ML20210T965

From kanterella
Jump to navigation Jump to search

Reheater or EES Cooling Following Steam Generator Leak Into Pcrv
ML20210T965
Person / Time
Site: Fort Saint Vrain Xcel Energy icon.png
Issue date: 02/05/1987
From: Chan T, Connors G, Shenoy A
GENERAL ATOMICS (FORMERLY GA TECHNOLOGIES, INC./GENER
To:
Shared Package
ML20210T661 List:
References
909258, TAC-66574, NUDOCS 8702180353
Download: ML20210T965 (97)


Text

. _ _ - . . . _ _ _ _ .

m 2138 ATTAcameur 2 G A 1485 (REV. Id/82)

GA Technologies Inc. ro 9-inasa ISSUE

SUMMARY

liTLE O R&D ^ 2 l REHEATER OR EES COOLING FOLLOWING O DV & S STEAM GENERATOR LEAK INTO PCRV [31 DESIGN U

DISCIPLINE SYSTEM 00C. TYPE PROJECT ISSUE N0/LTR.

[ DOCUMENT NO.

0 01 CFL 1900 l 909258 N/C QUALITY ASSURANCE LEVEL SAFETY CLASSIFICATION SEISMIC CATEGORY ELECTRICAL CLASSIFICATION I FSV-I FSV-I N/A p\ APPROVAL ISSUE p e ISSUE DATE PREPARED ENGINEERING A FUNDING APPLICABLE DESCRIPTION /

CWBS NO.

PROJECT PpECT y geen y. w -

e[pu: 9dy

~) T.W.Chan 3.P .Connor s .J.Kenne Initial Release N/C FTB 0 5 y:p7 2970106 A.Shenoy CONTINUE ON GA FORM 14851 NEXTINDENTURED Issue Summary 1 = 1 ST6294 (203 pa,4) e DOCUMENTS Text 2-30 = 29 ST0104 (166 pages)

Appendix A = 37 4 SUPERHEAT Computer Runs = 120 N6757 Appendix B = 23 ST9793 (26 pages)

Appendix C = 6 ST6967 (34 pages)

Appendix D = 1 ST6995 (34 pages) 7 TAP Computer Runs = 1234 ST0109 (26 pages)

ST6825 (174 pages)

ST0554 (177 pages) TOTAL = 1451 ST7119 (183 pages)

ST9944 (165 pages)

ST6805 (166 pages) (CcxTputer output is not to be distributed)

REV SH REV SH 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 REV SH I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 0702100353 070206 PDR ADOCK 05000267 PAGE 1 0F 1451 P PDR

909258 N/C O

CONTENTS

1.

SUMMARY

..................................................... 3

2. INTRODUCTION ............................................... 5 3 ANALYSIS ................................................... 7
4. RESULTS..................................................... 10 4.1 R e he a te r Co o lin g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 EES Cooling ........................................... 14
5. CONC LU S IO N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6. REFERENC ES ................................................. 29 I ND EP EN D EN T R EVI EW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 APPENDIX A: TA P A ND SU P ERHE AT R ESU LTS . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 APPENDIX B: ANALYSIS OF REHEAT MODULE FLOODING . . . . . . . . . . . . . . . . . B-1 APPENDIX C: ANALYSIS OF CIRCULATOR PERFORMANCE . . . . . . . . . . . . . . . . . C-1 APPENDIX Dr STOR AGE O F COMPUTER ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . D-1 TABLES
1. Reheater and EES Cooling Parame ters . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Event Sequence for FSAR Case 2 Steam Leak - Wrong Loop Dump on High PCRV Moisture ................................. 11 3 Event Sequence for FSAR Case 5 Steam Leak - Wrong Loop Dump on High PCRV Pressure ................................. 12 FIGURES
1. FSAR Case 2 Steam Leak - Wrong Loop Dump on High PCRV Moisture .................................................... 15
2. FSAR Case 5 Steam Leak - Wrong Loop Dump on High PCRV Frosaure .................................................... 18 3 FSAR Ca se 2 Steam Leak - EES Cooling . . . . . . . . . . . . . . . . . . . . . . . . 21
4. FSAR Ca se 5 Steam Leak - EES Coo ling . . . . . . . . . . . . . . . . . . . . . . . . 24 2

909258 N/C o

1.

SUMMARY

o System transient analyses were performed to demonstrate the adequacy of reactor heat removal following the design basis steam generator subheader leak into the PCRV with wrong loop dump (ESAR Section 14.5 3 Cases 2 and 5). Reactor shutdown was initiated by the PPS due to high PCRV moisture or high PCRV pressure. Satisfactory reactor decay heat removal was achieved using either the intact steam generator EES section or two flooded reheater modules following 30 min of precooling using the leaking EES section. The PCRV liner cooling system was assumed to be operational. The primary coolant pressure remained below the PCRV pressure relief valves' setpoints throughout the transient. The steam graphite reaction and fuel hydrolysis were within the FSAR licensing basis.

Consistent with FSAR analyses, the analysis utilized nominal PPS setpoints and 100% of nominal reactor power initial conditions. The worst (Case 5) steam leak event sequence assumed a steam generator subheader offset rupture, moisture monitor failure, reactor trip / wrong loop dump on high primary coolant pressure, and 30 min of post-trip decay heat removal using the leaking loop EES with main steam pressure depressurized to 850 psia. Reactor-generated steam from the bypass flash tank was used to drive two circulators. After 30 min of pre-cooling, the leaking loop was isolated / dumped, and decay heat removal was continued using either the intact loop EES or two flooded reheater modules . The primary coolant flow rate was 7-1'2% for EES cooling and 15% for reheater coolir.?. The EES secondary coolant flow rate was 600 gpm feedwater for EES cooling. The reheater secondary coolant flow rate was about 2200 gpm condensate for reheater cooling.

Two circulators driven by throttled high pressure feedwater were used to provide the above stated primary coolant flows for both cases.

About 1750 gpm of condensate flow was required to ensure flooding of two reheater modules. Less than 500 gpm of feedwater was required to drive 3

909258 N/C o

the two circulator water turbines. One feedwater pump and one large e

condensate pump were sufficient to provide the motive power for decay heat removal.

EES cooling was much more effective and utilized less fluid flow than reheater cooling. It is the preferred heat removal method.

Reheater cooling is used only if recovery of the intact loop cannot be achieved.

i i

14 i

909258 N/C o

2. INTRODUCTION 6

A review of FSAR events involving steam leaks inside the primary coolant system revealed two limiting-case events which utilize reheater cooling following wrong loop dump and failure to recover the intact loop. These are FSAR Section 14.5.3 2 Case 2 and FSAR Section 14.5.3.4 Case 5 steam leak events. Of the two cases, Case 5 was deemed more severe due to moisture monitor failure (reactor trip delayed until high PCRV pressure setpoint is achieved), resulting in higher moisture ingress and steam-graphite reaction.

If the wrong loop is danped following detection of a steam leak into the PCRV, core cooling is continued on the leaking steam generator loop, which is automatically depressurized to about 850 psia to minimize leakage. This mode of cooling continues until metal temperatures in the EES and reheater are low enough to permit flooding without great thermal shock. This requires about 30 min. At this point, the intact loop EES is recovered (if recovery is not successful, the reheaters are flooded with condensate), the circulator steam turbines are shut down, the circulator water turbines are started using high pressure feedwater, and the leaking loop EES is isolated and dumped.

Reheater flooding tests conducted at PSC (POT 22-03) during the summer of 1973 indicated possible failure of reheater total module flooding. Subsequent verification testing using a small (500 gpm) condensate pump demonstrated that two modules in loop I and one module in loop II achieved complete flooding. Previous system analyses con-ducted for the FSAR in which reheater cooling had been addressed, had assumed flooding of six reheater modules. Beginning September 1973, system analyses were conducted in order to evaluate aeheater cooling using a single flooded reheater module (Ref. 1). Using the heat transfer area of one module and a 500 spm condensate flow rate, it was concluded that although no system overheating occurred, the PCRV relief valve would permit venting to the atmosphere twice during the cooldown.

5

909258 N/C O

Although the dose released associated with the venting were much less than allowable limits GAC adopted the position that any PCRV venting was undesirable. Refs. 2 and 3 provided an intensive investigation of all reheater cooling modes with the dual purpose of assuring: (1) the preclusion of PCRV venting, and (2) that sufficient core cooling exists.

The latter study introduced an error in the TAP code which resulted in an overestimated EES heat capacity during single module reheater cooling. This erroneously provided additional thermal damping to prevent the PCRV relief valve from lifting (contrary to the Refs.1 and 2 analyses which conservatively ignored EES heat capacity and resulted in PCRV venting). This error has been propagated in subsequent reanalyses of Case 2 and Case 5 steam leaks (Refs. 4, 5, 6, 7).

The present analysis corrects the EES error and reevaluates wrong loop dump steam leaks using the nominal PPS high primary coolant pressure setpoint and 30 min of leaking loop EES cooling before either recovery of the intact loop EES or starting reheater cooling. A more complete description of the analysis methodology and EES error correction is presented in Ref. 8.

Appendix A contains the full set of transient plot results and supplements the summary plots presented in Section 4.

Complementary calculations of condensate flow required to flood two reheater modules were performed by Proto-Power and are attached in Appendix B.

Appendix C contains a calculation of the feedwater flow required to drive two circulator water turbines during EES cr reheater cooling.

Appendix D describes the storage of computer runs generated in the analysis.

6

909258 N/C 3 ANALYSIS The Transient Analysis Program (TAP) code was used to perform the evaluation of steam leaks followed by EES or reheater cooling. The analysis used conservative PPS setpoints, updated primary coolant inventory, and modeled 30 min of initial EES cooling with the leaking loop depressurized to 850 psia. Conservative FSAR Section 14.5 calcula-tions of steam-graphite reaction were used in TAP to compute the PCRV pressure. The water vapor and gaseous products of the steam-graphite reaction were assumed to be homogeneously mixed with the helium coolant within the PCRV. The PCRV liner cooling system was assumed to be operational throughout the transient.

A SUPERHEAT code steady-state analysis, which 'was performed 11 parallel with the transient analysis, provided an independent check on the reheater module heat load calculations at poir ts where the reheater I

conditions were changing slowly enough to permit Yalid comparisons.

The transient analysis was performed assuming nominal automatic controls, PPS actions, and plant operating procedures were in effect unless precluded by hypothetical failures, e.g. , moisture monitor failure, wrong loop dump, and ~ failure to recover the intact loop EES cooling section. The helium coolant properties were continuously adjusted during the transient to account for the presence of steam and the formation of carbon monoxide and hydrogen.

Condensation and vaporization of condensed moisture within the PCRV, helium purification system operation, and the endothermic heat of reaction of steam-graphite were ignored. The moisture-induced reactiv-ity effect was not modeled and intentional partial depressurization of 1

the primary coolant to storage was not considered. With the exception of reactivity, all of the above effects would tend to ameliorate the primary coolant pressure / temperature transient. FSAR Section 14.2.1.4 indicates the rate of positive reactivity addition due to moisture is 7

909258 N/C very slow; thus the automatic neutron flux controller is capable of controlling the reactivity transient. The above assumptions are consistent with past FSAR analyses of steam leaks.

Following the initial 30 min EES cooldown, feedwater was used to drive two circulator water turbines to produce a maximum primary coolant (helium / steam mixture) flow of 540,000 lbm/h which is assumed to be equally divided among the six reheater modules. Condensate flow through the reheat system was assumed to be 2500 gpm, i.e.,1250 gpm into each of two flooded reheater modules. The heat capacity of the inactive reheater modules was ignored. Reference 2 provides a study on reheater cooling performance with various condensate and primary coolant flows.

The results indicated greater sensitivity to effective reheater heat transfer area than to primary coolant flow or condensate flow through the flooded reheater modules.

The previously noted error in the EES heat capacity was corrected and proper credit for the EES tube heat capacity was considered.

Proto-Power ( Appendix B) has determined that about 1750 gpm of condensate flow is required to flood two reheater modules. Appendix C shows that less than 500 gpm of high pressure feedwater is required to drive the two circulators to obtain 155 primary coolant flow. Table 1 summarizes the reheater and EES cooling parameters used in the system transient analysis.

l i

i 8

_ _ , _ _ _ . , . _ . , . _ _ -_,,._____.._m.____m.____ _

909258 N/C TABLE 1 REHEATER AND EES COOLING PARAMETERS Cooling Water Circulator Water Turbine FSAR Transient Cool Flow No. Flow Flow Case No. Mode {ng (gpm) Source Units (1bm/s) (gpm) Source 2 Reheater 2500 condensate 2 75. <250 Feedwater 2 EES 600 Feedwater 2 37.5 <125 Feedwater 5 Reheater 2500 Condensate 2 75. <250 Feedwater 5 EES 600 Feedwater 2 37.5 <125 Feedwater a)Following 30 min of leaking loop EES cooling. Two reheater modules assumed to be flooded for reheater cooling. Intact loop EES section used for EES cooling.

i I

l 9

909258 N/C 4 RESULTS Two steam leak events were analyzed. The first involved reactor trip and wrong loop dump on high PCRV moisture (FSAR Case 2), and the second involved reactor trip and wrong loop dump on high PCRV pressure (FSAR Case 5). The latter case was more severe due to greater total moisture ingress, greater steam graphite reaction, and higher peak PCRV pressure. The two cases were analyzed using either the intact loop EES or reheater cooling following 30 min of precooling using the leaking loop.

Figures 1 and 2 show the system transient response for the two e cases with reheater cooling. Tables 2 and 3 present the sequence of events for the two steam leak cas's. e Peak PCRV pressure was 732 psia and 763 psia, respectively, for FSAR Case 2 and FSAR Case 5 events. At the end of 30 min of post-trip EES cooling, there was 817 moles of water vapor and 10 moles each of hydrogen and carbon monoxide for Case 2, compared to 841 moles of water vapor and 50 moles each of hydrogen and carbon monoxide for Case 5. At 30 min the average fuel temperature was 437'F and 449'F, respectively. Maximum fuel temperature was less than 2000*F for both cases. The primary coolant mass flow rate represents the mixture of helium, water vapor, hydrogen and carbon monoxide. The primary coolant heat transfer coefficient was improved (about 7% higher i than nominal) due to the presence of water, i The quantity of graphite reacted was about 120 lbm for Case 2 and about 600 lbm for Case 5. This is virtually the same as the results i presented in the FSAR Table 14.5-3 After 30 min of EES cooling, the leaking loop is isolated and dumped. Helium flow is resumed using feedwater to drive two circulator water turbines. Reactor decay heat removal is continued using either two flooded reheater modules (Figs.1 and 2) or the EES section of the intact loop (Figs. 3 and 4) .

10

909258 N/C TABLE 2 EVENT SEQUENCE FOR FSAR CASE 2 STEAM LEAK -

WRONG LOOP DUMP ON HIGH PCRV MOISTURE Time Event (s) 0 Initiate steam generator subheader rupture and Steam ingress into PCRV at 35 lbm/s.

5 Steam ingress rate stabilizes at 21.6 lbm/s.

14 Moisture monitors in the intact loop detect high moisture.

Initiate reactor trip, isolation and dump of the intact loop.

Insert control rods and initiate nominal post-trip reduction of feedwater flow, helium flow, and turbine load. Continue cooling with the leaking loop.

79 High PCRV pressure setpoint (71/25 above nominal) programmed by temperature initiates depressurization of the leaking loop to 850 psia and gradual reduction of steam ingress rate to 6 lbm/s over the next 1000 s. Turbine trip. Initiate main steam bypass to flash tank and hot reheat steam bypass to condenser.

199 Leaking loop pressure stabilized at 850 psia.

608 Maximum PCRV pressure (720 psia) during initial EES cooling.

679 Steam ingress rate decreased to 7.4 lbm/s.

1079 Steam ingress rate decreased to 6.0 lbm/s.

1714 Initiate reheater flooding using condensate.

1814 Isolate and dump the leaking loop. Trip the circulator and isolate the circulator turbine.

2314 Establish 155 primary coolant flow using feedwater to drive two circulator water turbines.

6750 Maximum PCRV pressure (732 psia) for two module reheater cooling.

11

909258 N/C

  • TABLE 3 EVENT SEQUENCE FOR FSAR CASE 5 STEAM LEAK -

WRONG LOOP DUMP ON HIGH PCRV PRESSURE Time Event (s) 0 Initiate steam generator subheader rupture and steam ingress into PCRV at 35 lbm/s.

5 Steam ingress rate stabilizes at 21.6 lbm/s.

114 High PCRV pressure setpoint (53 psig above nominal) programmed by temperature initiates reactor trip, turbine trip, isolation and dump of the intact loop. Insert control rods and initiate nominal post-trip reduction of feedwater and helium flows.

Initiate depressurization of the leaking loop to 850 psia and gradual reduction of steam ingress rate to 6 lbm/s over the next 1000 s. Continue cooling with leaking loop.

128 Maximum PCRV pressure (763 psia) during initial EES cooling.

234 Leaking loop pressure stabilized at 850 psia.

714 Steam ingress rate decreased to 7.4 lbm/s.

1114 Steam ingress rate decreased to 6.0 lbm/s.

1814 Initiate reheater flooding using condensate.

1914 Isolate and dump the leaking loop. Trip the circulator and isolate the circulator turbine.

2414 Establish 155 primary coolant flow using feedwater to drive two circulator water turbines.

7130 Maximum PCRV pressure (761 psia) for two module reheater cooling.

12

909258 N/C O

4.1 Reheater Cooling

-O Figures 1 and 2 show the system transient results for the reheater cooling cases. Less than 500 gpm of feedwater was required to drive the two circulator water turbines to provide 150 lbm/s (15% of nominal) primary coolant flow. The startup of the circulator water turbines was delayed about 10 min to ensure that at least two reheater modules were completely flooded with condensate before primary coolant flow was established. Proto-Power ( Appendix B) has determined that about 1750 gpm of condensate flow is required to flood twc reheater modules.

The two-module reheater thermal performance was not significantly affected by changes in the secondary coolant flow rate or secondary coolant pressure, provided that two modules could be flooded at a given flow rate and pressure. Thus, the Appendix B reheat module floo' ding analysis reheat system pressure of about 90 psig and condensate flow rate of about 2227 gpm into two flooded modules would result in similar thermal performance as presented below for 250 psig/2500 gpm.

Condensate flow of 2500 gpm and with inlet temperature of 110*F was assumed to flow through the reheat system, all of which flows through the two flooded modules, and reheat system pressure was controlled to 250 psig at the hot reheat bypass valve. The effective primary coolant flow through each flooded module was 90,000 lbm/h.

Two-module reheater cooling (about 8 to 9 MW) combined with PCRV liner cooling (about 2 MW) provided sufficient reactor decay heat

removal and mitigated the primary coolant temperature / pressure transient. The maximum primary coolant pressure (763 psia, case 5) was well below the minimum PCRV relief valve setpoint of 816 psia. The TAP code transient reheater performance analysis was verified by comparison with a validated steady-state code (SUPERHEAT) and by hand calculations of primary and secondary side heat balance. Reheater water outlet 4

temperatures predicted by TAP showed good agreement (within 1* to 2'F) with the SUPERHEAT results.

13

909258 N/C e

Reactor cooldown with two flooded reheater modules was very slow.

There was a mild heatup following the transition from EES to reheater cooling. Af ter about 2 h the heat removal rate exceeded the decay heat generation rate and a gradual cooldown was begun. Reactor temperatures remained well below the nominal values for full power operation.

Following the initial 30 min EES precooling, the steme graphite reaction was negligible because the graphite temperatures remained below the reaction threshold temperature of about 1200'F (FSAR Section A.12.2) .

4.2 EES Cooling Figures 3 and 4 show the system transient results for the EES cooling cases. Due to the fact that the EES has considerably more heat transfer area and is designed to accommodate water flow, system cooldown was much more effective than the corresponding reheater cooling cases presented above. The EES cooldown was accomplished with significantly less fluid flow [600 gpm feedwater flow and 71/2% (75 lbm/s) primary coolant flow] than that required for reheater cooling. Circulator water turbine flow requirement was about one-half (less than 250 gpm for two circulators) compared to the reheater cooling cases.

The event sequence for EES cooling was similar to that presented in Tables 2 and 3 for reheater cooling except the intact loop EES section was restarted using 600 gpm feedwater instead of reheater flooding with condensate. In addition, the primary coolant flow was 7-1/25 instead of the 15% flow used for reheater cooling. Following dump of the leaking EES and restart of the intact EES, the PCRV pressure decreased continu-oumly. Maximum PCRV pressure was established during the initial 30 min of leaking loop EES cooling, i.e., 720 psia at 608 s for Case 2 and 763 psia at 128 s for Case 5.

After 30 min of system precooling using the leaking loop, the intect loop EES was recovered. Heat removal rate exceeded decay heat generation rate and aystem cooldown was continued. The primary coolant pressure transient was benign.

14

l 909258 N/C

^;J-5 0

~

t50.0 P

m._

100 0 ' ' # "

, Y "

$ -u f3 HH 3

R I $0.0 - -

It

!- - \  :.
n: .

, i E.

J

.. . .. . . J.L,. _ _..y m... .

0

~ ~ ~ ~

$$' iii iii- , , ,

0.0 2.0*03 4.0+01 S.0+03 1 0 01 1 0+04 f tM. Ctcoset FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP OUMP, 100% POWER ST7119 FSAR CASE 2 2500 GPM, 2 REHEATER MODULES, 150 LBM/S HELIUM 01/26/87 FIGURE i FRAME A CURVE I a FWT0f - TOTAL FEE 0HRTER FLOW (PERCENT or RATED 6401 CURVE 2 a FHTot - TOTAL HELlun FLOW IPERCENT OF RATED 1006 CURVE 3 : PH - MEllun PRESSURE (PERCENT OF RR!EO : 7001 CURVE 4 : PT - THR0ffLE PRESSURE (PERCENT OF RATED a 24til CURVE $ = WC - REACTOR POWER tPERCENT OF RRfC0 : 11 15

909258 N/C

.3-G7 e

1.5+03 b

\ I L

. \

1003 M\

1 m

b 3 0

. I R@l 5 k l* 5 0*0* VEC'"  %

\A k" ;;  ;;; ai;

! . - i N **% i f

( '

,g N 9 ttb be  : .. ...

hJ. _

m>yy , , , , , , , , , , , ,

0.0 00 2.0*03 4 0*03 $.0 03 9 0 01 1 0+04 f!ME. SECOMOS FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP DUMP, 100% POWER ST7119 FSAR CASE 2 2500 GPM, 2 REHEATER MODULES, 150 LBM/S HELIUM 01/26/87 FIGURE I FRAME B CURVE I a THM - CORE OUTLET HELIUM TEMPERAfuRE (F)

CURVE 2 s TSCCA = STERN TEMPERAfuRE Af ACflVE SHfR QUTLET tri CURVE 3 s TSROA - $fEAN TEMPERAfuRE AT ACT!vE RHfR QUTLET tri CURVE 4 s THC - CORE INLET HELIUM TEMPERATURE trl CURVE 5 : TFW FEE 0 HATER TEMPERATURE tri CURVE 6 : TSRIA = $fEAN TEMPERATURE AT ACTIVE RHfR INLET trl 16

909258 ti/C 1

.;-0; 1 5+03
Q i

L

\

al I.0 03 0

a 3

3 2

0 h

e k  : ___

9.0 02 -

f l

% l 1

eJ m 7

Ty

~

f 0.0

~ ^hl8!L I I 00 2.0+03 4 0+03 S.0+03 1 0 03 1.0 04 tim. uconos FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP DUMP, 100% POWER ST7119 FSAR CASE 2 2500 GPM, 2 REHEATER MODULES, 150 LBM/S HELIUM 01/26/87 FIGURE i FRAME C CURVE 1 ff - RVERAc[ FUEL TEMPERRfuRE (F1 CURVE 2 s TNF - AVERACC NON. FUEL TEMPERMfURE (F)

CURVE 3 : P$tel - REMEnf $fEAM PRESSURE (PSIAI CURYE 4 FRf0f - REHEnf STEAM FLOW (10 f!MES PERCENT OF RATED : 6231 CURVE 5 s FT = MAIN STEAM THR0ffLE FLOW (10 x PERCENT OF RATED 6401 17 s

909258 N/C V'

F"200TO i

~

', \

4 1 150 0 i

4 p  ;  ; - -

100.0 'I p/ i, ,

/

g

% 3eq /

g Li-m l

f* A.

I l E $0.0 '

$ i k 1 Q1.

R1 1 m I

l j k

.0

' ~

~

[$.$.i fih3 5 E

i, i I i i i i i i i i i 7 7 5 0.0 2.0+03 4.0 03 6.0+03 S.0+03 1 0+04 f fM. $4COMOS FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP DUMP, 100% POWER ST6294 FSAR CASE 5 e 2500 GPM, 2 REHEATER MODULES, 150 LBM/S HELIUM 01/26/87 FIGURE E FRAME A CURVE I a FWT0f - TOTAL FEE 0 WATER FLOW (PERCENT OF RATED 6401 CURVE 2 s FNf07 - TOTAL HELIUM FLOW (PERCENT OF RATED : 1006)

CURvt 3 PM - HELIUM PRESGURE (PERCENT OF RATED s 7G01 CURVE 4 : PT = THR0ffLE PRES 3URE (PERCENT OF RATE 0 s 24121 CURyt 5 : WC - REACTOR POWER (PERCENT OF RATED s 11 18

909258 N/C 9 0+01 i 1 5+03 b

l

\

\

t.0+03 U- ' \

61 i .

1 m -4 il

!- <' s

?,o,,,' %hv g a d. M,.=

m p'3 54.! Li I 3 "w, ; * *  ? 5 3 i 3 3 3 3 3 3 3 3 3 3 3 m \ g.,f.fi

% q t __ Y ,: :: ::  :  :  :

Sttt;  :  :  ; ;  ; ;  ;  :  : :  :  : :  : .:

0.0 2 0+03 4.0+03 6.0+03 0 0+03 1 0+04 I O.0 ftw.* Acmes FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP DUMP, 100% POWER ST6294 FSAR CASE 5 2500 GPM, 2 REHEATER MODULES, 150 LBM/S HELIUM 01/26/87 FIGURE 2. FRAME 8 CURVE 1 : THM - CORE OUTLET HELIUM TEMPERATURE (F)

CURVE 2 : TSCOR - STERN TEMPERATURE RT RCTIVE SMTR QUTLET (F)

CURVE 3 : TSROR - STERM TEMPERATURE AT ACTIVE RMTR DUTLET (F1 CURVE 4 : THC - CORE INLET NELIUM TEMPERATURE (F)

CURVE 5 : TFW - FEE 0 WATER TEMPERATURE (F1 CURVE 6 TSRIA - STERM TEMPERATURE AT RCTIVE RMTR INLET (FI 19

909258 N/C )

--t-#*01 l.5+03 i

y i

\

h 1

.1 I.0+03 ":

3 3 t b b e

i ,

g 4

.M b

. .. . . . . . . . . . . . . ..7 i,5 0+02  %

n-m__

Ngf -7 a  ;

IM qL

=

%g m.t

~

T 00

. - - - ,_Y. S , , . . . . ... . . .

.i 0.0 2 0+03 4.0+03 6.0+03 0 0+03 1.0+04 ftw tacoes FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP DUMP, 100% POWER ST6294 FSAR CASE 5 2500 GPM, 2 REHEATER MODULES, 150 LBM/S HELIUM 01/26/87 FIGURE E FRAME C CURVE I s TF - RVERADE FUEL TEMPERATURE (Fl CURVE 2 : INF - RVERADE NON-FUEL TEMPERATURE (F)

CURVE 3 : PStel - RENEAT STEAM PRESGUME (PSIR)

CURVE 4 : FRTOT - RENEAT STEAM / LOW (10 TIMES PERCENT OF RATED = 623)

CURVE 5 : FT - MAIN STEAM THROTTLE FLOW (10 X PERCENT OF RATED 6401 l

l i

20

909258 N/C

---f9 2-9 150.0

.)

d>

100.0 M 9[  %

,, ,,  % =

Ie Y

~b E 50 0 f I

(

f \- _

li. . . J.L.

7 1

,3 9-

--~-:. .

jhi-~~~z- l l l 0.0 2.0+01 4.0+03 S.0 01 1 0 01 L.0+04 r:w. r.sco,e FSV STEAM LEAK. HIGH MOIST TRIP, WRONG LOOP DUMP, 100% POWER ST9944 FSAR CASE 2 EES COOLING, 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE 3 FRAME A CURVE I : FWT07 - TOTAL FEEDWATER FLOW (PER:ENT OF RaiC0 = Goal CURVE 2 s FMIOT - TOTAL HELJUN FLOW (PE.t:ENT Of 2A!CD z 1005)

CURVE 3 s PM - NELIUM PRE 0URE (PE.t ENT OF RATCO 7001 CURVE 4 : PT - THROTTLE PRE:0URE (PE.t:CNT OF Ra!C0 = 24121 CURVE 5 : WC - RER0f0R POWEt tfER ENT or Ra700 = 11 21

909258 N/C 2.^-0; ere i.5+03 b

\1

(

t.0 03 R\ i m

d

} .,h i; T

, ' ~. m  ;

a a . k L q.__________

5 0+02  % ' " ' ' ~

% k _ w ;: x  % -

(

~

hw._. _ - - ...-. . Lil::: i i ,

0.0 0.0 2.0 03 4.0+03 5 0*03 1 0+03 1 0+04 flrui. CECOMOS FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP DUMP, 100" POWER STS944 FSAR CASE 2 EES COOLING. 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE 3 FRAME B CURVE 1 THH - CORE QUTLET MELIUM TCMfERATURE (FI CURVE 2 : T500R - STERM.fEMPERR!URE RT RCfJVE SMfA QUTLET (F)

CURVE 3 a f3ROR - STERf! TEMPERRTURE RI A0f]VE RHfR QUTLET (FI CURVE 4 : THC - CORE INLET NELIUM TEMPERATURE LFI CURVE 5 : TFW - FEEDWRTER TCMPERATURE (F)

CURVE 5 : TGRIA - STEAM TEMPERATURE Rf R;f!VE RMTR INLE! (FI 22

909258 N/C

"^^;-

l.5*03 i

L il l .De03 x --\

3 \

1 3

s )

5 k

k i \

!

  • C+0' g D Dy d

! w ,-

i k

  • e J

T 3 Q.0 -__ _ ____ ___ _.....

7.........

00 0.0+03 4.0 33 S.0 01 3.C+03 1 0*34 l ttrv, crecies FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP OUMP, 100% POWER ST9944 FSAR CASE 2 : EES COOLING, 12.5% FW. 7.5% HELIUM FLOW 01/26/87 FIGURE 3 FRAME C CURVE I a TF - AVERAOC FUEL TEMPERA!URE til EURVE 1 : TNF - AVERA0E NON-FUEL TEM *ERATURE (fl CURVE '3 : P5tel - RENEAT STERM PRES 30RE (PSIAI l

CURVE 4 : FRf0f - REMEAT GTEAM FLOW (10 flNES PERCENT Of RATED s 5218 CURVE 2 Fi - MAIN STEAR

  • THRQf fLE FLOW (10 X PERCENT or RafEQ m S401 l

l l 23 l

l l

909258 N/C

-w

  • 150 0 d

100.0 ,l Al \

y g 5t@

3 M * '

b i

. m E 50.0

$ d k 5 . , . :: :  : .  :  :  :  :  :  :  :  :  :  :  : , -

. . .. 1.. : s...

H .. . . . . . . . . . . . . . . . . -

k---_- ____.._,.___h .

. ./.... [ ,. ,, , , , , , , , , , , , , , , , ,

!,. l

~"~~ " ~ " ' ' " " " " " " " " " " -

.0 ' " - - "

's i

00 2.0 03 4.0 03 S.0+01 3.0+01 1 0+04 f!PW. CECONOS FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP OUMP, 100% POWER ST0104 FSAR CASE 5 - EES COOLING. 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE + FRAME A CURVE 1 : FWTOT - TOTAL FEEDWATER FLOW IPERCENT OF RATED S401 CURVE 2 : FHTOT - TOTAL HELIUM FLOW (PERCENT OF RATED 10061 CURVE 3 s PH - HELIUM PRESOURE (PERCENT OF RRTED : 1001 CURVE 4 : PT - THROTTLE PREGGURE (PER0ENT OF RATED 241 1 CURVE 5 : WC - REACTOR POWER (PERCENT OF RATED = 11 l

I l

24

909258 N/C

.; . a;;

i.5 03 b

b l

\

\

I L 1.0*03

,4

1 i .1 t

=. p

~A 1 <

Q vm w

  • 5.0+0**

g '

q4 T s .

,, kg \ - -

p -

-, +w.

.  %  : b 5 5  ; i i i -: i CCCCd  ; lb 55 5 5 k b b i 5 d d 5 d 5 5 5 5 5 5 5 0.0 0.0 2 0 03 4.0+03 S.0+03 S.0+03 1.0 04 ftw. creces FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP DUMP, 100% POWER ST0104 FSAR CASE 5 EES COOLING, 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE 4- FRAME B CURVE 1 : THH - CORE QUTLET HELIUM TEMPERATURE (FI CURVE 2 : T5COR - STERM TEf'PERATURE AT ACT!vE SMTR QUTLET (FI CURVE 3 s TSROR - STERM TEMPERATURE AT ACTIVE RHTR QUTLET (F)

CURVE 4 : THC - CORE INLET HELIUM TEt'PERATURE (FI CURVE 5 : TFW - FEEDWRTER TEMPERATURE (F)

CURVE S TSRIA - STERN TEMPERATURE AT ACTIVE 9H!R INLET (FI 25

909258 N/C

.^ G7 1.S*03 hl N

4

\

D g \o 5 1.0+03 ::

2

.1

\

n \

3 1 d

2 )

M

! s 5.0+02 ^

i g

%e " % , m -

"' +%

t ,_ .

li f

' 2

^

  • 2 2 W D

.T 1

0.0 L a--

0.0 2.0+03 4.0+03 6 0+03 3 0+03 1.0+04 TIM. AM FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP DUMP, 100% POWER ST0104 FSAR CASE 5 EES COOLING, 12+5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE 4 FRAME C CURVE 1 : TF - RVERAGE FUEL TEMPERATURE (FI CURVE : : TNF - RVERAGE ' ION-FUEL TEMPERATURE (FI CURVE 3 : P f41 - REMERT STERM PRESOURE (PSIA)

CURVE 4 : FMTOT - REHEAT STERM FLOW (10 TIMEG PERCENT OF RR!ED z S231 CURVE S FT - MAIN STERM THMOTTLE FLOW (10 X PERCENT OF RATED : 540) 26

909258 N/C

5. CONCLUSIONS The current system transient analysis of FSAR wrong loop dump steam leak events resulted in the following conclusions:
1. FSAP Case 5 steam leak is the worst-case.
2. Either EES cooling or reheater cooling with two flooded modules provides adequate reactor decay heat removal from 100%

reactor power. EES cooling is much more effective than reheater cooling and is the preferred heat removal method.

3 At least two flooded reheater modules with 8 to 9 MW heat duty are required to preclude PCRV relief valve venting. One feed-water pamp to operate the circulator water turbines and one large condensate pump to flood two reheaters are required to provide the necessary flow.

4. The large core heat capacity, combined with the substantial 30 min of system preccoling using the leaking loop EES section, mitigates the rate of increase of system temperatures during and following the transfer to reheater cooling, which allows sufficient time for reactor decay heat generation to decrease to below the heat removal rate.
5. PCRV liner cooling removes a significant amount of the decay heat, about 2 MW, during two-module reheater cooling.
6. Startup sequencing for reheater cooling should allow about 10 min t.o ensure flooding of at least two modules prior to establishing primary coolant flow in order to prevent boiling in the reheaters and to minimize the PCRV pressure increase during startup of primary coolant flow.

27

909258 N/C

7. Steem graphite reaction and fuel hydrolysis were within the FSAR licensing basis.
8. The temperature transient experienced by the flooded /non-flooded reheater modules and the EES section was mild using a ccnstant primary coolant flow rate of 15% for reheater cooling and 7-1/25 for EES cooling.

'l 4

e f

i 28

-. ,. , - - . - - . . _ , - , . _ . , , ,, ,- __.,,,,.7... _ - , , . . - _ - _ _ , , _ _ .

_ ..e,_ , ..__._..m,.

. , . _ , y 7

909258 N/C

6. REFERENCES
1. Hastings , G. A. , and J. R. Carlson, " Fort St. Vrain Plant:

Reheater Cooling with One Flooded Module," SAB:GAH/JRC:336:73.

September 13, 1973

2. Chan, T. W., " Fort St. Vrain's Reheater Cooling Studies,"

SAB:TWC:393:74, August 23, 1974.

3 Jennings, R. W., and T. W. Chan, " Fort St. Vrain Single Module Reheater Cooldown Analysis Results," SAB:RWJ/TWC:530:74, November 20, 1974.

4. Potter, R. C., " Fort St. Vrain Revised Wrong Loop Dump Analysis for Updated PCRV Inventory and 20-Minute Main Loop Cooldown,"

FSVA:80:76, May 5, 1976.

5. Bardia, A. , and R. W. Jennings, "FSV: Proposed Changes in the High and Low Primary Coolant Pressure Programmed PPS Setpoints,"

FSVA:189:77, May 5,1977.

6. Bardia , A. , "FSV: Supplementary Analysis of a Wrong Loop Dump Transient with 30-Minute Main Loop Cooldown for Fully Pressurized and Depressurized Working Loop," FSVA:189:77, Addendum A, July 1, 1977.
7. Bardia, A., " Reanalysis of FSAR Section 14.5.3 Cases 2, 4, and 6 to Account for the Proposed Revision to Tech. Spec. LCO 4.4-1,"

FSVA:364:77, October 17, 1977.

8. Rodgers, C., "FSV Firewater Cooln.3 with Reheater, Code Calculation File," CFL 909259, to be issued.

i 29

G AI S@R EV.11/80)

CALCULATION REVIEW REPORT APPROVAL LEVEL 2 REHEATER OR EES COOLING FOLLOWING STEAM GENERATOR LEAK INTO PCRV QAL LEVEL I

- DISCIPLINE SYSTEM 00 C. TYPE PROJECT DOCUMENT NO. ISSUE NO./LTR.

0 01 CFL 1900 909258 N/C INDEPENDENT REVIEWER:

NAME R.C. Potter ORGANIZATION 647 - Systems Ennineerina REVIEWER SELECTION APPROVAL: BR MGR 5 DATE 2 < P7

()

REVIEW METHOD: YES NO ERROR DETECTED ARITHMETIC CHECK LOGIC CHECK X No ALTERNATE METHOD USED X SPOT CHECK PERFORMED X No COMPUTER PROGRAM USED X r,,pu / Jo 7799 and X' sto SUPLWAIEM~ Y. NO REMARKS: (ATTACH LIST OF DOCUMENTS USED IN REVIEW)

/. SevIeued 7??P es~pa/e< ende runs inc/r oShy new da./a. sipra./

requirea! fo sim u/a./c /he egy,,,.c / sc?fuenc6 ot' eversts ,

'Hoo'e/ chanye s regwecol /c simh /a/c /h e 5efuence o f* even /s, a n /

resu //s . /f// wcec h a n d' /o 6s con-reA L Reva e<&ed /he st)PERHEAT runs us /A refaed' /c os /4 sNpu/

f f,, m rnP. Da/a snp u.+ wa< correef.

3. G ,,,p a e a f recu//s ftom 7??P etn d' St/P.Eh%'EA l'~ Af f ro w
  • N b
  • ly L 7~h' " "'ds joo f, d,Xference suas iso / eof sh hehum siae AT.

l a,/-fy,Eg/eo' -/o -/-h C affrdX/ r%tal/onS s+1a.o/c /s COP E g & T />'y O fo represenf as mikda rd conoT/schs an d th e expec/cd /runsted/

vs r+eady sE/e code d,'fsea-ences . 7mc was con sidere d' fo be .

Sa/ic,fac/evy.

9. Review'ed Circu la/w perA r mance ca./ea./a.-Jicn s, ,qud /o bc correcl-CALCL'LATIONS FOUND TO BE VALID AND CONCLUSIONS TO BE CORRECT:

INDEPENDENT REVIEWER Ns DATE 2MN7 SIGNATURE Page 30

909258 N/C 4

APPENDIX A TAP AND SUPERHEAT RESULTS I

A-1

9 09 2S8- AlC

. s; .

a.-

c, .' .

e, G".0; --

ww .s 150.0 0 ..._

, y r- -..

100 0 ' 7

/

y N \ be . -n-m y seg Y

si E

2 b  :

E $0.0

$ N l _. 13 i ) i I i _. !

~ ~'

Id_III~' j l ~l~ l I l i i l l l l 'I I i l I

! N! 1.1. .l]L.8 . .I .

I  : i e ii TI"

' I 8 ! I i I l !I I !l !l I!l i !l !i!l !i!l I  ! i i i l l lIl lII Il 4I lIi1Ii iI III Jl

%~

11 l L ll l l l ll lill I

.0 ,,.. . .

0.0 2.0+03 4.0+03 $.0+03 1 0+03 1 0+04 T14 . CECONDS FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP DUMP, 100" POWER ST7119 FSAR CASE 2 : 2500 GPM, 2 REHEATER MODULES, 150 LBM/S HELIUM 01/26/87 FIGURE A-1 FRAME A CURVE 1 = FWT0f - TOTAL FEE 0 WATER FLOW (PERCENT OF iATED = S40)

CURVE 2 = FMTOT - TOTAL HELIUM FLOW LPERCENT OF MATED = 1005I CURVE 3 = PM - HELIUM PRE 00URE (PERCENT OF 9ATED = 7001 CURVE 4 = PT - TH*0TTLE '9E00URE (PERCENT OF MA'E3 = 24121 CURVE 5 = WC - REACTOR *0HER ' PERCENT SF MATED = II A-2.

l

-~

, 904 258-N/C.

- ~  ;

s

'..A'- . .

~

gi. l *. .

,1

. - - - * . . e . - . . . _ . - _ . _ . .. _ ..__...__._s.

0:00 !

.3 3 1.5 03 b

I l

1.0+03 A\ 1 2

1 u .

$ .\

. i q

2

)L k j -

^

l l l

l l

S*C+0*'

NEX +j t i i t i i { i: i  ! a f . A ] M [i 6 i l I i!I i N ll l f l

( D I I ll I IIl i

l %ld ' ~-~

M. .[ . .I_. .. _ .,, l l

l , , ,

}!!

j j l l l l l lfIll l  ! l l!l}l!l!!!Iil 0.0 00 2.0+03 4.0 01 S.0+03 3.G*03 a.0+04 ftMt. CEt'CNOS FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP DUMP, 100% POWER ST7119 FSAR CASE 2 : 2500 GPM, 2 REHEATER MODULES. 150 LBM/S HELIUM 01/26/87 FIGURE A-1 FRAME B CURVE 1 : THM - CORE QUTLET HELIUM !EF*ERn!URE trl CURVE 2 : TOCOA - STEAM TEF*ERATURE 9T ACTIVE CH!R QUTLE' (F1 CURVE 3 : TCROA - STEnF TEP'E*n!URE AT ACTIVE RHTR QUTLE' (F1 CURVE 4 ?MO - CORE INLE' MELIUM 'EF8ERATURE ff)

CURVE S : ' F 'a FEE 0'nA'L' TE"*ETATURE fit CURVE i = '08:4 - STEnF 'E."*E7'1'URE V 10 '! v E *M "! * *lL E ' ( T 1 A-3

909251i'- Alk.

  • ~~~

. - . - . .' ..... . ....h.~.. .-.. . . - . . .. . . _ - . , . . .

ZIOD eaw'uJ l.5+03

!j 1 .

L 8

2 O I.0 03 D

g 'l 3

d 5 h d

k i

r 5 .0+0:

s- tiii ' '

i i

g iI f l E

6 ll l l l l l li l ll l 1 fI ff \ H I l l l ll TM.Ll; I I

Z ;;,;;;;;;'

I 0.0 . - _ _ .

0.0 2.0 03 4.0+03 S.0+03 3.0+03 A 0+04 T M . OECCNOS FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP OUMP, 100,7 POWER ST7119 FSAR CASE 2 : 2500 GPM, 2 REHEATER MODULES. 150 L9M/S HELIUM 01/26/87 FIGURE A-1 FRAME C CURVE 1 : TF - AVE 9n0E FUEL TEFFERATURE (F)

CURVE : : TNF - GVE* ROE NON-FUEL TEF*E*nTURE tF)

CURVE 3 = pct 4) - RENENT STEAM *REOGURE (PSIRI CURVE 4 : F 9?Of - RENER' GTERN FLOW (10 T!nEC PE* E'If 0F *n'E3 : 5"3s CURVE 3 : F' - N9:N GTE1M 'H'OTTLE FLOW t10 t *E* :NT 3F 19'50 : S401 A-+

9e9258-N/t.

, - / ,'

f ,*. - .

, 3

-6 . . . - . . . . _ . . _ . . _ _ . .__...! .

l l

l

..cu t t03 - t l l

l l

l I

l 1 5+03 -

n1 1.0+03 3

u .;

a I I a 9-J &

2

?! 7cu k:

g 5 O'U.* wam_____ ,  ; . .

I i l l !fl l l l l l l 4 . . ..... . .

i i 2 ,

I ll l l l i lli l l'l I lil

! I i l l l l I d Illl ll l l 00 l

. i j 00 0.0+03 4.0+03 5 0+03 1 0+03 L.0+04 T!'E. CICCNOC l FSV STEAM LEAK. HIGH MOIST TRIP, WRONG LOCP OUMP, 100% POWER ST7119 l FSAR CASE 2 - 2500 GPM, 2 REHEATER MODULE 3. 150 LBM/S HELIUM 01/26/87 FIGURE 4-1 FRAME D CURVE t 7f(20.21 - TUBE TEF*E*A'URE qi ;H!" 1 OUTLE' trl l

i CURVE : a !Gt00.01 - OTEAF ?EP*E*ATURE 9' ;H'M ! OutLE' (F1 l CURVE 3 a fitt0.3 - TUBE 'EP*E*nTURE Ar ACT!vE CM'R 3UTLET (F I

?Tf!O.101- !UBE 'EF=E*n'URE 9' *qtN ITEqF FOCULE OUTLET tri CURVE 4 CU*vE 5 : '";f 10. ; 01 - OTEqF *EF"E*q'URE 9' wq:N OtEqr F000LE OUTLE' tri A-5 l

l

To9252- ^VC.

~ ,

. ~.

91G ,' '

se4vu4 1 5+03 h.

I 1.0+03 ed

)

  • h i

=

11 i

h

/ W$ L /I 5

s.0 0.

% 51 (x h rb l l

lh .. t frty

. 4 I':

4 ,

I 0.0 , ,

G0 0.0*03 4.0 03 S.0 03 3 0 03 i 0+04 ft4. CICCNot FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOCP DUMo, 100% POWER ST7119 FSAR CASE 2 e 2500 GPM, 2 REHEATER MODULES. 150 LSM/S HELIUM 01/26/87 FIGURE A-l FRAME E CURVE t - r0R:n - Ortne Er-EnnvuRE nr entR n30utE :NLE' (F1 CURVE 2 = ffR!n 'UBE Er*EMA'URE 971CTIVE 99?R INLE' (r)

CURVE 3 : Tf0ROA TU"E *Er*!M97URE 97 ACT!VE 9M'R OUTLET (Tl CURVE 4 = TOR::n - Oitnt' 'Er*E99'URE 97 RM'9 :*00ULE Ouf t.E' r r i A-6

l 9092C8-Ab

- . (

- p ,

.'-~ *

, , .. . . . . . _ . . . _ _ . _ ~ . . . . -

B!J:

.3-0; 1 5 03 1003

it:s >

1 I L if 2

l%g J  ;

5.G.02 Ty..

, a.,... ,

flfl"f 1il I i l l I I l l l

'h I

! lBl 1ll l

i l

i I  !

. l .%U l ! !...i ! !

'1.,: .

!Ill!!!

I I!!!!!8

!!,.!!!Ill!!

0.0 , , ,

a.:  :.a.a3 4.o.03 s.o.ai 2.: a i.o.04 734. CECCVJS FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP DUM , 100% POWER ST7119 FSAR CASE 2 - 2500 GPM, 2 REHEATER MODULES. 150 LSM/S HELIUM 01/26/87 FIGURE A-l FRAME F CURVE 1 : 70CF - men 0URED F9:N STEnN 'EF*E*R'URE fil CURVE 2 : TORM - FE90GRED *E9E4' OTE9N 'EP*E*RfuRE tri CURVE 3 : 70CM - M9IN "TE1r , 'LP*ER9'URE 17 TM937ft.E tri CURVE 4 70R9 - REME1' Oft 9F

  • EF"E*9 'URE 9' INTE9CE*' dAL /E 'Il A-7

~

9092s2- N/c u '

c. .

CZ33 E

.m.

1.5+03 8

1 m I

=

\

I.0+03 v

L

- \ t

! M L

2--- r , ' I f i t i * , ,

$*. g*, 6 . ' ; i I  ; e

_l l, 1Jl i e i * . - i;i i i

,i, t !Il l ll l l l ll lI! l l

!'.FT l %p, . ll

. l l l -l Il*li

  • - Ill 1C l

! lll l 1 lllll l I!  ! li llllll l 1

30 l '

30 2.0*33 4.0 03 1.0+33 3.0 33 1.0 04 nm. mom FSV STEAM LEAK, HIGH MOIST TRI?. WRONG LOCP DUMP, 100% POWER ST7119 FSAR CASE 2 - 2500 GPM, 2 REHEATER MODULES. 150 LBM/S HELIUM 01/26/87 FIGURE A-f FRAME G CURVE l = VCONt31 - MIXE3 MEL!UM 'EP?E*.n?URE 9' C3RE OUTLET til CURVE 2 = THCH - MELIUM 'EF*E*9'URE A! *EME0'E' [NLET til CURVE 3 = TH0t 41 - MEL!UM *EP*E*,0fuRE qi REME0' 3UTLET tri CURVE 4 : TH3( 1 s - MELIUM 'EF*E*niuRE q' OUPE*NL !La 2 OUfLE' til CU"VE 5 s 'H3'21 - M E'. ! UM

  • E."*E90!UnE 4' U A*3RO'OR 30TI.:' tri

~.URVE ' : 'HGC - MEi.!UM *EP*E*n'URE l' ;TL*F OENE*0'79 Outt ~ fri 8*E i

1 l

9a92st-N/c.

, . . -: ,. '., l rf. .

~~~

ll l l 1 l ll l l1!

l l1 voo.o II '

l I

q lI sea.o " " lI

'4 ll fh II J U .

I, sea.o \ l 1 l \ l 1l 'I h1 /A  ;" 111 l l

\\ fV ""

l ll l l i

\ \ i f ^l I

- w \  :

i i lil l<oo.o \ \ J l lI s

a

\\ %f

(

j y  ;

) i 1

I I!lli 3o3.;

I / I i lll !il l I I l I/ I I I l l l llIi iiilI llll lill!!!li

lil l ll lll1 Ill il ll ll

!!! Il 1111 Ili l! I I li Illi !il: lli.

, il l I I Ili Il I  ! li lill ll!t!il!

.... a, Il 11 I I, ,

Illi l lil lli Illlllllill!

.o .o  :.o.c3 4.o.o3 s.o.c3 a .o.n . .o.n

? !'ti. CECCNOT FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP DUMP, 100% POWER ST7119 FSAR CASE 2 : 2500 GPM, 2 REHEATER MODULES. 150 LSM/S HELIUM 01/26/87 l

FIGURE A-l FRAME H i CURVE 1 = Tit:o.Il - TUBE 'EP*EMnTURE 4! EcoNoM:ZLR oufLC' ff!

CURVE : a toutr 4 . MELIUM 'EP*E*A'URE qi CIRCULn'oR INLE! (T) l i

i l A-8

~ '

909258- A)/C-

,9,

-r ~. - .......-...a.... _.

E 0 ","

-N 150.0 4 0;; -

1. .. 3 , lo . .,f (y 3

[

y 4%

3 ,

L>t H I O

ri 2

1 1=

E 50.0 /-

i m

a Ik . .t . .l .l._ .I 1.' l.l .I.

k.f lil~~ 'I

~I l l ~l l I  ! I l 'l

  • I

. .[ . ! M d. 7

22; ; 2 0 '; .

0  : C'  :  : 2 2 2  : 2 0 2 0

w.w . mii U

l l l lll. - l .-

. - II .

l l-4 3

0.0 2.0+03 4.0+03 S.0+03 3 0+03 1 0+04 f!M. CECCPCS FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP OUMP, 100% POWER ST6294 FSAR CASE 5 - 2500 GPM, 2 REHEATER MODULES. 150 LSM/S HELIUM 01/26/87 FIGURE A-2. FRAME A CURVE 1 : FWTOT - TOTAL FEE 0 WATER FLOW (PERCENT OF 9ATED = S401 CURVE : = FMTOT - TOTAL MELIUn FLOW (PERCENT OF 9A'E3 a 1005)

CURVE 1 : PH - HEL!Un PRES URE frERCENT OF 9ATED = 7001 CURVE 4 : PT - THROTTLE PREGGURE (PE9 CENT OF 9ATED : 0412)

CURVE 5 : WC - REACTOR '0WE* !PE9 CENT OF 9AtEO = 11 A-Io

9092SR -M/C. j l

., ., .t C'OL 'I t.5+03 b

b i

\

t 0+03 R\

2 1

7 '- %

L i 1

= ,',,,, '

~ A. h _

t ~

.., ,i i ,- i- i-JWl = =' ' :;! :; s s  ; e s' + s

!;: Y :' ::  :- 2  :  : -:

A. 6 '

/

i' 'i 6'i t'I t's l l lll l ll  !

\ l l I l i ~, - - ~,- 3.,....,,

I l

lhhi. l. l . l. l.} i.ll.!'.ill_l.ll.l. l.l l11.lI!!_.ll.ll.ll-l- l.

G.0 ,

3.0 2.0 03 4.0 33 S.O.03 3.C 03 i.0+04 ft E. OECCNO$

FSV STEAM LEAK, HIGH FRESS TRIP, WRONG LOCP CUMP, 100% POWER ST6294 FSAR CASE 5 - 2500 GPM, 2 REHEATER M00CLES, 150 LSM/S HELIUM 01/26/87 FIGURE A-2. FRAME 8 CURVE 1 : fMM - CORE OUTLET MELIUM 'Er*E*A'URE (F)

CURVE 2 : 70C3R - GTEnM TEF*EEA'URE 4' n TIVE OMTR 3UTLET (F)

CURVE 3 : TURDA - GTE9M TEF*E*ATURE 1' ACTIVE 9MTR 30TLET (F1 CURVE 4 : THC - CORE lNLE' MELlUM 'EF*C"Q'URE f f !

CLRVE 5 : 'FW - FEE 0WA'EN 'EN*E9A'URE 'T!

"URVE 4 : TOR n . OTEnr 'E.-*E*4'URE 1' 10?*yE 'M'R P4LC' l F )

A-Il

~

~

. .9092 slit-N/c.

', 'j l: . .- .

. -s . .. _. __ . . _ _ . . . . .

2:00

  • 6 07 1.5+U3 L_

T A

8

=

A I.0+03 = '

15

=.

B L

C l

L )

R

$> i t. .

t ,, f , . .I  ! ,. .t ,

I ll l l l^ l_ _l l_ _ -

l I I l 'I i_f _

l ,. ._ .

[50+02  % '

r ,

!-  ! f l mi i, . m =3 u e .c ....  : ... . c .: .

.c m .:

M t. 'l liiitillilllilil .c .c :lilll!c ItIll c .ltl:l11111 i

ll l l l .

I 0.0 1111 % 1ll

....~...._"L,,..........

1 I

I ll"" l" l" l

ll l "

O.0 2.0 03 4.0+03 S.0+03 3 0+03 a .'0+04

?!M. '.tCCNOT FSV STEAM LEAK, HIGH PRESS TRIP, WRCNG LOOP DUMo, 100% POWER ST6294 FSAR CASE 5 - 2500 GPM, 2 REHEATER MODULES, 150 LBM/S HELIUM 01/26/87 FIGURE A-2 FRAME C CURVE l : TF - AVE 9AOC FUEL TEP*E*nfuRE 'F1 CURVE 2 fNF - AVE 9A0E NON-iUEL TEF*E*A'URE (F CURVE 3 : P0(4) - 9EMENT OTERN **E000RE (PCIAl CURVE 4 : F* TOT - REMEq' OTE1F FLOW (10 !!MEO *E* CENT OF 9 ATE 0 : 5238 CURVE 1 : T' - M N OTE9F **90T?!.E *LO* :0 t *!90 'IT if ante: : 540)

A -l 2.

To9258- Al/C

?!O3 E

. -0^

1 5+03 1 1 l l 1.0*03 '

i d

A I ( l 5  :.

s

. F1/ ;; .

l I l j db 5.0 0*- ' m __ ~ ___._ . ... ... ._, _ ._ _: . _ , .. .. . .. ._: . ..

l bbbb^ . b' b! 5 'b'lbb!'b!'2!'!!!

!b !b! !b !:. ' - !;' .0l

' I I i l l l

I l l !l!I I l l l lj i i

!Ill ii: 1 I

ll l

l 4

co . . . . .

G.0 2.0+03 4.0+03 S.G+03 3.G+03 i G+14 T14. CECONOC FSV STEAM LEAK. HIGH PRESS TRIP, WRONG LOOP CUMR. 100;; PCWER 5T6294 FSAR CASE 5 - 2500 GPM, 2 REHEATER MODULES. 150 LSM/S HELIUM 01/26/97 FIGURE A-2 FRAME D CURVE l : TTt:3.21 - TUSE TEF*ERn'URE 4' OH'R 1 3UTt.E' ' r i CURVE = TLf20.21 - STEnn 'EFaE=ATURE qi GMTR 1 3UTLE' :FI CURVE 3 : TTt10.31 - TUBE TEF"ERATURE AT ACTIVE CH'R 3UTLE' f r i CURVE 4 : TTI10.101- TUBE TE."*E"A'URE 9' N9tN STEqF =00ULI OUTLE' (F1 CURVE $ s 'Or10.;01- GTEqF *EF*!*0'URE l' N9 :N "TEqF .*000LI JUTLE' 'f?

A - 13

~

- Fo92s8- AI/c

-l:,

  • .'
    ' -~

~ n. *- . . , . . . . . . > -

S'00

..wrvs_ __

t.5+03

) '

k

)

M^ ' l 1 0+03 k

- 1

=

! k li TA -

g 5.0+02 g '

r A. .

-w q i.J l l I I

w
- :  : m: 1 i

l j l 0.0 I l 1 l l

, , , i 0.0 2.0+03 4.0+03 5.0+03 3.0+03 6 0+04 TIT. ACCNOS FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOCP DUMo, 100% POWER ST6294 F3AR CASE 5 - 2500 GPM, 2 REHEATER MODULES, 150 LSM/S HELIUM 01/26/87 FIGURE A-1 FRAME E CURVE 1 : f RIN - STEAM tEF*ERq?URE q7 RMen "00ULE INLE' (F)

CURVE 2 = ffRIA . ?LSE 'EF*ERATURE qi 40f!vE 9M!R INLE' fr1 CURVE 3 e fTORCA - TUSE 'EF*E*R'URE Af ACTIVE 9M'R JutLET til CURVE 4 : '; ROP - :TE1F 'E."*ER1'URE qf 9M?P F00VLE OUTLE' !F)

A - I4

clo91ss-M/c.

. . . e

~

G*30 ;

. . cu s_ _ _

l.5+03

, \

1.0+03 l- L .

1

. 3 I

- A 2 I,

5.G+02 e.

.. a.

<<.... <.,a. .

r. I. i.ll.

. .I i.l I a. i . i. I.l 3

ll u i .

,llIll l ,_I,!llll li!l I!! l !III li hm!llllllll T. . .i .i ,- .t ,. ,;,i- -

, i.i ,,, -

.i,;,, ,

U'O 0.0 2.0 03 4.0+03 5.0+03 3 0 03 a.C.04

( ttw. cscaNos FSV STEAM LEAK, HIGH PRESS TRIP. WRONG LOOP DUMP. 100 PCWER STG294 FSAR CASE 5 - 2500 GPM. 2 REHEATER MODULES. 150 LBM/S HELIUM 01/26/87 FIGURE A-E FRAME F CURVE 1 : TSCF - MERGURED MRIN GTEAM TEP?E*nfuRE rF1 CURVE : = TORM - PEACURED REMERT,GTEAM TEP'ERATURE lFI CURVE 3 : ts:M - M9tM STE9e. TEP*E*nfGRE 4t iM*0TTLE f f t CURVE 4 : TORM - *EMEn? OTEAM TEP*E*1?URE 97 INTE*0;"' vnLVE (F1 A - IS-i i

9e92se-ak

.~

.r.

~

r

- ,.w-

, . ~ .

-'L .- . - . . . -. r . . . . - . . ,

o 0:03 -f

.-cu t.5+03 Nw h

3, .

9 '

]

l.0+03 '

I il h

ll l

$ ~

i 1 M(_L i t

= s.3,,,

k t. i as(:g  !

_l

.- r r

r ri r L. -

l_

r

~

1- 0 C C C I C C C C 0 0 6

Jr I

. . 5^ - -

2  :

l,ll l

:  :  : 2 s,d k s'

I l) gi i a ll

l. -

l

)% I l

0.0 ,~l ,

lll.l i

I G0 0.0+03 4.0+03 5.0+03 3.G+03 1 0+04

?! T. % "CNOS FSV STEAM LEAK. HIGH PRESS TRIP, WRONG LOOP OUMP, 100% POWER ST6294 FSAR CASE 5 - 2500 GPM, 2 REHEATER MODULES. 150 LSM/S HELIUM 01/26/87 FIGURE A-2 FRAME G CURVE 1 : / CONT 3s - M:XE0 MELIUM ?EFFERRruRE 4' CORE OUTLET IFl CURVE : THGH - MELIUM TEFFERATURE RT REMER?E.* !N?.ET f f !

CURVE 3 : THot e l - MEL Un TEPPERnTURE AT REMER'E.Otf rLE' ( F )

l CURVE 4 z fM0f 3 - MELIUM 'EPPERATURE 4T CUPERME4'ER OUTLE' fFI OURvE ! = 'H0f 1 - MEL UN 'EPE*n 'UR E A ' EVA*0R9'OR JUTLE' lrl

'LPVE 3 : 'HGC MELIUM *EP*E*0'URE 1' OTESF OE';E*1'OR UTLE' 'I i ,

l A-lh

9092S8'-N/C.

~

s

. ,,,,. s .'." *

'.f .

.s. .- ~ , . . . - . . . . . . .

000 -

h Il l l

J l hI 700 0 ,

usi D ' .

{, a b l I' l TW

1) .

o g

500 0 I )

k II 1 \ A II. .

. - '- - - - - - iL _

) \ I N  : 7 I Il 11 '

i

( l\ V I I

400.0 \ \ ) l l

\,/

y l l 2 l l 9 g i I I i f Y lI %I / ll 300 0 l ll 1

/

I l lll lI lll11 vI I I Il l I lill l lll11 ll li lil l I!Illlllt i 11lll111!I l ll Il!!Ill til til I 1111111 ll lil lillill! il Ill lli l l llll11 I I llll111! lll

.3, Illl lll l 1 Iilllll  ! l lli1 11111 lli 00 2 0 03 4.0*03 S.0+03 0.0+03 1.0+04 tts , stecNOS FSV STEAM LEAK, HIGH PRESS TRIP, WRON3 LOOP OUMo, 100% FCWER ST6294 FSAR CASE 5 - 2500 GPM, 2 REHEATER MODULES, 150 LSM/S HELIUM 01/28/87 FIGURE A-2 FRAME H CURVE I TT(20.11 - TUBE TEP*E'tATURE AT ECONOM!ZER OUTLE' (FI CURVE : : TOUf f 41 - HELIUM TEP*ERATURE 4? CIRCULn?OR INLE' fFl A -17

~

. for2s1r-a/c. ,

. ,,... - ' .* ~ -

. . v,

c. . .

. . . . _ . .. a . .. . _.

G000 .

150 0 100.0 1". .

0

' w s b- m r;;;;

2 l

'l ll

,g. . , , _ .

Y t 50.3 e h (L! f I j i) i l l l l

.tJ' /j ~ s ~ j 1l ~ l ~j~l l' T ~ T T ' i l I _l } j l l l l I .nn i i _tw i j l Ty ;-( tym .

l I

.. IIIiIIiI

n. .

)lil]l}lll . . .

l l lll ,

--  ! ! i!---[-I'I'I'i} l1 l1. l.1 l

- l 1 l I l .1 l l .] l l l l l l .} l l

_, ~ ..- .._ .. - _ _

0.0 2.3 31 4.0 33 S.O.33 3 0 33 1.0 34 rt.s. .seraes FSV STEAM LEAK, HIGH MOIST TRIP. WRONG LOOP DUMP, 100% POWER ST9944 FSAR CASE 2 EES COOLING, 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE A-3 FRAME A CURVE 1 a FWT3T - TOTAL FEE 0WA!E.1 FLOW (PE*0E.'Jf 3r 2niCD = SAOI CURVE 2 : F't!37 - T3f AL MELJL**1 FLOW (PE.9 C'JT 1F in!C3 = 1035 3 CURYE 3 : P *t - MELIUrt ?*E 00RE (PERCC.*JT 3F 1.67 3 : 'J 001 CURVE 4 = *? - TH*.3ffLE *eE 0URE :PE* C'JT Of '137C3 4 24121 CURVE 5 : WC - 1Ent!3R ? OWE 9 '.PE.900'JT 3F 1.77C3 : ti A - 12

f09 258-N/C.

  • l*'

~

= .

C:00 f

.; ~;

.5*01 b

\ 1 l

. \

1.3e01 h\

i

?

O i .\

h d

a IqL

! $~

s

= 3.3,g, vk r-1 1

I

.. l ,l

\A l --

h'% ^,

l L.  %, I hf~ '!

'z

j ll  ;

6 A I i! Ij l

%IV Il1 - l { l

!  ! i l l l } I{l l I l

l '

33 't" .

l l l ll i  :.a 2.s.93 4.o.93 s.s.oi 1. .93 i 3 94 l sun. acca FSV STEAM LEAK, HIGH MOIST TRIP, WRONG i_ COP DUMC, 100% POWER ST9944 FSAR CASE 2 EES COOLING. 12.5% FW. 7.5% HELIUM FLOW 01/26/87 FIGURE A-3 FRAME 9 CURVE 1 = ' St M - CORE '30fLET HELIUrt TEt'?ERn!URE f f!

CURVE 2 70C.0 A - OTE;;t* !EPPETA!URE qi ACTJyt ;H!R 3UTLET (T-.

CURVE 3 = '3R3A - GTE.1ft TEPPE*A!URE 4! ACTIVE *H?R 3UTLE! (F)

CU'VE 4 :  ?'t; - CORE INLC' MELIUrt *CFPE9A*UPE ' f I r.U ave * . 'rd - i- EE'!uA ?t1 *CFPE9.1'URE 'ri

'. '. 9 .' F i: '07:4 - " ! E '.f* " C "* E

  • 1 * *!P E 1' 4 0 ' ' ? C ?'* *.* 'NLC' LF!

A -tet

909 258 -^1/c.

g,- . .

~ '

  • .: , .t

. _ , , 2:00 '

6 dTM4 t.5 33 nl s.

\, .

2 8 i.3+03 3 I 3 a 5

s >

L d

5

. l kA E

I= 3.:.3:

%A l i I D g

O f2 llI

' j iiiie l llll l

;  ; ;l W l,

'\

I NI i!!I  ! l 33 ,
ll M Illllll ll ll ll . . . .

l ll . .

l l Il i

3.0 0.3 33 4.0+33 S.0 31 3 ;+33 i G*14

15. .tecwos FSV STEAM LEAK. HIGH MOIST TRIO. WRONG LOOP DUMP. 100% POWER ST9944 FSAR CASE 2 : EES CCOLING. 12.5% FW. 7.5% HELIUM FLOW 01/2G/87 l

FIGURE A-3 FRAME C CURVE 1 = TF - 1VE*03C FUEL TEFFERn'URE !F4 CURVE 2 : 'NF - 9VEtn0E NON-fUE'_ TEF*EMR!URE ( F I CURVE 3 : *0 t a s - REME1' GTE1M 'RE000P! ' P01 A1 CURVE 4 = F i

  • S'
  • E'4E A ' S T E.1(* FLOW f 10 T!PE0 *E*0 'If 0F 1ATC3 . 3:38 CU"VE 5 = ** - M N " T E Cl*
  • H ':3TTI.E P'.0W !!3 ( 'E90:17 Or 13'C3 - 040:

A-2o

4C9259-N/C.

~

- ll .,

a; l.' .,

. 9 .

?t** E'

^-0; l t.5*03 aR i.0 03 M

N l

J 2 Y'k

!. .. .n #M ml I 1

. <- -Ii -

E g' 5'  !

!T

}

! l U3 . . . . i 00 2.0+33 4 0 33 5 0+33 1."+03 s.0*04 ras. .sece FSV STEAM LEAK, HIGH MOIST TRIP. WRONG LOOP DUMP. 100% POWER ST9944 FSAR CASE 2 - EES COOLING. 12.5% FW. 7.5% HELIUM FLOW 01/26/97 FIGURE A-3 FRAME D CURVE 1 = 'Tf:3.2) - ?UBE ?EFFERn!URE 1? ;M'R 1 3UTLE' (F)

CURVE : = ?0f*0.2) - OTEnr ?tF?ERn'U*E qi OM'R 1 3UTLET (F)

CURVE 3 = fi(10.3s - TURE 'EF? ERA'URE li ACT!YE ;H'R DUTLC' (F)

CURVE 4 = '?!10.101- 'USE *EF*ERn'URE 1? M9:N STE*F P00ULE 1UTLE' I Fl

'.URvF 5 = 'O' 3.101- ;TC1F *tF*E90'URE 1' ."9:N STra.F P300LE ]Uf LE' ( F )

A-21

~

. . 909 252- N/C.

' . l: *,

. 'j ,*.' ,: . ~

m

, O.

- -- ** *4 ... .. . .....3. .._.a... . . . _ _ . . _ _ .

5:00

; ^;

I.5*03 b.

) l l \\

.t.3+03 E%\

L I

w I'

E b

n

(" w L s.a.22

b. x .-*  !

I I I I I .I T1% Nu ,

w l' 7% u 6 8 l l t i I i 61(

% ,]

6 i j i l 1II III

., i l l \

.o . . . .

OQ 2.3*33 4.0+13 S.0*33 1 0*33 4 0*34 TIT. ttCCNOS FSV STEAM LEAK, HIGH MCIST TRIP, WRONG LOCP OUMP, 100% POWER ST9944 FSAR CASE 2 : EES COOLING. 12.5% FW. 7.5% HELIUM FLOW 01/26/87 FIGURE A-3 FRAME E CURVE 1 : TSR:n . OTEqn,itr*ERntyRE q' RM!R MOOULE !NLE' LP)

CURVE.2 = TTR:n - TUat TEr*E3n! ORE q' q;TivE *M!R lNLE! (fl CURVE 3 : ' TOR 3n . TueE !Er*ERn'URE q' n:TIVE iM!R QUTLE! t ri CURvf. 4 : TGROM - GTE*,t* 'Er?EMn!URE qi 3M?R F3"ULE 30!!.E' trl 4-22.

~

. 9092st- a/c

. .f. . ',,.

.i 6; 0 '

-t-t*@*,

1 5e33 I.0 03 :

A' I

i;

si g . . _

id

! A g

'T 5.G+32

%l}l s 1, 6

7 l1 i

i i l l l. l l t i l I l

l 00 i ll l l  ! l 30 2.3 33 4.0 33 s.;.33 1 0 33 1 0+34

!!M. WCC@ cr FSV STEAM LEAK, HIGH MCIST TRIP. WRONG LOOP DUMo, 100% POWER ST9944 FSAR CASE 2 - EES CCOLING. 12.5% FW, 7.5% HELIUM FLOW 01/26/97 FIGURE 4-3 FRAME F CURVE 1 s 73 F - fen 0JRE3 MR'N STEOF TEF?Ein?tRE f Fl CURVE 2 m f0RF - FEq0URED 9EMEqi STEqr 'tF*Etn!URE i rl CURVE 3 = TUOM - F91N GTCnt? *EF*ERn'URE qi THt0 T TI.E ' F )

CURVE 4 ';RM *E'1Eq' GTC0l* 'EF"E90!URE 1' fNTE900*T n'.7C ' F I A-23

fo 9 2s8'-- Al/C.

e

. a.

  • .. ,., ,s 0 00 f 3-0; 1.5+03 A

1

\

R (

td V( f 1.3*01 i

,L

\ \

i AA L

i s. . e., m,%,M_ >b$i l ! ! ! l %%  !

r e' "1  % %_

\_ l _! )_ l I [- hI ' i  ;  ; '5  ;

-~m p. .

i1 I i i i i I i _I. I ;T ,1 .

1 ,

( l [.' "i i

I ' I 8 !Jlj lj i i i i lilIiI'I l 1j ']

Iiiil 6

I l t i ii i

l i ff l Ii iI:

Il ll I l i

!! ! l ,

[

!l'

! !ll 1 l l l ll l l l  !

33 03  : +33 4.0+33 $ +33 1 +03 i 3+94 itw, wecuos FSV STEAM LEAK. HIGH MOIST TRIP. WRONG LOOP CUMP, 100% POWER ST9944 l FSAR CASE 2 : EES CCCLING. 12.5% FW, 7.5% HELIUM FLOW 01/26/97 FIGURE A-3 FRAME G CURVE 1 : VCON(3p - MlXE3 MELIUM TEf**E*RIURE li C3RE QUTLE' (f)

CURVE : a fMGM - MEL Urt 'Ef**E*n!URE q! REME1'E' lNLE' ( F )

CURVE 1 s TH3( 4 ) - MELJUN !EMPE13?URE li TEME1?EM 3UTLE' (F)

CURVE 4 : 'H3 t 3 s - MEL IUtt 'Ef**E*n!URE qi SUPE *MEi!E.* 2 1UTLEI ( F I CUftvE 5 YM3t:1 . MEL Urt *Et** E *n'URE q' EV A*3R 4'3R JU TI.E ! (F)

CURVE S s N3' - tr Utt *Cl at'*n'UPE 1' STE1r* ;E';E*1'3R J';f t E' t r i A-29

i l

~

.. faf 25T- AI/c l a .

r . . - .-

- . 1

_ y,.- . v .

. . . . , . ...*L

z:::

=:

700.0 s::.:

hp d __ . . . _

h saa.c \

\ \

i 1\

. 1 \

$ \ \

s

~ ~ ~

h \

l. \ \ l

. t= 4

%. g g

i  % '

f 3 03 . ",

I i Il l 1 _ l. ' '

lillll l id IIllllll!Ili! iiiiii,:;;,i !l: , i'!

!i l i l l i lb l /m- l i l i i i , i ei,i  :  ;  ;, ; ,  :;;e: 4 .

Il l I l l l ?9fi l lli lill i I lIl lllllll I

.... a .

Ii11 llli i ll llili l l11ll ,

Il11 Iil lIlliIlIli

.o  :.o.93 4.s.n s.o.n 3.:.9) i .o.u l nn, uawn l
FSV STEAM LEAK, HIGH MOIST TRIP, WRONG LOOP OUMP. 100% POWER ST9944 FSAR CASE 2 e EES COOLING. 12.5% FW. 7.5% HELIUM FLOW 01/26/87 f FIGURE A-3 FRAME H I CURVE t a fft
3.Il . !UBE 'Et*E*R?URE 1! ECON 0ft!ZE" OUTLE! IFl i CURVE 2 a TOUTt el - MEL!Un TEF*E*A?URE n! CIRCULn!0R INLE' 'Fl I

A -1s-

.,. . - - - -.c., , , . - - .

.-a, , , _ , , , , , , . , _ , , , . , , _ - - . ,..__,..--,,,,,,,,_,._,,,,,,,,_,,.,,n,

~

.., 'lof 2sF-N/c_

.v:

scos x; .;

l i

150 0

o.o Io a Ny ,

6 d rt

' u n :: :

! , 'mi  :  :  : ' . . i. . . . . .

1 ti 8

L

- E'-

I "I

V E 50 0 ,i i

, lt \

.U . f . 1.1. !. . ! . ' . ' . l.

8

..L.f.I -

1 I

1 I. . l.I 1 . l.,

,. ' l.! I

?  ! ). . M.k ! I r- , ,,.il !I  ! l g . l ;. l. . l._ l_ . , I llllllllll.ll..!l.ll.li.ll.ll.ll.ll. ' l l. !

li 1,  ; i 'l l s -

i k- , -.i l. _ - - l l-_L.

j f l Lt _nu: t.r.,': . L:, 1:i L: I l., L: L:i1:l

. . I.: l:I ., l.:! L ! L:I L: I: I., l.:1 L:! i.

.a o.c  :.o.03 4.o.o2 s.a.ai 2. .23 i.o.a.

flN. 'ECC*CS FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP OdMo. 100% POWER ST0104 FSAR CASE 5 EES COOLING. 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE 4-4 FRAME A CURVE 1 : FWT3T - f3fAL FEEDWRTEM FLOW (PERO NT Or 9ATED = G401 CURVE 2 a FM!Of - TOTAL MELIUM FLOW (PEM :NT Or 9ATED = 1005)

CURvt 2: PM - MELIUM **E05URE frERO NT OF *n!ID z 7001 CURVE 4 : - TM*3ffLE **E00GRE fPER TNT Or "A!ED 4 26101 CURVE 5 = 4C - PE90?O" '0HE" ' PE*COf f SF in"O - 1 I A - 2.(.,

%12s8-n/c

. .. r; .'

e 0100 f

..cua l

1 5+03 a

1 l

\

t.3,03 i 4a '~\ *

)

I E

E ]

p--

3 I.

- < 1

[@ dl (!

\ i i l-

= ,,,,,, . ..._ -

m c_- c .% e _ -

M V 7T+4 l1;e;;;;e;i : 1.i:i:ti. i ';' !i 1  ;

,lg ll ., . . 2. .$ . '. I f.:'i :

I ' 3 I l.-

I'l l I.I I.I I I I I I.I l.I !.I I.! l .

l i

I l*

l g

l li lll t ,

i i

l l

l 30 l , ,

00 0.3+33 4.0+01 1 0 31 1.G.33 s.0 34 1xm. accwn FSV STEAM LEAK. HIGH PRESS TRIP. WRONG LOCP DJMo. 100% POWER ST0104 FSAR CASE 5 - EES COOLING. *2.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE A-4 FRAME S CURVE 1 fMM - CORE GUTLE! MEUIUM 'EMPCMn!URE fil CURVE a f000A - GtEqN *tr*E90'URE q! ACTIVE CH'R QUTLE! (FI CURVE 1 f0ROR - GTLnt !EP?t9n?URE 9? A0f!VE 9H!R 3UTLE' f f!

CURVE 4 : 'HC - CORE lNLE' NEllUM 'LP*E*G'URE fil CURVE 5  ?FW - FEL '.A ";* *tF*E9n'URE r.")

CURVE " 'OR:n **r9f* *L:'* fin'URE 1' 4 0 * * '.' C

  • S ' S ':LI* fIi A-2.7

5bf 252-41/c t , ."

. .'~ .

s

00 W i 1

1 5+03 V

N1 i

\

8 \p 2

0 1.0*03 :: I b

I~ \

8 1 d

5 h

\

5 )

E .g \

l sg I 5.0 0* *-

I  %%

"W 0

g f g 1- - i.- : . . l:. .:; .:

l lt l

lll ll . .

l.:

~- i i l , l 6 I

% 4. . -

i.

0.0 -;-;;

Il 1%4 __.,,1...........

I ll l li. . .

l .

Ill . . .

l

.i I

0.0 2.0*01 4 0 01 S.0*03 1.0+13 s 0 04 ftw acom FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP DdMC, 100% POWER ST0104 FSAR CASE 5 EES COOLING. 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE A-f FRAME C CURVE I a fr - AVE *AOC FUEL TEF*EMn'URE fr)

Ct:RVE : : INF - AVE *n0C NON-/UEL TEF*E*n*URE rr)

CURVE 3 : P0f 4) - REMEAT OfEDM "9E000RE fPSIAI CURVE 4 : Fa!Of - .tEMEn? OfEql* FLOW f;0 *!MEO aERC;'!T 0." 9n!:0 a S 1s CURVE 5 : F* - M9;N Of Ent' 'H*0f f t.E P LO;. f ;0 ( *E

  • C* *i f Ol' 'f1 e0 2 0401 A - 2.9

N9 257-N/c.

~

e P!DO t

.;-03 I.5+03 1 s I

L.0+03 9

h "1 \

^ 1 i3 $\W',l A _

$.. I . - ,

$.0+0:

'JC- - ' -

' ' ':. M.: l_ l_ l- l- lll lljll GP -i- -

I V l  !  !  !!!!!

.!i l:!l l!'

1 , i l !I il l l l l 00 ,

Ij il i'

00 2.0 03 4 0+03 1 0*03 3 0*]3 i.0+14 f tW. 'ECCMt FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP DUMo, 100% POWER ST0104 FSAR CASE 5 - EES COOLING. 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE A-4 FRAME D CURVE I : fit:3.21 - TUBE 'EF*E90'URE 4! OH!R 1 3Uit.f? (F)

CURVE 2 f0(20.21 - OfE9F *EF=E*.n?URE 1? OH'" 1 3Utt.E! f r i CURVE 1 a fit:0.3: - TUBE 'EF*E*R?URE 1' A*.!!VC OH'R 30ft.E' (FI CURVE 4 fTt10.101- TUeE 'E:'*E9r.'URE 1' M1:N stent * "000LE 3UTI E* fil CURVE 5 : F0f;3.101- O fi9t* *EF*E*n*URE 1' *1:N Sft9F "004LE 3Cfl!' IFl A - 29

9o92ss - alc.

. 9' ,

" .- .e _ _ . . _ _ . .

9IC:

.3-G3 1.5+03 m

1 0+03 M I gk

. N.

i c,, q o il I.

M l' 6_

jg t

= s.,,,,

-'sggg y.l-

, l .i u,

l..

i,

. . l.

,t..I I i I .li ........

b.,dl mI.. I.., l. l. .

l.

.. ' ,. l. I 1.1 1

. ! l.

., ,., ,I1 ,.

]Q I l- l. l.

i lIIIl'

'ie i

~l I i l' l,

i~

t, 1-l I  !  ! f l ill I llillill i  ! !illiI G.0 , ,

G.0 2.3+33 4 0*33 1.C+03 3.G 33 a 0+3%

ris. ames FSV STEAM LEAK, HIGH PRESS TRIP. WRONG LOOP OUMD. 100,* POWER ST0104 FSAR CASE 5 EES COOLING, 12.5% Fn, 7.5% HELIUM FLOW 01/26/97 FIGURE A-4 FRAME E CURVE 1 :  ?OR!M - OTE9M TEP*E*RIURE 9' RM?" P300LE !NLE! (F1 CURVE : a t?R!n . ?ggE 'gr=EentuRE q+ A;*!YE TM!R !NLE' (T)

CURVE 3 ff0R3n - TUEE ?EM*E*A?URE 9? 40!!VC 'M?R 30ft.E' tFl CURVE 4 70R0rt . O t E e,F *EPPE=n'URE q' v't ta00gt! gytt.E' t r i A-30

909zrs-Nc

. . .s e

S *0:: '.

. . cu s 1.5+31 1 3 +01 ;- k 4

A NA

== .  ;;.  ; - . .  ; .

B  %

,. 3

! Me i

, s.o., _I%#. .. .. ._l_l._i._ _ l_l _ l -

_ l_ _ l_

_ _ _ l_ l_ _ _ _ _

\ flv~! mllll l' riei,,

i. u; i i lii

. . . l: l:

l Il t IIl l ! lI l I

l e l ll i ll lil 'l i l lil l l l i l l I c.e . .

C.: 2 0 31 4.0 01 1 0 31 1 0 01 a 0+34 f t4. at(Oct F3V STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP DUMP, 100% POWER ST0104 F3AR CASE 5 EE3 COOLING. 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE A-f FRAME F CURVE 1 s f :N . -*ELRE3 M9:N GTENr* 'EF*EMR'URE r il CURVE O z TORM - FEr0dRE3 *EHgn! STEnr 'LP?E*q'URE fri i

CURVE 3 t0;$t . P9:N StLer* *EF"Etn!URE 9? TH93f f t.! f r a CURVE 4 : fCRM 1EwC1' Of te,r *;F*E*n'URE q' lNTE*C;"' 1AL /C ' r 1 A-31

9E9 M- Alk

~

~ - . . .

0200 f

.3-G3 1.5 03 M

M L

3

- .\.

8 0*03 l

1

, _ \.1

! @d\

i 1 W '

$ s ~. 0%$, 5A%L; p i

i .i eWh .

. . O  !

I I l I i i . e i; 5 b!

\ h [ L ' ' i, I I,. I l, I l, il, I!'  !,'.I f! 1t I! L I i s!! i:i i}; III e3' i3

,W F ',"i l l'l }'l I'I l' l'! l' l'l l'. 'i l'i l's I'l l'i l's I'l l'i l'

! l l l l .

1 I I .I I i I I e i . I C.0 , ,

00 2.3 33 4.0+03 1.3 03 1.G.30 6 0*0?

rim. umm FSV STEAM LEAK. HIGH PRESS TRIP, WRONG LOOP DUMP. 100% POWER ST0104 FSAR CASE 5 - EES COOLING. 12.5% FW, 7.5% HELIUM FLOW 01/26/87 FIGURE A-t FRAME G CURVE I a WCONf3: -M XE3 MEl.!UM 'EF*ERn!URE 1' CORE luti.E' f r)

CURVE : a 7HGH - MEL!UM 'EF*E90'URE 4' RE*Eqiti lNLE* fIl CURVE 3= thor 4 . MEL;Un 'EP'E90'URE 0' *E*EG'LR 3Uti.E' f il CURVE 4 : 'H3' 11 MELIUM 'EF*E*n'URE qi OUPE"*E1'i> ; 1UTIE' 'r CURyf 1: 'M3' 21 *E! IUM 'C?**E*0'UPE l' Uin'Oan**R JUT;C' 1"1

'.URVE ;a 'HOf . it' lU9 " :'* * ** a. 'l P E d ' ; ? ' *t' .;L *! M ' 7* T,,,71 A-32

9ev 2ss-4/e_

s .

g  ;, l  ;

I I J  !

l 700.0 l

sec.a \

. "d l Uh I V i)

I \

\\

5C3.0 l( I I i\ l li I  !

~,, >. \ l ll '

l l 11 k\

i* I l 1 -l l I 4  :.a h, ). 1 l l l1

! 4\ l l I j \

h , I l i ) l ll l *%, I I Ii iiiII I 100 0  !!, l ll l II I l l l l l! I IIII I!

Ilill I ali l I. l.11 I 1I11 lilli till! ,11 IiiliiI .5 l l l Ph j i I i ! l' i l' i e , ,- i. .. '.. - .

I!iiili i ,\j I/W  ! i di ?! J . .: . -i .c . .: : ,: ,:. ,: . :  :: .:. :. -

lilll! Y! I i! l llllli I!ilIll l Illl!!i'

..a, Illill 11 ll ll lI1111 ,

I lilli ,

l ili Ill. .

c.o  :.o.23 4.o.23 s.:.23 2.c.23 , o.3:

nx.m-FSV STEAM LEAK, HIGH PRESS TRIP, WRONG LOOP CUMP. 100% POWER ST0104 FSAR CASE 5 EE3 COOLING. 12.5% FW. 7.5% HELIUM FLCW 01/26/S7 FIGURE A-4 FRAME H CURVE 1 fff00.ll . YJOE TEF*EMn!URE 9' ECONOM!ZL' Outt.ET fri OURVE : a f 3U f f e l - MELIUM *EP'E9n!URE 1' CIRCULn

  • NLE' f F l A-33

. e

  • O *

, e f

O * ,

n .

i O *  ;.

() SHtS TMSB2FF5 03/04/79 DATE 012687 PA6E 25 *a REMEATER C00Leobh WRONE LOOP DUMP CASE 2 AT WM S a f O

....................................................... l

  • SUMMART OF STEAM EEMERAT I F4 ..............................OR Uhti. PERFORMANCE a *

, SEC. TOTAL FLOW RATE TOTAL EFFICIENCY A VER AEE STEA M C0h 9 ITIOh S AVERAGE HELIUM PEAN E O NO OF DUTT STEAM HELIUM INTRANCE EXIT TEMPERATURE TUSE STEAM ^

j

~

HELIUM STEAM SIDE SIDE ENTM. TEMP. PRES. ENTM. TEMP. PRES. INLET CUTLET TEMP. *P. .

Lum /MR LeM/MR BTU /HR

  • 1 STUtLBM DEE-F PSIA BTutten sEE-f PSI 4 DEE-f DEE-f DEE-F PSI i f A a e, 1 1.071*03 7.500 03 1.605 05 5.0 45.4 78.5 109.8 26S.0 99.9 131.3 262.0 538.2 343.7 181. 6. .

..s s..........................es===ssees===ssemassessenemone. .smessammassmeenses==ammes======= sees.s===ssessnessessesses ...ases b O * * *

  • E #8 7I R E UN I T **** "

I 1

W O 9.000 04 6.300 05 1.348 07 5.0 45.4 78.5 109.8 268.0 99.9 131.3 262.0 538.2 343.7 181. 6. '-

9 n '

o l

n - j 9

A n  %

4

.i n h o

i

. 3

.-....-.e--..,nw==-g -t- il-.J 's .. ...

O eArt 012687 *

  • O Swi$ inse2T75 03s0As79 PAGE 25 eEMEATER C00LDOWN WRONG LOOP DUPP CASE 5 A r- 7emo S ^ ~-'
  • O
  • eeeeeeeeeeeeee........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee.
  • SUPMART OF STEAR GENERATO# UMli PERF0ppANCE
  • I eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees O +

Q t

-___ SEf. .. _ .___TOTAL FLOW RATE TOTAL EfttEIENET A V E RA GE $T EA R C0 ND11 10N$ AVERAGE MELIUM MEAN O NO Or euTT STEAn net:Un ENTANCE Ex T vEnPEnAt0RE TUet STEAn * ,

HELIUg STEAM SIDE $1DE ENTH. TEPP. PRES. ENIM. TEMPe PRES. INLET OUTLET TEMP. *P. 3 LeM/HR LBM/HR BTU /HR 1 1. ETU/LBM SEG=F PSIA STU/LBM DEG-f PSIA DEG-F DEG-F DEG-f PSI

  • i 0 343.5 181.

_. _.1._ .1.Cli t 0 3_ Z .50 0t 03_1 5 8 6205__4 e9__6 5 J__ ___ l 8 e5 _.109.8 _ . 2 6 8.0 99.7 131.0 262.0 540.0 6. .

..................................................................................................................................

  • h O ...e eN T ae uN : T e ee t

b '

9.000'04 6.300*05 1.332*07 4.9 45.7 78.5 109.8 268.0 99.7 131.0 262.0 540 0 343.5 181. 6.

r O

  • I f _ _ _ .
  • i O

f

> 0 * !

be . _ . . _

S O e ?

a '

l o l

O a; .

i t

i .

e O .

i 1

m 0

l ,

l 0 e %

k O

e $

Q' a

O e

O

  • c

\

. O Io O

I o

  • I l

o ei g SINsLtfFSW2 in502777 06/03/79 DATE 012967 PAst 33 g j

- ~~ 8 W40Ns LOOP DUAP Citt i 54 i0000 S ~~iES Co*L8 M(e i e e, eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e $unnaev Or StiA" 8tht#Afo# UNIT Ptet0anaNti e

- " " ~ ~ ~- ' * ~ ~~ ~ '"~~ ""~~

n "

e1 SEC. IC*AL Flow mate TOTAL titICIENCT A V E aA st ST E An C0N 9 IT I ON $ AvtRAst HELIUn MEAN ( l eg No or DUTT Stian uttlun ENTRANCE ftIT ftMPr#A100E TUSE SitAn gg } l NELIUn Sit AM SIDE Stat (NTM. TEPP. Pets. ENip. ItMP. PRES. Ihtti Ou tt t i itpr e

  • P. .

l LPaine Lanium stusae  : 2 stusten ets-t Psta sturten ets-t PSIA ets-r ets-t ses-t Pst t l o n 1

. s.175 e07__22 p ,as6,5. o + 0g_ s ,001 t0 4 73 2_ _76.s _ . . 2e6.6____315.2_...e50.5 347.7 254,5 1._

. 196,6__ . . so 3.7................................................................. ........... ...................... . . . . . . . . ................

. . 316 e . 13.

l g n eeee aN

  • Iae uN IT ee" o

'i 196.6 226.5 286.6 315.2 e50.5 347.7 254.5 316. 13.

't t ,

4.414+04 4.s00eC4 4.321e06 73.2 76.s se3.7 6 i N

h 8

y , n D

n

. . - . . - - . .. . . ~ , - . . . . . - . . .- w.e. .- ~ . ...e .. .

L

=

~.em.- y e.w e ..a wa.i._ .m<e. .e.- esm ew -ess.e e .m. . - . . .w..

l

= .

Q t

4 4 , .

l-N I b 1 ..- -. - . -

l

!j til a

- - . - - -. -- .- _ ~_ - . _ . . _ - . . . - -.

i , 5. : .

'---c..._._ _ ._. __ __ m s- :~ uwen _ . ; _ - _ ev. - 2

- * . ~ ' LS - ~' e-O -- - - - - -

4 TMsertrr carossr, eAfr ot2,sr Pass 33 ,

O St=sLesssV2

' , visis tios buss ciis rificoco s sss c = .ser O .........................,.............................

e i,

' SUPMART of GENERATOR U4 PteFORnahCE . j,

................,STfAM..........,........t.f

.................. ,u 1

n SEC. TOTAL FLOW RATE TOT AL Eff!CIENCY AVE RAEE $TE AN C0W D ITION S AVERAGE NELIUM REAN i Tr*PeRATuar fuer sTtan no Os eU TT STe An wet:Un suTR4=Ce er:T ,

}

O MELIUM STE AR . SIDE Sitt ENTM. TCPP. Patt. ENTN. TERP. PRES. INL(T OUTLET TEMP.

  • P.

LSA/MR STUfMR 3 I STU/Lem pts-F PSIA ST U / LBM DEE-f PSIA D E G-F DES-F DEG-F PSI

, LSNfMR O 547.5 255.2 13. e-8.175+o2 8.889.o2 r.936.os 72.7 77.1 196.4 224 6 I45.7 285.9 sis.s 85o.5 sis.

.......................................................................................e..........................................

1 1  ; O ""E"5 2** *"8'"" e

s. sis.os 4.soa.os s.2s5.os 72.7 tr.i i.e.s 22s.s ses. 2 s s ., sis.s s5o.5 557.5 2ss.2 sis. is.

l ,

e i

t O ._ _ _ _ _ . . . .

}

8 I '

O 1

1 1 O e*

j

),

i ten O 9

! M j O '

i O e i O e l

2 O e

! O e

, O e .4

.4 l

O e i

O e i

O

< . .O e j _. . . . . . . . . . . 4 J

! ')

e I

i V4

1 909258 N/C APPENDIX B ANALYSIS OF REHEAT MODULE FLOODING B-1

fM252- N/C.

PROTO POWER CORPORATION 45ggCL con #0A AT SON E91 POQUONNOCK ROAO GROTON CONNECTICUT 06340 (203) 446-9725 File: 7511494 February 2, 1987 Mr. Jeffrey Johns Supervisor, Nuclear Licensing - Engineering Public Service Con:pany of Colorado 2420 West 26th Avenue Suite 100-D Denver, CO 80211

Dear Mr. Johns:

Enclosed is Proto-Power Calculation No. 94-02, Rev. A, Analysis of Reheat Module Flooding for Reheater Cooling Following Wrong Loop Dump, which is intended for inclusion in General Atomic Technologies Document No. 909258, Rev. N/C, to document that one large condensate pump will flood at least two reheat modules.

This revised calculation incorporates a reduction in total pelton wheel flow from 1070 GPM to 500 GPM, to be consistent with the latest draft of GA Document No. 909258, and demonstrates that one large condensate pump will flood at least two reheater modules in one steam generator with this lower pelton wheel flow. The total flow rate through two reheater modules in one steam generator has also been determined. This flow rate is analysis. 2227 GPM, which is less Therefore, GA than the 2500 GPM used in the draf t GA Document No. 909258 should be revised to address this lower flow rate. In a telephone conversation, GA stated that the decay heat removal and maximum PCRV pressure is relatively insensitive to reheater flow rate, and that therefore, this lower flow rate may be sufficient.

In addition to the Proto-Power calculation forwarded by this letter, we have determined by analysis the minimum cooling water

flow required to flood the second reheater module in a steam generator to be 1750 GPM. GA Document No. 909258 should specify this flow rate, in lieu of the currently specified value of 2100 GPM.

B - 2.

fo92_ST - N/c Mr. Jeffrey Johns February 7, 1987 If Proto-Power can be of further assistance in supporting the wrong loop dump analysis or if you have any questions on the attached calculation, please do not hesitate to call me at (203) 446-9725.

Sincerely, G. W. Geaney, Manager Engineering Services GWG: mas cc: J. Kennedy, GAT A. Wong 2

a 6-3

991ss-n/c.

CALCULATION C0VER SHEET PROTO-P0llER CORPORATIDW TITLE: ANALYSIS OF REHEAT MODULE FLOODING FOR REHEATER COOLING FOLLOWING WRONG LOOP DUMP CALCULATION NO.: 94-02, REV. A FILE NO.: 7511494

'. CALCULATED BY P.M. Breglio DATE 2-2.-17 CHECKED BY M.J. Fekete DATE 2-2.-87 8-t

9o92s2- H/c.

catc u **' **

94-02 A 1 or 8 PROTO POWER CORPORATION onsscoa ace 2-2-87 GROTON, CONNECTICUT P. Ba s cao REwEWED JOB N; 7511494 WEm PSC Fort St. Vrain SUBJECT Analysis of Reheat Module Flooding CONTENTS

1. PURPOSE
2. BACKGROUND
3. APPROACH
4. RESULTS
5. REFERENCES ATTACHMENTS: 1. Computer Input Files and Printouts -

Reheater Cooling Using Single Loop Flow With One 60% Condensate Pump, 500 GPM Pelton Wheel Flow, at 12.3 psia Condenser Pressure - One Module Flowing'

2. Computer Input Files and Printouts

-Reheater Cooling Using Single Loop Flow With One 60% Condensate Pump, 500 GPM Pelton Wheel Flow, at 1.5 psia Condenser Pressure - One Module Flowing

3. Computer Input Files and Printouts Reheater Cooling Using Two Loop Flow With One 60% Condensate Pump, 500 GPM Pelton Wheel Flow, at 12.3 psia Condenser Pressure - One Module Per Loop Flowing
4. Computer Input Files and Printouts Reheater Cooling Using Two Loop Flow With One 60% Cc ndensate Pump, 500 GPM Pelton l psia Condenser Wheel Flow, at 1.5 l

Pressure - One Module Per Loop Flowing 1

5. Drawing No. 7511494-PF-12, Rev. A
6. Computer Input Files and Printouts -

Reheater Cooling Using Single Loop Flow With One 60% Condensate Pump, 500 GPM

' Pelton Wheel Flow at 1.5 psia Condenser Pressure - Two Modules Flowing l

l B-F I

l l

l _. . _ _ , .- - _ - - _ - - , .-. - _ . - - _ - . - , . .- . _ _ - - _ _ - . . . _ _ - .

999 2S8- N/C.

u SE

- . ca.c s 94-02 REW g 2 or 8 PROTO POWER CORPORATION os,s.sa:oa cire e 3mm 2-2-87 GROTON, CONNECTICUT RE v t

  • E D JOS N; 7511494 EG PSC Fort St. Vrain SUBJECT Analysis of Reheater Module Flooding
1. - PURPOSE

(

To determine if flooding of two reheater modules in a steam generator could be accomplished using the flow path identi-fied in the FSAR, and to determine the cooling water flow rate through both flowing reheater modules.

To determine the cooling water flow rate through both steam generators (each with one reheat module flowing), and the (

capability to flood a second module in each loop. Although this flow path is not addressed in the FSAR, the evaluation was requested by PSC.

2. BACKGROUND A flow path using the reheater section of one steam genera-tor for shutdown cooling was developed for the case in which wrong loop EES dump occurs, following steam generator leak detection. This path is described in the PSAR Reference (D) and system description, Reference (C). The flow path is from the condenser hot well, through one 60% condensate pump, the reheater section of one steam generator, the loop hot reheat bypass valve (PV-2267), and back to the con-denser.

GA Technologies Report Reference (B) states that at least two reheater modules in one steam generator are required to provide adequate reactor core cooling (from full power) and to prevent PCRV safety valve lifting.

This calculation is directed at evaluating flow resistance conditions in the reheater modules to determine if the pressure drop across one flowing module induces flow in one additional module. Accordingly, the flow path is through one reheater module only.

B - (o

991.52-a/c.

catc ~ "EV '4E 94-02 A 3 or 8 PROTO POWER CORPORATION oaosnoa oce GROTON, CONNECTICUT 2-2-87 REv:LWED 46 NO 7$114g4 CLIENT PROJECT Fort St. Vrain SUBJECT Analysis of Reheat Module Flooding This flow path was also analyzed to determine the flow rate through two modules in one steam generator.

Further, a similar flow path was analyzed to determine the cooling water flow rate through both steam generators, each with one reheat module flooded. This flow path is similar to the flow path described above, except that equal flow through both steam generators and associated loop piping is assumed. This analysis would also evaluate the ability to flood more than two modules in two loops (three or more flooded total).

3. APPROACH The computer program of Reference (A) was used for deter-mining system pressure drop throughout the flow path network. The sections of the flow path and associated hydraulic resistances are detailed on Attachment 5 (Drawing No. 7511494-PF-12).

Water temperature exiting the condenser hotwell and entering the reheater was assumed to be 110*F per FSV design

, criteria, Reference (E), which is also consistent with Reference (B). The temperature increase across the reheater was determined based on heat removal duty stated in GA i Technologies Report Reference (B). The analysis proceeded as follows:

j

1. The reheater water column head was calculated to determine the pressure drop required for flooding an additional air-blocked or otherwise stagnant reheater module.

l i

8-7

901238- AllC.

- catc sc " 'O' 94-02 A 4 or 8 PROTO POWER CORPORATION m.csaron oa:E GROTON, CONNECTICUT r. SOE6uo 2-2-87 AEviEWEO JOB NO CLIENT Fort St. Vrain PSC SUBJECT Analysis of Reheat Module Flooding

2. Water flow conditions were calculated first for single loop flow through one reheater module, with the condenser at atmospheric pressure (12.3 psia).

Conditions were then re-evaluated assuming the con-denser to be operating at a vacuum condition of 1.5 psia, to ensure that the most conservative conditions were considered in the analysis.

3. Water flow conditions were analyzed for parallel flow through both loops assuming one reheater module flowing per loop. Condenser pressure conditions as in Step 2 were evaluated.
4. The required pressure drop determined from Step 1 was compared to the four conditions calculated in Steps 2 and 3.
5. Water flow conditions were analyzed for parallel flow through two reheater modules in one loop. As Attach-ments 1 through 4 conclude that the flow rate is slightly less for a condenser operating at vacuum than at atmospheric conditions, this flow path will be conservatively analyzed with a condenser pressure of 1.5 psia.
4. RESULTS A. Required Reheater Pressure Drop The highest unsupported water column that can exist within a steam generator (which therefore yields the most conservative pressure drop requirement) would occur if the entire reheat inlet pipe assembly and tube bundle are air blocked.

15-8

909258 -Al/e-ca.c " 94-02 ""

A 5 c: 8 PROTO POWER CORPORATION m.awa ecE GROTON,' CONNECTICUT gmm 2-2-87 REM *ED JCE NC 7 4g4 CUENT PROJECT PSC Fort St. Vrain susaECT Analysis of Reheat Module Flooding Height of water column from drawing Reference (F)

= 55'- 2-1/2" (overall height) -

2'-3" (scaled from upper seal to uppermost tube outlet) - ((12'-1")

-(2'-1")-(3'-5")-(1'-8")-(2'-4")) (calculated dimension from base to inlet tee)

= 50'- 4-1/2" The pressure differential between the reheater inlet and outlet headers required to lift the above calcu-lated water column is (assuming 80*F water temperature):

R.P.D. = 1/Vp

  • H
  • 1/144 Where:

Vp -

Specific Volume of Water, Ft 3 /lb H -

Height of Water Column, Ft 1/144 -

Conversion from Ft2 to in2 R.P.D. - Required Pressure Drop, psi R.P.D. = (1/.01608) *

(50'- 4-1/2") *

(1/144)

= 21.76 psi i

B. Attachments Detailed results of the evaluation are presented in j Attachments 1 through 4 and 6, are summarized below.

i s

8"3 l

909 258- Al/c catc e E' '

94-02 A 6 or 8 PROTO POWER CORPORATION oamaga6 EE6t.fo 2-2-87 GROTON, CONNECTICUT ,,,,,,gg .ce c

. 7511494 WENT PROJECT pgg Fort St. Vrain SUBJECT Analysis of Reheat Module Flooding Attachment 1 - One reheater module in one loop only is flowing. The condenser is assumed to be operating at atmospheric pressure (12.3 psia). The pressure drop between the common inlet and outlet points (105 - 110) is 30.0 psid, and therefore enough to induce flow through an additional module. Moreover, since the pressure drop from point 515, where the two loops split, to point 524, where they rejoin, is 276.5 psid, at least one module in each loop can be made to flow, as analyzed in Attachments 3 and 4.

Attachment 2 - The same flow path and conditions as Attachment 1 are analyzed using a condenser operating pressure of 1.5 psia. The pressure drop is 29.9 psid, again enough to induce flow through an additional module.

Attachment 3 - Flow through both loops is considered, by assuming that the total mass flow splits equally through each loop and that one module in each loop is flowing. The condenser is assumed at atmospheric pressure. It is found that the pressure drop from point 105 to point 110 is only 21.0 psid, and therefore insufficient to induce flow through other modules in

. either loop, or thus greater than two modules total.

Attachment 4 - The same flow path and conditions as Attachment 3 are analyzed using a condenser operating pressure of 1.5 psia. The pressure drop is 20.9 psid, again insuf ficient tc induce flow through two reheater modules in each loop.

The flow rate through two reheater modules flowing in one steam generator, with a condenser pressure of 1.5 psia, was determined to be 2227 GPM.

l t

6 -10

909 258- AlC.

catc Nc "E" SAGE o, g 94-02 A 7 PROTO POWER CORPORATION oa.o:sc oa p ca t 2-2-87 GROTON, CONNECTICUT

, aevieweap y p Joes;7511494 CUENT PROJECT Fort St. Vrain SUBJECT Analysis of Reheat Module Flooding The table below is a summary of the attachments.

FLOW PATH SINGLE LOOP DOUBLE LOOP Attachment 1 2 6 3 4 Total Flow to Reheater 2179 2175 2227 3364 3358 Modules, gpm Total Pelton Wheel Flow, gpm 500 500 500 500 500 Reheater Inlet Temp., *F 110 110 110 110 110 Reheater Outlet Temp., *F 140 140 140 140 140, Pressure at Point 105, psia 96.5 86.7 73.3 63.7 54.0 Pressure at Point 110, psia 66.5 56.8 59.8 42.7 33.1 Pressure Drop Across Reheater 30.0 29.9 13.5 21.0 20.9 (Point 105-110), psid Condenser Pressure, psia 12.3 1.5 1.5 12.3 1.5 Total Number of Reheater 2 2 2 2 2 Modules Flowing NOTE:

- PT 105 is the inlet connection to the individual reheat module's supply piping

- PT 110 is the outlet connection from the individual reheater module's discharge piping

- Total Pelton wheel flow reflects flow to two circulators 6 -Il

s 9092fE- A/c.

cc No "3' 8 94-02 "E' A er 8 PROTO POWER CORPORATION on.c scoa oct 2-2-87 GROTON, CONNECTICUT P. SEE(s Llo JOE N!

, AEh.t AED g 7511494 JECT CLIENT PSC Fort St. Vrain SUBJECT Analysis of Reheat Module Flooding

5. REFERENCES A. PPC Computer Program "PRDRNEW" B. GA Technologies Report No. 909258, " Reheater Cooling Following Steam Generator Leak Into PCRV - Wrong Loop Dump." Issue N/C, Draft.

C. FSV SD-22 D. FSV FSAR, Sections 14.4.4.1, 14.5.3 E. FSV DC-5-2 F. Drawing No. B2201-100, " Steam Generator General Assembly Fort St. Vrain."

l 6 -12.

909252-AJ/c CALC. 94-02, REV. A

' ATTACBMENT 1 Page 1 of 2

      • FILE: FF12.DAT *>n ID -WDIV- 1 (F I X)- L (VAFU - EPS -

EL -FL.- TF - t11N - 11A SE r.T I Di' -

31 l

.1, 46, .77,1.500D-4, -1.2. 1, 110.0, llA , IJA 1 500-502 ,10.012, 0.0, 5.0.1.500D-4, 0.0, 1. 110.0, IJA , IJA 2 507-504 22.624, .1, 1.5, 11.9,1.500D-4, 0.0, 1, 110.0. IJA IJA 7: 504-506 ,18.812. .1, ,

4 ClJD PitMF , IJA , .1. 0.0, 0.0, NA , 0.0, 9, 110.0 5 , ilA 508-510 ,11.930. .1, 1.9, 16.4,1.500D-4, 11.8. 1, 110.0, NA , 11A 5

6 510-D11 ,13.124, .1, .39 7.93,1.500D-4, 0.0, 1. 110.0 flA , IJA 511-512 ,13.124, 2, 0.0, 4.11,1.500D-4, 0.0, 1, 110.0, ilA , IJA 7

7.981, 1.5, 18.8,1.500D-4, -9.3, 1, 110.0. IJA 114 8 512-405 , 2, ,

9 : 405-40o , 6.065, 2, 1.', 24.1,1.500D-4, 10.9. 1, 110.0, 11A , ilA 1.8. OS.9,1.500D-4, 1.4, 1, 110.0 IJA , 11 '.

10 406-407 . 7.901. 1, 1.0, 36.2,1.5000-4, 17.8, 1. 110.0, ilA IJA 11: 407-515 , 7.901, 1, .

1.3, 171.,1.500D-4, 0.0. 1, 110.0, ilA ilA 12 515-100 , 6.065, 1, 110.0, 12.7, 196.,1.500D-4, -16.2. 1. IJA 11A 13: 100-101 , 6.06D, 1,

11.B. 62.5,1.500D-4, -18.7, 1, 110.0, IJA IJA 14 101-102 , 5.761, 1, ,

0.0, 0.0,1.500D-4, 0.0. 6, 110.0, 350.0, .9 15: HV-2291 . 5.761, 1, 110.0, 450.0, 9 16: FV-22'.9 , 5.761, 1, 0.0, 0.0,1.500D-4, 0.0, 6, 17: 10?-103 .24.324, 1, .24, 4.7,1.500D-4, H.D. 1, 110.0, llA , IIA 10: 103-103 ,21.024, 1, .24, 2.3,1.500D-4, 0.0. 1. 110.0. IJA , IJA

.32, 12.0,1.500D-4, 0.0, 1, 110.0, ilA IJA 19: 104-105 ,24.324, 1, ,

20s 103-10o ,11.371, 1, 48. 13.7,1.000D-4, -1.5. 1, 110.0, IJA , ilA 21: 10n- 10.* . 9.D62, 1, .16, D.O.1.5000-4, -6.5, 1, 110.0, llA . 1 16, 22: 107-103 ,11.374, 1, .52, 47.9,1.500D-4 -23.V. 1, 110.0. ria , IJA 2 ~. : HH tlODL.,10.OZO. 1, 36.3. 0.0,1.5000-4, -2.8, 1, 119.0. IJA . IIA 24: 109-110 , 9.400, 1, 1.9, 122.7,1.5000-4, 52.7 1, 125.0, ilA , ,r lA 2D: 110-520 ,10.022, 1, 1.7, 60.5,1.500D-4, 0.0, 1, 140.0 tiA . 114 26: 520-522 , 5.187, 1, .99 11.4,1.500D-4, 0.0, 1, 140.0, 114 , IJA 27: HV-22131, 5.197. 1, 0.0, 0.0,1.500D-4, 0.0. 6, 140.0, 1800., 1.0 0.0,1.500D-4, 0.0. 6, 140.0, 400., 9 23: PV-2267 , 6.063, 1, 0.0, 3.34, 161.1,1.5000-4, -13.D, 1, 140.0, ilA IJA 29: D22-G24 , 6.065, 1, ,

23.4,1.500D-4, -6.7, 1, 140.0, NA IJA

0 : 524-52o , 15.00, . 6 7, ,

. 1 Co0 0.0. 0.0,1.500D-4, 0.0. 6. 140.0. 9.45, 1.0 31: 526-528 , .D.

t B-t3

i 9091st-as/c.

CALC. 94-02, REV. A 1 ATTACRMENT 1 Page 2 of 2 FLOW = 2179.5 GFil AT 110 ;F7 llSE FUtlP CURVF [OR ENTER PPESSilRE] (Y/N):N?

GiARTltJG PRESSURE = 12.3 PSIA 7 ADD 1110tlAL FLOW (USE WDIV=0.1 Ill INFUT FILE!)= 500 GFt1?

F 11. E : FF 12. DA T - NO. OF SECTIONS = 31 - TWD-FHASE SECT IOi4S 'DIVIDERu 10 SECTIOf4 ID 1: FLOW P ( I tJ) P ( DLli )

1 500-502 10.812 0.5 1,329,550 12.3 12.8 2: 502-504 22.624 0.1 1.329,550 12.8 12.8 3 504-506 18.012 1.7 1,32V,650 12.8 12.7 4 :ClJD PUNP 1.000 0.0 1,329,550 12.7 310.4 5: 508-510 11.938 2.1 1.309,550 310.4 304.5 6 510-511 10.!?4 0.5 1,029,550 304.5 304.4 7 : 511--512 10.124 0.1 540.727 304.4 304.4 H : 512-405 7.981 1.8 540,727 304.4 307.8 9 : 405-406 6.065 2.1 540.727 307.8 301.1 10: 406-407 7.981 3.1 1,081,453 301.1 296.5 11: 407-515 7.981 1.5 1,091,453 296.5 286.0-12: 515-100 6.065 3.9 1,031,453 286.8 271.5 10: 100-101 6.065 15.7 1,081,453 271.5 217.1 14: 101-102 5.761 12.8 1,031,453 217.1 162.2 15: HV-2291 5.761 0.0 1.081,453 162.2 123.6 ut r = 1. '?O V ,14 5

    • F RESS <CR) T O COTH IlltIE * *

!:I I? i 10tl ID 1: Fl UH F' ( 110 F' illi ll )

5.761 0.0 1,001,453 123.6 100. 3 Ucr a2,200,837 the FV-2039 17: 102-103 24.024 0.0 1,031,453 100.3 96.5 10: 103-104 24.324 0.0 1,001,453 96.5 96.5 19: 10>1 105 24.32'l 0.5 1,0ll1. 45 3 96.5 96.5 20 105-106 11.074 0.7 1,001,453 96.5 97.0 21 10o-107 9.562 0.3 1,081.453 97.0 97.6 22: 107-100 11.574 1.2 1,081,453 99.6 105.5

" ~. : lill IIUDL. 10.020 3 6. P. 1,081,453 109.5 91.6 24: 109-110 9.400 3.7 1,081,453 91.6 66.5 25: 110-520 18.822 2.5 1,091,453 66.5 66.4 26: 520-522 5.187 1.1 1,081,453 66.4 58.6 0.0 1,081,453 58.6 57.1 11e r = 6,669. 284 27: HV-22131 5.187 20: FV-2267 6.065 0.0 1,001,453 57.1 27.4 Wcr=1,016.204 29: 522-524 6.065 5.8 1,001,453 27.4 10.3 30: 524-526 15.000 1.0 1,081,453 10.3 13.1 31: 526-520 0.500 0.0 4,159 13.1 12.3 Ucr* 15,037

    • FRESSilHE AT Et10 OF SiSTEM = 12.3 PSIA lief Et.1 WTTH NEW CONDITIDiJS ( 't /10 ?

S -14

2

CALC. 94-02, REV. A ATTACHMENT 2

. Pcgo I cf 2

, i

  • t l a a r. I Il l's I l'12. DAl een

. E l llitIJ --

10 - 011 t V - 1: l F I X ) - 1 IVAlu - EFS - FL + 1 1. . - II - Illil - 180 X

! : "00-D02 ,10.017,

.l. 46, .77,1.5000-4 -1.7 1 110.0, llo . IIA

? : !.0,' -501 .??.674 .1, 0.0, D.II.l.500D-4, 0.0, 1. 110.0, fin . IJA r.04 - M0/. , I V. fil ?. .1, 1.5, i1.9,1.5000-4, 0.0,  !, 110.0 l ait , lin 4 : Cl4D I?t illl ' , IJie , .1, 0.0. 0.0, IJA , 0.0, 9 110.0 5 , lla

' I I+ ,

D: 000 DIO ,11.9*0 .1, 1.Y. 16. 4, l . !"00D-4 11.D. J. 110.0, 114 ,

l h UlO-DIi 13.174, .1, 14 7. 9.*. , l . DOO D- 4 , 0.0,  !, i10.0 llo , ilA i  ? Dil-Dl? ,13.174, 2, 0.0, 4.11,1.5000-4, 0.0, l. 110.0, Ilh . IlA

!! : Gl?-40D , 7.901, 2, l.D, 10.D,1.5000-4 -0.7, 1. 110.0 114 , ilA

? : 40M 406 , 6. 0t D.  ?. 1.7 74.1,l.000D-4, 10.9. 1, I lli. 0, lih , 116 10: 106-407 , 7.901 1, 1.D, D5.9,l.500D-4, 1.4, I, 110.0, lla , llo I

II dul-DID , 7.901, 1. 1.0 *6.2.1.5000-4, 17.0, I, 110.0 llo . IIA 12: DID-100 , 6.060, 1, 1. * , 171.,1.500D-4, 0.0. I, t10.0 114 , llA llA

! l '. : 100 101 , 6.060,  !, I ?. 7, 196.,1.500D-4, -16.2. 1. I10.0 lin ,

' 110.0, 114 14: 101-100 , D.761, I, 1 1 . 14 6?.D.1.500D-4, - 1 1. 7, 1, lit, ,

10: IFJ ???l , D.761, 1, 0.0, 0.0,1.500D-4, 0.0 6, 110.0. *00.0 . .9 16: I V- ?? *.9 . D . '/ 61 , I, 0.0, 0.0,1.5000-4, 0.0, 6 110.0, 4D0.0, 9 j

! l?: 10* 10* .?4.324,  !, .24, 4.3.1.G00D-4, 11. 11 1, 110.0, llo , llA I 10: 10*-104 ,21.7?i, 1, .21 O.3,1.5000-4, 0.0. I, 110.0 Ilie . 114 19: 101 10'i , 4 . ~.2 4 1, .32, t?.0,1.D00D-4, 0.0 I, 110.0, l it. , 14A

.'0 10D-106 ,1 1. .*. ? ) , 1 40, l'.".,l.50nD-4, -1.D. 1,  !!D.0, f lin' , lih

.'I t 10<.- 10 7 . 4.D67,  !, .16, le.0.l.G000-4, 6.5, i, i10.0, 11/. . Ito

'".* 107-103 ,11.174, 1, .50, 4?.9,1.000D-4, < *. . Y . 1, 110.0, 114 , f lie

}  ? ~. : lill f ilint.. ,10. Din. I, 36.3, 0.0,1.5001)-4, -?.0, 1, 119.0 l ie i , lin

} .4: 109 !10 , 9.400,

!, 1.9, l *'?. * ,1. 5000- 4, D?. 7, t, 105.0, f li, , lin j PD: 110-D20 ,10.D??, I, 1.7, /41. D ,1. 500D- 4 , 0.0, I, 140.0 IIA . 116 06: D*0-D?? 5.101, I, . fl9 ft.4.1.500D-4, 0.0, 1, 140.0 110 , llA

! 27: I r.'221 *.1, 0.1817 1, 0.0, 0.0,1.500D-4, 0.0 6, 140.0, 1000., 1.0

?O lV-??A7 , 6. DAD, 1, 0.0, 0.0,l.000D-4, 0.0. 6, 140.0 400., 9

."to D??-U?4 . 6. DA". ,  !, 0.34, 161.1,1.5000-4, +13.D,  !, f40.0, 114 , 114 I

  • 0: G74 D2c.

. 15.00, I, . 6 7, T.* . 4 .1. 500 D-4 -6.7, 1, 110.0, llo , lih

  • 1: D?6-D20 .U. 260 0.0 0.0,1.500D-4, 0.0, 6. I10.0, 9 . 4 '~, , 1.0
f. . ,

i

)

l i

i I

i 4

i i

i i

r i

\ B - t s*

1 1

t ll d

104255'-Nk.

CALC. 94-02, REV. A ATTAC8 MENT 2 2 Pcgo 2 of 2 FLOW = 2175.7 GPli AT 110 > F?

USE PUllP L'URVE 10R ElJ1ER PRESSURE] (Y/i4) ll?

S T AR T IlJG FRESSURE = 1.5 PSIA?

HDDIi isllJAl. FLOW (USE WDIV=0.1 11J ItJPUI FILE!)= 500 GPI I ~'

File:PFl?.DAT -

NO. OF SEC110NS= 31 - TWO-PHASE SEC11Df45 ' DIVIDERS 10 St.C i l ull ID 1 FLUU P(IN) P (Olli )

1 500-502 18.012 0.5 1,327,665 1.5 2.0 2: 50?-504 22.624 0.1 1,327.665 2.0 T.0 7 : 504-506 10.012 1.7 1,327,/465 2.0 1.9 4 :ClJD iUNP 1.000 0.0 1.32/,665 1.9 299.9 5 509-510 11.938 2.1 1,327.66". 299.9 294.0 6 : 510-511 13.124 0.5 1,327.665 294.0 293.B 511-51? 13.!?4 0.1 539,704 293.0 293.O H : 51J-405 7.901 1.H 539,784 293.9 097.2 9 : 405-406 6.065 2.1 539,704 297.2 290.5 10: 406-407 7.901 '.1 1.079.568 290.5 286.0 11: 40,'-515 ~.901 1.5 1, C179 . 5 AB 286.0 276.3

!?: 51b-!OO 6.0o5 3.9 1,079.568 27o.3 261.I 13: 100-101 6.06'5 15.7 1,079.568 261.1 206.9 14: 101-102 5.761 1T.O 1.079.569 206.9 152.I l In: NV-2291 5.761 0.0 1,079,560 152.1 113. 7 Wc r s-1,9?6,373 i

    • FRESS 'CRr . TO COIJT INitE **

CH f' f il)lJ ID U Fl ON P(IN) P (Olli ) i 16: FV-2039 5.761 0.0 1,079,569 110.7 90. 5 Wc t M', I *G ,651 17: 10*?-101 24.374 0.3 1.079.5o8 90.5 86.7 10 i n ' 10 3 24.324 0.3 1,079,560 86.7 06.7 ,

I?: 101 - ! OP. 74.324 0.5 1,079,5AH B6.7 D6. 7 20 100-106 11.374 0. / 1,079,560 86.7 07.I 21: 106-107 C.562 0.3 1,079,568 87.1 09.9 i

  • . 7: 10 7- 1 Ofi 1I.374 1.2 1.079.56n 09.8 99.6  !

/ ': Hil llOOL. 10.020 36.3 1,079,5611 99.6 Of.D 7;4 : 109-110 9.400 *7,. 1.079,568 81.8 56.O TDs 110-520 10.0?2 7.5 1,079.568 56.8 56.7

, ~6 520-522 5.107 1.1 1.079,560 56.7 10.9

'7: I IV - 721.*. ! 5.107 0.0 1,079.568 40.9 47.4 Wer *6,060,015 "J tl e F V-2 *. '6 7 e.065 0.0 1,079,5A8 47.4 17. fl Wrr = 1.19 2. 7 79  ;

?9: 5:2-524 6. 04". 5.0 1,079,568 17.0 0.8 [

30: 5;4-526 15.000 1.0 1,079,5A9 0.8 .5  :

31: 576"520 0.500 0.0 4,150 3.5  ? . R Uc r -e 4,166

  • F t.TSSilliR A T ElJD DF SYnT EM = 2.0 PSIA REFEAT WITH NCW CONDITIOlJ9 (Y /lJ)"

f 6 -16 I

i

1 1013S9-Al/C.

CALC. 94-02, REV. A ATTACRMENT 3 Pcg? 1 of 2

  • r* F 11 F : F F 12?l.F'. DA1 *>*

-lI.- - Illli - IIAX Sil'111:14 - ID -Ul.IV- 1 WIx)- 1 (V610 - E F'S -

F. L Il

  • 31 46 .7/,1.500D-4, -1.2. 110.0 IIs t 11 0 1 : DOO-502 .30.017. .1.

5.0,1.500D-4, 0.0, 1

1, 110.0 IIA 11A

.' : 00?-501 .??.674 .l. 0.0, .

.1, l.D. 11.9,1.5000-4, 0.0, 1, 110.0 Ilin , 134 3: r.04-506 .10.812. 110.0 5 11 4 4 : Cl10 F'Ul1P , IJA . .I, 0.0, 0.0. IJA , 0.0, 9, .

D: 5119-D 10 ,11.979. .1. 1.7 16.4.1.5000-4, ll.H. 1, 110.0 IIA . I II+

.'9, 7. 9 *. ,1. 500D-4 , 0.0,  !. I10.0 lin , 114 A : DID-MI1 ,13.124 .I.

0.0 4. I 1,1. 500D-.I , 0.0 l. I10.0 14 4 , 114 7 s' D11-nt? .I1.124, 2, 10.0.1.500D-4, I, 1 111. 0 , llo , 114 13 : D1? 405 , 7.901, 2, 1.M. -9.**.,

1.7 74.1.1.500D-4, 10.9 1 110.0, fin , 184 9 : 403-406 , 6. 0/C. , 7.

7.901, 1, l.D. D5.9,1.500D-4 1.4, 1. 110.0 114 , life 10: 406-107 ,

I10.0, 116 1.0, 34.0,1.500D-4, 17.D,  !. 114 i1: 50.'- U 15 . 7.901, 1, ,

1?: 015-100 , 6. 0/,5, 2, 1.3, 171.,1.500D-4, 0.0, 1. 110.11 llo , llA 6.0^5, P. 1 "* . 7 176.,1.000D-4 -16.2. 1, 110.0, 114 , llA I *: 100-101 ,

5.761,  ?. II.D. 62.5,1.500D-4, -11.7 1. 110.0 IJA , Ha 14 101-10? .

0.0 0.0.1.500D-4, 0.0 6 Iin.0, ~.! .O . 0 , .7 IM: IIV"??T I ,  % 761. ,

450.0, 16: l'V -??*.7 , D.761. 2. 0.0, 0.0,I.r00D-4 O. tt. /. , !10.0 .7

.24, 4.0,1.500D-4, 110.0 114 116 1/s 10.?- 10 *. , 2 4 . ' .? l . O.fl. 1 ,

2. .

2, 7.3,1.50011-4, 0.0, I, 110.0, llo , 116 t il 10.1-104 ,24.074, . *'d, l '? : 10 4 - 10'~. ,74.024, P. .32, 12.0,1.5000-4, 0.0, 1. 110.0. I II, , 114

. dit , l'.'.,1.00011-4 -l.D, I, 110.0 IIA fin 70 105-106 ,11.374,  ?. ,

?l 106-107 . 9.042, 2, .in, 0.7,1.500D-4, - 6 . 'i . 1. 110.0. Ilh . 114 .

.'? : 107-100 ,11.374,  ?. .D?, 47.9,1.000D-4, - T .* . 9 , 1, 110.0 114 , 114

?.~. : 141 little!.. ,10. 0,:0  ?, ~.6. 3 , 0.0,1.500D-4, - ? .11, 1 I19.0 Ilo , fin 74: 109-110 , 4.400 O, 1.9, 12 . 7,1. 500D- 4 , UT.*. 1, 100.0 llo , lin 1.?, 60.5,1.000D-4 0.0 I. I40.0 116 . l it i TDs i10-!.70 10. U .'? . ,,

P. . I t'7, 11.4.1.5000-4, 0.0, I. 140.0 Ile s , llo

?he H.% n?? , D. Ili t , 1000., 1.0 0.0 0.0,1.D000-4, 0.0 6. I10.0

??: I I' / ','21 '.1 , 5 . 1137 .'.

40n., .7

'".'6 7 6. D A'; .  ?, 0.0, 0.0.1.500D-4, 0.0, /. , 140.0 Pfle l'V ,

. *4 161.0,1.500D-4, -I*.b. 140.0, lia lin

?;: D . '" ' 'i .' l , 6. 0/ 'i .

3 7. 1 .

  • 0: D?4 b?h ,

. IM.00 1. 6 */ , Pi.4.1.5000-4, - /. . / , 1. 140.0 lin , if4 260 D.O, D. O , I . 50018-81, H.O. 6, i <10. O , 9. 10. 1.0

  • I: N'6 GOR

, .D.

e 6 -17

)- 1091st-N/t.

CALC. 94-02, REV. A s ATTACHMENT 3 Pcg2 2 of 2 FLOH = 3364 GFH AT 110 4F7 USE PUMF CURVE [OR EllTER PRESSURE] (Y/N):N7 ST Af?TIlJG PRESSLIRE = 12.3 FSIA7 AD111 T ICIJAL FLOW (USE WDIV=0.1 ItJ Il4FUT FILE')= 500 GFit?

I; 11.E F F122LP. DAT - IJO. OF SECTIOl45= 31 - TWO-PHASE SECTIDlJS' DIVIDER = 10 SEC i l OlJ 1 15 1: FLOW Pt!N) P(OUI) 1 : 500-502 18.912 0.5 1.917,291 12.3 12.0 2 : 502-504 22.624 0.1 1,917,291 12.8 12.7 3 504-506 10.01.' l.7 1.917,291 12.7 12.5 1 3 C110 F illli' 1.000 0.0 1,917,291 12.5 209.7 5: 509-510 11.938 2.1 1.917,291 204.7 202.9 6: 510-511 13.124 0.5 1,917,241 202.9 202.6 7 : 511-512 13.124 0.1 834.597 202.6 202.6 G 512-405 7.991 1.0 034,597 202.6 T05.2 .

9 : 405-406 6.065 2.1 004,597 205.2 195.7 10: 406-107 7.981 3.0 1,669,194 195.7 185.7 11: 407-515 7.981 1.5'1,669,194 105.7 173.3 12: 515-100 6.065 3.9 034,597 173.3 164.1 IS: 100-101 6.065 15.7 034,597 164.1 134.5 14: 101-102 5.7e1 12.8 G34,597 134.5 104.5 15: HV-2291 5.761 0.0 034.547 104.3 B1.3 Ucr21.592,064

    • N;ESS (CTC TU COlJ i I NIIE *
  • Frt ' l lilli 3D I: F t.OW P(IN) P (11t i l )

16: FV-2239 5.761 0.0 034.597 01.3 67. 5 Un = 1.034.797 17: 10.?-103 24.004 0.3 034,597 67.5 63.7 10: 105-104 24.324 0.3 034,597 e3.7 63.7 19: 104-105 24.321 0.5 031.597 63.7 63.7 20 105-106 11.3?4 0.7 834,597 63.7 64.2 21: 106-107 9.562 0.3 934,597 e4.2 66.9 22: 107-103 11.374 1.2 834,597 66.9 76.9 23: F,Il iltIDL. 10.000 36.3 H34,D97 76.9 66. f i

?4: 109-110 9.400 0.7 8:4.597 66.0 42.7 25: 110-520 10.000 2.6 834,547 42.7 42.6

'.'d : 520-522 5.187 1.1 034,597 42.6 30.0 7: HV-22131 5.197 0.0 G34,597 38.0 37.1 lie r =9.296.060 28: FV-2267 6.065 0.0 834,597 57.1 19.4 Het=1.015.977

U : 522-524 d.055 5.0 G3'l,597 19.4 11.5 30: 524-3'26 15.000 1.0 1,669,194 11.5 13.1

  • 1: 526-900 0.000 0.0 c. 420 14.1 12. 2 Ucr = 15,00'.

== F F4ESullfiE AT El1D OF SYSIEll = 12.2 PSIA RLF LA1 U11H IJEW col 4D1110HS ( Y / fl) ~'

6 -18

98915'S-N/c.

CALC. 94-02, REV. A ATTAC8 MENT 4 PCgO 1 Of 2

      • F IL E: PF12?LP.DAT *** TF - 111tJ - MAX ID -WDIV- k (F I X )- 1:(VATU- EPS -

EL -FL.-

Str1 InTJ -

31 1. 110.0, fJo NA 1 : 500-502 .18.812, .1, 46. .77,1.500D-4, -1.2. .

5.8.1.5000-4, 0.0, 1, 110.0, IJA . rJA 2 502-504 ,22.624, .1, 0.0, 1.5, 11.9,1.500D-4, 0.0, 1. 110.0, fin , flh 3 504-306 .18.812. .1, NA 0.0, 9, 110.0 5 11A 4 :CND PUNP , IJA , .1, 0.0, 0.0. ,

16.4.1.500D-4, 11.P. 1, 110.0, IJA . NA 5: 500-510 ,11.938, .1. 1.9 7.93,1.500D-4, 0.0, 1. 110.0 ilA , NA A : 510-511 .13.104, .1, .39, 0.0, 4.11.1.500D-4, 0.0, 1. 110.0, NA , NA 7 : 511-512 .13.124, 2, 18.8.1.500D-4, -5.0, 1, 110.0, NA , NA B: 512-405 , 7.981, 2. 1.5, 1.7, 24.1.1.500D-4, 10.9 1. 110.0, llA , NA 9 : 409-406 6.065, 2.

1.0, 85.9,1.500D-4, 1.4, 1. 110.0, 114 , flA 10 406-407 7.981, 1, 36.2,1.500D-4 17.D, 1. 110.0 IIA , 114 11: 407-515 , 7.981, 1. 1.0, ilA NA 6.065, 2, 1.3, 171.,1.500D-4, 0.0, 1. 110.0, ,

12: 515-100 ,

176.,1.500D-4, -16.2. 1, 110.0, 114 , ilA 132 100-l01 , 6.065, 2, 12.7 62.5,1.500D-4, -14.7, 1. 110.0, TJA , NA 14: 101-102 , 5.761, 2, 11.8.

2, 0.0. 0.0.1.500D-4, 0.0, 6, 110.0, 3b0.0, .9 15 HV-Y291 , 5.761.  !!O.0, 450.0, .9 0.0, 0.0,1.500D-4, 0.0. 6, 16: FV-2239 , 5.761. 2, 0.R. 1, 110.0, f14 fJA 17: 102-103 ,24.324, 2. .24, 4.3,1.500D-4, ,

.24, 2.0,1.500D-4, 0.0, 1, 110.0, 11A . NA 1D: 103-104 ,24.324, 2, 7 .32, 12.0,1.500D-4, 0.0, 1. 110.0, ilA . 114 19: 104-105 ,24.524,

.48, 13.0,1.500D-4 -1.5, 1, 110.0. IIA , fJA 20 105-106 ,11.374, 2.

114

.16, 8.2.1.500D-4, -e.5, 1, 110.0, .

21: 106-107 , 9.560, 2. 11(j 2, .52, 47.9,1.500D-4, -23.9, 1, 110.0, t.6 , fl4 22 107-100 ,11.374, 23: Fil llODL. ,10. 020, 2, 36.3, 0.0,1.500D-4, -0.8, 1. 119.0. 1 86 , fin 1.9, 122.2,1.500D-4, 52.~, 1, 125.0, llo , NA 24: 109-110 9.400, 2, 60.5,1.500D-4. 0.0 1. 140.n, (16 IIA 25: 110-b20 .19.822.

2, 1.7,

.l19 , 11.4.1.500D-4, 0.0, 1. 14 C). 0, llo , lin 26: 520-522 , 5.197, 2 0.0, 0.0,1.5000-4, 0.0, 6 140,0. 1000., 1.0 22: HV-22131, 5.107 J.

140.0, 400., 9 6.065. 2, 0.0, 0.0.1.500D-4, 0.0, 6.

29: FV-2267 ,

140.0, tJA

".34, 161.0,1.500D-4, -13.5, 1. lin .

27: 5.'2-524 .

6.065, 2.

-6.7, 140.0, 11 4 ifA 30: 524-526 , 15.00 1. .67, 2'*. 4,1.5000-4,  !, ,

0.0, 0.0,1.500D-4, 0.0 6, 140.0, 7.45, 1.0

'It 52o-52R , .5. 260 B -19

s 101257-Alh" CALC. 94-02, REV. A-ATTACBMENT 4 Pago 2 of 2 FLOW = 3058.1 GFil AT 110 AF?

USE PUllr CURVE LOR ENT ER FRESSUREJ ( Y /tJ) : f4?

G" .'.RT IllG F RESSURE = 1.5 PSIA 7 AIDITIOlJAL FLOW (USE WDIV=0.1 IlJ INFUT FILE!)= 500 GP!1?

FIL E: FF122LP.DAT - 14 0 . OF SECTIDfJS= 31 - TWO-PHASE SECTIDl13*DIVIDERn 10 SECT 1011 ID N FLOW P ( If1) P(OUT) 1 : 500-502 18.812 0.5 1,914,364 1.5 0.0 22.624 0.1 1.914.064 2.0 1.9 2 502-504 504-506 10.812 1.7 1,914,364 1.9 1.7 3

4 :CilD PUNP 1.000 0.0 1,914.364 1.7 199.6 U D08-510 11.939 2.1 1,914,364 199.6 192.7 6 : 510-511 13.124 0.0 1.914.364 192.7 192.5 7 : 511-512 13.124 0.1 033,133 192.5 192.5 8: 512-405 7.981 1.0 033,133 192.5 195.1 9 : 405-406 6.065 2.1 833,333 195.1 185.6 10: 40o-407 7.901 3.0 1.66h,267 105.6 175.6 11: 407-515 7.981 1.5 1,666,267 175.6 163.2 12: 515-100 6.065 3.9 833.133 163.2 154.1 13: 100-101 6.065 15.7 833,13*. 154.1 124.6 14 101-102 5.761 12.H 833.133 124.6 94.5 0.0 033,13; 94.5 71.6 Ucr=1,514,478 15: HV-2291 5.761

  • > I l5 SS <CR; 10 CUlJT !iJllE **

SEC T IOli ID L Flou P(IfJ) P(OUI) 5.761 0.0 833.133 71.6 57.8 Wcr=1.671,783 16: FV 2239 17 102-10' 21.324 0.3 H33.133 57.8 54.0 18: 103-104 24.321 0.3 G33.130 54.0 54.0 19: 104-105 24.324 0.5 833,133 54.0 54.0 20s 105-106 11.074 0.7 G33,133 54.0 54.0 21: 106-107 9.562 0.3 0'3,133 54.5 57.2 22: 107-108 11.374 1.2 833.133 57.2 67.2 23: Ril NObl. 10.020 '6.3 833.133 67.2 57.1 24: 109-110 9.400 3.7 033.133 57.1 33.1 25: 110-520 18.8 2 0.6 033,133 30.1 33.0

24. GJ0-5 2 5.187 1.1 033,133 '3.0

, 20.3 0.0 H33,133 28.3 27.S Ucr=4.515,G40 27: HV-20131 5.107 20: F V-2267 6.06G 0.0 833,133 27.5 9.8 Utr= 8H7,664 20: 522-524 6.065 5.0 H3*.133 9.R  ?.0

  • 0 S24-506 10.000 1.0 1.666.767 2.0 4.6 31: 526-520 0.500 0.0 6,407 4.6 2. 0 Wcr n 6,419
    • FhESMUlih A1 EllD nr SYSTEll = 0.8 FSI A RI.F'E A T Ul lH !!EW COflDil f ulJH C, / f J ) "

B-2o

" ta9zsg.at/c.

CALC. 94-02, REV. A ATTACHMENT 6 i Pa93 1 Cf 2

    • + FILE: FF12.DA1 ***

-UDIV- K (F I X )- 1;(VAR)- EPS - EL -FL.- TF - Mill - MAX SECTIOli -

ID 31 NA IJA 1 : 000-502 ,18.812, .1, .46, .77,1.500D-4, -1.2. 1, 110.0. .

0.0, 5.0,1.500D-4, 0.0, 1, 110.0 NA , ilA 2 502-504 ,22.624, .1, NA 3: D04-506 ,18.812, .1, 1.G, 11.9,1.5000-4, 0.0. 1, 110.0. 11A ,

0.0, 0.0, NA 0.0, 9, 110.0 5 , NA 4 Cf1D PUt1P flA , .1, ,

1.9 16.4,1.500D-4, 11.0, 1, 110.0, IJA , NA 5: G03-010 .11.908, .1,

.39, 7.93,1.500D-4, 0.0. 1, 110.0 IJA , NA 6 : G10-511 ,13.124, .1, 7 : 511-512 ,13.124, 2, 0.0 4.11,1.500D-4, 0.0. 1, 110.0, NA . IlA i.n, 28.8,i.500D-4, o.3, 1, 130.0, rJA , NA 3: 512-403 , 7.9el, 2, 6.065, 2, 1.7, 24.1,1.500D-4, 10.9 1, 110.0, NA , im 9 : 409-406 ,

110.0, fJA IJA 7.981, 1, 1.8, 85.9,1.500D-4, 1.4, 1, ,

10: 406-407 ,

tJA 7.981, 1, 1.0, 36.2,1.500D-4, 17.8. 1, 110.0, IJA ,

11: 407-D15 ,

110.0, tJA NA 12: 515-100 . 6.065. 1, 1.3, 171.,1.500D-4, 0.0. 1, ,

12.7, 196.,1. GOOD-4, ~16.2. 1, 110.0, IJA llA 10: 100-101 , 6.De5, 1,

1. 110.0, IJA IJA 14: 101-102 , 5.761, 1, 11.D, 62.5,1.500D-4, -14.7 ,

0.0, 0.0.1.500D-4, 0.0, 6, 110.0, 350.0, .9 15: HV-2291 . G.761 1, 0.0, 6, 110.0, 450.0, .9 16: FV-2239 5.761, 1, 0.0. 0.0,1.500D-4, {

4.0,1.500D-4, D.D. 1, 110.0, flA flA J 17: 102-103 24.024, 2, .24 2.3.1.500D-4, 0.0, 1. 110.0. IlA ,

flA 10: 10*-104 ,24.024, 2, .24, 12.0,1.000D-4, 0.0, 1, 110.0, im , IJA 19 104-105 ,24.321, 2, .30.

20s 105-106 ,11.374, 2. .48. 13.3,1.500D-4, -1.5, 1, 110.0 IlA , IJA 9.5-2, 2, .16, 0.2,1.500D-4, -6.5. 1, 110.0, flA , IJA 21: 106-107 ,

110.0, IJA llA 22: 107-108 ,11.371, 2, .52, 47.9,1.500D-4, -23.9 1, ,

0.0.1.500D-4 -0.G. 1. 119.0, f1A flA 23: RH 110DL. ,10. 000. 2. 06.0, Im ,

ilA 1.9, 122.7,1.5000-4, 52.7, 1 125.0.

21: 109-110 , 9.400, 2, ilA NA 25: 110-520 .10.822, 1, 1.7, 60.D,1.500D-4, 0.0 1, 140.0, .

11.4,1.500D-4, 0.0. 1, 140.0, IJA tJA 25: 520-022 , 5.187, 1. .87, ,

27: HV-22131, 5.187, 1, 0.0, 0.0,1.500D-4, 0.0, 6, 140.0, 1800., 1.0 6.065, 0.n, 0.0,1.500D-4, 0.0 6, 140.0, 400., .9 28: F'V-2267 , 1, .

flA ,

4: 57%B21 , 6.Do5 I, 0.34, 161.1.1.500D-4 -13.5 1, 140.0 fl0 15.00, 1. .67, 23.4,1.500D-4, -6.7 1, 140.0, IJA , IN

  • 0: 524-S26 9.45, 1.0

.5, 260 0.0, 0.0,1.500D-4 0.0, 6 140.0.

31: 526-D28 ,

8 - 2. \

te9 ast-N/c.

CALC. 94-02, REV. A ATTACRMENT 6 Pago 2 of 2 i

FLOW = 2227.62 GPM AT 110 sF7 UGE F UIIP CURVE COR ENTER FRESSURE] (Y/N):N?

STARTING PRESSURE = 1.5 PSIA?

. ADU1TIUfJAL FLOW (USE WDIV=0.1 IN INPU1 FILE!)= 500 GFH7 1

i FILE:FF12.DAT - IJO. OF SECTIONS = 01 - TWO-PHASE SECTIONS' DIVIDER = 10 SCC 1 IOt1 ID L FLOW P(IN) P(UUT) 1 500-502 18.810 0.5 1,053.427 1.5 0.0 2 502-504 20.604 0.1 1,050,427 2.0 0.0 0 a 501-506 10.812 1.7 1.050.427 2.0 1.9 i 1 a t:llD l'UllP 1.000 0.0 1,350,427 1.9 296.5

! 5: 500-510 11.908 0.1 1,053,427 296.5 090.6

, 6: 510-G11 10.104 0.5 1,050.427 090.6 090.4 4 7 311-510 10.101 0.1 550,665 290.4 090.4 8 512-10G 7.901 1.9 552.665 290.4 290.0 7 405-406 6.065 0.1 552.665 290.0 087.0 i 10: 100-407 7.cD1 0.1 1.10D.000 287.0 002.0 11: 407-D15 7.901 1.5 1,105.070 000,0 070.5 3

10
G15-100 6.06G 0.9 1.105,300 072.5 056. t.

< 10: 100-101 6.065 15.7 1,100.000 256.5 199.4 j 14: 101-102 0.761 12.0 1,100,000 199.4 141.7 1 15: IIV-2291 5.761 0.0 1.105,000 141.7 101. 4 Uc.r n t .050.64 4

! *

  • I'hF SS <CR> 10 ColliINUC **

f l EEC 11011 ID L FLOU P ( !!J) P(Otit)

16
FV-?!O9 D.761 0.0 1,10G,030 101.4 77.1 Wcr=0,018,G97 17: 102-103 24.004 0.3 552,665 77.1 70.0 10: 100-104 01.324 0.3 CDO.665 70.3 70.0

,  !?: 104 100 24.024 0.5 5D2,660 70.0 70.0

20
105-106 11.074 0.7 552.665 70.0 70."

]

21: 106-107 9.562 0.0 532.665 70.9 76.7 4

22: 107-100 11.074 1.2 GDO.66G 76.7 G6.0 l 2 *: lill HUDL. 10.020 36.0 5D0,66G 86.0 00.0 04: 107-110 9.400 0.7 552,665 83.0 59.0 l 10.020  ?.5 1,105,000 39.0 54.7 4 05: 110-D20 j 76: 500-070 5.107 1.1 1.100.000 59.7 51.5 j 07: HV-20101 5.197 0.0 1.105,000 51.5 50. 0 Ucr =6.001,590 j 20: l'V-?T67 6.035 0.0 1.100.000 50.0 10.9 Urr=1.706,556

! 29: 3:2-524 6.065 U.D 1,105,000 10.9 0.0

! 30: DO4-526 15.000 1.0 1,100,0.90 0.0 3.6 I 01: 576-500 0.500 0.0 4,2G1 0.6 0.0 Ucr= 4.057

    • l'bESFURE AT Ef1D OF SYSTEM = 2.0 PSIA GliFEAT WI TH IJCW CONDI T IOlJS (Y/N)?

4 i

5 4

l 1

8-21

g ---,.

g

.'00h.

o fh 3 E 0 3EIO Cy $9 0 3- 0 0 8 0 h0 0 NI  ! .

o -

( ga

,3 p a;, o M.gg e6 c o e  ! ,l 3{.

?! ! ? i d s E 4 i 4 8 20 l9

~

gjliD!$HE!?his?UE fir i?iiiiiniHi!!! t!!! i n i t i i! !l  ! l, d i a e! Iu a s 4 w

3 $ e-8g, h

gg 5s,g;p1551235ssississ a ! ! s ! B i ? ! i

!!l! !

Ei J d;-

, =e u-4as::=e:e s* 4 c s u : 9 - e e Bo 3 .. s$

=8 o . ,

is ss ig gggf538ag5ieds!;iss s H V U f ; ; !l ~_ , ,Ii I hI h4ll sa he'! E3 g % % E E

  • gi sagggis?sg!534 Bios H i s 1 5 I i 3 5 i til d h 'la l

3 a.5 2

3 g 3 =.

$3 d l E  ! s $

. y W gj g  !

eX! J

!!*  !!! i 4

a a -

MI M fj  ! 2:g e s hpi T)-c= 4 .J '

q 4 "i

e e 7 9 i

?

, e 494 # .!

6 .6 4 --

8 s e

'4 4- .

+ ,

...q-w .

.4 g[.. -

24W.,

. .: R, - .

4l "

g.r. .

.. q .

3  ;

.. M! *

. 1[ I wl q a .,.g "g

-4. -

g g

g .

, M 4 . i  ! E .

I

]

((

u

.1

!<<d W< s! J< h!.1 74 g! ,

, s-23 4 g P

g

909258 N/C A

4 APPENDIX C ANALYSIS OF CIRCULATOR PERFORMANCE i

I I

l 1

)

l i C-1 5

o. m y. . ,, CALCULATION SHEET 1of 158 Al/c.

CALCULAfl0NS FOR

. J.CV

  • M C u . A'***J t.'. P E!: ** M ! v M N.'L' E QUIP. NO. Q /p/ PROJ. CALC. N O.

PAGE l OF PREPARED BY ,j, ff, g'* g',g, DATE / 3.g 7 REF. DOCUMENTS:

CHECKED BY DATE 1

2 -/,, g ,g,.r . A dAh *

.**'*e e' '

, ' . te r:

3 J 4

s .. ......., CALCULATION SHEET .

cAtcutArions son 6

PSV She LuL/dm l.a.p Ds p - I$HE Ca.s e. S~ -

7 . iovir. no. .

eno. ,f,, cAtc. ,,o. i,,,, ,,

PREPanto sv OATE j.ng r nat.00cuasants; a

cascatoav oArg vsv A 1rr &44 / J' 7 9

' lM44Y SYT M to 11

<NW C== x.

7c.o.S* f.si 12 .

" " !AS #W8 (W"I' ) 7*Ml- (~2 cs&WP 845 8u / w")

,, , r/t. " = itte i4 i

E ,. - . . w n . % . . . ,.

f 15 is I/k. " o.4.111

<r n p.7 ,.. ..e n 18 U 3 [f t Y 2.

  • V 4 Ir71 7 Y 881 f + 91. 7
  • 2, 4 91 7
  • 18 a 19 rie s. w i .

20 [ ' 84 S + f' 7'* 7 9 * " * *

  • 73

" " 8 73

  • i' " [/f.

" i 23 g,

T*co u. , s ys ? =)c a 4 p,7 *g u

EI 20 28 Il gg g,pg yy n -

U f* - h :,,9eo p se'e .

28 p<str sA

' ' * " ' ~ / f*

29 " 'f'M

  • 30 n

&& 7 W v n lL lC lbel) .$.3 'If. lor' RAD 89P

,i tr '

32 33 f d /' ' C d . . A * ' t ) g (~ *7 . ll l ?I l .,  ; .)

A 1 .. f :t .' / t. t

, . i ,. . ; . o r .- t *

,) ,;v
. t n i ,a r,a ' ,9 36 c . 2,

CALCULATl0N SHEET a* 2*a mv.au 9*91st 4c.

CALCULAll0NS FOR. , g, gp pt g ,zfpp MrJCd E QUIP, NO. ( 2 ;o / PROJ. CA LC. N O.

PAGE 1 0F DATE j 3 g7 REF. DOCUMENTS:

PREPAREDB g f, p, <4' * [ /'h

~

CHECKED BY DATE (* [i ' l ** ^ d I / b 1

2

[: .;. IO Nb 7, g g ; g . g,6g77 d ,

4 (Z T 1 % (6 20 nD '

8 = I V -

y ' j" ': ., n m. ~.,

(w ,i), '(;i,(f.~,j'

~ ,

T

8

'{l S

10 a Ir

~

I,oilri 11 12

  • H ~7( O ' '5 13 h :~- ..- J l .10 3 b 14 fa b5u g 16 W..__

16 '" 0? * '

17 h ' '. /

18 es ..

19 4 94., nf. '"

20 21

/\ #/ tAMt. h3 -

~~

,'.),OJ8'A I-. L

.p UO 23 24 mq f.~.~\ A 2. *] 0 0 )

b} ~ E '1 ' 5 is 26

, ).t.I (p [< ,.,..

4;'..

27

\* k l**-g I" *), g , ~ *I."i ,,/ 'i ' ' . o t

j 2s s 29 L**''#

S

30 *

, ,, ,7, 3, \ . ..

,, c i et > . . \ \ $ of ILL '

3, g int.t t T' t . . 6 1 'l ' l' "

36 *

3 b(d h ec ,: w 6OO P '.' ' ('k c-3

o n . m v. u.2, CALCULATION SHEET g CALCULATIONS FOR 5"*Z V did c u L s.t <m.w: s0 EA' A.Wews N

  • C E QUIP. N O. C2/O/ PROJ. CALC.NO. PAGE il OF PREPARED BY DATE j REF. DOCUMENTS:

7 g7 CHECKED BY DATE 1

2 .%t 2 a c. <L C/? :. Ca t. A " a ou .C .:vis.t. is e i* . v .:. . :ta w .;

3 T/I.' E 0 e'-l al* I /NQ d'-

y / /.i /) OA W < < /*) !) A $D ^ '

4 Cown e c.c a A. J = 6 7, 5

6 7

s ,es v sw M/J<m Zp  %.- p

~

8 to

!h 10 7/~s es) a c-o; me,.,

%/s ht,. . -p 2',.

s 4 ..,

rA P r/r. ~/, . I wA.

I u6-/, a -

l%

i, t  ! l l W e.s1.! l l ""f W . -

,, {2 A*to 75 l .1/2 7 ..ssf/ l.r11.3. 2 11 , 9 o.71st l*. ass 3 l r.ML D 1.0 /

! la lvaro 7.i" es r.# o.Fraz. l yst.s l 2.ises l .. rte s, l .,6,va l 9.+r7 s I 13 l

l I i s... I 7c vis.3 Ia.7 st ! 7:4.i i 2.. ises o.rati l o ms le.ert2. !

l l l l l l l t I l

's ! s.iea l v.r l . sos.s l o. 21.rr ' ti.r. o l 1. ost t Ia.vner lo.szr1.!s.1x11.I 16

.97,,, l ./r l4d4.9 l o,7paf f 7 o,4 l 2.st/P o. s*77 l o. &339 IF.7212 I M I/tk)

II * 'icoso 75 l fue.f I a.74 75 l 7.rs.7 l2.,9:2 l a.te&4. I e.433r Ir.7271 l 18 9 lff,,, l yr l422 9 o.7772.! 737.2 l2.stt2 lo.&az7 l o.4221 l t.7172. !

19 l l I p,M l l l to 's' ' s,o

  • 37. C \ s zt. t. o.9:13 I t,ot.4 I2,tatt o,7st1,to.t:71 l 8 72 72.1 21
  • t Ls.*
  • 37.C 220 9 a.9/or l & 43. C l 1.1912 d.1441 lo.tzef it.7111 I .t?)>

gg I7000 37 f 197 4 0 1877 K1f. 7 l 2./#f f o.7 7f8 ! o. i.122 l T.7272 l gg '*'tecen 37.C l 14f.4 /.e 231. l s'90 e 1 2. ift 2 0.77 77 I e.412.2. ! 9.7172. l .

' I -

1 l l 24

' 3. ' teso 1372 2.2.7. 1 a.&f/o I cFe.o I ,p9g lo.7?io lo.anst I t.m t l

  • 13so l J7.s l 2 31. 4. Io.91f2'd.#6.9 l 2.1199 l o.774Y ! o.6113
  • 9. *f9 L I re is 1 37.5 1 2*f. i ! /, 8 8 0 / 57*6.I l 2. ity# lo.7783'o.4f31 $.vriti t' .

saaea i s 7.c I 1.s. t I i.

  • v e :. sss. 4 1 1.put ie.7ns ! o.an: c . ven n ! ;'. !w 28 I i l l l l l l l 2s r'8~a I'm*McA t'fS*a s3*maar i i  ;  ; i i g 30  ! l l
  • rr I av  ! l l l l l l 31 2. 7aso l ess.& I fy/. 3 I I 6 1, . I 3g  ? inne $31 3 * /3te o -

Q s,. st",h ,f n e4l 9 .3 L Gse '14 Z*

33 m M? f s .en c...o.'>c' 34 35 c, sp 38

(w _

m 2.. a v. u ,, CALCULATION SHEET g,4 CALCULATIONS FOR ffV (if f.,p t- st FM / 4 / / h i f-f,A sucS o

E QUIP. N O.

d 2 /0/ PROJ. CA LC. N O.

PAGE f 0F PREPARED BY ,jjf, 7 g,g, DATE

/ - 2 3 .4 '/ RE F. DO CUM ENTS:

CHECKED BY DATE 1

2 /$,l; ft/) J XA//tal& 7*/'f2 C/*L du? A T . o f) $ fold. d A [d ~ AC AN'~

3 x; & /4uZcts.t .O :

w i t t-4 5

} A f5sf 2,3

  • I ME --

O . G' _^ 5 ? U L' / ,, 8 gT 330 [272 7) 7 s (livnia cs : sa em m: , i. e. W, a: .n.m. : swa :a.: v > - -

                                                                                                                                                           < uw ., u. )       ,

10 e- =- (k R Th _ o,6asa s. M":- ' 777.7 -_ n .

                                           .n a

j u :. d.,,.,a a h .s> 12 ,g3 W' =

    ,1                                                                                0 , ' ? ' !. (1) 14
    "                              c  s&               =-

s']2.6 =

0. M 41 @

18 ir f* (~ <'.'<~ WN-

                             .                          7i (O                     r          Sc>, g y ! c                  @

20 d b u hP= 0. 2 2. pc; @ (c?niD 22 23 F y o ., x F. { , ? . ) c( G A -A I D 3 " 1 P '- /-

2. /

i

s AP : -
o. 3 h 5 7 2. e.,,
                                                                                  ~

0 , C a :' C~~ as 9 . N Ydl-fE*t ~ 2. t o o .> M = 9 t43 29 so HP* W'. g -- I 9 N 0l0'??) 3, - 4  !. I4.63 3 ( o , s o s Q'o . ) u ' T ' '

                                                                    ' '*i -
                                                                          -         i
'i '
                                                                                                          '; '3
                                                                                                                 =       7                 D(.s . :. '.,

e n, ,3, ti'.. . 34 (' , 4 b. lI [* L I' a f 4  % C. J.I MJM 35 0 A

  • A I ') 1 *I'] A & Q 2 7 f3,f. [ck 36 u- p r ;' .* , '

c . 5'

o no m,,. .c,, CALCULATION SHEET ,, , ,, yj, CALCULATIONS FOR pcy eina .:..c .m a cics w w isi. a O EQUIP. NO. ggfaf PROJ. CALC. N O. PAGE [0F PREPARED BY DATE RE F. DOCUM ENTS: 7 / - 2 S -8 "'7 CHECKED BY DATE

                                                                       &l~' d I

1

            /-)    Je ,,2N's      i L r* s'  't=   L i     /:                        &, T/ M d                  ~ .) . 3 3                         g     -       i a + (s +3. c)                        - ' n ' ., ) =
o. n ass p o.ys 9 .

g 5 6 0

  • b A b Y~ 7'
                                                                  'n " ' ' ",w)=   O 'h  \
                                                                                                        ).'~~~'~       Ih 7

e fl = 0. S R / 4 @ 9 4 13. 5 = io b= 4 .3 ,. 0.013 :.9 iz WN __- - 37. SCC - 3 5 . -/ 7 6 9: 13 b O

                                                                                                     /.5 "
   ,5 4=c. map                                    (s wi)                    -j
                                                                                                              =   0. m : 2.

is A) -yp ~ / vee , N = $37 17

    '                                                                    W                   df Hp =           <>. 3 7 4               ( 3 7 s-) (a n '7 '>              _

nu 20 C.?r3d 21 P* C *> 22 T7 ' ' 1 O fl e 'Lb .-. g , 6 .h 2, f, p r 24 Nc 2 tc F L o t.o

  • 4 /oC 25 o hp v '
                                                                     .. / c C 26 II g,, (As i A *f
  • s' / )! (,/) t'. /.. e. 'i
                                                                                              . . t) !       Fe(L 18 cA n         c - 7 oc o                e             s:<, c c           2 ' - l 0, u . , .

E9 ft.t10 .f bf ti tt t,. f f; li u i /\ ' L h 0 /d 0/d[ 5 3o 31 32 33 34 35 C -(. 36

r 909258 N/C O 1 APPENDIX D STORAGE OF COMPUTER ANALYSIS The analysis was generated with the TAP and SUPERHEAT codes. Tne SUPERHEAT code is stored in production file GA* PROD. SINGLE /2777FSV2 (archive The file THSD2775) and the TAP code is stored On archive file SYSD1626. computer runstreare (containing code changes and input data) for all the computer runs described in this study are stored in archive file SYSD4040. The computer runs made for this study are identified as fcilows: TAP' SUPERHEAT Steady-state, 100% power ST6825 Case 2 wrong loop dump transient ST0554 Case 5 wrong loop dump transient ST6805 ST7119 ST9793 Reheater cooling, Case 2 ST6294 ST0109

                                 **       Reheater cooling, Case 5 ST9944    ST6967 EES cooling, Case 2 ST0104    ST6995 EES cooling, Case 5 The TAP steady-state run ST6825 provided the initial 1005 power steady-state conditions for TAP runs ST0554 and ST6805, which analyzed the initial 30 min of steam leak / wrong loop dump transient for Case 2 and Case 5 respectively. The subsequent TAP runs using either reheater or EES cooling were restarted from the initial Case 2 and Case 5 transient runs.
                                      ' Modifications made to the archive program are listed in each run.

D-1 - _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _ _ - _ _ - _ - _ _ - _ - - _ - - _ - _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ - - - _ _ _ _ _ _ - _ - _ - _ - - _ - _ _ - - - _ _ -}}