ML20097E320
ML20097E320 | |
Person / Time | |
---|---|
Site: | Fort Saint Vrain |
Issue date: | 01/31/1996 |
From: | WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML19311C012 | List: |
References | |
WCAP-14570, NUDOCS 9602130446 | |
Download: ML20097E320 (162) | |
Text
{{#Wiki_filter:- - _ _ _ _ - _ _ _ - _ _ _-___ _ - _ __ __ _ _ .- Westinghouse Non-Propektary Class 3 WCAP-14570 1 FORT ST. VRAIN TECHNICAL BASIS I DOCUMENTS FOR PIPING SURVEY INSTRUMENTATION l l-January 1996 \ Westinghouse Electric Corporation
, Nuclear Service Division P.O. Box 355 Pittsburgh, Pennsylvania 15230 O 1996 Westinghouse Electric Corporation All Rights Reserved 9602130446 960205 PDR ADOCK 05000267 W PDR .
mA2694w. son:Ibo12996
f ABSTRACT Public Service Company of Colorado has requested NRC approval of three changes to the , Fort St. Vrain (FSV) Final Survey Plan for Site Release. These changes are associated with - piping systems and suspect affected survey units, as outlined in Public Service Company's letter no. P-95077 dated October 12,1995 (Fisher to Weber). In that letter, Public Service Company committed to provide Technical Basis Documents for piping survey instrumentation. This information is presented herein as WCAP-14585 (Proprietary) and WCAP-14570 (Non-Proprietary). Each version of the WCAP contains two Technical Basis ;
. Documents. Both documents are specific to the Fort St. Vrain decommissioning program.
l i l l I
~
1 1 1 ( m:\2694w.nos:1WO20996 I
. . - - - . . . . , . . ~ ...~-- . .-. . . _ . . . . . . - . = - ~ . . - - _ . . . . - - . - . . . ~ _ . . . . . . - . . . . - .~. . -
Westiadouse Non-Proprietary Class 3 t 1 3 1 i e k., ' . t t 1 i E USE OF TLDs TO ASSESS INTERNAL CONTAMINATION IN PIPING f
?
I B I i
. mA2694w.mos:lwt2996
USE OF TLDs TO ASSESS INTERNAL FSV-FRS TBD 203 CONTAMINATION IN PIPING REVISION 0 1.0 OBJECTIVE
'Ihis document presents the technical basis for performance of contamination surveys of the internal surfaces of system piping with strings of'ILDs. 'Ihis basis includes the justification for the TLD string design utilized, calibration methodology, and data analysis performed to relate beta dose measured by TLDs while in system piping to a contamination level, including uncertainty and sensitivity of the process. Also includeJ are the survey results performed on Equipment Storage Well (ESW) embedded piping (i.e.,1" and 2" diameter piping runs embedded in concrete) for which the first full-scale testing of the TLD string survey method was conducted.
2.0 REFERENCES
& COMMITMENTS 2.1 References 2.1.1 FSV-SC-FRS-I-112, " Piping Surveys With TLD Strings" 2.1.2 TLD Personnel Monitoring Technical Specifications (ICN Model 802), ICN Dosimetry Service, Irvine CA J
2.1.3 FSV FRS-TBD-201, " Site Specific Guideline Values For Surface Activity" 2.1.4 McKinlay A. F., Thermoluminescence Dosimetry, Medical Physics Handbook 5, l National Radiological Protection Board, Harwell,1981 ' 2.1.5 Final Survey Plan, Fort St. Vrain Nuclear Station l 2.1.6 Kocher, D.C., " Radioactive Decay Data Tables - A Handbook of Decay Data For , l Application To Radiation Dosimetry and Radiological Assessments" U.S. Department I
. of Energy, Washington, DC,1981 2.2 Commitments None
,' 3.0 DISCUSSION Assessment of internal contamination in piping is most easily accomplished by using real time measuring instruments (e.g., GM or cylindrical gas flow probes). However, when dealing with piping embedded in concrete, situations can be encountered where use of conventional equipment is not practical (and in some cases not possible). 'Ihis is especially true for small su694w.nos:!WD12996 Page 1.of 18
USE OF TLDs TO ASSESS INTERNAL FSV.FRS.TBD 243 CONTAMINATION IN PIPING REVISION e diameter embedded piping (e.g., s 2") that includes multiple bends. In these situations, surface , contamination levels on the inside of piping can be measured by strings of TLDs. In this _ process, TLDs are calibrated by determining the TLDs reported beta dose from a known [ ]" source. Subsequently, beta dose measured by 'ILDs while in system piping is related to the surface contamination level (dpm/100cm2) in that piping. i lhe beta dose measured by TLDs in system piping is defined by this document and is not intended to be equivalent to other similar values typically determined by 1LDs in personnel ; exposure situations (e.g., shallow-dose or lens of the eye dose). Rather, the beta dose, as used in this document to measure piping contamination, is equivalent to typical direct methods of ! measuring contamination (e.g., a direct measurement of contamination with a gas flow i proportional detector using the difference between a shielded and unshielded readmg). This is - a new application for TLDs and has therefore not been addressed by any industry guide or { standard. Therefore, the implementation of this method is as described and governed by *.his document, r i To survey a given pipe segment, a TLD string is constructed with a sufficient number of TLDs l that are appropriately spaced and centered in the pipe to achieve the desired survey coverage l of the internal pipe surfaces. Prior to installing the string in the piping, a survey is performed j of the inside pipe surfaces to determine the removable contamination levels and additional i decontamination performed, as necessary. After installing the string in the pipe and waiting a ! designated exposure period to obtain statistically significant reported values, the TLDs are f removed and processed, and the individual element readings are related to a contamination level at each survey location. Data analysis performed includes: determining the '!LD string ; average and 95% con 6dence contamination level for the data obtained from the pipe segment surveyed; and determining the sensitivity (i.e., the MDA) for the pipe (considering location specific background and exposure period). Construction, installation, and removal of the 1LD , i strings are governed by an approved procedure 2.1.1. ; 4.0 TLD STRING CONSTRUCI10N 4.1 TLDs and Shielding l The TLD strings are constructed with Panasonic@ Type 8021LDs (without element holder or hanger) which use thin elements that are good beta detectors. The Panasonic9 Type 802 TLD ! (Figure 1) is a four element TLD with 2 elements each of Lithium Borate (L12 B,0 7:Cu) and Calcium Sulfate (CaSO,:Tm). Both element types exhibit slow fading characteristics with IJthium Borate rated at < 10% per month and Calcium Sulfate at approximately 3% per month j 2.1.2. m m 94.. w ot2996 Page 2 of 18
1 l USE OF TLDs TO ASSESS INTERNAL FSV.FRS-TBD.203 l CONTAMINATION IN PIPING REVISION O
"" "* Th e pass == we==ne -g - _ - ==.am \ ==~_ w Figure 1 - Panasonic@ Type 802 TLD (insert and holder)
To distinguish between beta and gamma dose, the TLD insert is used without its standard , holder and is provided with a special filter arrangement. [
]" Therefore, the difference 2
between the unfiltered element (which actually contains about 14 mg/cm of plastic filtering that contain the phosphor grains) and filtered element of each phosphor type provides an , indication of the beta dose to the 'ILD. With each of the element types measuring beta j contamination, two independent indications of possible contamination are produced at each survey location. [
]"
_ _ a,c l Figure 2 - TLD and Filtering Arrangement on TLD String mM694w. mon:!WD12996 Page 3 of 18
USE OF TLDs TO ASSESS INTERNAL FSV FRS-TBD 203 CONTAMINATION IN PIPING REVISION 0 4.2 Centering and Spacing of TLDs on the String Centering of the 'llDs in piping is accomplished by using [
]" TLDs may be located at any spacing desired utilizing the ' ]" and may be adjusted as needed to optimize centering. In the arrangement tested, the [ ]" were located 20" apan with RDs attached half-way between adjacent
[ ]"(Figure 3). Te provide adequate strength,1/16" cables, connected by 1/8" round ferrules are used for the string. When the RD string i~. Installed in system piping, the string is pulled taut and secured to ensure that each 'ILD is suspended in the center of the pipe. A [ ]" cable is used to allow a more precise centering of the "ILDs in the pipe without interfering with the TLDs ability to measure beta radiation. Figure 3 illustrates the construction of the TLD string with centering [ ]" and 'ILDs attached. te Figure 3 'ILD String Construction
, By strategically placing the [ ]" the R.Ds were distanced 20" apart (for both 1" and 2" diameter piping), a contamination survey over approximately [ ]" of the piping was performed. For 1" piping, the pair of H.Ds at a location collectively measure the [ ]"
area arounc! them (i.e., the measurM doses from the two 'llDs are summed and related to the [ ]" area). This is done to enhance measurement efficiency of a [ ]" area in 1" diameter piping. For 2" piping, each TLD is defined to measure beta dose from its own l- adjacent [ ]" area (i.e., [ ]" are measured by a H.D pair). 'Iherefore, because 20" of 1" diameter piping contains 400 cm20f internal surface and 20" of 2" diameter piping contains 800 cm of surfcce area, the 20" spacing between TLD pairs results in a survey coverage of[ ]". Survey coverage can be increased by decreasing the disc spacing and l establishing the desired 'ILD field of view, m:\2694w. mon:two12996 Page 4 of 18
_ __ - . _ . . _ _ _ _ . . . _ . _ . _ _ . _ . _ _ _ _ _ . _ _ . _ _ _ . _ . _ _ . _ ~ _ . _ . _ _ _ 4 USE OF TLDs TO ASSESS INTERNAL FSV FRS TBD 203 l~ CONTAMINATION IN PIPING REVISION e l It should be noted that placement of the TLD strings in system piping can not verify the exact ( location of the TLD at physical piping bends, elbows, etc. with respect to the calibration geometry. However, the number of TLDs chosen on any one string will help to minimize the L affect of uncertainty in a specific location. "Ihe overall affect of the position of the 'ILD, ; from pipe centerline to contact with the pipe surface, will be the subject of subsequent ; evaluations. ! l 5.0 CALIBRATION OF TLD STRINGS , [ l 5.1 Calibration Source l l
'Ihe radionuclide selected for cakibration of the TLDs has an average beta energy similar to i that anticipated at the measurement location, with a reasonably long half-life (although the ,
- latter is only necessary from a cost / replacement perspective). In some piping systems, i particularly liquid drains, additional contaminants may have been introduced as a result of I decommissioning activities. In fact, Eu-152 and Eu-154, which is found in activated concrete ;
(FSV Prestressed Concrete Reactor Vessel), has been identified in some samples obtained j ! within these drain systems. Attachment 8.1, " Average Beta Energy (Ebar) for Detectable Plant Contamination At Fort St. j Vrain", presents the calculation rafw-cd to determine Ebar using 10CFR61 data which may l l be relevant to plant systems. 'Ihis provides an indication that the average beta energy (Ebar) i
- j. expected in " detectable" plant contamiantion, (i.e., excluding hard to detect nuclides such as Fe-55 and H-3 that are addressed by reducing the Site Guideline Values, SGLV [2.1.3]) at Fort '
l
- j. St. Vrain is 113.6 kev.
l
'Iherefore, the radionuclide chosen to calibrate the FSV 'ILDs was Tc-99, a pure beta emitter with an average beta energy of 84.6 kev and a long half life of 2.13E5 yeart. Although conservative because of the lower energy of the Tc-99 verses actual in-Seld energy, a good measurement of piping conenmination can be made with a Tc-99 calibrated 'ILD. . I ! \
l l l l 1 i
}"
maame.. :twoi2996 Page 5 of 18
1 l l USE OF TLDs TO ASSESS INTERNAL FSV.FRS.TBD 203 1 CONTAMINATION IN PIPING REVISION 0 e i Figure 4 - 1" Pipe Jig, Source and TLD Configuration a.C i . l l Figure 5 - 2" Pipe Jig, Source and TI.D Configuration m:u694w. sos:IbO12996 Page 6 of 18 ,
- . - . - _ - - . . . - .. .- .- - - . . . - --~ . _ , .-- - - . ..
USE OF TLDs TO ASSESS INTERNAL FSV FRS TBD-203 CONTAMINATION IN PIPING REVISION 0 5.2 Calibration Methodology 1 1 5.2.1 General Discussion I Calibration is accomplished by exposing a set of TLDs to a known activity of Tc-99 in a specific geometry [ ]". The net signal (i.e., unshielded element reading minus shielded element reading) is the result of radiations that cannot penetrate the [ ]" aluminum filter; therefore, these radiations can not originate ; outside the pipe which is a much thicker shield (for typical 1" and 2" diameter piping). Consequently, beta background is assumed to be zero during both calibration and actual system tests. Because all beta e,xposure is assumed to originate from the calibration source or ; system piping, care is taken with handling of the TLDs and strings to prevent exposure to beta radiation while outside the calibration jig (for calibration 'ILDs) or piping to be surveyed (for system TLDs). Additionally, " control" TLDs are kept with string TLDs, except during calibration or when in system piping, to identify any additional beta exposure to TLDs should it occur. l The TLDs are calibrated to a pure beta emitter because the primary radiation decay mode of expected " detectable" system contamination will produce a beta (hard to detect nuclides such as Fe-55. H-3 and d$a are accounted for by reducing the Site Guideline Value). Any other radiation types that accompany the decay (i.e., radiations that do not penetrate the beta shielding,'since those that penetrate the shielding are accounted for in the background subtraction) can only yield an over-response. Should a high contribution of x-ray or low energy gamma radiation be present this would be indicated by the difference between the unshielded Lithium Borate and Calcium Sulfate readings because the Calcium Sulfate phosphors will over-respond to low energy gunma (by as much as a factor of 15 relative to i Lithium Borate). This situaten is not expected, however, based on the knowledge of the radionuclides present on the internal surfaces of piping and in contamination found outside of i PPes. Many factors will affect the location and uniformity of contamination on the internal surfaces of system pipes, which may include the temperature and pressure of the fluid processed through the system, system bends (elbows), crud traps (weld joints), etc. Using a [ ]" source to determine calibration factors, in effect, assumes that the TLD's measured beta dose came from the [ ]" area surrounding it. Any additional beta dose that originate outside of the defined [ ]", would yield a high (i.e., conservative) result. This conservatism, however, is not expected to be signi6 cant as the influence to the TLD is rapidly diminished outside the defined area due to the limited beta range. j Additional evaluations are being designed to define the TLD element field of view and the effect of localized contamination on 'ILD response. The design objective is to define the m:u6m. on:1wt2996 Page 7 of 18
I USE OF TLDs TO ASSESS INTERNAL FSV FRS TBD 203 CONTAMINATION IN PIPING REVISION 0 optimum TLD spacing considering the possibility of uniform and/or localized contamination on the internal surfaces of piping and gain a more complete understanding of the response capabilities of the TLD arrangement. 5.2.2 Calibration Procedure To calibrate TLDs used on TLD strings, a set of TLDs are exposed to the [ ]" Tc-99 ~ source. Arrangement of the source and TLD during calibration is matched to the actual measurement situation Tnis is accomplished with a calibration jig, [
]" As is done when the TLD string is installed in system piping, TLD string cables and centering [ }" are also used to center and suspend TLDs in the calibration jig. In this way, the same geometry and scattering effects are achieved during calibration as are experienced inside system piping.
The value of a calibration factor is mathematically determined by [
}". Therefore, the units of the Average 2
Calibration Factor are: [ dis /100 cm /mR*]. 1 l NOTE i The Average Calibration Factor (dis /100cm2 /mR*) is the average result determined from the , set of TLDs exposed to the calibration source. This factor is determined independently for each element type (i.e., Lithium Borate and Calcium Sulfate) j
. Because string TLDs use two different element types, the results from both calibration exposures and piping exposures are treated separately for each element type (i.e., Lithium Borate and Calcium Sulfate). This allows characteristic statistics of each to be analyzed separately. Once each element type reading is correlated to a contamination level by its Average Calibration Factor, then results may be combined to improve accuracy and precision of the overall result. Attachments 8.2 and 8.3 contain the plots and spreadsheets of calibration data obtained during ESW embedded pipe testing. Attachment 8.2 includes a plot of calibration results from 1" piping calibration tests [
. ]" and spreadsheets containing the data for each calibration test. Attachment 8.3 contains the same information for calibration tests conducted for 2" piping. m:u6m.noa:tho20996 Page 8 of 18
USE OF TLDs TO ASSESS INTERNAL FSV FRS TBD 283 CONTAMINATION IN PIPING REVISION 0 optimum TLD spacing cons. iering the possibility of uniform and/or localized contamination on the internal surfaces of piping and gain a more complete understanding of the response capabilities of the TLD arrangement. 5.2.2 Calibration Procedure To calibrate TLDs used on TLD strings, a set of TLDs are exposed to the [ ]" Tc-99
~
source. Arrangement of the source and TLD during calibration is matched to the actual measurement situation. This is accomplished with a calibration jig, [
]" As is done when the TLD string is installed in system piping, TLD string cables and centering ( 2]" are also used to center and suspend TLDs in the calibration Jig. In this way, the same geometry and scattering effects are achb during calibration as are experienced inside system piping.
The value of a calibration factor is mathematically determined by [
]". . Therefore, the units of the Average Calibration Factor are: [ J.
l l NOTE The Average Calibration Factor (dis /100cm2 /mR*) is the ave age result determined from the set of TLDs :xposed to the calibration source. This factor is determined independently for each element type (i.e., Lithium Borate and Calcium Sulfate) I Because string TLDs use two different element types, the results from both calibration l exposures and piping exposures are treated separately for each element type (i.e., Lithium l Borate and Calcium Sulfate). This allows characteristic statistics of each to be analyzed separately. Once each element type reading is correlated to a contamin:, tion level by its Average Calibration Factor, then results may be combined to improve accuracy and precision of the overall result. Attachments 8.2 and 8.3 contain the plots and spreadsheets of calibration data obtained during ESW embedded pipe testing. Attachment 8.2 includes a plot of calibration results from 1" piping calibration tests [
]" and spreadsheets containing the data for each calibration test.
Attachment 8.3 contains the same information for calibration tests conducted for 2" piping. 1 l l m:u694w.mos:lW12996 Page 8 of 18
USE OF TLDs TO ASSESS INTERNAL FSV.FRS TBD-203 CONTAMINATION IN PIPING REVISION 0 To ensure an accurate Average Calibration Factor is determined for each element type, a sufficknt r. umber of calibration tests are conducted such that uncertainty of the Average Calibration Factor is s 20% (at 95% confidence level). The Average Calibration Factor uncertainty is calculated with the following equation: ( 95% Confidence Interval = b"* 5 where N is the number of calibration tests, to.5 m is Sar. lent's t for 95% confidence and N-1 degrees of freedom, and l SD is the sample standard deviation of the sample set. I j As indicated in Attachments 8.2 and 8.3, uncertainty (at 95% confidence) of the Average Calibration Factors determined during the ESW embedded pipe testing, which included 12 ' calibration tests, ranged from [ P' , 1 The results of the initial calibration tests are provided in Table 1 and Table 2 below: Table 1 a.b.c
. Table 2 l
(
. \
m:u@Mw.mos:lW12996 Page 9 of 18
e
' USE OF TLDs TO ASSESS INTERNAL FSV FRS.TBD 203 CONTAMINATION IN PIPING REVISION 0 In addition to the initial testing performed with the ESW piping and as the method is used in the future, the technique will be bener defined regarding the range of element response.
5.3 LINEAR RESPONSE TESTING
~
Published literature for Panasonic@ Type 802 'ILDs indicate linearity over a wide range of dose. Linear ranges for each element type are 3E-3 to 500 Rad for lib2 02:Cu, and < 2E-4 to 300 Rad for CaSO;Tm 2.1.4. Nonetheless, linearity was investigated during the ESW testing by irradiating some of the calibration TLDs for longer periods. Specifically, Calibration Tests I and 2 were conducted for 9-day and 6 day periods, respectively. A 3-day irradiation time was used for the remaining calibration tests which yielded an average response that would indicate, based on the exposure period of the 'ILD string in the ESW piping, about 2 3 kdpm/100 cm . Although the first two 1"-piping calibration tests were conducted over 9 and 6-day periods, the calibration factor results were within data scatter of other 3-day calibration results (see plots of Attachment 8.2). 5.4 TLD PROCESSING NOTE
'Ihe quantity mR* is the Panasonic@ reader corrected value provided by ICN after the 'ILD is processed (i.e., data are corrected for each element's individual correction factor but not j processed with an . algorithm).
TLD processing is perforcued by ICN Dosimetry Service of Irvine, California, whose performance testing is NVLAP accredited. 'the process readout / handling of'ILDs is as described by their procedures and any special written instructions that are provided to them. For piping survey ads, ICN has been instructed to provide the corrected mR* reading for each of the 4 elements of the 'ILD (i.e., reading that has been corrected by each element's individual correction factor). Corrected mR* readings provide a standardized basis such that comparisons between individual TLDs can be made, while allowing specialized data analysis 1 to be performed as discussed in this document. I Upon removal of'ILDs from system piping, inserts are surveyed for removable contamination and returned to their respective holder (i.e., promptly after separating back to-back elements) and immediately shipped back to ICN for processing. If significant contamination is found on any 'ILD, it will be decontaminated prior to shipment and the location in the system flagged to identify that the result from this 'ILD may be high due to contamination on the 'ILD. l muso4w.mos:!WO12996 Page 10 of 18
USE OF TLDs TO ASSESS INTERNAL FSV-FRS-TBD-203 CONTAMINATION IN PIPING REVISION 0 6.0 DATA ANALYSIS 6.1 Contamination Level Determination: The contamination level measured at a given survey location of the 1LD string is determined from beta dose to the TLD(s). To determine beta dose, the net reading from the TLD reader is . used for each element type (i.e., element 2 minus element 1 for Lithium Borate and element 3 minus element 4 for Calcium Sulfate). The net reading for each element type is then corrected by its Average Calibration Factor to determine a contamination level (dpm/100 cm2 ). 'Ihe overall contamination level for the location is then the average of the element type dependent readings. The above analysis is as described for 2" piping TLDs where each TLD is defined to measure its own defined [ ]" area. For 1" piping TLDs, however, [ ]" TLDs at a given survey location collectively monitor the defined [ ]" area around them. Therefore, TLD readings for the [ ]" TLDs are first summed [
]" with summed element readings used as described in the preceding Paragraph.
The contammation level associated with each element type of a given TLD is determined by multiplying the net reading by its Average Calibration Factor. For example, a TLD is in a pipe for 80,000 minutes and its Lithium Borate elements report a net reading of 30 mR*. If the Average Calibration Factor for Lithium Borate (for a given pipe size) was 6.5E6 dis /100 cm2 /mR*, then the associated contamination level would be equal to 2.4 kdpm/100 cm2 as shown below: 2 (6.5E6 dis /100cm /mR *)(30 mR *) = 2.4 (kdpm/100cm2) (80,000 min) This type of calculation is performed for both element types with the average contamination
- level used as the result for the TLD location.
6.2 Error Analysis For a set of measurements taken (e.g., a set of rneasurements in a given pipe segment or measurements from a set of pipes of a given survey unit), the average contamination level is determiner by the following equation: mu694 ..om:1wo12996 Page 11 of 18
USE OF TLDs TO ASSESS IN'iERNAL FSV FRS TBD-203 CONTAMINATION IN PIPING REVISION 0 N Ex. x.i N where X, is the value of the ith measurement (or "ILD location), and N is the total number of measurements. To determine the acceptability of a pipe or survey unit's average contamination level, uncertainty of the average value must be determined. To perform this determination, the j sample standard deviation (SD) of the set of measurements taken is calculated. The equation used to calculate the standard deviation is as follows: N { (X,- X)2 - SD = ' S N-1 Uncertainty of the average contamination level is then determined for 95% confidence by using Student's t equation as previously shown: 95% Confidence Interval = "# ~'
- E
, Upon adding the uncertainty to the average value, an upper limit is then obtained which 4 represents (with 95% confidence) the maximum value of the average contamination level of the pipe or survey unit.
6.3 Sensitivity Analysis (MDA) i To ensure a TLD string is in a given pipe segment for a sufficient period o~ time, a Minimum Detectable Activity (MDA) level is determined. In particular, MDA is intended to be s 75% of the SGLV (as this survey method is intended for affected piping). Factors that affect MDA, in addition to exposure period, include the Average Calibration Factor and measurement statistics. [
]
m:ue94w. mon:1w12996 Page 12 of 18 I
1 i USE OF TLDs TO ASSESS INTERNAL FSWFRS-TBD 203 i CONTAMINATION IN PIPING REVISION 0 l Ja,b.c To present the equation used to calculate MDA, the following analysis is provided. The MDA equation for general survey measurements is as follows: b 2.71
+ 3.29 b+ b MDA (dpm/100cm ) , 2 t, 3 t, (
(Efficiency) A' u I% where t, is the sample count time (min), l l l t. is the background count time (min), i l R. is the background count rate (cpm), A is the area of detection in cm 2, and 3.29 is two times the one-tailed 95% con 6dence factor 1.645. For 'ILD strings, A is equal to [ ]" by calibration, and sample and background count ! times are equal (henceforth called t,). 'Iherefore, the above equation is reduced to: a,c l - - l 'Ihe 2.71 in the MDA equation is associated with a finite number of counts. To appropriately include this value in the MDA equation would require using raw data (i.e., the number of counts in a TLD's glow curve) which is not provided by the TLD vendor. Nonetheless, it is assumed that this value is negligible in comparison to the variation (i.e., standard deviation of the background element readings) of the total number of " counts" that are observed when the TLDs are read; therefore, the first term is omitted. m:ue94w.mos: twt 2996 Page 13 of 18
_-. _ -- - -- - _~ - . _ _ - . . . - - . - _ .- - USE OF TLDs TO ASSESS INTERNAL FSV FRS-TBD-203 CONTAMINATION IN PIPING REVISION e 1 The square root term of the equation is in fact the standard deviation of the background (in i terms of count rate). By substituting this Trm with the sample standard deviation of the absolute background measurements (i.e., moving count time to the denominator) and substituting efficiency with its reciprocal (i.e., the Average Calibration Factor that also 1 includes the factor that converts the 'ILD reader " counts" to a reported mR* value), the MDA equation becomes: _ a.c : i Now, the 1.645 factor assumes that the standard deviation of the measurement is well denned (as is the case when measuring counts from radioactive decay where the standard deviation of ' N counts is equal to N9. However, since the standard deviation for a given background - 7 measurement (i.e., element 1 or 4 reading) is inferred from the set of measurements taken for a given pipe segment, the 95% Student's t value for the number of measurements taken (actually the degrees of freedom)is substituted for 1.645. This results in the following equation for MDA: a.c ! I This equation is used to determine the MDA for a given Average Calibration Factor, background standard deviation, and exposure period (t,). MDA is determined separately for l both element types (i.e., for both Lithium Borate and Calcium Sulfate). The lowest calculated i MDA between the two is considered the MDA for the TLD(s) location. In other words, if one element type measures a result above its critical level and the other measures a result below its critical level, the decision " detected" is rendered. I The critical level mentioned in the preceding paragraph is the reference value for determining ) i which, if any, results are an indication of " detected" radioactivity at 95% confidence
, (" detected" radioactivity means there is 95% confidence that there is radioactivity present at the location, i.e., there is a 5% chance that the result is a background fluctuation). "Ihe i
mA2694w.mos:iw12996 Page 14 of 18
USE OF TLDs TO ASSESS INTERNAL FSV FRS-TBD-203 a CONTAMINATION IN PIPING REVISION 0 equation used to calculate critical level is derived by the same argument that was used with the MDA equation and can be shown to yield: A.C Critical levelis calculated for reference purposes only. The acceptability of a given pipe or collection of pipes is determined by the criteria of Section 6.4. 6.4 Acceptability of Results To determine if a given pipe or collection of pipes is acceptable for unrestricted use, the average contamination level plus 95% confidence interval (one-sided) is compared to the SGLV. Mathematically stated, the average contamination level of a given pipe or collection of pipes is acceptable if the following is true: 7ta95.N-1
- sSGLV 5
In addition to meeting the above average contamination level limit, each individual measurement may not be greater than a prescribed multiple (currently requirement is 3) times the SGLV as designated in the Final Survey Plan 2.1.5. 6.5 ESW Test Results
~
Attachments 8.4 and 8.5 contain results from ESW embedded pipe testing. In these attachments are plots for each pipe segment surveyed, that indicate the measured contamination level at various positions in the pipe, and spreadsheets containing the test data
. for each pipe. Attachment 8.4 contains results for 1"-diameter pipes tested and Attachment 8.5 contains data for the 2"-diameter pipes. . The SGLV for affected plant systems at FSV is established at 4,000 dpm/100 cm2 . Therefore, ESW piping is acceptable for unrestricted use provided the mean (at 95% confidence) is 2 , s 4,000 dpm/100 cm , and all individual measurements are s 12,000 dpm/100 cm2 . When evaluating each ESW pipe separately using the data collected with TLDs,11 of the 20 pipes surveyed yielded results less than the SGLV. 'Ihe omer 9 pipes will require further evaluation or decontamination.
9 m:u694w.nos:lW12996 Page 15 of 18 1 i
- .- .---~- - . _~ .- .- . - . . - - - _. . - . - . - _ . - . .- -.
USE OF TLDs TO ASSESS INTERNAL FSV FRS-TBD 243 CONTAMINATION IN PIPING REVISION 0 l 6.6 Comparison Testing Results To evaluate the RD string survey method, a comparison study was performed with the SN-050-4K (i.e., an assembly of four 0.5" diameter GM detectors) and *lLD strings for two fuel storage well 1" embedded pipes (i.e., lines Ll414 and L1416). Measurements were taken at regular intervals in each pipe by both survey methods. Attachment 8.6, "SN-0504K vs. < RD Survey Comparison Test Results", contains plots of the measurement results. I Compared data for line Ll414 is considered very good. Both methods produced the same l approximate contamination profile in the pipe. A couple of localized spots (e.g., at O' and 50') yielded different values by each method as can be expected if localized contamination is present due the small size of the detectors. Highly localized contamination (e.g., a hot particle in a weld) can produce significantly different results depending on the exact detector to hot spot orientation. For example, if a GM detector is located directly over a hot particle in an l otherwise clean pipe, the area correction factor (required because the total detection area of the assembly is <100 cm2 ), in effect, assumes the balance of a 100 cm2 area at the location is also contaminated at the same level. This can result in a significant over estimation of the true per l 2 100 cm contamination level at the location. Conversely, the limited detection area of a small l GM detector may not detect a given spot of contamination (e.g., a hot spot is between two tubes) and under report the true contamination at a location. Such inherent disadvantages of l using small detectors (which are necessary to survey small diameter piping) can be offset by collecting a large amount of data. A large data set will average out individual measurement fluctuations and produce a more accurate determination of the average contamination in a given pipe. TNs was evidenced by the average results for L1414 where 4.4 kdpm/100 cm2 ; and 4.2 kdpm/100 cm2 were determined for the SN-Of0-4K assembly and RD string respectively. L1416 data was also in good agreement. In this pipe both methods indicated that the pipe was 2 2 clean (i.e., all measurements < 12 kdpm/100 cm , and average < 4 kdpm/100 cm ). The RD
- 2 string did indicate one outlying result of 8.6 kdpm/100 cm that was not detected by the SN-050-4K. However, due to the long count times required for the SN-050-4K, measurements were taken at 40" intervals in this pipe while RDs were spaced at 20" intervals. This elevated reading was located at a pipe position not monitored by the SN-050-4K; therefore, the GM assembly could not be expected to detect this spot. 'Ihe average contamination levels determined by each method are in acceptable agreement considering that MDAs for both methods were approximately 2 kdpm/100 cm2, mA2694w.mos:twot2996 Page 16 of 18 !
i USE OF TLDs TO ASSESS INTERNAL FSV FRS-TBD 203 CONTAMINATION IN PIPING REVISION 0 7.0
SUMMARY
Using RDs to survey internal surfaces of plant system piping is a feasible method for providing reasonable estimates of surface contamination in piping. 'Ihe method is a new application for RDs and has therefore not been addressed by any guide or standard. Although attempts were made to be as accurate as possible in the initial testing, conservative measures were taken when exact factors were not known or could not easily be addressed. For example, the use of Tc-99 as the calibration source provides a conservative (i.e., the Tc-99 beta energy is lower than the average be;a energy expected in FSV " detectable" contamination) l estimate of the calibration factors used to correct the results. Additionally, the beta , background (determined from adjacent shielded elements) is assumed to be zero. Should the {
'ILDs be exposed to any natural beta radiation, this would be attributed to piping contamination. Any non-beta radiations that do not penetrate the background shield I (e.g., x-ray or low energy gamma) would also yield a conservatively high result.
While use of TLDs to measure surface contamination has its inherent disadvantages (due to small size of the detector), options for surveying small bore embedded pipe with bends are limited. Therefore, using TLD strings can be a viable option. To aid in evaluating the 'l potential feasibility of using TLD strings in a given situation, the following table of major advantages and disadvantages of the method is provided. Major Advantages and Disadvantages of TLD String Survey Method Advantages Disadvantages i Provides as much data with a single TLD string Long exposure times required to achieve low as surveyor desires (determined by the number MDAs (potential schedule impacts, especially if and spacing of TLDs on string) several iterations of decon/ survey are required) Able to survey a large number of pipes Low precision in individual measurements if simultaneously (extensive survey can be highly localized contaminatica present due to performed with low cost and minimal number small size of detector (although such j of person-hours) fluctuations would average out in a large data set) Equipment easily maintained with minimal Inability to immediately repeat / redo a maintenance measurement should a suspect result be obtained mAmo4..no :thet2906 Page 17 of 18
l l USE OF TLDs TO ASSESS INTERNAL- FSV.FRS.TBD-203 CONTAMINATION IN PIPING REVISION 0 The principal application of the TLD string survey method is for long lengths of small bore piping (strings and calibrations currently developed for 1" and 2" diameter piping). The method is especially appropriate when a large amount of piping requires survey and immediate results (i.e., within 3 months) are not needed. 8.0 ATTACHMENTS
~
8.1 Average Beta Energy (Ebar) for Detectable Plant Contamination at Fon St. Vrain 8.2 Calibration Data and Results for 1" Piping TLDs (collected during ESW testing) 8.3 Calibration Data and Results for'2" Piping TLDs (collected during ESW testing) 8.4 ESW 1" Piping 'ILD Survey Data and Results ! 8.5 ESW 2" Piping TLD Survey Data and Results 8.6 SN-050-4K vs. TLD Survey Comparison Test Results t
. 1 5
m:u6w.nos:iw12996 Page 18 of 18 ,
USE OF TLDs TO ASSESS INTERNAL FSV FRS TBD 203 CONTAMINATION IN PIPING REVISION 0 ATTACHMENT 8.1 AVERAGE BETA ENERGY (EBAR) FOR DETECTABLE PLANT CONTAMINATION AT FORT ST. VRAIN { l Table 1 below presents the relative radionuclide composition of various samples and smears taken at , Fort St. Vrain for the " detectable" radionuclides. These particular samples, which are decay corrected to 1/1/96, are the ones used to determine the Site Specific Guideline Values (SGLV). Also presented in the table, is the average radionuclide composition that is determined by assigning equal weight to each of th: individual samples. Only the " detectable" (i.e., readily detectable) nuclides are included in the calculation because the hard to detect nuclides and alpha emitters are accounted for by reducing the SGLV. Table 1 - Relative Radionuclide Composition of Fort St. Vrain Samples / Smears Co-60 Sr 90 Cs-134 Cs-137 Eu-152 Eu-154 Tc-99 : PCRV Smear 7.25E-1 3.75E-3 3.28E-3 1.02E-1 1.56E-1 1.03E-2 5 HSF Smear 9.87E-1 2.75E-4 1.24E-2 1 FHM Smear 9.38E-1 4.93E-3 1.30E-3 5.58E-2 Liquid Waste 3.44E-2 1.39E-3 4.72E-2 9.17E-1 Resia
. - , 1 PCRV 1.17E-1 4.53E-3 . 8.08E-1 5.66E-2 1.34E-2 Concrete Graphite 3.22E-1 9.15E-5 6.27E-1 5.12E-2 Dust PCRV Access 9.78E-1 2.26E-3 1.51E-3 1.77E-2 Flange -
PCRV Shield 8.56E-1 6.01E-3 1.85E-3 1.36E-1 Plug
, Average 6.20E-1 2.34E-3 7.46E-3 1.55E-1 1.99E-1 1.48E-2 1.68E-3 Fraction To determine Ebar for the average radionuclide composition, Ebar for each radionuclide is determined using published tabulations 2.1.6. In the individual nuclide Ebar calculation, electrons from internel conversion, auger electron emission as well as beta decay are considered " beta particles" because each electron of a given energy (without regard to its decay source) has the same probability of interacting m:uem. on:iwt2996 Page 1 of 3
.. __.__._..m _ . _ _ _ . _ _. _ ~ _ _ _ --- - -- - --- -. -
I-l 1 5
- USE OF TLDs TO ASSI;SS INTERNAL FSV FRS TBD-203
)
- CONTAMINATION IN 91 PING REVISION 0 ;
i j with a detector. In addition, any daughter nuclides that can be assumed to be in equilibrium with the ; { parent are factored into the calculation (e.g., the Sr-90 daughter Y-90 and the Cs-137 daughter Ba-137m). 4 l 1 ! . The equation used to calculate Ebar for a given radionuclide is as follows: } ;
- . N j {(Abundance
- BetaEnergy)
Ebar =
- . N j {(Abundance) i i
where N is the number ofindividual branches of the radionuclide (i.e., each auger, conversion, j or beta decay electron and its associated energy) The Ebar calculation for each individual radionuclide uses all electron energies, including low energy auger electrons. This was done to ensure a consistent approach is followed with each nuclide and the range of its electron emissions. Most auger electrons and some of the beta decay electrons (which are emitted with an energy spectrum from zero to a characteristic maximum) are unable to reach the detector due to their low energy. To be consistent in omitting electron energies not expected to be detected would require correcting for all low energy electrons, including beta decay. Consequently, ; the consistent approach of using all energies emitted by a given radionuclide is followed. A summary
- of the Ebar values for each radionuclide that are used in the overall average Ebar calculation is provided in Table 2 below:
Table 2 - Ebar Data Summary
- Co-60 *r-90 Cs-134 Cs-137 Eu-152 Eu-154 Tc-99 l
Average 6.20E-1 2.34E-3 7.46E-3 1.55E-1 1.99E-1 1.48E-2 1.68E-3
. Fraction Eber (kev) 95.8 565.32 159.ti8 196.8'# 8 7.28 149.28 84.6 . Beta 1.000 2.0008 1.0158 1.17422 1.4245 1.838' l.000 Abundance 8 3
NOTES: Data include contributions from conversion and auger electrons 2 Data include contributiorr from daughter 2 Beta Abundance is the average number of bett. particles emitted per decay m:ue94...om:twot2996 Page 2 of 3
USE OF TLDs TO ASSESS INTERNAL FSV FRS-TBD-203 CONTAMINATION IN PIPING REVISION 0 To determine the overal: Ebar for the average radionuclide composition, the following equation is used: (AverageFraction* Abundance. BetaEnergy) Ebar = ' (AverageFraction* Abundance) where N is the number of detectable radionuclides in the average composition. Using the preceding equation and data from Table 2, the results of Table 3 are obtained. Note: The denominator of this equation is the beta abundance (i.e., average number of beta particles l emitted per decay) for average radionuclide composition at FSV. l Using the preceding equation and data from Table 2, the results of Table 3 are obtained. Table 3 - Ebar Results For Radionuclide Composition l Ebar (kev) 113.6 Beta Abundance 1.126 l l l l m:u6w. mon:1wot2996 Page 3 of 3
USE OF TLDs TO ASSESS INTERNAL FSV-FRS-TBD-203 CONTAMINATION IN PIPING REVISION 0 l ATTACHMENT 8.2 CALIBRATION DATA AND RESULTS FOR 1" PIPING TLDS (collected during ESW testing) l I m:\2509wwas_2.wpf:lwl2996 Page 1 of 7
ATTACHMENT 8.2 CALIBRATION DATA AND RESULTS FDR 1" PIPING TLDS (collected dining ESW sessing) lib 4071" Pipe Calibration Data
- ~
a,b.c,f ; r t t L i m:uso9.ws_2.wpt: thm:0996 _ Page 2 of 7
ATTACHMENT 8.2 CALIBRATION DATA AND RESUllIS IT)R 2" PIPING TIES (collected dudng ESW tesdag) CaSO41" Pipe Calituation Data 4 a,b,c.f muso9 ws_24pubmo996 Page 3 of 7
u . . . s . ATIACHMENT 8.2 CAIJBRATION DATA AND RESULT!i FOR 1" PIPING TLDS (couected during ESW testing) a,b,c,f P mA2509wws_2.wpt.itwam6 Page 4 of 7
5- ', ,- , i ATTACHMENT 8.2 CALIBRA110N DATA AND RESULTS R)R 1" PIPING 11DS (collected during ESW testing) l a,b,c,f l l l 4 muso9 wis_2.wpt. ibm 20m Page 5 of 7
_ _ _ _ _ _ , . . _ _ _ _ _ _ _ , . .g A1TACHMENT 8.2 CAIDRA110N DATA AND RESUL13 R)R 1"MPING TLDS (collected during ESW eesting) a,b,c,f-4 l muso9 tes_2.wpr.itm20996 Page 6 of 7
__.,____y....._____.___.___ . _ _ _ _ _ _ . . _ _ _ _ _ . _ . _ . _ . _ _ _ _ _ _ _ . . _ _ _ _ . . . _ _ _ _ . _ _ _ _ _ ATTACHMENT 8.2 , CALIBRATION DATA AND RESULTS FOR 1" PIPING TLDS (coneced dunag ESW ksdag) t i a,b,c,f i l l mn509.wis_2. pt:stw20m Page 7 of 7
f 1 l USE OF TLDs TO ASSESS INTERNAL FSV-FRS-TBD-203 l CONTAMINATION IN PIPING REVISION 0 l l l l t l l l l ATTACHMENT 83 CALIBRATION DATA AND RESULTS FOR 2" PIPING TLDS (collected during ESW testing) i l ! l l f f i i f l ntuso9wwns_2.wpf:lwol2996 Page 1 of 7 1
e . . . ATTACHMENT 8.3 - CALIBRATION DATA AND RESULTS FOR 2" PIPING TLDS (collected dusing ESW testing) Li2B407 2" Pipe Calibration Data a,b,c,f m A25w.wis_2..pr.iw20w6 Page 2 of 7
A1TACHMENT 8.3 CALIBRATION DATA AND RESULTS FOR 2" PIPING TLDS (collected dusing ESW testing) CaSO4 2" Pipe Calibration Data a,b,c,f , t i r Y m uso9wwis_2.wpr.itw2em Page 3 of 7
_9 ATTACHMENT 5.3 : CALIBRATION DATA AND RESUL13 FOR 2" PIPING TIES (collected dusing ESW tesdag) L I r k l a,b,c,f i i I t I k ; i - f i I I I t i 6 l l l l t i.' I i j L i Y 1 l . l i I ! i ( i ! mA2509wwis_2.wpcitw20m Page 4 of 7 I .
ATTACHMENT 8.3 - CAllb?A110N DATA AND RESULT!i FOR 2" PIMNG 'lLDS (collected diaring ESW ecsting) a,b,c,f m uso9.wis_2.wpr:ihmom Page 5 of 7
ATTACHMENT 8.3 CAIERA*I1ON DATA AND RESULTS FOR 2" PIPING 'IIDS (collected dunag ESW testing) a,b,c,f r t ma2509 'ais_23pubmom Page 6 of 7
t ATTACHMENT 8.3 : CAIJBRATION DATA AND RESULTS M)R 2" PIPING TLDS (collected doing ESW tesang) i e i i l a,b,c,f i L I I 4 I
+
1 t i 5 t mA2509w\att8_2.wpf:ltwC20996 Page 7 of 7
USE OF TLDs TO ASSESS INTERNAL FSV FRS TBD-203 ) CONTAMINATION IN PIPING REVISION 0 l O ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS m:uso9ww_4.wyt:1 w 12996 Page 1 of 49
e . - . ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS 1 TLD Results for ESW #1 - 1" Pipe
- (note
- ar. rows denote elbows) 16 . - ..- . - . . . . - . _
II I I II I I 12 j g ___ Average EO.9~ kUpiiiTIOkm2 s g _ _ . - . _ _ __ ._ - _ _ _ . 3a4 .. _. . . . . . . _ . . . . _ . . . 9.. .
$ (first fialf of TLD string still m pipe) = g- - - ---
0 _ .. i" ='." " "-= -=-= 4 .J
-4 _ _ . _ .g __ _ l .
__ . .._ ) , 0.0 10.0 20.0 30.0 40.0 50.0 Pipe Position (feet from well) m-uso9 ws_4.wpf:tw12996 Page 2 of 49
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ .- i
e o , o . ATTACHMENT 8.4 ESW 1" PIPING TLD SU*tVEY DATA AND RESULTS TLD Results for ESW #2 - 1" Pipe (note: arrows denote elbows) 16 - - - - - - . 12 Y. _ . - - II II II 3 8 . - - . . - - . . . - . AveragF= I!6~kdpm/IO0cin2 . -. - ---- - - - - . . - __ ' d
~
3cu 4 ./ - - E _ !.-
./w.~. . >
o 4 m .. .._ _.-
-4 ._ _ . . . _
0.0 10.0 20.0 30.0 40.0 l Pipe Position (feet from well) l m:uso9whus_4.wpfabm12996 Page 3 of 49
i , , a o ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #3 - 1" Pipe I (note: arrows denote elbows) i 16 -- l l l __ 12 - - - . - -- - - - - -- - - - -- _
.m e Average = 1.6 kdpavlD0ci5T -- - @8 n .
4- A .- E ! W .
- = _% _ /
0 -
*- -e ~~~ T "'"~~
_4 . 0.0 10.0 20.0 30.0 40.0 Pipe Position (feet from well) mA2509wuns_4.wpfitwo12996 Page 4 of 49
_, .o , ATTACHMEST 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #4 - 1" Pipe (note: arrows denote elbows) 16 - - _. . -
.qr _ . __ _. . _ . - .qp w w __..
12 5 - -. .-
\
g { Average = 2.5 kdpm/100cm2
$ i 4 -
f LN / v 0 \ PNu.r g - 2
- -4 0.0 10.0 20.0 30.0 40.0 50.0 Pipe Position (feet from well) l l
-u509. sus _4.wpt:1w12996 Page 5 of 49 L
~% . m ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #5 - 1" Pipe' (note: arrows denote elbows) 48 -
44 m - - - - - - ---- -- - - - - - - - II Y 'I 40 - ---- -- - . - - -- -- - 36 - ---- - - - - 32 g { Average = 8.2 kdpm/I00cm2 h24 g 20 \ c.16 k- -- 12 - - -- .-- - - - - 8
*:\-*
4 - --
. , =
0 - -- 4_ _ _ . . . _ _ _- 0.0 10.0 20.0 30.0 40.0 50.0 Pipe Position (feet from well) auso9.ws_4.wpt;ttw12996 Page 6 of 49
ATTACHMENT SA ESW 1" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #6 - 1" Pipe (note: arrows denote elbows) i 16 -- s y__ _. i - . . . . _y_ y 12 -- - -- - - - - Q ^ ~ 8 s 3a4 , 3 K o veh .
]k .% _ ... .. . -4 _
0.0 10.0 20.0 30.0 40.0 50.0 60.0 Pipe Position (feet from well) m:uso9*its_4.wpt:1' . " 96 Page 7 of 49
o o . ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #7 - 1" i5pe (note: arrows denote elbows) 16 -- - .- -- . - - - - - - ..-- 1 l l 12 -Y- . - . - - - - - . - - _ .
-- Y _ . ---
M 8 --.- --- - - - - - - - - - _ Average = 0.3 kdpm/100cm2 s-E g4 - - . -
--.r- ,
M - _... . _ - - . _ _ _ . _ . _ 0 \- =*- s.e A - .. / -- % =-.s 4 _. . . . . . 0.0 10.0 20.0 30.0 40.0 50.0 60.0 Pipe Position (feet from well) m:u509.was_4.wpfdwo12996 Page 8 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #8 - 1" Pipe (note: anows denote elbows) r i-3r 37 40 7 36 -- 32 - - 28 -- Average = 3.3 kdpm/10 cm2 Q 24 h20 3 16 5 j12 ' 8
"= !
4 o
^- w_ -
__ .=
-4 10.0 20.0 30.0 40.0 50.0 60.0 70.0 0.0 Pipe Position (feet from well) m:u509wws_4.wpt:1w12996 Page 9 of 49
O B o ATTACIBIENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #9 - 1" Pipe (note: arrows denote elbows) 16 . . _ _ _ _
.l _.
l . l l
'2 i _ . __
M 8 .- . -- Average = 0.2 kepm/100csi2- .__ y i 3a4 ,
'O : .M _
O L . .... . ~ . . ... .u_. s_ . ... .s, .
-4 . _ . . . . . . __ . . . . _ . . _ _ __ ._. _ . _ . . . _ .
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Pipe Position (feet from well) m:uso9wwts_4.wpf:thm2996 Page 10 of 49
. o .
ATTACHMENT 8A ESW 1" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #10 - 1" Pipe (note: arTows denote elbows) 16 . - - - - - . - l l 12 - , EB E 8 - . . . . - . . - 3*'*8*" # Y "'" - s. 3c. 4 , 3 0 , , - A p- =. a. m .- -= _--===._ . _ _= -s
-4 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Pipe Position (feet from well) m:uso9Aus_4.wpr:1w12w6 Page 11 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE 1DTAL SYS1EM PIPE DIAMETER # OF 1LDS START EXPOSURE STUP EXPOSURE PIPE IDEN11FICATION OR LOCATION PIPE LENGill (inches) IN STRING DATEm ME DATEMME TIME (minutes) ESW #1 VENT LINE 50 1 34 2-8-95/1510 4-27-95/1315 112205 CALIBRAllON FACTORS 1LD SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 649e+06 Calcium Sulfate = 7.24e+06 POSil10N - LLEMENT LLEMENT ELEMENT ELEMENT Lithium Borate Calcium Sulfate Lithium Borate Calcium Sulfate lLD Average BADGE 1 2 3 4 Net Reading Net Reading Result Result Result NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (K dpm/100cm2) (Kdpm/100cm2) 13-1109 27 43 39 24 13-1110 26 48 42 25 13-Total 53 91 81 49 38 32 2.2 2.1 2.1 14-1III 27 48 45 28 14-1112 31 46 46 28 14-Total 58 94 91 56 36 35 2.1 2.3 2.2 15-1113 28 32 35 27 15-1114 29 45 39 28 15-Total 57 77 74 55 20 19 1.2 1.2 1.2 16-1115 29 40 40 28 16-1816 38 43 40 29 16-Total 67 83 80 57 16 23 n9 1.5 1.2 17-1117 26 35 38 27 17-1i18 25 35 32 24 17-Total 51 70 70 51 19 19 1.1 1.2 1.2 18-1119 26 36 36 27 18-1120 25 37 35 28 18-Taal 51 73 7I 55 22 16 1.3 1.0 1.2 19-1I21 27 32 35 30 19-1122 25 31 31 28 19-Total 52 63 66 58 11 8 a6 a5 0.6 20-1123 29 29 36 30 20-II24 29 29 32 28 20-Teal 58 58 68 58 0 10 0.0 0.6 0.3 21-1125 26 32 31 29 21-1126 31 43 34 30 mA2509wwit8_4=wpf:Ibel2996 Page 12 of 49
, u ATTACHMENT 8.4 L ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE 101AL SYSTEM PIPE IDENTIFICATION PIPE DIAMETER # OF 1LDS START EXPOSURE STOP EXPOSURE OR LOCATION PIPE LENGTil (inches) IN STRING DATF1IIME DATE/11ME TIME (minutes)
ESW #1 VENT LINE 50 1 34 2-8-95/1510 4-27-95/1315 112205 CALIBRATION FALTORS TLD SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 649e+06 Calcium Sulfate = 7.24e+06 21-Total 57 75 65 59 I8 6 1.0 0.4 0.7 22-1127 25 31 32 29 . 22-1128 25 29 29 27 ; 22-Tosal 50 60 61 56 10 5 0.6 0.3 0.5 23-1129 31 35 30 28 23-1130 26 32 30 29 23-Total 57 67 60 57 10 3 0.6 0.2 0.4 24 1131 27 27 30 30 24-1132 34 37 33 29 24-Total 61 64 63 59 3 4 0.2 0.3 0.2 25 1I33 28 31 29 26 25-1134 26 30 30 29 25-Total 54 61 59 55 7 4 0.4 UL3 0.3 26-1135 33 29 33 28 26-1136 25 27 29 27 l 26-Total 58 56 62 55 -2 7 -0.1 a5 0.2 l 27 1I37 30 32 30 27 27-1138 27 29 30 28 27-Total 57 61 60 55 4 5 0.2 0.3 03 28-1139 29 37 31 28 28-1140 33 79 29 27 l 28-Toemt 62 116 60 55 54 5 3.1 0.3 1.7 l 29-1i4I 25 28 33 27 29-1142 32 34 33 28 29-Taal 57 62 66 55 5 11 0.3 0.7 0.5 Average Total 56.5 Average Total 55.6 Average (Kdpm/100cm2) 0.9 Stand. Dev. 4.4 Stand. Dev. 2.6 Student's a value 1.746 Fnor (95%) (Kdpm/100cm2) 0.3 Critical level (Kdpm/100cm2) OL4 MDA (Kdpm/100cm2) 0.8 m-us09.wt8_4a.wst:ltal2996 Page 13 of 49
. a ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS PIPE PIPE IDENTIFICATION DIAMEIER # OF11.DS EXPOSURE START EXPOSURE SIDP TOTAL EXPOSURE .
SYSTEM OR LOCA110N PIPE LENGTil (inches) IN STRING DA1T/11ME DATErilME 'I1ME (minutes) ESW #2 VENT LINE 38 1 44 2-8-95/1000 4-27-95/0830 112230 11.D SURVEY DATA CALIBRA110N FACTORS (dis /100cm2/mR*) Lithium Borate = 6 49e+06 Calcium Sulfate = 7.24e+06 POSITION - ELEMENT ELEMENT ELEMENT ELEMENT Lithium Borate Calcium Sulfate Lithium Barate Calcium Sulfate 1LD Average BADGE 1 2 3 4 Net Reading Net Reading Result Result Result NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (K dpm/100cm2) (Kdpm/100cm2) 1-935 35 56 49 28 1-936 32 51 39 28 1-Total 67 107 88 56 40 32 23 2.1 2.2 2-937 44 09 70 30 2-938 33 81 73 32 2-Total 77 171 143 62 94 81 5.4 52 5.3 3-939 43 % 79 32 3-940 33 102 90 31 3-Total 78 198 169 63 120 106 6.9 68 6.9 4-941 32 71 65 32 4-942 35 79 72 33 4-Total 67 150 137 65 83 72 4.8 4.6 4.7 5-M3 42 54 37 31 5-944 39 50 37 31 5-Total 81 104 74 62 23 12 1.3 0.8 1.1 6 945 43 44 35 31 6-946 31 41 37 32 6-Total 74 85 72 63 11 9 0.6 0.6 0.6 7-947 25 37 32 29 7-948 27 36 36 31 7-Total 52 73 68 60 21 8 1.2 0.5 0.9 8-949 36 37 40 35 8-950 29 35 35 32 8-Total 65 72 75 67 7 8 0.4 0.5 0.5 mA2509.ws_4=wg:llwl2996 Page 14 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS PIPE PIPE IDEN11FICATION DIAMETER # OF ILDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE SYSTEM OR LOCA110N PfPE LENGTH (inches) (N STRING DATE/ TIME DATFAME 11ME (minutes) ESW #2 VENT LINE 38 1 44 2-8-95/1000 4-27-95/0830 112230 TLD SURVEY DATA CALIBRATION FACIURS (dis /100cm2/mR*) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 9'951 35 31 38 36 9-952 28 34 38 36 9-Total 63 65 76 72 2 4 0.1 0.3 0.2 10-953 33 40 37 34 10-954 35 40 39 36 10-Taal 68 80 76 70 12 6 0.7 0.4 0.5 11-955 35 40 39 36 11-956 27 31 35 33 Il-Total 62 71 74 69 9 5 0.5 0.3 0.4 12-957 34 38 32 32 12-958 33 39 36 31 12-Taal 67 77 68 63 10 5 0.6 0.3 0.5 13-911 31 36 37 33 13-912 29 34 36 34 13-Taal 60 70 73 67 10 6 a6 0.4 R$ 14-913 37 36 39 33 14-914 31 32 38 34 14-Total 68 68 77 67 0 10 0.0 0.6 0.3 15-915 40 52 53 34 15-916 38 58 49 35 15-Teest 78 110 102 69 32 33 1.9 2.1 2.0 16-917 38 51 40 33 16-918 31 39 35 32 16-Total 69 90 75 65 21 10 1.2 0.6 a9 17-919 32 40 31 26 17-920 30 36 34 31 17-Total 62 76 65 57 14 8 0.8 0.5 0.7 mA2509wh8_4twpf:llW12996 Page 15 of 49
ATI'ACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS P1PE PIPE IDENTIFICATION DIAMETER # OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE SYSTEM OR LOCATION PIPE LENGTII (inches) IN STRING DATEM ME DATEMME TIME (minutes) ESW #2 VENT LINE 38 1 44 2-8-95/1000 4-27-95/0830 112230 TLD SURVEY DATA CALIBRAllON FACIURS (dis /100cm2/mR') Uthium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 18-921 29 32 34 31 15-922 42 46 35 32 18-Total 71 78 69 63 7 6 R4 0.4 0.4 19-923 37 45 38 35 19-924 32 40 33 30 19-Total 69 85 71 65 16 6 0.9 0.4 0.7 20-925 28 43 35 33 20-926 31 37 33 32 20-Total 59 80 68 65 21 3 1.2 0.2 0.7 21-927 40 51 40 33 21-928 38 59 44 33 21-Total 78 110 84 66 32 18 1.9 1.2 1.5 22-929 33 59 57 32 22-930 40 86 63 31 22-Total 73 145 120 63 72 57 4.2 3.7 3.9 Average Total 68.5 Average Total 64.5 Average (Kdpm/100cm2) 1.6 Stand. Dev. 7.3 Stand. Dev. 3.9 Student's t value 1.721 Enor (95%) (Kdpm/100cm2) 0.7 Critical Level (Kdpm/100cm2) 0.6 MDA (Kdpm/100cm2) 1.2 mA2509 htts_4=v:lbm12996 Page 16 of 49
A1TACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE 'IUI'AL l SYSTEM PIPE LENGTil PIPE DIAME1TR # OF TLDS START EXPOSURE STOP EXPOSURE PIPE IDENTIFICATION OR LOCAllON (inches) IN STRING DATE/IlME DALE /11ME TIME (minutes) ESW #3 VENf LINE 42 1 48 2-8-95/1020 4-27-95/0850 112230 CALIBRAllON FACIDRS TLD SURVEY (dis /100cm2/mR DATA *) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 POSITION - ELEMEN I' EEMENT ELEMENT ELEMENT lAmum Borate Calesum Sulfate Lithium Borste Calcium Sulfate lLD Average BADGE 1 2 3 4 Net Reading Net Reading Result Residt Result NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (K dpmfl00cm2) (Kdpmfl00cm2) 1-795 29 40 36 27 l-796 37 36 34 30 1-Total 66 76 70 57 to 13 0.6 0.8 0.7 2-797 28 54 66 30 2-798 42 46 52 29 2-Total 70 100 118 59 30 59 1.7 3.8 2.8 3-799 35 80 77 30 3-800 36 75 62 31 3-Total 71 155 139 61 84 78 4.9 5.0 4.9 4-801 45 52 55 30 4-802 32 49 45 30 4-Total 77 101 100 60 24 40 1.4 2.6 2.0 5-803 32 63 63 31 5-804 32 49 46 30 5-Total 64 112 109 61 48 48 2.8 3.1 2.9 6-805 31 59 52 33 6 806 27 44 39 33 6-Total 58 103 91 e6 45 25 2.6 1.6 2. I 7-807 33 58 48 28 7-808 28 47 47 31 7-Total 61 105 95 59 44 36 25 23 2.4 8-809 32 49 49 32 8-810 30 58 56 32 8-Total 62 107 105 64 45 41 2.6 2.6 2.6 m us09wktt8_4a.wpf:11W12996 Page 17 of 49
. _ - - _ ___ ________ - __-. .--___ . --__ ._ --- -. _ _ _ _ __ _ . _ _ ~
A1TACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE TOTAL SYSTEM PIPE IDEN11 FICA 110N PIPE LENGTil PIPE DIAMETER # OF1LDS START EXPOSURE STOP EXPOSURE OR LOCA110N (inches) IN STRING DA1Flf!ME DATF111ME TIME (minutes) ESW #3 VENf LINE 42 1 48 2-8-95/1020 4-27-95/0850 112230 CALIBRAllON FACTORS ILD SURVEY (dis /100cm2/mR DATA *) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 9-811 29 82 64 32 9-812 38 36 37 29 9-Total 67 118 101 61 51 40 2.9 2.6 2.8 10-813 28 36 37 29 10-814 31 46 44 32 10-Tcsal 59 82 81 61 23 20 1.3 1.3 1.3 11-815 32 38 33 30 11-816 28 34 39 33 Il-Total 60 72 72 63 12 9 0.7 0.6 0.6 12-817 27 32 31 30 12-818 33 35 35 29 12-Total 60 67 66 59 7 7 0.4 0.5 0.4 13-819 34 37 32 31 13-820 37 33 33 30 13-local 71 70 65 61 -1 4 -0.1 0.3 0.1 14-821 37 44 35 32 14-822 30 32 34 31 14-Total 67 76 69 63 9 6 R5 0.4 0.5 15-823 33 53 46 32 15-824 31 47 43 31 15-Total 64 100 89 63 36 26 2.1 1.7 1.9 16-825 26 34 34 30 16-826 30 38 38 31 16-Total 56 72 72 61 16 11 0.9 0.7 0.8 17-827 35 42 35 31 17-828 33 35 36 31 17-Total 68 77 71 62 9 9 0.5 0.6 0.6 mA2509whats_4twp:th012996 Page 18 of 49
ATTACHMENT 8.4 ESW I" PIPING TLD SURVEY DATA AND R2SULTS EXPOSURli TOIAL SYSTEM PIPE IDENTIFICATION PIPE LENGT11 PIPE DIAhETER #OF1LDS START EXPOSURE STOP EXPOSURE OR LOCATION (indws) IN STRING DATE/IIME DATE/IlME 11hfE (minutes) ESW #3 VENT LINE 42 3 48 2-8-95/1020 4-27-95/0850 112230 CALIBRAllON FACTURS TLD SURVEY (dis /100cm2/mR DATA *) Uthium Borate = 649e+06 Calcium Sulfate = 7.24e+06 18-829 29 31 33 28 18-830 29 35 33 29 18-lotal 58 66 66 57 8 9 0.5 0.6 0.5 19-831 30 39 35 29 19-832 30 35 33 29 19-Total 60 74 68 $8 14 to 0.8 0.6 a7 20-833 32 41 37 29 20-834 27 34 31 29 20-Total 59 75 68 58 16 10 0.9 0.6 0.8 21-835 39 49 43 34 21-836 29 35 39 3I 21-Total 68 84 82 65 16 17 0.9 I.1 1.0 22-837 26 36 34 31 , 22-838 31 40 40 32 22-Total 57 76 74 63 19 Ii 1.1 n7 0.9 23-839 30 41 34 31 23-840 30 52 45 31 23-Total 60 93 79 62 33 17 1.9 1.1 1.5 24-841 40 55 52 33 24-842 49 74 72 32 24-Total 89 129 124 65 40 59 2.3 3.8 3.1 AveraSe Total 64.7 Average Total 61.1 Average (Kdpm/100cm2) 1.6 Stand. Dev. 7.5 Stand. Dev. 2.5 Student's a value 1.714 Error (95%) (Kdpm/100cm2) 0.4 Gitical Level (Kdpm/100cm2) 0.4 MDA (Kdpm/100cm2) a8 mA2509wsit8.Aw*1Ml2996 Page 19 Of 49
ATTACIB1ENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS t i EXPOSURii TOI'AL SYSTEM PIPE IDENTIFICATION PIPE LENGTil PIPE DIAMETER # OF 1LDS START EXPOSURE STOP EXPOSURE OR LOCATION (inches) IN STRING DATE/11ME DA1F/ TIME TIME (minutes) ESW #4 VENT LINE 46 1 54 2-7-95/1340 4-27-95/0900 113480 CALIBRA110N FACIURS 1LD SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 POSil10N - ELEMENT ELEMENT ELEMENT ELEMENT Littuum Borate Calcium Sulfate Littuum Borate Calcmm Sulfate TLD Average ; BADGE 1 2 3 4 Net Readin8 Net Reading Result Result Result NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (K dpm/100cm2) (Kdrm/100cm2) I-675 60 195 172 27 1-676 32 113 98 25 1-Total 92 308 270 52 216 218 12.4 13.9 13.1 2-677 38 152 71 28 2-678 84 128 66 29 ! 2-Total 122 280 137 57 158 80 9.0 5.1 7.1 3-679 itio 219 53 29 i 3-680 174 143 49 26 s 3-Total 334 362 102 55 28 47 1.6 3.0 2.3 i 4-681 82 133 53 33 4-682 40 76 44 31 4-Total 122 209 97 64 87 33 5.0 2.1 3.5 5-683 73 89 37 26 5-684 57 107 40 32 5-Total 130 1% 77 58 66 19 3.8 1.2 2.5 6-685 97 54 33 30 6 686 90 93 36 27 6-Total 187 147 69 57 40 12 -2.3 0.8 -0.8 7-687 60 119 20 19 . 7-688 114 104 22 19 7-Total 174 223 42 38 49 4 2.8 0.3 1.5 8-689 52 83 37 28 8-690 44 55 40 29 8-Total % 138 77 57 42 20 2.4 1.3 1.8 9-691 40 54 41 35 9-692 40 55 35 26 m:us09. wit 8_4urst:ltel1996 Page 20 of 49
a .
}
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS j 4 4 EXPOSURE TUTAL SYSTEM PtPE IDEN11FICATION PIPE LENGTil PIPE DIAMETER # OF 11.DS START EXPOSURE STOP EXPOSURE , OR LOCATION (inches) IN STRING DATEMME DATEmME TIME (minutes) l ESW #4 VENT LINE 46 1 54 2-7-95/1340 4-27-95/0900 113480 ; ' CALIBRAllON FACTORS I TLD SURVEY DATA (dis /100cm2/mR*) LAhium Borate = 6.49e+06 Calcium Sulfase = 7.24e+06 9-Total 80 109 76 61 29 15 1.7 1.0 1.3 > 10-693 86 58 37 28 ! 10-694 39 59 42 31 , f 10-Tosal 125 117 79 59 -8 20 -0.5 1.3 n4 Il-695 47 % 36 31 . [ 11-696 - 77 62 40 34 Il-Total 124 158 76 65 34 11 1.9 0.7 - 1.3 12-697 39 54 37 32 12-698 50 68 38 29 12-Total 89 122 75 61 33 14 1.9 0.9 1.4 13-699 65 76 36 32 13-700 49 51 32 28 j 13-Total 114 127 08 60 13 8 n7 0.5 0.6 14-701 41 48 40 34 14-702 83 79 39 34 [ 14-Tosal 124 127 79 - 68 3 I1 0.2 n7 0.4 15-703 57 67 41 30 15-704 70 75 47 34 15-Total 127 142 88 64 15 24 0.9 1.5 1.2 16 705 59 39 38 32 16-706 48 52 39 32 16-Total 107 91 77 64 -16 13 -0.9 0.8 -0.0 l 17-707 39 50 33 29 17-708 35 41 40 32 ; 17-Total 74 91 73 61 17 12 1.0 0.8 0.9 18-709 44 51 35 29 18-710 37 38 33 29 i i 18-Taal 81 89 68 58 8 to 0.5 0.6 0.5 19-7II 39 53 35 30 19-712 34 46 33 30 i 19-Total 73 99 68 60 26 8 1.5 0.5 1.0 f i mA2509.w8 4awg:1wl2996 Page 21 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE TOTAL SYSTEM PIPE LENGT1I PIPE DIAMETER # OF TLDS START EXPOSURE STOP EXPOSURE PIPE IDENTIFICATION OR LOCA110N (inches) IN STRING DATE/IIME DATE/IIME 11ME (minutes) ESW #4 VENT LINE 46 1 54 2-7-95/1340 4-27-95/U900 113480 CAllBRAllON FACIORS 1LD SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 20-713 38 45 33 30 20-714 62 43 35 32 20-Taal 100 88 68 62 -12 6 -0.7 0.4 -0.2 21-715 84 Ill 33 28 21-716 33 44 32 27 21-Taal 117 155 65 55 38 10 2.2 0.6 1.4 22-717 39 51 40 32 22-718 33 39 35 32 22-Total 72 90 75 M i8 Ii 1.0 0.7 0.9 23 719 4I 82 65 34 23-720 40 95 104 33 23-Total 81 177 169 67 % 102 5.5 6.5 6.0 24-721 39 69 6R 32 24-722 38 luo 96 32 24-Taal 77 169 164 M 92 100 5.3 6.4 5.8 25-723 31 66 53 30 25-724 40 103 97 30 25-Total 71 169 150 60 98 90 5.6 5.7 5.7 26-725 51 63 51 30 26-726 45 82 70 45 26-Total % 145 121 75 49 46 2.8 2.9 2.9 27-727 51 82 70 45 27-728 53 % 80 42 27-Total 104 178 150 87 74 63 4.2 4.0 4.1 Average Total 114.6 Average Total 61.2 Average (Kdpm/100cm2) 2.5 Stand. Dev. 52.6 Stand. Dev. 8.3 Student's a value 1.706 Error (95%) (Kdpm/IO0cm2) 1.0 Oitical Level (Kdom/100cm2) 1.3 MDA (Kdpm/100cm2) 2.5 m:uscDwwit8_4a.v:1bol2996 Page 22 of 49
ATTACHMENT 12.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE lOTAL SYSTEM PIPE IDEN11FICATION PIPE DIAMETER # OF TLDS START EXPOSURE STOP EXPOSURE OR LOCA110N PIPE LENGTil Onches) IN STRING DATE/11ME DATE/IIME TIME (minutes) ESW #5 VENT LINE 50 1 58 2-7-95/1510 4-27-95/1300 113630 CALIBRA110N FACIORS , i TLD SURVEY DATA (dis /100cm2/mR*) Lithium Berate = 649e+06 Calcium Sulfate = 7.24e+06 PO5il10N - ELEMENT EllMENT ELEMENT EllMENT Littuum Borate Calcium Sulfate lathium 14 crate Calcmm Sulfate TLD Average BADGE 1 2 3 4 Net Reading Net Reading Result Result Result , NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (K dpmfl00cm2) (Kdpmfl00cm2) 1-585 24 570 510 30 1-586 33 261 241 29 l-Total 57 831 751 59 774 692 44.2 44.I 44.1 2-587 30 210 219 30 2-588 34 313 308 36 2-Total 64 523 527 66 459 461 26.2 29.4 27.8 3-589 31 148 140 26 3-590 33 190 '79 27 3-Total 64 338 319 53 274 266 15.6 16.9 16.3 dL591 28 126 132 31 4-592 31 213 215 28 4-lotal 59 339 347 59 280 288 16.0 18.4 17.2 5-593 26 145 121 26 5-594 32 140 140 26 5-Total 58 285 261 52 227 209 13.0 13.3 13.1 6-595 24 179 177 29 6-5% 29 I42 118 27 6-Total 53 321 295 56 268 239 15.3 15.2 15.3 7-597 28 175 168 28 7-598 32 122 136 33 7-Total 60 297 304 61 237 243 13.5 15.5 14.5 8-599 30 121 134 27 8-600 24 107 94 26 8-Total 54 228 228 53 174 175 9.9 11.2 10.5 9-601 27 104 99 26 9-602 32 113 81 24 m us09ww8_4twg:llW12996 Page 23 of 49 _ _ _ _ . _ _ _ _ _ _ __. _ __ _ a -__-_ -__ _ _ . _ - _ - _ _ _ _ _ _ _ _ . - _ - _ _ _ _ . . _ _ _ _ __ _
ATTACHMENT 8A E5W 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE TOTAL SYSTEM PIPE IDENTIFICATION P!PE DIAMETER # OF TLDS START EXPOSURE S1DP EXPOSURE OR LOCATION PIPE LENGTil (inches) IN STRING DATFJTIME DA1E/IlME TIME (minutes) ESW #5 VENT LINE 50 I $8 2-7-95/1510 4-27-95/1300 113630 CALIBRATION FAClORS TLD SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 9-Total 59 217 180 50 158 130 9.0 8.3 8.7 10-603 27 99 100 28 10-604 29 103 121 34 10-Total 56 202 221 62 146 159 8.3 10.1 9.2 11605 33 107 115 28 11-606 41 108 89 30 ll-Total 74 215 204 58 141 146 8.1 9.3 8.7 12-607 38 88 83 33 12-608 38 65 70 31 12-Total 76 153 153 64 77 89 4.4 5.7 5.0 13-609 44 84 65 30 13410 29 73 70 34 13-Total 73 157 135 64 84 71 4.8 4.5 4.7 14-611 24 68 58 28 14412 34 59 53 30 14-Total 58 127 111 58 69 53 3.9 3.4 3.7 15-613 33 64 58 32 15414 35 80 67 32 15-Total 68 144 125 64 76 61 4.3 3.9 4.1 16-615 33 64 56 32 16-616 30 74 70 32 16-Total 63 138 126 64 75 62 4.3 4.0 4.1 17-617 29 58 55 31 17-618 33 58 53 33 17-Total 62 116 108 64 54 44 3.1 2.8 2.9 18-619 32 55 52 32 18-620 30 65 58 25 18-Total 62 120 110 57 58 53 3.3 3.4 3.3 19-621 23 42 45 30 m us09*t:8_4upt:llwl2996 Page 24 of 49
ATTACHMENT 8A ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE 1UTAL SYSTEM PIPE IDENTIFICATION PIPE DIAMETER # OF TLDS START EXPOSURE STDP EXPOSURE OR LOCATION PII*! LENGTII (inches) IN STRING DAllifl1ME DALE /I1ME 11ME (minutes) ESW #5 VENT LINE 50 1 58 2-7-95/1510 4-27-95/1300 113630 CALIBRA110N FACIORS 11 D SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 19-622 29 41 38 25 19-Total 52 83 83 55 31 28 1.8 1.8 1.8 20-623 27 -47 43 26 24624 28 50 42 30 20-Total 55 97 85 56 42 29 2.4 1.8 2. I 21-625 28 50 40 28 21-626 34 43 45 29 i 21-Total 62 93 85 57 31 28 1.8 1.8 1.8 [ 22-627 31 48 47 32 22-628 34 44 49 31 22-Taal 65 92 % 63 27 33 1.5 2.1 1.8 23-629 20 41 46 29 23-630 42 55 40 26 23-local 62 % 86 55 34 31 1.9 2.0 2.0 24-631 31 49 45 30 24-632 29 41 35 28 24-Total 60 90 80 58 30 22 1.7 1.4 1.6 25-633 24 45 40 27 25-634 28 54 47 28 25-Total 52 99 87 55 47 32 2.7 2.0 2.4 26-635 28 54 42 26 26-636 27 37 41 28 26-Total 55 91 83 54 36 29 2.1 1.8 2.0 27-637 23 42 41 25 27-638 23 42 44 27 27-Total 46 84 85 52 38 33 2.2 2.1 2.1 28-639 25 43 39 26 28-640 24 51 42 26 28-Total 49 94 81 52 45 29 2.6 1.8 2.2 m:\2509wkttB_4twpf:lW12996 Page 25 of 49
ATTACHMENT 3.4 ESW 1 ' PIPING TLD SURVEY DATA AND RESULTS EXPOSURE lOTAL SYSTEM PIPE IDENTIFICATION P!PE DIAhETER # OF TLDS START EXPOSURE STOP EXPOSURE OR LOCATION PIPE LENGTil (inches) IN STRING DATE/ITME DATE/IIME 11ME (minutes) ESW #5 VENT LINE 50 I 58 2-7-95/1510 4-27-95/1300 113630 CALIBRATION FACIORS TLD SURVEY DATA (dis /100cm2/mR*) Lithium Berate = 6.49e+06 Calcium Sulfate = 7.24e+06 29-641 23 49 52 26 29-642 29 56 58 25 29-Taal 52 105 110 51 53 59 3.0 3.8 . 3.4 Average Total 59.7 Average Total 57.7 Average (Kdpm/100cm2) 8.2 Stand. Dev. 7.2 Stand. Dev. 4.7 Student's t value 1.701 Error (95%) (Kdpm/100cm2) 3.0 Critical Level (Kdpm/100cm2) 0.7 MDA (Kdpm/100cm2) 1.4 mA2509wktt8_4twgd:ltWO12996 Page 26 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE TOTAL SYSTEM PIPE IDEN11FICATION PIPE LENGTil PIPE DIAME1ER # OF TLDS START EXPOSURE STOP EXPOSURE OR LOCA110N (inches) IN STRING DATE/I1ME DA1E/I1ME TIME (minutes) ESW #6 VENT LINE 54 1 68 2-7-95/1535 4-27-95/0745 113290 CALIBRA110N FACIORS 11.D SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 POSITION - ELEMENT ELEMENT ELEMENT ELEMENT Lithium Borate Calemm Sulfate Lathium Baate Calcium Sulfate 1LD Average BADGE I 2 3 4 Net Reading Net Reading Result Result Result NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (K dpm/100cm2) (Kdpm/100cm2) 1-535 27 187 164 39 l-536 30 134 117 33 1-Total 57 321 281 72 264 209 15.1 13.4 14.2 l 2-537 34 41 49 29 2-538 29 42 38 29 2-Tcnal 63 83 87 58 20 29 1.1 1.9 1.5 3-539 27 43 38 31 3-540 34 35 38 32 3-Total 61 78 76 63 17 13 1.0 0.8 0.9 4-541 28 42 39 31 4-542 28 43 41 31 4-Total 56 85 80 62 29 18 1.7 1.2 1.4 5-543 29 39 37 26 5-544 25 36 39 30 5-Total 54 75 76 56 21 20 1.2 1.3 1.2 6-545 28 44 43 30 6-546 28 38 39 28 6-Total 56 82 82 58 26 24 1.5 1.5 1.5 7-547 31 49 46 26 7-548 27 42 29 21 7-Total 58 91 75 47 33 28 1.9 1.8 1.8 8-549 30 35 48 29 8-550 26 35 37 31 8-Total 56 70 85 60 14 25 0.8 1.6 1.2 9-551 30 39 37 29 9-552 34 39 37 27 m:\2509 whit 8_4a.wp:1bm12996 Page 27 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS . EXPOSURE TOTAL SYSTEM PIPE IDENTIFICATION PIPE LENGTil PIPE DIAMETER # OF lLDS START EXPOSURE SlDP EXPOSURE ' OR LOCATION (inches) IN STRING DATEMME DAlEmME 11ME (minutes) ESW #6 VENT LINE 54 5 68 2-7-95/1535 4-27-95/0745 113290 , CALillRAllON FAGORS -l 1LD SURVEY DATA (di-1100cm2/mR*) Lithium Borste = 6.49e4 Calcium Sulfate = 7.24e+06 9-Total 64 75 74 56 14 18 0.8 1.2 1.0 10-553 31 48 43 32 10-554 35 35 36 25 10-Total 66 83 79 57 17 22 1.0 1.4 1.2 11-555 41 39 38 31 t1-556 29 41 40 32 Il-Total 70 80 78 63 to 15 0.6 1.0 0.8 ' 12-557 29 43 37 30 12-558 27 29 35 29 12-Total 56 72 72 59 16 13 0.9 . 0.8 0.9 13-559 27 29 33 28 ! t 13-560 29 34 33 28 13-Total 56 63 66 56 7 10 0.4 0.6 n5 14-561 32 29 32 31 14-562 29 29 31 27 14-Total 61 58 63 58 -3 5 -0.2 0.3 al 15-563 29 28 29 25 t 15-564 29 35 30 30 15-Total 58 63 59 55 5 4 0.3 0.3 a3 16-565 25 29 27 27 16-566 29 28 33 28 ;
~ ;
16-Total 54 57 60 55 3 5 0.2 0.3 0.2 j 17-567 29 46 43 31 l 17-568 32 82 57 24 ! 17-Tonal 61 128 100 55 67 45 3.8 2.9 3.4 , 18-569 33 46 37 28 18-570 27 31 34 30 ; 18-Tosal 60 77 71 58 17 13 1.0 0.8 n9 , 19-571 26 35 31 .30 ' nous 09 ws_4a.wpeltel2996 'Page 28 of 49 f i __ __ . . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ . . _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____mm_____ _ _ _ _
ATTACHAG'NT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS T i EXPOSURE TOTAL-SY$IEM PIP 3 IDEN11FICATION PIPE LENGUI PIPE DIAMETER # OF TLDS START EXPOSURE STOP EXPOSURE j OR LOCA110N (inches) IN STRING DA1F1HME DATE/UME TIME (minutes) ; ESW #6 VENT LINE 54 1 68 2-7-95/1535 4-27-95/0745 113290 [ CAllBRATION FACI' ORS 1 TLD SURVEY DATA (dis /100cm2/mR*) Lithium Barata = 6.49e+06 Calcium Sulfate = 7.24e+06 ! 19-572 33 41 35 29 .i 19-Total 59 76 66 59 17 7 1.0 0.4 0.7 20-573 30 32 35 29 ; , 20-574 27 39 38 29 j 20-Total 57 71 73 58 14 15 0.8 1.0 0.9 21-575 33 % 38 30 j 21-576 28 34 32 32 21-Total 61 70 70 62 9 8 R5 R5 0.5 l . 22-577 30 36 36 32 [ 22-578 30 29 38 33 + 22-Total 60 65 74 65 5 9 R3 0.6 0.4 , 23-579 33 37 37 32 , 23-580 26 28 26 22 23-Total 59 65 63 54 6 9 0.3 0.6 0.5 24-581 32 35 34 28 j 24 582 27 30 30 28 24-Total 59 65 64 56 6 8 0.3 0.5 0.4 } 25-583 25 29 29 26 25-584 24 29 32 28 ; 25-Total 49 58 61 54 9 7 0.5 0.4 0.5 26-373 27 28 35 33 26-374 31 42 36 33 i 26-Total 58 70 71 66 12 5 0.7 0.3 R5 ,
~
29 36 33 29 i 27-375 27-376 25 30 29 30 i 27-Total 54 66 62 59 12 3- 0.7 0.2 0.4 I 28-377 28 31 30 24 l 28-378 30 41 32 31 28-Total 58 72 62 55 14 7 0.8 0.4 0.6 i m-\2509whats_4twpf:lW012996 Page 29 of 49 f
ATTACintENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS l EXPOSURE TOTAL. SYSTEM PIPE IDEN11FICATION PIPE LENGTil PIPE DIAMETER # OF-lILDS START EXPOSURE STUP EXPOSURE OR LOCAllON (inches) IN STRING DATE/ TIME DATE/11ME TIME (minutes) ESW #6 VENT LINE 54 1 6d 2-7-95/1535 4-27-95/0745 113290 CALIBRAllON 12ACIORS ILD SURVEY DATA (dis /100cm2/mR*) Lithium Beate = 649e+06 Calcium Sulfate = 7.24e+06 29-379 29 40 35 30 29-380 34 37 28 25 29-Total 63 77 63 55 14 8 0.8 0.5 0.7 30-38I 29 40 32 26 30-382 35 30 29 25 30-Total 64 70 61 51 6 to 0.3 0.6 0.5 31-383 26 37 33 32 31-384 29 33 30 27 31-1otal 55 70 63 59 15 4 0.9 03 0.6
' ~
32-385 33 35 29 26 32-386 29 37 28 30 32-Total 62 72 57 56 10 I 0.6 al 0.3 33-387 33 45 32 30 33-388 33 36 31 28 33-Total 66 77 63 58 11 5 0.6 0.3 0.5 34-389 55 63 45 44 34-390 55 58 62 61 4-1otal 110 121 107 105 11 2 0.6 0.1 0.4 sg. ety Total 60.6 Average Total 59.4 Average (Kopm/IO0cm2) 1.2 Stand. Stand. Dev. 4.2 Dev. 4.6 Student's t valuel.693 Error (95%) (Kdpm/100em2) 0.7 Critical Level (Kdpm/100cm2) 0.6 MDA (Kdpm/100cm2) 1.2 mA2509. wit 8_4a.wpnthol2996 Page 30 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE luTAL SYSTEM tiPE IDENTIFICATION PIPE LENGTil PIPE DIAMETER # OF 11 DS START EXPOSURESTOP EXPOSURE OR LOCAllON (inches) IN STRING DATE/I1ME DATE/I1ME 11ME (minutes) ESW #7 VENT LINE 58 1 72 2-7-95AMIO 4-27-95/0800 I13750 CALIBRA110N FALTORS TLD SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 6,49e+06 Calcium Sulfate = 7.24e+06 POS1110N - ELEMENT ELEMENT Lil. MENT ELEMENT Lathium Borate Calcium Sulfate Littucm Borate Calemm Sulfate 1LD Average BADGE I 2 3 4 Net Reading Net Reading Result Result Result NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (4 dom /100cm2) (Kdpm/100cm2) 1-301 33 62 63 30 1-302 30 51 43 35 1-Total 63 113 106 65 50 41 2.9 2.6 2.7 2-303 30 32 32 28 2-304 32 39 35 34 2-Total 02 71 67 62 9 5 R5 0.3 R4 3-305 37 47 31 31 3-306 33 43 31 30 3-Total 70 90 62 61 20 1 1.1 0.1 0.6 4-307 36 53 33 30 4-308 37 41 31 31 4-Total 73 94 64 61 21 3 1.2 0.2 a7 5-309 27 35 30 31 5-310 30 35 27 29 5-Total 57 70 57 60 13 -3 0.7 -0.2 0.3 6-3II 27 31 26 27 6-312 26 34 33 29 6-Total 53 65 59 56 12 3 0.7 0.2 0.4 7-313 31 24 30 28 7-314 25 35 31 31 7-Total 56 59 61 59 3 2 0.2 0.1 al 8-315 27 37 31 31 8-316 28 31 27 31 8-Total 55 68 58 62 13 -4 a7 -0.3 0.2 9-317 31 31 27 30 9-318 28 32 28 30 m \250%tt8_4a.=g:lw012996 Page 31 of 49
O O ATI'ACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE lOTAL SYS1EM PIPE IDENTIFICATION PIPE LENGTII PIPE DIAMETER # OF TI.DS START EXPOSURE STOP EXPOSURE OR LOCA110N (inches) IN STRING DA1E/IIME DATE/I1ME 11ME (minutes) ESW #7 VL5T LINE 58 1 72 2-7-95A)810 4-27-95/0800 113750 CALIBRAllON FACTORS ILD SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 6.19e+06 Calcium Sulfate = 7.24e+06 9-Total 59 63 55 60 4 -5 a2 -0.3 -0.0 10-319 29 31 28 30 10-320 25 33 28 29 10-Total 54 64 56 59 10 -3 0.6 -0.2 0.2 11-321 36 33 28 30 i1-322 28 28 29 30 Il-Total 64 61 57 60 -3 -3 -0.2 -0.2 -0.2 12-323 25 28 28 30 12-324 39 37 26 28 12-Total 64 65 54 58 1 -4 0.1 -0.3 -0.1 13-325 35 37 32 31 13-326 34 37 30 32 13-Total 69 74 62 63 5 -l R3 -0.1 0.1 14-327 30 30 26 26 14-328 30 31 29 29 14-Total 60 61 55 55 1 0 al RO 0.0 15-329 35 42 29 30 15-330 29 36 31 30 15-Total 64 78 60 60 14 0 R8 0.0 0.4 16-331 37 35 33 30 16-332 27 29 32 32 16-Taal 64 64 65 62 0 3 0.0 0.2 0.1 17-333 34 37 32 32 17-334 38 47 37 29 17-Total 72 84 69 61 12 8 0.7 0.5 0.6 I8-335 31 35 31 32 18-336 36 38 29 31 18-Total 67 73 60 63 6 -3 0.3 -0.2 0.1 19-337 29 33 34 31 m-\2509w\atts_4a.wpf:ltW12996 Page 32 of 49
e a ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS
?
i EXPOSURE IUTAL I SYSTEM PIPE IDEN11FICATION PIPE LENGTH PIPE D!AMETER # OF 1LDS START EXPOSURE STOP EXPOSURE i OR LOCATION (inches) IN STRING DAlF1IIME DATE/I1ME TIME (minutes) l r ESW #7 VENT LINE 58 1 72 2-7-95Mto 4-27-95/0800 II3750 ;
- CALIBRAllON FACI' ORS [
j TLD SURVEY DATA (dis /IO0cm2/mR*) Lithium Berate = 6.49e+06 Calcium Sulfate = 7.24e+06 4 19-338 34 32 30 30 j 19-Total 63 65 64 61 2 3 0.1 0.2 u,2
- 20-339 26 38 28 29 j 20-340 32 40 30 29 j 20-Total 58 78 58 58 20 0 1.1 0.0 0.6 l l [
21-343 32 34 31 31 [ l 21-342 29 41 34 31 i i < 21-Total 61 75 65 62 14 3 0.8 0.2 0.5 l 22-343 32 36 28 30 i 22-344 29 34 29 33 22-Total 61 70 57 63 9 -6 0.5 -0.4 0.1 ', 23-345 29 27 27 28 i t ' 23-346 33 33 26 27 23-Total 62 60 53 55 -2 -2 -al -0.1 -0.1 ; 24-347 36 42 29 32 24-348 36 29 26 30 24-Total 72 71 55 62 -1 -7 -0.1 -0.4 -0.3 25-349 31 34 28 30 25-350 34 38 29 30 25-Total 65 72 57 60 7 -3 a4 -0.2 0.1 26-'351 28 30 28 29 i 26-352 32 30 27 26 26-Total 60 60 55 55 0 0 no a0 0.0 27-353 29 32 26 27 27-354 31 61 26 26 27-Total 60 93 52 53 33 -1 1.9 -0.1 0.9 . 28-355 33 39 30 29 28-356 36 35 31 28 28-Total 69 74 61 57 5 4 0.3 0.3 0.3
; mT25CNant8 4twpf:lbm2996 Page 33 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DA FA AND RESULTS EXPOSURE TOTAL SYSTEM PIPE IDEN11F! CATION PtPE LENGTII PIPE DIAMETER # OF TLDS START EXPOSURE STUP EXPOSURE OR LOCATION (inches) IN STRING DATE/I'INE DATE/IlhE TIME (minutes) ESW #7 VENT LINE 58 1 72 2-7-95/0810 4-27-95/0800 113750 CALIBRATION FACTORS TLD SURVEY DATA (dis /100cm2/mR*) Lithium Borate = 6.49e+06 Calemm Sulfate = 7.24c+06 29-357 25 33 32 32 29-358 27 32 29 29 29-Total 52 65 61 61 13 0 0.7 0.0 0.4 30-359 31 33 25 27 30-360 31 32 30 28 30-Total 62 65 55 55 3 0 0.2 0.0 0.1 31-361 28 29 27 26 31-362 30 27 25 25 31-Total 58 56 57 51 -2 1 -0.1 0.1 -0.0 32-363 29 31 3. " 33 32-364 33 32 28 29 32-Total 62 63 60 62 1 -2 n1 -0.1 -0.0 33-365 23 28 29 26 I 33-366 34 42 31 30 [ 33-Total 57 70 60 56 13 4 0.7 0.3 a5 34-367 31 38 28 25 34-368 29 29 30 29 34-Total 60 67 58 54 7 4 0.4 0.3 0.3 35-369 40 40 31 28 35-370 32 40 34 28 35-Total 72 80 65 56 8 9 0.5 0.6 0.5 36-371 42 34 33 31 36-372 42 50 32 30 36-Total 84 84 65 61 0 4 0.0 0.3 0.1 Average Average Total 62.9 Total 59.1 Average (Kdpm/100cm2) 0.3 Stand. Stand. Dev. 6.6 Dev. 3.3 Student's a value 1.691 Error (95%) (Kdpm/100cm2) 0.1 Qitical level (Kdpm/100cm2) 0.5 MDA (Kdpm/IO0cm2) 1.0 l ma2509. wit 8_4a.wpr:nwi2996 Page 34 of 49 i l
. _ . ~ _ _ . - .. - . -. . .. - .. . .~ -- . . .
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE l ICTAL SYSTEM PIPE IDENTIFICATION PIPE LENGT11 PIPE DIAMETER # OF TLDS START EXPOSURE STOP EXPOSURE OR LOCATION (inches) IN STRING DATEri1ME DATErilhE TlhE (minutes) ! ESW #8 VENT LINE 62 1 76 2-7-95A)830 + 27-95/U8 l'> 113740 CALIBRATION FACIURS TLD SURVEY (dis /100cm2/mR DATA *) Litidum Borate = 6.49e+06 Calcir m Sulfate = 7.24e+06 POSil10N - ELEMENT ELEMENT ELEMENT ELEMENT Lattuum Borate Calemm Sulfate Littuum Borate Cahium Sulfate TLD Average BADGE 1 2 3 4 Net Reading Net Reading Result Re.dt Result NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (K dpm/10%m2) (Kdpm/100cm2) 1-223 41 141 118 41 1-224 72 540 712 77 l-Total i13 681 830 1I8 568 712 32.4 453 38.9 2 225 29 85 76 36 2-226 30 65 69 33 2-Total 59 150 145 69 91 76 5.2 4.8 5.0 3-227 38 79 70 35 , 3-228 42 81 75 33 3-Total 80 160 145 68 80 77 4.6 4.9 4.7 4-229 32 53 55 33 4230 34 61 55 34 4-Total 66 114 110 67 48 43 2.7 2.7 2.7 5-231 32 66 53 32 5-232 32 63 60 40 ' 5-Total 64 134 113 72 70 41 4.0 2.6 3.3 6-233 30 54 59 39 6-234 32 46 47 30 6-Total 62 100 1% 69 38 37 2.2 2.4 2.3 7-235 32 62 45 30 7-236 41 66 58 36 , 7-Total 73 128 103 66 55 37 3.1 2.4 2.7 8-237 30 66 55 30 8-238 30 50 63 31 8-Total 60 1I6 118 61 56 57 3.2 3.6 3.4 m-\2509w\att8_4a.wi f :th012996 Page 35 of 49
. a ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS
. EXPOSURE TOTAL SYSTEM PIPE IDENTIFICATION PIPE LENGTII PIPE DIAMETER # OF 1LDS START EXPOSURE SIDP EXPOSURE OR LOCATION (inches) IN STRING DATEmME DATEmME TIME (minutes) ESW #8 VENT LINE 62 1 76 2-7-95/0830 4-27-95/0810 113740 CALIBRATION FAC1DRS TLD SURVEY (dis /100cm2/mR DATA *) Lithium Borate = 6.49e4 Calcium Sulfate = 7.24e+06 9-239 42 57 44 28 9-240 35 55 50 41 9-Total 77 II2 94 69 35 25 2.0 1.6 1.8 10-241 32 58 40 27 10-242 27 47 42 30 10-Total 59 105 82 57 46 25 2.6 1.6 2.1 , 11-243 30 38 39 30 11-244 29 40 39 33 Il-Total 59 78 78 63 19 15 1.1 1.0 1.0 12-245 25 45 47 32 12-246 37 43 44 31 12-Total 62 88 91 63 26 28 1.5 1.8 1.6 13-247 36 49 47 36 13-248 37 44 38 28 13-Total 73 93 85 64 20 21 1.1 1.3 1.2 14-249 36 57 46 37 14-250 39 57 47 38 14-Total 75 114 93 75 39 18 2.2 1.1 1.7 15-251 37 52 50 34 15-252 30 45 43 32 15-Total 67 97 93 66 30 27 1.7 1.7 1.7 16-153 30 53 62 35 16-254 38 61 59 36 16-Total 68 114 121 71 46 50 2.6 3.2 , 2.9 17-255 34 230 193 38 17-256 40 1I3 95 40 17-Total 74 343 288 78 269 210 15.3 13.4 14.4 m:u509 w8_4a.wg:llwl2996 Page 36 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE TOTAL l SYSTEM PIPE IDEN11FICATION PIPE LENGill PIPE DIAMETER 8OFTLDS START EXPOSURE STOP EXPOSURE OR LOCAllON (inches) IN STRING DATE/ TIME DATE/IlME TIME (minutes) ESW #8 VENT LINE 62 1 76 2-7-95A>830 4-27-95/0810 I13740 CALIBRAllON l FACTORS TLD SURVEY (dis /100cm2/mR j DATA *) Lithium Borate = 6.49e+J6 Calcium Sulfate = 7.24e+06 18-257 43 95 85 34 l I8-258 38 47 50 30 18-Total 81 142 135 64 61 71 3.5 4.5 4.0 19-259 32 51 53 37 19-260 33 69 65 34 l 19-Total 65 120 118 71 55 47 3.1 3.0 3.1 20-261 32 56 46 34 20-262 35 65 56 35 20-Total 67 12I 102 69 54 33 3.1 2.1 2.6 21-263 40 55 50 30 21-264 30 41 43 31 21-Total 70 % 93 61 26 32 1.5 2.0 1.8 22-265 35 64 52 30 22-266 30 41 39 3I 22-Total 65 105 91 61 40 30 2.3 1.9 2.1 23-267 30 73 87 32 23-268 31 47 44 43 23-Total 61 120 131 75 59 56 3.4 3.6 3.5 24-269 30 56 42 32 24-270 35 47 45 36 24-Total 65 103 87 68 38 19 2.2 1.2 1.7 25-271 37 45 37 36 25-272 26 52 41 32 25-Total 63 97 78 68 34 10 1.9 0.6 1.3 26-273 25 41 37 35 26-274 33 45 35 30 26-Taal 58 86 72 65 28 7 1.6 CL4 1.0 m-\2509wktt8 4a.wpf:th012996 Page 37 of 49
. . t I
ATTACHMENT 3.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS i r TOTAL EXPOSURE SYSim PIPE IDENTIFICATION PIPE LENGTil PIPE DIAMETER # OF TLDS START EXPOSURE STOP EXPOSURE l OR LOCAllON (inches) IN STRING DATE/I1ME DATE/IlME 11ME (minutes) I ESW #8 VENT LINE 62 1 76 2-7-95A)830 4-27-95A)610 113740 l CAllBRATION ' FAC1DRS 1LD SURVEY (dis /100cm2/mR DATA *) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 27-275 30 40 36 29 . t 27-276 32 35 32 31 27-Total 62 75 68 60 13 8 0.7 0.5 0.6 . 28-277 32 34 37 34
- 28-278 25 37 37 31 28-Total 57 71 74 65 14 9 tl8 0.6 0.7 ;
29-279 34 56 45 32 29-280 36 43 39 31 99 84 63 29 21 1.7 1.3 1.5 i 29-Total 70 l 33 30-281 27 43 43 ; 30-282 38 41 38 33 30-Total 65 84 81 66 19 15 1.1 1.0 1.0 31-283 41 44 40 33 31-284 32 39 44 31 31-Total 73 83 84 64 10 20 0.6 1.3 0.9 32-285 36 45 39 34 32-286 32 47 36 27 32-Total 68 92 75 61 24 14 1.4 0.9 1.1 33-287 28 55 49 36 33-288 30 47 36 31 33-Total 58 102 85 67 44 18 2.5 1.1 1.8 34-289 30 51 39 33 34-290 33 54 41 31 , 34-Total 63 105 80 64 42 16 2.4 1.0 1.7 35-291 31 51 43 34 35-292 32 49 49 32 35-Total 63 100 92 66 37 26 2.1 1.7 1.9 i t m:uso9.w8_4a.wpelhel2996 Page 38 of 49 _ _.__.a._--_- - - _ . _ _ . . _ _---_-___----n -a , -- - - - - - - -- - _ _ _ _ - - _-_- - _ _ _ _ .
ATI'ACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE 10TAL SYSTEM PIPE IDENTIFICATION P!PE LENGTII PIPE DIAMETER # OF TLDS START EXPOSURE STOP EXPOSURE OR LOCATION (inches) IN STRING DATE/IIME DATE/I1ME TIME (minutes) ESW #8 VENT LINE 62 1 76 2-7-95M830 4-27-95m810 113740 CAllBRAllON FACIURS TLD SURVEY (disn00cm2/mR DATA *) Uthium Borate = 6.49e+06 . Calcium Sulfate = 7.24e+06 36-293 29 50 39 29 36-294 35 36 33 33 36-Total 64 86 72 62 22 10 1.3 0.6 0.9 37-529 29 38 34 29 37-530 29 28 32 26 37-Total 58 66 66 55 8 II 0.5 0.7 0.6 38-531 29 38 39 32 38-532 25 38 34 27 38-Total 54 76 73 59 22 14 1.3 0.9 1.1 Average Average Total 66.9 Total 67.1 Average (Kdpm/100cm2) 3.3 Stand. Stand. Dev. 6.6 Dev. 5.0 Student's t value 1.688 Error (95%) (Kdpm/IO0cm2) 1.7 Critical Level (Kdpm/100cm2) 0.8 MDA (Kdpm/100cm2) 1.5 mu509.w8_4a.wpf:lW12996 Page 39 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE 1UTAL SYSTEM - PIPE IDEN11FICATION PIPE LENGTH PIPE DIAMETER # OF 11 DS START EXPOSURE STOP EXPOSURE OR LOCATION (inches) IN STRING DATE/IIME DATE/I1ME 11ME (minutes) ESW #9 VENT LINE 66 I 80 2-7 75/0855 4-27-95/0815 113720 CALIBRAllON FACIDRS TLD SURVEY (dis /100cm2/mR . DATA *) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+% POSI110N - ELEMENT ELEMENT EllMENT ELEMENT Lattuum Borate Calcam Sulfate Lithium Bmwe Calemm Sulfate 1LD Average BADGE I 2 3 4 Net Reading . Net Reading . Result Result Result NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (K dpm/100cm2) (Kdpm/100cm2) 1-151 31 47 42 33 l-152 29 61 54 30 1-Total 60 108 % 63 48 33 2.7 2.1 2.4 2-153 30 33 34 31 2-154 27 37 37 31 ; 2-Total 57 70 71 62 13 9 a7 0.6 0.7 3-155 28 30 32 31 j 3-156 40 41 27 25 j 3-Total 68 71 59 56 3 3 0.2 0.2 0.2 4-157 34 35 33 34 4-158 30 32 31 34 f 4-Total 64 67 64 68 3 -4 0.2 -0.3 -0.0 - j 5-159 24 34 28 28 5-160 33 28 29 30 5-Total 57 62 57 58 5 -1 0.3 -0.1 0.1 ; 6 161 28 32 30 30 6-162 33 31 30 30 6-Total 61 63 60 60 2 0 0.1 0.0 0.1 ; 7-163 26 - 33 28 28 7-164 30 30 32 30 f 7-Total 56 63 60 58 7 2 0.4 0.1 0.3 8-165 27 34 29 29 { l 8-166 33 34 30 30 8-Total to 68 59 59 8 0 0.5 . 0.0 0.2 I i l m-\1509wher8_4a.wpf:ltn012996 Page 40 of 49
. . i ATTACHMENT 8.4 ,
ESW 1" PIPING TLD SURVEY DATA AND RESULTS i EXPOSURE 10TAL SYSTEM PIPE IDEN11FICATION PtPE LENGTil PIPE DIAhEIER # OF 1LDS START EXPOSURE STOP EXPOSURE l OR LOCATION (inches) IN STRING DAIF1IlME DATEri1ME TIME (minutes) ! ESW #9 VENT LINE 66 I 80 2-7-95A)855 4-27-95/0815 113720 CALIBRATION FACIORS i TLD SURVEY (dis /100cm2/mR DATA *) Lithitun Berate = 6.49e+06 Calcium Sulfate = 7.24e+06 [
! 9-167 29 30 32 31 t 9-168 24 32 29 31 9-Total 53 62 61 62 9 -1 0.5 -0.1 0.2 j 10-169 36 35 31 33 1-I 10-170 29 32 30 28 ;
10-Total 65 . 67 61 61 2 0 al 0.0 0.1 29 33 30 30 ! 11-171 t i 11-172 36 38 34 35 t Il-Total 65 71 64 65 6 -1 a3 -0.1 0.1 ; 12-173 34 35 30 31 ! i 12-174 27 31 29 30 j 12-Total 61 e6 59 61 5 -2 R3 -0.1 0.1 , i 13-175 33 32 30 35 ; 13-176 31 28 32 30 - t i 13-Total 64 60 62 65 -4 -3 -0.2 -0.2 -0.2 i 14-177 31 33 33 33 s 14-178 31 38 32 33 ! 14-Total 62 71 65 66 9 -1 a5 -01 0.2 15-179 20 29 33 30 [ 15-180 36 27 35 35 15-Total 56 66 68 65 10 3 R6 0.2 a4 16-181 28 37 33 35 16-182 31 45 32 34 ) 16-Total 59 82 65 69 23 -4 1.3 -0,3 0.5 17-183 30 .41 32 30 17-184 29 32 33 33 t 17-Tosai 59 73 65 63 14 2 0.8 0.1 0.5 L L mA25c:wwS_4a.wpr:ltal2996 Page 41 of 49
. _ _ _ - _ _ _ - - . _ _ _ _ _ _ _ _ _ - - _ - _ _ _ - - - . . _ _ .--~
I ATTACHMENT 8.4 l ESW 1" PIPING TLD SURVEY DATA AND RESULTS L t EXPOSURE TOTAL SYS1EM PIPE IDEN11FICATION PIPE LENGTH P!PE DIAMETER # 0F ILDS START EXPOSURE STOP EXPOSURE l OR LOCATION (inches) IN STRING DA1ETI1ME DATE/I1ME 11ME (minutes) [ ESW #9 VENT LINE 66 I 80 2-7-952855 4-27-95/0815 113720 [ CALIBRAllON I I FACIDRS I 1LD SURVEY (dis /100cm2/mR Lithium Berate = f DATA *) 6.49e+06 Calcium Sulfate = 7.24e+06 I8-183 33 39 34 34 I r 2 , 18-186 28 31 30 30 18-Total 61 70 64 64 9 0 0.5 0.0 0.3 19-187 30 31 33 35 19-I88 32 45 34 33 19-Total 62 76 67 68 14 -1 0.8 -0.1 0.4 20-189 30 32 28 30 20-190 34 37 29 31 20-Total 64 69 57 61 5 -4 0.3 -0.3 0.0 21-191 32 38 35 35 ! 21 192 30 44 34 35 21-Teemt 62 82 69 70 20 -1 1.1 -0.1 a5 22-193 34 37 30 30 22-194 34 38 32 35 22-Total 68 75 62 65 7 -3 0.4 -0.2 - 0.1 23-195 30 34 31 30 , 23-196 37 32 38 38 ! 23-Total 67 66 69 68 -1 1 -01 0.1 0.0 24-197 33 32 30 32 I 24-198 32 36 33 33 24-Teeml 65 68 63 65 3 -2 0.2 -0.1 0.0 i 25-199 35 36 33 30 25-200 32 39 29 28 25-Total 67 75 62 58 8 4 0.5 0.3 0.4 26-201 36 36 31 32 26-202 28 33 31 31 26-Total 64 69 62 63 5 -1 R3 -0.1 0.1 r m-us09.wS_s.pf:Ibel2996 Page 42 of 49
ATTACHMENT 8 4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE 1DTAL ,- SYS1EM PIPE IDEN11FICATION PIPE LENGTil PIPE DIAME1ER # OF 1LDS ~ START EXPOSURE STOP EXPOSURE l OR LOCA110N Gnches) IN STRING DATE/11ME DA1ETIlME 11ME (minutes) ESW #9 VENT LINE 66 I 80 2-7-95Ks855 4-27-95A1815 113720 l Od.IBRAllON FACTORS TLD SURVEY (dis /100cm2/mR
- DATA *) Lithium Berate = 6.49e+06 Calcium Sulfate = 7.24e+06 i 27-203 28 32 32 33 27-204 29 28 27 27
! 27-Total 57 60 59 60 3 -1 a2 -0.1 al 28-205 31 43 30 30 28-206 30 32 29 33 28-Total 61 75 59 63 14 -4 a8 -0.3 0.3 29-207 30 32 31 30 j 29-208 30 32 26 28 29-Total 60 64 57 ',8 4 -1 0.2 -0.1 0.1 30-209 26 34 28 30 30-210 29 28 27 28 30-Total 55 62 55 58 7 -3 0.4 -0.2 0.1 31-211 28 32 28 28 31-212 29 30 26 27 31-Toemt 57 62 54 55 5 -1 0.3 -0.1 0.1 32-213 33 40 33 33 32-214 35 41 29 30 32-Total 68 81 62 63 13 -1 0.7 -0.1 0.3 33-215 33 39 31 32 33-216 34 33 29 30 33-Total 67 72 60 62 5 -2 R3 -0.1 0.1 34-217 28 37 34 33 34-218 38 28 35 36 34-Total 66 65 69 69 -1 0 -0.1 0.0 -0.0 35-219 30 39 27 27 35-220 33 34 32 31 35-Total 63 73 59 58 to 1 0.6 0.1 0.3 mn509 w8 Awpcibel2996 Page 43 of 49 _ _ _ _ __ _- _ _ _ _ _ _ _ _ - . _ . . . . . ,~ - , _ . . _ - - . . - ~ _ _ _ _ _ _ _ _ _ ..- - _- ._ _ . _ _ _ - .
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE TOTAL SYS1EM PIPE LENGTil PIPE DIAMETER # OF TLDS START EXPOSURE STOP EXPOSURE PIPE IDENTIFICATION OR LOCAT10N (inches) IN STRING DATEmME DATEMME 11ME (minutes) ESW #9 VENT LINE 66 1 80 ' 2-7-95M855 4-27-95/0815 113720 CALIBPAllON FACTORS 1LD SURVEY (dis /100cm2/mR DATA *) Lithium Berate = 6.49e+06 Calcium Sulfate = 7.24e+06 36-221 30 28 31 32 36-222 32 30 32 33 36-Total 62 58 63 65 -4 -2 -0.2 -0.1 -0.2 37-517 32 30 26 27 37-518 30 31 33 34 37-Total 62 61 59 61 -1 -2 -0.1 -0.1 -0.1 38-519 31 26 27 28 38-520 34 28 28 28 38-Taal 65 54 55 56 -11 I -0.6 -0.1 -0.3 39-521 28 31 28 28 39-522 21 29 24 25 39-Total 49 60 52 53 11 -1 0.6 -0.1 0.3 40-523 28 31 30 31 4 524 30 29 28 27 40-Tonal 58 60 58 58 2 0 0.1 0.0 0.1 Avera8e Avera8e Total 61.4 Total 62.1 Average (Kdpm/100cm2) 0.2 Stand-Stand. Dev. 4.4 Dev. 4.2 Student's a value 1.685 Error (95%) (Kdpm/IO0cm2) 0.1 Qitical Level (Kdpm/100cm2) 0.6 MDA (Kdpm/100cm2) 1.2 m:\2509w%st8Awpf:lt@l2996 Page 44 of 49
z ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS EXPOSURE TOTAL SYSTEM PIPE IDENTIFICATION PIPE LENGTil PIPE DIAMETER # OF 11 DS START EXPOSURE S1DP EXPOSURE OR LOCATION (inches) IN STRING DATE/11ME DATE/11ME TIME (minutes) ESW #10 VENT LINE 70 1 84 2-6-95/1520 4-27-95/0820 114780 CALIBRA110N FACTORS TLD SURVEY (dis /100cm2/mR DATA *) Lithium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 POSITION - ELEMENT ELEMENT ELEMENT ELEMENT Lithium Borate Calcium Sulfate littuum B, sate Calcium Sulfate 1LD Average BADGE I 2 3 4 Net Reading Net Reading Result Result Result NUMBER (mR*) (mR*) (mR*) (mR*) (mR*) (mR*) (K dpm/100cm2) (K dpm/100cm2) (Kdpm/100cm2) 1-79 39 144 125 31 1-80 31 120 125 47 1-Total 70 264 250 78 194 172 I1.0 10.8 10.9 2-81 32 31 39 34 2-82 32 34 37 34 2-Total 64 65 76 68 I 8 0.1 n5 0.3 3-83 35 42 33 31 3-84 32 39 33 31 3-Total 67 81 66 62 14 4 0.8 0.3 0.5 4-85 29 34 26 27 4-86 31 35 32 31 4-Total 60 69 58 58 9 0 0.5 0.0 0.3 5-87 30 31 65 33 5-88 32 39 34 34 5-Total 62 70 99 67 8 32 0.5 20 1.2 6-89 29 32 34 34 6-90 34 36 34 34 6-Total 63 68 68 68 5 0 0.3 0.0 0.1 7-91 33 35 32 29
. 7-92 44 36 31 31 ~
7-Total 77 71 63 60 -6 3 -0.3 0.2 -0.1 8-93 31 31 34 31 8-94 33 43 32 31 8-Total 64 74 66 62 to 4 0.6 a3 0.4 m-us09wsu8_4a.wpf:llW12996 Page 45 of 49
ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RFSULTS EXPOSURE 10TAL SYSTEM PIPE IDENTIFICATION PIPE LENGTil PIPE DIAMETER # OF ILDS START EXPOSURE STOP EXPUSURE OR LOCATION (inches) IN STRING DA1FITL4fE DA111/11ME TIME (minutes) ESW #10 VENT LINE 70 1 84 2-6-95/1520 4-27-95/0820 I14780 CALIBRAllON FACTORS TLD SURVEY (dis /100cm2/mR DATA *) Lithium Borate = 6.49e+% Calcium Sulfate = 7.24e+06 9-95 28 38 30 30 9-% 31 35 32 31 9-Total 59 73 62 61 14 1 0.8 0.1 0.4 10-97 31 29 29 30 10-98 31 33 30 28 to-Total 62 62 59 58 0 1 0.0 0.1 0.0 1I-99 35 35 31 30 Il-100 29 32 29 33 Il-Total 64 67 60 63 3 -3 0.2 -0.2 -0.0 12-101 31 33 35 38 12-102 30 24 34 32 12-Total 61 57 69 70 -4 -1 -0.2 -0.1 -0.1 13-103 40 47 36 35 j 13 104 29 32 34 33 13-local 69 79 70 68 10 2 0.6 0.1 0.3 14-105 36 32 30 32 14-106 34 40 34 34 14-Total 70 72 64 66 2 -2 a1 -0.1 -0.0 15-107 37 39 30 35 15-108 42 38 37 38 15-Total 79 77 67 73 -2 -6 -0.1 -0.4 -0.2 16-109 32 36 29 32 16-1 to 38 47 35 32 16-Total 70 83 64 64 13 0 0.7 0.0 0.4 l 17 111 32 40 33 33 17-112 30 38 35 34 l ! 17-Tosai 62 7s 68 67 16 1 n.9 0. i 0.5 mA25c9wh8_4a.wp0ltAl2996 Page 46 of 49
' ATTACHMENT 3.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS '
EXPOSURE 10TAL SYSTEM PIPE IDEN11FICAT10N PIPE LENGTil PIPE DIAMETER # OF 1LDS START EXPOSURE STOP EXPOSURE OR LOCATION (inches) IN STRING DATE/ TIME DATE/I1ME TIME (minutes) ESW #10 VENT LINE 70 1 84 2-6-95/1520 4-27-95A)820 114780 CALIBRATION FACTORS TLD SURVEY (dis /100 cad /mR DATA *) ljthium Barate = 6.49e+06 Calcaum Sulfate = 7.24e+06 I8-113 33 39 36 38 18-114 34 41 34 36 18-Total 67 so 70 74 13 -4 0.7 -0.3 0.2 19-115 35 37 38 35 19-116 29 39 35 38 19-Total 64 76 73 73 12 0 0.7 0.0 R3 20-117 30 33 31 34 20-1I8 33 37 35 34 20-Total 63 70 66 68 7 -2 0.4 -0.1 at 21-119 34 35 34 36 21-120 29 37 34 33 21-Total 63 72 68 69 9 -1 a5 -0.1 0.2 22-121 35 40 32 32 22-122 34 33 35 36 22-Total 69 73 67 68 4 -1 0.2 -0.1 0.1 23-123 31 35 36 36 23-124 31 35 34 37 23-Total 62 70 70 73 8 -3 0.5 -0.2 al 24-125 33 31 32 30 24-126 31 32 33 33 24-Total 64 63 65 63 -1 2 -0.1 0.1 0.0 25-127 33 34 33 32 25-128 34 37 33 37 25-Total 67 71 66 69 4 -3 0.2 -0.2 a0 26-129 33 36 35 36 26-130 33 41 34 35 26-Total 66 77 69 71 II -2 0.6 -01 0.2 4 mA2509wh8.4twpf:2 412996 Page 47 Of 49
o s ! ATTACHMENT 8.4 ESW 1" PIPING TLD SURVEY DATA AND RESULTS l EXPOSURE TOTAL ( SYSTEM PIPE IDENTIFICATION PIPE LENGrH PIPE DIAMETER # OF TLDS START EXPOSURE STOP EXPOSURE i OR LOCATION (inches) IN STRING DATETIIME DA1F111ME 11ME (minutes) ESW #10 VENT LINE 70 1 84 2-6-95/1520 4-27-95/0820 !!4780 CALIBRAllON : FACIDRS i TLD SURVEY (dis /100cm2/mR DATA *) lihium Borate = 6.49e+06 Calcium Sulfate = 7.24e+06 l 27-131 30 44 37 34 27-132 35 29 34 34 i 27-Total 65 73 71 68 8 3 0.5 0.2 0.3 28-133 34 32 31 32 j 28-134 33 36 35 34 ! 28-Total 67 68 66 66 1 0 al 0.0 0.0 29-135 32 32 31 32 29-l M 35 39 31 33 29-Total 67 71 62 65 4 -3 0.2 -0.2 0.0 30-137 35 M 30 33 30-138 33 38 32 33 l 30-Total 68 74 62 66 6 -4 a3 -0.3 0.0 ! 31-139 35 38 29 32 31-140 30 38 31 32 , 6 31-Total 65 76 60 64 11 -4 a6 -0.3 a2 l 32-141 33 M 29 34 i 32-142 39 43 33 31 32-Total 72 79 62 65 7 -3 0.4 -0.2 aI 33-143 35 32 35 38 33-144 29 34 34 37 l 33-Total 64 66 69 75 2 -6 at -0.4 -0.1 34-145 34 M 27 29 i 34-146 % 41 38 34 l 34-Total - 70 77 6l2 63 7 2 0.4 al 0.3 35-147 34 - 35 34 31 35-148 35 % 35 37 35-Total 69 71 69 68 2 1 at at al 1 musewwS_4=wp:lhel2996 Page 48 Of 49
ATTACHMENT 8.4 l ESW 1" PIPING TLD SURVEY DATA AND RESULTS { EXPOSURE lOTAL ! SYS H PIPE I.ENGTil PIPE DIAMETER # OF TLDS START EXPOSURE STOP EXPOSURE PIPE IDENTIFICATIOte l OR LOCAllON (inches) IN STRING DATE/I1ME DATE/I1ME TIME (minutes) ESW #10 Vi!NT llN!! 70 1 84 2-6 95/1520 4-27-95/0820 I14780 CALIBRAllON FACTORS TLD SURVEY (dis /100cm2/mR DATA *) Lithium Borate = 649e+% Calcium Sulfate = 7.24e+06 36-149 32 31 32 31 36-150 35 33 32 33 36-Total 67 64 64 64 -3 0 -0.2 no -0.1 37-505 28 24 29 29 37-506 32 29 28 26 37-Total 60 53 57 55 -7 2 -0.4 nl -0.1 38-507 29 25 31 29 38-508 27 34 30 31 38-Total 56 59 61 60 3 I (42 al 0.1 39-509 28 28 29 29 39-510 29 27 32 30 39-Total 57 55 61 59 -2 2 -0.1 0.1 0.0 40-5II 29 32 28 28 40-512 29 31 27 29 40-Total 58 63 55 57 5 -2 R3 -0.1 0.1 41-513 35 33 28 30 41-514 27 30 26 26 41-Total 62 63 54 56 I -2 0.1 -0.1 -0.0 42-515 27 28 28 25 42-516 30 32 30 27 42-Total 57 60 58 52 3 6 0.2 0.4 0.3 Average Average Total 65.0 Total 65.3 Average (Kdpm/100cm2) 0.4 Stand. Stand. Dev. 4.9 Dev. 5.7 Student's a value 1.683 Error (95%) (Kdpm/100cm2) 0.4 Qitical Level (Kdpm/100cm2) 0.7 MDA (Kdpm/100cm2) 1.3 m-\2509wkttB_4a.wpEllA)12996 Page 49 of 49
.m..__, _:- m.m_. _ . _ _ _ _ _ _ _ _ _ _ _ _ _ -- __-__va__ _ ____m - __ -. _ _ . - _ _ _ _ _ - . - _ _ _ - __ __ _md
USE OF TLDs TO ASSESS INTERNAL FSV-FRS-TBD-203 CONTAMINATION IN PIPING REVISION 0 ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS l l m:N8J.wpf:Ib012996 Page 1 of 32 l
. e ATTACHAIENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #1 - 2" Pipe (note: arrows denote elbows) 16 .. -. - - . - - - . - - -- --. _ - - .
12 .U -. .- -. - V N._ - Y h4 a . 0 d"1sd: .m -; e- d=eqy% m- _4 . . _ . __ . _ . - _ - _ _ .. ___ . _ 0 10 20 30 40 Pipe Position (feet from well)
-m . Poskion A TLD -se . Pusition B TIR m us09Witt_5.wpMW12996 page 2 of 32
ATTACIBfENT 83 ESW 2" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #2 - 2" Pipe (note: arrows denote elbows) 24 - - . .- - . - -- - ~ - - - - - - 20 Vi _ -. V- _ - - - .- - - -- V V -- -- 16 .- - - -
)g 12 \ ~ ~ ~
gy,,,g, 3 1.f hipm/100cm2- -- - - - - - -- - 38 __ - _.1 T Z ._ [ - - - . _ -- - a 4 . . ._ . .- _ _ . _ ...1 . ... _ - . _ . _ _ ._, 0 = === m e- = "wma15. me,ase arbEmaM -- _4 ._ ._ . 0 10 20 30 40 50 60 Pipe Position (fect from well)
.m - Poemon ATLD --m- Posinom B TLD m:uso9.uus_5.wpawo 2996 Page 3 of 32
o . ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #3 - 2" Pipe (note: arrows denote elbows) 16 . - .- -
+
12 I . .-
-~
Average = O.2 WIcocmT l 4 _ ._. .. __ O L 25c = =~=~s; A -- -
-4 .. . . . . _ _ __._. . . _ _ _ .
0 10 20 30 40 50 60 Pipe Position (feet from well)
-m-- Position A TLD . m Position B TLD m:uso9.was_5.wpf:1WO12996 Page 4 of 32
. e ATTACfBIENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS TLDResults for ESW #4 - 2" Pipe (note: arrows denote elbows) 40 .__. . . _ .
36 4 4 - - - - 4 .. 4 - - . _ - - - 32 - - - . - - - - --- - _ 28 - -- - . - - -- .- -- 324 . . __- ._. Average 4 211dpan/1005s1 - _
$20 -- .
16 - -. -- - - - - .- 12 3 8 ... ; .- i .. ..... - _ _ . .. . . . 4l !'.-'- , .. _ _-- . . _ . _ _ . .____ t O U .- - . . - , ~* ! W- Egm- -..-3-e-is e<R eJg:n 52=== ,
-4 - _ . . . . . .__ _ . _ - - _. _
0 10 20 30 40 50 Pipe Position (feet from well) m Position ATLD a Poestice B TLD m:uso9.ws_5.wpt:thm2996 Page 5 of 32
ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #5 - 2" Pipe (note: arrows denote elbows) l l 16 ._. - _ _ -- .- . - 12 - II I I s .____ . . . _ . .._ .__ . . _ _. ._ h Kierage =~0.1 kdpm/IU0cm2~ E 4 - . 0 m: s h, 3Mm+ W/= - m e 4 _ __ 0 10 20 30 40 Pipe Position (feet from well)
-m_ Poskka A TLD - e- Posidos B TLD m:\2509w\au8_5spf:1b/012996 Page 6 of 32
ATI'ACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #6 - 2" Pipe (note: arrows denote elbows) 24 .- - 20 V I - Y Y 16 - . -- .. Q .
.. .A g T1;2 W R W 12 ._.. ._. . . - )8 . _ . . . . _ . . _. ..
g 4- -- [i . 0 . - - . - - Y rei = -= 5 "- r -;; =sg,.4 b ;= 4 ... . _ _ . . _ _ . _ _- _. _. ._ _ 0 5 10 15 20 25 30 35 Pipe Position (feet %m well)
-a Puestion A TLD e- Position BTID m:u509wkn8J.wpf:lWO12996 Page 7 of 32
o . ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #7 - 2" Pipe (note: arrows denote elbows) 16 - - . .-- - - - . - . - - ---- -_- 12 .- ._ . _- -. . _. g8 - Ai%s a ~0 51@h '-- 9
~
o M *C bg E_.E$..h;;p h .
.ur *~NU 3 -4 .. . . - __.
0 5 10 15 20 25 30 35 Pipe Position (feet from well)
- am Poskion A llD _-o.- Poskion B TLD m:uso9 ws_5.wpf:1bO12996 Page 8 of 32
_ - _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ ._ ._ _}
ATTACIBfENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS i TLD Results for ESW #8 - 2" Pipe (note: arrows denote elbows) 16 ... ..--- .- 12 U I N 8 Aferage = 0.4 kdpm/10km2 - ..-- . 4 . - -- _ . .....2 . . . . - - . . .
.w !
e 0 =Aa %:ymMie,4.j # . _4 .
, . _ . _ . _ _ _ . . . . . I i 0 10 20 30 40 Pipe Position (feet from well) m Posidos A TLD m.. Position B TLD m-uso9 was_5 wpf:lbM2996 Page 9 of 32
l llt llfIl)1 0 _5 S 4g . T 0 k L U _ _.- 4 S . . _ E - D R e I - ) L D p I
- n l l
e T N A A i P )s 2 o b w W 1 v ~ m e w m i B o t s e n
- 5. T a 0 8A 9 e
# et l
p n .
~
e 3o f r P b TD a _
, t - 2 o 3
- N Y EE Wn S e 0 9 .
L f c e m f o MV E d = ( D 0 HR r s e _ n L 1 CU o w g o T e - AS TD I
' L f o ts r l
u a r
- a r
e v Q -
.0s 2o i
i t A s o P g a AT A- - _ P da s . G e :e . - e s o Rt o p P N I P Dn L( s _ w i P - b I . e T P "2 . '
\ "r W
S Y 0 1 E - _ Y -
- 0 . 6 1
2 1 8 4 0 4
. k3 - _
6 9 9 2 1 e h t f p
- w. -
5_ st - w _ w 9 0 5 u m: lll ,l l'
l ATTACIBfENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS TLD Results for ESW #10 - 2" Pipe (note: arrows denote elbows) 16 ..-
-----I---, - - - - ~~
V V
~ ~~ ~~
U V s _
.g ,
4 ._ _ . . . . . __- _ _ . - __ _ . _ _
.m o n=E .g.a e-e-e f . afs e ~
h h-4 20 30 40 50 0 10 Pipe Position (fect from well) a Position A TID .. se Positwo B 11.D atuso9*ns_5.wpfdMM2996 Page 11 of 32
ATTACHMEN1' 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS PtPE WSTEM 10ENTIFICATION PIPE LENGTH PIPE DAMETER e CF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE TIME vnmuteg ' OR LOCATION (inches) IN STRING DATEff!nE DATE/ TIME ESW #v DRAIN UNE 42 2 48 2-6-9'40815 4-2645r1030 111015 CAueRA110N FACTORS TLD SURVEY DATA idenf100cm2hre) Latwum Berate = 1.34e+07 Calcarvi Sdate = 161e,07 POSITION - ELEMEN T ELEMENT ELEMEN T ELEMENT Ltheum Borste Caltaret Su8 ate Lehnsn Borate Calceum Sutste TLD Average , BADGE 1 2 3 4 Net Reedmg Het Reedmg Resu8 Resu8 Resu8 IGJMBER ev&) PriR") (mR*) be#) pr&) (ne) (M demv100cm2) (K dpm/100cm2) (Mdonf100cm2) 1-1031 30 31 33 26 1 7 0.1 10 06
^1032 31 34 31 28 3 3 04 04 04 2-1033 28 40 33 26 12 7 14 10 t .2 2tm 29 37 36 26 8 8 to 12 1.1 &1035 32 35 34 25 3 9 04 13 08 3-1(06 27 38 34 28 11 6 13 09 11 4-1037 31 37 30 28 6 2 07 03 05 4-1038 27 27 29 26 0 3 00 04 0.2 6-1039 28 29 28 28 1 0 01 00 01 5-1040 23 33 30 27 to 3 12 04 08 +
6-1048 30 52 29 28 2 1 02 01 02 6-1042 25 27 27 27 2 0 02 00 01 71043 23 25 26 26 2 0 02 00 01 7-1044 25 27 24 27 2 -3 02 -04 41
&1045 25 27 26 27 2 -1 02 41 00 8-1046 27 34 31 30 7 1 08 01 05 S1047 31 35 29 27 4 2 05 03 04 41048 31 29 28 28 -2 0 42 00 41 141049 28 30 30 30 2 0 02 00 0.1 1 4 1050 28 29 28 28 1 0 01 00 0.1 11-1051 28 26 27 28 -2 -1 -02 41 42 11-1052 25 30 2b 27 5 4 06 -03 02 12-1053 27 29 27 27 2 0 02 00 01 12-1054 31 29 26 27 4 -1 -02 -01 42 13 1055 26 29 26 24 3 2 04 03 03 13 1056 ir6 27 27 27 1 0 0.1 00 01 14-1057 29 27 26 25 4 1 42 01 OO i 14-1058 30 33 29 27 3 2 04 03 03 16-1059 29 31 33 30 2 3 02 04 03 15-1000 28 30 48 34 2 14 02 20 1.1 1&1061 27 32 29 28 5 1 06 01 04 18 1062 31 35 32 34 4 2 05 -03 0.1 17 1063 29 34 29 28 6 1 07 01 04 17 1064 29 37 30 30 8 0 10 00 0h mu509 sasAwptahm2996 Page 12 of 32
ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS M SYSTEM fDENTIFICATION PIPE LENGTH P1PE OtAMETER e OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION (Inches) IN STRING D M hE DATEfTIME TIME tanutes) ESW 91 DRAIN UNE 42 2 48 's-95/0815 4-2645r1030 111015 CALIBRATION FACTORS TLD St.FIVEY DATA (6ef100ern2hre") Lafum Ekwete = 1.34e+07 Cak:iurn Sulfate = 16te+07 18-1085 29 36 30 30 7 0 08 00 04 18-1086 32 27 29 28 -5 1 46 01 42 1S1057 32 30 26 28 -2 -2 02 -0.3 -0.3 1961088 31 34 34 33 3 1 04 01 03 20 1089 28 32 31 31 4 0 06 00 02 20w1070 32 40 33 31 6 2 10 0.3 06 21-1071 30 31 31 29 1 2 0.1 03 02 21-1072 32 30 28 28 4 0 -02 00 -0.1 22-1073 25 32 30 28 7 2 08 03 06 22-1074 36 38 28 28 2 0 02 00 0.1 2 & 1075 31 35 29 29 4 0 06 00 02 2 S 1076 28 29 27 26 1 1 01 01 0.1 24-1077 35 66 48 33 21 15 26 22 24 24-1078 43 34 35 35 9 0 -1.1 00 46 Arorege 29 1 Average 28 4 Average (Kaprvv100cm2) 03 Erver (95%) (Kdpmf100em2) O. t Cntcal Levet (Kdperv100rm2) 08 Stand Dev 35 Stand Dev 24 Studer!t's t vobe 1 879 MDA (Kdperv100cn@) 16 I i l m:uso9*ns_5W:ltW12996 Page 13 of 32
ATI'ACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS SYSTEM P:PE LENGTH PIPE DIAnEETER eOFTLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE PIPE MNTFICAN OR LOCAT10N (inches) IN STRING DATEfTIME DATEffinE TIME (unutes) ESW #2 DRAIN UNE 55 2 86 2 4-95/0755 4-26-95/1020 111025 TLD SURVEY DATA CALIBRAT10N FACTORS ten /10Dem2pmR*) Latuum Borale = 134e+07 Caictum Sulfate = 161e+07 POSITION - ELEMENT ELEMENT ELEMEN T ELEMENT Lenpsn Boraes Calesum Sumate Lewum Borate Cascium Susale TLD Average BADGE 1 2 3 4 Net Readeig Nee Reading Result Resut Resun NUMBER (ne) (mR*) (mFr) (mR1 (mR*) (mFr) (K dpmr100cm2) (K dpm/100cm2) (Kdpm/100cm2) 1459 31 35 34 25 4 9 75 1.3 09 1400 28 41 35 25 13 to 16 15 15 2461 31 61 51 28 30 23 38 33 35 2-962 33 **)1 73 25 88 48 82 7.0 76 , S 983 32 158 143 32 126 til 152 16 1 157
& 984 38 196 180 31 160 149 19.3 21 6 20 5 5 4485 30 78 67 29 48 38 58 55 5. 7 4488 32 72 65 27 40 38 48 55 52 & 987 27 31 33 27 4 6 0.5 09 07 & 988 32 31 32 30 -1 2 41 03 01 6489 27 31 29 27 4 2 05 03 04 6-970 27 31 31 28 4 3 0.5 04 0.5 7-971 26 29 26 27 3 -1 04 41 01 7472 27 30 30 31 3 -1 04 41 01 6-973 26 33 28 28 7 0 08 00 04 8474 32 35 29 28 3 1 04 01 0.3 S975 25 28 27 27 3 0 04 00 C.2 9-978 29 28 29 27 -1 2- 41 0.3 01 10477 29 27 27 27 -2 0 -02 00 41 10478 25 30 28 28 6 0 06 0.0 0.3 11479 26 29 28 27 3 1 04 01 0.3 11480 27 32 26 26 5 0 06 00 03 [
12481 28 31 29 29 3 0 04 00 02 12462 27 28 27 26 1 1 01 01 01 13-983 34 42 35 29 8 6 10 09 09 1& 984 29 38 33 29 9 4 1.1 06 08 14485 33 36 29 28 3 1 04 0.1 03 14488 32 34 30 29 2 1 02 0.1 02 15487 33 35 28 29 2 -1 02 01 00 15-898 33 36 28 28 3 0 04 00 0.2 16-999 29 34 29 28 6 1 06 0.1 04 16-990 27 29 26 25 2 1 02 01 02 17491 25 26 26 26 1 0 01 00 0.1 m:uso9.ws_stwpf:llW12996 Page 14 of 32
ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS SYSTEM PtPE LENGTH P1PE DIAETER e OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE PIPE ENM OR LOCAT10t4 (mches) IN STRING DATE/TNE DATE/T18E TWE (mnutes) ESW e2 DRAIN UNE 55 2 68 2 8-95/0755 4 24 95/1020 111025 TLD SURVEY DATA CALaBRATION FACTORS (thsf100cm2/mR*) Latuum Bo a'e = 134e+07 Caesum Suta;e = 161e+07 17 992 25 34 29 28 9 1 1.1 01 06 18-993 2F 27 28 27 0 1 00 01 01 18494 29 30 27 27 1 0 0.1 00 01 19-995 26 32 28 28 6 2 07 03 05 19496 29 35 28 27 6 1 07 0.1 04 20-997 28 27 25 26 -1 -1 41 41 41 2(HP98 26 31 27 26 5 1 06 01 04 21499 25 27 25 26 2 -1 02 4.1 00 21-1000 28 27 28 32 -1 -4 -0.1 -06 0.4 22-1001 26 25 25 27 -1 -2 -01 9 -0.2 22-1002 25 27 26 26 2 0 0.2 O.1 2}1003 28 27 2T 27 -1 0 0.1 06' 01 23 1004 28 33 27 26 6 1 08 01 04 24-1005 29 34 25 27 5 -2 06 03 0.2 24-1006 26 27 24 25 1 -1 0.1 41 00 2 &1007 28 29 28 27 1 1 0.1 0.1 01 2 51008 30 28 28 30 -2 -2 42 -03 03 26-1000 27 28 26 26 1 0 01 00 01
~
2& 1010 28 27 40 27 -1 13 -0.1 19 09 2 T-101i 30 27 27 26 -3 1 04 0.1 -01 27-1012 32 31 28 29 -1 -1 -0.1 -0.1 0.1 2 &1013 2T 34 30 29 7 1 08 01 05 2 & 1014 29 37 35 28 8 7 10 10 10 2 & 1015 2F 27 29 26 0 3 00 04 02 2& 1016 25 32 30 28 7 2 08 03 06 30 1017 33 30 27 25 -3 2 04 0.3 40 30L1018 29 32 30 26 3 4 04 06 0.5 31-1019 33 42 36 29 9 7 11 10 11 31-1020 2F 27 29 27 0 2 00 03 01 32-1021 31 31 28 27 0 1 00 01 0.1 32-1022 27 27 28 26 0 2 0.0 0.3 0.1 n62509,wts_5a.myCIW12996 Page 15 of 32
ATTACIB1ENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS SYSTEM PtPE LENGIH PtPE DIAMETER e OF TLDS EXPOSURE START EXPOSURE STOP TOT AL EXPOSURE PIPE IDENTINTION OR LOCATION (inches) IN STRING DATE/ TIME DATE/TtME TIME (mmdes) ESW e2 DRAN UNE 65 2 se 2-8-95/0755 4-26-991020 111026 TLD SURVEY DATA CAUBRATION FACTORS (ther100cm24TFl*) Littuum Borate = 1.34e*0F - Caleman Sutate = 16te+CF 33-1023 42 47 46 49 6 -3 06 -04 0.1 33-1024 41 62 44 41 11 3 1.3 04 0.9 Average (MdperW100erve 11 Error (95%) (Kdomft00am@ 07 Avapage 29 1 Average 28 0 Crneal Level (Kdpmr100cm2) 10 stard Dev. 35 Stand Dev. 3.5 Studenre t value 1 67 MDA (Kdperv100cm2) 2.0 mA2509wsus_5ug:1bM2996 Page 16 of 32
.m_ _. m m - . . m . . _. .. _m. . _ .. . . . _ . . - _. .m. . . _ . ._
ATTACHMENT 8.5 l ESW 2" PIPING TLD SURVEY DATA AND RESULTS PtPE SYSTEM IDENTIFICATM PtPE LENGTH P!PE EXAMETER 8 OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATm (wees) IN STR'NG DATEmME DATE/ TIME TIME (mmuses) ESW e3 DRAIN UNE 61 2 62 24-9fvo655 4-2&9tW1015 111080 TLD SURVEY DATA CAL 10RATm FACTORS teer100cm2=re) LtNum Borate = 1.34e+07 Calcium Sucate = 161e+07 POSITM - ELEMENT ELEMEN1 ELEMEN T ELEMENT LaNum Borste calcean Sueste Latuum Borate Calceum Sueste TLD Average i BADGE 1 2 3 4 Not Readirg Net Reedmg Resut Resut Resut NUMBER (mR") (rrW) (mR*) (mR7 (mR7 (mR7 (K dpmf100cm2) (K dpmf100cm2) (Kdpmf100cm4 1449 25 38 38 25 13 13 16 19 11 1450 25 35 39 25 to 14 1.2 20 16 2 851 26 29 32 29 3 3 04 04 04 2452 28 23 32 27 0 5 00 0F 04 3453 32 33 28 30 1 -2 01 43 41 3454 27 33 32 27 8 5 07 07 0F 4,855 33 28 29 28 -5 1 -06 0.1 42 4-856 32 35 28 29 3 -1 04 -01 0.1 5-687 25 30 30 29 5 1 06 0.1 04 5458 26 30 29 28 4 1 05 01 03 8459 28 30 29 28 2 1 02 01 02 6-880 35 35 29 29 0 0 00 00 00 7-861 32 28 33 31 4 2 45 0.3 41 7462 28 29 29 30 1 -1 01 -01 40 8-863 27 30 30 30 3 0 04 00 02
& 854 28 30 30 29 2 1 0.2 01 0.2 9455 28 29 28 28 1 0 01 00 01 9486 28 33 28 29 5 -1 06 41 02 ,
10-887 25 28 30 28 3 2 04 03 03 10488 30 29 27 26 -1 1 41 01 00 11489 33 48 45 28 15 17 18 25 21 11470 25 32 31 29 F 2 08 03 06 12471 25 27 28 27 2 1 02 0. t 02 12472 2F 33 34 30 6 4 07 06 01 13473 28 30 28 2F 2 1 0.2 01 02 13474 32 32 28 29 0 -1 00 -01 41 14475 28 30 29 27 2 2 0.2 0.3 03 14 876 28 30 26 26 2 0 02 00 C.1 15477 26 26 25 27 0 -2 00 43 -0.1 15-878 26 27 27 26 1 1 01 01 01 16479 25 29 27 27 4 0 05 00 02 16480 26 27 28 27 1 -1 0.1 -0. t 40 ma2509.wsjswicibm2996 Page 17 of 32
. e ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS PTPE SYSTEM IDENTTFICATION PtPE LENGTH PIPE DIAMETER e OF TLDS EXPOSURE START EXPOSUFE STOP TOTAL EXPOSURE OR LOCATION (inches) IN STRING DATE/ TIME DATEmME TIME (minutes)
ESW #3 DRUN LINE 51 2 62 2-8-95/0655 4-26M1015 111000 TLD SURVEY DATA CALtBRATION FK : TORS (om/100cm2rmR*) Lefman Borate = 134e+0F Calcasm Sutete = 161e+0? 17481 26 30 28 27 4 1 06 01 03 17482 27 27 27 27 0 0 00 00 00 18-883 29 27 24 25 -2 -1 -02 01 42 18484 29 29 24 24 0 0 00 00 00 19-885 26 30 27 26 4 1 05 O.1 03 19488 27 29 27 25 2 2 02 03 03 24887 27 28 27 27 1 0 01 0.0 0.1 24888 26 28 28 29 2 -1 0.2 41 00 21-889 25 2? 26 27 2 -1 02 01 00 21490 27 28 25 25 1 0 0t 00 0.1 22491 28 33 27 28 5 -1 06 01 0.2 22492 27 27 27 28 0 -1 00 41 41 23-893 28 27 27 27 -1 0 41 00 41 23494 27 28 27 26 1 1 0.1 01 0.1 24495 31 32 27 26 1 1 0. t 01 0. t 24406 26 23 24 24 -3 0 44 00 42 25-897 25 26 25 26 1 -1 01 41 -00 26498 26 27 27 26 1 1 0. t 01 0. t 26899 27 30 31 29 3 2 04 03 03 26400 29 36 32 28 6 4 0. F 06 0F 27401 30 31 29 28 1 1 0.1 01 01 27-902 30 33 28 28 3 0 04 00 02 2 & 903 26 32 30 28 6 2 0T 03 05 28404 29 30 28 26 1 2 0.1 0.3 02 29406 26 31 26 26 6 0 06 00 03 29-906 30 31 29 27 1 2 0.1 0.3 02 30L907 29 29 29 27 0 2 00 03 0t 242 31 M M M 1 3 01 04 03 31-909 47 45 44 43 -2 1 -02 01 40 31410 48 49 53 4T 1 6 0.1 09 05 Avers 9e 28 5 Average 28 0 Average (Kdpmf100cm2) 02 Stand Dev. 42 Stand Dev. 35 Sludenre t vokse 1 671 Ermr (95%) (Kdpmft00cm2) 01 Cntcal Level (Kdpmf100em2) 12 WA (Kdpmf100cm2) 24 musc?wws_5=wpt:1Mn2996 Page 18 of 32
- - - ~
E R ). U e 2) S ; g m 7 a c O 5 P X - u 6 0 1 0 e r t 0 v su 0 1 0 4 3 8 7 5 9 3 8 3 5 7 7 4 8 4 8 5 8 8 1 6 1 7 5 0 8 1 4 4 1 1 0 1 1 0 1e A e 5 5 4 5 9 E ; f 1 1 3 2 1 2 1 1 2 1 1 0 0 1 4 0 0 0 0 0 0 0 4 0 _ D R mp 1 1 1 1 6 _ L E 1 A M T 1 L T d I T K - O ( T P O T 0 e 2) - 0 ra m S E 0
= t c .
E 1 1 e u t 0 R TE
/
s S us 0 1 0 3 4 3 8 5 5 9 0 7 6 0 2 8 7 9 3 6 0 8 6 9 9 3 I 5 4 t u me f 1 1 0 2 1 4 5 6 5 4 3 6 0 1 2 2 1 1 2 1 1 0 0 0 1 0 1 0 1 0 3 0 1 0 0 0 0 0 0 0 0 0 U. T 6 S oR mp 1 2 1 - uDA 2, 4 n l c a d K u C ( t h T R ) A 5 e 2 T ta m S 4 1 5 6 70 r o R 0 c E Tf R E m e
+ s u 0 0 4 2 2 1 1 2 0 4 8 3 1 4 3 8 7 9 6 1 6 5 1 2 1 6 1 0 0 0 2 2 0 U T 5
9- 6 3 me u Rs fm 1 1 1 6 1 0 3 2 1 5 5 4 2 4 6 1 7 1 2 1 1 1 1 1 0 0 1 0 4 0 0 0 0 0 0 4 0 S A 8 w p OD P 2
- 1 t a d L K X (
E S T L U e S S G m . E DN = m u 0 R L T R I e
)
5 9 s6R 0 1 5 8 4 1 6 2 6 5 9 2 3 6 1 3 T 6 ra 7 9 4 8 0 4 7 6 4 6 2 1 2 0 0 0 0 m 4 3 3 2 4 7 1 1 1 1 1 1 1 1 1 D F O S r o u ( m 1 2 1 1 - N B s e e t N # I m laN C A u tu . a A L 5T 8A 2 TD te s g 3 NY R E
)
s r e d e
) f EE 1
T e E hc 2 9 e e* R mR m 8 2 1 4 3 0 5 0 0 2 4 3 4 3 3 0 2 0 4 5 3 4 6 2 9 5 4 6 3 9 5 4 9 2 1
- 5 6 0 0 0 2 2- 0 o
BVR 1 1 1 1 1 1 M 1 2 1 1 u 9 I A in I ( he te ( 1 D e N CU E L e g AS P f a TD T L P P AT T G N F.
)
N I M4 E e"( v e 0 3 8 2 2 3 0 3 5 2 8 2 7 2 9 2 9 2 7 2 3 3 0 3 5 2 9 2 7 2 7 2 9 2 6 2 8 2 7 2 6 2 7 2 1 4 7 2 7 2 8 2 5 2 6 2 5 2 5 2 5 2 4 2 P I L E P "2 7 4
)
ev WS H h 2 T m N ) E T G D e E M3 Rm 7 3 7 3 3 7 5 1 4 3 1 3 5 6 3 6 0 5 3 7 5 7 8 0 0 8 9 0 5 7 5 3 0 3 8 9 8 9 7 7 5 5 5 4 N 0 1 E ( 1 3 1 1 1 4 4 3 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 E L L re E E d( P! S
. P R O
T C A F T N N O E ") 2 9 9 9 T I A M2 Rm E 5 3 8 3 6 1 7 2 2 1 0 7 2 1 0 8 8 4 7 4 8 1 7 9 1 4 8 4 5 4 3 4 2 4 8 3 9 3 1 3 1 3 4 3 7 2 9 2 9 2 1 3 9 2 7 2 4 2 7 2 4 2 5 2
. (
R L E B - U A . C . N O N I O E T T I N N _ A T U *) EC PIF CA N E M1 Rm 7 6 8 9 9 8 9 7 8 4 4 3 9 7 0 9 6 5 7 6 7 5 5 0 4 5 8 7 4 5 6 5 2 2 2 2 7 2 2 2 2 3 3 3 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 _ PI O I A E ( _ T L R L N E E R D 6 D O I 9 9 2 1 D A T W A - : f M 4 D N E R 3 5 p E 9 E 5 6 7 8 9 0 2 3 4 5 6 9 0 4 6 7 8 9 0 1 2 3 4 5 6 T Y OGB I 3 3 3 3 3 4 1 4 4 4 4 4 4 7 4 8 4 4 5 5 1 5 2 5 5 5 5 r> 5 5 8 8 8 6 6 6 8 w. S Y W S E V T S D I A M 7 1 7 1 7-2 7-2 7 7 7 4 7 4 7 5 7 5 7 6 1 6 7 7 7 7 7 8 7 8 7 9 7-9 7 4 7 4 7 1 7 1 7-2 7 2 1 3 7 7 4 7 4 7 5 7-5 7 6 7 6 5 a S E R U OBU P N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 s_ S a D L w, T 9 0 5 u : m
ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS PfPE SYSTEM IDENTIFICATION PtPE LENGTH PIPE DtAMETER e OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION (mebes) IN STRING DATErTl8E DATE/ TIME TtME (mnutes) ESW 94 DRAIN UNE 47 2 60 2445C655 4-264Hkt000 111065 TLD SURVEY OATA CAUBRADON FACTORS (che/100cntsmR-) Latwum Sorate = 134e+07 Cascium Sussee = 161e+07 17767 21 14 32 30 -7 2 48 03 43 17-788 46 58 25 27 12 -2 1.4 43 06 16769 26 29 27 26 3 1 04 0.1 03 t& 770 29 30 27 26 1 1 0.1 0.1 0.1 19 771 25 31 26 24 6 2 0. 7 03 05 19 772 25 25 25 24 0 1 00 01 0.1 2t>773 25 28 26 24 3 2 04 03 03 20-774 28 26 26 25 -2 1 02 01 40 21-775 26 30 29 26 4 3 05 04 05 21-776 25 39 37 27 14 10 17 14 16 22 777 26 36 30 27 9 3 11 04 08 22-778 28 29 28 26 ~ 1 2 0.1 03 02 , 21779 25 27 26 24 2 2 02 0.3 03 21780 25 2r 26 24 3 2 04 03 03 24-781 26 33 30 25 7 5 08 07 08 24-782 27 47 44 27 20 17 24 25 24 25-783 39 38 42 49 -1 -7 41 -10 46 25784 38 39 42 40 1 2 01 03 02 26-785 51 61 64 56 10 8 1.2 12 12 26 786 51 63 63 55 12 8 14 1.2 13 27-787 47 54 66 57 7 9 08 13 1I ! 27-788 50 56 62 56 6 6 07 09 08 28-189 47 63 61 54 16 7 19 10 15 28-790 52 58 60 57 6 3 07 04 06 e 29-191 42 52 56 49 to 7 1.2 1.0 1.1 2 S 792 44 53 59 52 9 7 11 1.0 1.1 , 34793 42 51 52 52 9 0 tt 00 05 30L794 44 48 51 49 4 2 05 03 04 Average 31 0 Average 32 2 Averego (Kopnf100cm2) 26 Stand Dev. 03 Stand Dev. 10 6 Student s t value 1 672 Ener (951Q (Kdpmf100cm2) 1.3 Cemeal Level (Kdpmr100cm2) 24 MDA (Kdpmf100cm2) 47 ma2509.ws_s8.wpr:ltal2996 Page 20 of 32
e . ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS PlPE SYSTEM TDENTIFICATION PtPE LENGTH PtPE OtAf4ETER e OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION (wees) IN STRING DATE7 TIME DATEfTIME TIME (rrumdes) ESW e5 DRAIN UNE 43 2 48 2-74W1230 4 26-9M)955 112165 CAUBRATION FACTORS TLD SURVEY DATA (dis /100em2hv1R') Lehnsa Borate = 134e+07 Calcium Sutete = 181e+07 POSITION - ELEMENT ELEMENT ELEMENT ELEMENT Latuum Borete Cakmm Surate LWNwn Borste Calcasm Sweate TLD Average BADGE 1 2 3 4 Not Readmg Not Reethng Result Result RemA NUMBER (@ (rrR*) (mR*) (M*) (rre') (err *) (K dpmf100cm2) (K dprvv100cm2) (Kopm/100cm2) 1489 27 31 30 29 4 1 05 0. t 03 1-470 26 73 52 27 48 25 67 36 47 2471 26 29 28 25 3 3 04 04 04 2472 26 27 27 27 1 0 0.1 0.0 01 3473 22 28 26 25 8 1 07 01 04 3474 28 29 25 25 1 0 01 00 0.1 44 T5 21 27 23 25 0 -2 00 -03 41 4-476 25 27 26 25 2 1 0.2 0.1 02 5477 25 31 38 26 6 12 01 17 12 5478 23 28 31 27 5 4 08 06 06 6479 29 27 23 21 -2 2 42 03 00 6480 31 30 20 23 -1 4 41 44 43 7481 29 31 24 24 2 0 02 00 01 7482 30 24 26 26 -6 0 47 00 44 6483 25 27 27 26 2 1 0.2 01 0.2 8484 27 29 29 31 2 2 0.2 -03 40 9485 24 23 24 25 -1 -t -01 41 -01 9488 29 34 29 25 5 4 06 06 06 10487 24 28 29 27 4 2 05 03 04 19485 25 28 26 25 3 1 04 0.1 03 11-489 28 27 29 28 1 1 01 01 01 11490 22 27 28 26 5 2 06 03 04 12491 26 24 23 23 -2 0 -02 00 41 12492 25 29 27 29 4 -2 0.5 -03 0.1 1S 645 32 33 26 26 1 2 01 03 02 1&646 26 30 28 26 4 2 05 03 04 14447 22 25 23 22 3 1 04 0.1 03 14-648 27 28 25 28 1 -1 01 -01 40 1>.649 26 28 25 26 2 -1 02 41 00 15450 18 30 27 26 12 1 14 01 08 16 651 27 28 25 26 1 1 01 -01 0.0 muso9wwtisAwpr:1M)12996 Page 21 of 32
ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS P1PE SYSTEM IDENTIFICATION PIPE LENGTH P1PE DIAMETER # OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION [mches) IN STR!NG DATE/TME DATEfTIME TIME (mmutes) ESW #5 DRAIN UNE 43 2 48 2-7-96f1230 4-2645r0955 112165 CAUBRATION FACTORS TLD SURVEY DATA (disf100cmM Lthnam Borate = 134e+07 Calcium Sussee = 181e+07 16462 24 27 24 25 3 -1 04 -0.1 0.1 17453 21 27 25 24 6 1 0. 7 01 04 17454 23 21 36 25 -2 11 -O 2 16 07 19455 22 27 24 24 5 0 06 00 03 18458 28 28 25 23 0 2 00 03 0.1 19457 26 29 26 25 3 1 04 01 0. 3 19458 22 23 25 24 1 1 0.1 0.1 01 24659 20 24 23 21 4 2 05 03 04 24880 28 18 24 25 -10 -1 1.2 -0. t 47 21461 22 28 25 24 6 1 07 0.1 04 21462 23 30 24 25 7 -1 08 41 03 22463 27 27 22 24 0 -2 00 0.3 41 22464 21 27 21 20 6 1 01 01 04 23465 23 26 23 23 3 0 04 00 02 23486 23 21 24 24 -2 0 42 00 41 24467 34 33 43 38 -1 5 -01 07 03 24468 40 38 34 36 -2 -2 42 -03 43 Average 25 8 Average 25 6 Average (Kdpm/100cm2) 0.3 Stand Dev. 38 Stand. Dev 31 Student's t value 1 679 Error (95%) (KdpnV100cm2) 02 Cntical Levet (Kdpmf100cm2) I.1 , MDA (KdpnV100em2) 21 m:uso9 was_5a.wpf:lWO12996 Page 22 of 32
i ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS PtPE SYSTEM IDENTFICATION PIPE LENGTH PIPE DAETER # OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE I OR LOCATION (Inches) IN STRING DATEfTIE DATEmW TIME (mimdes) t ESW 86 ORAIN UNE 39 2- 42 2-7-95r1415 4-26-959050 112056 f, CAU9 RATION I FACTORS TLD SURVEY DLTA (der 100c 6 Lehium Ehwate = 1.34e+07 Caecium Susate = 161e+07 POSmON- ELEMEN Y ELEMENT ELEMENT ELEMENT Leeuum Ehwale Caecean Susate Lotuum Borate Cahnum Susate TLD Average 3 BADGE 1' 2 3 4 Not Reedmg Not Reedng Result Romult Resu8 ! NR W (@ (mR*) (W (mR*) (mR*) (K dpmf100mn2) (K dpmf100cm2) (Kdpmr 600cm2) , 1 11 33 41 39 35 8 4 t.0 06 08 1-12 33 44 33 32 11 1 13 0.1 07 -( 2-13 32 84 77 38 52 41 62 5.9 6.1 [ 2-14 33 54 45 34 21 11 25 16 2.0 3 15 39 198 194 44 159 150 19 0 21.6 20.3 3-16 34 82 89 38 48 51 57 7.3 65 4-17 39 57 42 36 18 6 22 09 15 4-18 40 49 37 35 9 2 1.1 03 07 5-19 38 44 37 34 6 3 0.T 04 06 j 5 20 38 51 40 39 13 1 16 0.1 08 6 21 36 SS 45 36 19 10 23 1.4 19 6-22 36 53 40 35 17 5 2.0 07 14 l 7 23 40 50 38 34 10 4 12 06 09 f 7-24 41 50 38 38 9 2 11 03 0.7 S-25 36 42 34 35 6 -1 07 0.1 0.3
- 8-26 45 45 34 34 0 0 00 0.0 00 GL27 30 33 33 34 3 -1 04 -0.1 01 [
9-28 43 44 35 35 1 0 0.1 00 01 4 6 - 3 11-31 32 30 32 33 7 -1 08 -01 0.3 1142 29 33 32 33 4 -1 05 41 02 i 1243 32 38 35 32 6 3 07 04 06 [ 1244 32 37 32 33 6 -1 06 41 0.2 1345 31 34 31 32 3 1 04 41 01 [ 13-38 34 34 34 32 0 2 0.0 0.3 0.1 , 1447 29 32 29 32 3 -3 04 44 -00 1448 37 36 31 34 -1 -3 41 44 -03 1549 33 32 33 34 -1 -1 41 41 41 15 4 32 38 30 32 6 -2 07 43 02 1641 36 35 33 35 -1 -2 01 43 -02 ma25cDwws_54.wpt:1ba12996 Page 23 of 32 _ __m _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ - __ ___ - _ _ _ _ - _ . _ _ _ _ e- -~__________.a+ m _- .- .m-a_ - _ . _ , , - ______-_______-e._-
ATTACHMENT 8.5 . ESW 2" PIPING TLD SURVEY DATA AND RESULTS eneE SYSTEM 10ENTIFICAT10N PtPE LENGTH PIPE DAMETER # OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION (Inches) IN STRING DATEmME DATEMME TIME (mmules) ESW 86 ORAIN UNE 39 2 42 2-7-95/1415 4-26 9!WO960 112055 CAla9 RATION FACTORS TLD SURVEY DATA (ths/100cm2/mR') Lthan Borste = L34e+07 Calcium Sutate = 16te+07 1642 60 38 34 35 -12 -1 -14 41 48 1743 31 33 30 33 2 4 02 44 -0.1 1744 33 36 32 31 3 1 04 01 03 1645 31 38 34 32 7 2 08 0.3 06 1646 32 41 37 32 9 5 1.1 0.7 09 1947 34 63 51 34 to 17 2.3 24 24 1948 36 46 42 34 to 8 1.2 11 12 2449 32 35 31 32 3 t 04 -0.1 0.1 2460 37 37 30 32 0 -2 00 -0.3 4.1 21-51 31 32 32 32 1 0 01 00 0.1 21-62 35 37 32 32 2 0 02 00 01 Average 35 2 Average 34 0 Average (Kdpmf100cm2) 12 Stand. Dev. 44 Stand. Dev. 24 Student's t value 1 883 Error (95%) (Kdpmf100cm2) 09 Crincel Level (Kdpmf100errQ 08 MDA (Kdpmf100cm2) 18 m:u509.was_5s.wpf:IbO12996 Page 24 of 32
t 1 e a ATTACHMENT 8.5 I ESW 2" PIPING TLD SURVEY DATA AND RESULTS etPE SYSTEM IDENTIFICATION PtPE LENGTH PtPE OtAETER # OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION (inches) IN STRfNG DATF1TlW DATF3 TIME TIME (minutes) ESW si DRAN LINE 35 2 42 2-7-954 723 4-26-95m040 112457 CALIBRATION i FACTORS TLD SURVE7 DATA (der 100cm2/mR') Lith 6um Borate = 1.34e+07 Calcium Sufase = 161e+07 POSITK.M - ELEMEN T ELEMENT ELEMEN T ELEMEN T LRham Borste Catsum Sutate Lafman Borate Calesum Sultate TLD Average BADGE t 2 3 4 Not Readesg Net Reed lr g ResuR ResuR Resut NUMBER (mR") (mR") (mR") (mR") (mR") (mR") (K domf100em2) (K domf100cm2) (Kopmf100cm2) 1421 29 32 31 28 3 3 04 04 04 ( 1422 33 38 30 32 5 -2 06 -0.3 02 t l 2423 25 32 31 25 7 6 08 09 08 2424 23 33 30 26 10 4 12 06 09 3425 25 35 32 25 to 7 1.2 10 11 3426 28 37 34 28 9 6 11 r 09 10 4427 27 39 31 35 12 -4 14 06 04 4428 27 41 26 25 14 1 t.7 01 09 5429 23 29 27 25 8 2 07 03 05 5430 30 41 33 29 11 4 1.3 06 09 6431 30 29 27 25 -1 2 -01 03 01 6432 33 44 28 28 11 0 13 00 07 7433 27 28 27 28 1 -1 01 41 40 7434 23 28 26 25 5 1 06 0.1 04 6435 29 29 24 25 0 t 00 41 01 8438 26 27 25 25 1 0 0.1 00 0.1 9 437 22 33 31 27 11 4 1.3 06 09 S438 35 38 30 27 3 3 04 04 04 10439 24 32 24 25 8 -1 10 -0.1 04 14440 29 28 25 26 -1 1 41 -41 41 11-441 27 35 24 25 8 -1 10 0.1 04 11442 21 30 28 25 9 1 1.1 01 06 12443 24 33 29 27 9 2 11 0.3 01 12444 25 28 26 26 3 0 04 00 02 13445 26 26 25 24 0 1 00 01 01 13446 21 29 26 28 8 -2 10 -03 0.3 14447 25 32 24 24 7 0 00 00 04 14448 25 32 27 26 7 1 08 01 05 15449 34 33 22 23 -1 -1 -0.1 41 41 15-450 23 26 23 22 5 1 06 01 04 16451 23 24 25 25 1 0 0.1 00 01 muso9was_ss.wpaiwi2996 Page 25 of 32
ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS P1PE SYSTEM IDENTIFICATION PIPE LENGTH PFE DIARETER # OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION [mches) . IN STRING DATE/TlW DATEm W TIME (rmmdes) ESW#7 DRAIN LINE 35 2 42 2-7-990723 4-26-05/0940 112457 CAUBRATION FACTORS TLD SURVEY DATA (disf100cm2/mm) linum Borate = 134e+07 Calcium Sutale = 161e+07 1&452 29 25 25 24 -4 1 45 0.1 42 17453 22 29 27 25 7 2 08 0.3 06 s1454 25 32 28 28 7 0 08 00 04 1&455 27 36 36 29 9 7 1.1 10 to 18456 25 37 31 26 12 5 14 07 1.1 19457 25 SS 38 27 13 11 15 16 16 19 458 38 46 42 34 10 8 1.2 1.1 12 20-459 24 41 35 28 17 7 20 10 15 20460 26 34 29 27 8 2 10 03 06 21461 41 32 25 32 9 -7 -11 -10 -t 0 21462 28 26 29 29 2 0 4.2 00 -Q 1 Average 26 9 Average 26 7 Average (Kdpmf100cm2) 05 9and Dev 43 Stand Dev. 2.7 Student's t value 1 683 Era (95%) (Kdpm/100cm2) 01 Creicallevet (KdonV100em2) 09 MDA (Kdpr'V100cm2) 19 m:uso9*its_5awpt:1w12996 Page 26 of 32
L
- ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS erE SYSTEM IDENTIFICATION PtPE LENGTH PIPE DIAMETER 8 OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION (irvNs) fN STRING DATEITIME DATE/ TIME TIME tmmutes)
ESW #8 DRAIN LINE 39 5 2 46 2-745@655 4-26-95/0935 112400 CAUBRATKW FACTORS TLD SURVEY DATA (disf100cm2/mR7 Lafuum Borate = I 34e+07 Calcium Sufste = 161e+07 POSITION . ELEMEN T ELEMENT ELEMENT ELEMEN T LRtwum sorate Calesum Sutare Latuum Borste Calceum Sutate TLD Average BADGE 1 2 3 4 Not Reading Not Reading Result Resut Result NUMBER trre) (mR*) (ne) (ne) (mW) MW) (K dpmrt00em2) (K dpnv100cm2) (Kdpmf100em2) 1-55 20 31 30 24 11 6 13 09 1.1 1-56 26 29 31 22 3 9 04 13 08 2-57 26 36 32 27 10 5 12 07 10 248 25 60 43 29 25 14 30 20 26 3-59 28 38 34 30 8 4 1.0 06 08 340 26 29 29 28 3 1 04 01 0.3 441 32 33 31 30 1 1 01 01 0.1 442 31 44 46 30 13 16 15 23 19 5-63 32 32 79 30 0 -1 00 -01 41 544 28 29 26 28 1 -2 0.1 -03 41 645 29 30 27 28 1 1 0.1 41 40 646 25 29 28 29 4 -1 05 -01 02 747 26 32 29 29 6 0 0. 7 00 04 30 3 ' 748 28 32 27 4 05 04 05 449 31 33 28 28 2 0 02 00 0.1 8-70 29 31 28 29 2 -1 02 0.1 00 SL71 29 25 31 29 -4 2 45 03 41 i 9-72 30 30 29 37 0 -8 00 -11 46 1473 25 30 27 28 5 -1 06 01 02 10674 22 30 26 29 8 -3 10 44 03 11-75 26 29 30 29 3 1 04 0.1 0.3 11-76 28 40 27 29 12 -2 14 43 06 12-77 29 40 29 30 11 -1 1.3 -01 06 12-18 28 32 23 26 4 -3 05 04 0.0 13-397 20 27 24 25 7 -1 08 41 03 13-398 24 28 27 32 4 -5 0.5 47 01 14 399 24 26 24 23 2 1 02 0.1 0.2 14 6 27 22 27 29 -5 -2 48 43 44 1Wt 27 28 26 29 1 -3 0.1 -04 42 15402 23 32 25 25 9 0 11 00 05 16-403 51 34 28 29 -17 -1 -20 41 -t.1 m:u509.ws_5=wpfabm2996 Page 27 of 32
s s ATTACHMENT 8.5 , ESW 2", PIPING TLD SURVEY DATA AND RESULTS PtPE SYSTEM FDENTFICATION PtPE LENGTH P!PE DIAWTER e CF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION (Inches) tN STRING DATEITIME DATEfTtw TIME (minutes) ESW #8 DRAIN UNE 39 5 2 46 2 195M655 4-26-9M)935 112480 CALIBRATK)N FACTORS TLD SUmfEY DATA (disf100cm2/mR") Lehium Borate = 134e+07 Calcium Sufsee = 1 A**07 1&404 26 28 24 25 2 -1 02 41 t, s 17405 23 25 23 23 2 0 02 00 01 17406 24 33 25 28 9 -3 1.1 44 03 18407 23 30 21 21 7 0 08 00 04 18408 22 30 25 25 8 0 10 00 05 19409 25 33 33 25 8 8 10 11 10 19410 26 29 28 28 3 2 04 03 03 20411 27 30 32 30 3 2 0.4 03 03 20412 30 49 42 26 19 18 23 23 23 21413 23 29 29 25 6 4 07 06 06 21414 30 38 31 25 1 6 0.1 09 05 22415 36 45 52 63 9 11 11 -1.6 43 22416 34 76 69 55 42 14 50 20 35 23417 30 at 34 27 1 1 0.1 1.0 06 23418 21 34 30 30 7 0 00 00 04 Average 27 4 Average 29 1 Average (Kdpmf100cm2) 0.4 Stand Dev. 49 Stand. Dev. 7.0 Students t value 1 681 Error (95'r4 (Kdpmf100cm2) 02 CrReallowel (Kdpmf100cm2) 1.4 MDA (KdonV100em2) 28 mA25cMatts_sa.witibm2996 Page 28 of 32
. - . .. . ~ . - . - - ._~ .~.-.. .- - _ -. . _ . - . . . _ - - = . - . - -~. .
l r l l ATTACHMENT 8.5 I ESW 2" PIPING TLD SURVEY DATA AND RESULTS PtPE SYSTEM IDENTIFICATION PIPE LENGTH PtPE DIAGETER # OF TLDS EXPOSURE START EXPOSUFaE STOP TOTAL EXPOSURE OR LOCATION (inches) IN STRING DATEfTIME DATE/TihE TIME (mnutes) ESW #9 DRAIN UNE 43 2 62 2-7-9iWO635 446-95t0726 112373 CAUBRATION FACTORS TLD SURVEY DATA (die /100cm2 hidr) LaNum Borste = 1.34e+07 Calcium Sufele = 161e+07 l POSITION - ELEGENT ELEMENT ELEMENT ELEMENT Lerwum 9 erase Coletum Surate Leheum Borste Calceum Susage TLD Average BADGE 1 2 3 4 Not Reedng Not Reedng Result Result Resull ( NUMBER (refr) (erWP) (refr) (ndr) (W W (N W100cm2) (K tipmf100cm2) (Kdpmr100cm2) , 1-7 33 78 73 30 45 43 54 62 58 1-6 37 72 89 28 35 61 42 8.7 65 ! i 24 30 56 57 32 26 25 31 36 3.3 2 to 26 62 70 30 36 40 43 57 50 3 t1 35 32 34 30 -3 4 -04 06 0t 3 12 29 29 31 31 0 0 00 0.0 00 4-13 30 33 29 32 3 3 04 44 -00 4-14 34 38 31 29 4 2 05 03 04 6 15 25 37 29 30 12 -1 14 01 06 6-16 40 37 33 29 -3 4 44 06 01 6 17 28 32 33 29 4 4 0.5 06 0.5 6-18 30 52 49 31 22 18 26 26 28 F-19 32 41 38 28 9 8 1.1 1.1 1.1 7-20 28 67 51 30 39 21 47 30 38 8-21 26 31 33 30 6 3 06 04 05 6 22 27 41 40 31 14 9 1.7 1.3 15
$23 30 SS de 28 25 16 30 2.3 26 9-24 29 37 34 28 8 6 10 09 09 10w25 27 53 39 32 26 7 31 10 2.1 1426 48 43 37 31 -5 6 -06 09 01 11-27 30 27 25 24 -3 1 -04 0,1 0t t 1-28 32 35 28 27 3 1 04 01 03 12-29 29 42 35 30 13 5 16 07 1.1 12 30 27 46 31 31 19 0 23 00 1.1 13-31 31 37 30 29 6 1 07 01 04 13-32 27 36 32 26 9 6 1.1 0.9 1.0 14-33 33 33 26 27 0 -1 00 41 -01 1444 33 33 29 27 0 2. 0.0 03 0.1 15-35 27 37 31 30 to 1- 1.2 01 07 1548 29 28 25 27 -1 -2 01 -0.3 -02 g 16-37 27 38 32 30 9 2 11 03 07 g m us09wkUa.w%1bM2996 Page 29 of 32
. o ATTACHMENT 3.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS -
eieE SYSTEM IDENTIFICATION PtPE LENGTH PIPE DIAhETER # OF TLDS EXPOSURE START EXPOSUFE STOP TOTAL EXPOSURE OR LOCATION (W) IN STRNG DATE/ TIME DATEITI1E TIME (rmnutes) ESW #9 DRAIN LINE 43 2 62 2-7 45/0635 4-26-95/0728 112373 CALtBRATION FACTORS TLD SURVEY DATA (enf100cm2ffrW) Lithium Borate = 1.3se+07 Calcann Su2 ate = 161e+07 16-38 28 35 28 30 7 -2 08 -03 03 17-39 26 27 30 33 1 -3 01 44 02 , 1740 30 24 27 29 -6 -2 47 43 05 1841 33 31 30 30 -2 0 02 00 41 1842 26 28 30 28 2 2 02 03 03 1943 26 33 29 28 7 1 08 01 05 11F44 24 30 26 28 6 -2 0. 7 -O 3 02 2045 31 32 27 28 1 1 01 41 -00 2446 30 31 26 23 1 3 01 04 03 2141 30 39 28 29 9 -1 11 -0.1 05 2148 39 42 32 31 3 1 04 0.1 03 33 34 29 30 -1 01 -01 40 t 22-49 1 22-50 28 38 32 29 to 3 12 04 08 23-51 32 31 29 28 -1 1 -01 01 00 ; 23-62 29 34 29 27 5 2 06 03 04 24-53 28 40 3$ 30 12 2 14 03 09 24-54 30 52 37 29 22 8 26 11 19 25-295 37 45 35 38 8 -1 to 41 04 25-296 34 29 30 31 -5 -1 46 41 44 2$297 46 52 48 52 8 4 0.7 -06 01 26-298 39 58 48 48 19 -2 23 -03 10 Average 30 9 Average 30.1 Average (Kdpm/100cm2) 09 Stand Dev 49 Stand Dev 48 Studer (s t value 1.677 Erwer (95%) (Kdpmf1CrMrn2) 03 Crlheal Loves (Kdpmf100cm2) 14 MDA (Kdomft00em2) 28 m:useww11s_5 .pr: won 2996 Page 30 of 32
. e ATTACIBfENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS r#E SYSTEM #DENTIFICATION PfPE LENGTH PIPE DIAMETER 5 OF TLDS EX80SURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION (inches) IN STRING DATE/ Tile DATE/ Tile TIME (rmnutes)
ESW 910 DRAIN UNE 47 2 56 2-7-95/1453 4-26-95/0706 113295 CALIBRAT10N FACTORS TLD SURVEY DATA (disf100cm2fmR') Lthium Sarate = 1.34e+0T Calcium Sugate = 161e+07 POSITION - ELEMEN T ELEMENT ELEMEN T ~ ELEMENT Latwum Borate Calcium Sufme Lehnsn Borme Calcsum Suuate TLD Average BADGE 1 2 3 4 Not Reading Not Reading Resvt ResuR ResuR NUMBER (mR") (n6*) (mR*) (mR") (rnR*) (mR*) (K dpmf100cm2) (K dpmf100cm2) (Kdpmf100cm2) 149 38 39 37 35 1 2 0.1 03 02 140 31 40 35 36 9 -1 11 41 05 241 41 41 43 N O 4 00 06 03 242 32 45 43 37 13 6 15 09 12 343 35 41 38 35 6 3 07 04 06 344 32 48 42 36 16 8 1.9 09 14 445 33 36 36 36 3 0 04 00 0.2 446 32 35 36 36 3 0 04 00 02 467 37 34 37 37 -3 0 44 00 02 EH58 32 40 38 37 8 1 09 01 05 649 35 37 38 37 2 1 02 00 02 6 70 32 40 37 35 8 2 09 03 06 7 71 33 38 38 36 5 2 06 0.3 04 7 72 41 42 41 38 1 3 0.1 04 03 8 73 46 41 37 34 -5 3 -06 04 41 8-74 33 36 37 36 3 1 04 01 0.2
& 75 32 38 33 34 4 -1 05 41 02 9'76 32 32 34 34 0 0 00 00 00 10-77 38 45 47 39 7 8 08 1.1 to 10 76 33 40 36 35 7 1 08 0.1 05 11-79 38 39 36 37 3 1 04 01 0.2 1140 36 42 35 36 6 -1 07 -01 0.3 1241 34 46 46 35 12 13 14 1.8 16 1242 39 39 40 38 0 2 00 03 01 1343 30 43 38 37 13 -1 15 41 0. 7 13-84 40 34 35 35 4 0 47 00 44 1445 33 36 34 34 3 0 04 00 02 1446 33 38 34 35 5 1 06 41 02 1547 30 35 30 33 5 -3 06 04 01 15-88 32 32 34 34 0 0 0.0 00 00 1&89 33 36 34 35 3 -1 04 -01 01 m:u5094ttS_5a.wpf:1bM12996 Page 31 of 32
ATTACHMENT 8.5 ESW 2" PIPING TLD SURVEY DATA AND RESULTS PtPE SYSTEM IDENTIFICATION PIPE LENGTH PIPE DAMETER # OF TLDS EXPOSURE START EXPOSURE STOP TOTAL EXPOSURE OR LOCATION (inches) tN STRfNG DATEITfME DATE/ Tine TIME (mmutes) ESw eto ORAIN LINE 47 2 56 2-745r1453 4-26-954 708 113295 CALIBRATION FACTORS TLD SURVEY DATA (dier100cm2hve) Latuum Borste = 1.34e+07 Cabum Sufste = 1.61e+07 1&90 32 37 33 35 5 -2 08 -03 02 17-91 31 38 33 33 7 0 0.8 00 04 17422 34 38 36 35 4 1 05 01 03 ; 1843 33 34 35 36 1 -1 01 41 40 1& 94 32 33 32 34 1 -2 0.1 03 41 1&95 29 32 32 34 3 4 04 -03 00 19 96 32 37 36 35 6 1 06 0.1 04 2SG7 33 40 35 37 7 -2 08 -0.3 0.3 20L98 35 37 32 34 2 -2 02 -0.3 00 2149 30 32 32 33 2 -1 0.2 4.1 00 21-100 32 35 31 32 3 -1 04 41 01 22-1 28 35 25 25 7 0 08 00 04 22-2 32 38 32 29 6 3 07 04 06 23-3 24 57 52 25 33 27 39 38 39 234 30 50 36 31 20 5 24 0.7 15 24-5 30 40 33 30 10 3 1.2 04 08
- 244 28 44 37 30 16 7 19 10 14 2H93 32 50 34 26 -2 8 -0.2 1.1 06 25494 36 34 35 24 -2 11 42 16 07 1 26495 31 31 31 25 0 6 00 09 04 26-498 28 46 30 24 17 6 2.0 09 14 r
27497 23 38 38 30 15 6 18 09 1.3 21498 28 41 43 30 13 13 1.5 18 1.7 28499 40 63 61 45 13 6 15 09 12 28-500 45 41 42 38 4 4 -0.5 06 00 Average 33 3 Average 33 9 Average (Kapmf100cm2) 05 Stand. Dev. 44 Stand Dev 41 Studenre t value 1 674 Ener (9594 (Kdpmr100em2) 02 Cr*callevel (Kdpmr100cm2) 12 MDA (Kdpref100em2) 24 wu5c:wws s gahm2996 Page 32 of 32
l . . l ATTACHMENT 8.6 SN-050-4K VS. TLD SURVEY CGMPARISON TEST RESULTS FSW 1" Pipe #L1414 Survey Results l t 48 - - -- - - - - - 44 "_. . . . _ . _ _ _ _ - _ . 40 UNEAverage = 4.4 kdpm> 100 cm2 - 36 -- 32 TLD Average = 4.2 kdpm/100 cm2 328" - - . - - - - - - -
----~-~
24 - - - - - - - - - n--- - - - . - - g20 --- -
.g16 . . - - -- -
M 12 - \ 8.- I - 4 - ^- 0 ----- --- -- Te e-e 4-* "r r- = l 4 _ _ _ _ _ . - _ 0 10 20 30 40 50 60 70 Pipe Position (feet from level 7 end)
-. GM Assembly Resuhs i TLD Resuks su509. sus _sb.wpr.itw12996 Page 1 of 2
ATTACHMENT 8.6 SN-050-4K VS. TLD SURVEY COMPARISON TEST RESULTS FSW 1" Pipe #L1416 Survey Results 16 . - . . - - - - - . . - --. . -. -- - - - . g _,_ _ GM Average = -0.2Tdpm/f00 crii2
~~
TLD Average = 0.6 kdpm/100 cm2
] ,
s m - - . - - Mo. 4 a-.-. .- --. 0- ^
. . .r s,
a,- .u --m
. .. n ..
o= ,
;;^^^g^n a". . -a si e a m -4 0 10 20 30 40 50 60 Pipe Position (feet from level 7 end) -m- GM Assembly Results . TLD Results muso9,uns_5b.wpf:ltW12996 Page 2 of 2
1 Westinghouse Non-Proprietary Class 3 l l l l l Methods to Evaluate the Final Condition l of Plant System Piping Internal Surface l I l l I l e m:\2694w-1.aco:ltA12996
l l METHODS TO EVALUATE THE FINAL CONDITION FSV FRS-TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 1.0 PURPOSE 4 This document provides the technical basis by which the measurement of total surface l activity on the internal surfaces of plant system piping are performed at Fort St. Vrain l (FSV). The protocols and instmments detailed in this document may also be used for other plant system internal surfaces as applicable. Included in this document are descriptions of available instrumentation, calibration methods, testing performed, and the survey techniques to be used. The use of TLDs to determine piping contamination (which is a method also used at FSV) is addressed in a separate Technical Basis Document (FSV-FRS-TBD-207).
2.0 REFERENCES
& COMMITMENTS 2.1 References 2.1.1 Final Survey Plan, Fort St. Vrain Nuclear Station. ^
- 2.1.2 Kocher, D.C., " Radioactive Decay Data Tables- A Handbook of Decay Data For
, Application To Radiation Dosimetry and Radiological Assessments", U.S.
Department of Energy, Washington, DC,1981. 2.1.3 Lederer and Shirley, et al., Table of Isotopes,7th edition, John Wiley & Sons, New York,1978. 2.1.4 Friedlander, et at., Nuclear and Radiochemistry,3'd edition, John Wiley & Sons, New York,1981. 2.1.5 Krane, K.S., Introductory Nuclear Physics, John Wiley & Sons, New York,1988. 2.1.6 Manufacturer's literature or Operation Manuals for the GM/ Gas Flow detectors
- 2.1.7 FRS-TBD-203, "Use of TLDs to Assess Internal Contamination in Piping" 2.2 Commitments None j 3.0 DISCUSSION The assessment of total surface activity on internal surfaces of piping is accomplished by using an assortment of detector sizes and types. Cylindrical and standard gas flow detectors designed by Ludlum Measurements Inc. (LMI); standard size Geiger-Mueller (GM) probes; and smaller GM probes (including assemblies of multiple GM probes) are m:u6m.i.no : tut 2996 Page 1 of 15
1 i METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS-TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 each used in applicable situations. Each detector is used with a Ludlum Model 2350 l Data Logger to provide bias voltage to the detector (s) and measurement recording. To correct field measurements to meaningful results, the efficiency of a detector must be known. This is determined by response testing a detector in the geometric configuration (or equivalent) that is encountered during actual measurements. With the cylindrical l piping detectors, a calibration jig [ l
]'" is used. The GM detectors and LM143-68 are calibrated with [ , ] ~'he source to detector gap is equivalent to the survey distance encountered during field measurements.
i 1 Based on desired sensitivity, the performance of total surface activity measurements with a given detector requims the determination of appropriate count times and/or scanning 2 rates. Specifically, a Minimum Detectable Activity (MDA) of 1,250 dpm/100 cm for 2 unaffected systems and 3,000 dpm/100 cm for affected systems is required for total
~
surface activity measumments. With the specialized detectors that are often required to survey inside piping or other non-standard survey surfaces encountered in plant systems, l this can require very long count times. In some cases, scanning is not practical due to very low sensitivities as a result of small detection areas and low efficiencies. However, fixed point measurements can be performed with any detector and by collecting a sufficient number of measurements (and scanning when possible), plant systems can be adequately surveyed.
4.0 DESCRIPTION
OF INSTRUMENTATION l NOTE Attachment 8.9, Piping Instrumentation Figures, contains figures of each detcetor described in
- - this section.
. 4.1 Ludlum Cylindrical Pipe Detectors The LMI gas flow pipe detectors are cylindrical detectors using P-10 as the detector gas with an overall length of approximately 9 inches. Two different models are available to survey plant system piping at FSV. These are the LMI 43-94 and LMI 43-98 (Figures 1 and 2). The LMI 43-94 is a % inch diameter detecte with an active length of 6 inches. This detector is considend to be appropriate for making measurements in straight run piping with an inside diameter up to 2 inches. The LMI 43-98 is a 1-% inch diameter m:\2694w.1.non:ltWO12996 Page 2 of 15
' METHODS TO EVALUATE THE FINAL CONDITION FSV FRS-TBD 204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 detector that also has an active length of about 6 inches and is used in up to 3 inch diameter straight run piping. Typical efficiencies for these detectors am from 3 to 7%
depending on the particular detector / pipe size. 4.2 Ludlum Model 43-68 Detector l The LMI 43-68 is a 125 cm2 gas flow detector (Attachment 8.9, Figure 3). The detector window is rectangular with active face dimensions of about 3-% by 5-% inches. Because its area is close to 100 cm2 and its efficiency is high (about 20%), this detector is the i principal instrument used to perform final surveys of surfaces and structums. Therefore, , this detector is used whenever possible to survey plant system intemal surfaces. Possible ! applications include, tanks, sumps, wells, and other large bore (i.e.,7 inch diameter and > larger) piping and components. l 1 4.3 GM Detector Assemblies 4.3.1 General In cases where piping cannot be surveyed with gas flow detectors (i.e., the piping contains bends or is too large for cylindrical pipe detectors but not large enough i for the LMI 43-68), GM detectors am used. Assemblies (i.e., multiple detectors i connected together) are used to increase the detection sensitivity of measurements l by increasing the sensitive area of the measumment system beyond that which is afforded by a single detector. This is accomplished by connecting the detectors in i parallel and collecting the signal in a summing mode. Some of the assemblies l include the ability to isolate an individual detector (s) to aid to characterizing the distribution of the contamination (i.e., uniform or localized). To identify each type of GM assembly, a model number is assigned. The model number logic is AA-BBB-CD, where: AA is a 2 letter designation that identifies the basic style of the assembly (i.e., SP for " spider" assemblies that expand radially to the pipe surface and SN for " snake" assemblies where detectors are positioned in different axial positions and are pulled through piping); BBB is the ' diameter of GM tubes used (e.g.,175 for 1.75 inches,113 for 1.13 inches, etc.); C
, designates the number of GM detectors used; and D is an arbitrary letter that designates diffennt versions of the base design. Each of the assemblies !
developed to date are described in the following sections. 4.3.2 Model SP-175-3M Assembly ) l-The Model SP-175-3M assembly consists of three standard size (i.e.,1-% inch ! diameter) " pancake style" GM detectors (Attachment 8.9, Figure 4). With an area of 15.5 cm2for each GM detector, the total detection area of the assembly is L mA2694w-l.noa:IbO12996 Page 3 of 15
METHODS TO EVALUATE THE FINAL CONDITION FSV FRS TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 2 46.5 cm . The signals for each GM detector are individually routed to a summing box where selected detector (s) can be turned on or off. Individual detectors are positioned with a 120 degree azimuthal offset to increase survey coverage during scanning. Motor control is provided to allow the assembly to.be expanded in order to position the detectors in close proximity to the inside surface of the pipe. 'Ihe assembly is attached to an extendable pole that allows surveying inside straight run piping up to a depth of approximately 6 feet. Applications include surveying piping (or components) with an inside diameter from 4 to 12 inches, although typical use is for 4 to 6 inch piping.
'4.3.3 Model SP-113-3 Assemblies The SP-113-3 assemblies (which include the SP-113-3M and SP-113-3T) consist of three 1.13 inch diameter minature pancake GM detectors (Attachment 8.9, Figures 5 and 6). Each detector has an area of 6.47 cm2 yielding an area of 19.4 cm2 for the assembly. With both assemblies, the individual detectors are positioned with a 120 degree offset to increase azimuthal survey coverage. Motor control is provided to allow the assembly to be expanded inside the pipe. A summing box is also provided to turn on or off selected detectors.
t The design of the SP-ll3-3M assembly is similar to the SP-175-3M, except with smaller detectors. The assembly may be attached to an extendable pole to allow surveying inside straight run piping up to a depth of approximately 6 feet. This assembly was especially designed to survey gas bottles by entering the bottle through an end opening and expanding out to the inside surface of the bottle.- ; This assembly is therefore capable of expanding out to 24 inches, although typical < applications at FSV are for surveying 3 to 6 inch diameter straight run piping. l
)
With the SP-ll3-3T assembly, the detectors are positioned at the same axial .. position and include motor control to allow expansion of the assembly inside the pipe. This assembly is pulled through piping with attached cables and includes the ability to pass through 90 degree piping bends. The assembly is applicable for
, surveying long nms of piping, including piping with bends, with an inside diameter from 3 to 6 inches.
4.3.4 Model SN-113-3 Assemblies The SN-113-3 assemblies (which include the SN-113-3C and SN-113-3T) consist of three 1.13 inch diameter GM detectors that are individually enclosed in a special housing that controls the survey distance between detector and survey surface. The detectors are joined in series using flexible connectors so the entire m:u694w 1.sondh012996 Page 4 of 15
METHODS TO EVALUATE THE FINAL CONDITION FSV.FRS-TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 assembly may be pulled through piping, including 90 degree bends, with attached cables. The detection area for each assembly is 19.4 cm2, The housing design for the SN-113-3C assembly [
]** The three detectors of the assembly may be positioned with a 120 degme offset to increase azimuthal coverage of the inside pipe surface. This assembly is applicable for 3 or 4 inch diameter piping with bendc.
Detector position control for the SN-113-3T [
]** The three detectors of this assembly are also positioned with a 120 degree offset to increase azimuthal coverage of the pipes internal surfaces. The assembly is typically set up for surveying 2 inch piping with bends, but may also be adapted [ ] to survey 3 inch piping with bends.
4.3.5 Model SN-050-4K Assembly The SN-050-4K assembly (Attachment 8.9, Figure 9) is a 4 detector assembly consisting of % inch diameter GM tubes with side mounted electrical connectors. [
]'# The detectors are pulled through piping with attached cables and are applicable for surveying 1 inch diameter piping with bends. Successive detectors are rotated 90* to increase the azimuthal coverage of l the assembly in the pipe. With each detector having an area of 1.27 cm2, the total area of the assembly is 5.1 cm2. . 4.3.6 Model SN-050-6K Assembly The SN-050-6K asserubly (Attachment 8.9, Figure 10) is a 6 detector assembly ) , consisting of % inch diameter GM tubes with back mounted electrical connectors.
[
] The detectors are pulled through piping with attached cables and are applicable for surveying 1 inch diameter piping with bends. Successive detectors are positioned with a 60 degree offset to increase the azimuthal coverage of the assembly in the pipe. Each detector has an area of 1.27 cm2 yielding an area of 7.6 cm2for the assembly.
m:u694w-1.no :iber2996 Page 5 of 15 l I
1 METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS-TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 4.4 Special Use GM Detectors Specialty GM detectors have been purchased from LND Inc. to provide a means of surveying unique situations (e.g., bottom of a blind hole). The specialty GM detectors currently in stock include side and end window GM tubes with diameters ranging from 0.38 to 1.42 inches and lengths from 3 to 7 inches. The detectors are used with the M2350 Data Logger to supply the necessary bias voltage and ability to log the measurement result. 5.0 CALIBRATION METHODOLOGIES 5.1 Calibration Sources The radionuclide selected for calibration of the detectors used in plant system piping is Tc-99. Tc-99 is a pure beta emitter with an average beta energy of 84.6 kev and a long half-life of 2.13E5 years. The Average Beta Energy (Ebar) expected in " detectable" plant contamination, (i.e., excluding hard to detect nuclides such as Fe-55 and H-3 that are
~
addressed by reducing the Site Guideline Values, SGLV) at Fon St. Vrain is 113.6 kev. Attachment 8.1, Average Beta Energy (Ebar) for Detectable Plant Contamination at Fort St. Vrain, presents the calculation performed to determine Ebar, which is based on the same samples used to determine the SGLVs. Therefore, a conservative estimate of piping contamination can be made with a Tc-99 calibrated detector. [ l ju
, 5.2 Calibration Procedures 5.2.1 Cylindrical Pipe Detectors The operating voltage for the pipe detectors (i.e., LMI 43-94 and 43-98) is determined by generating a response vs. voltage curve and selecting a point on the " plateau" region of the curve. Typical operating voltages for these detectors are l approximately 1600 volts. Example plateaus are provided in Attachment 8.2, ,
Plateau Data for LMI Gas Flow Pipe Detectors. 1 mA2694w-1.nos:ltW1299- Page 6 of 15
METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 l Efficiencies for the pipe detectors are established by determining the detector's l response to a source [
).,
These particular jig sizes were selected to obtain a balance between minimizing the conservatism of measurements and the complexity of a large number of jig sizes. [
).,
The Tc-99 sources used with the piping detectors are approximately [ l During calibration, an initial ' response 20% tolerance band is calculated to which all subsequent source checks are compared to verify operation of the detectors. 5.2.2 LMI 43-68 Detector When surveying tanks or very large wells or piping (i.e.,230 inch diameter) the , LMI 43-68 may be used with the standard calibration performed with the detector for walls and floors. The standard efficiency is determined [ l l 1 l
)=e If the detector will be used to survey wells, piping or components whose diameter . is <30 inches (and at least 7 inches as is necessary for accessibility of the detector), an [
jae mM6W-Leon:lW12996 Page 7 of 15
I METHODS TO EVALUATE THE FINAL CONDITION FSV FRS-TBD-284 l OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 l 5.2.3 GM Detector Assemblies and Special Use GM Detectors i l Operating voltages for the GM detectors are as specified by the GM detector , manufacturer. When a batch of GM tubes are received, initial screening tests are conducted on the tubes to verify their operation. These tests include background and source response checks to verify each tube operates as expected for the given 1 tube design. Additionally, plateaus are generated on a sampling of the purchased i GM detectors to' confirm that rated voltages are appropriate. Dead time I . corrections use the value stated by manufactumr. At the count rates these l detectors am used (i.e., final survey measurements), dead time corrections will be ' insignificant. Efficiencies are detennined by taking measurements with a source whose diameter is approximately the same as the detector window. The source is positioned at the distance the detector (s) are to be placed from the survey surface during field - measurements. Prior to and after each use, the efficiency of the GM detector (s) is determined. To account for individual tube variances, an allowance band of i20%
~
of the nominal efficiency value established for the detector is allowed. For the i GM detector assemblies, each detector of the assembly is individually verified to 1 I be within the tolerance band. Typical efficiencies for the small special use and GM assembly detectors, are approximately 6-8% with a typical survey distance of
% inch.
6.0 PERFORMANCE TESTING 6.1 - LMI Pipe Detectors 6.1.1 Linearity Testing To examine the linear operation of the cylindrical gas flow pipe detectors, the response of the detectors was checked with different source strengths.
- Specifically, the response of the LMI 43-94 and LMI 43-98 was compared for 2, 15,30 and 60 nCi Tc-99 soumes. Attachment 8.4, Linearity Test Results for LMI !
Gas Flow Pipe Detectors, contains the test results. As indicated by the msults, the ;
. test data was linear within the allowed tolerance band for both the LMI 43-94 and i LMI 43-98. [
ju 6.1.2 Uniformity Testing l The Ludlum gas flow pipe detectors wem designed to achieve an azimuthally symmetric response. Therefore, there should not be any significant difference in i the detector response with respect to rctation. Nonetheless, this was investigated m:u694w.t..on: ibm 2996 Page 8 of 15 l'
i METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS TBD 204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 by performing response checks with the detectors at each of 4 positions by , rotating the detector 90 degrees between source measumments.
- Attachment 8.5, Uniformity Test Results for LMI Gas Flow Pipe Detectors, contains the test msults. As indicated by the results, the test data was within the allowed tolerance band at each azimuthal position for both the LMI 43-94 and
- LMI 43-98. Consequently, an efficiency determined by placing a flexible source
- along the active length of the detector is equivalent to the efficiency that would be
- obtained with a source that encircles the detector.
6.1.3 Gas Flow Testing The degree of gas amplification within a gas flow detector is dependant on the gas pressure within the detector and themfore can vary with gas flow rate. Due to the limited plateau width of these detectors, potential amplification variances can be especially troubling. Therefore, to confirm that the detector's operation is consistent within the procedurally controlled gas flow rate band (i.e.,60 - 80 j' cc/ min), the detectors response was evaluated at differera flow rates within this band. Attachment 8.6, Gas Flow Test Results for LMI Gas Flow Pipe Detectors, ! contains the test msults where the detectors response was evaluated at flow rate 2 increments of 5 cc/ min within the allowed band. As indicated by the results, the detectors were very consistent over this flow rate range. . 6.2 GM Detector Assemblies 6.2.1 Comparison Study with TLD String Survey Method To evaluate the measurement method of GM detector assemblies, a comparison study was performed with the SN-050-4K assembly and TLD strings for two fuel storage well 1 inch embedded pipes (i.e., lines Ll414 and Ll416). Measurements were taken at regular intervals in each pipe by both survey methods. Attachment
- 1. 8.7, SN-050-4K vs. TLD Survey Comparison Test Results, contains plots of the measurement results.
> . Compand data for line L1414 is considered very good. Both methods produced the same approximate contamination profile in the pipe. Two localized spots (i.e., at 0 feet and 50 feet) yielded different values by each method as can be expected i if localized contamination is pmsent due the small size of the detectors. Highly localized contamination (e.g., a hot particle in a weld) can produce significantly diffemnt results depending on the exact detector to hot spot orientation. For example, if a GM detector is located directly over a hot particle in an otherwise clean pipe, the area cornetion factor (required because the total detection area of the assembly is <100 cm2), in effect, assumes the balance of a 100 cm2area at the ma2694..t..om: Ibot 2996 Page 9 of 15
METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 location is also contaminated at the same level. This can result in a significant over estimation of the true per 100 cm2 contamination level at the location. Conversely, the limited detection area of a small GM detector may not detect a given spot of contamination (e.g., a hot spot is between two tubes) and under report the true contamination at a location. Such inherent disadvantages of using small detectors (which are necessary to survey small diameter piping) can be offset by collecting a large amount of data. A large number of measurements will average out individual measurement fluctuations and produce a more accurate determination of the average contamination in a given pipe. This was evidenced by the average results for Ll414 where 4.4 kdpm/100 cm2 and 4.2 kdpm/100 cm 2were determined for the SN-050-4K assembly and TLD string respectively. Ll416 data was also in good agreement. In this pipe both methods indicated that the pipe was clean (i.e., all measurements <12 kdpm/100 cm 2, and average
<4 kdpm/100 cm2 ). The TLD string did indicate one outlying result of 8.6 kdpm/100 cm2 that was not detected by the SN-050-4K. However, due to the long count times required for the SN-050-4K, measurements were taken at 40 inch intervals in this pipe while TLDs were spaced at 20 inch intervals. This elevated reading was located at a pipe position not monitored by the SN-050-4K; therefore, the GM assembly could not be expected to detect this spot. The average ;
contamination levels detennined by each method are in acceptable agreement i considering that MDAs for both methods were approximately 2 kdpm/100 cm2, l 1 Additional comparison testing is planned with other GM assemblies against TLDs I and gas flow detectors and will be included in a later revision of this document. 6.2.2 Comparison Study with Cylindrical Gas Flow Pipe Detectors Testing is underway to compare the cylindrical gas flow detectors to GM detector
.. assemblies and TLDs and will be included in a later revision of this document 7.0 SURVEY TECHNIQUES = \
7.1 Detector Sensitivity (MDA) ' The sensitivity of detectors used to measure total surface activity in plant system piping i is quantified by determining a MDA. Counting sensitivity, or MDA, is targeted to meet l action levels as defined in the final survey plan for both unaffected and affected plant system survey units. From the target MDAs, count times for stationary (i.e., fixed point) measurements are calculated. i i m u6%1.mM12996 Page 10 of 15
_ _ _. _ . . _ _ . . _ _ _ _ _ _ _ ~ . _ _ _ , METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 Fixed point measurements in unaffected plant systems are counted for a sufficient time to achieve a MDA of 1,250 dpm/100 cm 2. This MDA is based on the reclassification ; 2 action level of 25% of 5,000 dpm/100 cm (i.e., the controlling limit for unaffected plant ; systems). For affected plant systems, fixed point measurements are counted to achieve an 2 MDA of 3,000 dpm/100 cm . This value corresponds to 75% of 4,000 dpm/100 cm2 (i,e,, SGLV for affected plant systems), which is the investigation action level for affected 2 plant systems; however, a MDA of 2,000 dpm/100 cm will be targeted when appropriate I (i.e., for detectors with higher sensitivities). The equation used to calculate MDA is as follows: , 2.71 R, R,
+ 3.29 _+_
MDA-= % (Epiciency) A' 100 where t, is the sample count time (min),
- t. is the background count time (min),
R. is the background count rate (cpm), and A is the detection area in cm2. For flat-surfaced detectors, the ama of detection is equal to the area of the detector window. . With the cylindrical piping detectors, the area of detection is equal to the inside surface area of the pipe over the active length of the detector. For 1 inch diameter and greater piping, this ama is greater than 100 cm2 for the LMI pipe detectors (which have an active length of approximately 6 inches). However, it is assumed that the detectors
. response originates from contamination that is distributed over only 100 cm2 Total detection area for GM assemblies is the sum of individual detector areas in the assembly ;
2 (total detection ama is <100 cm for all GM assemblies). Scanning for surface activity has traditionally been performed at an appmximate rate of 2 inches /sec. With this scan rate, standard detectors (e.g., HP-210 "frisker" probes or rectangular gas flow detectors such as the LMI 43-68) can achieve masonably low MDAs. However, the speciahzed detectors that are necessary to survey internal surfaces of plant system piping have lower efficiencies and detection amas, both of which limit their sensitivity. Therefore, scanning, in the conventional sense, is considemd to be impractical for many of these detectors, but will be performed when measurement mA2694 -l.=thm2996 Page 11 of 15
METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 locations allow the use of standard detectors or specialized detectors that can meet or exceed the sensitivity of standard detectors. 7.2 Background Measurements To determine the net count rate at a given survey location, the background count rate must be known. This is determined by taking a shielded measurement at the survey location, or other location considered equivalent. A 300 mg/cm2 shield is used to cover the detectors sensitive area when taking background measurements, which will stop 98% of FSV beta. Attachment 8.8, Shielding Detectable Contamination at Fon St. Vrain, presents the calculation performed to evaluate the shielding used for background measurements. Generally speaking, shielded background measurements am taken at each measurement location. Therefore, the same count time is used for background and sample measurements to simplify the measumment process and minimize the counting time required to achieve a given MDA. If a single background measurement location is to be applied to multiple measurement locations (e.g., a background measurement in one pipe of a row of pipes of the same size and in the same general configuration and location may be used for the set of pipes), a longer count time or multiple measurements are performed for the background. Plant system internal surfaces am almost exclusively metal, which, for the metals typically used to construct plant systems, contain insignificant natural beta radioactivity. Accordingly, additional corrections (i.e., background subtractions) to the net survey - results am not performed. Should survey surfaces be found or expected to contain natural surface activity (e.g., wall and floor penetrations without steel sleeves), evaluations will be performed to determine the appropriate background subtract values to be applied to plant system survey data so the results reflect only licensed material. 7.3 Surface Activity Measurements Specific survey instructions and procedures will be used to control the survey and data analysis process for plant system survey units. The basic process will involve scanning
.. at the location (if possible), and the collection of fixed and removable measumments.
Scanning for sudace activity (i.e., for those detectors capable of performing scans) in : plant system piping is performed by slowly (2 inches /sec or less) moving the probe through or across the pipe or other survey surface. The fixed point measurement is then j typically pedormed at the specific point yielding the highest audible response. If no 1 increase in count rate is noticeable, a biased location is chosen for the fixed point measurement (e.g., at pipe welds, in open valves, etc.). The fixed point measurement is perfonned by taking an unshielded and shielded reading. Following the collection of m:u694w-1. on:ne12996 Page 12 of 15
)
J METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 fixed point readings, samples for removable surface activity are collected for laboratory analysis. To verify the proper operation of the detectors used to perform Final Survey of plant system piping, a pre-use and post-use response check is performed. These checks are performed with the source jigs used to determine the detectors initial response and calibration and are required to be within 120% of the value observed at time of calibration. 7.4 Summary of Piping Instrumentation Capabilities Table 1 below summarizes the piping instrumentation developed to date for FSV. Included in the table are the basic parameters, advantages, disadvantages, and applications of the various detector types and assemblies available to survey plant system internal surfaces. The efficiency and background values represent average results from past measurements. The count times in the table are based on using the same count time for both background and sample measurements and are rounded up to convenient values. The selection of appropriate detectors and specific count dmes to be used for a given plant system survey unit are identified in specific survey instructions that are prepared in accordance with an ; approved procedure. The detectors that are considered capable of performing scans (i.e., at 2 inches /sec) include the LMI 43-94, LMI 43-98, LMI 43-68 and the SP-175-3M, which consists of three standard size GM probes. 1 l mA26 m -i. o.:ib m 2996 Page 13 of 15
[ , , , , METIIODS TO EVALUATE THE FINAL CONDITION FSV-FRS-TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 TABLE 1 -
SUMMARY
OF PLANT SYSTEM SURVEY DETECTORS Model Description Area Typical ' Typical Count Time Advantages Disadvantages Applications 2 Number (cm ) EfHelency BKG LMI 43-94 0.5" diameter gas 7% in 1" 100 cpm 30 sec',15 sec' large area detector, detector fragile, straight run piping 100 flow pipe detector I min',15 sec i scanning possible gas flow equip. required 0.75" to 2" 5% in 1.5" 100 cpm LMI 43-98 1.5" diameter gas 5% in 2" 200 cpm 2 min',30 sec2 large area detector, detector fragile, straight run piping 100 flow pipe detector 4 min', I min scanning possible gas flow equip. required 2" to 3" 3% in 3" 200 cpm LMI 43-68 3.5" by 5.5" gas 125 20 % 400 cpm 15 sec i2 large area detector, gas flow equip. required tanks, sumps, wells, piping flow detector scanning possible, >7" short count time SP-175-3M 3 - 1.75" GM 46.5 8% 200 cpm 3 min' ease of operation, detection area straight run piping detectors 30 sec' scanning possible <100 cm2 4" to 6" SP-ll3-3M 3 - 1.13" GM 19.4 7% 100 cpm 10 min' ease of operation small detection area, long straight run piping detectors 2 nnn2 count times, cannot scan 3" to 6" SP-113-3T 3 - 1.13" GM 19.4 7% 100 cpm 10 min' able to survey piping' small detection area, long piping straight or with bends detectors 2 min' with bends courit times, cannot scan 3" to 6" SN-il3-3C 3 - 1.13" GM 19.4 7% 100 cpm 10 min' able to survey piping small detection area, long piping with bends detectors 2 min' with bends count times, cannot scan 3" to 4" SN-il3-3T 3 - 1.13" GM 19.4 7% 100 cpm 10 min' able to survey piping small detection area, long piping with bends detectors 2 min' with bends count times, cannot scan 2" or 3" SN-050-4K 4 - 0.50" GM 5.1 6% 20 cpm 35 min' able to survey piping small detection area, very 1" piping with bends detectors 6 min 2 with bends long count times, cannot scan SN-050-6K 6 - 0.50" GM 7.6 6% 30 cpm 22 min' able to survey piping small detection area, very 1" piping with bends detectors 4 min2 with bends long count times, cannot scan Notes: ' Based on achieving MDA of 1,250 dpm/100 cm2 2 Based on achieving MDA of 3,000 dpm/100 cm2 3 Efficiency in counts /dh from Tc-99 source covering detector sensitive area m:u6w-i.non:im 25 Page 14 of 15
METHODS TO EVALUATE THE FINAL CONDITION FSV FRS-TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 8.0 ATTACHMENTS 8.1 Average Beta Energy (Ebar) for Detectable Plant Contamination at Fort St. Vrain 8.2 Plateau Data for LMI Gas Flow Pipe Detectors 8.3 Effective Survey Distance in Large Diameter Piping 8.4 Linearity Test Results for LMI Gas Flow Pipe Detectors 8.5 Uniformity Test Results for LMI Gas Flow Pipe Detectors 8.6 Gas Flow Test Results for LMI Gas Flow Pipe Detectors 8.7 SN-050-4K vs. TLD Survey Comparison Test Results 8.8 Shielding Detectable Contamination at Fort St. Vrain 8.9 Piping Instrumentation Figures l mM6W-1.m: LWD 12996 Page 15 of 15 (
METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS-TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 ATTACHMENT 8.1 AVERAGE BETA ENERGY (EBAR) FOR DETECTABLE PLANT CONTAMINATION AT FORT ST. VRAIN Table 1 below presents the relative radionuclide composition of various samples and smears
- taken at Fon St. Vrain for the " detectable" radionuclides. These particular samples, which are decay corrected to January 1,1996, are the ones used to determine the Site Specific Guideline Values (SGLV). Also presented in the table, is the average radionuclide composition that is determined by assigning equal weight to each of the individual samples. Only the " detectable" (i.e., readily detectable) nuclides are included in the calculation because the hard to detect nuclides and alpha emitters are accounted for by reducing the SGLV.
TABLE 1 - RELATIVE RADIONUCLIDE COMPOSITION OF FORT ST. VRAIN SAMPLES / SMEARS Co-60 Sr-90 Cs-134 Cs-137 Eu-152 Eu-154 Tc-99 PCRV Smear 7.25E-1 3.75E-3 3.28E-3 1.02E-1 1.56E-1 1.03E-2
- HSF Smear 9.87E-1 2.75E-4 1.24E-2 FHM Smear 9.38E-1 4.93E-3 1.30E-3 5.58E-2 Liquid Waste 3.44E-2 1.39E-3 4.72E-2 9.17E-1 Resin l PCRV 1.17E-1 4.53E-3 8.08E-1 5.66E-2 1.34E-2 j Concrete i Graphite 3.22E-1 9.15E-5 6.27E-1 5.12E-2 Dust I
PCRV Access 9.78E-1 2.26E-3 1.51E-3 1.77E-2
. Flange PCRV Shield 8.56E-1 6.01E-3 1.85E-3 1.36E-1 Plug Average . 6.20E-1 2.34E-3 7.46E-3 1.55E-1 1.99E-1 1.48E-2 1.68E-3 Fraction To determine Ebar for the average radionuclide composition, Ebar for each radionuclide is determined using published tabulations. In the individual nuclide Ebar calculation, electrons from~ internal conversion, auger electron emission as well as beta decay are considered " beta particles" because each electron of a given energy (without regard to its decay source) has the same probability ofinteracting with a detector. In addition, any daughter nuclides that can be pu694w-1.mdW12996 Page 1 of 3
METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS TBD.204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 assumed to be in equilibrium with the parent are factored into the calculation (e.g., the Sr-90 daughter Y-90 and the Cs-137 daughter Ba-137m). The equation used to calculate Ebar for a given radionuclide is as follows: (Abundance
- BetaEnergy)
Ebar = f (Abundance) whem N is the number of individual branches of the radionuclide (i.e., each auger, conversion, or beta decay electron and its associated energy) The Ebar calculation for each individual radionuclide uses all electron energies, including low energy auger electrons. This was done to ensure a consistent approach is followed with each nuclide and the range of its electron emissions. Most auger eSctrons and some of the beta decay electrons (which are emitted with an energy spectrum from zero to a characteristic maximum) am unable to reach the detector due to their low energy. To be consistent in omitting electron energies not expected to be detected would require correcting for all low energy electrons, including beta decay. Consequently, the consistent approach of using all energies emitted by a given radionuclide is followed. A summary of the Ebar values for each radionuclide that are used in the overall average Ebar calculation is provided in Table 2 below: TABLE 2 - EBAR DATA
SUMMARY
Co-60 Sr-90 Cs-134 Cs-137 Eu-152 Eu-154 Tc-99 Average 6.20E-1 2.34E-3 7.46E-3 1.55E-1 1.99E-1 1.48E-2 1.68E-3 Fraction Ebar (kev) 95.8 565.32 159.68 196.8'2 87.28 149.28 84.6
~
Beta 1.000 2.0002 1.015' l.174'# 1.4241 1.8388 1.000 i Abundance 3 ' NOTES: ' Data include contributions from conversion and auger electrons 2 Data include contributions from daughter 8 Beta Abundance is the average number of beta particles emitted per decay m w o4=-1..os:1 w 2996 Page 2 of 3 4
METHODS TO EVALUATE THE FINAL CONDITION FSV-FRS TBD-204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 To determine overall Ebar for the average radionuclide composition, the following equation is used: (AverageRaction* Abundances BetaEnergy) Ebar = ' f(AverageFractione Abundance) where N is the number of detectable radionuclides in the average composition. Using the preceding equation and data from Table 2, the results of Table 3 are obtained. Note: The denominator of this equation is the beta abundance (i.e., average number of beta particles emitted per decay) for average radionuclide composition at FSV.
~
Using the preceding equation and data from Table 2, the results of Table 3 are obtained. TABLE 3 - EBAR RESULTS FOR RADIONUCLIDE COMPOSITION Ebar (kev) Beta Abundance 113.6 1.126 m:\2694w 1.nos: LWD 12996 Page 3 of 3 I
ATTACHMENT 8.2 PLATEAU DATA FOR LMI GAS FLOW PIPE DETECTORS 43-94 DETECTOR PLATEAU M2350 #95337 DET. #PR119460 Tc99 #SCN868 67,022 DPM 10000 J_.-.._-. b. g _ __ 8 iooo y -
' :.~. . : :-~ :_ . _ _ 2._ _ 22::: :: : :: . : :.- .
3 . g . . _ . . _ . . _ _ _ . _ _ _ _ . _ _ . _ _ _ . _ . . . . . m - - - - - . - - . - - - - - - - 100 1 i i i i 1400 1450 1500 1550 1600 1650 1700 HIGH VOLTAGE 25' cable ,
+0 m:\2694w.l.non:1bM12996 Page 1 of 2
ATTACHMENT 8.2 PLATEAU DATA FOR LMI GAS FLOW PIPE DETECTORS 43-98 DETECTOR PLATEAU M2350 #95348 DET. #PR117963 Tc99 #SCN867 68,287 DPM 10000
===.*==.=. i -- . - . . ~ ~1TZ f ".~ . J '--'~ -- ,2"p :- .q ._._ _ . ~ ~
m .: .
- . L~?.~ ~: - . ~
t_ ,000 -- g =.. _y g=_ _
;_ ._ _ _ _ _ _ _ _ _ _ _ p=,. ;.. _, - .
o _ _ . .
.:.= ==:..p. :..== =-- =; : -
g . _ . . . _ _ _ . . _ . m
'- $ 5s55N 5. N.~~~..~ 5 =- _((~ '2' 5' . _S.::Fi.' --
- 1. SE xx' -~~ _
m
' ~
- rr_ . _ _ . _ . _ . . . . _ _
~ ~ 11 ~ ~ .' ~ '1'~ : I 1l ^1 ~ ~:' '. ~' L::::: ~
10 1 I I i ! I i 1400 1450 1500 1550 1600 1650 1700 1750 1800 HIGH VOLTAGE 25' cable -A 0 au694 i.i=: ibm 2996 Page 2 of 2
METHODS TO EVALUATE THE FINAL CONDITION FSV FRS-TT,D 204 e OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 O l 4 m:u694w-1.non:thm2996 Page 1 of 3
METHODS TO EVALUATE THE FINAL CONDITION FSV FRS TBD-204 e
~ ~OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 f
l 1 i I m:U694w.1.aos:ltal2996 Page 2 of 3
METHODS TO EVALUATE THE FINAL CONDITION FSV.FRS.TBD.204 c OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 m:u6%i.=:iwi2996 Page 3 of 3 1 i l _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
ATTACEIMENT 8.4 LINEARITY TEST RESULTS FOR LMI GAS FLOW PIPE ~ DETECTORS LMI 43-94 Linearity Test (2" Jig) (Detector #124114) 6000 . I1
.. /,
5000 . _i
.s/ , . i
{4000
.y, /
y 3000 g
. e.'
u, - x 'y-- g 2000 " . Z 7 ; q *- 1000 .- y-h . . . -.
./ .
0u R. .. l' O 10 20 30 40 50 60 70 Source Strength (nCi) A Test Data as Tolerances (+/- 2d%) Average Efficiency (3.7%)
.:uso9-.i..rt: wit:395 Page 1 of 2
( ATTACHMENT 8.4 LINEARITY TEST RESULTS FOR _LMI GAS FLOW PIPE DETECTORS LMI 43-98 Linearity Test (3" Jig) ' (Detector #117%I) 6000 -- - - . --- 5000 . - - - - - . .-. ij
./
8 400o _ _ . _ . . . _ . . . y ~ V k EB
- 3000 .-- . -.-
y . . _ . - . . - . . . . . g / .. . . g 2000 - . - - - - - . - - - . - - . - -
. [_
g . . - . - - - - . _ . -. .- - . - Z . y n ._ __ _ - . . . _ . 1000 _- . . _ _ . Oud -- . . 0 to 20 30 40 50 60 70 Source Strength (nCi) ' A Test Data a Tolerances (+ /. 2b%) Average Efficiency (3.0%)
.:usw ..pr.iwin 395 Page 2 of 2 1
ATTACHMENT 8.5 UNIFORMITY TEST RESULTS FOR LMI GAS FLOW PIPE DIRECTORS 3 LMi 43-94 Uniformity Test (1" Jig) (Detector #PR124110) 6000 -- . - - . - - - - - - - - - . - - - - - - - - - - - - - - - - -- 5000 - - - - - - - .- -- - - - - - - A E g4000, , . _ _ _, ,, _ in-------------------- S "' y 3000 - - - - - - - .- 7-- U ' M 2000 ' e . . - . - - - _ - . - . Z l000 -. - - 0 - - - - - - 1 2 3 4 Angular Position um Positional Response - -- - Average Response Average (+/- 20%) =:usmuso9.-2..pr;iwiii395 Page 1 of 2 l
ATTACHMENT 8.5 UNIFORMITY TEST RESULTS FOR LMI GAS ROW PIPE DE1ECTORS LMI 43-98 Uniformity Test (2" Jig) (Detector #PRI17%1) 5000 - - . - - - - - - - - - - - - - - - - - - 4000 - - - - - - - - - - - - - - - - - - - - - --- - - - -
-------o-n E un . . . . . _ _ .. .. . . . . . - - - _
se .. . _ . . _ - . 15 v 3000 - II -- - - - - - - - - - - - - - - - 4a 3 i y2000 - - - - - - - - - - - ------ - - - - - - - - - - - - - -- -- U Z ' 1000 .. _ _ _ . _ . . - . 0 .- - -- - - - - - - - - --- - - - - - -- - - - . - '.-.-.-- 1 2 3 4 Angular Position In Positional Response - - - Average' Response Average (+ /- 20%) m:usov.usoo.-2..pciwit:195 Page 2 of 2
ATTACHMENT 8.6 GAS FLOM TEST RESULTS FOR LMI GAS FLOW PIPE DETECTORS 43-94 ResponseYs Gas Fiow (1" Jig) (Detector #PR 119460) 5000 - - - - - - - - - -- 4000 . -
. . _ ,,- ._--___..8s__ 'ua E
o. 3000 -- - - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.t:
E i M2000 .- U Z 1000 - 0 - . . 60 65 70 75 80 Gas Flow (cc/ min) am Flow Dependent Resuk Average Resuk . Average ( +/- 20%) m:u509.u50ew-2.wyttwit :395 Page I of 2
ATTACHMENT 8.6 (;AS FLOW TEST RESULTS FOR LMI GAS FLOW PIPE DIRECTORS 43-98 Response vs Gas Flow (2" Jig) (Detector #PR 117%1) 5000 - - -- -- - -- -. - - - - -- --
-1 I
4000 _ _.. _ __ _ . _ _ - _ . _ . - _ m g 8 3000 --. . _ . ._-- - . - - . . _ . . - . . _ . ._. . U g 2000 - - -- - - . - - . - - - .-- - - - - . ti Z 1000 . - - - - - - . - --- - 0 - - - .- - - - - - - - -- . - - - - - . . - - . -- . 60 65 70 75 80 Gas Flow (cc/ min) b a, Flow Dependent Result Average Result. Average ( +/- 20%) .:uso9-uso9.-2..pr:iwin i395 Page 2 of 2
A1TACIIMENT 8.7 SN-854-4K VS. TLD SURVEY COMPARISON TEST RESUL13 FSW 1" Pipe #Ll414 Survey Results , 48 - . - - - - - - . - - - - - - - 44 ' . - - - - -. . - - - - - - - - - - - - - - - . - - - . . - .
---l 40 .- .-- - . - - - .. GMXV6ra~gi = 4.4 i dp-~m;100 Eis2~ , - --~ ~
36 Z Z - - . . - g 32 - ---- . - - - - TL1 Average = 4.2 kdpm/100 cm2 .- - - - - - - - -- - - - -
- - ~ ~ - - - - - ~~
j5 28 " - --.- - - - - - -- - j l$24
- - - - . --- -- .--.. . a -- - - .--
p 20 . ---.
+ . - . -
g 16 M 12 -- . . - . - - - - - .--- --- - 8 : , < - - - - - . . . - - - - - - -- 4 - -- --. - - - -u r Ap - n.... O J- 'u e . 3-.-o ..-/ **"- * . . m* *
-4 .._. ._ . . - . - - - _ - . - - - . . - - . . . . . -
0 10 20 30 40 50 60 70 Pipe Position (feet from level 7 end)
. = . GM Assembly Results ..I-- TLD Results m:uso9.uso9. 2..pt:iwin M5 Page 1 of 2
ATTACHMENT 8.7 SN-954 4K VS. TLD SURVEY COMPARISON TEST RESULTS FSW 1" Pipe #Ll416 Survey Results 16 . - . - -. - -. . - - - - - . - . . - - - - . 12 - -- -- UM Avsage - TG2 Edprii/100 chi 2
- - . - . ..~ --. _ --._ _ -. - . . _ . . _. ] , TLD~ Average = E6Tdp6i/1DU cm2 s _. _. ._
11 .
- o. 4 -- .- - -- --- - - -
o - -- - - - -- -- - .- -- d'
. . . .A -- ._ _ . _ _
ii A A 0 -A y-n g g.b --g u- 3 -- O- - - " .A A A a mA un
. - - 4.oa rAn a -.-- lg A" g.A g A wA -a m . . - . . - - . . .. . . ~ . . .
0 10 20 30 40 50 60 Pipe Position (feet from level 7 end) m GM Assembly Resuhs A- TLD Results musmum2..pr.swin ans Page 2 of 2
METHODS TO EVALUATE THE FINAL CONDITION FSV.FRS.TBD-204 ! OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 t 4 ATTACHMENT 8.8 SHIELDING DETECTABLE CONTAMINATION AT FORT ST. VRAIN When performing background measurements inside plant system piping, a 300 mg/cm2 shield (typically aluminum) is used to cover the detector's sensitive area to measure instrument background. To verify effectiveness of the shielding, the following analysis has been performed. A 300 mg/cm2 shield of aluminum is the range for 600 kev beta particles (Ref. 2.1.3). In other words, only particles with energy greater than 600 kev will be able to penetrate the shield. To determine i percentage of beta particles from detectable contamination at Fort St. Vrain that would penetrate this . amount of shielding, a decay distribution shape is assumed as shown in Figure 1 below superimposed on a typical (curved line) beta decay distribudon (i.e., typical for S decay, which is decay scheme ofinterest at Ftti St. Vrain, a + decay distribution would involve a shift to higher energies due to Coulomb interactaon with the nucleus) (Ref. 2.1.4 & 2.1.5). ai f -A ..
-_9( , / \ /
hxs x lp // 'N FIGURE 1 - TYPICAL AND ASSUMED $ DECAY DISTRIBUTIONS As seen in Figure 1, the distribution is assumed to be composed of two segments. The first segment assumes a uniform energy probability for beta particle energies up to Eber. The second segment assumes a triangular shape terminating at Emax. Under each segment, the normalirad area is defined to be 0.5, which, in effect, assumes that half the beta particles have energy below Eber and half above Ebar. To determine an*=iasad esta under the second segment of assumed distribution when Ebar is <600 kev and Emax is >600 kev, the following equation is used:
) '
P(E) = P(Ebar) - (Emax - Eber)(E - Eber) m:usco.uscow.2.wpt: twit t395 Page 1 of 4
\
METHODS TO EVALUATE TdE FINAL CONDITION FSV.FRS TBD 244 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 Since area under the second segment of assumed distribution (i.e., triangular region) is by definition equal to 0.5, solving for area of the triangular region results in the following expression for P(Ebar): I P(Ebar) = (Emax - Ebar) . which by substitution results in the following expression for P(E): - ; I (E - Ebor) P(E)'i' - (Emax - Ebar) (Emax - Eber)2 Using this equation, attenuated area under the second segment of assumed distribution can be determined for a given energy (i.e., 600 kev). ' Assumptions used to determine anenuation for each decay line of a given radionuclide are as follows: j
- 1) For beta particle distributions whose Ebar is greater than 600 heV, the fraction of beta particles 4 that are attenuated by the shield is determined by:
% attenuated =
- 50 where Eber is in kev.
- 2) Beta decay distributions whose Emax is <600 kev and internal conversion and auger electron emissions whose mono-energetic energies are <600 kev are attenuated 100% (internal conversion and auger electron emissions <600 kev are grouped together with a enmmM ab ndance).
- 3) Internal conversion electron emissions with mono-energetic energies >600 kev are not auenuated.
- 4) For beta particle distributions whose Eber is less than 600 kev, but whose Emax is greater than 600 kev, the fraction of beta particles that are antaanarM by the shield is determined by:
I (600- Ebor) ~ M- 600) ~
~ % attenmaard = 50 + 100* 0.5 - - -
2 ( ; where Eber and Emax are in kev. Total anenuation for a given nuclide is given by weighted averaging of all individual decay lines of the nuclide (i.e., weighted by individual line alymdancas). Total attenuation for Fort St. Vrain nuclide mix is determined by weighted averaging of individual nuclide total anenuadons where weight is based on the fraction present in the average nuclide mix. mA2509sA2509w-2 wyf:lWil!395 Page 2 of 4
METHODS TO EVALUATE THE FINAL CONDITION FSV FRS TBD 204 OF PLANT SYSTEMS PIPING INTERNAL SURFACES REVISION 0 The following table lists specific radionuclides identified in " detectable" contamination at Fort St. Vrain and the percent attenuated for each decay line of the nuclide and total effective attenuation for the nuclide. These radionuclides are the values and fractions identified in the sample set used to determine SGLVs (see also Table 2 of Attachment 8.1). Total attenuation for Fort St. Vrain contamination by a 300 mg/cm2 shield is calculated to be 97.9%. e m:uso9 usow2.wo r:ibo20996 Page 3 of 4
METHODS TO EVALUATE TIIE FINAL CONDITION FSV.FRS.TBD 244 OF PLANT SYSTEMS PIPING pf!T.RNAL SURFACES i REVISION 4 : l i Nuc6de Average Mena # F.bar theV) r . theV) j Freeden erBean per une 5 Sesa Overed % ~ per une of M Partiejas Attenmased Aasenessed I ser Deant
,, per une pse Nestide ,
CW 0A M 1.000 95.8 (Ica":
! Br.90 317 9 (IC- : [ 100.0 0.00234 2.000 195.8 (k-M.100W 100.01 546 0 (&M '
100.0 934 8 N 90.100W N.9 W.90) 66 01 Ca-134 0.00746 1.015 21.1 (27.4W 32.1 88.9 (27.4W 100.0 123.4 (2. O : 992i ' 1 415.1 (2. *.*".: 100.0 7 210.1 (70.1W 657.9 00.168 6 99.2 758.4(0.22W 758.4 10.22 9 t 0.0
< 600 (1.29W < 600 (1.239 Ca 137 1 0. !!4an 1.174 156 8 (94.m t00.0 511.6 (94 6W 100 0 I
415.2 (5.4 % 90 6 i 1173.2 (5.44) 71 4 624.2 0 = 624.20.66 0.0 655.7 (1.3 m 655.7 (1.3 W 0.0 i 660.4 S.4i W 660.4 (0 4 4 0.it '
< 600 D.'SW <WU. ISW 100.tl Eu.152 0.19900 '
1.424 47.5(1.7960) . . 4 ( 1 . 71 W 100.0 97.2 12.5 Q.6 .I$ (2.8N 100.0 l l21.8( 3.666 d6 (13.m
; 27 8.;3W " 90 0 t .0 8.23W 97.4 ;35.3 S._^""4 IIB M..TJ .
M.2
;64.8 m.89W 106410.89W - 78.0 < !!35.6 8.44W < 600 (114.463 1475 <@ (114. 6 S.46 56.6 I '
100.(6 Es.154 1 0.01480 1.838 M.8 G7.968 M7.4 (27.9W 100.0 95.3 t iE.9 8.77W 36.1 (0.77W 100.0 41.7 S.14pm 1l1.2 m 49W 100.0 100.9 (1.38 6) .49.8 (IJSti 100.0 119Ji S.1' .7W 407.4 8.117W 100.0 129.. .(0.2 l16) G .7 m.23 m 100.0 Isa '. g.1; 366 ;a I.a (0,13 Ge 100.0 175.7 (14 ! Si j0 '.4(36.9 W 100.0
- 1 ;34.5 a.C %.2 W.M i 97.7 I
;29 m.20"4 71!'.4 W.24*4 i
i 97.2 275 (17.4W 839.2 (17 4W 9' . .e 2 6 327.5 G 06) 970.7 (2.0W El.4 ' t aE.4 S.29W 11Jil.5 m.74 7'J.0 I
!k7 48.24W 1996 (0.2-=: 51.2 i i 695(11. 6 1843.9 (11.4W 43.2 '
t
< 600 (33.m < 600 83.m 100.0 iTe 99 I 0.00168 1.000 84.6 (100m 193.6 (100 96 . 100.0 1000' c . ., * - " -(W e 97.9 <
5 es.
.:us0ewc50D= 2.wyt:1w111395 Page 4 of 4
1 4 I fi ATTACHMENT 8.9 - PIPING INSTRUMENTATION FIGURES t i 4 i 4 J ( i Figure 1: LMI 43-94 i i l
, I l
gqq
/
j i
~
( 4 3 i 9.4. i ~ .1 I t j Figure 2: LMI 43-98 s TBD.204.9-0 Page 1 of 7 .a
~ )
0 e f, '#h>*
+ . . \' - , / /
6 . ,
/ - .k k $ . %
k Cr
, fll /i,'4;,#'
Nk k 4
#N#y e
k y $ 4 4 4 .
./$yaf,f.
i fff $$$$ e O
,'NNNNNNN i
f5f$
######A YNWN######N NNNCNN.* CCN.y t / s #U*A',%C^ / * *NNCNN:N+A+Y
- V a f e
r s k e
' ~-
SI 8% , j ~j oi tv E,/ \ 0
,f %
g U$ I e e e e ~ I @
! p. e ' u t _ . ___ -J u .-{ b B .
s 54 Y a
.~ . .. . ._
.4 - -- ha= *uma- 4 4me==-- .m 4.. -1 - 44-4 i
a
- ATTACHMENT 8.9 - PIPING INSTRUMENTATION FIGURES 1
4 4 + i
)
l i 4 1 i 4 l 4 l j i l
- Pages 3 thru 7 Proprietary 0
I l l l l l I I
ATTACHMENT 2 TO P-96004 FORT ST. VRAIN TECHNICAL BASIS DOCUMENTS 1' FOR PIPING SURVEY INSTRUMENTATION (NON-PROPRIETARY) i e t
--}}