ML20153D660

From kanterella
Jump to navigation Jump to search
Jm Farley Unit 1 Interval 2,Period 1,Outage 1 Inservice Insp of Outlet Nozzle to Shell Weld 21:Recordable Indications Acceptable to Allowable Stds of ASME Section XI & Requiring Supplemental Investigation..
ML20153D660
Person / Time
Site: Farley Southern Nuclear icon.png
Issue date: 05/31/1988
From: Adamonis D, Jusino A, Rishel R
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20153D649 List:
References
NUDOCS 8805090237
Download: ML20153D660 (42)


Text

{{#Wiki_filter:ENCLOSURE 2 J. M. FARLEY UNIT 1 INTERVAL 2, PERIOD 1, OUTAGE 1 INSERVICE INSPECTION OF THE OUTLET N0ZZLE TO SHELL VELD #21 : RECORDABLE INDICATIONS ACCEPTABLE TO ALIDWABLE STANDARDS OF ASME SECTION XI AND REQUIRING SUPPLEMENTAL INVESTIGATION AND J. M. FARLEY UNIT 1 INTERVAL 1, PERIOD 3 INSERVICE INSPECTION OF THE REACTOR VESSEL IDNGITUDINAL VELD SEAM #6 MAY 1988 R. D. RISHEL D. KUREK REVIEVED BY: E A.Jubo,1.svelIIIUT Metallurgical and NDE Analysis /- h" 7 APPROVED D. C. Adamonis, Manager Materials Technology VESTINGHOUSE ELECTRIC CORPORATION P. O. BOX 2728 PITTSBURCH, PENNSYLVANIA 15230 G005090237 880505 PDR ADOCK 05000348 O Dcp

TAPLE OF CONTENTS Section Page i 1.0 NONDESTRifCTIVE EXAMINATION RESULTS 1-1 1.1 Mechanized Inservice Inspection - 1-1 1988 Examinations i 1.2 Comparison of Past Mechanized Inspection 1-4 Results - Preservice, 1984 and 1988 Examinations 1.3 Review of Fabrication Ultrasonic Test Reports 1-5 1.4 Review of Construction Radiographs 1-6 1.5 Supplemental Examinations with UDRPS 1-7 2.0 INDICATION ANALYSIS 2-1 2.1 Indication Analysis 2-1

3.0 REFERENCES

3-1 3.1 References 3-1

SECTION 1.0 NONDESTRUCTIVE EXAMINATION RESULTS 1.1 Mechanized Inservice Inspection - 1988 Examinations During the April 1988 J. M. Farley Unit i reactor vessel inservice inspection three indications were recorded during the near surface examination of the lower shell longitudinal weld seam #6 and six indications were recorded during the examination of the outlet nozzle to shell weld #21 from the nozzle bore. Each of-these indications exceeded the 50% DAC recording level. The three indications in the lower shell longitudinal weld seam #6 have been identified as indications 1, 4 and 8. Indication 4 was determined to be clearly an acceptable subsurface flaw indication using the acceptance standards of Tabin IWB 3510 of the ASME Code Section XI,1974 Edition through the Summer 1975 Addenda and is therefore not discussed further in this report. The six indications in the outlet nozzle to shell weld #21 have been identified as indications 1, 2, 3, 3A, 6A and 22A. Indications 1, 2 and 3 were found with a 20 degree longitudinal wave examination from the nozzle bore and were determined to be subsurface flaw indications which are acceptable to the standards of Table IWB 3512-1 of the ASME Code Section XI, 1983 Edition through the Summer 1983 Addenda, and will not be discussed further in this report. Indications 3A and 22A were found with a O degree longitudinal wave examination from the nozzle bore and were determined to be subsurface flaw indications which exceeded the allowable standards of Table IWB 3512 1. These two indications are discussed in more detail in reference 7. Indications 1 and 8 of weld #6 and indication 4A of weld #21, however, required supplemental investigations due to the results of the standard inservice inspections. For information welds #6 and #21 are shown in the elevation and plan views of figures 1.1 and 1.2, respectively. 11

Indications 1 and 8 in the lower shell longitudinal weld seam #6 were found using the Westinghouse Remote Inservice Inspection Tool vith the 10-year near surface array plate. The primary detection transducers on this plate are pitch catch, 2.25 MHz focused units having 1 inch diameter crystals and are configured to produce a nominal 60 degree refracted longitudinal wave angle in the material (incident angle of 12.5 degrees). The array plate itself consists of four such transducers arranged such that the ultrasonic beams are propagating clockwise and counterclockwise around the vessel circumference and up and down the vessel height. These tri.nsducers were calibrated using 1/8 inch diameter side-drilled holes located at depths of 0.25 inch and 0.75 inch below the calibration block stainless steel clad surface. Calibration sensitivity was established using an 804 full screen height response from the 0.75 inch deep hole. This examination technique is in accordance with f Regulatory Guide 1.150, Rev. 1 near surface examination requirements. A schematic of the 10 year near surface array plate is shown in figure 1.3. i Indication 1 of weld #6 was determined to be located at approximately 136 { degrees vessel azimuth or approximately 2 degrees from the centerline of longitudinal weld seam #6 and approximately 333 inches below the top of the vessel flenge (this dimension puts it in the reactor vessel circumferential veld seam #8). Its measured through-wall dimension (2a) using 50% DAC sizing techniques is 0.43 inch. Its measured length dimension (1) using 50% DAC sizing techniques is 0.24 inch and is measured around the vessel i circumference. Using ASME Code Section XI rules indication 1 would be considered a surface flaw indication. This consideration led to the supplemental investigation of this indication. Figure 1.4 shows the location of indication 1 with respect to the longitudinal weld seam #6 centerline and the top of the vessel. Table 1.1 includes the pertinent information concerning indication 1. Indication 8 of weld #6 was determined to be located at approximately 137 degrees vessel azimuth or approximately 3 degrees from the centerline of longitudinal weld seam #6 and approximately 257 inches below the top of the vessel flange. Its measured through-wall dimension (2a) using 504 DAC sizing 1-2 i I

techniques is 0.48 inch. Its measured length dimension (1) using 50% DAC sizing techniques is 0.36 inch and is measured along an axial plane of the reactor vessel. Using ASME Code Section XI rules indication 8 would be considered a surface flaw indication. This consideration led to the supplemental investigation of this indication. Figure 1.5 shows the location of indication 8'with respect to the longitudinal weld seam #6 centerline and the top of the vessel. Table 1.1 includes the pertinent information concerning indication 8. Indication 4A in the outlet nozzle to shell weld #21 was found using the j Vestinghouse Remote Inservice Inspection Tool with the standard 40-month array plate. The transducer which detected this indicatien is identified as TR6. Transducer TR6 was configured to produce O degree longitudinal waves from the nozzle bore. This transducer is a 2.25 MHz, 1-1/2 inches diameter, pulse-echo unit. It was calibrated in accordance with Section XI requirements using 3/8-inch diameter side-drilled holes at metal travel depths of 91/2 and 11-3/4 inches. A schematic of this arrangement is provided in figuro 1.6. Indication 4A of weld #21 was determined to be a subsurface flaw indication which is acceptable to the standards of Table IVB 3512-1. Indication 4A, however, was found in the 1984 examinations and was at that time found to be acceptable to Table IWB-3512-1 only through the use of beam spread correction j factors. Because of its past history it was subjected to supplemental ) exeminations in this examination per!od. 1 i Indication 4A using standard inservice inspection data is located at approximately 237 degrees clockwise from the top center of the nozzle when j viewed from the reactor vessel centerline. It had a maximum amplitude response of 65% DAC and has a measured through wall dimension (2a) using $0% DAC sizing j techniques of 0.98 inch. This dimension is parallel to the nozzle bore and I therefore perpendicular to the inner diameter surface of the reactor vessel. ] Its measured length dimension (1) using 50% DAC sizing techniques is 0.5 inch. This length dimension is parallel to the weld and therefore along a fixed radius around the nozzle bore. Figure 1.7 shows the location nf indication 4A i i i 13 -- - - - - - -, -,, - - - - ~... - - -, - - _ -. - - _. n,,,.

with respect to the nozzle azimuth as well as its location within the nozzle to shell veld #21. Table 1.2 includes this pertinent standard inservice inspection information. i Using flaw indication evaluation rules of IWA 3000 and the acceptance standards for flaw indications of IWB 3000 (specifically Table IVB-3512-1 of the ASMC Code Section XI, 1983 Edition through the 1983 Summer Addenda) it was determined that indication 4A has an actual a/t value of 5.44% compared to an allowable a/t of 6.5%. Indication 4A is therefore acceptable. Table 1.3 provides the information used to calculate these values. 1.2 Cor.rparison of Past Mechanized Inspection Results - Preservice, 1984 and 1988 Examinations In an effort to determine the history of these indications (indications 1 and 8 of the vessel longitudinal veld seam #6 and indication 4A of the outlet nozzle to shell weld #21) past mechanized inspection results related to welds #6 and

  1. 21 were reviewed. These inspections included the preservice inspections performed in February 1977, the first interval inservice inspections in 1984, and the second interval inservice inspections in 1988.

In the remote preservice examinations performed in February 1977 no recordable indications in the areas of interest were noted. For veld #6 these examinations included 0 degree longitudinal wave, 45 degree shear wave, and 60 degree shear wave immersion techniques using 2.25 MHz, 1-1/2 inches diameter. pulse-echo transducers, and a 100% DAC recording level. For weld #21 these l examinations included a O degree longitudinal wave immersion bore examination using a 2.25 MHz, 1-1/2 inches diameter, pulse-echo transducer, and a 100% DAC recording level. For weld #I the first interval inservice examinations performed in 1984 included the same O degree longitudinal wave immersion bore examination with a similar transducer but with a recording level of 504 DAC. Four indications ) 14

s vare 'found with this required scan as well as two others detected using an examination scheme using 16 degree refracted longitudinal waves from the nozzle bore. Specifics on these indications are provided in table 1.4 No first it.terval inservice examinations were performed on weld #6 in 1984. For veld #21 in the second interval. inservice examinations performed in 1988 six indications exceeded the 50% DAC recording levels and required evaluation. These examinations duplicated the first interval examinations in terms of technique (0 degree-longitudinal wave, 2.25 MHz, 1 1/2 inches diameter, pulse-echo transducer) and recording level (50% DAC). Table 1.4 shows the specifics of these indications with respect to the other previous examinations. Indication 4A in the 1988 examinations matches with indication 3 of the 1984 examinations within reasonable tolerances. For weld #6, three iadications were recorded, two of which being indications 1 and 8. These examinations as stated before were performed with pitch catch, 2.25 MHz, focused transducers with an examination technique in accordance with Regulatory Guide 1.150, Rev. 1 near surface examination requirements. 1.3 Review of Fabrication Ultrasonic Test Reports In 1973 the J. M. Farley Unit 1 reactor vessel was examined by manual ultrasonic examination techniques for acceptance to the ASME Code Section III paragraph N 625, 1968 Edition through the 1970 Summer Addenda. Reports from the outlet nozzle to shell weld *21 (CEst 897E) were reviewed in an effort to establish whether or not a correlation exists with the 1988 remote inservice ultrasonic data. These examinations consisted of 0 degree longitudinal wave, 45 degree shear wave and 60 degree shear wave manual contact techniques with 1004 DAC recording levels. These examinations were calibrated on calibration blocks different than those used for the inservice inspections. No recordable indications were noted. Reports from the examinations of vessel longi'.dinal weld seam w6 (CEa20-894A) 15

were also reviewed to establish whether or not a correlation exists with the 1988 remote inservice inspection ultrasonic tost data. These examinations consisted of 0 degree lorsitudinal wave, 45 degree shear wave and 60 degree shear wave manual contact techniques with 100% DAC recording levels. These examinations were also calibrated on calibration blocks different than those used for the inservice inspection. These examinations were not as sensitive to near sr, ace discontinuities as the 1988 near surface examinations. No recordable indications were noted. l 1.4 Review of Construction Radiographs Construction radiographs of the J. M. Farley Unit 1 reactor vessel outlet nozzle to upper shell weld #21 (CEwl-897E) and the vessel longitudirsl weld seam w6 (CEw20 894A) were reviewed to establish whether or not a cotrelation exists with the 1988 ultrasonic examination data. The radiographic technique for the outlet nozzle to shell veld #21 and the longitudinal weld seam #6 specified the use of Kodak AA film in a double loaded cassette located on the inner diameter with a high energy X ray source located on the outside diameter. For the outlet nozzle to shell veld the incident X ray beam was angled from the normal so as to include as much of the nozzle to . ell weld volume as practical. No relevant flaw type images were noticeable on the construction radiographs of the outlet nozzle to shell veld #21. i With regards to veld #6, a distinct 3/16-inch radiographic indication is noticeable two (2) inches to the left of the number 8 marker on shot 8 9 and adjacent to the edge of the weld prep. Its distinctness and clarity suggest that it is located near the surface where the radiographic film was placed or near the inner diameter surface of the vessel. This radiographic indication is in the vicinity of ultrasonic test indication 8. A more definite correlation cannot be expected on this particular radiographic indication because the lower I l 16

shell course longitudinal weld radiography was p'rformed prior to final vessel assembly whereas the ultrasonic data is referenced from the as built veld locations in the assembled vessel. Since indication 1 (longitudinal weld seam #6) appears to be located at the intersection of weld #6 and weld #8 (figure 1.4), radiographs from both weld #6 (CEw20-894A) and weld #8 (CEw12 894) were reviewed. From available records, the radiographic numberi,5 system for veld #8 was referenced as starting from the intersection of wald #6 and #8, making the shot 50 1 and the shot 1-2 radiographs applicable to the area of interest. In both shots a small 3/32-inch rounded indication is noticeable in the area relating to the ultrasonic test indication 1. Although the depth of this radiographic indication cannot be determined conclusively by these fabrication radiographs the location of the flaw corresponds well with the ultrasonic test results. 1.5 Supplemental Examinations with UDRPS In order to obtain better information regarding the nature and size of the ultrasonic indications (4A, 1 and 8) it was decided to utilize the Dynacon Ultrasonic Data Recording and Processing System (UDRPS) with the conventional, inservice inspection transducers. The UDRPS system is a known automated data recording and processing system which has the capability of recording, storing, processing and imaging ultrasonic test data. It allows for more extensive recording of data, better visualization of examination data through the use of color coded images, more flexible manipulation of data, more consistent examination quality and archival retrieval of past examinations for comparison purposes. The best use of the UDRPS data is the ability to observe secondary responses and their relationship to the primary signals from the indications. This aids in the characterization of the reflectors as well as potentially providing more accurate sizing information. 1-7

75gE Characterization is defined as "the determination of whether a valid indication originates from a volumetric or planar type defect". Generally, the use of supplemental straight beam and angle beam techniques provide for the verification of a volumetric type flaw, i.e. slag, porosity, since a relatively strong reflection should occur from both, whereas planar flaws should reflect little or no energy to a straight beam transducer. Another supplemental characterization technique is based on satellite pulse observation technique (SPOT) principles [ reference 1). SPOT relies on the observation of a doublet signal emanating from a volumetric defect. This doublet consists of a strong specularly reflected signal, 2:11 owed by a weak, synchronous satellite pulse response. This satellite pulse is created by a portion cf the sound beam propagating around the circumference of a rounded type of reflector and being reradiated back to the receiver transducer. Synchronous means that when the specularly reflected signal peaks the associated satellite pulse signal should clso peak with the satellite pulse l lagging in arrival time. Therefore these two peaks should occur in the same l A scan. On a system such as UDRPS two relatively close parallel images one behind the other would be indicative of synchronous signals and therefore a rounded volumetric type of defect. l l For planar flaws, SPOT also relies on the observation of a doublet signal but these signals are asynchronous in nature. In this case the satellite responses are created by a portion of the sound beam being reradiated from a planar flaw extremity back to the receiver transducer. Since the extremities of planar flaws are separated in position the peaks of each extremity would not occur in the same A scan. On a system such as UDRPS two parallel images but shif ted in position would be indicative of asynchronous signals and therefore a planar type of defect. UDRPS was also used to determine the reflector's sikas using amplitude drop sizing methods. The UDRPS system, however, has the same fallacies as conventional ultrasonic examination techniques when amplitude drop sizing methodologies are used. For small flaws it will still provide estimated sizes 1-8

m more commensurate with the beam size of the transducer rather than the size of the flaw, assuming as in most cases that the beam size is greater than the size of the flaw [ references 1 5]. With this in mind, for these indications a sizing methodology known as 6 dB amplitude drop or half maximum amplitude technique was applied. This methodology was applied because overall (on a defect matrix consisting of volumetric and planar type flaws) it has been shown to provide the more accurate results when compared to other amplitude-based techniques such as 50% DAC, 20% DAC, and 20% DAC with beam spread correction (reference 6]. Indication 4A found during the conventional inservice inspection was re examined using UDRPS. It was found using the Westinghouse 40 month array plate. The transducer which detected this indication is a 2.25 MHz, 1 1/2 inches diameter, O degree longitudinal wave unit identified as TR6. This same transducer las used in the UDRPS scans. For the UDRPS examinations three scans were performed on this indication. Each of the scans were conducted in a raster fashion using the Y-axis of the mechanized scanner (toward and away from the reactor vessel centerline) as the scanning axis a..d using the B axis of the mechanized scanner (around the nozzle bore) as the indexing axis. Each index was 0.5 degrees around the nozzle or a 0.22 inch increment at the location of the indication. The first UDRPS scan was performed at the sensitivity required to achieve an maximum amplitude of 80% full screen height from the indication of interest. The remaining two scans were performed at sensitivities 10 dB and 16 dB above the fitat scan level. These higher sensitivity scans were performed to try to distinguish secondary responses which could determine the nature of the indication. The lower sensitivity scan was performed to enable a 6 dB drop sizing methodology to be applied. The results of these examinations can best be observed in figures 1.8 through 1.10. A brief explanation of each of these figures is provided below: 9 19 L.

Figure 1.8 : Cross sectional View (Transducer TR6 Low Sensitivity Scan), UDRPS Data This image is of the scan line which showed the maximum response from indication 4A. Estimated positions of the shell, weld and nozzle are shown for clarity. Indication 4A appears to be at or near the weld / nozzle forging fusion line and embedded within the weld. Using 6 dB drop sizing the through wall dimension (2a) of indication 4A is determined to be 1.14 inches. This dimension is shown on the figure. The minimum distance from the half maximum extremity point of indication 4A to the intersection of the weld taper and the nozzle 0.D. is 5.1 inches. Figure 1.9 : Linear Extent of Indication 4A (Transducer TR6 - Low Sensitivity Scan), UDRPS Data The series of images shown on this figure display the linear extent of indication 4A without any amplitude drop type sizing. Using 6 dB drop amplitude sizing indication 4A can be seen ranging from 236.5 to 238.5 degrees or 5 increments. Each increment was 0.5 degree therefore the indication extents approximately 2.5 degrees. Therefore indicaticn 4A by 6 dB drop sizing measures 1.11 inches in length. Figure 1.10 : Secondary Images (Transducer TR6 - High Sensitivity Scan, +10 dB), UDRPS Data This image shows a saturated response from indication 4A as well as a weak trailing secondary response approximately 3.5 microseconds behind the prit3ry indication 4A response. These responses are indicated on the figure. Trailing secondary responses are evidence of rounded volumetric type reflectors. 1 10

Therefore using UDRPS and 6 dB amplitude drop cizing with the ASME Code Section XI, 1983 Edition through the 1983 Summer Addenda rules for flaw evaluation, indication 4A is a subsurface flaw indication heving a 2a dimension of 1.14 inches and a length of 1.11 inches. This indication also has evidence of a synchronous trailing secondary response which is indicative of a rounded volumetric type reflector such as porosity or slag. Using the flaw indication evaluation rules of IWA 3000, the acceptance standards for flaw indications of IWB-3000 (specifically Table IVB-3512 1 of the ASME Code Section XI, 1983 Edition through the 1983 Summer Addenda) and the dimensions of the indication from the supplemental examinations with UDRPS, it is determined that indication 4A has an actual a/t value of 6.3% compared to an allowable a/t of 6.5%. This indication is acceptable. Table 1.5 provides information used to calculate these values. Indications 1 and 8 of the vessel longitudinal weid seam #6 were found using the Westinghouse 10-year near surface array plate. The transducers on this plate consist of 2.25 MHz, transmit receive, focuted transducers aligned to provide an incident angle of approximately 12.5 degrees or a nominal 60 degree refracted longitudinal wave beam in the material to be examined. For the UDRPS examination these units were also adjusted to provide an incident angle of approximately 10.2 degrees or an approximate 45 degree refracted longitudinal wave beam in the material to be examined as well as an incident angle of 0 degree or a longitudinal wa"e beam in the material. One O degree longitudinal wave scan using a 0.5 x 1.0 inch, 5 KHz, pulse-echo transducer was also performed. l l Indication 1 of weld #6 was detected with transducer AD4 during the standard inservice inspection. This transducer's beam is directed along the axial direction of the reactor vessel with the beam propagating toward the top of the reactor vessel. This indication was examined using UDRPS with transducer AD4 l configured in the normal 60 degree refracted longitudinal wave arrangement and a supplemental 45 degree refracted longitudinal wave arrangement, and with AD3 l l l (complimentary axial direction transducer with the ultrasonic beam propagating 1-11

d i toward the bottom of the vessel) configured in the same manner. A 0 degree longitudinal wave configuration was also tried with these dual element units but with no success. The results of these examinations can best be seen in figures 1.11 and 1.l'2. A brief explanation of these figures is provided below; a e Figure 1.11 : Indication 1, Weld #6 Transducer AD4, 60 Degree Refracted Longitudinal Wave High Sensitivity Scan e In the image of the data there appears to be a band of higher amplitude signals. This band of signals bound the indication 1 response (identified on the figure) and are caused by the ultrasonic noise associated with the k stainless steel cladding. Both the water / stainless steel cladding and the stainless steel cladding / low carbon steel interfaces can be visualized. They are sketched in the figure for clarity. The indication response is clearly within the two interfaces. Associated with the peak response from the indication (magenta in color) is a trailing secondary response (green in color). Therefore the evidence suggests that indication 1 is most probably a rounded volumetric reflector embedded in the stainless steel cladding. l Figure 1.12 : Indication 1, Veld w6 Transducer AD4, 45 Degree l Refracted Longitudinal Wave High Sensitivity Scan Again in this image a band of higher amplitude signals is evident. This band is associated with the much noiser (ultrasonically) stainless steel claddin,c. Again the indication is within these bounds. l The data with transducer AD3 was reviewed but proved to be not very useful in evaluating this indication due to poor detection results. = Therefore indication 1 of weld #6 using the UDRPS images is interpreted to be a 1 12 u.

volumetric type flaw in the stainless steel cladding. This indication is not within the examination volume as defined in the ASME Code Section XI and is not subject to ASME Code Section XI sizing. It is therefore acceptable. Indication 8 of weld w6 was detected with transducer AD2 during the standard inservice inspection. This transducer's beam is directed in the clockwise direction when viewed from the top of the reactor vessel. This indication was examined using UDRPS with transducer AD2 configured in the normal 60 degree refracted longitudinal wave arrangement and a supplemental 45 degree refracted longitudinal wave arrangement and with transducer AD2 rotated 180 degrees (beam-in counterclockwise direction) configured as a 60 de5ree refracted longitudinal wave and a 45 degree refracted longitudinal wave. A 0 degree longitudinal wave scan with the dual element units and the 5.0 MHz, pulse echo transducer were attempted but with no success. The results of these examinations can be seen in figures 1.13 through 1.17. A brief explanation of thsse figures is provided below: Figure 1.13 : Indication 8. Weld e6 - Transducer AD2, 60 Degree Refracted Longitudinal Wave High Sensitivity Scan The stainless steel cladding can be seen in the image by the band of higher amplitude signals. Stainless steel cladding is ultrasonically more noiser than low carbon steel. The bounds of this band of signals are the cladding interfaces with the water and the carbon steel. These boundaries are sketched in for clarity. Indication 8 is within these bounds. A trailing secondary response is also seen which is indicative of a volumetric type of reflector. Both images are identified in the figure. Figure 1.14 : Indication 8. Weld e6 Transducer AD2, 60 Degree Refracted Longitudinal Wave Low Sensitivity Scan This figure shows the linear extent of indication 8 at a lower sensitivity 1-13

(maximum amplitude equal to 80% full screen height on CRT). This indication is observed to be more reflective from 256.9 to 257.31 inches below the vessel flan 5e and from 256.5 to 256.6 inches below the vessel flange. Using 6 dB drop sizing this ' indication ranges from 256.9 to 257.21 inches below the vessel (0.31 inch) with a small response present at 256.9 inches below the vessel flange. Figure 1.15 : Indication 8, Weld #6 - Transducer AD2, 60 Degree Refracted Longitudinal Wave High Sensitivity Scan This figure is the same as figure 1.13. It clearly distinguishes the indication maximum response and its associated trailin5 secondary response. This secondary response is indicative of a rounded, volumetric type of reflector. Figure 1,16, Indication 8, Weld #6 Transducer AD2, 45 Degree Refracted Longitudinal Wave High Sensitivity Scan Again a band of high amplitude signals clearly define the extent of the. stainless steel cladding. The interfaces are shown for clarity. Within these bounds a response from indication 8 is observed. Figure 1.17 : Indication 8 Weld w6 Transducer AD2 Rotated 180 Degrees, 60 Degree Refracted Longitudinal Wave High Sensitivity Sean As with the previous figures a band of high amplitude signals clearly define the extent of the stainless steel cladding. As before indication 8 lies within these bounds. Also, although not identified in the figure, there appears to be a trailing secondary response. 1-14 L

Examination data using a pulse echo, 0.5 x 1.0 inch, 5 MHz, O degree longitudinal wave transducer and the transducer AD2 rotated to provide a O degree incident angle was taken and reviewed but the results were inconclusive. Therefore indication 8 using UDRPS data is interpreted to be a rounded, volumetric type reflector in the stainless steel cladding. This indication is not within the examination volume as defined in the ASME Code Section XI and is not subject to ASME Code Section XI sizing. It is therefore acceptable. 1 15

TABLE 1.1

SUMMARY

OF INDICATIONS 1 AND 8 OF THE REACTOR VESSEL 14NCITUDINAL WELD SEAM #6 USING PRELIMINARY STANDARD INSERVICE -INSPECTION DATA IND. DETECTION DETECTION CALCUIATED LOCATION MEASURED MEASURED NO. TRANSDUCER ANGLE DEPTH FROM DEPTH AZIMUTH THROUGH-LENGTH (NOMINAL) EXAMINATION WALL l SURFACE DIMENSION (MINIMUM) (2a + S) (1) 1 AD 4 60 de5 L 0.34" 332.82" 135.58 0.43" 0.24" 8 AD 2 60 deg. L 0.25" 256.73" 136.66 0.48" 0.36" l l Dimension from top of vessel. l Vessel azimuth. l TABLE 1.2

SUMMARY

OF INDICATION 4A 0F THE OUTLET N0ZZLE TO SHELL WELD #21 IND. DETECTION DETECTION CALCUIATED CALCULATED MEASURED MEASURED NO. TRANSDUCER ANGLE DEPTH nt0M METAL PATH THROUGH-LENGTH EXAMINATION WALL SURFACE (2a) (1) { 4A TR6 0 deg. L 10.79" 10.79" 0.98" 0.5" 1 1 16

e TABLE 1.3 EVALUATION OF INDICATION 4A 0F THE OUTLET N0ZZLE TO SHELL WELD #21 (STANDARD INSERVICE INSPECTION DATA) IND. MEASURED MEASURED "S" TYPE OF ASPECT a/t ALLOWABLE NO. THROUGH-LENGTH VALUE FIAV RATIO ACTUAL .a/t VALL (2a) (1) 4A 0.98" 0.5" 2.1" subsurf. 0.5 5.44% 6.54 II "S" is measured using scaled plot of figure 1.7 and is equal to the j minimum measured dimension from the 504 DAC extremity point to the 0.D. weld taper. The weld taper dimension is taken from the design drawings. "t" is taken as 9.0 inches based on an average UT thickness of the nozzle shell minus a cladding thickness of approximately.25 inch.

      • From ASME Code Section XI Table IVB-3512 1, 1983 Edition through the 1983 Summer Addenda.

l l 1-17 l

TABLE 1.4 COMPARISON OF PAST MECHANIZED INSPECTIONS OF OUTLET N0ZZLE TO SHELL WELD #21 1984 EXAMINATION RESULTS 1988 EXAMINATION RESULTS IND. ANG. R* B** AMPLITUDE IND. ANG. R* B** AMPLITUDE NO. (dog) (in) (counts) (% DAC) NO. (de5) (in) (counts) (4 DAC) 1 16 82.5 4303 63 3 20 82.5 4263 56 2 16 82 30455 65 20 82 30420 20 50 max 1 0 84.25 39602 65 O 84 39603 50 max 2 0 83 34575 69 3A 0 83 34466 100 3 0 82.75 9709 100 4A 0 82.75 9723 65 4 0 82 32584 50 O 82 32351 50 max 1 20 83.5 34496 60 2 20 79 21938 68 22A 0 79 32040 100 "R" is the location of the indication with respect to the reactor vessel centerline. It is defined as the radius and is estimated. "B" is measured in counts. It is the remote inservice inspection tool's axis of motion around the nozzle bore. The conversion factor is 100 counts per degree.

      • Indication not recorded due to maximum amplitude not exceeding 50% DAC therefore no indication number given.

1 18

TABLE 1.5 EVALUATION OF INDICATION 4A 0F THE OUTLET N0ZZLE TO SHELL WELD #21 (UDRPS DATA) IND. MEASURED MEASURED "S" TYPE OF ASPECT a/t ALIDUABLE NO. THROUGH-LENGTH VALUE FIAW RATIO ACTUAL a/t WALL l (2a) (1) 4A 1.14" 1.11" 2.1" subsurf. 0.5 6.3% 6.5% l "S" is measured using scaled plot of figure 1.7 and is equal to the minimum measured dimension from the 50% DAC extremity point to the 0.D. weld taper. The weld taper dimension is taken from the design drawings. "t" is taken as 9.0 inches based on an average UT thickness of the nozzle shell minus a cladding thickness of approximately.25 inch.

      • From ASME Code Section XI Table IWB 3512 1, 1983 Edition through the 1983 Summer Addenda.

1-19

l ((md M am)j r om l-sun) j v CN q a b -_.______g[ "nd E T> ( .mi.i l. > o cytistli p<-uj M l &////) =-- =- =__ W lll f7 f //N 4 f-gp a m. => 1 _ _ _ _, _ htLD # 3 - k l l N ( . M l-llCCC) k \\ N, -9 l s ( . m W S$) L ~=g ( , y g y. g 4 \\V l t

y. 3

_ _ _}I S i l my % de 4 .mme!> w a i E L W {g@N j/ .u W la) Fg(CS*I % F 1 I( . M l-iloce) mJun olmo d - ee "T" ~ """ ~ ~ "/" g g, ( W.ALAt-il ) / g TO 58 TFf9J 9 4 l-l1006 Wnt?M ( . u M iooe) ILLUSTRATION ONLY Fig u re 1.1: Elevation Vie w of J. M. Fo rl ey Unit 1 Reactor Vessel

  • ELOeas I ALAl*4200) r70*

im gg.gg 895 % IALAl=4%)

=.

idow I = SR.33 ~F me e ro [ 435' l 24-20 I M l=4l00) j# lgge 1 ,- s- ~.,. / s (ALAl*4f00) sn.,, IW g\\ 'M8 (ALAl.4 g ) / d, (k i as' "' " 143' N

  • 17 es' W 2M ;7 (ALAI.4soo; W. le ge, IM.is ILLUSTRATION ONLY l

l 9## 1 2: Plan vie

  • Of J.

M. ForleY Unit 1 Reactor Vessel

.i u : i l d-j k H i l l ! di l ii t i t t il i i s ig e,v i *

  • s o

Y)I$$ lij i _a s i. I v u a .h., n e i ""11 f 5. }{ c i is s ti i tti i x g e A I a I-k e 1 ~ o 3 v h, f .m a

e 1

y ~D' n 3 j 1 ,I ~ Iri b N J a E i }g a N vll a ~ 1.1 g 11 c;;l i i a V

  • n

[ o .1 i i g h { L Wf., 5 v m y h N I y e s n ., i, __3-1 ' n,.,M. i. i =- v, g, n. g r= ~ u%.-hWir-.... 1 / i, ; ~ ' -. w s (

Q:.

i i g

i j;,

e W g5* 1

( l. 50 ) = I 1 332.82 332.3I TO TOP TO TOP l OF VESSEL OF VESSEL l WELD +6 (WELD 8 C.L.) l WELD +8 l ( I. 63 ) .24 ( l. 50 ) - l I 133.84* 135.58' WELD 6 C.L. (PEAK) l J.M.FARLEY UNIT NO. I LOWER SHELL COURSE LONGITUDINAL WELD 6 INDICATION NO. I MAP (PLAN VIEW) Fig ure 1.4: Indication 1 of Vessel Longitudinal Weld Scom #6 WESTINGHOUSE ELECTRIC CORPORATION, APRIL 1988

\\D b Q o O J g, d Eh O o H W $_J 3-2y G bk J F) 0W Q J> o b O W M c Z W e W 2 2V o H 4 soJ2m m o> s !b b +U b, 3 4 N F h. e e o a_____. O F e D. j k { 0 ~z< e e 53Ij g -m s m *E.j s d! i$ d

b. o 2 g y O

J J Z Jw c y b sze a s m ?Y E J

j# t d i i. Y t e g g q.... -sj w il;I ti' \\\\\\\\ H; -1 's 6 ~eA L

o

= s 7 f_..------,,,,.. g ) i

  • t t 1 N

t o = r - 3 T z ..,,~~~- ,s L H W t B ,_) p 9 l t [ Fig u re 1.6: S c h em a tic of the Outlet Noz:le to Shell Weld #21 Examination Techniques

(TOP OF NOZZLE) O' I 10 20 30 270* l 90' / 237.23' 100' V!EV OF NOZZLE FROM VESSEL CENTER DISTANCE FROM VESSEL CENTERLINE (IN) 100 90 00 70 g N 5 IPO! CATION NO. 4A go 3 Q 2st.OO 15 ,8 20 @ 52.00 3 i R .5 so k z NOZZLE SECTION AT 237.23' J.M.FARLEY UNIT NO. 1 OUTLET NOZZLE TO SELL WLD 21 ItO! CATION NO. 4A MAP Fi g u re 1,7: Indication 4A of the Outlet No :le to Shell Weld #21 VESTINGHOUSE ELECTRIC CORPORATION. rPR!L 1900

w X ,e M .-D C GW 3 o .,. '. " 'p- [, -J '- 6 ,,,,, jL , ) 3l,,.', y 4 =. I _ ac-b., c ,,-, ' + r. " (* ' l<*a (D i y-g. + .f.. a._ p 9 -, '. t, g t o E ) D M O .4e - sq .r., a. 3 _...*yg. s ... (;,..,g,g.t x,, _,,. t + ,3 i 4 Q .., 3 3 .,. t -- ' ' k ',.....,,,*,.2.,, -. -,.,, ' y t I .-,d l h _. 'A...- ,. ", '*',e.., s ,3 r, 3,) v 3 ,. i

  • g. <

W. - {:,j, ,.l .,,,,,,5 'c _. } '. I's, ,I ,?,. / gf 'r ;,,+;_. '. . S, y . s4 5, " ,3 i'. a .s .4, 0 y ,. e.f ,e a - Q

  • 3 C

Q y ..'g f. ,,.s w_ - ,).. g..- _O D ~ +e. -e.,g c Q_ ' sw +- .T s. e. 45 , o_ g, s = s - o 0 W V, M ' s .- m. y -,... -.,.,.p.,,,,..---. e. 4,

d. -.,,' v,,..
9.,,...*,

o J ) 9 .y,, es. *, a v._ l' r Y7 r,*r', y4. / *. T ~ (< 3.. -. ~', 8 ' 1, '.U' h .*p,,' '*te' I;*.. : ?F 3, . og i,. c. ( +,.c, l

  • y

) ' *..> ' i',, #', %.,'/ i ( g.;),y'(.,

    • p.

.A x1 g,A p ..,s.' e o , n v atR -; - u 14 0 m as L 0 ^

3.. -... _..

2.,. . g - E d t-J, e g y,, ,. + g ++ . W . i a g + Y d L A[ t. ,1,e-g 4 s g) e. S I I k .} 2 be a $i,' g f,,'.h * "' >,b ,,., 4f f.. ] .t .Di g g,.._,. %. y_...,. .f. + -L y.p. t-u,. k ~ f,, s s} { 9 - ~ ' b-s n y; f-m.;,. 4..:. Mr

1 - m e - -,..... g - ;. , ; - p u . _-. t., +1- ...M -..,. ;

r j -.,. -

+ , r.. + ,s +, .4 1 : .p l,f f l ,f. w-' a - l3 ' ',.. -4 ..,? ~ l 7,y

~

Q, ,., g. !. # - %.g I ., q ' l p! .n'.W. "q'- {' 4 ,? E ' YW -L J,. YTg ..x.,, , et,...* .".., f, ~, ) ,f' . j [*'- f. + 4 + .t ? g g +*. .y c - 9p ,5 3 4 . p,_ ] ~ ~ ( 4. n' q. +}, . me ..+ J, (, + e )., --,. - c -. g' W y ,,' + '- d 4

  • [

+,' [' .[ .n. 4 4 .:. 4i ' -, - - .4,- 4 + ~ e ,3 . c- + w h ,m 3 yz p .g

4. c..

. p,.., - ,'( s. l' c,. i. -, ;gh.y,,n ? S. y..,-,.. ,u v S 5 .r t . i en &-. ' ;.T* g' .jp $ ;g -q g g ty ,"$l 3, .>h...., U s g4 _ .g s n.' ~ ] l ' $*y 3--,'. '. ~,. Nh..y' .g,* '. ',, '. * {.,. - _ _ y, 5, R.

  • g 3

-j _ s* 9 4 ,p8 g r. ". A .., i + M k 4'. [ g g 4 + 5 - '- 'y 5 ' '.4 ',y, ) 4 e 4 C m l <t>. . -< 3* ,i,Q m, s O y. A t -

  • s.. -

6. r2 " ( .i ;. ], q..g g . ~ - %, .- F o 1,+ 3 ~ de^ i .g a y L. A .h ,.a, o d. y:, 4 c= 7 - <( O ,s.- 4..,,- y' y y. .n ? .4 + '. h

1.4-yg.j

! 3 ,-, 7 p

9

,,j.: f.nQ _k.

  • g C

-jg.), f v E-3 h,y..,. \\, *.Q f.4, r, u...f.l _' ' ' ' ' p Y $T -k ' j -[. ~ .s n....,, t 8 a c

g.

O r-o {g' ' ',Y ., '. W. . S f9 '- Lp I' .[I .'i,'.V . +- 9A g -s.p. v . c 4 ' p.- p ,...-,. i sm f. ,.s 4 4 7 1 r, .e,.. - n . 3 R, g., - ~ n g

b.

..; 4 ..r.,. -y-f< _ *. : - c 4 m ..t ,~~, ~, - - y.,, g ~ n ..'I 'A .g y d,,',. y *.. ** *. 4 O g ( 4 J ' ,9 g p ~ ., I 4 4 t. .y ^ r R, 4 C , 5.s - [.-.+ .y 0 .-[ e: .q. p. Je e, ', k'.#. w-- 6 - aM ~{

[

I, ]- E ls, H. ' ~,g,. ? v,. * - e n.,'*4 <. /.. :.. g... ;ll s.g. w.. w '[- c.. %.,,.. -', ', .6 ( - s. . ~. 9 *, 3,. .? t 1 . y +;.. - r .u. T{@ " L ' 1 s . w r1 f. % {,.s ~, - I, 'p .? ' ' r' '..['E I e C ,.. 4 a o e -[ lE. h,;.I ' Y-L $ x. [ Ns g,f-p - n % % 3 v s.es;... ~~~'.e ) A . *. 4' y 4 .. _ i 1p. 2 1

  • - th a,

. +.. 4, fu.

  • i

-.A. 5 0 'y,' 'f.'~ \\. 1 ',. kin Y'. y ( - ^ m. .r Lc 2 c.. . - -..' 4 - - 4. a$,.. F.% g, 'o, n 'V 'K.f d,..di,fl . w; ?, e, C-'- f ,- u u ,.3 gn p -.,. y . n \\ ,.A' ,i z I i~ ,?

  • i ;.

"., e i s g _3 g, ...p - j +g ( 7-e. I. l'. s J g+.j t f [

  • a

.} ~..,... p. ' i t. v.

v. 'w

- je . sep. , s,. ,H- ., i..;c,,. ..,,.,., y - .,., u ,.a - 4 qa.,,4,, 't s- .<7 2 4 ,.y j i . m.y. - j...

  • 9,y.

4 e 4-.

  • 1 f

= 7'b.

  • I [,,... f...

,(

  • )

j , - ** fb. ' '.. .,. ' f g + j 1 -.... l m. x, I /

,= ,- 3 c .e' r4. s '. *, ,, piir. 4 i 4'., , ff, ...e. a + -4 5. 3 s - . q g ' -l , $.+,- o {. . Te- + ?-' 7,, J y 3 . s pi, g,,,4 i : - -., 1.

v. ;,

g- ., p,. u - -, , m. s,. w - 3 3 p -

4..

4 s, .j .,e.. ' f _g ,, e / y , r [N g ,Ia ~ .?'e y , e',s ..s-. . K y u 3 _. ' ;4 s, +., d' ~- g, .g. ,4,,.. '; e i e. + f',v - , d,., .g - ~ -, I,. *,.. - *y M ..,- :s .s. c 9 = i .,o..g. ,c -, .O.,. ,c. G 4-. y4 -4 , 4 -s , g ~ y ' Q, g _\\ s i ,., ?., _.,-. . ",. -. + s p...

6..ug.. r..

(. .o ..., w, 4.,....

3. g3, ;.

u. ..yg

g... g...,

g.., y ,( s c. ..N ".. -lg,. l . 3. e ' 'f,._. ~r.,,., .... y.

a. -

a

s. +.

.c . +- 4 p 'y 7 g .A 'l J,.,. [ * . l.. ' .L3 g

s.

e- .,,.., ; - ~ g-l

,. x s.

u a - - s. p i. r, 'a e. . e4,5, L. if.. Q 0 'g , i ,, + y - y.,.. r,,.-,,, g. e (r. 'j O U ' 'j-,

w y 3

,2,< y,. (-)

w. ; -. ; w. M,. x[ r 'v;; m,4,,,

h. . - b D - [*.' p u. ~,v ~-..r ..1 e; g. s %.., 5 3, a .g i 0 , r.:. g. Y f' p,... ,c. ,4. y g b g .s. g,., i', s' ' \\ D , v + ,r. .y D s ~. +- G A y + .t g g

    • e e-1

,~ V -4 s "- 3 - O .. '.i e , Q:K L...':,- ^ 4 7' t+ 4 -

  • f e

<3. w ,u..., o ,e .. t .c V f o u s 3' ' cmm-.., ~- s f.7 ? g W ( ?Wid m ? . +

... +.

.- - ; q w; w x +r _ _ y;-_ - : :- y,-. w 1% s. a o 'i .a ~ y q j.4 T : ... ~... ..r r .c w\\ 1 's .h ->..-A .-'f '..,", _, ! ,,.W J *,..y ',. ; y + v u m . '.'i',1 - -('t [ ' ~ f '4 ' g A r !b l 3 i *k -..g A - y

[.. (." ' # ~ ' = +g "[ gI- ' n., es *- g. ~ t ' " ". ~f N*,. --. g, is. .,--Q, j i' - ' ~ ' Q g _ *., :, -y_," '. 1 ' f-) > -.' - ~ ,3 .{ S'.,.\\ [ .e. t fe! d, _- - _Pr v.[+ ? ,y

  • [

.s ... _ E /,. c, m . t QT, i-ih M ,, 4-l ' *..*'.g $ ',. { f ;=g,V g..'

4. 9..

, 1, p, if .4, g. (. 's '7 ' g,P.

  • 4

,g. a - g e ,g n.-; y 4 , y, 4* ,p, 3.- 9 :, ~. , w,

  • ]* s'.

' q$ t i'- s. ,s, r 4.i

  • + L _ a.y*,% -

1 y. N' + g. 6-s,, 1 .- e..g . + .s e 4 r ..e u, s a-.,f, ?q s .e ye e' e 9.~. I h{ -} me - +g , f f. I ? _ ' _l. 'll,3 I b- [*' ~ w".J. ' '. '..,

x. "'y., ' Qofk '

n..- o.- ~.,nm. .A .,73 g%**j- -. ', .? 1. >. +. , rA a f . wc .. t j_-. -... a. . s ,.y p $ '.e' ' ' h 7-I ' er,%. Ea,. -

i k _.

sg n, Y.# >g, g,,.'.,-

  • d -

). -,p W '~ t n nyu h': ',,, g. e,,. ,g p ~ ",,' "-' [ T + g* % + - f..y + 4, t e u. ? ,. m.,. ;,. mr..p_p.. t - 1 ,g.,,.:. -. .c e,z. ,.8 .. y .+ a. .l 4 y. ,.V y Q.. ;. y, -.. y, ?"... -. /.- e. 8 : a < ;, . ~ ? ~2.c ~ r + -- ? r, ~ 5 } . z - ' 'l r'.g', ' 4 L..e',,. .c - /.. ,f. - %), '. - __.g., .. (t A, ,M[^.. =. - ..D.'e ' F.. h - _t f L.-

  • .?r 7

.s

  • Q. *3A k: 'g

/ *' - i ~ 3_., d. ~ - + ~ .g 4 y,-

  • $. A ; *

.9 m, 6: k y.. J.-j pg 1 R.

n.,

$. ;,..p.- { * - c '%, .1

  • [,

t !i';h.,' , x. '. n.' +. ' '. ' e '.. n_, ' [,. l ^ [ - 8..-

  • 2.m; *

, 4 .s .. u. . f_,p+ -, 4. '-Q,, ... + ~, ; n z.:.

  • m n.

~ - gt r .~..,- ,_e.. cun:

  • 4
g..

'.%, y u. '.- e, 1, *- ~. - 14 ' : -. ' @ b,. V jx, i ,, ". E..-w y..e+n. 7

  • e

,y -- y. > _, gm g w.. i'. ~' 5,*.

  • y
  • ig g

~ y,,,h.& ' ' '.. 's 'r ~ .,.p s%,cgj[ p _ + 5,* s ' -ty"4 ) % q** ~s + p'.%p',w,., , >, r ",.#-,, [ 3, j, .4' s 8., i q e. .r. n s s. ,. e s%.. n -.g +. II N', y g ke;Q, [..[.. { , }g .,g1 g.'... j w meget < ;. ~ ~ ~ n j.; : i. f.tt.,+ _. .i*:- ',' ......_4 ,i. - m.. ,p e._ gg.g. - g f..,.. g 1, .9 g' s, R, ",' le, ;.;{ [ ; h i s ' g=, ^ 7 ' Q,.,, .. J 41$ M '., @ M ' 4, -w.'S - f '.l. ~*4.

  • i

'+ e s-w ..'%....^ '. ..J '-

    • w,,

.~ .. ', W i W q,%

ji.

/ *.' __ . s e + % l g.w.,h..$,. 4 r . Q ;G s,;.M.._ q.~ ,e, u /..... ,.: r -. ,c ,g,.. _ 4 g v.,. p. _,<.. g,~

-. 7. - 5,

-,_p y ., _n g., Figure 1.1 ' Indication 1 Weld #6 - Transducer AD4 60 Degree Ref ra cted Longitudinci Wave High Se n sitivity Scon

l l x i f - '

9 V*

i- .1 y - ?-- ~.*D e / - - 3 'b., - t f' +t t

s. *:

I. . #, A.f.,, ..w g <. '_< -p - '-'.,,.1. J 'r.,-- e.. <- 4

  • ig N

e t g .b g K. p;.,., g,

i.
3).

E,. s.,.. r j .a ( '. k. 1 ?.f ~ _ f _. f [./ Q,.,.), % '.*yE1 i,._.. n..

y ; -,'

z. , ~,*' "c'4 ..i^ [ ' o '-* .; N './_.' l. ; "... ?.. y.

f.g.y Q,,,a

.. g... v .g-t i - = ,.- y.; j 3 - g g. ,,4, . 4jg .e s .? 4 + .g ' - 4 i?;,. l

  • m p_.

'k' .)I ^ ' f~ .f is (.;, ;., G p

v. mL

.. x..; y g .4 4 - g m. c' Sh.- +. - f, :. : w ('.3. 4. g&g g ;.

  • n, y V'_,L y

~% ~ y,u' 'Q - 7 .y ., +, i om e. . O ..,1v,' 4 .,. e e,

f... -

o .s ? x e,:. (** D -y o s S ". .. t i sus is .. T > + .k ~.. ' '. l [#., ,3.. [ s - 9yW ,,mp o { ':.9.. -3

  • , g, d-g 4,.

t

v.. 3 'a e

T M Q..p,

  • 6 4/

t ', Ij ' 1 :;,,. [! .p,, Q O C 9 J,, m; i,

g. sw..,.,4, s -, +VC

- : w <,c s, . I..< c.'. - U < c w .1 w u 1 1 4. s t 'd .T s f 9 .w n.- + t.. w,- jl.g'<+ y, e .-.. a 4.,

L. -

-; g g 3 ,_g3

y.,.

in w. 'a... t - 3 .... g V 7 A., c. p.3 y,+ g-t l .>m.x ws;. . g m %,p-t 0 ... - 3 ~. ,7 ,, r. j' ., w.... [, - ( 1

  • f*.

.I,- .'[ O > ' @ ~'- 3,".. ' -., w r e e t g n ' p, ;... - - - p 3 17 m.., si w.. , e.v aw.. g. + r i; g q%v 3

'(1: '.q *. i. w i't u-

. w -w ri,i. e we y . i 9,< l - 4

1. c.

3,k. r., w., 4 4 3, u. 4, %c,.. I + c, - r. y ~,

a,,

g + q. s O - p .., - %. *. t..,q- ' '.,z-3 ~', i,,re. *,. 4, Q y w... a g' g .L o gv u. c 1 1 .s 1 D - A g ,g, J - 4 ... a . ;. u,..

pk ' f t,

,.un + 3 .. w..., -W

Y

- a n~ i ~. - y, + ' .pj, ;, p. 3 C w. 7 _ p. g.._, ,s t s$ O SN= *A 4 "~ " a. 4 g 'y. e-g 4 ,) [ [ h>twg e.g'% p,y% ~ ~ - ~ ".i' Ij5 2 C E , O_ "u ='3: ., e. -i s n ~ O .. 4 r ~ 9? 4. O L g g. 0..4,. y.qg, - +a, ' _ - + . 4 y s w + 'y ,,o .,,e.' x ~ '{ V [r ,.,_ g J.q 3 ~~ W4 & ID, *9.g,lDI,'g l r N l. } C [ .e 4... --': .W. ,5 ~' ' .i , -? K,

  • N

) .' Q- -l v-- e, s.'A % e g, 4 &. '.3 k s ^f i. u- ,%. A _, %.h, o .s v. - 3' g y y 3 .c c. . j-C '. y y [ 'r $' .q, h e_ .I .'8 g: z ^ k-J- I,

3. p x

e-g.,4 s g.:. e a-6 l

lfhif. hkhNThd /? m: .4.-:--a... -Q.,-(. '.f... pl:; * [g l, ',7* T ;.f}3g h.$ . iJ %p.... '. ....h kDN . M,e !3 v, ?t. e. ,' # ~ 4 - . g..,..:. ?: _ _ ~[ g-q g c .. ~ m., p ;. %,;, g- #.- :w a... ' *p ?.-. - m .m. p%y. - s. s. v ; s. ...e.. 'g. . -4 > .aj,j: i 4, v$ $.W gf; [ . WhgpM',f[ M) 5..r j ,O., %p Q,. u y' g. ; - C u~;;% _.. @r-Q f..L;u + y,y.&..y f,ej &.n" y f L ?.O,,_ : s.

  • l

~- ' d.,, s. m. m .s . x

f. -..?,^$ Y%$,W O' h

&S );~ 3 D

s. f. f i C ' f g T/,s Q,[ Q} " g g f

.gfQ - [g [.[gM (... S l,s Q _.;.,.;_;. '.gGjQ. ' ;l }. p v. o. u..,, w [ ' y ~ '. \\ $ f M "' W ';;;T, 1f Y- '?'} ' * %.fy h],p. 'm a Wh??? l- .N,.. _.. -

.l L:'.,s'.

?I i

e. - ~

,,y....m. ..r. ik y r g h y. $ '.. Y h.R.,% ' ~ m ' ' $4h $$,.. :.n W.' sR.-

% % *.*,' X;; @ ;l

+ ;' ~ ?;. l' $.;.: 4>a. uggd%." q%r.'.y. ",. 1

..sg.. ;,
.;. y:. : -

$ ; j:;-(;% f, -.. , -;. %, mj.. '. - p ' ~f. ,..,~, ., no - a.s y a, .y

~,.

...-. *

  • K _ ;.'q.g a, :wgs a

- u. ' l - g n

. w'. > %.

s.:. . n. e +'. 9.. ~ % +, g;. ;

. y :; 3 -

g . ~ ~. = ....m.g ,.. u,. , 4.s.,, l - $t y,b : e ', ? - M Op 'r l' ~ f, ' 'ki5$ lh:.Gi.... & .I ., ah,=..- l b. hh( ? ~. :.e 33 k'- W ? : h.f Y k ue ' ? i 1 . E.hY h {K*g,. { ; '.,.w [ ? ].g

  • g,. *, - D,-_"_ ~, k {

' * =/.."... <[ ( ';:.,,', f -f %,. ,g y

M

-... 4q<,,g'- y* g ,, f _, ,.J { i gr,#*% '....j' : / ,,. " E. ,M', e-q6[ ',, h N.k k

    • l

.'+.w'.N ' ' ~ ; ' W I b'.', $ * -[ g', ', M.'[i I g~. d - ) 4 Ap$y,,': ; --u '.r." P' iN' 'yN')gy $_P, '".'./. r - % a. y 3 . fc ' g...i' q,, ' y.V. * .- Q. g):.4 9' C> t xg. - +* 4 i

qg :y.

t .,j.- o+.n.. #u. <u=.- m,. * -

_s

,~.,.:.- .%ru ~._.c 1 .s. ,...-~.e..- a ..; r.u.-" 5e 4*..-

- u.,..

. q ,A y 3 t >.;, e,tv,,e. s

y. - s,
. g... %
ty. n..

e r,...

4... -

. g. ;. 3., n.... u_., : a.p3 .g s. . w c. ..~ ? <s; , o. O..,... s g,4.+.y,

..a

.ay ,. r.\\.. -,*,.,p. ?. a c n n. ,e,.,. ,.,( 9, - ;-%r%M.,s.n!.; .,.. ', ~. .,3.. i: 7 ng. y. ~_ c.m "":..+s.... . ), :e -t g.. - - y:s a....,_; f. f ~ ' [ ' 3.[d )yj-4 } ? & ;. -l l ' y l !*.? l h L:,L i l L 'N.I _ . I . },.* ~ [.:.'. f'f,[,$,- i g (s. p,,.,. n. z .... % +. _ y;.; a im n x y.:

, e., t.,.
-g.,

n .. '_..?.. ' '; : '_ l ' )gm x'. 3;'.? R, R.$2.Y { h; y. y i. _A,. ', ; 4 s. h F 1 kEf (O& f-2 ,g,, ' ?.g _, :' q"p n h$.h?h% b;l0Y L.Y?.: .? ? ' ' -l ? ~ $$ J , }:: %EEP 1 -};;-y,%.M.;4' Y'idf.f,h/[3.".j.M. -3.{-l[..c.Mg.,1 y,-. }

  • e ' 5 }. h.

.gg(*, Fig u re 1.13: Indication 8 Weld #6, - Tra n s d u c e r AD2, 60 D e g re.e Re f ra cte d Longitudinal Wave High Se n sitivity Scan

-{', f".. }

(..

y,, e. s p*= 4 ,a'. g 1..

7. e

-e, s..jp i. -'...g ..s h ~ ' [5 5 2

m..n wC u /.n... % *.

1.).& s, ~ ..r.- ' n. c.. q.-.. .; c ;W N ' } ' ' D _ = *. ~ [ _ ', q ? }y ~&.3 '.'_~~.*_c -y,' _ $ . y..

a. '

'r ..'>d*...,c. ,,r/. ,_.e n .,3 - , n ..;p .;.: _,. 3 s,.u'. j%y.., s,, f; - C ' -; y.. ? .,.*,.t . -y [^

  • y, ',
  • 5 g^

y. - g .9 ag . y*.'7: ' = 9,,.. v

a. ',

~. ~ p. w - = w.,_..,!,. - 4.-, o <. n a 3, s g. j* :'.ye...g - l : '. v.... L C . na as o . w. s u: s.... r p'T.. . i._ ;ig. m D.. -+9 };, , }l$: -.. : G U . '.., *,, B e +,. ~s L_. - -' '. r ., Q (f)

2. !

g* - ~ y 3 i : '. r. . y; ; ,,.<.:...o.

  • n >..-

v.-;,:,-

.,. ~.,

o x

4. -- ~.

s. u ..V..., D .w

g. sp%...M e e

..- g.., :.::... . L.,n.a . ~.s r ?- "$; y'% .. r _.y W:p-;<:;. f L Q_.;: ;

?.,. y _?.; 3g'.',;....y ig!

c,. .-f i O :-. a A. kln,.% v'.Afe v.4*f &.2 .w t 4 U 3 c,.. : g

  • _.!.Q; S.l J X., l' [. w&.<:T' W y 5

&. j,Q, R..4: O W. f, u;.?;,$, R.:.E h:$ ll. ! ?.' : 4 5 ,1 . o y,q r,, :,c

a. fi... e..

g.- e , 3 L. f g ./ ~. 7!{

  • f } (i, "." + K : y;:;. [.

? fI - - w... <.. ec. '.;. ' f %

  • -:J:.

-3.g ,:, <. : f:w< ' 4.,,.;,; v. W ;y& g...n. 4 *.. ;. 4 p..: r. ~

  • 4,y,7

,t4 = o v : b ::... u - y = . '.* - u, r.' 3.r if.n U % _..Q ... 5 L....:.:..,m r. : 3 o '- -,': j- %...l % : - y ::.;i ; [ $...', ,p.;'j. :.. p 9 - :._s [ Q. 3, - a .r ,. oa g.h. ] T. n 3 e .y;. -i k y.. r

,.,
... s O,,

,.-.n. ..;ap V ~. r.

w..x-.

,y,. y u o 3....s ..,3...,

p

.s... s x,- i} ~ W.; ;y_...s. $pli jv: r. .w......, ^ r _ '.7s;y -, , ?.. A. ? H ._ p.: ' 3 _ g; ( 'g l._. g.

.~.

3 l: s.y : d- ) ^

f. 7,..".

[ >[ ^ ' [*[/_" a ~ ,s T ',.] 5,,.,. '...,... 4,y, ' {' (*,,,.. ",I T. ')

. '. 5

...h --. 4 '(* ",.)#'. -. ' -

2 ;. -

c 1...g ". -p I 1.,, # * ., y[: ~.N g j :j k

i. I

..a7v g - r-h .J",, *, 4 . ~ T ,pA. 1btRt.l, J yp&:[ (', h', -[ C '). f *[>;;,, w ", 'I.-$.;k g., ;

1. V 4

p-S ,: 1 r:,.$, h 4,4.,..': ' 7 .} . R '.' N 3 j { +:. -* 1 d p 1 y ' <- '.4 ; \\.y ,a 2- .I { h .ff. i n .Q,, " - lW .e .&*Y ,? g ." N y. _. i' s D,, par, [ 4.f f,f, , J ' e.. ' ' '?,, r' ;1.,.,j..- .y (*), '-- ? - j..- a f ~ .g g -.,,, ' - ;, - 1 '.,,, '..)U

  • g ', [

.[ : :n. '..',. v' ^- g 2 ,p4 -.f@,.. ;; ; 7, j f; ?- . p. ,s e v. ..e.. T . 1 o y. ig-;.. - %u

m..,,:,: ;;

g o ~ '.3.$. [. b, k,;f Mgu.wg<'f.ewordnp ' )-i . j D.k.. k,,. yfJM -.'.$GD: 4.:..yf. y* * <. :,,[,.. Mk *y,l. -a L.g ..[ y Qf ,i 4.-' g- .. Q - g,. .g - 4 .,.p+, p O .. y y, 3 '.., q'

  1. cy,y.,.: zy.3 ogy

, 4{ -;, g t ^ t,, g 3 - f +, . h. ? t -- [.. lg. _J y ,q g.,. - r 'r .a .n

r.,

1,,. k 3 i a 4 ci - ....v, ..3 i b. ~ .yj g I. t

.-f..-

D 0), ke be ka t's kr k^ . OJ og ,s 3 - g nj N -.. M N N T N - M ^ ,7 M. a

, e' '.', p"%.. qq n -y, s ;s. -f l?'.G.(/. k k f? .;,,s,, e[. fh i j.-l,:!(7-q?ihfNf, Tf.lly,t[Q,t s. .+_ .,. -. s. y 5.y w - ?,'.; ,,, Vn.g,'.y,,-T 7 .4.*; g %.T ; 4.. %},/. a - 4#

  • G.

" f,; q. ']. ' f}. A.. a..,.g 7. }. '. e. *l 47 ., f,c, ,. e, ,,1 J. gan

r. t p

s ..-... ~ '. .. [ s "/..., .w. w= .4 . i1 -. f-i ,g 31 , pf,g. fj.

  • e -..

e ~ 4., s., ~ 4 '..'..l. ~&',...'r y._. -,N.. n c

  1. ." - : w. -

' N ',% 6 ~'F fA G ?- .?, . - 3 I . + g. g. 4 .- 4 ,., g4 g Y e_'- r Y3 .f = 9 -? g .9. #. Q* -l.~... r 9.- 4.,.,,,. 2 2 .e 0 n, o l, j } Q Q,r +: ,, f Y;.: t ' u , f ..,qs ;k- }',g,.] O - - p 3. 3, f.. c v ,g. ,.p-g... '. ~[:. ,y- .,n o, ,. # e9 ;; m.y. ~.,. l y q - (. _ g = _ . ;; l }.".,:...,. ;. _ \\ ~ .,~ { _ ;c. -l co .s e ':y'. ^ .i

  • r,.'*_.

.3 .y

f. _), Q, {a.g.

1 . /. el.,--. z., -.g .[. ..,--;g,, :;:....u.s...r -m., -, y. p.; W :: A.. l u. .,9 s g.s. - p_ m n u - y -. m:.',, , y'.g,; ,n.* n ~ Wg.. O C ,.- ( '.' " h,,' i.,. q s. 'e a,,. a* ~; %.. e,s g 4. *T ;.. 04.*'. p. x. .,., = .[y..g-T.' 3 *) A.* (A y . h,, 'R,"' 4a,. ' ~Ci.

  • ,.','.,4 7-y'.

4, i

  • v j

g 3 . i,, A . 7- . \\ L.,..;7 I n+ 9 ~, '}. ',.'9 h;h. [,:-. ... x n,, g..'f' .' i- -

  • .,W, V

,,.S 4.f.$.; ,. i L . " s' ::. c..o ,C, . 3 l c j m_, ; v. g,,

s..s a a:

3-v,,: ....s.4 . o, ve..,.s-

v..g g.. $..

g u 3. f f-.- V 1 ~ I, ;. A , y'. c g $ +.,. i aI i '. ;/. 4 ,,-;.. eg.,a, y. . * :.;g.,, ,,, i-(. ,e-p M e. e -j '} -i % ' 4 ya.:'.. .' L h': T sa :.. O > ' \\.4. g,:-. A e7..'. w .c '.; 4 3 s-

  • g,.

...a s L o ,7,_ 'j Q..- .'.. ~,.. *,', '. ; z - ~' * },- ^ i,y .s. +' M,, g.' jy a'i;. :.. f I,. ', ?,,[ k i S.f 7, I ' ' f S ',i ' ^*, .g,.,.

,...If

. (. y g i,., %. ^.) [ l - ? >; w %h. k (. f, Qb,. 4. % y.Q g

, i. g.c.y ; e.c

%..?,.'.f. *, W~.h. h + u c. . v r ........'..- :[,1,". y,. ' =. r.-, jy.. - ,.~ + t..y'e.

  • t
f.

4 _s*- p_..., .,.s, ...5 t. - p+.. 2. :q. 3,.,rc. ~7.........-. m., s .,O. u... 9 s... t.% .. '.u', e . v., 1-c a ,t e, y; a ~~' g 3,.Y

i. -.h

'b, ;". h

  • [

h3[d' _l ..,(fE f. f. i.i {.i R x, C&ff: R PO % 'N.i '% }35 a-oi ~ % k N N. M d Q $ c ~ k} > M;4;,").l'O QMd.f N s .,w#. N. n% w. w+.. a - ftp. m... ;.;

w..~ Q.,'.

f.f 7 ff,) D,r~ g .u. n.. u, -O. ~ U. l. A ,0 o

n. n M @, hs. 3 g 4 b '

r-e c d Db. 2 a 1 9 . m;,.g k A . / x

u. :

n v.~ m..; m {..[f ~.(, . o .-, j k. ' p, . s.. - O L u, B $..%. u....,.g e k W =s &' N.y e + 4..,;y.g e-4.o-g.. 4 .g. ? A. g t., % ,.,. j.. ._'oa- .... 3 1: v W 4;" ".r.. ' 9,,.y 3 a . M .t c + 4,, %W ;g.4.g d 4> w , y ; ;; v C ; p..,; 1 9,:W. ;.yp

n..y. W., f..

9-

  • ~

. g. q; ,~) + er- .w.. s ., n.n. y 5%y Jf..M ",. % 3 wYM,.rh, ap 4Ik: N $h.sw -h h.:' y : i , 7NW .2 - *i* .w.' w v - -W%: \\n &wp4..- .. " f;ts- ..7' -4 -Qs %N;n .y e j A f x.J h f %_ _.;.,5. 6. # p _. M :... e. M Q,. o 3. a ' ja g ,o' p ., R, g:- .y l .w r c. kn (ej ..j e

t.. - t gl'- l ' " * ~. ' ', * .'Y ')~ f... N' N l!

    • 5 W 'Y: fe'.

Y f e + M i.'.~'.*/i+".',,, 'e ,.. $ 5. '.V.' V *:s.ii -. -N.. '\\ N - /.e I p. i a }.e _ ', ' T[ 3'* m - y _ej ; f,,,. %.,. 'iQj .. '&jy gQ Q ;fgg w % g &'*;"g;. >p e .,.g 'L ^ ~ e e. k.f i . 5.* x, 4 '.+ s E. 9 ( 1,, /*

  • G., ;%;_.4,. -....%.

. g . + - a-4.,..

  • n ) __a,..,..,..,., '.*:. --

4 + ,..p ,4 e.,g, *77 , e L; ', ~ Q.q*% 3i.- % y ' oz,,., -

l.. '4,&.~;. f. s

%:.'s. .,., '. h. :Q*-? f g { .: 'X v iv. w ' .~ 4 Agf l l h; *.;. n v n-l M; s-

]

?. j_Q ' '. -.+

-.,l RQ f'f. %.. 's.1,.

_ % l ... 45 x, - l. Q, s . Q_ 's - 4 3..P. - ,u

  1. s,.. s..., af g r

.-..p y.s.. .s .a - " '.f. *. ~,.. L Y,.. '..<..,. e d> q y -s..., v 9* ' ; '.. d.i -' g:-)-.'. ,.,9T.s.... -. ' 4..t -.~,,,;,,- ., eA 3 ?" :,+ w

  • s.~., y.L..' ; \\ L -

.'. %'% - - } '., ",*...,., . '. -. Q. -Q.~.,&., '.. 'y,.7 ?,.Jj* .,.,.5, }[*-** % g S. L F c n.n m,, 2 M e,,.*.3 g, ' I 'k " - .. 3( f .f s .c f " q. _L s ;,'t f { k B

J h

$;. p 3.f 4,w a....

  • ' g. y " t.

',* p

(.,

4

  • .A

%.v Q _,p y C e,. .b 4 j, ;, a , G.\\,, -..ej....., F {

'., 1 g. -

l ,' *,.g - g j.y c

f.a.

3 9;.,-..[.,,,,' -., - g .;q %....,". ' ) *.,,' -t m a; .v,.- r.

  • '. ~,, 3 4l. 7,- 4 %,. g

.* : p. 's. g. g.g ..... :, p.

s. ;

Afi y,,.

  • t-f f M

~9.- . j.,,cW.w.O c...S; ' v.'.., : 3-

  • i. 7. $,J:. '. en. -

,..w w. ,r. v 1'g ...i,1 ff.'- v-w . a

  • F

\\ +- ..9 4 %9y L. ,.'<m,.-... .,,>g., s, -,i n.. .e,.' s e. L. wn,..:.. - v .e ! ~ g. ,.1.s s, ... ' ' gl. ?l~,..: W.N.N f w o.- g.7 p ' . f.~.'; 4 e ,,,g f .,, n,, &$ \\ '.' <.h & N "N I ' Nh$ a.l l n ,.;g y 7 - %r, mk ' ' ....c..~ m.

ytr b ;. g..; A,,

4.J..'....'.. r . v; - - ru.. z.. zw w - ' e,.T 't*, f

  • .y

... WAR l $g - @,n .h. '..~, t.. /

  • a...3..

- 4: 7..

3. g f

c - .s q.... ' f.,' J ' f..> f Q k ;. ' lv ; g ;. : ". r :.

w j;

.c._ v ../ %.~ d * ? :..... '. G -d ,#,fn - nc e. x.. ~ . ; 7...m _ ~,,,. %.v. -s ,.5.;;. _ S.,...,... 7... f, u. g ~+ 8 -t j n. Q,i *l: M{x W'Y ' y' I ' l, W ,..i.} ' ? -%.1 )? 3ghl"lgl 'L . Q % %}J f 4 j.. l Q~y.y, Q - ; } L i _ '.' f i.; . G. r, y

  • >4 y=h_:W W,.. _ ^

.Y.,, W...,W Q- .+... ' - t r..; m.. A. h. ~c. M. i o.' + n f* ~.+. v r r. ~s ,y.. - c. m. em .n.~,w % v..:.r. ,ex :. .; : v..*, gy b;49$$ 48 .- t -- s_ .. - m 8,;u .,..';'i'.',;1 j.d C y '..* :;.' y j'.,'., ....f.... ,--?' h 1 - : P T-VI Ej C 1 t ' ' ';,s.+..,' f.... :. P,' ;..., '.. -f,:..... * - 5WEEF. .W4W,,, y - -...d ; J ';). + ', 3.. ;. y.:,. ; .. ~. .- p p w~.,.. t. ?g@A7.g, _ ; ,j A ~.,. v.i. .,J. :;;g .g; w. W;.c&.. %.. x.p c.

;. m q n
_

y_ O, <,;? :._. % r.. . - r_. y b',.j"y.,..,.. _ f. a %, _,'q..w.4 s a Fig u re 1.16: In dic o tio n

8. Weld #6 - Tra n sd u ce r AD 2, 45 Degree Ref ra cteo Longitudinal Wave High Se n sitivity Scan

t 3... p...y e., .q,w, ,_,. c.,

1.

.;,.,.. c.,.>.,... ; 1. s. y. 4.. ;..g. gn p{,4, s..... _ a, ;,

  • ~.; ;

,j <...

',. e,.;. ; -. '.. -. ~ f:f ;' l. - '..j
,.s.

... y ..c n*3 a... .,. :. _...... ~. - t ..u'-s. v m.q - ., (.. g,." ; 9.' ] Q.+ '..'. <

s...w..

a _Y. ;. ',.; ; .,.j y,#- { '9* s. ? : 59.,.+'..n. .g~ ~ ,e ~ m,. ..m.., r -e m,. .;. s e -

. 7

,yn -y: ' g.: .; 4]\\, QQ} ' Q,,o ,j - - )..:- : . ~., >. v - e,. ;;. ;.. _%6 J.? ^ a. .s ,.s. A a. J., ~ , [' ?s ^. , :?' .[ L} s }.- l :' l f . l [. s h[ j.'., A,_ .;.4p ~. ~. ,. ~ -+ - f .y.4 up.s. ... ~ v \\ .'.. + 0 ,. _.. '. 3. o.. a ,Ag.. %u,. 3'.,... m. g.. 3,..., a3 .f g, .a. w .. :. t ,.;.a ) ;.:. ',g._.., g .-.g

h. p,9

..y .o- , :../. y Nq s l$ : %..,,..,[.. Y. S._ T 0 ym - .a.. W h...f. h.: %:.J...;g q, [?.,.h. j ?.. 3. y - - 3, t 2 o

4 s

1 4 . ;$ ?y. ;:: [.. .s.. y -g ..& ~ ',,'.-Q}.r D .._ q s. O ....y ._.. y y.,.y. a y c., eg n., .,y, . hg. 4

  • :. D.

i h. ': : *, h [,y'.[ [*, h [^ 4., .k ,D k A. s.(, tdh;f' [.ikg u s,W'. .,.t. y..:; F{.,. \\- ',. G o

~-.~.

J a ,y..... .t. 4 u J ~,. .<tp3 4 4 [*I.

  • r..

m ) ~ */ ' g), ' 7,. @.,,"ar ,4., - ..,iy s 7 -4 '..,,.y V V

  • , y.

<.,...- '., m 36 t. ~

A s %.. e

'.e Q *$..,w

-a s '

. r-a l m v

)s c t-

- ~ .: e. :,, v a \\ e - o o

n... -

.f ,., g, s - c 4.- -y,. .,....w ,-..<...c s- + L o g k6. . ys-. f_. -l .; g r *.., y-g u 4 t.- a.,..A.....-. s. s .,; e ' < - .;,. q_a j..., p. .~. 4,- ; ,.,. ^,, '. - w :-. .e-. . 1. ? :. l 1 g a. x g ..y 1 A < 3' ..,".,. ?. L,. ', s g[,:, ;. ~. 7 - . ;t y j ?gi.o+,_?y +:.,..- h '. ;m,..! w%.- r*. - g i,,.., ' f.n ;

r..
.{' y:; ' ;. *

\\.~ %.y, .'f ?. ,, is ' m D v , aux -w: w"..,., .'. :., *g.4%g f ( :..' ;,; c.v, CJa. s.f. L y

  • .e J.

U ,,4t,_v- ?y b .9 .w ' j g. ; s'.... l;. :cQ.% ; - 1 ', -' .,f p J., A..-

  • 7.'-v ' i

~.... i : (>_.,6- -.. ~ - 3 <*

  • r.:*. ; 3

. ) e ao ..~M -;' f u p .O (/) ..f c.y g 33 f.. . (O h .u = .u +..,r-c n --> .-o..w o.- o r.+ - a .s ~ m9, %.y. y_ : w, f .,r.~ A Jpt >,.,;.- : :. ' _ ;,! ,9_ vD . g._ ,5 ,? c.t u a _ e 3 y.w-.,g..o os c o _ v e ,.n.4 - J.- '.s,;.'.' ki V O (/) . '. h .c_ m 4..w '[ ' f r.) n n ;. - .i .., m',2 w,, .. :g.y ' ' Qe I A

  • -r.l 3

..,.'u

  • h.. c :

f, . ft 4 ..;,M 3 - L.1 s ~' %,An P kb hk J ,A- ~b J. . p J, >,c m e -. s.p +- e 3 a.- (,L I g .n M 2 i..

SECTION 2.0 INDICATION ANALYSIS 2.1 Indication Analysis j From this comprehensive evaluation effort which entailed a review of past NDE results, the results of the conventional 1988 inservice 'nspections, and the supplemental examinations using UDRPS it appears that indication 4A is a j rounded volumetric type reflector that is clearly ?ubsurface in nature. It app ars to be located at or near the weld / nozzle forging interface (figure 1 ]). In terms cf it through-wall and length dimensions two different measurements have been taken, one using 50% DAC sizing methods and taken manually, and the other using 6 dB drop sizing methods and taken with UDRPS. These combined dimensions are given in table 2.1. While amplitude-drop sizing methodologies are not considered that accurate the 6 dB drop methodology has been shown to provide the more accurate results when compared to 50% DAC, 20% DAC, and 20% DAC with beam spreal correction sizing methods [ reference 6). Comparing these values against the acceptance standards of ASME Code Section XI shows that this indication is acceptable (tables 1.3 and 1.5). In addition th!s evaluation has clearly shown using the UDRPS system that indications 1 and 8 of weld #6 are rounded volumetric type reflectors that are in the stainless steel cladding located at or near the clad / base metal interface and which were most likely deposited during the cladding process. Fabrication radiographs show indications in the vicinity of both these ultrasonic indications which appear to be very close to the vessel inner diameter surface. Indications 1 and 8 are therefore outside the examination volume as defined in the ASME Code Section XI and are tigerefore acceptable. 2-1

TABLE 2.1 INDICATION ANALYSIS OF INDICATION 4A IN THE OUTLET N0ZZLE TO SHELL WELD #21 GF IND. MEASURED MEASURED "S" TYPE OF COMMENTS NO. THROUGH-LENGTH VALUE FIAW WALL (2a) (1) 4A 0.98" 0.5" 2.1" subsurf. manual 50% DAC sizing with acchanized tool 4A 1.14" 1.11" 2.1" subsurf. 6 dB drop sizing with UDRPS "S" is measured using scaled plots in figure 1.7 and is equal to the minimum measured dimension from the 50% DAC extremity point to the O.D. weld taper. The weld taper dimension is taken from the design drawings. 2-2

\\ SECTION 3.0 l i REFERENCES 3.1 References 1 Gruber, G. J., G. J. Hendrix, and W. R. Schick. "Characterization of Flaws in Piping Welds Using Satellite Pulses", Materials Evaluation, Volume 42, A'pril 1984, pp.426-432. 2 Cook, R. V., P. J. Latimer, and R. W. McClung. Flaw Measurement Using Ultrasonics in Thick Pressure Vessel Steel, Final Report on Contract No. W-7405-eng-26, prepared by Oak Ridge National Laboratory for the U. S. Nuclear Regulatory Commission, August 1982, Oak Ridge, TN. 3 Doctor, S. R., et al. "Ef u ctiveness of U.S. Inservice Inspection Techniques - A Round Robin Test", Proceedings of Specialist Meeting on Defect Detection and Sizing, Ispra, Italy, May 3-6, 1983. l 4 Jessop, T. J., P. J. Mudge, and J. D. Harrison Ultrasonic Measurement of Weld Flaw Size, National Cooperative Highway Research Program Report 242, prepared for the Transportation Research Board by The Welding Institute, December 1981. 5 Mudge, P. J., and T. J. Jessop. "Size Measurement and Characterization of Weld Defects by Ultrasonic Testing : Findings of a Collaborative Programme", Proceedings of NDE in Relation to Structural Integrity, Paris, France, August 24-25, 1981, 3-1

m._ 6 Willetts, A. J., F. V. Ammirato, and E. K. Kietzman, J. A. Jones Applied Research Company / EPRI NDE Center. Accuracy of Ultrasonic Flaw Sizing Techniques for Reactor Pressure Vessels, Draft Interim. Report, EPRI RP 1570-2, March 1988. 7 Rishel, P,. n., W. H,. Bamford, and D. Kurek. J. M. Farley Unit 1 Interval 2, Period _l d (tage 1 Inservice _ Inspection of the Outlet Nozzle to Sheil Veld #21: Recordable Indications Which Exceed the Allowable Gtandards of ASME Code Section XI, MT-SME 224, May 1988. 4 l 32 .}}