ML20126L122
ML20126L122 | |
Person / Time | |
---|---|
Site: | La Crosse File:Dairyland Power Cooperative icon.png |
Issue date: | 02/15/1985 |
From: | Ahmed A, Husain I STRUCTURAL MECHANICS ASSOCIATES |
To: | |
Shared Package | |
ML20126L071 | List: |
References | |
TASK-03-06, TASK-3-6, TASK-RR SMA-CT-30001.02, SMA-CT-30001.02-R01, SMA-CT-30001.02-R1, NUDOCS 8506190420 | |
Download: ML20126L122 (150) | |
Text
{{#Wiki_filter:SMA-CT 30001.02R01 SEISMIC AND STRESS ANALYSIS OF HIGH PRESSURE CORE SPRAY DISCHARGE LINE PIPING SYSTEM FOR LACROSSE BOILING WATER REACTOR (LACBWR) Prepared for DAIRYLAND POWER COOPERATIVE February 1985 g6190420850603 p ADOCK 05000409 PDR
SMA-CT 30001.02R01 SEISMIC AND STRESS ANALYSI 0F HIGH PRESSURE CORE SPRAY DISCHARGE LINE PIPING SYSTEM FOR
. LA CROSSE BOILING WATER REACTOR (LACBWR) prepared for DAIRYLAND POWER CDOPERATIVE Fe'oruary 1985 This work has been performed in accordance with SMA-CT Quality Assurance Manual which meets the requirements set forth in 10 CFR part 50 Appendix B and ANSI N45 2.
Approved:
- 1. Husain President Approved: V A. Ah ed Acti Manager Quality, Assurance i
g _ mECHRnlCS STRUCTURAL
"""""" RSSOCIRTES w-Suite 17, 304 Federal Road, Brookfield, CT 06804 (203) 775 0232
STRtXTURAL _ -mECHROKS .
'"""""""" RSSOCIRTES SMA-CT 30001.02R01 w ummmmmma Susie 17. 304 Federal RoosL 3rootsekL CTOee04 (2o31775-o232 CERTIFICATION OF SEISMIC AND STRESS ANALYSIS OF HIGH PRESSURE CORE SPRAY DISCHARGE LINE PIPING SYSTEM DAIRYLAND POWER COOPERATIVE I, ths undersigned, being a registered Professional Engineer in the States ,of Connecticut and California, competent in the ASME Code stress analysis of piping systems.have performed the stress analysis of LACBWR High Pressure Core Spray Discharge Line Piping System and certify that to the best of my Knowledge,^
the stress' report presented herein is in compliance with the ~~, criteria set forth in this report. certified by Date JiDg (1% w I. Husain $......,,, CON I , E
! l 5 No. :2201 NAL
- e. . . . . . . o*
Revisions k Certified by: MDate :7-\ 5-TM i l
REVISION LOG Document Number : SMA-CT 30001.02R01,
Title:
SEISMIC AND STRESS ANALYSIS OF HIGH PRESSURE CORE SPRAY DISCHARGE PIPING SYSTEM Rev. No. Date Item Reason for Revision
- 1. 2/14/85 Add Addendum i Discrepancies between As-inalyzed and as-built Configurations Approval I 4
TABLE OF CONTENTS l 1 Section Title Page 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . 1-1 2 DESCRIPTION OF PIPING SYSTEM . . . . . . . . . . . 2-1 3 APPLICABLE CODES , STANDARDS AND SPECIFICATIONS . . 3-1 4 LOADING CONDITION . . . . . . . . . . . . . . . . 4-1 5 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA . . . . 5-1 51 Design Considerations and Design Loadings . . 5-1 52 Service Loading Combinations . . . . . . . . 5-1 6 PIPIN"- ANALYSIS . . . . . . . . . . . . . . . . . 6-1 6.1 Nupipe Analytical Procedures . . . . . . . . 6-1 6.1.1 Static Analysis . . . . . . . . . . . 6-1 6.1.2 Dynamic Analysis . . . . . . . . . . . 6-2 6.1.2.1 Mathematical Model . . . . . . 6-2 6.1.2.2 Natural Frequencies and Mode Shapes . . . . . . . . . 6-3 6.1.2 3 Dynamic Response . . . . . . . 6-3 6.1.2'.4 Response Spectrum Superposition 6-4 6.1 3 Piping Stress Analysis . . . . . . . 6-5 7 RESULTS OF ANALYSIS . . . . . . . . . . . . . . . 7-1 71 HPCS Discharge Line . . . . . . . . . . . . . 7-1 72 Pipe Support Evaluation . . . . . . . . . . . 7-3~ 8 CONCLUSIONS . . . . . . . . . . . . . . . . . . . 8-1 9 REFERENCES . . . . . . . . . . . . . . . . . . . 9-1 ADDENDUM I- Evaluation of Discrepancies Discovered Be tween As-Analyzed and As-Built Configurations . . dh APPENDICES M
LIST OF FIGURES Page 1-1 HPCS Discharge Line Horizontal Spectra ......... 1-4 1-2 HPCS Discharge Line Vertical Spectra ........... 1-5 2-1 HPCS Discharge Line Schematic Sketch ........... 2-3 2-2 to HPCS Discharge Line Supports ................... 2-4 to 2-4 2-6 4-1 to HPCS Discharge Line X,Y and Z Spectra .......... 4-3 to 4-3 4-5 6-1 HPCS Discharge Line NUPIPE Mathematical Model... 6-10 6-2 HPCS Discharge Line NUPIPE Computer Plot ....... 6-11 7-1 HPCS Discharge Line Class 1 Stress Analysis 7-8 to 7-2 Results ........................................
. 7-9 LIST OF TABLES 7-1 Modal Frequencies and Modal Mass Fractions ..... 7-5 7-2 Summary of Stress Analysis Results ........'..... 7-6 7-3 Summary of ASME Code Fatigue Analysis . . . . . . . . . . 7-7
i
- 1. INTRODUCTION Seismic and stress analysis of the High Pressure Core Spray (HPCS) discharge piping and support system of the La Crosse Boiling Water Reactor (LACBWR) have been performed to verify the adequacy of the "as-built" HPCS piping system to withstand a seismic event. The High Pressure Core Spray System of the LACBWR plant is the principal emergency core cooling syctem.
It is designed to provide emergency coolant spray to the reactor core in the event that reactor water level drops accidentally. Seismic and stress analyses of the LACBWR HPCS piping syster. were performed and design of the additional seismic supports were prepared by Nuclear Energy Services, Inc. (Reference 1 and 2) using the seismic criteria and spectra' developed by Gulf United Nuclear Fuels Corporation (Reference 3). However, under Systematic Evaluation Program (SEP), the seismic hazard,at the LACBWR site has been reevaluated, using current methodology and site specific response spectra. The applicable response spectra developed by EG&G under the SEP' program (Reference 4) exceed the original design spectra as indicated-in Figures 1-1 through 1-2. In order to assure adequacy of the LACBWR HPCS piping ' system to withstand the higher postulated seismic excitation Structural Mechanics Associate of Connecticut Inc. ( SMA-CT ) has analyzed the HPCS piping system using the current ASME Code and licensing criteria. The revised analysis is based on the "as-built" configuration of the piping and support systems and include the stiffness characteristic of the piping supports. This report presents the results of the seismic and stress analysis conducted to verify the adequacy of the HPCS Suction Discharge piping and, support systems. The HPCS Suction piping analysis is presented in separate report. 1-1 M
b-i~ The HPCS piping and their support systems have been evaluated in accordance with the applicable requirements for Class 1 piping and component supports stipulated in the ASME Boiler and Presuure Vessel Code, Section III, Division 1
" Nuclear Power Plant Components", 1983 (Reference 5) and USNRC Standard Review Plan 3 9 3 "ASME Code Class 1,2, and 3 Components, Component Supports, and Core Support and Structures " 1981 (Reference 6).
The seismic and stress analyses for the HPCS piping systems have been performed using the NUPIPE computer code (Reference 7), which is widely used code in the nuclear indus'try. The piping geometry input data (coordinates, diameter, wall thickness and' weights), and the pressure and thermal loads have been taken from the piping isometric drawings (Reference 8), specifications (Reference 9), Nuclear Energy Services, Inc. reports (Reference 1,10, and 11) and the "as-built" field , verification data (Reference 12). The seismic analysis has been performed using the rgsponse spectrum modal superposition method of dynamic analysis including a correction to account for the effects of non-participating mass. The se.ismic responses have been calculated using the applicable spectra associated with the damping values given in NRC Regulatory Guide 1.61. (Reference 13). The combination of modes and spatial earthquake components are based on requirments of NRC Regulatory Guide 1 92 (Reference 14). The stress analysis and acceptance criteria are in accordance with the design ' requirement of ASME Code and NRC Standard Review Plan 3 9 3 Fatigue evaluation have been performed for the critically stressed region of reactor vessel nozzle connection in accordance with the ASME Code methods for Class 1 Components. Peak thermal stress intensity resulting from the thermal transient (initiation of HPCS flow) have been taken from the 1-2
~
original ANSYS thermal element model analysis (Reference 2). The original ANSYS thermal transient analysis represented a significant effort.and are not affected by the non-conforman-ces. Initial NES stress calculations, using the conservative stress intensification factors of the ASME Code for the socket weld coupling / reactor vessel nozzlh region, resulted in an excessive peak stress value and therefore very low number of permissible HPCS operating cycles.'The socket weld coupling / reactor nozzle region was analyzed by means of a detailed finite element model the ANSYS computer Code. The transient thermal loadings produced by the.HPCS initiation were deter-mind using the same model developed for stress analysis and using the LION computer program. Section 2.0 of this report describes the description of the piping systems. Applicable Codes, standards and speci- , fication, are given in Section 3 0, while Section 4.0 describes the loading criteria. The acceptance criteria given in the Section 5 0 are consistent *ith lic6nsing criteria as specified in ASME Code, and current NRC Regulatory Guides and the Standard Review Plan. The analytical methods for the static, dynamic an! strece =alysis are given in Section 6.0. Section 7 0 summarizes the results and conclusions of the analysis. The results of the analysis indicate that the HPCS dis-charge piping systems and their supports meet the acceptance - criteria. ASME Code Fatigue evaluation indicate 3 x 105 permi-saible normal start-up and shutdown cycles, 5,700 permissible ' HPCS ope' rating cycles, 4000 permissible cycles for the combin-. ation of Operating Basis Earthquake (OBE) and maximum credible thermal transient events and 3,300 permissible cycles for the combination of Safe-Shutdown Earthquake (SSE) and maximum credible . thermal transient events. Therefore , it has been concluded that the HPCS discharge piping and support system meet the intent of current licensing criteria. 1-3 M
a , . . . , , i i . 4 i i
, , , , ;g .. ) . i i e i i , i i , i ,
i ii e i ! I I l l l l l l l l l 1 l l/ l l l
!! I I I l l l 1 l l l l l l l l\ l l l
l l l l l l l l l l l l fI l
. \1 s i
jl'
/ / I g i 4 , . x .
i I i . i
! , , , . .- , , ,g 6 i e i e i 4 e i i I i e i e i , i * . ts i .- i l I I I ) l l l M 1- l l l l- -k-A T t 9 i l \ l l l g I l l l7t'l / l
- I I l l l .
5" l - h. y # ae 1
~
i
~~
i ~ ~ - .>
~ ~ ~ ~
i l l I
' l l $iE ,_, .u. !l l
l l x ,
.t.. f !'
ii i i , . i i . . . , , , . ,x ,
- .w -t i
n. il e 6 6 i i i i i
, , , ,,i
{gg e e l . is l 1 e i I ' I i i i i i \ ~*M
; i l l ,
i i i i i l l l l t !! s l l l i l i I I I I I I I I! u I i l i l e s$m i I l l l 0T l t IawM e as :D I s B S
.: : '4 rz.
a . , . , , , , i , , . . . i i i : e i i i i i i i I
$ l I i l l l I l i i l l . I 3
- : : : :a : : : : 4
- . i i i i i
~
i 1 i 1 [ l t *
- t 8 / * ,!-
i . i < . e i i i i i . i ) i . I l l l l l [ l 1 l l ' I l l l \ l l L l l l/ I) l l l i /l1
*) f / / g s , ., , . .- e i e i i , # 1 I /6 l t ' t I I l t l l l l l ,
I l7 , l- .
! =
E 1 G s* e a
's s % I .: y NlJ . M , <w .
E w>
**. i.
6 . . . . x. . :: i- , , i . .x - .u i i 4 i e i w i n e n ' I i t i 6 T ,! $ 1 i i ;" u
- i i l I !!
9 U l l ' se a~
.n 4 N' ~71 3 mw W re -x . 5m , , , . . e i f-h i ; E l l l 1 l l l l I l l l l l l l
1 I 3 : 3 . -
! 2 - I4 d 4 4 4 4 4 4 4 4 *4
\
- 2. DESCRIPTION OF PIPING SYSTEM The High Pressure Core Spray (HPCS) system of the LACBWR power plant is the principal emergency core cooling system.
It is designed to provide an emergency coolant spray to the reactor core in the event that reactor water level drops accidentally. This is done either by means of' high pressure water injection under high reactor pressure conditions or by direct gravity feed of water from the overhead storage tank to the core spray header under low reactor pressure conditions. In order to simplify the seismic and stress analyses of the long and complex HPCS piping system, the HPCS piping system has been divided into two sections. The first consisting generally of the suction piping which runs from the over head storage tank to the HPCS pumps and the second consisting of the discharge piping which runs from the HPCS pumps to the core ' spray header inlet. The HPCS suction piping an'alysis is presented' in a separate report. The subject analysis of this report is, therefore,the HPCS discharge line. ' -
' The HPCS discharge line consists of stainless steel pipe line leading from the two high pressure core spray pumps to the core spray header inside the reactor vessel. The pumps are used for core spray when the reactor remains pressurized, as in the case of a small leak below the core. When the reactor and con-tainment building pressures are equalized.as after a major system leak or rupture, a low pressure supply line bypassing the emergency core spray pumps allows water to flow directly from the overhead storage tank (or service water line) to the core spray header.
The high pressure core spray pumps are also used in th's boron injection system. Redundant control valves are provided for this purpose in the core spray pumps suction and discharge _ lines. Rigid anchors located at points of expected large seismic deflections serve the. purpose of isolatinc the discharge 2-1
lines from the interconnecting piping systems. Figure 2-1 shows the routing of the discharge line and the extent of suction line and codium penaborate lines considered in the subject analysis. The schematic of the piping systems shown in Figure 2-1 includes major pipe dimensions, elevations, anchor points and support locations. The piping arrangement, has been taken from drawings of reference 8. Piping properties are based on infor-mation given in the piping specification (Reference 9) and are summarized in Appendix A. The location of pipe support systems and their structural stiffness charecteristics are based on in-formations given in Reference 1, 10, & 11, and those obtained/ verified by Dairyland Power Cooperative engineers from a field inspection dated February 1 through 4,1983 (Reference 12). The support structural characteristic are shown in Figures 2-2 through 2-4. The support stiffnesses are summarized in Appendix A. , 4 e 2-2 M_
' -t-M
4 o \, Sodium Pentaborate
+ ,.( v4 , 'y - , g,*
- 4 E Discharge Line : c s (
j
,p ,T ,',#**
Flow meterQN 5 N a m sat
#' . Q , rJ -
s (J' :
, .o y . .4 * : * . X4so -
x 45' , . [*.#.31 test valve b g
- i. j Reactor Vessel ,,, 7 9, C ,
ag%. Nossle - d '
.o +,s Node Point - ! M
relief valve line- . /
< [3 #
Spring Hanger Elastic Restraint hand valves e>' ( wo*g Pressure gages n~Y . Ri id Restraint ' Anchor) HPCS Pump A #
-f25te Valve hand valves and Valve with b roller valve line '.#
C Pressure gages b Eccentricity ,/. 5 N
- FIGURE 2-1 HPCS DISCHARGE LINE N jf/
., < <r, -
HPCS Pump B 2-3 ,,
~ 49 % 3 4 464 7 84 0* **'
- O '* *A*W E'****=# I*e"bes.n* A**.m .D i.
-ek-I ,h ,s . :- -4e + +' /. . ..
l:' l
.. 4 , . , , , , . .m . -
n Y'b ns ,i sk g '$Q -
! @pb' ' , i i ., - i ., .
- e. t i, ,i
.!\ :I..4=- '% - . . ..
7 I 4 i.. . , -- t 7 , ,,,,,_ ...,... .y, i =cs p.= - .w<..r ,. ms 3,s .m s ,, ,.
- ---~ '
ir . r} w
. .-- a .. . . i+ : . . m, . .
p y' --
.f. ;! Vt# M t _ , __ m .
iblaf.ld~ . i ..m i ! i . t siu x
- : ~
i .. ,.., y - - - -
..........-7 - b5 -
- g e. s % W %Q & -@
' . . , . - .c, , , l x.
[
.. . < o .2..
a.
,.v o ,' su i . .
e4 f:: y
- i. ' -
s - l ..I. .l ., - . p' f ....-
'.}S-. .- l y , .
I t- ' Y :b A,
~- $.2 - . . s+ . - - aj/s-.g i- .x:: .,
y _ Q , I* 'J Is
, [g 3 a twg.4% -._.,P .g . ..
g..'.c' j , i
.. w.
I JS.$
. m . i . ., -. i r ! ...._.
FIGURE 2-2 HPCS DISCHARGE LINE SUPPORTS wemmmmma 2-4 . i
.M '= -~ s - ~ <=~ ~s =i m.. a. .. a. iv. s. , ~ > - 2 -.- * * ~ ^ ' ~ ~ > ' ,t . ~ d*' ,.. .. 'E N{ rS. . , , , s i. .' . .- , ; i 7 "F
- 4 i w. . a J. -! _, .-.: _
F c . . ., ; , i7 - i, l ,
, t ~~
t n ...i..
~ . /,
- g i
- s. -
t.
- ~.sh . '."._:: :::x %.e - m -. \ -
_~.4
.d ... a, -
u r l . u- ~
\ ,.. - ,ps [ . . < e. . . . i .- , ,- =
1 ]. ': x q -
+ , ..
jj j R A kJ y--. -_ _ . _ _ s.-te{' '.- s ur - = =
-o.-J- -
v.uc . _ -
~~~-
. . . - 2 1
- 17 - - - - .A i a. swa s l '" : a la.*--.< e * * *;",' ,, ., _ , 3 ., w ,, m ,,,, . .- s w 7 s , a . a.. - .m % h W 4... - ess . *~
C$) l , y :r - .
;% w t- * = ,_ . '
l
.s *T , ,, ' . s. i , ._ ~ ,.,2 ;
_a -4 , ! .
.- 1 .._
___n- . --
. , r- i r
c-
-r-a, a,_L, .- 3,,. .
w An IE18
- ,' - o ' -- ,(i t ii . l , "~~"**A -. - p ,_ , ,, ,, ; O a d '
lTj ' w,.==-. %l,.I. 4 l l i
.s r- a, . ,. < ' .s. ,, ,y, __ ~ . _ . . _ __ __-_] ,. !
p --i . [j' , "'>t. A l'. 'A' ggy A.A 1 rvem 1 ~ , . u -= \ r
- - - - .,,...,.: - - - - - .. .--n4 9 :r; - -~- -- ~ ~ ,.,.......a. - . . . - . , . . - ~ - - .
A
... t ' .' N 4. ~ ~ ' ' *
[~2 FIGURE 2-3
.j H 'l'~' (~.._.... - v./ . .. s .. .
- . i ,: .-*.
[ ', - -
.j , j;_ ,, .' 'r.- .- L' f. - - : n - --Y HPCS' DISCHARGE LINE ;b
(.... I
'i $., .~,. '.
SUPPORTS u C. &,.
., n~~ .] . ' c=- E O_o fr/ . . . . 2,,,.,,... -i;7 .;.....-,g, wemmanum 2-5
e
,y Cf,l:"..-
uT
.r..... _ .l{
g
/
f="
' -i . F~^
8 Y hf .
~7 -
t i
.= g#
T 4-- -4
= = * .,,i ,
aus mas eam W ,,, [/ A m.- Htll D,; - al Lams . , ,,,,, w
- cares - eg
.e '- i \
lArw l
.. 4 . .W s% -% -+- .., t 7 .,.~.. l; =% ,* /,~ %=e = g on.Fn== ..
aiu me
+ 4 ,*.Q* . - s.
I \ . 1
*= 1 &
ash eV =eV 4.- ammLF nh f.' %au nier an=r W eam numme
. 3['NM (vrZ, se.:.A m w., . % e, - m
- e
- o~ - 'a-= ar -
Y. .t . intc use9H f**** = ='**
# ,d 'I ll s / i f,l -
L,1y t - N o.A-
- r. .
,,. e .n w ,- . Q-j f./ / A f ~I% - ]%___ -. ' ? ; ' ":'* -. . . a'
_ : A._. .. y ~~ - . . _-.,,k'
==iimemme .=
kM e-
/t 4-7: t_:-h .L .I , , -( .'*4 .2 kr'. . _i, p.~ 6 .,
fg
~= 3 EEf f' ' " $ ; 'l;l*,,,,, . .; '. ; * (,,; . -- ~ M a t g g l t iF* 8e I , pm ~'F~[7! &
w.. ce .
. 's ":lmE= f s kene. 4n.
33* l *Q .&;. 4*.- 8-. les-ema **
- g ,, . ,,, , e . g M c""'Ou ' A A
- - - - . ass . * * * . 5
. . . . l e.. e s.-- 4 5-- -* - == - -
,,m c . x u .n -
Or.-. :- ~~ t
.s l 7* '!e ,i fna.--(=) ..[&2
_.: . .w., l , , ,
...- re.;; '...q.,....- m.w. s aw m FIGURE 2-4 HPCS DISCHARGE LINE ._ .;g' H SUPPORTS g i , ,i.l (*!t dd .
wm "rh* *B . a h% . - g
,g. ..p 2-6
1 l l l
- 3. APPLICABLE CODES, STANDARDS AND SPECIFICATIONS The HPCS piping and support systems have been analyzed using applicable methodology and acceptance criteria consistent with current ASME Code and Regulatory requirements.
The following design Codes Regulatory Guides, Standard Review Plan criteria and specifications have been used in the seismic and stress analysis of Class I piping and support systems.
- 1. ASME Boiler and Pressure Vessel Code Section III, Subsection NB Class I Components, 1983 Edition.
- 2. Standard Review Plan 3 9 3 "ASME Code Class 1 2 and 3 Components Component Supports and Core Support Structure".
3 USNRC Regulatory Guide 1.61, " Damping Values for Seismic
. Dasign of Nuclear Power Plants.", October, 1973 , 4. USNRC Regulatory Guide 1 92 " Combination of Modes and .
Spatial Components in Seismic Response Analysis", Revision 1, February, 1976. 5 Sargent and Lundy Engineers, " Specification for Piping System La Crosse Boiling Water Reactor", LACBWR #256.
- 6. Allis-Chalmers, "La Crosse Boiling Water Reactor Safeguards
~
Report Volume' I and II, LACBWR #283, dated August, 1967 3-1 N . N
E
- 4. LOADING CONDITION Appendix A to the Standard Review Plan 3 9 3 and ASME Code Subsection NB provide guidance in the selection of accepta' ale design and service stress limits associated with various loadings and combinations there of, resulting from plant and system opers-ting conditions and design basis events, and natural phenomenon.
Based upon these guidance, the following applicable loading cond-itions have been considered in the. analysis. Design and Operating Pressures. Piping design pressures are taken from the LACBWR piping specification (Reference.9) and are 100 psig for piping between node points 20 and 50 and 1400 psig elsewhere in the system. Operating pressures for the HPCS discharge lines are based on the LACBWR Safeguards Report (Reference 15). These are 100 psig upto node points 50, 1340 psig from node 50 to the reactor vessel nozzle and 1400 psig for the remainder of the system. Dead Weight and Sustained Mechanical Loads. The dead weight of the piping system is calculated con-sidering the piping to be insulated and filled with water. Sus-tained mechanical loads considered in the analysis includes i;he weight of the valves and valve operators. The uniformly distributed piping weights and the concentrated weight are given in Appendix A. Thermal Loads Thermal Anchor Movements Thermal expansion or contraction of the reactor vessel during start-up and shutdown results in maximum displacements of the piping system anchor at the reactor vessel nozzle (node point 240). Thermal anchor movements at node point 240 are summarized in App-l endix A. 4-1 - 6
1 L Thermal: Normal Start-up and Shutdown During normal start-up and shutdown a temperature change of 344 F is assumed in the piping in the region of the reactor vessel HPCS discharge nozzle. Thermal: Maximum Credible Acc.t. dent The sudden introduction of cold water from the HPCS system piping into the hot pressure vessel nozzle, due to a LOCA or other low water level condition results in a transient thermal condition in the nozzle region. This temperature transient generates stresses in the pipe due to the large temperature gradients across the pipe wall and due to any material discontinuities present. These thermal loads which are applied at node points 230 and 240 have been calcu-lated by means of a transient thermal analysis with the LIDN Com-puter Code (Appendix E) and are presented in Appendix B. These loads are considered in conjuction with the upset plant condition. Seismic loadings The piping anchors.and supports are subjected to seismic accelerations as defined by the appropriate response spectrum for each of the two horizontal and vertical directions. The 2% damped, peak-broadened Safe Shutdown Earthquake (SSE) Spectra associated with the Containment Building at an elevation of 694.25 feet (Reference 4) are used for the HPCS Discharge line. These spectra " sh'own in Figure 4-1 through 4-3 are conservative for all elevations of the HPCS Discharge line. The digitized seismic spectra are presented in Appendix A. Th's relative seismic anchor movements between the various pipe support and anchor points are calculated from the' low freque-ncy displacement response obtained from the Containment Building response spectra. The relative seismic anchor movements used in the analysis are presented in Appendix A. For load combinations including Operating Basis Earthquake (OBE), the SSE response results are conservatively multiplied by a factor of 0 5 _s 4-2
# 5 .
t i i i e i i i
. 4 i
i
. i .
i
,j l>I s t a e . . , , , , , , , , j. , ,-
i i i i e i i , , , , , , , , ,, . , i 6 I i : : : i i i i i g , 1 I I I I i ! l ; I j i l yi , I I l l 'l l l J l e J/ m
. i , , , , , /W , , 2 2
g
; l l i r i , j'G : ; -+- +- ; * =
i - i2 i , i a I l I - l l . I l l I IQ.s ! l j l l /l 8 s#
)/ l l 6 = = = ,
g e O I k q i s .. e . g e s x , e w , x , - e e
' ' ' +
hLM
~
9 C i i 7T K4 w I I IT\ 3 , f u 3 w l u 4 a n l \ g$ e
-o W
e o 38 m l l '^ E i I i h i l
, ,7 b
l l 3 i i mM i C8o I H v e e g g = - . . . . . g g g g W
~
I ! ' ' . 4 i 8, i + + ' ,
< 4 i i i , , . , , , , , , *
- 6 6 i e i e . 3 e ,
, , ,p , , -
I i 8 i i a e i e a t- e i 6 i i l l l g g gfj g g I I I I I I l NI l l l '/ ' '
') I l .\ s /
i is
//s p x . , I * * . . > , , , , i I
( 0 0 t Q t ' s\ u i 8 TT i , 0 , i
\\ .
a v
,/p > 1 .s.'
I l :"
~ ' i ' . .
k A *.4
' x ,x i= 4 i w -
i x i , , e i n
- 6 i o
e x 3 m c 4
. . 33 1
I 1 l I I
%\ ..
E4 I l l
.j ,. $
l I l l l %)
~
l' l , I l' l f .2
# 4. ~ o - y a .,4 o
i k 3 0 i f A l i 50i e 4 c , 1mg l f C i H i i
- i i
t e ! I *
~
8
=
8 2 a 3 a 3 3 ** 3* i i i i i < c .q h 1 I .
.-a- . -
- _ -h. m...m .a .__. + - . ~ - - - -
- _ _ m -.3 = ' l f*
- n
- Ii l l
b e * ' ' e s e j J
. - i , 3 ' - , ; .' 3 , , , , , o , l
(
- l l " I f l !
l t I ! l l l A I 7
' . l /P ,
I k h \ i
- f,-
1
- 6, .'. -
r \ m a
## g " i O. % __t g ' N _ l l ~
g -
. N ~_ Q a s. \.s ..".
4
~~ ~ <n .tow . .:
N N. , e , N 'N g g i f 7% T N .co i 'O y >4
'A 33 e A l 1
- g. 6m. no 4 L 1
. . .ca
- U3 w
to O u o Cr I l l - t A~ w
?
l ' ' ~ i p . p *4 i , , , gM i I . (d. O H x w w I. I. e e .
- 3.i .
ee i
- ----..c_--, -r.-,-__,. -_ . . - - . - - . - _ , - - _ - - - -y--,. .---,----.,,..,.,.,,-.,7 - - , _ , , , _ , - - __-m,.---., ,,.-.-7,-- _ . _ , , - . , . - - _ _ , _ - , . _ , , , . , , - - .
l
- 3. LOAD. COMBINATIONS AND ACCEPTANCE CRITERIA The requirements for load combinations and stress acceptance criteria for a Class I piping system are giver in NRC Standard Review Plan 3 9 3 (Reference 6) and Subsection NB3600 of Section III of the ASME Code. These requirements arc. summarized below.
51 Design Considerations and Design Loadings. The primary stress intensity, resulting from design pressure shall satisfy the requirement of equation 1 of the ASME Code. 52 Service Loading Combinations. Service Level A Stress Limit The piping system shall meet a service limit not greater , than Level A when subjected to sustained loads resulting from normal plant / system operation. This requirement is satisfied by limiting the primary stress intensity due to pressure and sustained loads calculated using equation 9 of the ASME Code to 1 5' times the allowable design stress intensity, Sm , at design temperature. Service Level B Stress Limit The piping system shall meet a service limit not greater than Level B when subjected to the appropriate combination of loadings resulting from (1) sustained loads, (2) specified plant / system operating transients (SOT) and (3) the Operating Basis Earthquake (OBE) The requirement for Service level B is satisfied by limiting the primary stress due to applicable service level B loadings as calculated by equation 9 of the l ASME Code to 1.8 S m or 1 5 Sy which ever is smaller. In ! addition the primary plus secondary stress intensity range resulting from the combined effects of linear thermal expansion linear thermal gradient and discontinuity, operating pressure N 5-1 (
thermal anchor movement calculated in accordance with equation 10 of the ASME Code must be less than 3 Sm. In the event equation 10 is not satisfied, the piping component may still be acceptable provided the requirement of a simplified elastic-plastic dis-continuity analysis (NB-3653.6) are met. Service Level C Stress Limit The piping system shall meet a service limit not greater than Level C when subjected to the appropriate loadings resulting from (1) sustained loads and (2) the design basis pipe' break event (not specified in this analysis) Service Level D Stress Limit The piping system shall weet a service limit not greater than Level D when subjected to the appropriate combination of loadings resulting from (1) sustained load (2) LOCA: and (3) The Safe Shutdown Earthquake (SSE). The requirement for Service level D is satisfied by limiting the primary stress due to applicable service level D loadings as calculated by equation 9 of the ASME Code to 2.4S m or 0 7S u which ever is smaller. N 5- 2
1 l I
- 6. PIPING ANALYSIS l
6.L NUPIPE ANALYTICAL PROCEDURES The basic method of anlysis used in NUPIPE is the finite element stiffness method. In accordance with.this method, the continiuous piping is mathematically idealized as an assembly of elastic structural members connecting discrete nodal points. Nodal points are placed in such a manner as to isolate particular types of piping elements, such as straight runs of pipe, elbows, valves, etc. , for which force-deformation characteristics can be categorized. Nodal points are also placed at all discont-inuities, such as piping supports, concentrated weights, branch lines, and changes in cross-section. System loads such as weights.
. equivaent thermal for'ces, and earthquake inertia forces are applied at the nadal points. Stiffness charateristics of the interconnecting members are related to the effective shear area and moment of inertia of the pipe. The stiffness of piping elbows and certain branch connectors is modified to a,ccount for local deformation effects by the flexibility factors suggested in the AS.NE Section .
III Code. Figures 6-1 and 6-2 show the NUPIPE mathematical model and computer plot of the HPCS discharge piping system. 6.1.1 Static Analysis The static equation of equilibrium for the idealized system may be written in matrix form, as follows: KU = P - Q (6-1) where K = stiffness matrix for assembled system U = nodal displacement vector P = external forces, weights, etc. Q = equivalent thermal forces = [AEaTdL M 6-1 -
The nodal unknown displacements are obtained in NUPIPE by solving these simultaneous using the Gauss method. The nodal displacements are then applied to the individual members, and member stiffness used to find internal forces. The nodal displ-acements at support locations is used along with the support stiffness to determine support reactions. 6.1.2 Dynamic Analysis 6.1.2.1 Mathematical Model For dynamic analysis, the mathematical model is described as a lumped mass, multi-degree of freedom model. The distributed piping mass is lumped at the system nodal points. The equation of equilibrium for the system is: Md + C0 + KU = F (6-2) where:
- M = mass matrix for*assembl'ed system.
C = damping matrix for assembled system U = nadal acceleration vector = 1.I(t) 0 = nodal velocity vector = 0(t) U = nodal displacement vector F = applied dynamic force = F(t) = MUg : tor earthquake Ug = support acceleration = Yg (t) l This equation is solved for the system dynamic response as follows. First, the frequencies and mode shapes are obtained by removing the forcing and damping terms from Equation 6-2 and solving. Next, the natural mode shapes are used to affect an orthogonal ' transformation of Equation 6-2, yielding a series of indepdndent equation of motion uncoupled in the system modes. Then, the uncoupled equations are solved by the response spectrum method to obtain system response in each mode, and the individual modal results 6-2 -
1 are then combined in accordance with Regulatory Guide 1.92 l l (Reference 5) to determine the total system dynamic response. The mathematical formulation of these steps are as follow 6.1.2.2 Natural Frecuencies and Mode Shapes The eigenvalues (natural angular frequencies "n ) and the eigenvectors (mode shapes $n) for each of the natural modes are calculated by solving the frequency equation.
* (6-3)
K-wMn f$nf=fOf where th mode
= natural frequency in n '"n ^
K = stiffness matrix M = mass matrix
$n = mode shape vector in nth mode 0= null vector The eigenvalues and eigenvectors are obtained in NUPIPE using the Householder- QR algorithm (NUPIPE -11M) or subspace iteration (NUPIPE-11L).
6.1.2 3 Dynamic Response Pre and post-multiplication of Equation 6-2 by ($] , the square matrix of mode shape vectors, constitutes an orthogonal transforcation, from which the uncoupled equations of motion shown below are obtained. 2 Y M Yn + 2"n*n n * *n n = P n 6-3 - M
l where _ Y = generalized (modal ) displacement coordinate for the n th mode (Un = *n.In) th An = damping ratio for the n mode expressed as percent of critical damping Pn
- gen eralized force for the nth mode = $ F, l Solution to these differential equations is obtained by the method of response spectrum superposition.
6.1.2.4 Response Spectrum Superposition Based on this method, the maximum generalized acceleration for each mode is given by: ( )1/2'
" l j=x2y,z Rnj N nd n l H (6-5) max n -( j where:
n max = maximum generalized coordinate acceleration , response Sa nj = spectral acceleration for n th mode in in J-direction (from response spectrum data input) th R nj = Mode participation factor for n mode in J-direction M th n = modal mass for the n mode = (f ile 64
i l l The maximum internal inertia forces are given by: F in " "i n 'in = maximum inertia force at nadal max max mass point i in the n th mode These inertia forces are calculated for each of the system natural modes, and applied as static forces in the same manner as the weight or equivalent thermal forces, to find internal forces in each mode. Total system response is then obtained by combining the individual modal response values in accordance with regulatory guide 192. The effects of higher modes (Frequency >33 Hz) is automatically considered by applying static loads in proportion to the non-participating mass times the zero period acceleration. T'h'e combined seismic response of the three spatial component of the earthquake is obtained by taking the square-Soot.-of-the-sum-of-the-squares of the corresponding maximum response value due to the three components calculated independently (Regulatory Guide 1.92). , 6.1 3 piping S tress Analysis __ The modeling of the various piping problems using the NUPIPE computer code was conducted in a manner consistent with the data available from the piping isometric drawings, the support detail drawings, and the NES design analyses. Care was taken to accurately model the mass and stiffness characteristics of the various systems. Particular care was taken to properly model the mass eccentricities associated with the operators of motor operated, air operated, and hand operated valves as well as smaller eccentricities associated with other non- axisymmetric valves. The formula used to evaluate the primary secondary stress intensity levels and fatigue analysis for Class 1 piping systems is taken from Subsection NB-3600, Section III, ASME Boiler and pressure Vessel Code. These formulas are given below. 6-5 M WM
Pressure Design Check The minimum rquired pipe wall thickness (tm) is computed from PDo t, = ---------------------(Eqn.1) 2 ( s, + yP )'- where: P = Internal design pressure Do = Outside diameter of pipe Sm= Maximum allowable stress in material at the design temperature y = 0.4 Primary Stress Intensity Check The primary stress intensity is computed from and limited by , the following: PDo Do B 1 4t +B2 21 Mi=15S m ----------------(Eqn.9) where B,B2 y = Primary stress indices:for the specific piping component being investigated. - t = Nominal wall thickness of piping component I = Moment of inertia My = Resultant moment loading from loads caused by (1) weight, (2) earthquake, and (3) other mechanical loads (one-half the range, excluding anchor movement effects). P, Do, S m = as in Eqn.1 Primary Plus Secondary Stress Intensity Range Check The primary plus secondary stress intensity range is computed from and limited by the following: 6-6 - M 1
h\
~ ~*
fPD)
=C 1 * "# +CE j "I
- 3 ab "a ~ "b b 3 33m-(Eqn.10)
I n 2t 2(1-v) , 1 where: C,C,C = Secondary stress indices for the specific 1 2 3 piping component being investigated. P = Range of operating pressure o M = Range of moment loading resulting from thermal i expansion, anchor movements from any cause, seismic effects, and other mechanical loads. V = Poison ratio = 0 3
* = This term is omitted in the summer,1979 revision of the ASME Code. Version 1 5 of NUPIPE reflects this change.
Es = Modules of elasticity (E) times the mean coefficient of thermal expansion (a) < AT g = Range of absolute value (without regard to sign) o,f the temperature difference between the temperature of the outside surface (Tg )
. and the temperature of the inside surface (Ti )
of the piping component, assuming moment-generating equivalent linear temperatur distribution. E ab = Average modulus of elasticity of the two parts of the gross discontinuity. e, = Mean coefficient of expansion on side "a" of a gross discontinuity such as a branch-to-run, flange-to-pipe, or socket-fitting-to-pipe gross discontinuity. Ta = Range of average temperature minus the room temperature on side "a" of a gross discontinuity.
"b = Mean coefficient of expansion on side "b" of a gross discontinuity.
Tb = Range of verage temperature minus the room temperature on side "b" of a gross discontinuity. 6-7 1
D g, t. I = As above. , Peak Stress Intensity Range In peak stress intensity range is calculated, for later use in the fatigue evaluation, as follows: (P D h (0 )
$p
- II C 2t)
- K22 Cl M i*2 -v) K Ea aT 3 1
*KCE 3 3 ab *a a'*b b + 1-v EalaT[-(Egn.11) 2 where:
K,K'K, i 2 3
= L cal stress indices. for the specific piping component being investigated, aT = Range of absolute value (without regard 2
to sign) for that portion of the nonlinear thermal gradient through the wall thicknese not included in AT y of (Eqn.10) Elastic-Plastic Discontinuity Analysis Where the primary plus secondary stress intensity range, calculated by equation (10), does not fall within the elastic range (3Sm), the following formula (simplified elastic-plastic discontinuity analysis) are evaluated. I \ S 35 a ------------------------(Eqn.12) s=C e 2jYT)M i where: Se = Expansion stress C2 = Secondary stress index for specific piping component being investigated. , Mi = Range of moment loading resulting from thermal expan-l sion and anchor movements. Limit of primary plus secondary membrane, plus bending stress 6-6
intensity,' excluding thermal expansion stresses: ;
/P O i C +C 2 [0 M[ + C 1 2t 21 ) ab "a a ~ "b b I 3$m------(Eqn.13) where:
C,C2 1 = Secondary stress indices for the specific component under investigation.
= Stress index value for the specific component C3 under investigation.
Both equation (12) and equation (13) must be satisfied before equation (14) is used. Fatigue Evaluation -
~
Fatigue criteria are satisfied by limiting the usage factor. The uasage factor is defined as the ratio of the number of system cycles between two load conditions to the number of cycles allowable for the alternating stress range between these conditions. This ratio is identified as U = n /'N n n in subaricle NB3222.4 of the ASME ', section III code. The number of cycles allowable is taken from a curve provided in appendix I of the ASME Code and which is contained in NUPIPE. The alternating stress is calculated from: 8 ~~~~~~~~~~~~~~~~~~~
- S alt
= ep where S = Alternating stress intensity alt K, = Factor used to compensate for reduction in cycle life in plastic cycling. ^ = 1.0 .for Sn 5 3Sm 6-9 M
1 I I 4
'*S' i ** no ,,..- .
20* 46 ' [
, , , Sodium Pontsborate i
Discharge Line p .a ".,? se ,
,. 65 1 M*
From Overhead F st, HPCS to Reactor ses ** h ,, ,, 3tsrage Tank Vessel 3, g o. s
*[p fellow support; [ ,,e To 16" Forced f
i r' ses T Circulation Discharge Needer
-N ,, su ,, as 355 , e.1 . - ,2. . .
i - -- .,
'kl 2/\
s sLe
. 'I. .
e.. es - i . , .- L <w t..i va1ve ...
/ , ode Point ' M ='*n'.'s. tor . . . .V...ei - Z **- ,,
I Ea c t aint b relief valve line SS I id Restraint i ' RtfAnchor) .< W HPCS Pump A
] Valve 35to Valve alth ' ~A Eccent rici ty LD relief valve 11ne t ,7.s w FIGURE 6-1 HPCS DISCHARGE LIN HUPIPE IIATHEst4TICAL IBODEL w go g 6-10 w=
l a e,
S(I C IC AIEl SIM SS S M LISIS U leCS Of IMIPIPE IIAIMeteTICE PEINL ff I.5 11 salEGEmens
# = Eset ( N elles O - essettles (Kelles **W - erette somete *C3 - seeesta 4 elete esPreet
- f - estese s - tieste Jelet 4 . fittlett eKee
* ~ ' " " o <,
ni fas i i . ! ; seressee Geesi 1-esse . E Gra. , ,* e 4 54 , s e.2 eteet IILS eiltsP8 feeEE es. t.et N 500 N h M .) i esoi l seen-i o E see d > .m 3 i ! .e o n.s
'Y
[T M ma ! t R,zz i' i
.sas Z /N X M{tt *g 9912 158 g l
ii 1 i 9 ell sie I i AU a
'"g:: sia FIGURE 6-2 HPCS DIDCHARGE LINE ' '
NUPIPE COMPUTER PLOT 6-11
- 7. RESULTS OF ANALYSIS -
The detail results of seismic and stress analysis of LACBWR High Pressure Core Spray Discharge piping systems are con-tained in Reference 16. Appendix A contain the NUPIPE input data such as pipe mass and section properties pipe supports stiffnesses, concentrated weights, digitized seismic spectra and seismic anchor movements. Appendix B contain the support reaction loads due to various load cases and acceleration due to seismic load. The input data and results of the ANSYS thermal transient stress analysis tak'en from Refe'rence 2 are given in Appendix C. The HPCS Dis-charge nozzle thermal transient analysis with the LION computer code taken from Reference 2 are given in Appendix E. Appendix D, provide detail ASME Code calculations for the stress and fatigue evaluations of. the critically stressed region of HPCS Discharge line reactor vessel nozzle connection. 7.2 HPCS DISCHARGE LINE The pertinent natural frequencies of the lower 20 modes of vibration of the HPCS Discharge piping system together with the modal paticipating mass fractions for each mode are given in Table 7-1. The fundamental frequency of 4 54 Hz represents the X-direction horizontal displacement at Nodes 360,370. The most important mode in terms of mass participation is mode 15 (15 34 Hz) which represents the z-direction horizontal displacement at Node 581. The effects of higher modes ( > 20.1 Hz) .is adequately accounted for in the NUPIPE program by applying static loads in i proportion to the non-participating mass times the zero period acceleration. The maximum deflection due to the SSE seismic iner-tia laading is 0.26 inches in horizontal X-direction at Node 512. For a flexible piping system this deflection is acceptable. The 7-1 -
maximum combined SSE seismic acceleration is 1.46 G at Node 500. Therefore valves in the HPCS Discharge piping system should be seismically qualified at 1.46 G acceleration level. Figures 7-1 and 7-2 represents Class 1 piping stress analysis results. The maximum primary stress intensity of 19 58 ksi, resulting from Service Level D load combination which included SSE seismic event occurs at Node 960 and is considerably smaller than the Code allowable stress intensity of 39 36 ksi. The maxi-mum primary plus secondary stress intensity of 58.15 kai at Node 238 due to Service e Level D load combination which conservatively - included sir:eltaneous occurrence of SSE seismic event and maximum credible tht5 sal transient event is smaller than the Code allowable stress intencity of 60.0 ksi. The peak r: tress intensity at the pressure vessel HPCS Discharge , nozzle,resalting from the thermal transient and material and structural discontinuities are taken from Reference 2 and are' presented in Appendices C and E. The peak stress intensities were calculated by means of the detailed ANSYS finite element analysis and are presented in Appedix ,C. The transient thermal loading ( Appendix E) produced by the HPCS initiations were dete-rmined using the same basic model developed for stress analysis and using the LION computer code. The peak thermal stress inten-sity in various critical regions have been combined with the NUPIPE calculated pressure, dead weight and seismic stresses. Detailed ASME Code Class 1 stress and fatigue evaluations of the HPCS Discharge' nozzle are given in Appendix D and summarized in Table 7-2 and 7-3. F' rom Table 7-2 it can be seen that considerable margin of safety exists between the primary stress intensity and the Code allowable stress intensity for both Service Level B (includes OBE) and Service Level D (includes SSE) load combination. The primary plus secondary stress intensity range Sn, for OBE, SSE, thermal normal startup/ shutdown and maximum credible thermal transient (HPCS initiatlon), events occuring separately are consi-derably smalle'r than the Code allowable stress intensity value. 7-2 6
The primary plus secondary stress intensity range have also been calculated by conservatively assuming that the OBE or SSE seismic event and the maximum credible thermal transient accident event (MCA) occur simultaneously. The maximum primary plus secondary stress intensity range even for this conservative load combination is smaller than the code allowable stress intensity. Table 7-3 presents the allowable number of stress cycles for the OBE. SSE, normal plant start-up/ shutdown and MCA events occurring separately as well as the unlikely combinations of seismic and MCA events occuring simultaneously. From Table 7-3 it can be seen that considering MCA thermal loads only. 5.700 HPCS operating cycles are permitted. The number of permissible stress cycles for the conservative combination of SSE seismic plus th.ermal loads is 3300. The above analysis indicates that the HPCS Discharge pipe is adequate to sustain the effects of the HPCS. initiation and SSE seismic events. The evalua' tion of the piping support is included in section 7 3 . 7 2 PIPE SUPPORT EVALUATION . The pipe supports for HPCS Discharge piping system were evaluated for the Service Level D (faulted condition) load combination consisting of: DW + TE 2 SSE (Inertia) 2 SSE (SAM) where i l DW = Dead weight TE = Thermal expansion including thermal anchor displacements SSE (Inertia) = Safe Shutdown Earthquake Inertia loads SSE (SAM) = SSE Seismic Anchor Movements 7-3 -
This combidation is conservative since it conservatively assumes that the maximum support reaction loads due to thermal expansion, SSE inertia loads and SSE seismic anchor movement occurs. simul-taneously. The resultant support forces and moments so obtained werethen compared with the similar loads used by Nuclear Energy Services (NES) in the pipe support evaluation / design. Where the above comparison indicated that the NES design /evaluaa tion reaction loads exceeded the SMA faulted condition loads, no further evaluation of the support was conducted noting that safety margin greater than 1.0 must exist by definition. Conversely, for those supports for which the SMA reaction loads exceeded the NES reaction loads, the support design adequacy was verified either by comparing the available margin of safety to thr increase in the loads or by detail structural calculations. The evaluation of the HPCS Discharge pipe suppbrts indicated ' that the supports are adequate to sustain the effec ^s of the SSE event. e D 1 l l 7-4
1 l l l 1 TABLE 7-1 l HPCS DISCHARGE LINE ! MODAL FREQUENCIES AND MODAL MASS FRACTION IN TER POL A TED SPECTRAL ACCELEPATION VALUES FOR SPECTPUM t l I m care. eentoo reen vets r esi e f.341 F 0*.J 2 019 8""*"" h. 74 6. S'.saa a 2 S.4449 0 170433 8 4400 0.9000 0.3444 3 6.1484 0.141443 0.4408 8.9000 0 3972
- 7".301M 43330. 8".450 & f*.799 P f".408t=*
S 0.3453 0 117st3 0 4500 0.441s 0.40S9 6 0 4344 0 115748 0.4380 0.6733 0.4037 1.9 8S99 10S4SFfT**1rv.'375. . 4 04T" O' 10 1779 0.490252 8.4334 0 5150 0.4036 9 18.6458 0.494291 8.4284 0.4467 8.4018
.. as.4499 "tv84SS3 M .41^,. . 4a . ..afff""
11 11.9593 0.483417 0.4134 0. 43 13 8.3738 12 12.3648 0 401S89 0 4103 8 4494 0 3541 .
.. ...?t47""9T87743M4832""""Tt a . 379f"""
- 14. 13.1494 8.445433 0.4878 0.3408 0.4477 13 15.3431 0.445174' 8.4134 0.3128 8.4444 l .. ... ,73F""Tse s9 69 . . 137"""""WTtFIF""""F1ft2T""
1 17 16.3438 0.844304 0.3939 0.2899 0.4194 , ) 14 18.4416 8 499438 0 342S 6.2749 0 3498
- 6. . ,339"""fse S 4 29 , . 48TT"= W "T.3tTW""
- 28. 14.8910 ,0.049774- 8 3400' O .*219P 0 3344 IBGSA L 88488 84&C7104 ,
, X Y E
'1 0 42eSt=91 0.43 Set =es" ~ 8.250 er=e 1
- 2. 8 4773C=41s 8 53SeC=43t 0 4348t=41
.. ...,s,, . . . . . - . .. 4 ,a 4 0.349 3C*=41I 0.3714t=44'* O'.1470C=e 3.
S. 8 7443E-41 0 1763C-43: 0.2346t=et
. e.eee n-ee e .2299t=e . ...etet=#T*
7 0 7072C=gt s.4129t-44 0.7109t=437 0 0 415at =43' 8.4477t=03 8.3100(=01 e.S493C=ex e. ,.6= ti e. ,1T2C=fr M., an144c=01, 0.ss27c=43 0 3940r-el' 1 33 4 1991E=e8 Sh1329t=41f 0.1174E=4 2 ! .4 e....,.. . . . , , . .. 90eraer 12 0.1444C =42 0 1918E-63 0.4315E=45 14 0 1234C=41 8 137tC=43 0 7SeeC=42
.. . . 44 7; ,, ..guter.0 .... ,.
g: 0 1493s.=41 te2 east-em 0 3473c=er' 1 . Ods44ega 0.1rSec=4sr 0 121tc=e S'
.l .. . is , , . .. us . 4a. 4 6, a 19 0 1347t=e1 0 1911C=43 0.1477t=42 JS 8.3806t =41 0.124SE=83 0 294 9t=8 2 ..y.- sy .., , fC*. . . . . . . , . . . .. 3TgCtTF" q = 18tt. ,,. 7 . . .r= m m ..:,,,u m _
E" Y I.
~ ~* ,M@f . . a / .%=. .a . 44 A .%.' u a .,
7-5
TABLE 7-2 HPCS DISCHA'GE PIPE N0ZZLE
SUMMARY
OF ASME CODE STRE3S ANALYSIS RESULTS Components Load Conditions Inconel First 304L Second Safe-End Coupling Pipe Coupling PRIMARY STRESS (psi) Service Level B (normal) Condition: Dead Weight + OBE 13,469 12,940 12,940 11 540 Seismic Event Allowable stress 1 5S m 34.950 37,155 31,200 37.155 Service Level D(Faulted) Condition: - Dead weight + SSE 16.036 15,367 15 367 13.594 Seismic Event 42,630 Allowable stress 2.4S m 56.000 42,630 42,630 or 0 75 u PRIMARY PLUS SECONDARY STRESS INTENSITY RANGE
- Sn (psi) -
OBE Seismic Event 17.029 16,794' 16,794 16,155 SSE Seismic Event 21,330 20.857 20,857 19.584 Thermal Normal Start-up' 23.539 23,125 23 125 22.041 and Shut-down Maximum Credible 43,930 41,230 37.030 37.030 Thermal Transient (MCA) OBE 15eismic + Maximum 48,229 45.294 41.094 40.455 Credible Thermal Transient (MCA) SSE Seismic + Maximum 52.530 49.357 45 157 43.884 l Credible Thermal Transient (MCA) Allowable Stress 3Sm 69,900 74,310 62,400 74.310 7-6 -
1 l l TABLE 7-3 HPCS DISCHARGE PIPE N0ZZLE
SUMMARY
OF ASME CODE FATIGUE ANALYSIS Allowable Number of Stress Cycles Load Conditions Inconel First 304 L Second Safe-End Coupling Pipe Coupling 6 6 OBE Seismic Event 10 6 10 10 106 SSE Seismic Event 5 x 105 5 5 x 10 5 5 5 x 10 5 6 x 105 Thermal-normal Start-up 3 x 105 3 2 x 10 5 3 2 x 105 3 6 x 105 and Shutdown Maximum Credible Thermal 5.700 7 500 13 000 13 006 Transient (MCA) OBE Seismic + Maximum 4,000 5 700 9.000 10.000 Credible Thermal Transient - (MCA) . SSE Seismic + Maximum 3 300 4.500 6. 500 7.000 Credible Thermal Transient * ' (MCA) . 7-7 V-
4 . 9 ~*
- Sodium Pentaborate g *
,e Discharge Line h en 'P s6 6 c v5 5 IL *g i Froa Overhead P tto HPCS to Reactor T"1 soo 6es p gw Storage Tank Vessel p s ** o b5 /g ' 'p To 16" Forced Circulation y' ses is 8
34 ' T. @ $n e.7 Discharge Header sw gg *'- g 30 o j A GL ' .
"' # I X eg s.o sw 3(+50 6 test valve ,
tv- us Reactor Vessel Nozzle '" g !.- g 5.' !* Service Level D (Faulted Conditions) relier valve line s 95 Design Pressure Dead Weight d *' x + y + z Earthquake (SSE) HPCS PumD A , Max. Primary Stress Intensity = 35 2 ket. A W ,, bE" (At Node 960) ' relier valve lineg Allowable Stress Intensity,2.4 Sm = 39 36 ksi - FIGURE 7-1
\g34;g HPCS PumD B HPCS DISCHARGE LINE >
Class 1 Stress Analysis n,3 W O g,g Compliance with ASME Code Equation 9 S 7-8
- e. e . u.
G. I
\p Sodium Pentaborate .
hn-Discharge Line g g A , yS sm *g tzS h
,, sa g*Q, Froa Overhead Storage Tank 6' .
gt, PCS to Reactor Vessel 3, geo g AJ sd % 56' To 16" Forced T h 4 gi.. 558
't j;('" =
j Gjp,,,ogy"n Circulatio * * * " x Q 3io , o d n ii m
*1*
1,/K . es d 1 sgo *to
*" 3 Goo ; tt.
test valv sto Sarvice Level D (Faulted Condition) s *** .
* '" # ****I ~
Operating Pressure and Temperature w'"gi , 7 sis .g, Seismic Anchor Movements (SSE) x + y + z Earthquake (SSE) 4 relier valve line v 95 Max. Primary Plus Secondary Stress Intensity Range, Sm = 58.15 ksi 34< aos (At Node 238) HPCS Puno A E Allowable Stress Intensity Range, ,, 3.0 Sm = 60.00 ksi Max. Alternating Stress Intensity, , d relief line D Salt
- 74*45 kai ( At Node 240) .
df 33._ q Max.AllowagleNo.ofStressCycles, N = 3 3 x 10 HPCS Pump B FIGURE 7-2 HPCS DISCHARGE LINE V W 9 Class 1 Stress Analysis. *" Compliance with ASME Code Equation 10 7-9
- 8. CONCLUSIONS i
of the HPCS
~
The 'results of the seismic and stress analysis Discharge piping and support system indicates the following:
- 1. Deflections in the piping system due to dead weight, and the specified SSE seismic loads are nominal and acceptable.
- 2. The fundamental frequency of vibration of the flexible piping system is reasonable.
3 The maximum primary and primary plus secondary stress intensities resulting from appropriate lo'ad combinations including the conservative combination of Safe Shutdown Earthquake and the initiation of HPCS system at or near_s operating temperature are within the ASMs Code allowable stress intensity values for Class 1 Components. 4 The total number of HPCS initiations at or near plant operating temperature is limited to 5,700 cycles. 5 The number of permissible stress cycles for the conser-vative combination of SSE seismic event and the HPCS ini-tiations is 3300.
- 6. The piping support systems are adequate to withstand the normal and abnormal loads including the effects of SSE.
The acceptance criteria for the HPCS Discharge piping and support system are consistent with licensing criteria as specified in the ASME Code, current NRC Regulatory Guides and the Standard Review Plan. Therefore, it has been concluded that the HPCS Discharge piping and support system meet the intent of current licensing criteria. 8-1
~
- 9. REFERENCES
- 1. Nuclear Energy Services Inc., Danbury, Connecticut.
Report NES 810090 " Seismic and Stress Analysis of the LACBWR High Pressure Co'ra Spray Suction Line Piping System", July 1976.
- 2. Nuclear Energy Services Inc., Danbury, Connecticut.
Report NES 810091, " Seismic and' Stress Analysis of the LACBWR High Pressure Core Spray Discharge Line Piping System," May 1977 3 Gulf United Services Report No. SS-1162 " Seismic Evaluation of the La Crosse Boiling Water Reactors" dated January 1, 1974.
- 4. EG&G "LACBWR Containment Building Independent Seismic Analysis", Attechment to Letter from D.M. Crutchfield (USNRC) to F. Linder (DPC), dated October 18, 1983 5 ASME Boiler and Pressure Vessel Code Section III.
Subsection NB Class I Components, 1983 Edition.
- 6. USNRC Standard Review Plan 3 9 3, "ASME Code Class 1, 2, and 3 Components, Component Supports and Core Support Structure 1981.
- 7. NUPIE II/TRHEAT - Piping Analysis Program, User Information Manual, Control Data Corporation, Revision K. May. 25, 1983
- 8. Pittsburgh Piping and Equipment Company Drawing Nos.
1087-29 -30,-42 and 35202. - 9 Sargent and Lundy Engineers, " Specification for piping system La Crosse Boiling Water Reactor, "LACBWR #256. 9 -
- 10. Nuclear Energy Services Inc. Danbury, Connecticut.
Report 81A0042, "High Pressure Core Spray Suction and Discharge Pipe Supports for the La Crosse Boiling Water Reactor", Revision 4 dated March 22, 1983
- 11. Nuclear Energy Services Inc. Drawing 80E0040 Rev. O.
"LACBWR Pipe Hanger Base Plates".
- 12. Dairyland Power Cooperative, " Field verified, as-built"-
informations and drawings of the HPCS Suction and Discharge System at LACBWR ", P.C. Sampson (DPC) to C. Finnan (NES), dated March 1, 1983 13 USNRC Regulatory Guide 1.61, " Damping Values for Seismic Design of Nuclear Power Plants", October, 1973
- 14. USNRC Regulatory Guide 1 92, " Combination of Modes and ~
Spatial Components in Seismic Response Analysis", Revision 1 February, 1976. ' 15 Allis-Chalmers, "La Crosse Boiling Water Reactor Safeguard Report Volume I and II: LACBWR #283 dated August 1967 l 16. Dairyland Power Cooperative, La-Crosse Boiling Water Reactor (LACBWR), Seismic and Stress Analysis of HPCS j Piping System Project SMA-CT 30001.02jSMA-CT/DPC Comr puter Output Binder #2. i l l 9,2 M_
ADDENDtiM I EVALUATION OF DISCREPANCIES DISCOVERED BY LACBWR RESIDENT INSPECTOR BETWEEN AS-ANALYZED AND AS-BUILT CONFIGURATIONS 9 i __ l
=
U 1. SUMKARY_ - I This report, prepared for Dairyland Power Cooperative, is
.being issued as an addendum to the original report, " Seismic and Stress Analysis of the High Pressure Core Spray Discharge Line Piping System" for LACBWR. SMA-CT Report 30001.0R00 Au6tst,1984. The purpose of this addendum is to account for discrepancies discovered by NRC resident inspector between the "as-built" configuration and the analytical model of the HPCS line, and to modify and correct the rasults previously provided in the original report. On the basis of a combination of both quantitative and qualitative assessments, it has been found that the margin of safety of the as-built HPCS line, although reduced from that previously reported for the original model, is etill adequate. The number of permissible stress cycles are unaffected by the discrepancies.
- 2. DISCREPANCIES
- t
- 1. The test valve at the top of the 1 B Pump discharge line was not included in the analysis.
- 2. The hand valves and pressure gages were not included in the analysis.
l 3 The relief valve line from the pump discharge to suction line was not included in the analysis. The relief valve line need l to be seismically qualified. ! Figures 1 and 2 shows the discrepancies. Their effects are discussed in Section 3 O Reference I-1 : DPC Letters, G. Lange to I. Husain . LAC-10278 and 10308 dated October 22, 1984 and November 13, 1984 respectively. M
1 5 e u a E L is R 1 u M - G A s I.
/
n t o- F I
- F 6 .' ' w E
(R s E s-R V o G
# % e u
oG vJ a p s o2 s. e1t u.s - t 6 w m h 9G Au s P u ss ,o - h ul ck . H y - 2 s-S e S s ss b C f. 9 2 m P H s t w
- e%
s. B f y I - ,, y s
- M L #
s g 3 t uh 4 y (5 ,
'fe,O " au,Nt,U s * ,N 'O e
n, 0 9 , sj;'2' . 5 N + s
- g. .
g {/ 9 A
'2 -
s
's d
Nh # p
'm j
f -
\ :,- M P,
S
~
fp C
. P N
e! sa e
- sa a _
1 a.
- o a 3 -
e. g% - 5ze o. Q'5 y ., - s n s_
- s. 4 , es Cc 0 - .
o s w 0 moa Y e , S 8 s ,h sut z e_mhA n c3r
=$bu._m,-- (
e c
- c = l O
3 > - 1
- _ N th _
2 2 . s _ i . 5 S _D -S
): . ;; l ;,! ! !I ;;! iji
l u* } C' . y *
! ,s a n: 0 h f w i a he b. illet' ?i pr l:N 2 -
4I V 8;.-. O
' i, f1 E $ ]C ;e" t. lJ y*El - > l.1 l! t e ' )h l ~
E s2 1 Sli E jjjjijbu: inst E c r* 2 s s - g E O . as
- g. d'
; 5% a r3 u
Y e e j
$ a YY b*
h $ z a-E
- 25 u
- b *h ana bl en u fa a
- f. = .
ag
/ = -
li ieca 8 sv
+pa *t sf:w.
s . 9 A
!k
! ; n H ,, N y ~f Y " le l s 4
. >y 4 * -r / ,\_.- , _ _ _
\ - (_3 s l U\ e s \*e
- v. g I
I. __7 Q ".a yf ss ! .c fj-x jd t s, i g 1l.3 b I4 4
- i. Y ka 11
.li e, ,1 S
Tm Dairvland Power Cooperative pg ) y \1 m y'3QQO1. av IM oats 7- 6iSS mECHROKS MCWR consessmTs e my 1. A gayg Z l# 15'5"' """""" wm RSSOCIATES HPCS Piping Svatem 3,g EV AL.uA7 ) ou o f b6 CRe % CIES \ , 'Z. $ .3 LY
** ~% s,s 7 % / % . '{u 1 -I 4 -4] -f , ., s , 7,, sR4.tief udy , -
4 / Lin e, e ee ,
, [4+o I ,. ,s." , [4+o . " q %:,,
Ns.%.
- ) 4 - / 4 g' rs.sT VADE /i <J sf 5 3-244 -ost,w = cw..Silas +2%Q hJ %sq . <ss.
HPCS' Pump A Mc -
,[sto
- HPCS' Pump A ff ,-/sto a d 2 M Muve.
r8 k *-M Va&v%*$4 5 34%3't-t G 3-Ig.oo 2.') 7 P, [530 g' C" [. 1^I 22.o tb 3
.i~
ef' 91.o HPCS Pump B lReke{h0ve
"~ .f~
k efE q6o EPCS Pump B. h
'/ '/
i - l l HPCS DISCHARGE LINE
~
ND C OMFIGru RA rim Ac TtAAt con Ft GrttRAT)oM Aufu 45tt b A 1' A l PIPE NPest n ES - i h" Sch . 8 o Pibe
, 'b o = b9 ', h = o. 2. " -
Mem d q Q L T_ = o.39) Rd .$e c hov %)us S : 04121M 1 A AhW we.<p eS 7est volve = +2..s \W
,, - + Pressuxc g 4 M udve. = z.t.o Ws %%% *yd 4 i"%.1c4 wdue A -
At itees NY o -= L vz< ( 2 '*-0h. = 5 8 ib
* 'e b : 1 ( G -\- 4%1k + =. ( 0e "I lbS.
TmDairvland Power Cooperativa , , z_ y \ ~l g y QQO1. 1 cy \.M oars 7-16 i85 mECHR0KS comasemis *** me, sv M pava 2 l 125-. ASSOCIATES HPCS Piping System P E*Z S ElsMi c. AcctELERAT\oMg hPPendb)x A) FoR SS E
'X - E Q. T-ETO. E- EQ.
2,o & o . 9 o Gr l'9 CT FoR Ew utv A Le uT ST A r s c. LoAb 1 N crises e Tue Acc.etereA rion V ALurs M i5 METMob c)V: AP FROA C H ' N M*tmukt s t wsss m ,we 71 pigs mTe-g ms 70 TI\E ADDITIONAL 1AElG-HTS WiLL. EE CoM5ERVATi\jELM c.oMna red usi Ncv TMe erausu ALooJT s rn n c. LoAb MET nob ( $sc t i o n r . s s 4 s rtwbA nd kev i m PL.A W30.7-{ 3 1,1 DY)M6 NEWR HMS %M P L ( NobES '%o TO M01 Abb)Ti oM A L C' ON C.L=N TR A re b L eA b = 47 .T & G ' M3 Co u s ERV A rWELM frSSuME Luf4 PEb [> = G % % bT M\D 5 PAN OF F*l'xEb ( c cNTiNiA.DAS) be AM , l M A'< i Mu (A M o MENT DuE r o Abbt TioMAL WEiG N ~T - VL=RTic ALli) Su PPO R r s A T- NobEs 51) 69bo. EQuWALEN T 5?AO tuer ru FoVL vsTicAL LoAbs = ?R.Dyee ret PIPE LE%TH oA yf_. PLANE - 17 H =. 2 \" = H l max. McMeuT =. N=B M TX 2-I - B
- . \ 2 3 2.
% i'vg l N M oMENT S bu E To Nbb)T t oNAL. S E tS M I c. ENe-Q. f i A Lo A tS :
g A9.TR o u ALE T4 X.- b1R E C Ti ok\ l y - SUPPORTS AT Mob Es 9 69 ,
* / '+f# .
Esus&Lgu7 g,p g m g 7 g ~_ pgocgc. r et PiPGr LEM6rT H a 0 N. y - -Z. PLANE __ Lx = 12. o + z . + a 7r + 4 o,s 4c % .o c.\2.02r
Dairvland Power Cooporativa 17 . m ym3 op y 10001. bM oats Z16 i85 mECHAOKS ucNR
- ev comusmis
-- ASSOCIATES , gag, gy 9.4 -sats W / p HPCS Piping Svatem X - EhR.TH dhWE Px, Py.z.
Q, e44go g j, j UX\ = I2.1 + S 3) l'T x Z. o - 31 3 %
##t 4" . %" J Py 2. - wz.ry g.rn.o = l2 7. S llo3 LMs t u'I~
SV. NOwed d Ne-eIJL % (,o .,_ M = D'S d b0 .g 47'T x G(M) ne p p. O '2 @ 7S'. 7 \baiw EARTMS 4%E. 19 M -D \ REC T \ ou ; M - SuePoRTs A 7 Nobe s S t i 69Go Eduw A\_o37 s?A9 t sEn Gi TH L3 = t 7.* 9 = '24' heyh La od PM ::::. ('Z. 2. y 5.~5 4 I+7
- 5) I'5'Y * *9
- 9% 2 ~$ Ih3.
SesWe M ewM Mi :. % 7 3 y2 \. g4.q.q-ib3iw 6 l E A9.1% Qu AV E I r4 b t RE C T \ 0 M ; f - Su QrcD oi- Modt5 9Lo $ 4(oS I 63 2.s "
%uhidut 5 W L%S = 1Ex7 75 + 7o. z.r .
Pa., pg V 5' b
%* a.zr *l 1 wt.'gha q,a ,
Q == 77 ti %s r 7" _ m.2 p , - er -2.swi.n i.3
-:- \ 2.).\ g t\o) "% D Md od' Mcnk.e. 3 6 o ._ M i Mg 77ei L73 ( t sc. z.sf iv\.s3(7o26(g[
l63 5 M %' 9 to ** ~Z.~1 (\.c/g' = '5'2 G o. 5 & b t u SS1E seismic M oMgo t = M 3e (Mf+t4p+g'*-f W y Comstueb m, = Q um.hw.e +swa}
-= 41o5 z. %sio.
r m Dairvland Power Cooperativa ( ,Aeg4. op\1 m 0001.
\W WWR sY oars 7--I 6 1 85 IMCHR0KS comessure CHus. eV 9A D Afg 2- I N i 7 5 "m"""" RSSOCIATES HPCS Piping Svatem AsMe code- sTaess c ALc ut. ATtou s--
l %MbM 5 tress 19 TtENs t ry t CEQuA T)obl 9} 1 57Eess (9Tes si ry = Bz.% Mr z.r M t= Mwed %_ % b_od wkt + sse seisms L. e4 =. t e,s.t.+
- i o3 2 = e sc. & %
s s = & ~ q s h ua Meca
== 6xteE Filby -= \ +G-D3 - 19" ; r = 0.sai t #
- , Prtmef SMsg hbh == \. 5 x \ 9o x,47 8% %
2.x osal -
-= \ yz.s.sc pse =-is.i.s v.se Cowee re) hg shes s bM d "*
9 odo- 9 6 o , 19 . Src .+' \S f.7 = $5, 2. Ksc tJ yh 54-5 = s G 9s 5 ss. c.z. = 57_, gg esc , klcr,Lc_ % o = 1) G ? + tS.G 2 =. '2 '7. ~5 o Asr tJoA.n_. 53 o e . iC1 -Y \S.67._ - z.5,Ei Y.-st NW 517- --
#\ * + \S L 7 = 7--6,o 3 Ks c kiode. 5 \\ -=. \ O. 2 3 + \ c;,6 7 = 2 5,? 5 %Si' d .f b s3 hMih c '2 Wh= L'+k 2. o o d '* * ^' N M , m wrc.o K si )> 55 2 KSC diK.
(
ym Dairvland Power Cooperat g q( ,,,,g,, g .) . , g ogo1, ucsR sv iM oavs'2-14185 _ ffMCHAf1KS consesswis cHuo.sv 8 M oats 2,p,y MASSOCIATES HPCS Piping Svatem A5ME. Cobtz s-rUtess C ALcutA TWNs Ptu^ A9M 4 SecaMber4M STh's.s r.WTEMs t mf 9tA+J GrG (.h) (_.G6 HAW'tN.on go )
$w = C z_h - Mc ,. r.
O b r-t. Tvi e c. 9Lmg e;) M 3> M Sc.t5 d r M -:.:. A- 1 o3. z b. N , C z = Se&q S& vers 2d' cu
-::- 2..\ F.>v Scel d '*LL F b g.
6m = 2 i y \.9 4 \ o3.'2 z xo 39)
- 7, o A 55,2 DM'= 2. o.% Ksc
.- C-ovvec.1-e_d by +- Ce c.e&q Sh.e.4a M pk neA. % o = '37 7 5+ 'z- o . 9 + = sv.cq wse ,
N o As_ s<-w = z 2 5 \ + z. 2 9 4. = + 3. % wsr te .Le_ s %- u = \ s' 65 + 7- o % = 3 % . 5 9 % 5( b h r d e._ "5 3 o = eg . q 2. -N 'Z o Ci4 = ~Z.8\ e 8' L V-SC NA E \3 -= \ o ~7 ) A- 2 o .% = 3, i . ros %se tbQ 3 \ \ ._ 9' W + 1o,cgt+ = 19 6g. Esc AOM $+ereses bd% 3$ % =- Go.o Y'.si
> sc9 c3 c o, t It Sledl t M ev b*b
- Abd M
~
g gy 4 k N. l
% pW cewhah .
m Dairvland Power Cooperativo STMJCTURAL PaGE f OF IN .lah H 0001. I4 mars 2.it, les mECHA0KS consesent. WWR ev ASSOCIATES HPCS Piping Svatem omme, av MA cars 2 i si rr 3a t Pi?G. NEAR. @c..S iMMP A C Nobe 9 S o to *co) A AJxkd NM L em A == Msm cu~p. + %J vdvt
.\-- i' % d .ia} W . L A W c 11 o+ \ o .1 == ~57__ .7 \ b s = P Mh% MoueN7 hs To Abbrr\oNAL 1EAh u3E\GrBT -
N/e x b c A (X j y p h csi. Wa10 c, *\S o $ +W
- = %+ g- +- 7 a + 114 s = 5 o " =11 t%.w M N g c. ?3 'St qx 5.2m B 6
= 2 e4, e+ \W Eu ,
M"-' MOMENT ME To A bbi T t o rmt se5Mt e ~1.MERT) k Lo abs EhRTWt2a AKE I M X- bt n.e c_71 o g ',_ X Lpperh gt p31t3 q 5 o 5 40e/ 36, fafu M- fW = PwyecAd 9h do ph % y p pm
-u i e, + c ut + \ t + , e + , = 3 ,3 , o " .=. L 7 l
Yb b
- k= ~3'"2 ~l X 7 ' O % \ T
-= ve,1 % .
Mg= W'\k10
- 89'*o % \%iv S
EkR TW1!2u A%E i N y _ b(Rp_c.rioQ l 4 LhhD at tA1.co 9 9 o d- % r L 4 = 50 .o " Tmh LW ?3 = 31 ho 9xt s = #r+ W % y n. MM z-75,9 % 4 My = A+mif =
m Dairvland Power Cooperativ" pagg 7 y \1 m '30001. W WWR l sv oats 2.i 6185 _ mECHA0KS comments
====== RSSOCIATES HPCS Piping Svatem
! onno. ev 9 A sava 21/ i P' -' - l EARW62VuA%E )id ~2 b i9tECTiog ,'
% o,% trE Sirs.
E Suk)Wb d hl 6 de.S Eg M st>u L @ c Proge.M 4 Q N'ef %
- 1\ + 17 +6 y u & i z & 7 +HM 12 + 5 l -= R% "
byh L M l'p-= 37_.W\.c\ xi .5 =- qS7. \ 6 mag. MM M - 9 5 't- x W'o - T\8ci Co % ru I 8 CoMbWeb 6SE Gensmi c_ %mem . M 5 = [ SG7 4- + 7 7 s d+ \wes . @ 1 +S 9. g % iu ksme cotta s-asss cat _ cut.A-ticus l N~ q S b=ews b64% bA h h ked
\- A == wt_. h m ,- ( s.y A Q 7-I Vk = M M b.n_.te he_ad O% + MSWc -
L 04 ' __ 2_ 0 4 , cr -\ \a ceq .r =- %54'? \W t u
%_. = 5krese O'eus = \'S c Noy. hi g 6+r4% M ,== \,5y M. yu,scl .7 -2 u.m -:::: hO 47'O h'=.beC6Kst ,m - , - - - - ,
I m Dairvland Power Cooperat ,geg g o, } -) u 3ggot, iM oats 217175 (MCHA0KS consessure ucm av DAfg 21/-/I P-e ASSOCIATES HPCS Piping Svatem j CMcC. av ' NF ' l l Cerre e A-e A Yng shess b% At f bJ aAe. ciso = \686+6o7= 7_A 9 i v.st i
,, <t 5 5 = 14 2% + 6 os- = 2.o . q g g.g l f, 44-o ::: i 2. .~7 '1 + G o F== ig,T g g f, /-t 3 o -= 7 < se + G'r3f * \&'35 tse ,. 4- 1 o =. \ s . A- + G . o F = \ 9.<+.s %sc n 4-o5 - \), o 7 & 6.o5 - 17 . \ 7, %g. " eoo = 1 o ivi + G.or =. 16,, srG K-se " 4- G 7 = 3,2_t + (, . o 7 = \ *' % E54 AR4 At.A b/c to oAna Stwn M A = 2.4 5% = =.
7_.< wz o. o a cc.c, Est' ). ze+ 3 \ Es<' o> K . V%tdBM + SEc.outhBM s-rkess 1.NTErdsrT y 9ANGE(sk) Sr= Cz bzIsv)x (. F y o w N te h t o LN-
\sQ g. , pp f %d ha % 565% = wsoc.e Tto.sN c._, _ SeMa.q shress bA1m 2\ $% = -2. \ y i*9 x\(-P544 74'11@ /
ESC O --
] . 4r '7 V N.
l Tb -oMM vh Aum tb- c M N Sv d seis m c_ M A6 oJAd h h Fvevt A cA wJbd v h pr. 4 tb r,p '7-z of 5 MA" M 3
- c ol
- c'2- P. o o ,
ym Dairvland Power cooperativa ,;, q ,, g 7 m 30901, p
\N ucmR av oats?I7185 mECHROKS comments ASSOCIATES HPcs Piping svatem g, ,y CA sata 2 v t irs -
C.o w .e.c.4 e A Viteq & Sec ovMq Shs "I - 9ola 95o =: ? R .n + 1 &7. = % 6 + Y-Se W c44 '+ G5
% .c 2. vi . + z_ = w. ow w i< 4 ci o -= 7-- T d' ? 4 1 < 97 = p ,go v_.s e e,
4-) o - 2.b 6 1 + 7 47 = 3g,q3 g-
!< sk 05 -= 2 2, *10 & ~)*W 2 = '7 Q r57 W e oo -
v7 3L+ 7 '+t =. 26 , 7 + g3c , EWGES ~1 i 4 1-7 OF REPo9T 6M A- C-T 3 ooo i o 2. It oo SMcoi h %E Rs.*sE3 % %Wb\c.h7 o BELcW ! 205 ez, m-(3 n 11, ., 7, Mit s e.g e5 *
*" og e5 X+50 Sto [450
[. +4e 7.5 gi, g 9.m 7. +** SS LS 95 torti HPCS Puno A . [ X5to HPCS Puno A l / 53o M z-HPCS Pumo B '3 M HPCS Puno B l ( h Sqs n.s y go 3175
\
FIGURE 7-2 FIGURE 7-1 Compliance with ASME C'o de Equation 10 Cotpliance with ASME Code Equation 9 Q gyg Qy Q -c. m ee w t h M V M
m Dairvland Power Cooperative g p ag t o op 1-1 m 10Q01, l.H gays"2.1 R 125 _ mECHA0KS comusmTo * *E l av ASSOCIATES HPCS Piping Svatem m gy 9A ga73 21// W wm I l 5 2. 6 ec.\sMic. / s tgess A+3 ALY s is o f: R et_\ E F V ALVE L\bSE s ( 'b%CREPA 4 C y No."5 ) y WGwe. w9c.s vem- ecGcs vntve uues I '** X au d va
- tmA26 ps G ss-ma s ha s be \
o h r 1sf5 ~ X uus " e'. % o
~
q3 Z~ 9>C *
- c>so- .
, g goe / -
Q6 'IS %['* d N eeuw vu.ve C 53-2,-o.z W = co o %
/ l.Y h' Y ~siso RQf 6l, t?AS g 7b '
b ev n=e %m=r oe. s.. 3...us ww-l N
- ' e co l M 4 -- - -I 'J -
I y- ; HPCS Pump B \
/
! ) e au m,w J/
. + w.e. , m . /
PIPE PROPER riE 5 I"cp Sc.k.Ao hp.e_ - o.h -- i~5iS #' t_. =_ o . ) 53 1.v Mow d d heb 'E = a oR'74 C# ' sec-hm Modulus 5 0'6B w tom net % =:= 'Z 5 no-1/g i Wqlt 4 Rehej V dve =. G . o %
l ygy u Dairvland Power Cooperativa STRUCTUtm. Pr*8 g g or \ 1 'ah P30001-
\M mECHR0KS comesenye ucsa sv oars 2.18 1r6 RSSOCIATES HPCS Piping Svatem onec. av NA nave2- V 'I#1-' m l
MET web oF > M W 'iS\S
'T B ts. M Axt Muu Sv.ess es 19 Tas PI P' MGr SYS T %
he To sens Ms e_ ) g4eR r s A ' \ o abs w \t L- 1E C A LC.u L A-
'Teb ws ) uGr 'TWE Eepu\vALEM T S r A 7\c. \ o A b Mg THob oF SEc-T tow IL . \ b q h 5'T Wb@h blE.W euw s.u. . -rwe seas %c_ s teses u \u- we u n w sd w vta 7 we 99. Essure E be-Nb b3 EI6rHT STPE5SESEs sN AecoR3ettJCE W \ r u A _CMF_. c.o bE. h\_.s s ,
Teak Scis m'c Acceka.m h h \loh.es b $$E Are, X' M- Y -24 E-~ FA ( A PPs:u tx A) 2, o cr o 9 c.;r i '9 G
%Y Qu.XVb$ 'C- L O N\e & , & \t du c.2 w t.LI k here 2.Ltd by i5 h O tAENTs buE ro bE7m w EiG HT -
PM9 b beew W A Boo b B\S : l G b kve spaw (l.g=M lyedlu[ hA N
- \3 4 = 7_ s #
T.obl L od _- (, . ym( r 3+ + etn -e 2-) -- P = U 4 M AM % % -- ==:. (,lo = 3 \h.h L.w
--l , %q %W a oh 8 \ s ,12. o , r.$.o r s 5c.
9Qec'nyt Spw Aq pc (, o +- W - 17 +- 14 Mo - ) 7_.G o nbl %bA-o q Locd = E2, .( g 3 t.r,..+ ct -vt.)-&- G, o & '_z.'E( T vz
.. l 6 0) == /&t.&' \3 h
Dairvland Power Cooperative ,,, 4 ,, 17 g 30001. mu acmR av DATs7-i8 R5 _ mECHR0KS comessmTs RSS TES HPCS Piping Svatem m, sy 94 mars V/I E m t % ,\\^ M .
= M l'$xi Bd _. 4,q5oN N #bt b%K. M o Mt.tyTS bus To sran 5Mic. ING T @ LCO 5 x - Eh9. T w $> h% G ,
j%}A LM,3 b) ode.s Pa a > Y o 6 M /6'5 o g h ve spa Lyk h7 N '\ + 11 " + ~ ge g3 ,,ge t,w .rT" b *-) = h c \ 5x2. o (G.oX2.& gow4.co+if
= \ S9 7 5 \b3 %YM M x == ~ \ 69 7 5 x. \y S
e 7_ t+ 7 4,. g \ h t e ..
'T - EhR.7 % Qu h EE ; ?Cpt] hhu a oo to BLS Ly=25" See uc.Ivux b t or) P %= \ 5xo.clh o + M NGk = *L-8 S 8 %
N)c,14omel My, =. M 89 A'2_-5 = q o. 2 8 % iu PCft$ hb " *^^ U S (S \ S & 8 So E N e b e. Sp% = \2 6.c - (y n hvh Lod . fY
- 2. = 0 5 xo.3 % (ri (.. o+ o-i2)+(. o+. g i
596\hS Nx. Moureat' = 59 6 x \? 4 o .Mg i B ! -=- 9 3 6 +3 % (%
m Dairvland Power Cooperativa gg g3 y_ 3ggot, sv \\\ eave 2.19iSS. mECHA0KS coesments * *
- ASSOCIATES HPcs Piping svatem onse sv 9# oars z l// 7 1 E - Eht r% tRuAY.E t Pf % % % -e e u %ks 8oo tso\S 7_..sd)) d s af. Mo4ms soo s s 15 sp% Lg4 L , g= 4 9 + n, = 61.o"
%wtx L ook g, = g.sy g . S{ G.o + 24 (e e2.Q = 53 5 Ws.
Max. MM M,= g 53 3 x 6 i_.o 8 4o6. G b L'u h)cq LAv>eam iblt.s 815 E 8 4II 258 - g 3 g ts & A kas 8\5 8 5 +' Sp%Lq% Lg =. 6 o & \4 2 t cs - m27
-= e w
Ah LM Pg= 1 5xt.% 6 o +y ( B&+ +o &Q.')}
=955%
Mw.% d = a s.s x s3_ 8
= Bet.o ba iu C oMN9Eb sse segseye magggy, Pspiq L.h><.aw w aas soo 4eis M
si= {(z9m.f+ 6 o .zd* L+ oc.d}'"
= 2s s o . a w . i u
( kbh Melas B)5 he S &l/ iso M l 32r {(2+76..O'+ (338.'O'+ 41s..af
= 2 ,s t. o tus.cm.
m Dairvland Power Cooperativa ggt PAesW op g7 .ha. H 0001. ev- \N oATa 2 il21B5 M. mECHAAKS comments I.AcWR onus, av Co- - sATS - t/+1 ff'
- RSSOCIATES HPCS Piping Svatem MM E CobE .5 TRESS CALCt1L A710 MS -
Primary Stress Intensity Check The primary stress intensity is computed from and limited by the following: PD o Dg , 5: 3 1 at +E2 21 31 = 1 5S n ----------------(Eqn.9)
- . 2. 4( % %d.4e1 CSSOMb .
where:
=
31, 32 Primary stress indices for the specific piping co mponent being investigated.( SocE*NNT) Nomina'l sw;alJ.Bs t=h:1
=o-t = so .Ckness of piping Component = o 133 d = Moment of inertia I e o . o7 7 4- .%1 = Resultant moment loading from loads caused by 1
(1) weight, (2) earthquake, and (3) other - mechanical loads (one-half the range, excludir4 anchor movement effects). P = Internal design pressure == \ 4 o o' o bs( D = Outside diameter of pipe = o l S\s" l Sm = Maximum allowable stress in material at the I design temperature t. . o Esc l h N'M bhh NodJLs Boo e et s l 5= o 7 sx2*h i.us + s s x 3 3s y,3 nsi,,g G3 2. x o . og q.
= 5\90.s + i.n ,o es. , --
s 9 2.,n g ysz
- '$4 2 8 %si / a.4v t.o o = o rt o V 52 0.K-We wQ % %%>ew NJts 6 \s s a %\ lvso O'* Xi 3\S I'3'S i 5 = o 'l5 Y @ + 1,5 x (695 o & 279).o)
'2- Y o'4 3 3 2 x o oT74 = 5 \ % e + 35,33 7,7, = 44, m. o Er i 4- 5 3 kst / A 1r,o % si . o.W - - - - - - ---+-w-- - - -, ..-.---y, , . . , . ,
l Dairvland Power Cooperative m ,mgg, ) g ,a ylp001. gy \.H gagg7. I G I 85 mECHRAKS uCWR coesesamts _Q4 gaysz .1/4et PT' m i TES HPCS Piping System g, gy Primary Plus Secondary Stress Intensity Range Check The primary plus secondary stress intensity range is computed from and limited by the following fP0) 6)
~ ~*
S =C 1 I
!a ATg +CE n 2t + Cf )Mg+ 3 ab "a ~ "b b 5 35,-(Eqn.10) where:
C, C2 , C) = Sec ress indices for the specific 1 c, = z.oj c1 m p{ eg g ing in,vestigated. Po = Rt t].ng pNstire r g-N-oo *o %e My =T .nt loading resulting from thermal inchor movements from any cause, t lects, and other mechanical loads. V = Po. tio = 0 3 ,
* = This m is omitted in the summer, 1979 revisi.,n of the ASME Code. Version 1 5 of NUPIPE reflects this change.
Es = Modules of elasticity (E) times the mean coefficient of thermal expansion (a)
= Range of absolute value (without regard to AT 1
sign) o,f the temperature difference betweeri the temperature of the outside surface (T g )
, and the temperature of the inside surface (T-) i of the piping component, assuming moment-generating equivalent linear temperatur distribution.
E ab = Average modulus of elasticity of the two parts of the gross discontinuity. a,
= Mean coefficient of expansion on side "a" of a gross discontinuity such as a branch-to-run, flange-to-pipe, or socket-fitting-to-pipe gross discontinuity.
g
m Dairvland Power Cooperative PAesboF mmh 30QO1. cv I A) 0A7. I-i\2-195 mECHROKS coesussis
, my 9A SATE- VMs-- - ""'"'""* RSSOCIATES HPCS Piping Svatem Ta = Range of average temperature minus the room temperature on side "a" of a gross discontinuity. "b = Mean coefficient of expansion on side "b" of a gross diacontinuity.
Tb = Range of ave' rage temperature minus the room temperature on side "b" of a gross discontinuity. gy %. w wg vd e Ltw 4 W ave = wueud AM
-e.v.pe% av hd hai e* Js . Se es .e3Q u c_ ell L.M .
For Peptg R% hheem Ms Boo E 815 , Sw - 1,o x \40o.ox\3\S , 2, . \ X \35 - 7 51oop
~Z- % o . ) 5 3 2 xo . ce1+ = Gg42 \ 4- 39p( 7 3 =, 53,g oq.& psr ! = 53 5i \< st' /- 3 y. 2. o . o = (, o o y.se o,x i
Foy Pgpi T% B>eiwe.e m NedLS SiG $8M [850 g, , 2..e x mo.o x t m s 2 .\ x i. s s ( m .c.) 2- x o.15 5 2 y o. o t ?'t
- - \ '5, S t+'Z. . \ 4- %, o l ? . 4 -= 5 7,9 3dr. 5 psr
= s 1 A 3 vsc L 3Sy = L o.o K sL IE =,kaulA \ac_ wdel M & i" Reh'ep \/,Jvc Ptpg s t s b se cs - c a d s h ss Awdy a bec key perH Veq h vvaMv4My 4h11 L_ pt h sp6 w ts h- As s e. u AedgurameA s
m Dairvland Power Cooporativa sinUC m nes\7 w 17 .m r agooi. ev IM OATm2.112.185 ITIECHAfMCS seesuants WM esote.svg4 - SATEE V*l & "m'""" RSSOCIATES HPCS Piping Svatem t R g t_g g y g v A t v E L N E SA990R.1" CEV A LM D ION
- w. %==e osss.... e a m H4---I o
. :' /
f ol StAN d bl
#[ td od_e. 84.\
e au .g
- ua h Ave.a A = o.93fr tu S'e e 4t% hb.Le 5 = o. Z.4-7 f.2 MAL Renc7\ou LoAh bas To sse sensmie. esvi_g7
= ( {_ L*+ Pf + P[} E " N QS9 7s?4- LG%P4-B s 4} = 97 7 ibs.,
- - Wy. %d 5%ess = %1 = \ os.7 pst-o A31r M cay. Mg 34vess.= 97 7 x5 o = \q 7tr.o pst-o 2.tv t M ae Axid + O q 5%ess = \uw.2.+-\ w o
= z.otcz.z. bsc A\\ A she s s =.1 (, y o.gx %. o _ w.s g31 >>2.airwsc o.g M ay. %il Ah L o,J %r beherbe = 97 7xs * + 0 7 4 5- 2- =- \S7 4 Dos W.y. 5W,x L o+ A h O '? __ o r . g .9 %
2.
%ese M Wrt h (
Awel.w bif .sb#v
- N U avt. W u e b 5-
,. cb w % weh>So-) M M S&A **t- &b
- 4. whM %.t s.SE Asec- O. i
m APPENDIX A LACBWR HPCS DISCHARGE LINE PIPING ANLYSIS NUPIPE ANALYTICAL INPUT DATA e s 1 l l l i I
I i l 1 I i l HPCS D ISCH ARGE L ThE LACBWR ICC 71 CN P R CPE R TIES OuTSIDE WALL MODULUS DESIGN NSECT DIAMETER THICKNESS WEIGHT COLO
- 1.0E-6 PRESSURE IN I;J LB/FT PSI PSI 1 1.900. .2000 6 44 23 30000 1400.00 2 2 875 .2030 S.86 28.30000 100.00 5 1.555 .dsss o.w, d6.5ssuu isss.uu 4 2 875 .2760 12.05 26.30000 1900.00 5 2.375 .2160 :.So 23.30000 1400.00 6 ,
2 275 .2165 7 16 26 55555 i,ss.vu 7 2 875 .2760 10.51 28.30000 1400.00 8 1.900 .2000 5.16 28.30000 1400.00 y 5.sss i.uuuu s.Uu go.ussss s.us CONCENTRATED NEIJHTS 500E 2 HEIGHT NODE WE IG HT NODE 'J E!9 H T
~
Lo Le Lb au waucuuu nu *u.uuu zou agu.uuu 520 . 52.000 530 36.000 580 230 000 7E _1.40.00.0 302 14_0.000 146 51.000 eau mz.uou ,940 36 000 581 140 000 730 230.000 A-1 M WM
HPCS DISCH ARGE LINE Lt.C8WR , STA TIC RE S TRA IN T T'2LE _ . _ . . J TYPE S TIFFNES S .cIqEC7 Ion N 00 E TYPE STIFFNESS DIRECTION N00 E l
. TRANS LB/IN T?.ANS LS'in % vs 1.-Lo,nau nui in-tsinau 3, .regglast-Au' a 34 2 iRaa5 .v::u0'OTUr+us A r c. v du innma .1480000E+05 X . 782 4135 E+ 10 Y 348 TRANS 20 TRANS .1550000E+04 Y 20 TRAN4 . 782 4135 E + 10 Z 348 TRANS .Aaguuuut+un- r 4u nse . i s4
- A as t + 1T~ A as inana Y 38 5 TRANS .8 60 0 0 0 0 E+ 05 Y 20 RCT . 7 82 4135E + 10
.7824135f+10 Z 968 TRANS .2080000E+05 Y l 20 ROT anana .onvuuuut+us c
' inana .ausvavii+4A A sac a6 Y 511 TR ANS .1144 0 0 0 E
- 0 6 -
5C TRANS .3059107E+11 Y
.6 80 0 0 00 E+ 0 4 Y .3059107E+11 Z 575 TRAh5 50 TRAAS .ovuuvseE*u, T U5vivii+AA e avu esana r ~ 5 C-~ ~ - n 6 i TRAh5 .170 7 0 0 0 E+ 0 6 Y .3059107E+11 Y 66 2 50 RCT TRANS .1120000E+04, 'X .3059107E+11 2 58 0 50 RCT TMTa .i433006Fevi 1 So G '-~26T ~TR A 93--' T17351542rWIT',-- A .3430000i+04 2 58 0 TRANS 260 TRA 45 .1735842E+11 Y .1564700E+07. y .1735842E+11 Z 730 TRANS 260 TRANS 756 ihama .oo**sssE*us 1 eau - mus .iraas*4i+4A a Y 730 TRANS .2927000E+07 Z 260 DOT .173 58 42 E + 11 Y Z 14 5 TRAAS .335 0 0 00 E + 0 5 ,26 C RC7 .1735642E+11 .5aausvU..ua a vo u inana .so4,2a5E+4u A 7 46 -- T R a r.a 14 6 TaAA5 .203 6 0 00 E+ 0 4 Y
- 96. C TRAAS .7824135E+10 Y
.2036 0 00 E+ 0 4 Z .7824135E+10 Z~ 14 6 TRaAS 96 C .TRANS 14-6-- - MT W 1-3 7 5 s i s - 0 2 a - -75 0 -- - - ~ R C T-- ' -~.W 2, 4 aa E 4 v a Y 146 RCT .1635 96 0i+ 0 5 Y 960 RCT . 7 e2 4135 E+ 10 .7 Z 146 RCT .169 596 0!+ 0 5 960 ACT . 7 42 4135 C + 10 .a e se 457t.+ 11 A --37u inar.a .3648 469 E+11 Y 970 TRANS .3 848 469 E+ 11 Z 970 TRANS n ., i .5 s4 5 457D A 1 a ' 946 Y
97C 40T . 384 8 4 69 E + 11 97C ROT .384 84 69 E+ 11 Z
.soggiasc+1u, A ze u inAna 240 TRAh5 .7824135E+10 Y 240 TRANS .7624135E+10 Z 2 4' 0-- -"'R C i 7 782313TD IT 1 .782 4135 E + 10 Y 240 RGT 240 RCT .7824135f+10 Z InA f4S . s e 4 *i as :.+T(r a 950'"-
TRAhS .7 62 4135 E + 1 C Y 950 950 TAAAS .7624135C+10 Z 95T----" MT'-- .7 ?241a n sTtr
- a Y
55 C RCT . 7 5 24135 E
- 10
.7s24135C+10 2 95 C awa RCT I R E7.a . 9 4u u u u u r.+ u a ~~~'--"-- Nk A-2 w-
l in I ! I i l 2 . I ! I I I I i i i . eoooooo oe co oeooo eoa a oeooo so olooo w t.3 N N e o co 4 o .= W e o 'e n == p - o to o > P= c m e o o o a o o M
- c o o ** N n m e En so e "'= 4 0 4 J . ele e o e e ele e e e e e t1 e o4 ee 6e e e. m.ge to emei N N. o. o. eo .o o.l. o 3 a m 'w M i co,ocob o u ,
Z (J .
> 4 i , j cc I 1 l l I w N o o p o o n o o'c o m a c a b o m n o c o c cio o o'm o a a r== a o a o o o o p o o -moooeopoooeoo o
e eI c e N e e N 3 n == m a o er) e co o O O d o o e e . . e e o e je o e 4 . o e o o oo oto.o e o e: o e e o M e it) e P= a . e e e e e le ej e . e g a=.e mNN N N so y e
- ooeNOoooo 3ooO A. I M ==s N N 9eeo a l Pa J :
a l' I
- I a: 2 3 O , i e *
, I l ; e I I.
u, a i , ; a c 2 . . l O i ! ! i 2 M ! y i l z o j > I .
. .. , at a= 4 c'tti e oiti 4 o o o o o o o o o o o o o o o o n o o o o o b
- g. >= ta g c, o o ** M o N N c it) e ce o o e o o o cm o o e o o e o N N o e e
< j ac ww e J - < a o. o. .o. o. cee Ne N. N. 04 N. so. i . 4. @e m. m. C.. P'* 4. tt.) i .e e.I M. N. N. N.eN..je N ** **
8 o '
= u I : i i : !
S- 9 4 I l 1 I
.ac W ae 2 I.a 4 ; i nr .g l u - '- E ! l ! <:
92 2 4 I l i
- ** w N ocoao oomoonooacomococomooooco .d4 o o o o p f'an eoeooo4oooooooooA g 9 ie Z O F) N e @ .* > b n e in 4 >
g , W . e ;e e e le4oea e bele ee eN oitse == o em e ee.:e o ee N e.e o oo ee eooeoeo oo eo e.e oo y M E NNM e e e 4 f** E m o ** m @ m **
- N =0 m o a w p g
, I***e9 ! , - - ee. ara n N m o e o z e , i :
e 0 5 i . ; I l l 4 I ; i i i E t I ! 8 l 9 l ' ' f l l l . r u . l w l i I i
- c. 2 M O i l . t
! P l P=moooooooaoooeooooooo' oooeooooo u est a l u w x. k o- N e o m o N o c o c h o e c o c c o m m -* o m e c o c c o i z w m o b e.e m us e cl c o c e 4 4 4 4 4 e e m m wa n n. c o n c o o o e ,e o e e e e e e e ,l e o e le e e Ie e e e e e.* . .'e e e e o e ' oooooo 1 3 ig l' .=e N N =6 I m 3 g - ' a w b IusI e > w l i . x l i l i i
, . , i .
y e w N o o.n o a b o o c o o p o m o c o o o c o o o m o o o o c o
.e t i e= CC a 'l c so Pim x r- N e o r= a c o c oooo m
2c l x
. w -
c o ..n o n e o m. m. . . . c. . . . . . . e . . . e n.ef.e.r.bo.=eOP=o@oooooooooooooooooo m
- A l g M
-MNNpeeg44mcommocococco M--NM4o u I L ; ,
M M ! , j e
HPCS D ISCH ARGE LINE LACBWR CARTHCUAME ANCHCR D I'S PL A C EM EN T S . TR ANSL ATION AL SET NO. MODE X y z I 'J IN I .* 1 20 .29920 0 00000 0 00000 2 50 .29920 0.00000 0.00000 i sou .45220 u.uusuu u.uuuuu 1 321 .16620 0.00000 0 00000 2 20 0.00000 .02600 0.00000 - 4 au u.uuuuu .ueauu v.uuuuu 2 260 0.00000 .02800 0.00000 2 321 0.00000 .01560 0.00000 2 25 5.sssss U.ssssu .55e56 3 50 0 00000 0 00000 .35650 3 260 0.00000 0.00000 .35650 ' a asa u.vuuuv u.vuuvu .A7:4v l l _ THEngal ANCFC:t 0:SPLACEMENTS TR AN SL AT I0f4 A L MODE h00E X y 7 1h ile zu 2 240 .11200 1 26000 . 15970 M WM
,_,,,,_.e . . , -- --
O I APPENDIX.B LACBWR HPCS DISCHARGE LINE PIPING ANALYSIS NUPIPE ANLYSIS RESULTS I
- a M
1 l , l ! I l
'HPCS O !SCH ARGE LINE LAceka SUPPORT-nC ACTIONS FOR t.040 CA SC-N04- 1 OC AO WCISHT AND OTHCR $UST AINCO MCCHANIC AL LO AOS l
l T_1Zfi,, RC AC710er---0IRCCT10 - SCACT10er--0!*CCTInw- 1 (LSS OR I W =t.B S ) QS OR IN=t.SS) l
;; PORC; -;. R-C00Re 54 . r .Ru s. *44. 4NCLINC!r" 26 FORCC 11. T C0080 348 FORCC -2. X C00RO 20 FORCC 2. 2 COORD 344 ' FORCC *S. T C0040 to---MonCNT -0 2-C 00 R O---159---FORsi 11,. 500R0"-
l 20 MonCNT 8. T COORD 385 PORCC - 161. Y COORD j 28 MonCNT -4. 2 C00A0 464 FORCC 68. T C00A0
* ;^ T;;;E ;. R-C00A 0968""-F0A CE -3 .
l s-1:00A1r-St POACC 449. Y COORD. 511 FORCC 114. T C00A0 50 FORCC: -14.. 2 C00A0 STS FORCC 4. T C00A0
;; . Z; ? e2;. 600Ae a;; rease, a 4. r 6 R1r" SS MOMCNT -37. Y C00R0 662 PORCC 24. T COORD l 50 MGMCNT 179 . Z C00R0 540 FORCC 1.
- X C00A0
, .60%RCR- 1 & ----X-C 00Rg=- ... 70Rsi ,1.. . .. ( 268 FORCC 657. T C00A0 3as.i POACC 16.- 2 C00A0 l 264' FORCC 11.. Z COORD. 734- FORCC 74 i COORD i e.; aens-i 5.. R-C90As is. F0ks., ieis T 11MPR1r-" 2 64 ROMCNT -212. Y C.0040 730 FORCC -16.. Z'C00R0 26e nonCNT =3343. ,,Z 04WRO'. 145 .FORCC 136J Y COORD
*--960=-PO R C E . 4.
a s.GRe, - . , . , eette-- - ... ,w 964 FORCC. 33. . T C0040- 1,M - 10ACC 26.1 e' C00Ank 964 FOACC 1. _. 1 C00AO. 1.M .FORCC 6 - 2 COOAS
;;;- .T;..; ; ..49; . a as0A9-*. .v. ......? ,.. a s ws.,7 See MOMCNT 11. Y C00AS . . 1M nonCNT 3. Y COORG, 944. NOMENT =43. Z C00A0 1M Re#CNT 28 . Z COORD ;?? 70e64 - .-;., a s.- .s -
- 97. PO4CC. 51. Y CDOAD.
978 FORCC" 23.. Z C00EC; '
;T; CN - ;&w- ; ;e * ~
979 RenCNT S28. Y C0040 970 n0 MENT -684 . 2 C00A0
;n'fr. -;. ; ;^^^-
290 FatCg. 33.. T C0040 SteL PORCC/ *e .. Z COORD . N =-stattr9--- 41 7. ; ;00Rt"- ~ 296 NOACNT *196. T C00A0 29e 'asateT -1233, 2 C0040 6 ;. -;. 2-C00R9-=' gas'
- FenCC: 122. T C00AR i ges F0 SCC ,+5., 2 C00ae.
l
.'.930.. . n0NESrt- *3es" ""0"C0080""
938, acataT* 29. T C00A0 933 neaChi =1162. 2 COORS -
. - , . , ;.;i- .. NC e
O , WM
i HPC3 015CH ARGE LINE L AC66 A l SUPP0hT RE ACTIONS FOR LO40 CASC NCr-- i THC RMAL CEP ANSION NORMAL OPCeaTING CONOTTTOW l
--- gWeYYPE RC ACT10er--- DIRECY1N YYo; RC ACTISF O!RCCTT9F" (LRS OR IN-LBII .
(LES OR fh=LS$$
- a. FORsi e. . C00Re 5. FORss e. ItCL1NCF"-
20 FORCC to T COORD 340 FORCC se r C0040 to FORCC se Z C0040 344 PORCC 5. Y C0040
-20===90 RCN T -0. E-C0040---09WF04C; 8. PC00RO-20 RORCNT -0. Y COORD 34S FORCC -Se Y C0940 20 NOMENT to Z C0040 460 FORCC. Se Y C0040 l ;; ^^;;; ;. E-C OOR;. .e. T;4C; 3. Z-COORIP-- .50 FORCC -13e Y C0040 511 FORCC -Se Y C0040 50 FORCC 38. Z COORD 579 FORCC -Go Y CSORD ; ;;ntN; 77. R-C00RL ;; FORC; e. . se0RF--
I 30 menCNT 73. Y C0040 643 PORCC to Y C00R0
- 50 NORCNT 34. Z C0040 500 FORCC te
- I COORD W ;; . ea. ; 000;e - ... Fe;.s e. .s .
266 FORCC 32 ' Y C00R02. 500 FORCC -Ge Z COORD 260* FORCC- =26e- Z C00RO 730 FORCC Se I C0040 i e nta? -N; . z-COOR. see is si 4. . C00EW""
. 260 NOMENT T8. Y COORD.. 7 30 FORCC -Se Z COORD i 26C f, MONENT 236e 2-999R0 145 FORCC 18e Y COORD i ;, 7;;;; -;. - awwRe - e,. Tsad eve - C00R P 4 ' 949 *FORCC 8 .* Y COORD IM' FSACE. -62 e - T C00g0..
964 FORCCi -0e ' 2 C00RO IM- FORCC 16. Z COORD-
- - -; i - -- a s00RO--"T40--190MC . ste. = 600RT""
, W -feentNf- 67e- Y. C0040 ) 960 Montaf S. T C00RO 1M nonCNT I 940 Re#CNT 0. Z C0040 14 30 MENT -94. Z.,C00R0
? ?? - i;;s- e e ; ae. .
- 970 FORCC3 -0. Y C0040 970 FeaCC -Ge Z C0040 -
;;; ;;0W:;;7 -- M. R-COOR. .
970 NORCNT -0. T C0040 970 - MOMENT Se Z C0040 -
-;e. E-C004; ~ - ;;; ORCt===~
248 FORCC 31e* Y C0040 - 240 .FORCD -29. Z C0040
-340' -fteneet., 30^. ; ;0OR; 246 ROMENT, -1124. Y C0040
- 240 nonCNT! -1794. Z C0040 r-900s, ,-90Attr 5 -Og 2-C00RD-- -r- - - ' . -
r 990" FORCC to Y C0040
- 990'. .FORCC,, B d. Z C0040 _
--Se r e Ces - 9. ; C00m.
990 monFNY a. Y ennen B-2 g WM l l
- _ . _ , _ . . . . ~ . _ _ _ . . . . . _ _ , _ _ _ _ . _ _ _ _ _ _
l
. HPCS D ISCH ANGC__L_IhC _La95WR .
t SUPPORT AC ACTIONS FOR LUA0 CASE NO.* 3 i I i won 17auf at M. Y. AND 7 MPECTR A. (R AFf" MMtJTDoud E ARTHctJ AKr1 ventants RCsutT- POR n00cs 1 rnaeuen to af ans sunnattom ret sPCCTRun 1 PLus-410to s00t Pstuee-nC0Cs- .. . ROOc Tvec REACTIens 01 RECT 1on . (LSs OR 1R=LSE) meet Tv9C RCACT10n8 OIRCCTION eCOs-OR-t n-Ces , ! 20 FORCc 3. X C0080 Se FORCE 3. Y Cc0R0 see FORCE 13 . Y C00R0
-P ORC; 2. 2-C00mmsy- F0m . T tv0RS-20 nonCNT 3.- I C00RO 3s5 FORCE '64 T COORS i
NOMNT T C00RO 46s FORCE 28. T COORS . 20 1.
-to--MGMm ; 66 -Z- C00499WORw, 46. a 6 0R9" SG FORCC 144. I C00RO S11 FORCE 144. T C0080 , 50 FORCE 112. Y C0080 STS FORCE 31. Y COORO ;; FOR6; ali. 2-C00 ;;; 7G.46 Le. . 68089 -
I C0040
- 642 152 Y CSORS Se M0ntnf 134 FORCE I CSSES SS MGM807 311. Y COORD SSS FORCC 34.
;; . :..;.? 6e. 2-C00 ... F.,.s ii,. ..
X COORS See FORCE 60. *, 1 C00RS l 264 - FORCE 210.- I C0088 199. T C00M T3e FORCE 223 tes . FORCE. ..s. s T-_ .
- w --POR=s da. . ss0== , , , . . . 6. u 264 MontNT 1643. I COORS T30 FORCE. 232 ._ 1 C00RS t 264 NOMNT 2090. Y 419R8 14f . FORCE. 32 = T C0049 ' .
--tee- -neptui . ;1b. .--FT00RS N --Fvm ,.. . .seRS-S3.- X COORS IM FORCE' 16 . T C00RS 964 FORCE
- 56. I Coote 968 FOACE 135 Y C0080 1% . FORCE
--900- i; ;i e W - t-C170Rs a,,-1se . .... a sv0RF""
I C0000 . IM MentN1 47. Y COORS 968. MonENT 3134. 964 MenENT. 792. Y COORS 146 mentNT- 22. . I COORS
. 61._ % -nenter9- 164e. .. . ,
971 FORCE'. 109 .- X COORS v70 r0RCc- _so. v C00RS
... ..... .... . Coeme -
970 MenENT S36. X C00R8
- 970 n0Maf 2442. T COORS
- i ;;; ;;MNT 10;;. 2-C00Re ,
240 ~ FORCE' , 31. 'I COORS
, 240 FORCE. 27. T C00RO * ' ==t40=--PORC;' a,. C00RS-
- 24e MonCIIT 737. X C00RO 244 MenCNT 964. T COORS ~ -
~~~ '-% ..: l. i 7727-== i CO _ _
999 FORCF $9. I C0089 , j 998 r0RCE. IT. T C0080 * - 1 999* N . .* T\ ~ C90RF-"* - -- 930 ' menENf* 2 74 . X Coons , 954 setetNT* 341. T C00RO "T99" N C8Pf' '2419. 2*C00Rs
'gh t ~ FORCE 44. T COORS-32s FORCE. sa. !=CLl*50 , #~'40 3 " FORC1; T4. I C00Rb l j
I B-3 WM 4
e er 0*SCHs>G: L D ~. L A C L' '- *
~ -' *
- 1UPPORT RC4CTIONS FOR LOAO COM8!MATION CASC K0b*- 1R_
OPER ATIfie B ASIS CARTHOU4KC 808C) Xe Ye ANO Z SCISMIC ANCHOR RO VEMEN T For SSE Loadirut Multiply these values by 2.0
-N002 . T T PC*- -- R C ACT TONi t L g5 OR IN-LOSI 01RECYt or n00C- YTPs. _ RCACTTOMs OTR C CTT 0 fr-(LES OR IN -L 83 )
2 9--- P O R C C 8. r-COORG 34 8--F OR s s 3. Y-COORD-- 28 FORCC 0. Y COORD 355 FORCC 3. Y C00R0
. 28 FORCC 0. Z COORD 38 5 FORCC - 3. Y COORD - 2 8-- M OME N T 0. r- C0 0R O---46 8--F OR C s 4. Y COMD-"
28 MOMENT 0. Y COORD 46 8 F OR CC 4. Z C00RO 20 M0MCNT 8. Z COORD 311 FORCC 1.
-- Y COCR0 --S t-- P OR C C 2 r-C0040- -S? ?---P uRCE .. 1 sv0RO---
50 FORCC 5. Y C00R0 59 8 FORCC 58
- 1. T COORD :
FORCC 13. Z COORD 64 2 FORCC 8. Y COORD
-S't--- M G MC iv i - 67. a COORD - -Stt-"POR 6 a. a. a 6.Mu*
St MOMENT 48. Y COORD Se e FORCC 1. Y C00R0 58 MOMCMT 68. Z Co0RD 58 8 FORCC 7. 2 C00A0
-2drt- -F OR CE aST- R-C 0 0R O' * -Y31--P ORCS a.. a 6.y== ~
268 ORCC 35. Y COORD. 73 8 FORCf S. Y COORD 268 FORCC 27. Z COORD. 73 0. FORCC 16. Z COORS
-26 8---MOMEN T- 86 5 . a COCRU- - -197 - -PC# 6 s. sa. < buvr w 260 MOMENT 344. Y COOR& '
14 6 FORCC 3. 268 2 C00R9 MOMCMT 1316. Z C0040 14 6 FORCC 11. Y COORD
'968- -PORCC- 1. -
t-C0 040- - 194' **f0Rsi 7. s us0RF
- 968 FORCC 1. C0040 14 5 MOMENT. 419. X COORD.
968 FORCC 5. 2 C00A01 , it s nonCa fe 4. Y.gooms
-969- -##McM 9--- 127-- -
t-COORD- ' 191- n e n i.,, s . - - a,.' s h uvnu *
- 960 MOMCNT 2. Y C00R0 948 MOMENT 34. 2 C00R0
-974- -f 0RCt- --27-- - ---st-C90R9 97 8 FORCC2 ~ 2. Y COORD 97 6 .FORCC' 14. Z'C00R0 *97 9-M OMC ft! 477- - -r-COORF 970 MOMENT 288. Y C00R0 970 MOMCNT S3. Z COORD -2t9-- PORC; a- a C&ORO-24 8 FORCC. 2. 1 C00RO.
240 FORCC 2. Z C00RO-
-2tt--ft0MCftf - - --S ev- 2-C00R O-248 MOMENT 119. Y COORD 248 MOMENT 67. 2 C00R0 999- -F0RCC 5v-- a ;00R0-ts e- FORCCi 1. Y COORs; 95 8 F ORCC 1. . t C00ROL 199'--RGMeteT* 13.- i sea u 95 0 MOMCNE 14 .. . Y COORD 95 8 MOMENT, leg. Z C00R0 34 9--P9AC C--* ~ ~ -33r i CGORD 32 1 FORCC. 3 2.' INCLINC l
34 8 FORCC. 35. X t'oturn l
. B-4 6 -mm-+. - - w w- ---- - y-er--ev---*-------vw---- w ww--wyv-'---wmvr-w- T --
1 itPCS O' ISCH ARGE' LINE' L AC8WR l
! :-sver accetra67 Ion rets ao caSc Sm Palai :-SInce no= ---- v-oIncc73en --- :-o sare vic=
i . me. ese est sci
- wotiteerat u. v. amo 2 Serevaa
- :are sauvoova canineuanci ~
m aute NEEULv rum _aa 5-"-" EU . .} St RMS SueM61 ION FSR SPECIAUa 1 398 8.643 8 446 8.25 5 ,
! 9003 8.642 0.360 0.32 5 ' -Fl:st-919 ID-SeeT-PSCUS$=N99C. -397 0.642 8 198 8. 35 4 1 9004 S.648 0.156 0.29 4
- 9534 1 1-DIREC1385 -V-0IREC TI ON I.8IntCTIon 408 8.643 0.073 e.146 l =. ;&i .-0. . 0. - 469 0.642 . 036 , 0. 13 4
. 467 0.642 8.018 0.048
- ese 0.648 .. 24 e.0 6 l
---2; 8.80e 86006 ~9.Se w 900. 0.64i 8.38a 8.229 i 21 0.000 8.000 , 0.00 0 495 0.642 S.195 S.412 34 0.000 ' . 0.000 8.00 0 9886 8.643 0.998 0.651
- - 46 0 009- 9.00; , e s St & . -9899 0 642 1sete 0.824
! 41 8.000 0.03e , 3 303 SIS 8.641 S.789 0.80 3 i Se 0.000 8.089 8.00 0 Sin 0.980 0.015 0 003 I - 31 On002- 6500. 3300 s --91; 8.94; Shtti 8.80 3 ] 52 0.002 8.000 . 0.00 8 SIS 3.931 0.076 - 8.825 l 60 0.003 0.881 0.00 0 538 0.439 8.075 0.30 6 4 -6 tutes -e n ett-- 0;e0 3- r M St- Geffe- 83019-- Ob23S j 101 S.082 0.003 0.001 544' O.098 S.814 0.06 0 IS 4 000[. 8.903 . d.00 3 - 544 0.006 ,0.016 0.00 0
-3 8. ----ST9 9 9- 8T082- - t.Sta ' --9 6 8-- - --9 6 8 9. Breet- 0;ste 250 0.880 0.001 0.00 1 $S5_ t.638 8.831 0.24 9 268 .
0.000 0.03s' s.000 9007 . 0.549 0.I,57 8.24 9 l *- 270e ,93000*--- - ----9781f-" P .. wet r --S SG- 86432- u.ats - ' 3724 T-j 389 0.000, 0.037 3 345 569 enSt S.fet 0.249 3 201 8.000. -3.064 8.014 ^ S63, 0.411, 8 117 8.349
- -232^ - tis e t-8309e u.as a M T8- SeSti~ #T099- ~ 0&25E- --
i 290 8.117- 0.806 0.328 STS; 4.316 0 875 8.25 8 l 342 0.311 0.206 0 513 516 0.311 0 064 0.250 ]
-3 0; 86S90- 3;-20. --9312s . --S i?- #3299 tTtti 8.250 -
j 306 0.6Se o.2e6 0.633 See e.tet 0.est 8. 2r. 0 J 3:0 8 688 0.206 8.534 SSS 3.871 8.884 0.25 0 i -" 320 0.624-- On163' - 0.573 M 9e 8st36. 8307s S e 25 8 ' --- 321 e.593 0 143 0.68 1 Set 0.830 8.001 0 71s j 330 0.511 0.038 0.63 0 595 0.206 8 116 0.25 8
--S 9. - 9.2S 0 l - 34; .-0.424 -- Sett; ---9 7& i, . STie.a ' - S TS-1.
345 0.436- 0.032 0 717; S98 8 148 8.248 0.25 0 340 S.068 S.109 9 717 600 0.189 0 339 0.25 8
~ 350 0 24; - - t=107 - terft e *- M 99-- --8 6 48 t* est&& egati 355 0.577 0.883 8.117 . 696 8 876 0.360 0.226 j 360 *8.662- 8 363 8 117 4 15
- 8.039 0.241 S.18e
- - De t t--vr= - --83S93, . --
9349; - - 9513-e- m --G le- - -- Sate;. 43814, -gr30S a 310 8.SSR S.666 8 880' 0.050 8.035 1 3.~ 0.642 0.582- . 71 4' 0...et.
- 0 0 0 '- 0.gu . 1.
- ,0.c m .64a . 34; ---..S73 .ns- --,6:eve -0.0e; e.eee-
- 0. 00 0.030 0.e43 0.e35 385 0 642 9 846 ,688 0.93 I .
I B-5 g e
M G$ 0]SCHARGE LIM _LAQBQ P814 E=OIREC719= TW IRECTieu 2 0ta[CTION- 7 din s X DIRECTIOu 7'-VT A CC tic h Z-D I A[C TION - NO. ($1 ($1 851 NO. 468 868 8El 630 8 272 0.027 0.035 235 0.038 8.044 8.821 8.300 0.008 s.es s 236 8.820 8.829 8 014
&&O 6&z S.30s 81885 8.855 - W 37 8 08i 8'.883 8 88a &&3 e.300 0.086 S a D& O 2 38 0.000 0.000 0.00 8 &&4 8.261 8.899 8.138 248 8.800 8.000 8 808 -- 465 s.28. tilti -
3512. - 482 0.64a S.8Si 8413S
, 678 0 15e e.153 g.e75 485 8.641 a.836 0,11 9 680 0.046 3.867 s.est 406 8.641 8.826 8 119 --885 8183i s.Saa s.sua -4 Bi 8.64e . 827 8 13s , 738 8.881 0.000 9.58 1 4 84 0.643 S.836 8.147 0.000 g.532 418 8.631 0.043 0 1s2 1 731 8.698 8.1Si "-74. 81137- -- -
s.ess. . - 412 8.59; 8.043 7se e. 8 n. s.11a ,;9.2
. .3.g3 . 8 62- - 41: 8.sn s.843- e.uS 768 8.289 s.130'- 416 0.555 8.843 0 149 1.454 8784= 8V34s s&a u.48s e . 4 88- u .z Ts- - 41.
8.14 3 12 8.884 8.885 a.881 428 S.412 8.848 75 8 824 8.011.. 3 031 438 8.280 8.848 0.12 2 6.64. a.33a - 444 - tilti 8284.. -r e b'89 F
. s e a8 P - -
8 493 ,8 11a 445 8.118- 8.840' 8 078
! 94
- 3 801.
8 848 91' O.584 . . 8 128. g.394- 443 0.058 8. 0 4 0 *r .
"S t-- ' s.a8 W N g7' -
3; 39 . gs. esg2. 3704. s . 82 i I 185 s.584.- 8.185 p.Tes esS 8.33e 8,416 0 001 11s- e.s78 s al'1a. 8 8s3 Sse s.See e.ges 8.88 8 rsesi -eggap - n iser- m -
-0 56 12e e;s1 8 118 f.7ea , s88 8;di s.lic e.62 s. ---t3e - - -e168 e- - -estts . . . s3 2-144 s.672 s.e77 e.47s les e.&as . s. Set s.41 s __ -14e - -Sa s s , . - - - ..s19 - e239. - - - -
sett s.s3s e.27s e.ste' 147 a.ss t. a.tas . e.69 s . _,
-sta -- e .s t s--- -sus s- ~ - ssive - -
Isa s.474 s.761 s.764 =, J 13 s.363 s.787 a.677
-S t e- - - - a : I s i...- .. 7se-- - --e s sse 5- -- ^ s.73g e.st i - ,' s.
e.2er las ses ass" e.693 - e.sts -- - _ 'l ' 29ed
. tested-- - sis a s"---- - - -asse. --- -
2ee o.ast a.63a e.434 21e e.224 8 63e e.4e4 ~- - paw . e..ss- s --
-r2 .-- - ;su c $- = - -
23 sit , sis 71 , 4.3e s;. 23 .'s. eSi.214-
%s.4as; ~ ,d.a47 '232 sis 7 STi& P i 233 0 192 0 311 0 13 s B-6 ,' -
WM l
APPENDIX C
. (From Reference 2)
LACBWR HPCS DISCHARGE N0ZZLE WELD ANSYS ANALYSIS INPUT DATA TABLE C-1 Element Properties FIGURE C-1 Thermal Transient Loads (From Appendix E Results)
. . j M e, ' - .- - - - - - - . _ _ _ _ . - - - - . . , _ _ . . . - _ _ m..-.m
i .
~
1 TABLE C-1
~
ANSYS MODEL ELEMENT PROPERTIES - !'. HPCS DISCMARGE SOCKET WELD , j ELEMENT TEMPERATURE,*F l NUMBERS MATERIAL PROPERTY 70 , 100 , 200 m 300 , 400 . 500 ' s s ag i } l-31 Elastic pdulus : 27 0 r i 33-41 _a E, 10 Psi I 43-48 0 m i 50-55 U A Design Stress Intentity 20.0 20.0 20.0 20.0 18.7 17.4 ! 57-59 m -35 5., ksi { 64-77 0 .E ! 86-88 i R$ Mean Coeff. Of T Expansion,a,10-germalF 0 -I 9 11 9.16 9.34 9.47 9.59 9.70 i I 93-95 E 7 ! 100-102 U i 105-110 Poisson's Ratio : 0.30 x
- v j g .a 30.0
- 82-84 E, 10 Psl j 89-91 $.
i 96-98 ,2 S., ksi 4 23 3 >- 103 i i 111-146 5 '"" o a, 10
-6 0 F-l , 7.13 7 20 7.40 7 56 7.70 7.8 ! 5 j v : 0 30 >
l ! E, 10 -6 Psi ! 42, 49, 56 : 0.10 t { 60-63 > l 78-81 Eg a, 10 ' *F-1 0.10 =
- 85, 92, 99. 104 E 4 v
- 0 30 :
I i i .
~
1 i i i i _ _ _ . . , , . ...
l 1 I
,E e .
y , f " il - AI
*f 3 (/p . . .. . . . . y.
l j 2/ ,
" a 1
h h [ -
/ N - .- i \ \ / . _I...
St001 I i
. 2 ((#f f y
N -- F 4 I
. a
- 4 q l' l
$ J h Et i /\/ .
4 g ,,, ,
.g
{
- 2'!!v 9 ho _
4,, , $. ( 5.a muy e . y -g = m u , s i-g . we lqi- = ts, t 5 uw 8 A J,e, e - )f e t \ l/ \ l
- h W &
" 6 .
8 .1
- 3er
)
6w ) o t,
- av
* - 849 lf kO >
j t
/ / /PN __ \ / , .:o o N -
4 N- - / tp i h K ~
/ t\
s-x .-- N ^ _ . . _ - h-
- n. .. ..
. l' . ._._y, II 3 ,. . .__ . ._ . . _ _ L . *w = .. ., . ,. g g _ . w ,,,
er
* .. ,, p*
E.I *l l
' I __ . _ _ _ . . _ . f - ,.-,,,c---,-,--------,,,-,-,--.,,,---------m.,,,-w,. -,,.-,.w-,,,,+ --4-----+m,.y-,-,_.--,--.--,,--,,-r , - -
l _ .s . G r A c = - - A . 4 : = K t/ , - N 4 . 2 .
. .~ . v ,. . ,
A s c n 3
, ,/, , , , A W
u 1 *
\ N.
3
\1 - / '
3 F z a s a r-s a s s n a 4
- a -
1 R = s R c a e e. Sy I= lfAh5/ s y e a l /\/ ., y a s s ! u 5l
! ~
V El. 8 5 1 s
- 4 s a ") .
!I I l s e a c r e a pl i u
l ltI I I p p 7 $ 7 5 r =
$3.,
u e r e i s s e ll i
- NVe \ t N/\ . ,
" I i 1 3 8 5 d )4 g g ,
I a e a s 4 8 d 1 r t. t 4 V 1 E 7 8 C . , i
- t.
i s e E 4 9 I 1 1 , '; l a f I t 8 s s r . . : e 4 R- 1 1 N 4 1 i 1 73 h1 E B E f . E' E f 4 l M t t t .
' I\3 s M i 8 V2 1\i E t /E N e ' St s s e W
MMm
. v i .
ENV \V a
. . .s. ..
t- r # 1 3 , ..g.., .c I l 1 ( t 5 11
- g 1 ;; d '- .l. g . g .(,- , .,,.s.+. - ,, g.7 .
dV dY - N ! c ! ! 4 8 3 1 V 4 i t K 4 1 t h A t t t g 4 ! s t e E h, 3 4 t ? 8 A Y Y E F h 8 I U (N SY k t-,e , , SN 4N UI
,s A e '
A F ,,
, I 2
I I
! 5 9 E 5 5 i i 4 's ! $
Jg g e ), , i 5 : # y 5 5 y f /\/ GAMi I i _j E 5 9 8 f rr i j 5 5 4 ii s yy j y , .a i( I _, 4 k 5 h I- Y h y 5 f h M7 5
=
I . ( \/f\ t \/ \ , I I I i i t t ; 4 , I 'E c. c
+ t . + I -
g i s 1 3
- g i i I t
- 1 1 1 I
f/ RI 1[h E Eh R[k . m v1 xx s s y i:
- a i s i N A 1 6, N 1 e a 1
N& E V NL s Va
- 3 3 a .
y ,
,' c,
- s. N 'a a j
9 . 2NY SN Y
- g. .,=
.g ..
r,
-3 -- , .g .. . . ,
2 . u l .. . g . x.
. a ?, $ --3 --
l l c-2
.L .. .L ,1:J. .l 3 ..,.L.
4O 9 4 4 4 . gg b d0
- K n
.( -
dY dY A e 5 s s A t t s n A i !K A i A A ! E E y
- I
. A t 5 !
b,. E
'r a El Eh Ay ? i e I !N fY $M dN !N [
n n s s , t = i 5 i ? ? E i F 5 1 i a
')
E 8
's 1 1 -
t i E
- s s
! l /\/ . /\/
li' 5 s 5 i v es i s s 5 i s y t J t a3 3
- 2
( s - g V i ve
" g g i a r vi ' !I s s E t N/\ t N/\
Y ? ( I I I ) $ 4
! & }
i 1 e ! 4 S i i t i 1 3 r " I & 5 1 E 1 R I I A I 5 f/ EMs ,EMA SM 'M E/Ek ya e ,1 y i ,t =y i I 1 N 5 't i 8 N 1a i. NE 3 K Ns tY 1 N a
' 3 97 2 I. F E a : .
a 4 __ ,..g. . 5- -
. . ,..g .. g 3 .- 3 .'T A 'l' E ' 'l' '
L,.t
't.1: L p 3 -(y-(,f-?- .
t
. . j , g.7 . -
y, g..g .
~
( dY dY : i A s i s a A t t y , ' 1 A ! s h A s v K
- A r i l N; A 7 5 ?
! At 5 1 1
- A ? 1 1 e f 5 t N eN $W N N eN V
$ ? ? I E ! ( l 3 ( j E
! 6 I .I 1 3 $ I I E Y. $ g i 5 ,a. I I I
- a. 4 ,
E
. -)
y I /\/ /\/ 3 a . , f f' 0 h $ $ E $$ l $ $ 5 iE N 1 i3 1 g .1
. ( = ,; - $ $ $ I' I E5 ? $ 5 3 E II , =
j I t N/ \ t N/\- . f k Y 1
& I $ g j I 1
$ ? I k k $ % j I I k I i i 1 i s* E i ! ;; 2 :
~ g i Ig AM A/ab TM fd ENk x
l <n i a i v1 ,Y yi i ,. ,
,9 l N 1 1 a N i. a a 5 l N1 1 V N .1 L V
- y 4 a V y ,.
t e I E ( I INW ENY
.g- -s .-g-.;. *- .. .. .. ..c-4
- 3. .
.l l j
.l. v . . , . -c.). . . . .,. 2.,[ , .t,.r.y. . g. ..:. ,.
f . - 8V dY A s t 5 : A s t 5 ; A : K A a e K A t t n -
* ,~ A t s a y .
Af ! ! v h . A r !
- T h
~
1
- TN EN iY b SN AY .
1 3- i s ; -
- 3-s s ; i 4
E :, $ $.
- s.
s i,
. d. i I d.
t I 1 4 - 5 ?
. , , , I , s Y f lNl h /\l s i -
)' 1W E 5 5 E 1 H 1 3 's 3 2 A t, j
-}
a ( a - I-3I
- 5 5 5 E- 4 3 4 '
1 y : a t it i i 8 t N/\ > N/s 5 i i 1 E 8 i i , A 1 5. 5 4 I, I E i 1 I E I 8 5 1 i ! ' t y .g -
- i 1 4 i e I a~
l 5/ Nl ! f/ E/k V i/ E/ Y/gk 'a l N
! Y ( !
I Ni i i '6 K5 i T ~f Y I N T ! ! I
~
l M I 1rV N i 5/ l . M y f 5 N v i 5
' a ,
N M a'
. bl _
t .tNY ENY , ..g..g-3- ,. g- 3 a -- c-5
-l l l - ,-,-,----,---,v,a-n---nw,, , - - - m ,-,---,.,------we-n--
- - - 4 -.n _,
d 3 . - 1 ,,
, . 1,-W--2., - - t. - d. . .--
dY AV A t t i ; A u i s ,~ A h , A 5 t h 3 i A E t 1 A ? ! n , AB ! 4 t h, I ", A '! ! s S R I I 13 33 TN[ 33 YN EN / . e 5 2 e 2 , , a , .- i m y .g ; ! 4 9 g g g E 't 4 f /N/ /N/
- v_
O j! 5 5 4 4 t at i 5 a s a n j i
. 1 \
- J e.
I $ h ( A E I 5 { $ k k $
=
I } \ /\ i\/\ I I I I 1 1 5 Y I I E. !
% e P. pd . M ,
f f - , we . . .v y5 . te g* l N ( ~e e 3 .I N f y* ,5_ l N t S V 5 N1 ? V 1 3 3 a 3 a s N I
- t NV n' A *
- AM _
t 1NY 1NY
.g -g g .. g ..g -- .. t ..y ... C-6 I ! I l
- a ,. ;.... . - n . > a u_. . . . . . . . m 1 'i - y gb 1 g ,. g..[
, - 5 ,- g-- r, - - - t ,- g ..g, . ) - bf A t I b)
A 1 i s t e s 41 1 K A I t h A i s a 3 ,- ,- A i s .a 3 I ~ A - 3 2 1 A A y t i I K
? I 5 -
IN 5N GN [ g g g .A I E I g y g 3E I 1 1 1 1 1 8 1 0 5 $ E E i 1 5
- t 7 I 'i ~I I g 1 1 p g 4 . < t t f! Ah9/ ,1 Ahv/
g I . y IE I I E i i 3 1 ia I I A i i l i i3
-I a 9
( i 5 i E i- i 3 1 5 E i i i I ? C I tSNVsv . tiNVe4 . A
. 1 9 5 $ g g, ,
I 5 4 '1 q g i
) .,
5 I i
. 3 ; I E 5 $
i E I 4 i
'( : g 4 5 7 'g g ,
t/wi1/. Vfk IM s/, 2(f h y i r ,, x i :. 6 ,! N 'E ? ? I - M t ? t. l N t T V Ms s Y i N 1 i 97 1 [ 't s . M ! z w mv
= ..g .. ;- - .. e - 1 ==
Y .- ,
.sm* ?. g C-7 - -2 -g .. ; ..
lg- I l
l
' *- - i 'A .!..:,l-j..,1 r , .;,- p. y . . ;..g. ...
.:( - A
'LV ,. .
d.Y .
.. ., y N I I h I I I h A l l 1 . . , 4 t ! ! , ! /$ I i i ! /i 3 1 1 2 N ,*
I $ i I, I w *' C
- { x '
1 5 3 2 5 1 E 2 5 ? 5 E 1 5 3 e r d w ~
\
e a w
*
- g *
- E
? .C g 5 ) {
E f /\/ f
/\/
3
u.~
3 3 ( 3 2 - a t i
= =
- I T. t.
d
. $ l .3 5 5
(
$j 3 j 1 w d a ?.
a y c- i N
" R, 4
2= I
=
a m 4 N 4 \ /\ . 6 \/\ . g
& & f e ; 4 3 5 1 $ 5 , i O * " I - # il i 1 *~
S/ f/ f/k OM 1; I/k
%i ! ?1 K ;, N 1
- 1 ! K y, N i ) i t s N ; e 1 K n i 3 I Ir / ,
3 ! 1 [ _ l Nr 5 N r E NK A v. s N 's A s 5NW 1M V . 3 g -
.c ..
3 .. o3 - 3., -
, ,g t 3 .- .. 3 ,. - C u
- 2. -& C-8 g -l*
- - - -. - - - -._-,_.c_m. _ _ _ _ , , ,,y _ _ , , , , , . , , . _ _ . . _ , , , _ , , , , . , _ _ , _ _ _ _ . _ _ _ , _ _ _ , _ , _ _ _ , _ _ _ _ _ _ _ , _
J. 3 .L , . -). 1 , J. , . .*, L
. p ,y . - -3,.,..g. .
( - bY bY
/ t i E i / ! 1 1 s 4 i ! A 4 1 T h A ! e i s . . 4 ! ! s d
- 4 2 1 ! ! N Ae s ! 2 1%
w al 1% i
; I AN s% x Y .I s- ; a . . s n 4 x . - 1 i t
3 5 5 1 8 s E 5 R 8
- a 4
. 1 4 * - , . r + - 2 5 4 :- x : 4 , t /\/ f f. Ahil I_
j t: g 3 e
; i : :.
p
- a i 3 - =. . 1, J. :;; a a g .
t - i
- INy e a 1 s e
a s-4 9e 2e n 2 3- *d ge 5 C . j i \/\ , i t 'fV T \ _
- i A 2* L 3 3 #
g ; 3 " a
} S 3 s, * $ E E s E i E Y ,5 e A O A ,o 9/ i/ S k 5/ris ky E x 1 , 2 i v , x i m i t ,
Nt ! > x A 3 N e x t i a N t n V N a I V . N a n A 97 i e - K , A . K a eNX iMY
.. . . .;..g.- .
3,
. s .e* ..s.. c.. s -l j. .g l l l l Co
TABLE 7.2 ,' RESULTS OF ANSYS STPESS ANALYSIS
SUMMARY
OF PEAK STRESSES VS TIME IN SOCKET WELD REGION i Stress. ksi
; Time, Seconds ELEMENT NO. 0 0.25 0.50 0.75 I.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 15.0 1 0.2 4.1 12.3 20.9 23.9 26.1 21.2 16.7 13.1 10.2 8.0 6.0 5.5 4.1 2.5 4 0.6 7.0 18.5 31.4 28.6 47.2 43.6 39.4 35.0 32.3 29.8 27.1 25.6 24.0 ,19.1 1
7 2.0 8.8 20.1 33.5 40.9 51.7 49.2 47.6 45.4 43.9 43.9 40.3 39.7 38.0 33.2 12 1.2 7.4 19.7 34.8 43.0 58.5 57.6 55.0 52.2 49.6 47.5 45.8 44.1 42.4 37.0 i 14 1.5 2.5 5.7 10.3 14.6 16.2 15.0 12.3 11.4 10.8 10.4 10.6 10.3 10.3 8.8 16 4.2 4.1 8.1 16.3 38.0 4.1.8 46.1 46.0 49.6 48.3 49.6 47.4 44.9 44.1 38.9 20 1.0 2.1 5.0 9.6 15.7 28.7 35.4 41.1 42.2 44.5 44.4 47.4 49.6 47.1 47.5 ! 24 1.6 1.9 4.0 7.7 12.7 24.1 29.1 33.0 37.3 36.6 40.2 38.8 36.6 43.9 36.8 31 2.6 1.6 3.6 7.4 12.5 16.1 14.2 19.1 24.2 27.3 30.4 32.3 33.5 34.7 34.9 ' i i 33 4.2 4.2 57 10.1 16.3 32.9 44.6 52.9 56.6 60.8 61.7 64.3 65.7 63.4 61.4 39 0.6 8.7 21.5 36.6 46.3 63.'l 65.1 65.0 64.3 63.1 62.2 61.3 ~60.2 58.7 53.0 1 46 1.5 10.1 23.0 38.9 49.1 66.5 70.2 72.0 72.8 72,8- 72.5 72.2 71.4 70.2 64.5 i j 47 2.0 1.6 3.2 7.5 11.6 28.1 37.0 43.1 48.8 51.9 54.5 55.9 '56.8 57.0 54.8 ! 53 3.I 11.0 22.5 36.2 46.2 60.2 63.7 66.3 67.4 .'7.9 67.8 67.7 67.1 66.2 61.2 54 3.9 3.8 5.6 9.5 13.7 27.2 35.0 41.0 46.5 49.6 52.2 53.6 54.5 54.8 52.7 l 64 7.7 13.4 22.5 34.6 46.1 63.3 66.3 67.5 67.0 66.0 65.2 63.9 62'.7 61.4 56.1 l .i . ] 65 6.9, 6.9 8.2 11.2 17 4 34.6 40.I' 43 5 44.8 45.2 45.0 44.8 44.2 43 7 40.9 ! 7: io.4 15.i 24.5 34.8 45.7, 6.3.2 65.6 67:6 67.3 66.4 65.6 64.4 63.3 62.i 57.i 4
7 . _. -
, . . - - -. - ~ - - . - . . - - . - - . , TABLE 7.2 (continusd)
RESULTS OF ANSYS STRESS ANALYSIS
SUMMARY
OF PEAK STRESSES VS TIME IN SOCKET WELo REC 10N ! Stress, ksi l Time. Seconds
- ELEMENT No. 0 0.25 0.50 0 75 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8. 0 9.0 10.0 15.0 72 8.8 7.3 95 12.9 17.5 27.3 40.9- 44.3 45 7 46.1 46.0 45 9 45.4 44.9 42.4 1
82 22.3 28.2 38.7 51.5 60.5 74.7 77.6 79.1 79.9 80 3 80.2 79.8 79.0 78.3 7,3. 2 83 21.2 20.8 23.4 25 0 31.5 41.5 46.1 55.2 58.8 61.5 63.8 64.8 65.6 65.8 63.6 89 19.9 26.0 39.4 54.3 65.5 84.4 86.6 91.3' 92.5 93.4 93.5 93.5 92.9 92.4 87.5 90 18.0 17.2 21.5 24.3 32.6 46.4 52.8 63.6 68.1 71.5 74.1 75.1 76.6 77.1 75.3 l 96 ~ 13.4 19.2 31.9 45.6 56.0 73.6 76.4 79.9 81.0 82.1 82.0 82.3 82.0 81.9 78.4 i l 97 11.8 9.8 13.6 16.4 21.1 33.8 40.5 46.4 50.0 52.6 54.5 55.9' 56.I 57.6 57.0 I ) 100 16.8 17.9 18.2 19.7 22.1 29.2 38.4 40.9 44.3 47.0 48.8 50 3 51.2 51.4 50.8 1 103 14.3 51.1 13.7 14.3 16.9 25.3 29.2 33.9 36.8 37.9 39.3 40.7 41.5 42.1 42.3 105 19,6 23.8 21.9 24.5 29.9 44.'l 59.1 ,6f. 5 73.7 78.5 81.3 83.6 84.3 85.4 79.4 ) ' i Ill. 8.6 11.7 16.2 22.0 28.9 38.9 45.9 47,.6 49 0 51.5 51.4 52.3 52.4 52.8 51.I ! 112 6.6 7.0 99 15.1 19.8 35.1 45.2 47.6 50.9 53.3 54.4 55.4 55.4 55.7 54.0 I j 113 17.8 20.8 19.9 22.5 26.4 37.2 50.7 57.2 63.6 67.6 71.9 73.3 74.1 74'.7 72.2 i 117 7.0 , 7.1 91 10.8 7.1 16.9 21.5 23.0 25.8- 27.1 28.8 27.7 28.4 29.4 29,8 i 118 19.6 23.2 21.9 24.2 24.4 34.7 42.6 47.l- 50.8 54.1 55.9 56.7 57.5 58.4 58.1 122 17.4 16.7 20.8 23.9 32.7 38.2 47 2 51.6 55.8 60.9 62.7 65.3 66.7 68.9 68.8 f l 123 21.2 25.1 23.1 25.0 27.0 33.8 40.8 44.3 48.1 50.8 51.7 53.4 53.7 53.8 54.0 127 20.5 23 8 21.6 22.7 22.8; 28.0 31.4 34.3 35 9 38.2 39.1 40.3 40.8 41.8 42.0 i . , i .
TA8LE 7.2 (continued) RESULTS OF ANSYS STRESS ANALYSIS
SUMMARY
OF PEAK STRESSES VS TIME IN SOCK'ET WELo REGloN
, Stress, ksi j Time, Seconds l ELEMENT No. o 0.25 0.50 0.75 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.o 9.0 10.0 15.o i
l 130 15 7 18.8 16.0 16.3 16.5 17.3 18.1 19.4 20.1 21.6 21.6 21 9 21.6 22.2 21.8 L32 28.3 35 4 29 o 29.6_ 30.5 31.6 319 33.0 33.5 34.5 35.4 35.6 36.0 36.5 36.6 !4 1 l 133 4.6 3.9 6.0 7.3 8.0 12.7 16.1 16.8 17.1 16.5 17.9 20.3 20.5 20.6 20.5 ) j 134 12.4 II.6 14.7 16.9 16.9 26.9 35.0 39.1 37.5 46.0 44.7- 52.8 54.8 56.6 59.3 135 9.7 10.8 10 9 12.3 12.9 17.6 24.1 27.6 40.0 27.4 44.8 38.7 40.8 43.6 45.1 136 92 9.8 10.9 12.6 14.1 20.6 21.9 , 23.4 28.3 28.3 31.1 28.8 29.4 28.3 30.9
; 137 6.3 8.1 7.2 8.1 9.2 13.3 16.9 16.1 31.1 23.8 30.6 21.9 22.3 23.3 22.1 j 138 27 3.1 3.9 5.0 6.4 9.9 13.4 14.8 14.5 17.7 11.9 19.3 20.1 22.3 20.8
. 139 7.8 7.4 9.0 10.6 13.6 18.8 24.2 25.0 26.0 28.9 28.6 30.4 30 9 31.6 31.6 140 6.8 8.4 8.3 9.6 -12.3 17.0 21.2 21.1 21.7 21 5 21.5 21.1 20.4 20 7 19.7 141 5.3 3.3 70 8.1 10.3 15.5 19.8 21.2 24.5 24.3 26.7 26.0 26.2 26.0 26.0 l t l i i i a l . . l - . I I_ _ _ _ _ _ _ _ . _ _ _ _ _
I 1 1 1 < l I t APPENDIX D ASME CODE CALCULATIONS AT HFCS DISCHARGE N0ZZLE O 6 9 e e 4 O
-=
l . i$ - M O p__ _ _ . _ _ _ _.. - , , _ _ . . _ , .
i APPENDIX D ASME CODE FATIGUE EVALUATION OF HPCS DISCHARGE PIPE N0ZZLE ASME Code fatigue evaluations have been performed for the follo-wing four components at the HPCS discharge nozzle. (1) Inconel safe-end, (2) first socket weld coupling, (3) 304L pipe and (4) second socket weld coupling. The fatigue analysis has been performed by using the results of the SMA-CT analysis for the dead weight, thermal expansion, and seismic loadire and the ANSYS thermal transient analysis performed by NES (Reference ') for maximum credible thermal accident event. From SMA-CT computer output binder SMA-CT/DPC #2 (Reference l16) . internal m.oments and bending stresses due to various load conditions are summarized below: Internal Moments (lbs.in) Bending A' Load Condition NodeNo$ My . My M3 t s Dead Weight 236 839 0 71.0 984.0 1295 0 1143 0 l 237 1075 0 94.0 1149 0 1576 3 3826.0 238 1164.0 ,102.0 1212.0 1683 3 4086.0 Thermal 236 171.0 776.0 1645 0 1826.9 M34.0 Expaneion 237 314.0 1008.0 1745 0 2039 5 4950.0, 238 365 0 1092.0 1781.0 2120 7 5147 0 Safe Shutdown 236 562.0 731.0 649 0 1127.6 2737 0 Earthquake 237 678.0 885 0 731.0 1333 0 3236.0 (SSE) 238 721.0 943 0 761.0 1410.0 3422.0 Seismic Anchor 236 41.0 182.0 111.0 217 1 527 0 Movement (SSE) 237 62.0 222.0 126.0 261.0 634.0 238- 70.0 234.0 131.0 277 2 673 0 i
- Operating Basis 236 281.0 365 0 324.0 563 8 1368.0 Earthquake 237 339 0 M3 0 365 0 666 5 1618.0 l (OBE)- 238 360.0 471,0 380.0 705 0 ' 1711.0 Seismic Anchor 236 21.0 91 .0 .0 108 5 263 0 Movement (OBE) 237 31.0 110.0 p30 131.0 ,316.7 238 35 0 117 0 66.0 138 5 336.0
- Nodo Nos. 236,237, and 238 represents second socket weld coupling ,
304Lpipe/first coupling and Inconel safe-end respectively. D-1
~Y,-
s Stress Intensification Factors (SIF) aree B1 C1 K1 B2 C.2 K2 C3 C3 K3 Pipe 05 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 Socket weld 0 75 2.0 30 15 2.1 2.0 1.8 1.0 30 Girth weld 05 1.1 1.2 1. 0- 1.0 1.8 1.0 05 17 Conservatively use SIF* values of Socket weld for each of the four components. , The ANSYS thermal transient analysis performed by NES (Reference 2 ) are given in Appendix E . The ANSYS thermal transient analysis provided the peak thermal stress intensity which included the combined effects of secondary thermal discontinuity, linear temp-erature gradient, and hon-linear temperature gradient. The peak thermal stress intensity obtained from the NES report for each of the four component is shown in Figured-1 and summarized below. Inconel Safe-End - 93 5 Ksi at Element 89 First Coupling - 85 4 Ksi at Element .105 , 304 L pipe - 72.8 Ksi at Element 46 Second Coupling - 72.8 Ksi (Conservatively use same as for Element 46) Since secondary thermal stress components of equation (10) are not evaluated separately in the ANSYS thermal transient analysis, they will be cor.servatively' estimated from the, peak thermal stress components which are evaluated by ANSYS and equa-tion (11). The maximum peak thermal stress intensity due to structural and material discontinuity and linear and non-linear temparature gradient from equation 11, NB 3653 2 is : 3 3 ab c a T,, - abTb K Ea ATy + KCE + 2 (l-v) 3
~
I l-v EalATl 2 For socket weld fitting, stress indices K ,1 K2 and K3 are Kg=30 K2 = 2.0: K3=30 l And conservatively: I En AT)l,+ C3Eab GaT , - ab Tb = 1/3X peak thermal 2(1-v) stress intensity D-2 ,,
=-
M Mk l 1
l l The secondary thermal stress components of equation (10) for j each of the four components are summarized below. i Inconel Safe-End - = 31.2 Kai i First Coupling - 85.4 = 28 5 Kai l 3 304 L pipe - 72.8 = 24 3 Kai 3 , Second Coupling - 72.8 = 24'.3 Kai 3 Membrane stress due to design pressure of 1340 pai is NO = 1340 x 1.9 2t = 6365 psi 2 x 0.2 The allowable design stress intensity value Sm for the 304 L pipe and the coupling have been deterr.ined by prorating the ASME Code - Sm values by the ratio of the actual yield strength given in the material certification to the ASME Code yield strength value.s. Since no material certification for the Inconel Safe-End is available, the value of Sm has been obtained from Appendix I, , Table I- 1.2 of the 1980 ASME Appendices, The value of Sm and Su .(ultimate tensile stress) are si2mmarized below: , , Sm (Ksi) Component Material Room Temperature Design Tempera'ture Su (1cn1 ) Inconel ASTM SB166- 23 3 23 3 80.0 Safe-End 63 304 L Pipe,SA312/304L 16 7 x 60 9
= 21 97 15 8 x g = 20.8 ,
Coupling 304L 15 8 x y - 24 77 16.7x3j'02. = 26.19 60 9 ASME CLASS I CALCULATIONS' Primary stress intensity is computed from and limited by the following: PD
- D 1
2t 2I Mi= 1 5Sm for Service Level B Condition----(9) - f 2.4Sm (0 7S u, for Service Level D Condition D-3 _ b.. M
Where: E,B2 g = Primary stress indices for the specific piping component being investigated. t = Nominal wall thickness of piping component I = Moment of inertia My = Resultant moment loading from loads cauced by (1) weight, (2) earthquake, and (3) other
, mechanical loads (one-half the range, excluding anchor movement effects). .
P = Internal design pressure Do =0utside diameter of pipe Sm = Maximum allowable stress in material at the design temperature Su = Ultimate tensile stress in material at the design temperature Service Level B ( Normal) condition ( OBE Seismic Event), , Inconel Safe-End: , Primary Stress = .0 75 x 6365 + 1 5 (4086+1711)
=
13,469 psi (,1 5 Sm = 1 5 x 23,300=34,950 psi First Coupling: Primary stress = 0 75 x 6365 + 15 (3826+1618)
= 12,940 psi ( 1 5 x 24770 = 37,155 psi .
304.L Pipe: Primary stress = 0 75 x 6365 + 15 (3143 +1368)
=
12,940 psi ( 1 5 x 20800 = 31,200 psi Second Coupling: Primary stress =
= 11,540 0 75 xpsi6365 1(+5 15(3143 x 24770 = + 1368) 37,155 psi l Service Level D (Faulted) Condition (SSE Seismic event): ,
Inconel Safe-End: Primary stress = 0 75 x 6365 + 15 (4086 + 3422) 2.4Sm = 2.4 x 23300 = 55,920 psi
= 16,036 psi <(0 7Su = 0 7 x 80,000 =56,000 psi D-4 ~N t M :-
M
First Coupling: strest. = 15 (3826 + 3236) 0.75 x 6365<+2.4 x 24770 =59,M8 psi Primary = 15,367 psi (o.7 x 60,900=42,630 psi . 304 L Pipe: stress = 0 75 x 6365 15 2.4(3826 x 20800 + 3236)
= 49,920 psi Primary = 15,367 psi o.7 x 60900 = 42,630 psi Second Coupling:
Primary stress = 0 75 x 6365 <+ 2.41 x52477 (3143 =+ 2737) 8 psi 59,%
= 13,594 < 0 7 x 60,900= 42,630 psi Therefore the ASME Code requirements for primary stress intensity (equation 9) are satisfied.
Primary Plus Secondary Stress Intensity Range Check
- The primary plus secondary stress intensity range is computed from and limited by the following: .
(10) sn = C; +C2 h MI+ Em 6T) + CE3 ab GaT . abTb , _$35m , 2 -W Where:
= Secondary stress indices for the specific.
I Cg, C2, C3 piping component being investigated.
= Range of operating pressure conservatively Po use design pressure. = Range of moment loading resulting from thermal Mi expansion, anchor movements from any c L
OBE Seismic Event: Inconel Safe-End: . Sn = 2.0 x 6365 + 2.1 (1711 + 336) + o
= 17,029 psi ( 3Sm = 3 x 23300 = 69,900 psi i
D-5 i age. o
- ~
First Coupling: Sn = 2.1 (1618 +317) +o
= 2.0 x 6365 16,794 psi +( 3 x 24770' = 74,310 psi 304 L Pipe: .Sn =
2 'x 6365 + 2.J (1618 + 317) + o
= 16,794 psi ./p3 x 20800 = 62,400 pai Second Coupling: +(32.1 (1368 +263) + o =
Sn 2.0 x 6365 x 24770 = 74,310 psi
= 16.155 psi SSE Seismic Event: -
Inconel Safe-End Sn = 2.o x 6365 + 2.1 (3422 + 673) + o a 21,330 psi ( 69,900 psi First Coupling: En = (3236 +634) + o ..
= 2x6365+2.(1 20,857 psi 74,310 psi ,,
304 L Pipes - Sn = 2 x 6365 +2.1 (3236 + 634) + o
= 20,857 psi ( 62,400 psi , ,
Second Coupling: Sn = 2 x 6365 + 2.1 (2737 + 527) + o . ' = 19,584 psi ( 7,4,310 psi
~
Thermal Normal Start-up and Shutdown Inconel Safe-Ind: Sn
= 2 x 6365 + 2.1 ( 5147 ) + o = 23,539 psi (69,900 psi First Coupling:
Sn = 2 x 6365 + 2.1 (4950) + o .
= 23, 125 psi (74,310 psi _
304 L Pipes Sn = (4
= 2 x 6365 23,125 psi+ 2.(1 62,950) 400 + o psi l
1 I-l p.6 [
Second Coupling: Sn = 2 x 6365 + 2.1 (4434) + o
= 22, 041 psi (74,310 psi Maximum Credible Thermal Transient Event (MCA)
I,nconel Safe-End Sn = 2 x 6365 + 31200
= 43,930 psi ( 69,900 psi First Coupling:
Sn = 2 x 6365 + 28,500
= 41,230 psi ( 74,310 psi 304 L Pipes Sn = 2 x 6365 + 24,300 = 37,030 psi ( 62,400 psi . Second Coupling:
Sn = 2 x 6365 + 24,300
= 37,030 psi (74,310 psi -
l OBE Seismic + Maximum Credible Thermal Transient (MCA) Events 1 Inconel Safe-End: Sn = 2 x 6365 + 2.1 (1711 + 336) + 31200 '
= 48,229 psi ( 69,900 psi-First Coupling:
2 x 6365 + 2.1 (1618 + 317) +28,500 Sn== 45,2% psi (74,310 psi 304 L Pipe: Sn = 2 x 6365 + 2.1 (1618 + 317) + 24300
~ . = 41,0 % psi (62,400 psi Second Coupling:
Sn = 2 x 6365 +2.1 (1368 + 263) + 24300 l
= 40,455 psi ( 74,310 psi .
l D-7
i l SSE Seismic + Maximum Credible Thermal Transient (MCA) Events Inconel Safe-End: Sn== 2 x 6365 + 2.1 (3422 + 673) + 31,200 52,530 psi (69,900 psi First. Coupling: , Sn = 2 x 6365 + 2.1 (3236 + 634) + 28500
= 49,357 psi (74,310 pai -
304 L Pipe Sn = 2 x 636'5 + 2.1 (3236 + 634) + 24300
= 45,157 psi (62,400 psi Second Coupling:
S n = 2 x 6365 + 2.1 (2737 +527) + 24300
= 43,884 psi (74,310 psi-Therefore the ASME Code requirements for Primary plus secondary stress intensity range (equation 10) are satisfied for all pairs of load sets even including the unlikely pairs of seismic and '
maximum credible accident thermal transient events. There is no need to evaluate equations (12) and (13) of ASME Code. PATIGUE EVALUATION Peak Stress Intensity Randte Peak stress intensity range is calculated for use in the fatigue evaluation, as follows: - Sp = KgCj PoDo + Kg 2 EO til + 2t 21 I K3Ea AT; + K33 C Esb gat. - %Tb
+ h Em AT2 IIII Where:
K1 , K2, K 3, = Local stress indices for the specific piping component being investigated. The alternating stress is calculated from: ( Salt = K. (gle) l D-8
-l, .
M w -
Where: Salt = Alternating stress intensity Ke = Factor used to compensate for reduction in cycle life in plastic cycling.
= 1.0 for Sn # 3S m OBE Seismic Event:
Inconel Safe-End: Sp = 3 x 2 x 6365 + 2 x 2.1 (1711 + 336) + 0 .
= 38190 + 8597 = 46,787 psi Salt = 46787 2 = 23,394 psi ,
From Figure I - 9 2 Number of stress cycles N = 106 (Figure D-2) First' Coupling: Sp = 3 x 2 x 6365 + 2 x 2.1 (1618 + 317) + 0 = 46317 psi Salt a 46317 2
= 23,159-Psi -
From Figure I - 9 2 N = 10 0 cycles .' 304L Pipe:
- Sp= 38190 + 2 x 2.1 (1618 + 317) + 0 = ,46317 0
Salt = 23,159 psi i N = 10 cycles Second Coupling: Sp= 38190 + 2 x 2.1 (1368 + 263) = 45040 psi Salt = 22,520 psi : N = 10 0 cycles SSE Seismic Event: Inconel Safe-End: Sp = 38190 + 2 x 2.1 (3422 + 673) + 0 ' 55,389 psi Salt = 27,695 psi N = 5 x 105 cycles First Coupling
- Sp = 38190 + 2 x 2.1 (3236 + 634) + 0 = 54,444 psi Salt = 27,222 psi N = 5 5 x 10 5 cyet ,
D-9 .
Second Coupling:
~
Sp = 38190 + 2 x 2.1 (2737 + 527) + 0 = 51,899 psi Salt = 25949 psi : N = 6 x 105 cye1.s Thermal -Normal Start-up and Shut-down Inconel Safe-End Sp = 3819 + 2 x 2.1 (5147) = 59,807 psi Salt - 59,904 psi i N = 3 x 105 cycles First Coupling: Sp = 38190 + 2 x 2.1 (4950) = 58,980 psi Salt = 29,490 psi i N = 3 2 x 10 5 cyc1., 304 L Pipe: ' Sp = 38190 + 2 x 2.1 (4950) = 58,980 psi Salt = 29,490 psi i N = 3 2 x 105 cycles Second Coupling: Sp = 38190+2x2'.1(44N) = 56813 psi Salt = 28,406 psi N = 3.6 x 105 cycles
, Maximum Credible Thermal Transient Event (MCA) ~
Inconel Safe-Ends Sp = 38190 + 93500 = 131,690 psi Salt = 65,845 pai i N = 5 7 x 103 cycles - First Coupling:
, Sp = 38190 + 85400 = 12',3 590 Snit = 61,795 psi N = 7 5 x 103 cycles 304 L Pipe:
I
- Sp = 38190 + 72,800 = 110,990 psi i
Salt = 55,495 psi N = 1 3 x 10" cycles D-10
~l :
M
Second Coupling: Sp = 38190 + 72,800 = 110,990 psi Salt = 55,495 psi N = 1 3 x 10 4 cycles OBE Seismic + Maximum Credible Thermal Transient (MCA) Events Inconel Safe-End: Sp = 38190 + 2 x 2.1 (1711 + 336) + 93500 = 140,287 psi Salt = 70,144 psi N = 4.0 x 103 cycles First Coupling: Sp = 38190 + 2 x 2.1 (1618 + 317) + 85400 = 131,717 psi Salt = 65,859 psi : N = 5 7 x 103 cycles 304 L Pipe: ,
. Sp = 38190 + 2 x 2.1 (1618 + 317) + 72,800 = 119,117 psi Salt = 59,559 psi i N = 9 x.103 cycles , , 'Second coupling:
Sp = 38190 + 2 x 2.1 ( 1368 + 263) + 72800 = 117,840 psi Salt = 58,920 psi N = 10 0 cycles SSE Seismic + Maximum Credible Thermal Transient (MCA) Events. Inconel Safe-End Sp = 38190 + 2 x 2.1 (3422 + 673) + 93500 148,889 psi Salt = 74,445 psi N = 3 3 x 103 cyclec
.First Coupling:
Sp = .38190 + 2 x 2.1 (3236 + 634) + 85400 = 139,844' psi Salt = 69,922 psi N = 4 5 x 103 cycles 304 L Pipe:
~
Sp = 38190 + 2 x 2.1 (3236 + 634) + 72800 = 127,244 psi l Salt = 63,622 psi : N = 6 5 x 10 3 cycles D-11 g, M
t couru,,o l *
** "'S er sg io sq ga s s ,t A
3i ..
- 83.. m
~ ,
x ,, . s .x
- s. x .. ., ,, ..
j nx
. -. ~ .n 4 a -. \ ,, ' s, .;, . ,,
- a n A 4 - . . - x....
<i x;x -x x ,*
- ', ry ./-
T f.N -;
- u. ..a
,, ,, . ., x. " " l '
b4') 'l 8' 88 _ .' . 9' [81) - gttnist umstates
- r .
i' INCONEL 93.5 KSI ,72.8 KSI ' 304L PIPE SAFE-END FIGURE D-1 HPCS DISCHARGE N0ZZLE SOCKET WEID MODEL i D-12 i WM
~
SUletARY OF RESULTS
- Components Inconel First 304L Second Load Conditions Coupling Pipe Coupling Safe-End PRIMARY STRESS (psi)
Service Level B (normal) Condition: Dead Weight + OBE 13,469 12,940 12,940 11,540 Seismic Event 37,155 37,155 34,950 31,200. Allowable stress 1 5Sm Service Level D(Faulted) Conditions 16,036 15,367 15,367 13,594 Dead Weight + SSE . Seismic Event 42,630 42,630 42.,30 6 Allowable stress 2.4S m 56,000 or 0 7S u . PRIMARY PLUS SECONDARY STRESS IN"'ENSITY RANGE , Sn (psi) - - OBE Seismic Event 17,029 16,794* 16.,794 16,155 SSE Seismic Event . 21,330 20,857 20,857 19,584 Thermal Normal Start-up 23,539 23,125 23,125 22,041 and Shut-down Maximum Credible 43,930 41,230 37,030 37,030 Thermal Transient (MCA) OBE Seismic + Maximum 48,229 45,294 41,094 40,455
- Credible Thermal Transient (NCA)
SSE Seismic + Maximum 52,530 49,357 45,157 43,884 ! Credible Thermal , Transient (MCA) 69,900 74,310 62,400 74,310 Allowable Stress 3Sm
~
D-13 *. 6
l
SUMMARY
OF RESULTS ALLOWABLE NUMBER OF STRESS CYCLES l l Components Load Conditions Inconel First 304 L Second . Safe-End Coupling Pipe, Coupling l OBE Seismic Event- 10 6 0 0 10 10 106 SSE Seismic Event 5 x 105 5 5 x 10 5 5 5 x 10 5 6 x 105 Thermal-normal Start-up 3 x 105 3 2 x 105 3 2 x 105 3 6 x 105 and Shutdown Maximum Credible Thermal 5.700 7 500 13 000 13.000 Transient (MCA), OBE Seismic + Maximum 4.000 5.700 9.000 10.000 Credible Thermal Tranalent - (MCA) SSE Seismic + Maximum 3.300 4.500 6.500 7.0001 Credible Thermal Transient' ' (MCA)' O e F l . D-14
~
i . to 2 - I l _ _ x - N - x i N ' 3 s . - t N w ' N ' ' -
. ,o2
., { w x ' io
,, iot ses so* se' ***
i teOTE: nm.s.a es m s.o. N E J 28 0 X 108 pel FIGURE D-2 FIG.1-9.2 DESIGN FATIGUE CURVE FOR AUSTENITic STEELS, NICKEL-CHROMIUM-IRON ALLOY, NICKEL-IRON-CHROMILIM ALLOY, AND NICKEL-COPPEA ALLOY ' FOR TEMPERATURES NOT EXCEEDING 900*F - ' l g D-15 . i M
1 l I l
~
t I APPENDIX E HPCS DISCHARGE N0ZZLE THERMAL TRANSIENT ANALYSIS WITH THE LION 4 CODE . (From Reference 2) - . t I e e G e 9 l - l I g 2
- M
' A : .- TA
g BY DATE /8*3*7-* PROJ. 8/8/ _ TASK 202 AUTOMATION INDUSTRIES, INC. CHKO. BY N DATE I
- l6 '? Pact _ / op ' 37 NUCLEAR ENERGY SERVICES
. l
( bie8.wa ir?cs saunc %w/ stdy 7, pouccE 1s C&upsrs Sicsd' y ' Srste Aid YA+/cm/f t'aycaraees in b&torse let/idy Wsnrfa:rcK. ' (csce/ Noe.-de sad &cs hje, paeuig taaseay 6" MM* .
,/so -ks a
- z. w a m so den) m m acas ro cysra. de reyere<<< ar iscf.ssse. ia rAe $ Pes yrfe d'aiff Gw'!feb/ coolidy.
h i%u/ nLi ws discfop/ rared n'a acidy srsre rcmpearwe xroh>rioit sdd r/e secoltr Here nfovf ne The.ninm/myec+raees atthe. TMikteN ildalysir for iuwadix csdille tecdri'(k?cS mrcr flow +r 70s,eid en.sv n 27sv a -zo fjee
. /d Tk cok j tef 5), the cernes / seerios 41Xe blal6l lS SfbA41 p1 fgufes 'l .+$ 2.
A wies of 16{petwit'dC MWf AYdthf*d/kSS
.un? obrspid to be useol alrbew/swerr ;
cdeslevos. -
)( .
t M _ _ - -
,, /d.4wec - , , n .s. ,n ,o ,. s 7o i ,,,, ,_a z CHKO. B /*O DATE I*4'% PAGE 8 OF M7 d AUTOMATION INDUSTRIES, INC.
NuCt. EAR ENERGY SERVICES .. Lf
- g. Aiislysis - A)thre<wlc seyye, ayJss,ssd se//s were s#sesaned' ro lee rh yppeeries of srsid/e.ss crael. 71e ssee/a isereA<rn Sreel Fhecay wird iy> pico/Jel Riardstad ' .
pelda'd' ra 7Xe pgsaig, <uldc4/wirl
'stirid/ CSS 3Taef6?ef 2.,s,kltef 4.&g A-is)
O h mrc 40a'e!, rte w/wr im r,eemda s sold m+ss, apacered'Ly istew/abr, ad rte srwy saa re,mrae uswnos draikk
. 43Mjrf'{Aitf/Ie 77dddC/G/f Ad '9S . YNE- -
sesas drk srasji sem .w+/yrir ss.e _ sho 'd id F<gute 3. e) rasreirs - >>> rte murier sA/ysa, rxe ip,se,rs/ &&s, ge;>sesei.mi4> &e coolf Ntre n toowdesy' An femocMcl,le was . bced rs se eswe/ h osa asscar a/e.r remprua god /$ Assdilel ra SrA'tr' plcrittlf3sded5ff t n 1 fare =0 0 nrd. fN 1NdSfsli' spir /ycvS mgsc.yw ( C esadrnds At nutim/m ctec4)le iteen/c,ir s; l . N _ .-- - . . . _ - - - - - - ._ - _ _ . . _ _ _ _ . - . _ . _ _ . - _ - _ - . - _ _ _ _ _ _ . . _ . - - _ . - _ - -
sY
- UA N OAtE 12'3*7?9RO2. .fif)/ txsg,,f,_Q,g, 3 AUTOMATION INDUSTRIES, INC. CHKO. RY hJ DATE l !6 % PAGE d or _?7 4 i g NUCl. EAR ENERGY SERVICES
( Sr; ciks.cltu lde6 MIL Gkgd4Acl/epcff f/e(tJb,wktc# sacsGes & 20'i=/ss. vesse/ raipers7v.ee esesse. fHe~ f/iy) w f fes p 4 yrds e s tidc.S/toald ta flG0 ASS Y 7%ed 30 p) fcsiftrit rut's k n/JC 4/l Differences : . Ts : k nil NAf. 7$M Tle $tendess of/4Preruel 4T,':bage:,fth)olsn61/ng.k7k7gwp,pi.QYaJCE. BL&ee!) TAe. ai/5/aS Soghce (f) asic(7fe
/dStcle Sd/-[se h7) of $c ad-ren.9-f, assdinidG MG'IV'WeOR1tJC] egdtt/Aleaf* fet.goermoge' .
F( cliSrgil.n>rici)(f.ef 'ylyj 3,),
** *
- hf rif Tfc tjaa./HD1/! 7/scrityljandlear YNdadGlf TXe innl/, rJcr Mc.ludelas /sr;;'(sees,pggy).
Minr/Mr i AT Is Dekae-l />y :. dr, : M D)
, (t/z yTIy)Jy j see%Abow) , pe,(3,p$ $7.- .
)( rYln.JYY\lUVEYGt~
- g y _. .M OATE 12. 3 7[rnos f/d/ TASK 2Od M AUTOMATION INDUSTRIES, INC. CHKO. SY A'J DATE t8614 .PAGE or 37
- NUCLEAR ENERGY SERVICES ,
I( . curstDe ' TI = 6#fACA. . e T(Y) r
~
l-1 %lt , g .__/ _ _.._ _ V ----- 4 I/t Y
/ Y EtStDe. H~
s d ce . T3 oorstele. Soekce. he. Tai > iustle ey(ace. TEr. p. - NY[= Tw.p. 4 r Tor (y) - tsa.tl rmccacss . t FK,096 & thll MOIL Dbld' TID'lS' t O * *Q # 9 f'0 % * . _ . . _ _ _ . . . . _ . . _ _ _ _ .
f A OV OATE /2'3*7 PROJ. Y'OM TAER M g SY OO/'s OArg 1.is./ pact [ op 37 AUTOMATION INDUSTRIES, INC. CHKO.av 6 FIUCLEAR ENERGY SERVICES ( A T'3 IS 3%hticc! b y : 4r.: Max 2 T3 r , - (, Tg . T [ by ,o ;(geJ[g.gss) WPtv. Tis $' Tg Age. luisode. Ar)) oorgiz(e Sog(ace. wotereroces, k q ,.aiu.Iy, w d g ,, . z T>L 3 T(y) Jy ' 8 -
-T2, q .
L G (,r) t bTz A(e l~dr'. Tilt!t tllt%r*fanc It> 5tQ.$ , YoNN) T? tt
// .
T) S . T-g
=
I FI.9. s. GPaPHc *PPeseilfamor) ' Lit 3GPt. M0 dot 3-LlolC6e T1\ffmAI 6fAblet.'Y 'Gfd Gll THschtitsS .
*f
. ,, 0h s.v,~ on,n /z& ?fenos.s?ot 1,s, 2.o; AUTOMATION INDUSTRIES, INC. CHKD. SY #'l DATE l 16 % RAGE 4 or 77 NUCLEAR ENERGY SERVICES ~
/( if,fgs?}lTC: We StMly SYEfc 4!!NJ 7&;lf$47DM5' OMO
- f/.or /fef.C pd.e satmid /dFjd/8 f 3-f/t.T/A$stedr 7&iiMs.i-n/tc. PrCrg/burtoI)S Db9t$
FAuf At$.(o, Age sib: iso /d Mggees // f$$d Je. rd N&' rios, a-ae/ crenp ,ad sordsd rwcxwrs inrx isvv//,, isre.,{rrye,ppe c$$1ksS Asde bett.' codtidrec!is f5e. r#ex,or+/. Speca As.> lysis. rfa study sra,e irs,araues )< vesrahnon e-/'n4ec 3 speasairs 7;ry s,ogr unsur.+ rue srir/ reipwaec pso6/a paeisy 1Aese rsewo.r ed rsnfoec me w.msc'ad' ' a sa w . n; a o r, ts./ w a se4kJ/, diws srssrq si>J sforchwj r.4d7tciJrs hesc rJe> z's 1 l p - i E
, _ _ _ _ _ m,-.--,---.,,.----m-
)
s w = gM .
, O $ 9 .. n%
- D.
N
\.N .h - /g y - %
W As k . O Q $ 9 % 4 % P% n , d
.a . O'L' .%. A N h o w * .*
G g g %, N t.i N 4-
- 66/ 9b/ .
% g % M * - .s 4
- D*
- e. b h h ^ '8-
- N' 4
% 4 s s s s - "rs "
N 4 4 N N %, N.
~.. .- . .C. .. r W s .. < g .s % , s s . n. 3; . , . . . .. . . . ' . . .
y M
- ,n . , % . 's s
s .n. s ,
.. ..i, Qao - ; .,.. .. ... ';i ?
g . t.-
- h*
4 *
- h. m g % h M . y, . -
g .4q
% % g o. ,9 ~ .-
c3
.s N N .% .
lq s. pt . g , . . 4 * . H .
% d n 4 a s k*
n... 4
.m < n 4 o.. o a. q- % 4 4 ..
y o. ~ ~ ~ n . ,.
.n s s . s i s,, .
s . .e.,. . ,. ..
. .= . a s .a g w. , g s* sd s* w s w-r- .
l .
.a a s
- t: . . .. n .
, . . Ep/ 09/ ..
- ,'* E ,b eo gy ri o % .e '4
,N* .
l 4 :: , .- % 4 4 . .ri. 4'. 4 9 6 '
,s - se u q % ?
s m - % s a a n E ::: . . o, , l
=
D. l 0 t
< t gs . g 3s gg x g 3.. l l ,
1
. r. . , , '-Q c ~ , .e- o- z ,; ///// .g 8 *:' ~"'
- ti ' 8 p" 3d
. q '.' /////
g;siis * *' ",'y'. a *
%' f y o g.8gi 5d5 1 m 4 . = . ,/ ,//// , 8 ,< /. ,< / ,< , , , , ,
T. I * ,' $.7 f.WN////'/ 5 3 l l , c'
.
- v 2~lcvvvy / / ///
N K
) /' J)y!{
o
/ /y//'/ N' /
4 -l L
=@
f/ / / y/ // % .- n .... N.
.= - . .. N- x - - ..
N '/////' 8
. . o. . o .\.. ,///// .-
o . e,. .- M - - c-
/;/u// -
t
.f . 7 '.- c a
m y N N ,' yp/
/ /,' , ,/
3-b . L, - . .N N .N N N NN ,
-(.;...
c- .
\\ \\\ ~:
cd ( % ;'i .. .' ? :.. . x \xK va x e, {4 :s s \ N- x NNN y. . :,y
.4
_ s . N c- ;." ( { {4 .,"i,,. '%.& N '$z ////b s N' x.A '/////<f.;' ' '
. .~ .- -
n '2 *- a Qh% ,///N7n
- c. hN . gz
/ ,/%M
- n. - - - -
NN N N '/ ,/ /n // > . '..x;..' .
.fJ ~ - -
e 9
.. N N .N 1 / / j /' 's - * ' , 9-(:. x- N N MV,Y/ 4(? . " / ~ *' ^ ^^' " .,; ,i .L .~ ',///// ; jg .( f . . " ~ ., c <.* : h<.. . . ..... 9- /,///- ^M.m .... . ~ . , / / , .
n . m . . . [ 2 *,;
"' I '- 9 ,"h~l
- 2. n / ///////,
- . f '//// ,
s,
-(.."
y ';.:r.;... /,y,/,/,7,/, g c y . l l .
. . ~.. .
opp f cy - .$g3 _ btS. 399 .' 3q9 p3 JCS isp och -pth . beh -
,,, , , , 3g #0U 6l? ~
jjp olk ssth - gpp sqv 0/S }fS - 5CS -
-- /jp plh - flh * - b l f! AAN ggy, jes' o/S MS bCS /jp /tb .blh sik 'AdN g3p- joS bOS . WS bfE iss ith -Ath 6th ' . oll' - -
CCS bt$ 4 gtj, ))p .
!]/r }6h I03 g $u u . . .
ces sus g eyij, ./j}r
'LJ/r . }}h- -
095 f .
. w gl/r IAh .
LJ/r }b/r 'bbN. . s . - 1 . . . . teclo/S - - fvg/1991?'JS/d ..
'Eo ' C D SYA !
yypjpgy/tV12 311/3 db1SS ~ .
. . . . . .. . . .. ... ~:; .. . r . .. ,',..,. , . ~ .;,..,- ....*~. - - .y.: :1 t ~:. ~. -. . . , . .. . ..-. ' ~ . , . ;,: ...: ,. .. ,. s. .r.. . . .r. . .s . - , .c. g.,.,,. : s. .. - ..,. q,j,,3 : p ;. .,- . . . . . .. . ; s .. .s.. . .s . ~~.
ops
~' , . .
g s. . gg3 , ggg
.- l . . . , . e
- ,. .a -
ggy .. 9os //s - IU 66
/Sh oLh bLh bbN- : _-
_pp. tes su. dok
. ,g ,,,
Sh Isp ' olb - bbh -
,y y 8th. - 6 - - -
- pt/r -
yp otp 64h~ . . 44h - Mb ,,,.
.. Oh /th pth - . ,o g o,, v ,, /sp /4h fr4h ' bib 88?r . .
EWS l. L'S . jgp - 88h 00l! 10S h g & R qsfr
&p-u -
E DS, bt*3 g . . l 48h 00S'. g g 94p,. . fob. frbN . ' s .
. hbN ,
94/.r - .
/8f - .
48k - bbN i - Coc-10/S'. '
. .lf of ;3OKl . . .- (%! :GD .
293 /OT= flW/.E.J0' 5 ~
'i'i.dlldS' l dWAl S O f ShY . g
. R ~L .= . , .. .. . : . : * . ,. X . . . . < ~ .' . .c. . , .:...' 3 03 903 ^ . .. . pgy .
ses
,, g gip. oss 6es och Shk thh CSM ,,, ,g , ge ,
9pf, p9h . Letr .tth -
. 29h - . . Lb g- pop o/J /t.S 683 ' /Bh o3p. 1,9/, CLp
- 8th .
g gp. jas 0/3 CES 6fS
/Str o4h -p th. - b4h -
98h S## ' '"'
*hth. .- *l8h AbN - .'b#
737, /4h .
. . b t<h-sef bOS $. Q 9th /8h sah bbh . /of Q 3 _
U (a .
. . . CPS 6VS bb$ M9 9th /Sh' LAN g .
94p -
/Sh '. 48h .
fibN . bb/I - s . l C08 10/S - LC/// l39W . .
~ '
- %lI/p3' </W2) '2001: ". 9P.5WObl l nv g,:0:0 ~g :.yo..a.s .. ._ 9z=.**::)wkt 'Ji/ S.
. w . . . _a -
% %- O- .
4- 4 n
> > > D .s -
( 2 - e . 3' nno -
.. ,'s 0 .. % 4 o P'
4 4R - t*4 h
'4-o >w > >o ts-s t k Ci - -w . . pgp gzy . .- o e e g cu o tr- 4 -
o s s a A e * , 4 '+O 4 T- g a. 4 4 .. .. . . ..f , 7. .:
~
O -
- ,.<.i.....
e . - o
.- . ~- ..
y s s. s %- s c- n. *. .
- c. e, .s e- %n o .. -
.: ? ; '. ' ,,- 'y. y n. 2 > y q. - ..~- %~. .
g, .- . s g .
. .f . 'd .- . s 5 k % w m ~ % %. % o e- o r - - ,%, % %- 4- 4- %a - - ,t - . -. .r - -
5s . W
~ 4' t>-
4. w d w h* w % N cri m o - v
.i . '- . 4- 4- 4- D- b- tb 4- .
- d.: . . ' a ';,. ,y,. :
7... . ,-. ,,
.g o 3 I; 4 m r- . . .. p . .~. ,?g ,. .A,.,- % .s .::,.s.n . -:. .p :r.. i. ;; .! - :s o o % s- <n n . -O 4 .w w % > .* w. . . .... 3 ,. <..: n.;..e . ...o.....
ms .s as .
'.i.'!:.4. .
Q.. . . tN g o o e o , : ..~. v
*- 4 4 q q q .o w. .w .
7.. .: t k - - N s n n er r1 % o. 444 44 5 4 4 . c e es e c e e
- %* %s %s % %x %a . %, 4 . . ., , . 9'
l- , 1 % 4 m s e b 4 s% o n - g.
>-4 4 4 m g (., <n ' .O D %. ..% R. .,..o Q, No % ca w s And V4# 2 4 s avRD . -
4 4,4 g%s ,
. py, . elN . . . . q' .
q n O n A M N N N M ' *- . * *
.> 'y y % % >m _. -[ .
gO g. g . . . g g .. . n m s* .
. s ..
- s. sg A it
.4 V 4 g > V t 4 .
g .
- h. ..~..
- g. .
i. s s o a % o. D - ( . N . ... . 4, g g
- u % ~
~
u o 4 o l s . . . 4 :$ ,4 .D T D >D " '.' ' l:
-m e
Qo n o.
.s q
- . 17
',. J -{.b u ~ 8. . . 4 .% % b 4 +%
- e , ..: : *
\ui . .,- . ..
vos
. sos .. %: . s s s ~ u > .
W.
... 4 .4 4 .R 4 3 . .
- ~-
'N W -
n n 4 4 4 s s s . w . e q es 4 4 e b g % b b % %r 4
. %s 4 q e6 4 7 r3 4 @ .
g h M % h.h'h 4 -
. 4
het 4% >s rs s 1A s % .- h 4-
~ - M q
( s% . 3sn . o .
. o. %- cd M e o- /L/r
- ,Q w Q - s % % a. o r u R %- . > 4 '4. -n m . . .
sit, en .
% n. g*y :. '; - . s t%
s ts e as su % % n q '
' n. 4 n. n- k. %- . ...e.. - .c .
y .
. .. :y:<.: : - '- . s. % o n L. . - -
8 % .m w .m s.
% % g g s . .
- s. % n 9 M- N- 4 7- -
6 . . . .. b . ks -
- . j. .
- o. w. o % o ., .
- a. % -
.~ %. ..
m - 't. M .
n l ,. ....
m . . .
%q. - .
g,' . 3w w-u % w .s y s
~ % s ',
- . .P i. -
. ':t . .M- '4- 4 4 %- 4 M l ' . c, '. . .: . 1:..: s i . . . . g. . ... . . .. ..s.t. - : r' ::':. . .).:.mm-
- - . : :.. . x3 .
. -4.
et.t:
*n c., . ,. .- :. es a s .. .'.,-$ ..;:,. .5;; & u. . 1. : .-
m 9 % y. .. :... n,-
.m %. 7- %n. -
no . . , . .
. n: -:. . : . .u.. ' :
ps-
,w sos . .- + u ~ s ., ." 4@ QQ 4 g M. .,. +
- s. -
us - -
;, o s . .- 4 4 ,4 4 4 44 s ,.
S . n, .n >e = . m o ww w w~- . . w w %u.wn i
~ ' - . _ - - - ____
.t .' * . * * - * ,7 .
- 1
. .. < . ..,t.. . %'.'... . . .. .s * = **.,e ** *e * . * ......'s,L*. , s. , .a. .
She 9 EC ' WCC
- 80S Joe /03 /YS CL e -
Ghv 8S 'C _ Ase 19e BSE. oLC Co.S. /TS acs . 22C ohC obc: -
. Ele . h8C . /t*S . SCS . h/h 9Ch S 03 26c h6 C . 46C SSC. . .sl C . . .90.S le.F 6c3 0/h ehk -
bsk Sob 9ep. 9th OCh heb hth lo.S . ves bes och- phh .
/hp .s e -
- ssh .
Ces $cs '
* $ LU hbh .aos b b- .
sih oth. . g N . m
~.- [t3 fg3 ^'
v 9th . /Sk -
'900 - .hbN * . GDS. $
p 9th
- ddh - LAN 00N
- bbb '
I . e p C00-/0/S
*Zs/!y ;39 tid- ' .: w. . ,..'.pbs s r= swa 2V s.5 wxWW.el 3509='~b2.9%bM --. ._ A a , ,q,.,,*.ay u
l b . N h 4h- .s,, '*-
,Q -
0- S 4 4 - MMM 4 4 . s to E Q y a .. s , k'h b
- 9Sh S 2m $ kn N .
wvRS o 4 : - m, ogy .-
. r. ...
- i. . ; - -
srs g g n; %O Ms ,..
.- . . ~ . . - 'f- 4 . ...,.. , .;.~;..';....
N %, ='..
.g N > O.
b ,M % :
,% % % z.q:. . . O . .- . = . '.*. :
g . .. o.
-s ,- . .n .s n m % % g % o. s .o n - .k. k. n m n n - - .i k. .
5 u .
.- .. v. .
k y . l f g m 4
- 4
'k h - - %g W. . 'k $ + n Q k , . .."h.... ..?:; '. -
6, . g . x . .. I, V -
. y - ..,;... e.. . . ,R D *-
g '%. o~ fo- 'M n i. s
.n s g 2 i.Y:.'. 's,- . ,' ;.. 2: '*..35..). .yn. .. + W n ',- .. O,, . . '+
s .. 4- 4- - n % . a.: . :
.s.,. . s . ,~:.
s , ' , :. 1 M *
, .~ . .,4;'p,.teny :. ..%'.:.:e .r. :u . Q, p,c,*q; - . g -* -8o ' ,: :s : ., . - .Q. d .: '7.n!.. . s M.*; -
t . - -
. - . At l , , . .- ..:: .ss :. : .u..:.. ;t. . - -. . . .; . ..:y ..t, - -
n y 819.. .:% p:::.A. &y.Q ,;3h,;;s
- p. .s,. ,
4 .m .. . . ;.1, gs . . : n 1 .- -
- tt~- .
- r .
.v~ m . %.
i - tr. l 4.f _g$.1',':f ..e t
.W n D % 's. ..'j:N.5'5 . G '.- ?. - . '; I' . ? ?' , .,_ . ~. f}t'j,5 i ..:...n h
g ..
,ll*.0.S' fr 09 . ,- . w y g ,, .g . ...
90E c;4 q $ $ ' {. . e.} 4s .
- h. . . .
'N to n 4 < s o 4 . % % % 4 % % N ts %%%%% n -
i t e
<P* T' D* tp% D b k % % % A 't %% N . % % %n % % W % 4 .
O
N 4s
- o m
- h. g% o . .
'k g-D 4 Q . k-s P.. to.. ' -
4 g d M ,
'9n Cbfr Nm % . . w 4 d R. - .
Om 4 - { otfr 056 -
., p q % o -o q .
m o % % o M o, 3
") 4 n ."' ,. . . , *. -
Q Q- $. M.m .
.d . .. .
o . . .. 9 . .
% d h s o g M og . g q) 4 M, . % ... . % m m M e4 - ' ,' 3 Q ,
g- . .
,l .. .,. . . % % Oo .M O- b - $ .g ..
- M
% N % o- % o- (5 - -
Q- 4 % m m 4 % - -
.ss .
k .
%s. . . 'aw.
Q.
> k i n ;t . '. ...
g:
.%; n m nm R n -
f l, . l - -
$h , ..' .*h, ~s.
v- - r
, op g.o p .- .
- n> u~ *~ >n N ' -
fro.9 s o~ o. s s f , 4 44 '4 4 4 , (t m y s s 9 m. . ..- q - 4 4 4b N sb . n .
, h k ' ,9 . %q q
M q% M n %4<t% m -
%q l 4 ' .. L
g. t . j 1 s . 1 9 d s = w% o b b Og - l
- l. n .
t q.3 - e o n- a s,
- l, \ r1 *
; R -, e f
61*/r D h -
. va w . . k, - .n n $ .
99fr ofr/r
,4 .g- o 4 r- g n .- , % .n o n.
s N -
.4 4 %- n .n n , % s ...t;- ..
4 g 4 s .
.o . . % a bO h % s - .r.c .g e 4 .
k . rs %n m w ., ii t
. 4 V.g 4 en n M 4 s . . ~
g% .
} . .. . g q .,4 3 g , '.i. . % - - . De . ts .aa m u . *. %. %. . n n n & .:
p(% . kn . Mt
. . 4 wt '
N $ N S 5 Q E 6g' % .. .l n n g n:
>- '+.. .;t . . . : .- . , .,s.:.. . ... . ..1 -
i .
- 1: .. . g
,*Y ..' .. 5 l .,1 * * -
eg 4 ,. .. o& 'n l
-, . E' o- .w. .%rs.n . . , eg- - - .~ .+ . ~.4 m n .n n % -
c 8
/of /03 .
ig
$ t g p, u : - -f % o. :t- n w .
b s s. ti,. . n n ~ s ~N N u . 4 4 4 % - [
% s% 9 9 s \ . % A L da g ts . .
- e. c.
r 4 R R 4 o. - j
%g %n hi%.% %n% N .
(
- j. .
I . t
l ,. , l < .l , 1 w m o og O-g; @s.w. O G 4 A - n 4 n as
% n . .. to s. -
M g . 4 vr 4 - fr/h Gm m n
- e. 'D t s g -
ku ?5 C5 .m -
. . . \1 . /9fr BC'fr
- t g n s- o. m m gg ,
,4 N -
h.
':t- Y @ r6 m
s M k 4 *5. , a 7,.,
~ - - . .=.. .. . ~
a .. h g. g- h% a s % dn 4 m .
% .n n s % .- , - N. g g m m d. 4-s , . ,
it - . : Q -
~~ . ,-
q g
.s . t. . . \-
l k .. l.,,. w o -g j d e- 4 ,. N @ 4 G o - s% ,\ n y b % M q st t ,, R. - - 9.
, . ,g Q' i 1 g t% g%
s .k : .. .; O ..- .
* % ..'( .4 % M ..; -b , .c1 . .~ ... ...- :. . . . .... - e. .. ,..g . .
e
, . .,n,.; :
J. " . . . t' - g ;% o, ru @ q -
,6 e:-
I -
$3 o %q (1 N . .
y . g,- m n m 4 .4 -
, *}- ' RF/r oo S' - .
r... .. -
~
o - -g> ~ - u . .
, ,g -
- 5 % w .S .S R-N o w -
a a e. s r. . u n w gg b s%s .o - w w% . s - D k k k to ,
. 8 . . . . . . . . M
tb o 4 s
~
g a n n w s. s . - - p. k -
<t . s. -
Y .q. n a. .
-oe u ~o 44c n s w . %4-s. - n te a 4 .
n n Q s . U&
. 9sh . . . 3 s , s. g s 9 .. % ' Q. .# e ?i n R s ,. . i . =._?:. ::'; :l., .. . . .a . . ; g g g .. ' '. .'. .' * . .
3.n .
'g p g- f, .. n . ., ., .
ms a n . g . Q s. xy
. .I qm . ..
s,s w>. . s .%m o s g w .
+ .w. w. -
m %s n s .
- p. .
c% .
~ '
Q. ' . . c 3' Q .b e M 4 t
- m n ..% s w
. .T. . .:~ . .
c a m , u ~ M . n < s
@ .s n.3 e f2E o-4 ao ss n .
49%w& . Q M M tt q%
, sk a.7/r ,
90/r . . e a w e n g o . . 2 R lt 4 1
. . S- S .
c . . g . - y
. ~ .s. ~
s , ~ a
~. ~
D n s - si , 4, M-0 4 N *
~ .
I. k . . . . m g % n. DO Os .
- n. .b % - '
n
- n. n n s . . . .
( - i N, ' 5 % $ @ $ @$ E . 9.-
. , ... g ,ggg ..
y - u- .
.* 5 n n 4 4 s ...,. : .
lbh Ebh . .
.Q s y s - % ., ,. . .jpp n n s - '+ + +~ - > R . .. : . .M V3 . 's .- .
k . . N O % o g g M - 4 4 4 4 c wa . 4 g
. e, en wh% 8 A o g .4. a 4 g a a a s
N s s s sQ-
.- 44 h4'6 5 s0.s . q ,
N co?e 9 . e..-. % .. m s*
- n a b on 4 gig. s .
v kca .
.\Shh' 9bC a s ' .
4
** ,' *.'.*,'*'[ .> ~ '+ %.' A - % .: .-' '. W^ ... " ' .
s -
. . ..s. - . . .. . . ,... 'q "r .'
y o o, m . '.'. ' g 'R R n t s '_
.q } .Q.
q . - .
.L .. . . , l, ..,
g,4- . m w
% .m ,> > o .m .
a m o .
), g% . g. m f6 4 s. ..-
m . . .
- y. .
. .g .t o
4: 44 C; n 4 n c; s
. . . :.. g., , , a ~ u . .... .
- 9. .. .
k4RRt :.:_ 4 3 ,:'
.% .g.t- .j .- :
t - w .-
%,. . w, .s , un g -
a y
.. af, g g g9 .
n .
.Q
( . ~ w
% 4 4 4 Quq s % s s .. 0! . .
r % . q s .
%g % % ,
h %q >s .-
. . g
MW 1
. ~... ..
4 gp - . cot . not
. gsi pstr //s eeS g ,,
8C/ ES/ Lh/ JA' - 9sh e/S 9e9 g;. ne .
/4/ fVW ')A/ - EEl' '
g,3 geg' pgg . /td S#)C OW-bbl ' 88C $9/s $/J 403 gy W
. $/C' ~ 9W ONY gg 3 y,. e)/f 4ff J3" gne cac ese cpy' M'e. . .
2/3 863 O[ Y ' W t 5 g gfp ./LN . . 4 . y,
' ~ ' * *gtyp ,. 'f4f . . BEN b8h ' -
- f. .
Q4 .
. 0l1l1 . . l<l<h bSh ' ' . -Y$ _
C 02-10/S .
!sj'y .ppyg
- 00 .
??S S*f = 310/.4 .Il/ S.El'I.]YWANEE EON' ' $l5S$ lS -
L - r? . " .
(p. s . 1,J x w '4 e o . . k k t ? O( Q o R . . .
- ,.. s e, .
nq s . m ~. a. su mn u e e sa
- r. g:.a uR9 on ,
4 d 4 N N -
. pei, s ue .
3 o m e w s g .
% .R .g- n R Q R t:. s . ' .. .e.
e . w . .... . . .
.. e ...
- e. . . s.
a. e
~
e n-n u w s s
.w. > + % % s s a u
p
~ , q . . b. . - . . . .\.. ..
[. ;gw
%ts s w -
n w m w. s n s 4 s s w% n m .
,I . ,I ,.e I, ' . .ss kA s s q . ... .. .. .. .. .. . .. . .., .
l. 8 .. Y, . &
- m. a . .
.n A %
- n. ~ s.
. w. . ..- .. ,.... . . .,., e.....
h .
- y. . , .. . .. ..
r .. . .sn u m
~
m s s .R 4 n. n
.y .. n s t: .;. g. .. . . , . . . -
- n. .
s ,. . : . . m, n,,, . . k. n .
~ s..
m, -
,. g:s ... >m > '+ >> .
t - x .
~
s wns a w
. 4 4 444 4 4 -
t2 - k'- 8 o es o % Q Q 4 4 034 ,a - - l . g
- . . . . g
- g. . .
3 ^, e., Lt n 4 s . ly ( y. rx . s s s a 09, a 6m .
- < ,o .
ns m.. as wa n 3 s ss
.' see ~ .
s. M u N: - 4 - ai, we . . - .. j'" . .
'. .i> .t >
t
- an g h y hs ...
- eu ye -
y .
- .' s %
& 'ntt .'..,,'.-
4 s Q n
,h g .g. s - \ . \s i-y . . . I.
u n
~ s s
n n .n m .~a w s~
~ e .-
n n . . . .. .
<u t g .
- r. .
I ss .. w s 2 4 p
. A. .s m s s. % s .
- n. .. .
.:.e. . .: . .)
v g. ,
..=
l . g; .
.f % s 6 .i ,
m t. - w
.m. .
n n- a.
. . : .... n. . - .c .~s.* '
obt, 64tr . g g
'n .y
_q n n . i
- s x
i! . I. 4 S h 4 46! . b ' ' f d. b- r . 4 k '-
. Q Qi 4 434 R -
I. '
- p. < .
O s . x m s%N - 8s s. s o'n$. s.%s - N .
,. ( .D M nQ .. s h , ./9c n - . .. reh -
m 3 S. % N o . . e% 4 % $ M .$ . o e -
. m .
w
' f-s .
m m m. .k .
; . s. . $ k $ N D .
q~. q k .
.. . s :
lgAt
. .. .l, ..:,n o m rg s e .
- .y o < q s .
.Q . r,. .
(m ~. r - m n n '
> . . .e .., . ,' &s . . . . ~
6l 5
? . . .. .k h k k D k ; ,'.f ' ,
n .
. . .s , . .
3-a . .
. . s. .:
g s: . . w s y n , - r , %g .%
.q. .
R. .R Q R ~ ..
- V:^n ';'.s.
* .cs. . .
wh 886 s .
%: . . . .. ... s u - .. .
k W S Our - s '. :. k b+s
+ 4 4 +'m *S '
f.. m .
~
t .. ' n - 8 , .
~
l .
. N k k ,k 'D *
- I h, @ Q Q,Q 4
, .k %
p g . .
1
- l. . . .
.1 . . ~
g ,s(y b .'. m . k 4 N' D N %
.' t ' .8 .
3'4 si 5N$ ag oeg- s un s a a w ..
\
R n g i 1 s s % . . 8/fr CSC -
- s. .
I .. . s n n y g g a .-
.>p $
g u s 4 s s s Q s, .
. 4 -
gN '
- g' ,
, . . og , N . .
g - .. O. N '
, g . . .- .
k .. h % s. es y s Q ' S D, .' D. S N R ,N .k ,?.
.l . .a g .
J - - s .s. s
,n 8 . : ..
4 n a Q
.'~+
g
. s. - '98fr 2'lfr .y .. m g }}yy y
- . .. h b[ .
a s , mm s - - S S $$ y@ @ k . e g e
. Ci wi Qk k 's s4Q .
lt - -
- }.
cs hs. as q g' a - W e(.3,en J.. B
~ '~
lds.% . ec $ j it i! 8 .. \\ - -
. 40h OkC -
s w .m %
' ' . n o e . '
h. w%. Ib 4 R !::- R R 4 .
.9 ..
g . n ; o. y- g , q a ..' .
.. :. ~ . ~ . ' 4 0
- 4 n
$ .4 ' ,l y.. ~ .g . . .. _ q. _ . .g . . . e ~ s .. . >,. 4 1 5 .&
R Q 3(D ' . - . y t
%g - .
n 1,3 s t~ k~ g g g g k. s ...- . n 4 . us .
. ~. ~. ~ .)
s s n ~ < .
~ -
r .s m Qt %n .. . . .
. . k .. %.% %w . > n n .
s>
. wr 996 .
l
. OSN . % ,
p .. :. ( - s wns e et t
. a.
a c;. a . . Bhh hBaa 'a g g
, .l )
. s. . . 'q d w s m s x4 gbD 0 4-s q -
( s . 2m
,h -
5 'd,N * - 469 %th k % *- - shRS 1 9 % N. N* N - 1 cow pec - l. o~ m es
%m uM r% a % m .s -
4 n g N - N N N
. . ...8-,, .- .. . g . e 0 . , . . .: :. .s -
M
,.r ' .w . .E .
es. g- g g QQ $ %' P ': .i ' ' N u '4- 4 .' ..
,, y .
g i . . e.g. .
. ,I . ..
9 . s n -
.g- e I . . .~ w e, 4 . ,% Q 4 )
f gs
%s m %. -
l s
~. . .. . .n s u%
g w e q
'4- ,.
so % n Q
%g rs, rs. '% .N :s. s- % . : ._m.. . . . .s. . . . - . . .. .a ,
g- - j 6 g ;;;m a g . "y.i j.'
$ n R s N .l"$l': . i . m .
g
.w @ .-
4 .. . . .; -
- - m, en . ,..s. s ... .... . .
m
.m m o~ - ..
399 .4 . 4 . h. - D .
\s.
o e n-s. % % % . o
.N 4 4 E! 4 4%
Q Q 4 3% 44 i: ' mummmmmi
1 ., !). 1 l :. - gs . m g N k.k, h
?, g, '.kg ,
Apsh4 E on MQM kR - - 1 su44 . n n s N x -
. E ne sec ' - .
1 3 s s s w w. m . 4 R h.Q k : : !' ;
- %' %e. & .. . .
v .
.g. .. .
e .. m . q . ;. . % '
.y s % 4 . .
5 A
.% .4 ' % .
w
~. ~ . e ,. g . .l.
g . i
.. s o w % .
g; s 4- N M % % . . ..
. s ,% g y m m n s. . .
l WI -
! %n -
g g g s.
.ny s s.
s
~ '+ ~ - , s. .n ....- -
9 . . ~ s.
.. .,. r ..
gn w g 1i .- ,.
.g .g o .. . c, 2 -~h sg g~
y ..
.n. .w. .w .r.. . .:.
n %q ' - ss+ ' sur
. r .. . . . ,
n s m % a ..- .. isit man.k y '
.g . . . w-4 4 T. ., ..
e it' o w %w w w . ,. N , Q (g 4 q. . 4- l. h.'. -
,t t .
s g g q qqqq, ,
? -
O p. gb% o , i . . . sQh aN 4 - ( ( q.
% , m .
kg%Mth3 h h) .
#8' $ j @ $$ .
ggg ccc .
.4 4 4 q ft g % .- .
w(.
. .% % 4 R 4s. 6 4 . . ' - .
a g . . . m .
.g .. ..
S M w
.g. h g s ,- .0..... .( y 7,
- 4
,4.
g .s s 4 s g 4 g s .-
.g .
it .
' - * '}}