERENCE = 0.006 STANDARD DEVIATION - 0.007 [ i 47 i I . - ~
.x =- r Ii i FIGURE 5.13 i RADDAM NECK-CYCLE 16 l' RADIAL POWER DISTRIBUTION i ANC 8000.0 MWD /MTU - BANK B AT 312 l INCORE 7689.0 MWD /NTU - BANK B AT. 312 R9 R8 0.624 0.484 0.626 0.484 [ -0.002 0.000 -0.33 -0.01 QUAD LOC P11 P10 P9 P8 RPD( ANC) 0.750 0.986 1.135 1.003 i KEY RPD(INCR) 0.757 0.995 1.134 1.000 ANC-INCR -0.007 -0.009 0.001 0.003 l PCT DIFF -0.93 -0.91 '0.08 0.29 r N12 N11 N10 N9 NB 0.853 1.151 0.958 1.007 1.107 0.861 1.159 0.965 1.008 1.105 j -0.008 -0.008 -0.007 -0.001 0.002 i -0.94 -0.70 -0.73 -0.11 0.17 ) i M13 M12 M11 M10 M9 M8 0.853 1.165 0.947 1.074 1.171 1.023 i 0.846 1.158 0.944 1.071 1.169 1.021 0.007 0.007 0.003 0.003 0.002 0.002 0.82 0.60 0.31 0.27 0.16 0.19 L14 L13 L12 Lil LIO L9 LB 0.750 1.151 0.947 0.923 1.114 1.049 1.143 0.744 1.141 0.942 0.920 1.111 1.052 1.146 0.006 0.010 0.005 0.003 0.003 -0.003 -0.003 i 0.80 0.87 0.52 0.32 0.26 -0.29 -0.27 i i K14 K13 K12 K11 K10 K9 K8 0.986 0.958 1.074 1.114 0.970 1.161 1.032 f 0.978 0.955 1.070 1.111 0.968 1.166 1.039 I 0.008 0.003 0.004 0.003 0.002 -0.005 -0.007 i 0.81 0.31 0.37 0.26 0.20 -0.44 -0.68 J15 J14 J13 J12 J11 J10 J9 JB i 0.626 1.135 1.007 1.170 1.050 1.162 1.106 1.091 0.625 1.132 1.004 1.168 1.052 1.167 1.111 1.099 j 0.001 0.003 0.003 0.002 -0.002 -0.005 -0.005 -0.008 0.15 0.26 0.29 0.16 -0.20 -0.44 -0.46 -0.74 l HIS H14 H13 H12 H11 H10 H9 HB O.4 84 1.003 1.107 1.023 1.143 1.032 1.091 0.967 0.484 1.000 1.105 1.021 1.146 1.039 1.099 0.978 i f' O.000 0.003 0.002 0.002 -0.003 -0.007 -0.008 -0.011' l -0.01 0.29 0.17 0.19 -0.27 -0.68 -0.74 -1.13 AVERAGE DIFFERENCE = 0.004 STANDARD DEVIATION. 0.005 48 i 1 ~- t-n-- y,w --e w -s
t i -f i FIGURE 5.14 l HADDAM NECK-CYCLE 16 { RADIAL POWER DISTRIBUTION ANC 9900.0 MWD /MTU - BANK B AT 313 j INCORE 9471.0 MWD /MTU - BANK B AT 313 1 R9 R8 0.638 0.497 0.642 0.495-l -0.004 0.002 I -0.63 0.39 'j QUAD LOC Pil P10 P9 PB RPD( ANC) 0.760 0.990 1.132 1.006 KEY RPD(INCR) 0.772 1.005 1.132 1.002 { ANC-INCR -0.012 -0.015 0.000 0.004 j PCT DIFF -1.56 -1.50 -0.01 0.39 N12 N11 N10 N9 N8 f 0.859 1.145 0.959 1.007 1.105 0.873 1.154 0.966 1.007 1.102 j -0.014 -0.009 -0.007 0.000 0.003 -1.61 -0.79 -0.73 -0.01 0.26 M13 M12 M11 M10 M9 M8 0.859 1.158 0.949 1.073 1.164 1.019 0.849 1.156 0.948 1.072 1.160 1.017 t 0.010 0.002 0.001 0.001 0.004 0.002 l 1.17 0.16 0.10 0.08 0.34 0.19 l 'i L14 L13 L12 Lil L10' L9 L8 i 0.760 145 0.949 0.927 1.111 1.044_ 1.134 ( 0.750 1.131 0.946 0.926 1.110 1.045 1.139 0.010 0.014 0.003 0.001 0.001 -0.001 -0.005 1.32. 1.23 0.31 0.10 0.00 -0.11 -0.45 K14' K13 K12 K11 K10 K9 KB 0.990 0.959 1.073 1.112 0.970 1.154 1.028 0.978 0.955 1.071 1.111 0.970 1.156 1.032 0.012 0.004 0.002 0.001 0.000 -0.002 -0.004 1.22 0.41 0.18 0.08 -0.01 -0.18 -0.40 8 J15 J14 J13 J12 J11 J10 J9 J8 0.640 1.133 1.006 1.164 1.045 1.154 1-.101 1.088 j 0.638 1.127 1.003 1.160 1.048 1.157 1.104 1.093 l 0.002 0.006 0.003 0.004 -0.003 -0.003 -0.003.-0.005 O.30 0.52 0.29 0.34 -0.30 -0.27 -0.28 -0.47-H15 H14 H13 H12-H11 H10 H9 HB O.497 1.006 1.105 1.019 1.134 1.028 1.088 0.968 i l-0.495 1.002 1.102 1.017 1.139 1.032 1.093 0.973 l 0.002 0.004 0.003 0.002 -0.005 -0.004 -0.005 -0.005 ( 0.39 0.39 0.26 0.19 -0.45 -0.40 -0.47 -0.52 AVERACE DIFFERENCE = 0.005 STANDARD DEVIATION = 0.006 49 ^
m m _ _~ i FIGURE 5.15 HADDAM NECK-CYCLE 17 RADIAL POWER DISTRIBUTION ANC 150.0 MWD /MTU - BANK B AT 312 -t INCORE 229.0 MWD /MTU - BANK B AT 312 I R9 R8 0.622 0.621 I 0.619 0.610 0.003 0.011 0.48 1.80 QUAD LOC P11 P10 P9 P8 RPD( ANC) 0.756 1.000 1.096 0.861 KEY RPD(INCR) 0.764 1.011 1.100 0.863 ANC-INCR -0.008 -0.011 -0.004 -0.002 'I PCT DIFF -1.05 -1.09 -0.37 -0.23 1 N12 N11 NIO N9 h8 l 0.826 1.164 0.949 0.977 1.125 0.835 1.173 0.956 0.984 1.134 -0.009 -0.009 -0.007 -0.007 -0.009 -1.08 -0.77 -0.73 -0.71 -0.80 M13 M12 Mil M10 M9 M8 O.831 1.102 1.005 1.113 1.107 0.923 0.809 1.095 1.002 1.110 1.114 0.930 0.022 0.007 0.003 0.003 -0.007 -0.007 2.72 0.64 0.30 0.27 -0.63 -0.76 L14 L13 L12 L11 L10 L9 LB 0.758 1.168 1.007 0.959 1.173 1.023 1.071 0.738 1.137 0.998 0.958 1.172 1.025 1.073 0.020 0.031 0.009 0.001 0.001 -0.002 -0.002 2.71 2.72 0.90 0.10 0.08 -0.20 -0.19 l Kid K13 K12 K11 K10 K9 K8 1.002 0.950 1.112 1.168 1.002 1.188 0.991 0.975 0.940 1.105 1.168 1.005 1.200 1.001 -l 0.027 0.010 0.007 0.000 -0.003 -0.012 -0.010 2.77 1.06 0.63 0.00 -0.30 -1.00 -1.00 J15 J14 J13 J12 J11 J10 J9 JB 0.622 1.097 0.976 1.105 1.019 1.183 1.190 1.163 1 ) 0.612 1.095 0.978 1.100 1.023 1.196 1.204 1.177 0.010 0.002 -0.002 -0.003 -0.004 -0.013 -0.014 -0.014 1,63 0.18 -0.21 -0.27 -0.39 -1.09 -1.17 -1.19 HIS H14 H13 H12 H11 H10 H9 H8 0.621 0.861 1.125 0.923 1.071 0.991 1.163 0.988 0.610 0.863 1.134' O 930 1.073 1.001 1.177 1.016 0.011 -0.002 -0.009 -0.007 -0.002 -0.010 -0.014 -0.028 1.00 -0.23 -0.80 -0.76 -0.19 -1.00 -1.19 -2.76 AVERAGE DIFFERENCE = 0.008 STANDARD DEVIATION = 0.011 50 i 5 .i 1
i El l' i i-l l FIGURE 5.16 HADDAM NECK-CYCLE 17 RADIAL POWER DISTRIBUTION i ANC 2000.0 MWD /MTU - BANK B AT 311 INCORE 1872.0 MWD /MTU - BANK B AT 311 j l R9 RB 0.642 0.641 0.649 0.645 i -0.007 -0.004 -1.08 -0.63 QUAD LOC P11 P10 P9 P8 i I RPD( ANC) 0.770 1.014 1.113 0.875 KEY RPD(INCR) 0.700 1.028 1.121 0.001 ANC-INCR -0.010 -0.014 -0.008 -0.006 PCT DIFF -1.29 -1.37 -0.72 -0.69 N12 N11 N10 N9 N8 [ 0.836 1.169 0.954 0.983 1.129 7 0.847 1.177 0.960 0.989 1.136 -0.011 -0.008 -0.006 -0.006 -0.007 'i -1.30 -0.68 -0.63 -0.61 -0.62 M13 M12 M11 M10 M9 MB e 0 841 1.102 1.004 1.108 1.102 0,922 .0.825 1.098 1.002 1.106 1.107 0.927 0.016 0.004 0.002 0.002 -0.005 -0.005 f 1.93 0.36 0.19 0.18 -0.46 -0.54 Lid L13 L12 L11 L10 L9 L8 0.772 1.173 1.006 0.955 1.158 1.012 1.061 0.757 1.151 1.000 0.954 1.157 1.000 1.056 0.015 0.022 0.006 0.001 0.001 0.004 0.005 I 1.98 1.91 0.59. 0.10 0.08 0.39 0.47 I Kid K13 K12 K11 K10 K9 KB 1.016 0.955 1.106 1.154 0.987 1.165 0.978 0.997 0.948 1.102 1.154 0.908 1.165 0.975 0.019 0.007 0.004 0.000 -0.001 0.000 0.003 1.90 0.73 0.36 -0.01 -0.11 -0.01 0.30 J15 J14 J13 J12 J11 J10 J9 .J8-0.643-1.114 0.982 1.100 1.000 1.161 1.163 1.138 0.647 1.117 0.984 1.103 1.006 1.161 1.163 1.136 -0.004 -0.003 -0.002 -0.003 0.002 0.000 0.000 0.002 i -0.62 -0.27 ' 0.21 -0.28 0.19 -0.01 -0.01 0.17-1 HIS H14 H13 H12 H11 H10 H9 H8 + 0.641 0.875 1.129 0.922 1.061 0.978 1.138 0.966 0.645 0.881 1.136 'O.927 1.056 . 0.975 1.136 0.978 -0.004 -0.006 -0.007 -0.005 0.005 0.003 0.002 -0.012 -0.63 -0.69 -0.62 -0.54 0.47 0.30 0.17 -1.23-l i AVERAGE DIFFERENCE = 0.006 STANDARD DEVIATION = 0.008 i 51 i n r--
m m= FIGURE 5.17 HADDAM NECK-CYCLE 17 i RADIAL POWER DISTRIBUTION ANC 6000.0 MWD /MTU - BANK B AT 312 INCORE 6150.0 MWD /NTU - BANK B AT 312 l R9-R8 0.687-0.685 f 0.694 0.694 l -0.007 -0.009 f -1.01 -1.30 - i QUAD LOC P11 P10 P9 PB RPD( ANC) 0.791 1.027 1.125 0.900 KEY RPD(INCR) 0.799 1.036 1.134 0.907 ANC-INCR -0.000 -0.009 -0.009 -0.007 PCT DIFF -1.00 -0.67 -0.79 -0.77 N12 N11 N10 N9 NB 0.852 1.155 0.958 0.992 1.134 0.860 1.159 0.961 0.997 1.142 I -0.000 -0.004 -0.003 -0.005 -0.000 -0.93 -0.34 - -0.31 -0.50 -0.70 - i M13 M12 -M11 M10 M9 : M8 f 0.855 1.096 1.002 1.096 1.096 0.925 0.839 1.093 1.000 1.094 1.101 0.931 l 0.016 0.003 0.002 0.002 -0.005 -0.006 1.91 0.28 0.20 0.18 -0.45 -0.64 Lid L13. L12 Lil L10 L9 LB j 0.792 1.157 1.003 - 0.954 1.140 1.004 1.052 0.777 1.136 0.998 0.953 1.139 0.998 1.050 ~ 8 0.015 0.021 0.005 0.001 0.001 0.006 0.002 1.93 1.85 0.50 0.11 0.09 0.60 0.19 i K14 K13 K12 K11 K10 K9 KB l 1.027 0.958 1.095 1.136 0.972 1.136 0.962 1.008 0.953 1.092 1.137 0.973 1.135 0.959 0.019 0.005 0.003 -0.001 -0.001 0.001 0.003 1.89 0.53 0.28 -0.09 -0.10 0.09 0.31 J15 J14 J13 J12 J11 J10 J9 J8 0.687 1.126 0.991 1.095 1.000 1.133 1.121 1.099 0.695 1.129 0.994 1.098 1.000 1.132 1.121 1.096 I -0.008 -0.003 -0.003 -0.003 0.000 0.001 0.000 0.003 -1.15 -0.26 -0.30 -0.27 0.00 0.09 0.00 0.27 H15 H14 H13 H12 H11 H10 H9 H8 0.685 0.900 1.134 0.925 1.052 - 0.962 1.099-0.942 0.694 0.907 1.142 0.931 1.050 0.959 '1.096 0.952 -0.009 -0.c07 -0.000 -0.006 0.002 0.003 0.003 -0.010 -1.30 -0.77 -0.70 -0.64 0.19 0.31 0.27 -1.05 i AVERAGE DIF/ERENCE = 0.006 STANDARD DEVIATION = 0.007 52 i ,m.. ,v.,v.- y.- -.,m
~ . - ~.. f j 1 FIGURE 5.18 'j HADDAM NECK-CYCLE 17 l RADIAL POWER DISTRIBUTION l l t ANC 8000.0 MWD /MTU - BANK B AT 312 INCORE 7756.0 MWD /MTU - BANK B AT 312 l R9 R8 0.699 0 699 5 0.706 0.707 -0.007 -0.008 l -0.99 -1.13' f 6 QUAD LOC P11 P10 P9 P8 3 RPD( ANC) 0.795 1.025 1.124 0.909 KEY RPD(INCR) 0.804 1.038 1.131 0.914 ANC-INCR -0.009 -0.013 -0.007 -0.005 PCT DIFF -1.12 -1.25 -0.62 -0.55 N12 N11 N10 N9 NB .) 0.853 1.147 0.959 0.994 1.136 'l 0.864 1.154 0.965 0.999 1.142 I -0.011 -0.007 -0.006 -0.005 -0.006 -1.27 -0.61 -0.62 -0.50 -0.53 ~i M13 M12 Mil M10 M9 M8 0.856 1.093 1.002 1.093 1.095 0.929 I -0.841 1.093 1.002 1.094 1.099 0.933 0.015 0.000 0.000 -0.001 -0.004- -0.004 I 1.78 0.00 0.00 -0.09 -0.37 -0.43 l L14 L13 L12 Lil L10 L9 L8 0.795 1.148 1.003 0.956 1.137 1.004 1.052 0.781 1.128 0.999 0.956 1.137 0.997 1.047 I 0.014 0.020 0.004 0.000 0.000 0.007 0.005 I 1,79 1.77 0.40 0.00 0.00 0.70 0.48 i K14 K13 K12 K11 K10 K9 KB 1.026 .0.959 1.092 1.133 0.971 1.130 0.960 [ 1.008 0.954 1.091 1.135 0.973 1.126 0.954 0.018 0.005 0.001 -0.002 -0.002 0.004 0.006 1.78 0.52 0.09 -0.18 -0.21 0.35 0.63 J15 J14 J13 J12 J11 J10 J9 JB O.699 1.125 0.993 1.094 1.001 1.127 1.112 1.091 f 0.707 1.127 0.995 1.096 0.998 1.123 1.109 1.086 -0.008 -0.002 -0.002 -0.002 0.003 0.004 0.003 0.005 -1.13 -0.18 -0.20 -0.18 0.30 0.35 0.27 0.46 H15 H14 H13 H12 H11 H10 H9 H8 0.699 0.909 1.136 0.929 1.052 0.960 1.091 'O.938 0.707 0.914 1.142 0.933 1.047 0.954 1.086 0.947 -0.008 -0.005 -0.006 -0.004 0.005 0.006 0.005 -0.009 -1.13 -0.55 -0.53 -0.43 0.48 0.63 0.46 -0.95 AVERAGE DIFFERENCE = 0.006 STANDARD DEVIATION = 0.000 ? 53 I r ? i h ~
t r i i FIGURE 5.19 HADDAM NECK-CYCLE 17 RADIAL POWER. DISTRIBUTION ANC 11000.0 MWD /MTU - BANK B AT 312 INCORE 11138.0 MWD /MTU - BANK B AT. 312 R9. R8 0.728 0.727 0.742 0.740 t -0.014 -0.013 -1.89 -1.76 i f QUAD LOC Pil P10 P9 P8 RPD( ANC) 0.816 1.037 1.125 0.923 KEY RPD(INCR) 0.832 1.057 1.134 0.928 { ANC-INCR -0.016 -0.020 -0.009 -0.005 -( PCT DIFF -1.92 -1.89 -0.80 -0.54 l f N12 N11 N10 N9 N8 0.871 1.139 0.964 0.997 1.132 0.889 1.149 0.973 1.001 1.136 r -0.018 -0.010 -0.009 -0.004 -0.004 { -2.03 -0.87 -0.93 -0.40 -0.3% l M13 M12 M11 M10 M9 M8 0.874 1.091 1.001 1.084 1.087 0.930 0.864 1.085 0.996 1.000 1.000 0.933 0.010 0.006 0.005 0.004 -0.001 -0.003 1.16 0.55 0.50 0.37 -0.09 -0.32 ) Lid L13 L12 Lil L10 L9 LB 0.817 1.140 1.002 0.954 1.121 0.995 1.045 I 0.808 1.128 0.995 0.950 1.116 0.986 1.038 I 0.009 0.012 0.007 0.004 0.005 0.009 0.007 1.11 1.06 0.70 0.42 0.45 0.91 0.67 i Kid K13 K12 K11 'K10 K9 KB 1.037 0.964 1.083 1.118 -- 0.962 1.109 0.949 j 1.02S 0.964 1.000 1.116 0.959 1.101 0.939 0.012 0.000 0.003 0.002 0.003 0.008 0.010 1.17 0.00 0.28 0.18 0.31 0.72 1.06 I J15 J14 J13 J12 J11 J10 J9 J8 0.729 1.126 0.996 1.086 0.993 1.107 1.089 1.071 0.743 1.120 0.997 1.007 0.988 1.099 1.082 1.061 -0.014 -0.002 -0.001 -0.001 0.005 0.000 0.007 0.010 -1.89 -0.18 -0.10 -0.09 0.50 0.73 0.65 0.94 H15 H14 H13 H12 H11 H10 H9 H8 0.727 0.923 1.132 0.930 1.045 0.949 1.071 0.927 0.740 0.928 1.136 0.933 1.038 0.939 1.061 0.932 -0.013 -0.005 -0.004 -0.003 0.007 0.010 0.010 -0.005 -1.76 -0.54 -0.35 -0.32 0.67 1.06 0.94 -0.$4 AVERAGE DIFFERENCE = 0.007 STANDARD DEVIATION = 0.009 I 54
._m s i FIGURE 5.20 HADDAM NECK-CYCLE 18 RADIAL POWER DISTRIBUTION i ANC. 150.0 MWD /MTU - BANK B AT 320 INCORE 140.0 MWD /MTU - BANK B AT 312 i R9 RB 0.578 0.498 0.575 0.483 7 0.003 0.015-0.52 3.11 QUAD LOC P11 P10 P9 PB RPD( ANC) 0.739 0.992 1.130 0.877 KEY RPD(INCR) 0.757 1.017_ .1.140 0.882 ANC-INCR -0.018 -0.025 -0.010 -0.005 PCT DIFF -2.37 -2.46 -0.87 -0.56 N12 N11 N10 N9 NB 0.789 1.176 1.001 0.985 1.190 0.010 1.211 1.030 1.004 1.204 -0.021 -0.035 -0.029 -0.019 -0.014 -2.59 -2.89 -2.81 -1.89 -1.16 M13 M12 M11 M10 M9 MB 0.789 0.935 1.069 1.185 1.001 0.927 0.777 0.916 1.059 1.176 1.020-0.938 0.012 0.019 0.010 0.009 -0.019 -0.011 4' 1.55 2.08 0.95 0.77 -1.86 -1.17' L14 L13 L12 L11 L10 L9 LB 4 0.739 1.177 1.070 1.020 1.177 1.200 1.060 0.727 1.158 1.049 1.011 1.168 1.210 1.054 0.012 0.019 0.021 0.009 0.009 -0.010 0 006 1.65 1.64 2.01 0.89 0.77 -0.82 0.57 Kid K13 K12 K11 K10 K9 KB O.993 1.001 1.185 1.177 1.068 1.213 1.007 0.977 0.992 1.166 1.162 1.056 1.214 1.007 0.016 0.009 0.019 0.015 0.012 -0.001 0.000 i 1.64 0.91 1.63 1.29 1.14' -0.08 0.00 J15 J14 J13 J12 J11 J10 J9 J8 i 0.578 1.130 0.985 1.001 1.198 1.211 1.044 0.940 .i 0.560 1.132 0.992 1.000 1.195 1.212 1.045 0.940 j 0.018 -0.002 -0.007 -0.007 0.003 -0.001 -0.001 0.000 3.22 -0.17 -0.70 -0.69 0.25 -0.08 -0.09 0.00 ) l H15 H14 H13 H12 . H11 H10 H9 H8 0.498 0.877 1.190 0.927 1.060 1.007 0.940 0.855 ~ ) 0.483 0.882 1.204 0.938 1.054 1.007 0.940 0.864 0.015 -0.005 -0.014 -0.011 0.006 0.000 0.000 -0.009 '3.11 -0.56 -1.16 -1.17 0.57 0.00 0.00 -1.04 i AVERAGE DIFFERENCE = 0.012 STANDARD DEVIATION = 0.015 55 i ~
L. FIGURE 5.21 HADDAW NECK CYCLE 15 AXIAL POWER DISTRIBUTION AT HFP 1.400 d_.. I l f l a._ l l l 1.200 vD c- -^X l Xp^ X ._[' __ ,X I .. b-I i i i l/ i 1.000 I l } } l i X-j l 1 l I h_..L_ l I l I 0.800 = _k I f. a: I I l W l i o I l I I I 1 n. j l l l M a< ~ l l l i l I \\ I l l 0.600 i i i l \\ a I f 1 l I i W i ( N l l l a l l ~~~ : '^~ { l l t I e j }~ p l E 0.400 l L z l { l I i l i i l f i i i l l { l j i l i l l I l l x ^ l l l l 1 l l ~ l 0.200 X INCORE 297 MWD /WlU BANK B e 312 STEPS - ANC 500 WWD/WTU BANK Be 312 STEPS i i i l l 4 i i i i i I T l l l ! ]~ 0.000 O 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT 56
P FIGURE 5.22 HADDAW NECK CYCLE 15 AXIAL POWER DISTRIBUTION AT HFP 1.400 _i _.I_ _d._ I f _k I l l 1, I l I. j l l i t i i l i } } l l 1.200 XNX dx i i _b). X - ;x ^l I I _x%.._g_ _T_ X _l _x X { - -_t - a__ -_.. y ._t __ 1.000 - if I l I i 1 t l t i i i -X ~ - . _. p - l l I l i, i i I i I i i I l l l l 1 0.800 f l l m I l l w i I 4_. i i 5 o l t I i i l i 1 .y._ __j._. _._I_ ^ l l l l a c _l { I l O 0.600 l __I___. a i 1 _ _ ! i i ua i I I l I N l l l I ~ I l r c i l i 8 1 i 2 i I 0.400 l f I l __f_ L_ I l l l l I l I X ul _ _ _1 l 1 l v i i _4 I l l 0.200 X INCORE 1866 WWD/uTU BANK B e 305 STEPS - ANC 2000 WWD/MTU BANK Bs 305 STEPS 0.000 l l l l O 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT I 57 i
l FIGURE 5.23 HADDAW NECK CYCLE 15 AXIAL POWER DISTRIBUTION AT HFP 1 400 l I i i i ..__j _ _a_ l l l l i i _a. _ - l I I __1_,_ __.b._. I I 1.200 i l i l l I _7_ yhX _.X X _XXXX X
- v L_-
~ ~~ ~T^ i ^^ t X ~~l~ ~ ' ~ ^ ^ ~ I i i i t i = 1.000 _ I __ l l I I _X l l I l t i I I k_L ( l I I l l l ~ i-i i j T ji 0.B00 l t i l m w 5 o l } l, I l i a i i l l l l I a< _~ l '. \\ /l l l I l Q 0.600 .f_L f, _d_ I I ._d a _ _ p_. l .__d__ _ i I' w i j i N 3 l l I l l l 2 l i I l i i l l I 0.400 .l l l l l l .l u-z i I. I i l { A s i . _._1_ _ L_ .__._1._._.. _L. x I i l l j l t i i l i i j 0.200 X INCORE 5212 WWD/WTU BANK Be 314 STEPS - ANC 5000 MWD /WTU BANK B e 314 STEPS I l I l l l l i 8 f t 0.000 l-0 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT I i I i l l l 58
FIGURE 5.24 HADDAW NECK CYCLE 15 AXIAL POWER DISTRIBUTION AT HFP 1.400 I l l I .;_ I - I I l l 1 l l i i l i i I .___..L_ l I l l l l I i l 1.200 l l l l l l l l i _7_. _L l I xxxy' _J_ X XXX X=X/ XX h l N X Kl- . N jX l-i a -l l I 4 ^ 1.000 Xm I) l i l l I l l l _.4-< __ l.. l l l } l l l 0.800 l l l m g l w w _._. a i i i l i l l l a I ~~f' ]~ I l j j i 7 0.600 l l l l l o 1 I. I Z I l l l l I I j i k-0.400 X z l l l l l l x l I I I i i i l i i i i i i I l 0.200 ^ X INCORE 9424 WWD/uTV BANK B e 316 STEPS - ANC 9000 uwD/uTU BANK B e 316 STEPS ~~ i l l l I I i I I l i O.000 O 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT 59
i flGURE 5.25 HAODAW NECK CYCLE 15 AXIAL POWER DISTRIBUTION AT HFP l l l _ l l l l J~ f l l I i 1.200 i I i l l l l I l l I l l l l <X!- l \\ 1.000 l I I l l I i l l I i /- i l l I i i i i l i j i 7 0.800 I l l l e l _. + w 1 l l o i i i i . _.i_ n-l I j l 1 i ik__ a I l I i i I l l l ~ Q 0.600 o l I I I i l Z 3 l i l l i .c x 0.400 l l 1 l l 2 l l .I l l ,l l l .I z _9_._ l l x_._ __ i p-4 l 1 I .i l 0.200 i l i i i i l i X INCORE 11948 WWD/MTU BANK B e 320 STEPS - ANC 12000 WWD/MTU BANK Be 320 STEPS f 1 j { l t i 6 i i i ___1_ I l I I l l l l l 0.000 0 10 20 30 40 50 60 70 80 90 100 l CORE HEIGHT I i 60
FIGURE 5.26 HADDAW NECK CYCLE 16 AXIAL POWER DISTRIBUTION AT HfP 1.400 l l l i I l l l l l l l l 1 l 1.200 l I' I I l t ~ X>- XXD fy I g,-- l l I 1 i h 1.000 l l l l l . l l l l I 5 ! /. l I l i = ___h' - l l l I l l yl O.800 i/ i i l \\l os r i M f i a i l C 0.600 l l l i l l l l I I 2 I i m _ _,I __. l I I l l l l _. [ S 0.400 l l l l I i I I I I f _ _b._ i i l l x ! i I I i l l x J i l I I i l 0.200 X INCORE 440 WWO/WTU BANK B e 310 STEPS - ANC 500 MWO/WTU BANK 8s 310 STEPS l l I T-f l l l 0.000 i O 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT I i l 61
~ - t l- ) FIGURE 5.27 HADDAW NECX CYCLE 16 AXIAL POWER DISTRIBUTION AT HFP 1.400 l I l I .I i I l 1 I I l i I t } i r t-i i i l j I I k._ ._b_ i i l t i 1.200 I l l bv l i I [_v~ jxXf% l X 5 l X } l l X' l l 1.000 _j_ I i i i I i i _3_X,, l l l I l w 5 !/ j i i O.800 i + -l I l. k' l i j l l 4 j l j U I I t i i I l i T 0.600 i I l l /! l i l T-j T I j i I i m i o g-i l l 2 i t-i l i 6 i i i i I 0.400 _.I_ I i ,i l l I l l l l . _L_x X l l l l l l l r j l j l i I i I 0.200 X INCORE 1881 MWD /WTU BANK Be 312 STEPS - ANC 2000 WWD/MTU BANK B e 312 STEPS l l l I i l l l 0.000 O 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT I 62
t FIGURE b.28 HA00AW NECK CYCLE 16 AXlAL POWER DISTRIBUTION AT HFP 1.400 i l I l 1 l l l i i I i i l 1.200 l l l l l l l l l XXXx l X X %j_ X~ ' Wy XX ,,yys i i n. ,,-y i i j j j T jX l l j 1.000 _[ _1_ l l l l X l l l l l l l I l l I l l l l 0.800 m W I I I 2 I i i I 0.600 lh ji l l l l l i O l l I j l 1 l ~ h i l I t l = i i 0.400 i z i I I X l l l l l l I ! X l l l l i i l I l l l l i 0.200 X INCORE 6016 WWO/WTU BANK B e 310 STEPS - ANC 6000 MWO/WTU BANK B e 310 STEPS I I l I I j i 0.000 O 10 20 30 40 50 SO 70 80 90 100 CORE HEIGHT l ( 63
flGURE 5.29 HADDAW NECK CYCLE 16 AXIAL POWER DISTRIBUTION AT HFP 1.400 l I l l l l I l l l l l _7._. I i i I i 1.200 l l I l [ XXXy-l l 1 l X f l T X y >( X XX lx ~ N{ I I i l- ~j x l 1.000 l Xh _[_ __.I._.- i i I i I I l 7 I l l l l l l l l I I \\l O.800 m g I I l w t _7_ . _y_ I o-Y -)-- j l 0 0.600 g e N _j_ _g. l c[, 1 i l i j i j 1-j p' 5 0.400 l J j l i l z l- -p-j i i l _. l _.l 1 __L_ _ _4_ I l l 0.200 X INCORE 7689 WWD/WTU BANK B e 312 STEPS - ANC 8000 WWD/WTU BANK B e 312 STEPS _} l i l l i 0.000 O 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT I l 64-i I
1 l FIGURE 5.30 HADDAW NECK CYCLE 16 AXIAL. POWER OISTRIBUTION AT HFP 1.400 l l l l l l ~~~j-'l l l l l 1 j j i T i l I 1.200 l I I i i i l l l l l l xxyy XXX l x, __ Q.y k i m. X. XX g 1.000 l l D 9' i l l l I i } l l l l I l l l l l 0.800 m I l l l w, o l l l l l i i I i i n. ~~ I j j [ j l t i_ _a I i _7_ i i i l 0.600 l I I I i i Q -.e-.- i i i i i w I I __.h- [ l _a i l l 1 I I x [ l _ 4___.
- n i
I i I ( 5 0.400 z X l l l l l l l - r-i I I l i l i i, ~~T~~ i, -~~ i i i i. I i i i i 0.200 'j j j i i X INCORE 9471 WWD/WTU BANK B e 313 STEPS - ANC 9900 MWD /WTU BANK B e 313 STEPS 0.000 O 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT I 65
1 I 1 flGURE 5.31 I HADDAW NECK CYCLE 17 AXIAL POWER DISTRIBUTION 1.400 i _i i i l l I l l i ._ 7_ _.7._ l l-F- ' i t I i i l I l i i I i l l 1. 00 xX K i j j i j Tg j ,y f i 1 t X l l . _7__ i I t _ ~ _ _. a i i I 8 I 1.000 i l l l l I I ^^T~ __j__a I i i x i I l 5 i LJ i l s I { l' l l f i Oa. D.800 ) l ( l l }! a i l i. l i i i x i 4 ' ~ P-f I I l i a l l l i l C 0.600 l l k _i__ l l l' i i i 2g _4_ l _a_ l i I i i i z i i j l 0.400 i i I I l l l a_ 1 m-I ~ I, i i l, i i l i e i I I ! X X i l l I t i i t 0.200 X INCORE 229 WWD/WTU BANK B e 312 STEPS - ANC 150 WWD/WTU BANK Bs 312 STEPS j ._ i i i l i r i l i j i i i ~ 0.000 t 0 10 20 30 40 50 60 70 80 90 100 l CORE HEIGHT 66 l
1 l FIGURE 5.32 ] HADDAW NECK CYCLE 17 AXIAL POWER DISTRIBUTION AT HFP 1.400 i i i I I l I _a_ i I l l l l l l i _4_. _7_ _y_ f I i i ( j i l l l t i 1.200 I l ly Xdv~X ^i IX I I I - >n _.. X -- - X: 1.000 j i i 1 -~ i l l l l l l a: i i i I i w i i j i o I i i l I I l h_ _ ' 0,800 _[..._. l l l 1 i I ki u r_ l l l l l l I g . _4, _ _4_. l i I m l l I l l i [ 0.600 l _L_ i \\ 4 I m - p_ ( g l _4 . __q_ z l l l l i l I i l j l 0.400 l l l l l l _ . _ _7 { i l i l i l .l l l l 0.200 l X INCORE 1872 WWD/WTJ BANK B e 311 STEPS - ANC 2000 WWD/WTU BANK Be 311 STEPS i l l l l I l 0.000 l l I l l l i I 0 10 20 30 40 50 60 70 80 90 100 l CORE HEIGHT ! l 67
i FIGURE 5.33 HADDAW NECK CYCLE 17 AXfAL POWER DISTRIBUTION AT HFP 1.400 l l l I l i l -r-r- [ i j ..I i i i I l t 1 __j__. _4_. __L-l y_ l y._ _7 1.200 I i l I l [ i I __L _. -<XXy i 1 i 1 i i i X K y y I. 1.000 l I i i t l ll l _ l-l l X l I l . -4, - i 4 ._..p _.t__. _ l l i l j i I l l } y, -- 0.800 m l i I ',s j 3 l O j I j i I j a i l i I l l i s __m I l l l i l /, i i\\ l4 e -r- - i 1 i hJ i i ? l N i i _L _ {_ { l C l i l i l l I .c .._ r _ 2 1 l l l l 1 i 5 0.400 l l I i z t i i _4._.. y_l I l l l l l .l I X . _a_ _a__ I l ._ _.I_..l l l l I i i __.t__. I i l j 0.200 'i X INCORE 6158 WWD/MTU BANK B e 312 STEPS - ANC 6000 WWD/WTU BANK B e 312 STEPS i i i I i I. l i l t _L i 0.000 0 10 20 30 40 50 60 70 80 90 100 l-L CORE HEIGHT 3 l i 68 i I l l
FIGURE 5.34 HADDAW NECK CYCLE 17 AXIAL POWER DISTRIBUTION AT HfP 1.400 l l l I .._i_.__.i__ I I _r w_ I. I i i. I l ? __w.. } l l l l l m-l l 1 l l 1.200 I I I l I t ._..I_ _.. _ M. 1 l l 1 l ~~~i XXX i X-- - - - gXXX X ><
- I I
- y*l
-F- - 1.y X i i i 1.000 l xk i i I i l j_ l i I 0.800 I i l I \\! t x i w l l l _)' ___ je _.{._._.__a__ l _.l _. 1 o i _7. __ l l l i h_.._ b.~. l_ L _.l l l l 'I i i i i i _}__ j i 5 0.600 l l a I 8 l t i i l i i w j j l ,_n_ .,__,n _ j l-N l l l l l l I i l I I l l l 2 i 0.400 i. l l l j z s,n,- . -+- _.yy l 1 p_ I l t i i I 1 l j I j _h_ _{_.___;_._ i i l i I l 0.200 i INCORE 7756 WWD/WTU BANK B e 312 STEPS X 8000 WWD/WTU BANK B e 312 STEPS - ANC i i i l 1 i i - l' i l i i I l l i 0.000 ~ i 1 0 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT 69 f'
i i FIGURE 5.35 t HADDAW NECK CYCLE 17 AXIAL POWER DISTRIBUTION AT HFP j 1.400 l l l l l l t 7 T i l i +_. l l l l l I I l 1.200 l l 1 l I I i 1 1 i l I XX] I i l l l .X__ X_. h X_X M i I d
- y I
ia i i lX L__ ^ 1'000 i _ l l l l l i 70 i l i i i T i I i i I l l 1.-- s 0.800 I' l l .l l l l m t w m - I--. O j l l l l l 3 a. _j_ _ [,_ l I __J___ _ _i I i l l l _f__ 'l l Ih 0.600 l . __.i _. j __.i __ __l _. i l l e I I l l ( i j La.J I N . _,,{_ i i I i l 1 i i. I l l a j i i i j l i m 5 0.400 X ! I I I I __L_?( i I i I _.. I i I l l 1 l I l i 1 I ~ 0.200 X INCORE 11138 WWD/WTU BANK B e 312 STEPS - ANC 11000 MWD /WTU BANK Be 312 STEPS j i . l _.. l l l l l i i
- 0. s00 l 1
i i 1 i 0 10 20 30 40 50 60 70 80 90 100 l CORE HEIGHT 1 l l 70 l
I FIGURE 5.36 HADDAW NECK CYCLE 18 AXIAL POWER DISTRIBUTION AT HFP 1.400 i l l l i l I j i i = l i I l 1 I l l l l l i I l j t I ..vX.J XX l l l j {..__. __D' i i fx l-I I>- I I i i l l I l_ . __p _ . _j_ _i__ i i i I i 1.000 l j i i 7 _. y _ J.___ u _2_ o I I l l l l l h! 0.800 ._k l l I __j _. _ !_ I i i I a ._.7 _._ l q a _.L l I i i i l i I 2 0.600 a t i i l I I i 1 j l 1 ? I t
- =
--r-I i l i i z T*- ' ~~~~- t i l i i i i 0.400 l i l l l l I L l _ i__. I f i i 1 f I l I l I X I ,. X 0.200 j l j l j j X INCORE 140 WWD/WTU BANK B e 312 STEPS - ANC 150 WWD/WTU BANK Be 320 STEPS l I I l l l l i i I 0.000 4 0 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT 71 1
FIGURE 5.37 HADDAW NECK CYCLE 15 AXIAL OFFSET VS. BURNUP e HFP I 4 _.I_ I i i l l l l i l 1 __.E_. l I I l i i l i X WEASURED 3 - ANC i 1 l . _ _;_ q _.__L_ q_ l I l i i l. q__ 4 . m_ i i I -r-r- l I l l l l 7 I l i i f ( 2 j i l l l l l l i i _m _e l i i i i I i i l T T 1 l l l I l l 1 l m.. 1 I l __.d_ C 0 ._._) l_. _: _i _X-l 4- ~ l l l _a_ -1 l l "k l l i i I l X ' 'l X' l' I <!y l i l I .__l_ i __t_ f l l I l I l h. -2 I i I _I l l l l l l 1 . ~_ k ~t-l l i i ~~}- i l j -3 I i l J_ l i i _7_ L--. j l l l l I l ___4 _ i l T I I l I I I i _4 0 1 2 3 4 5 6 7 8 9 10 11 12 BURNUP (CWD/WTU) 72
FIGURE 5.38 i HADDAW NECK CYCLE 16 AXIAL OFFSET VS. BURNUP a HFP 4 i i i I. I i I e p-j L. I l_ _1_ _4_ _L_ i X WEASURED 1 1 i i 3 i - ANC . i _. l l 1 l l _.l_ .,a.. _,-s. i i i 2 I I I __4 . _i__._ d__ __ p._ _j_. _4_ l I __.I _._ _ I_._ { l i __a_._ l { l - r-i l l l i I i. l 1 I i l i_ l 1 I i i _. i l l I w t q_._._q_ . _4_ 0 l i i j __ N _.I _ l I_ _. ' _p. _J_._1_. - _J __A{y44_{.I _i_ q_ l s _t 4 I I i l y-l - a._.y.._ y _ p_, _q_ y_ _c x; _r -2 x y 1 _p _. 7_ y i i t i I l l i _ _7_ _ __,l _ __ _l l I i _ a._ __7_ l l l I l l t l l -3 I i l i i 3 4 i 1 _._]._ _ i _ _. _.d__ _ f . __..b..__d _. _j _ ._I _. i i -r i i . _ J__ _4._ t I l l l I l l -4 0 1 2 3 4. 5 6 7 8 9 10 i BURNUP (GWD/WTU) 1 73 i I i i l l'" +
.. ~. _. i 1 FIGURE 5.39 HADDAW NECK CYCLE 17 AXIAL OFFSET VS. BURNUP e HFP 4 i I I i i i l i i 1 i l l l i i I I I i i i j I X INCORE I i i i 3 - ANC i i l I i i i r. i l l i 1 2 -1 I l t --4 l i i i l l i~! i _lf I 7 l I i i i --~ i ~~] - l l j i j i 1 l l i _ -. - - -I i l i i 1 i l l 1 1 I i 1 f~- +: l. I __7_. l i i l ? "~ m x F, i j j m i t +g i _ _L i i x _L I I I l _L. o l a I i i _i i l 4 + 7 l l l I l 1 I I { y ___1_ ,I h-l i i l m .._;___ __L _. _X _ j i I j g i jX (/ 7-x-p p 7-p -2 I i l. I i X i i I T j- 'l 1 i i. l i. . _. 7 q-- m. _ _, _ _x_.. _ _ _ _ __ m -3 I I i i i i } i i _p. l i l i ._7 i l l l 4 i. i r-- i i i l l _4 0 1 2 3 4 5 6 7 8 9 10 11 12 BURNUP (GWD/WTU) 74
.-s 4 1-A+A- .L1 f A4Ak5 G --4 + 2 J. 2 A +-awr,..- .m. h I flGURE 5.40 HADDAM NECK CYCLE 15 F-DELTA-H(WAX) VS. BURNUP 1.70 i i i t i i i j i j i } f l i l l j j { i X WEASURED i I l l - ANC i 1.60 i l l l I l 7 7_ l ,i-. i i ~ 4 t i 1 l l i [ l I f l 1,50 l t i i j l t i .._ L __1__ i i l l __ }'i. i 1 -_ g j _l. I I _ _ _. __p-4 l a .- 9._ 1~40 t i I j l i j i ( Q m# _,!._ _n 1 +_g m e i 1 1 i i.- i __r,.- X 2 i I 6-l l i 1 + - y' - i - w" 1 30 ^ i j I i j X. i i i i i I I a ) { f f J 4 _L_. l ___J _.w _. l j i i 1 1 i i ~ 1.20 1 l l i i t i i l q __ q __. _ _u._. m-t ? l l h 3 ' l, l l .l I 1.10 I l i i I l l l 'l_. _7 m i i _L_ . _. _. _ _l - i l l l I } i i + l f 1.00 O 1 2-3 4 5 6 7 8 9 10 11 12 l BURNUP (GWD/WTU) t i l 8 I l-75 I ) .i 6 --rr--. -rmy 3- ,g g. t 3- ,y ,-,m, ~ -e
i FIGURE 5.41 HADDAW NECK CYCLE 16 f-DELTA-H(MAX) VS. BURNUP e HFP 1.70 __.b_ l i i i I l \\ l t j X WEASURED I i l l i - ANC 3,30 i I l l l l I I l l 1 1 I I 1.50 I l l l l l l l 1 i i 1.40 i x x . l l i I X 2 j i _J _ l i I l i J I l d J v). 4 L i I ? I l i i 5 _v 1.30 w l l 1 l l l l t. i 3-l l i l I l l \\ I L-I l l I I l I I I 1.20 __..f _ l I f. I l l l i l I I i 1.10 I l I I i i l I l I i l 4 I i l 1 I i l - 1 1.00 0 1 2 3 4 5 6 7 8 9 10 BURNUP (GWD/WTU) 76
FIGURE : 42 ] HADDAW NECK C'CLE 17 F-DELTA-H(WAX) VS. BURNUP e HFP 1.70 l I _. I _ I I I l . q_ g I l _i_. _1_. l l l l l { j X INCORE l 1.60 l l i I l - ANC I _.L _L _. _L. I. _i_ I_. __ i I _L l I. _L _L _1 i i i l q___ q_ I i j i 1.50 i 4 i I I . _ I_.. _h. _.y__ --.l_ l l I i I l l l l I I T 1.40 } l l I i I l .i.. l 'bM4_ [ l b l f I f_~ 1.30 T'- i i TN': 'i l i t l l l j yd i W-- J. i j j i i } __L - 4.- -.a _ l l l l l f I I I l l l l l 1.20 l l l I-i _ r_ l l l l l y_ l l l I i I 1 t __. l i _7 __e_. .a_ 1.10 l I i i a i ___i i i i I l i i t I l l l l -l l i i i i. i 1 i I j l I i l l i 1.00 O 1 2 3 4 5 6 7 8 9 10 11 12 BURNUP (GWD/WTU) 77 k ? ~
flGURE 5.43 HADDAW NECK CYCLE 15 F0(WAX) VS. BURNUP e HFP 2.00 i i i i i i t - y-- i i i i i i 1 I l I' l I i 1 i i i X INCORE 1.90 i
- .. _ w._
ANC i i 1 i l l-l ~ i l I l T-i 1.80 l l j l i i i s i i i i i _..&_..J_. l I I I I u _. w I l I i I .l i 1.70 l i i _L l I i i 6 i < t-i l j i i i i i X, j i i 1.60 f i i ~ i w i i T-i 1*50 'i i i i N ^: l T l MQ>__.! x_ ~ . J__ I I i 1 J_ i l l i -j-1 i i 1.40 i i i l i i 1 i i i i i l 1 l i I 1.30 l.. I i i t__ i i, i i 1.20 I t I 1 t i 1 l l l I i l l 4 _ 1 _. I . __ l _ l 1.10 _. J._ l . _i__ i i . _L I l 1 i i i i i 1.00 O 1 2 3 4 5 6 7 8 9 10 BURNUP (GWD/WTU) 79
l FIGURE 5.45 HADDAW NECK CYCLE 17 FQ(WAX) VS. BURNUP e HfP 2.00 l I i i X INCORE 1.90 i - ANC l { l j I i j 1.80 I l l l l t 1 -t-j j g l l l i i 1.70 l l l i _L i l 1 60 M, i l i I I i i i i N i l Ny;! l l 1.50 x. 3 l I N !X l l ._m yg_j_ 7 l l l I l } T-! 1 1.40 l l l l e 1.30 I l -:l- -L.- _}- l 1.20 l l l 1 f _..i_ _. L. i i i l l l I i l 1.10 j i I' l i i i i i i 1.00 f I O 1 2 3 4 5 6 7 8 9 10 11 12 BURFUP (0WD/uTV) 80
l t ) FIGURE 5.46 HADDAW NECK CYCLE 15 CRITICAL BORON CONCENTRATION VS. BURNUP (HFP. ARO) 1400 _._,1 !!! ill !!l. -l}i I t' i! !i, jIi t ! ll .ll + R0D & DEPL. CORR. 'i i ~lj !ll.. --r,1_ n -- ll i 'i 0 R00 CORR. 4' ' l.l,1. LL+
- i i
w!.._. u !l! i!i !j il! - ANC .i 1200 !!i -_.!!. l.i ! I, !!.l. _Ili.l,1 .-l._p-l-.!,!_,!_ !!l _i_i l.!.... ..l _.l _:_. ..I ! < !II +9.. IlI. l ll# ll} l! m_ _ ._g. I l .!i, a'.. !. I ill - I I [ i I.i l l I ! >lI iji i j ll!l,.I.' i' '. - _l I..!. i li!
- l lil j li- -.
_I_,!l_ _,I_.i_.'_- i ii ___m i-m. , i t ,'j; i i l i j ~ a". 1000 i!.,' . l 3 ,;I I !l! I i! !l l. i !. ! I i ; i c-1, ~~T[T lll Q;,.,j i j N l}i~ TT ~T ~I~IJ]!T 4ll.l.;l +! i - 4 3 a i.!. all.__;!;! g u+ _liy! 7 l __.! il! li r ylI i!i IIl ll !!l l l lI i ' iI !I i 4 l'l l!! B00 ti: ... i. i . _!i ._14.!. _i i,i_.. z 4 .i {j m w li! llt l.:< 'i {}! Iil lr, l 'i i, l 1_. '_i.i_. t O Ili i . 7_._ _i i 4 +.__i i, z ,l ml1I l I r g . _. ~ _ llI ,lI -l;! _.l_.!,!._.l!. lul llj . + ~ _, : l i ,i u n..- .c..- I 600 5 lll !i: .-+7 i i r-l!l l!I til ll !!! !! i' l' i i m = +- -ltr -~ r
- til ii
_ _.. I,l. !;. _.il.-. 3 -.L.'- li! l; j.',_.,i-l .ii t i a ,n n - n_ . l U f l ,~. !j' lI! i i 'l ill I!! lj. I!! !!! IIl 400 = 1_.!....,!j i i _il !!i ]l ij iil i 1! ll: .:.j !_ i o L n _ !t ' i i'i [!I il; ilI +i{i-iI il - Ii - i, l j i j I i. i ji! I t i ,i ,ri i i _.'. ry. !l an. i,j.. m 1 i ,.f +; i g +. _f .i,_,I- . _.a f .f l j k ) I. !' i, E 3 200 i t i,i ti i 4, i t
- 1. i iii
!,! i ,li ,i i t' !!s _.I _,!_,[_, t i 1 i l !( l i ; ii! l .: _.t _l. .,I +l.,ii l : l'l ,e.t :_. l l i i Ii ._.i_ ._ _.!._7 _ i.,. - i! 4 4 ,t .g_. i s. i. _ nl.. . i. ;r i , e t-1 ,i-ii: t i j - l } l i i l i;; .i - i ii, i i - i 1 1 i, 0 0 1 2 3 4 5 6 7 8 9 10 11 12 BURNUP (CWD/UTU) 81
b ,e,m ,~ > g.,c z , y, > o g,- _", _ y- " gmoz O gz x> ]= ,cmzcu 2,.- >, v _OOO p- ,t } n_ ft l c j. L_ p j__- ln_ p _3_ ,g, om OOmA q r 1 4_7r-2 j p _ _. 4, }_ o mg nomm _hOO __. _+r _h ___- ,z -.-}4_ t.' M.{__ a . f_.- ,T _ _t @OO . 7_g_ gp_I _ Hi ___ - ;, ,r 4__ 1 _ j. _y9i j 4. {_ t_ - - f. + j_ _ n____ L j, f_ .4 ~ ) OO W _ p r_ r_y_ P 9_ lp,_ q__io}_., P h [ ( F__- J;_ q_ d
- }
N O OO _. gc p_- ,g, I r_p p_t _rp, _.___ a-q._ __q t-T {_. A R q-T N OO E qri ,H_p_t b_p}u . _ q C .L _p r- _ p_ _b-r7_ } N O - y{9_ _ pe- __ q p r-C q _ *6 _ _. OO N g}-. y,. p_. _ r_ .l q g pp; ] 3 qd O . _Q
- i. _ _
7_ R O ' t. _g4 ;_ pt: 9 B .. ~q_ . f__ __ i. L MOO _p _ _p +7_;. A L_1_ Q__4 un_I {g _ rt _ jpy i_ .} 7_ f_ {je_, (_ C I .mj b__7_J3_ l,9:. f. b y_,_ I 4,_ ; {_ q,, T _t } R OO C _. u_ _ p,, _p 7 [
- i{-
_ l_ f }_ __g j { f_ OO . _p p __y p_ {. i _ q } 4_ y u1_h. - i .up [ . p . jd _y,_- _ p OO } up- :__ g__. _ 7_. jr_p _p pr_p ,gJ _,_ jip L p__ lf . p_t p ._ _q ph up;n_' _ _ , q_ =. _ {_ p _ __. 1_4g_n__ _ t_ 7_ t _-{ O o v u O O ~ w C z m _ O =n O C c mDJ i;,!!
1 1 \\ FIGURE 5.48 i HADDAW NECK CYCLE 17 CRITICAL BORON CONCENTRATION VS. BURNUP (HFP, ARD) 1300 - t-H.- g. . g g
- m. 4'
. _ = 1pL la i L + R0D & DEPL. CORR. 11- !.. & iL-1200 ,_ - p_ O ROD CORR. i _. 7 7- . i .u_ . - _ _. - ~ '.t_. _.i_,> ' . _.i i.i_ - ANC _. i. ! i. _.i_, s ( 4 1100 _41 4..Q.
- i. 4_2 w
w .t = _.4 r _ _, 4 _i i_.i 1 -.<.-..
- . _. t I.
i,
- i
. i t i , i .i I i.ll. i ! e, J J._ i , e i . i_4,.i,i.. - i ' t > i i 1000 6 E , _1. l :
- h _+ h 1; 4- !';l i;
t _.4 i . ;.4 1I I i t -.,! _ +! i ; i ! l l t 3 i e ? O- - i .4 - - + +. g c. 900 . ii
- t j iii 4 i l l r
i i I i i iI v _1_.. J_4 L J_4, i ' :._ J!! 11 '. 1, i,l .'T.. i i. t i, q I. i ...i_ .Ii i 1. i 3,, - i i. i _i i m, I ! .) l b. l. h 9 I O I 800 w t - ~. ;.# .~ . - j, 1 A.. ..L 4 p oc { t ' i .~._
- M f
_4_+_ 4 .%+. t i j i1 i i _ p.,i _.+.-_+i i > . I.. -4 e d_h. b-. M 0,, n l. i. !h f y w 700 - 1.4 ' i 1._ 2- _cu,_u 44 . i I.. _q-. o .- w 4_. 0._.]
- 1. '
i l ; I t i. -.' >i .,t 2 --. t j-..., +, _ - l, o -+ m- - i 7 .e-g
- 1-7 600 ar i. _v. ; i 1
Pt' _i ~. ___.i... ~i TT .i.,!
- i. j,
o
- i. i.
4 1 i mg'. e _Lp m..
- l. 12_L __,,4)_.J'
_1 1 ' t E o - i _' in ~i ' ' ' '..a'p, ' ;' m 500 . uq. p L ..pa 1.n. o .t. i ',i; q.9, .g. I;. a m 1 i ! 6 i -y ii; i ; i 1 'i' j ' i o _L.; _4 i -.r I 1 t , I f O_.
- d. M_d
,' i.- . i i ! ( t OC } l i'r a _+
- - I I
i g np 4d.1..d- -- }.d_f. llf p '{l ' i.- d- -- _h-L 300 , < 2 8 I 4% d.-. ..._a_+_.-- _AL I +;. -+.:. r-4 _w _,_.s .. ~,. - l i { { = ! ! l. l;~f. l l { .( ! t l l .jt i l n.. p i ,$_ f I .4 i 200 ~- i 1 i i._ p.. i _L _+-: .i.M, 1l di.l_d .i, d_,. I' I i i. i i.. i >i i !. i i i i > ~ iii j ~ T.; - i i ~* i i i;< , t ' i 100 ,n . __w.. _,.J_L _u_2 - 4e
- 1. # 2-
.ul a a ___ u, _. ,i< i, +t
- i.
- t L,
i j.._, _+.p -r-y-t--- I -+--,!4-.. -1 4.. ii . ; i I i. t i 4 -d, l 1 0 ~ 0 1 2 3 4 5 6 7 8 9 10 11 12 BURNUP (GWD/uTU) l 83 t I
6.0 REFERENCES
1. Physics Methodology for PWR Reload Desian, Northeast Utilities Service Company, NUSCO 152, August 30,1986. f 2. Langford, F. L. and Nath, R. J., " Evaluation of Nuclear Hot Channel Factor Uncertainties," WCAP-7308-L, April 1969, and Spier, E. M. and Nguyen, T. G., " Update to WCAP-7308-L, Evaluation of Nuclear Hot Channel Factor Uncertainties," ~ March 1984. 3.
- Mayer, C.
E. and
- Stover, R.
L., "lNCORE _ Power Distribution Determination in Westinghouse Pressurized Water Reactors," WCAP-8498, July 1975. 4. Bordelon, F. M., et al, " Westinghouse Reload Safety Evaluation Methodology," WCAP-9272 (Proprietary), March 1978. i 5. A. C. Thadani letter to W. J. Johnson, " Acceptance for Referencing of the Westinghouse Topical Report WCAP-11596, Qualification of the Phoenix-P/ANC i Nuclear Design System for Pressurized Water Reactor Cores," May 17,1988. 6. C. Berlinger letter to E. P. Rabe, " Acceptance for Referencing of Licensing Topical Report WCAP 10965-P and WCAP 10966-NP," June 23,1986. ( 7. Poncelet, C. G., " LASER-A Depletion Program for Lattice Calculations Based on MUFT and THERMOS," WCAP-6073, April 1966. I 6 8. Olhoeft, J. E., "The Doppler Effect for a Non-Uniform Temperature Distribution in Reactor Fuel Elements," WCAP-2048, July 1962. i 9. Nguyen, T. O., et al, " Qualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores," WCAP-11596-P-A (Proprietary), November 1987. 10. Liu, Y. S., et al, "ANC: A Westinghouse Advanced Nodal Computer Code,".WCAP- - 10965-P-A(Proprietary), December 1985. l 11. Barry, R. F., et al, "The PANDA Code," WCAP-7048-P-A(Proprietary) and WCAP-7757-A, January 1975. 12. Miller, R. W., et al, " Relaxation of Constant Axial Offset Control," WCAP-10216-P-A, June 1983. L 84 i -~ L}}