ML20126L118
| ML20126L118 | |
| Person / Time | |
|---|---|
| Site: | La Crosse File:Dairyland Power Cooperative icon.png |
| Issue date: | 02/15/1985 |
| From: | Ahmed A, Husain I STRUCTURAL MECHANICS ASSOCIATES |
| To: | |
| Shared Package | |
| ML20126L071 | List: |
| References | |
| SMA-CT-30001.01, SMA-CT-30001.01-R01, SMA-CT-30001.01-R1, NUDOCS 8506190419 | |
| Download: ML20126L118 (90) | |
Text
{{#Wiki_filter:-_ SMA-CT 3001.0lR01 4 SEISMIC AND STRESS ANALYSIS OF HIGH PRESSURE CORE SPRAY SUCTION LINE PIPING SYSTEM FOR LACROSSE BOILING WATER REACTOR (LACBWR) Prepared for DAIRYLAND POWER COOPERATIVE February 1985 l l 8506190419 850603 PDR ADOCK 05000409 P PDR
SMA-CT 30001.01R01 SEISMIC AND STRESS ANALYSIS OF HIGH PRESSURE CORE SPRAY ' SUCTION LINE PIPING SYSTEM FOR LA CROSSE BOILING WATER REACTOR (LACBWR) prepared for DAIRYLAND POWER COOPERATIVE "I February 1985 This work has been performed in accordance with SMA-CT Quality Assurance Manual which meets the requirements set forth in 10 CFR part 50 Appendix B and ANSI $5 2. M Approved: I. Husain President ektU Approved: A. Ahmed Acting Manager Quality Assurance STEXTURAL mECHRnKS """"'" ASSO<lRTES w-Suite 17. 304 Federal Moed. Brocettleed CT06804 (203) 7754232
STRUCTURAt. mECHRalCS Ste-CT 30001.01R01 - RSSOCIATES wm Suite 17, 3o4 Federal Road, Brookfield, CT 068o4 (203) 7754232 CERTIFICATION OF SEISMIC AND STRESS ANALYSIS OF HIGH PRESSURE CORE SPRAY SUCTION LINE PIPING SYSTEM DAIRYLAND POWER COOPERATIVE I, the undersigned, being a registered Professional Engineer in the States of Connecticut and California, competent in the ASME Code stress analysis of piping systems, have performed the stress analysis of LACBWR High Pressure Core Spray Suction Line Piping System and certify that to the best of my knowledge, the stress report presented herein is in compliance with the criteria. set forth in this report. 1 Certified'by ik b[ Date , ) 0, l Qg _, 4 j (C'"' I. Husain k ( I No.12201 k Certified $[:" M Date: Fe4 is,r5 Revision: v
REVISION LOG DOCUMENT NUMBER: SMA-CT 30001.01R01
Title:
SEISMIC AND STRESS ANALYSIS OF HIGH PRESSURE CORE SPRAY SUCTION PIPING SYSTEM ~ Rev. t No. Date Item Reason for Revision 1 2/14/85 Add Addendum 1 Discrepancies between As-analyzed and as-built { Confi.gurations-Approval ) O M 1 1
TABLE OF CONTENTS Section Title Page 1 INTRODUCTION. 1-1 2 DESCRIPTION OF PIPING SYSTEM. 2-1 3 APPLICABLE CODES STANDARDS AND SPECIFICATIONS 3-1 4 LOADING CONDITION 4-1 5 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA 5-1 51 Design Considerations and Design Loadings. 5-1 52 Service Loading Combinations 5-1 6 PIPING ANALYSIS 6-1 6.1 Nupipe Analytical Procedures 6-1 6.1.1 Static Analysis 6-1 6.1.2 Dynamic Analysis. 6-2 6.1.2.1 Mathematical Model. 6-2 6.1.2.2 Natural Frequencies and Mode Shapes 6-3 6.1.2 3 Dynamic Response. 6-3 6.1.2.4 Response Spectrum Superposition 6-4 6.1 3 Piping Stress Analysis. 6-5 7 RESULTS OF ANALYSIS 7-1 71 HPCS Suction Line 1. 7-1 72 HPCS Suction Line 2. 7-2 7-3 73 Pipo Support Evaluation. 8 CONCLUSIONS 8-1 9 REFERENCES 9-1 ADDENDUNDUM I, Evaluation of Discrepancies Discovered Jg Between As-Analyzed and As-Built Configurations. APPENDICES
==
w-
LIST OF FIGURES Page 1-1 HPCS Suction Line 1 Horizontal Spectra......... 1-4 1-2 HPCS Suction Line 1 Vertical Spectra.......... 1-5 1-3 HPCS Suction Line 2 Horizontal Spectra......... 1-6 1-4 HPCS Suction Line 2 Vertical Spectra.......... 1-7 2-1 HPCS Suction Line 1 Schematic Sketch.......... 2-3 2-2 HPCS Suction Line 2 Schematic Sketch.......... 2-4 2-3 to HPCS S uc tion Line S upports.................... 2-5 to 2-6 2-8 4-1 to HPCS Suction Line 1-X,Y and Z Spectra......... 4-3 to 4-3 4-5 4-4 to HPCS Suction Line 2-X,Y and Z Spectra......... 4-dIto 4-6 4-8 6-1 HPCS Suction Line 1 NUPIPE Mathematical Model.. 6-10 6-2 HPCS Suction Line 2 NUPIPE Mathematical Model.. 6-11 6-3 HPCS Suction Line 1 NUPIPE Computer Plot...... 6-12 6-4 HPCS Suction Line 2 NUPIPE Computer Plot...... 6-13 7-1 to HPCS Suction Lines Class 1 Stress 7-7 to 7-4 Analysis Results 7-10 l l LIST OF TABLES 7-1 HPCS Suction Line 1 Modal Frequenciec a,nd Modal Mass Fraction...................... 7-5 7-2 HPCS Suction Line 2 Modal Frequencies and Modal Mass Fraction...................... 7-6 11 M WM
- 1. INTRODUCTION Seismic and stress analysis of the High Pressure Core Spray (HPCS) suction piping and support system of the La Crosse Boiling Water Reactor (LACBWR) have been performed to verify the adequacy of the "as-built" HPCS piping system to withstand a seismic event. The -High Pressure Core Spray System of the j
LACBWR plant is the principal emergency core cooling system. It is designed to provide emergency coolant spray to the reactor core in the event that reactor water level drops accidentally. Seismic and stress analyses of the LACBWR HPCS piping system were performed and design of the additional seismic supports were prepared by Nuclear Energy Services. Inc. I (Reference 1 and 2) using the seismic criteria and spectra developed by Gulf United Nuclear Fuels Corporation (Reference,h). However, under Systematic Evaluation Program (SEP), the seismic i hazard at the LACBWR site has been reevaluated, using current methodology and site specific response. spectra. The applicable response spectra developed by EG&G under the SEP program (Reference 4) exceed the original design spectra as indicated 1 in Figures 1-1 through 1-4. In order to assure adequacy of the LACBWR HPCS piping system to withstand the higher postulated l seismic excitation, Structural Mechanics Associate of Connecticut Inc. ( SMA-CT ) has analyzed the HPCS piping system using the current ASME Code and licensing criteria. The revised analysis is based on the "as-built" configuration of the piping and support systems and include the stiffness characteristic of the piping supports. This report presents the results of the seismic and stress. analysis conducted to verify the adequacy of the HPCS Suction piping and support systems. Tha HPCS discharge piping analysis is presented in separate repoet. f i i 1-1 _ _. _ _ _ _ _ _____ _ _ _ _.__ _._ _.,_._ ~_ _ _ _ _ _ _
The HPCS piping and their support systems have been evaluated in accordance with the applicable requirements for Class 1 piping and component supports stipulated in the ASME Boiler and Presuure Vessel Code, Section III, Division 1, " Nuclear Power Plant Components", 1983 (Reference 5) and USNRC Standard Review Plan 3 9 3 "ASME Code Class 1,2, and 3 Components, Component Supports, and Core Support and Structures:" 1981 (Reference 6). The seismic and stress analyses for the HPCS piping systems have been performed using the NUPIPE computer code (Reference 7), which is widely used code in the nuclear industry. The piping geometry input data (coordinates, diameter, wall thickness and weights), and the pressure and thermal loads have been taken from the piping isometric drawings (Reference 8), specifications (Reference 9), Nuclear Energy Services, Inc. reports (Reference 1,10, and 11) and the "as-built" field jg verification data (Reference 12). The seismic analysis has been performed using the response spectrum modal superposition method of dynamic analysis including a porrection to account i for the effects of non-participating mass. The seismic responses have been calculated using the applicable spectra associated with the damping values given in NRC Regulatory Guide 1.61 (Reference 13). The combination of modes and spatial earthquake components are based on requirments of NRC Regulatory Guide 1 92 (Reference 14). l The stress analysis and acceptance criteria are in accordance with the design requirement of ASME Code and NRC Standard Review I Plan 3 9 3 t t l Section 2.0 of this report describes the description of the piping systems. Applicable Codes, standards and specification, are given in Section 3 0, while Section 4.0 describes the loading criteria. The acceptance criteria given in the Section 5 0 are consistent with licensing criteria as specified in ASME Code, i i 1-2
and current NRC Regulatory Guides and the Standard Review Plan. The analytical methods for the static, dynamic and stress analysis are given in Section 6.0. Section 7 0 summarizes the results and conclusions of the analysis. The results of the analysis indicate that the HPCS suction piping systems and their supports meet the acceptance criteria. Therefore,it has been concluded that the HPCS suction piping and support system meet the intent of current licensing criteria. .h i I N 1-3
,,,1
- i..
} .) l i $ i,I ( l i I 8 l I i 1 l l 4 6 1 ~~4 i e i l [, l} t I i l l I { l l l l l l l l l l I l l l il s s i: III I III ! "Ii lI I i i !IIi11 i i i !! ! IIllllllll ll ll !ll l l/ l i Il l ! h ) g n, i, i ,2 - I i 1/ I I I \\ .i 2 !1 i l l l i\\ l I I i T v,., l I y ,e / i: i -r,,. e t l I l ll 3-l T I Y E 1 I'~ t l-L,_E' ,x ,. ! [f ,,.~ .... ~. ~ ,, x = s e..., ! i \\ 6 i x I I t t I f I t t. g., %i t\\ l I I i l l 4 fl il i l' t 11
- 5. ! E li l Il l ! !
l l l l l l l 1 l l l 1 ll l Il lli Ill ll ll l \\
- 9
~ i ll l ell i a 8 3 e .I "T" = ce w cc e so 5[ ,,,e i i,, . i ., i m. I I i t I i i 6 l l l l l I I 3 3 2 3 3i 1 i a i a i 4
I l l h h / i j i l i l i l i I I l l I I I l \\ l l l I I l !/ Jl i / t I ,/ s' l ,s-,j n 1 i 6 i <i i I 1 '6 e i i / j { l l l / i I g f ,/ l l 1 5 y 2'N 2 :$ t E w t: y ^ ~, ~,% J .~ ,l**~ d g.3.,; ~ w 2 ..g i x x ,x i s, s 3 {* E I I I l i N l \\ D l i l l l I i 's j ) -a I I I 1 I I I 's I i ilg l l l 'l l
== k s g i I 4d \\ = ,M N \\l cr: 4e W:s -O y i i i i l i i l i t I l l l l 1 r i I 1 I I I I Id e e i e i i i i l
l 3 { r 3 i i 6 i i a i: i i i i i 6 i f i i .i6 i i-i i i i i e i i i i i i e i.i i i i l l I i i I I i l l i l l l
- /
l l l l l l l l l l l l l l l 1 l I ,\\ l l l l l l l l l l l l l l ' fl ) l l l I l !\\ l / A / e e ,s_- i I 8 I I I i i a 6 4 9 I 6 i j i i i 3 I l l A i l i f f i i t i i -r s I i I I I l. - T _;! -i i l \\ l l g I l l l
- l I
l l ( l l .i i 1-Y M ~ ~ i LW
- a T
i i i l l l l
- *.N
._ ' ' l' d- -!- - J
- 1. __ L_ L7%.
,.I.f I i ~. x. . x i,iiii,,,,,,.i~i-i,
== i i i e i i i i i i is 3 e ~}' 8 5 4 i I e i e i i i l i i i e i 1 is 1- ! I l l I l h l I I I I I l l l I I ti i s: l l l l l l I' l l l l l I i l 'nkg m+
- w a a:
=0 ne l i 3H l i i e i i i i i l l l l l I l l l l 9 i i i I I i I I l t I l l l t l l l 3 3s t e i a e e .--n
l g li 4 i i e i i i I l { l l l [ } j I I l l l l l \\ l l l l l l If )l ( ., 5 / s _-Y a I 6 J l l i I a Nl l =
- 4. ' w D
.? a l 1,, - .:3 .' s
- g a s.
= <x
- =
.. ;, e. ~ x. .y ~, .x + e s, l 3 i i t t 't 3 g4 i es .i 3
- g s
s i i - I g I t-s
- s. =:ll 3
i s i aa s I i N. La '\\ s el $ JH l \\ I
- ca I
t wx 1 =w 8e 6 -H f. [* f i r e a i i m i l l I i l r i l l 1 I 1 1 1 i 1d o i i
l I
- 2. DESCRIPTION OF PIPING SYSTEM The High Pressure Core Spray (HPCS) system of the LACBWR power plant is the principal emergency core cooling system. It is designed to provide an emergency coolant spray to the reactor core in the event that reactor water level drops accidentally. this is done either by means of high pressure water injection under high reactor pressure conditions or by direct gravity feed of water from the overhead storage tank to the core spray header under low reactor pressure conditions.
In order to simplify the seismic and stress anlyses of the long and complex HPCS piping system, the HPCS piping system has been divided into two sections. The first consisting generally of the suction piping which runs from the over head storage tank to the HPCS pumps and the second consisting of the discharge piping which runs from the HPCS pumps to the; core spray header inlet. The HPCS suction line is further simplified by dividing it, into two sections as shown in Figures 2-1 and 2-2. HPCS Suction line 1 shown in Figure 2-1 consist of 4" schedule'40S stainless steel piping from the overhead storage tank to node no. 19 near the 4"x3" reducer. A portion of the 4" fuel storage well flooding line connected at node no. 18 is included in the analysis of HPCS line 1. The HPCS suction line 2 shown in Figure 2-2 begins at node no. 19 and consist of schedule 405 stainless steel piping up to HPCS pumps A uld B. Rigid anchors at node nos. 40 and ( 79 have been provided to isolate the HPCS suction line 2 from sodium pentaborate and h.igh pressure service water piping system. The Schematic of the piping systems shown in Figure 2-1 and 2-2 includes major pipe dimensions, elevations, anchor points l and support locations. The piping arrangement, has been taken l from drawings of Reference 8. Piping properties are based on l 2~1 M
information given in the piping specification (Reference 9) and are summarized in Appendix A. The location of pipe support systems and their structural stiffness charecteristics are based on informations given in References 1,10, & 11, and those obtained/ verified by Dairyland Power Co-Operative engineers from a field inspection dated February 1 through 4,1983 (Reference 12). The support structural characteristic are shown in Figures 2-3 through 2-6. The support stiffnesses are summarized in Appendix A. di, s 6 1 2-2
Ovarhor.d Storago Tc.nk N s 9 ',.. p 5 s s.4 m' s x . %j , o. N l 'N + 58' >,* ' c,,, dp / 7 t, .r. HPCS Suction / ,-o Line 1 a b, I Y g s \\b' V 2/V l. y N 9< un It I. o Fuel Storage Well ~g Flooding Line o .\\ 'h eN 0
- E
\\ 2.7 .50 Node Point + Spring Hanger Elastic Restraint gr o d ' c., Rigid Rostraint (Anchor) u Valve N 30 ,dp a l FIGURE 2-1 HPCS SUCTION LINE 1 _M WM 2-3
HPCS Suction Line From Overhead s N W Starag3 Tank g ? 4V g 38 / .? a e. q e . t'- C. 45 s, Y s w * f'" g* } i
- ~
,s Mk
- J Y*
HPCS Suction Line 2 1 ,M x .g g -{ e l,, 25* s,, s Y To Core Spray %~ Header k' 4 /v g
- st
. g.6 K \\.. 40 High Pressure
- /
r type strainer Service Water ,, y, %4 g' HPCS Pump A f j } M = Node Point p g'" +,4 ~,. ReuEP s g i vat.ve usaE Spring Hanger ,e u Elastic Restraint ' N* Prom Sodium D . /k',- Rigid Restraint Pentaborate S s M' / (Anchor) Tank ~ Valve y Valve with HPCS Pump B
- g, Eccentricity FIGURE 2-2 IIPCS SUCTION LINE 2 ElldA 2-4
$1o f<e y s',,l.,,gsper- ~<# ~
- f 8 f89 e /5
--. t - -,g - e r r_.1f. l= r l# = - rau.e..g.
- 4. -
Q le. I g. - eLams WELDO aco -s
- ;2. _
qyj gy n, e q- .r -7pxyso l ,'s '}.-R ~ ' r'- .e '" as dont 4 4rn.copyr p l'~*%' !c=51. (Ons'., A At G ST.) =:.'. 4,t. gm J ~ p-4 ~
- "* %an vana,_/4 '
La,u, ra ,~,-,7r ~ a. aa A, 6 g,,O .
- neer,a,
s -r - y s jf$poY - *1. l
- gVN,
-w. im ' 'In $ c'o In" p(8,,,M. 3,_ f M.W.d,H~H -l.W, g,R00 __--r- ~ p;;a* . L*- 1J rJ ~1C ~ fs - )lt-~% x
- * * = '
--- T-
- t e
- k afos
- 7 err 4<.mewt J.:.j.
>= f3[,,# (De.Andasrpaava5) s amass 2 69 m vs m o a 5, h9 Ye&
- I E).e?* ggg,f V
e _J sA* a x gr ) Ir, i y.. d nran.a y...:_ _ J_.1
- l a
.w - 2<2arq e Q. +,p b 4 recAL -riu - EAM:x8T. CLEYATr QN Ma T ,,o - ...._..,_.,,o_, .-n., w ,. - _ y ~' ->-~ w. i
- v. P '} $
~ - " -ex.:c : l .r. W i A l & q.,~a ~'( ~ au 1 pt __ v4_c "(.vv. _ %... 1
- ~
i 0=:.? 5 ..--N i ;,. i + ,t U-E:_--- _:;~ 0 h 0 U i c ! ja
- ---++.
! 'tm'.., a.is- ,,,... 7; a -a l
- FIGURE 2-3 HPCS SUCTION LINE SUPPORTS 2-5
. v / ww - : ~fgc p.g.s - f.# :_ :/ I ' M,l, - W.'s 4*- s --o ne 7.- W' 8EE'8 3 / j g*p set re. J,*4_ _de, 4 l b l l -.o.. .4.,. 4. _m - e. ., :~ i .,.; j f, yl~? 's r ** '~ ~' , C.'. ..o.. .L \\ i .i ev n. t o W anGen....*- !+ 4. L os ,l}.. i , e i ) l M m%.s t au : ,g -S,., sis =w. e- .t*aeww a mesens. - As**s n ~ Aesar.t M l ~ --+e - W ,,'D s W E,,.,.. -s - -s I== + N sm.ans s.- -g.= -y a se +.\\- , a.egr. g p' 4 .a 8I 3 d l* -H-e,% (,g W '(T L4." 4- 'b l' le w,h L-g er ..e .a y 2. u d -g 4 J,.lc ~..?*.'**'* q.' Wg1 ,M, ,/.*,._ ~ L.,, A me.s ascamar a -t
==. l = ~ ~ ~ > ~ ~ ~ ~ ~ ~ ~
- Jane e.
l l as ig* ,ee eams 4'y.easP i r-r- ,1 1 P' / 1 h.. F 1a -) -i i r-~ .* D I
- M g
p'M I .. m. hw ese gg'g ,' :.,,,~ a nr -~ _w %. 5 - a C~g.,, s' ~~ '.s .e. .o
- .,v.,,
- ]
[ i =;. l I c;.:,, i a i bow-me ade.e I ese M M JQ P'g4 1 i d)....,.e..ei ~~ 3l '*]', = = = = - FIGURE 2-4 HPCS SUCTION LINE SUPPORTS M WM 2-6
1 1 I 1 W8 5.as)nd Aur### e mea # 79 east AhoywT33 W/ Elf 4 JMC77d A/.*wSAW4 g peeg 3 9 g ) ,a - g( 8 4> 4 ( seu's s*e dw.s l ,my e 4 .--.n .c 3 .., 7 w i 4 q-f !l { i i i a w p.' a. j 6l t j i,' i ..W I a i;::.I y .c e'.i -- 'A j "2~"" c.~ a a Y *** 5.* ~s /1 [n 'f A <7 s p.- I ! il .uw., _. lJ. 1.: '4 7 M;i ..,_y #7 4 s i ti 0', '.N u = =c. = _,-2 i, i l T; i l.**i w !_,W liej l a l_ s n .~ ** ou k. s rc" *'" see.n.a e.e. ,A l,. r..<,.,e ~-~ lg* p,,.,,..,,,,,,, 3 ~-- ,s 25 e .v.s 5 ae.~ mr a s.mm r a r n., e s s l
- .>t e ~
_ f3# C,%.',," \\ l \\ k.e b s5 ** l ec
- P M
l ij T ihi-( k e
- :1 1
-~.. ,,w W
- - y., n,,,.
a a n a. .g L---+- --m.- [,,9 ~r I e w%_ r c. r m s 4 m 1 n= ar,r-r #* L ~ a A l si c..-.n a f M FIGURE 2-5 HPCS SUCTION LINE SUPPORTS 2-7
% 5 8" 816 n? GP 867 Wg an reme 4 i r- -. % ___.s _ sg 7 [,, 1 ~ Z / _i- -j ~ i-1_ l a I mg l 4+, 4 is .ir i-- ,,6."Mtk ,h1.,,",,. _ g,,,,. .s ,, a,, =e4 o r mia, ter ment f e @CS S e ='* N+
- u ' D *==** k=.4 Trf ec.% se.e.% N 65. h a u ser
= .N / as sal i -- .- / , ~s s '<-~,y m_ / - i ) stcncu m ] 'T<= h) V,/,, 'i _. '~~~ y l N. l 'V t ~% g/, / (g];,4,4,.y n x_ / ,4 GS,. -r .-q i ji e - / e --- ..t- -:.,gl c1 +, ;;,, w 1 2g l if zg-,, t g I v =- --1~ ,J.,, - +- I A._._ gl jii <'._a e i 1 4 j g u, %4 + - ar ; ;s _ 4_f. . p/,,g,g g+. ',,-....c-- ,% ; v~ p~* -- t fri-4 =w, A l,t t t! v* < Q. A
- F Dc I
w, si u.sar ,<, g l _i i ,.ty, "ha** x-l _Id 'I i i . < b s. 4[.
- 31. Liv A* rs o M_ k IQ e
l s.,rio.o n. i '"' 'd SEC 'OM ' A A-i l j,..,,.,n., * *
- j "j l
-"'" ~ a-~~ ..a o. . % w. d.4 /m / 4.a Y ' 8%
- i
- e.=se
/ u \\**==== i P-l/o y ~J ads',T.- FIGURE 2-6 HPCS SUCTION LINE SUPPORTS ch-s .g w I s.r ,_a. i ^ q anse em 4'ums.se s i i, /e mew =Mf i n... & n i.- M ,1 'L.,u h hs O.. _ A en. s. ea -t "' [ j' g 2.@ g
- 3. APPLICABLE CODES, STANDARDS AND SPECIFICATIONS The HPCS piping and support systems have been analyzed using applicable methodology and acceptance criteria consistent with current ASME Code and Regulatory requirements.
The following design Codes, Regulatory Guides, Standard Review Plan criteria and specifications have been used in the seismic and streso analysis of Class I piping and support systems. 1. ASME Boiler and Pressure Vessel Code Section III, Subsection NB Class I Components, 1983 Edition. 2. Standard Review Plan 3 9 3 "ASME Code Class 1 2 and 3 Components, Component Supports and Core Support Structure". 3 USNRC Regulatory Guide 1.61, " Damping Values for Seismic ~ Design of Nuclear Power Planta", October, 1973 4. USNRC Regulatory Guide 1 92 " Combination of Modes and Spatial Components in Seismic Response Analysis", Revision 1, February, 1976. 5 Sargent and Lundy Engineers, " Specification for Piping System La Crosse Boiling Water Reactor", LACBWR #256. 6. Allis-Chalmers, "La Crosse Boiling Water Reactor Safeguards Report Volume I and II, LACBWR #283, dated August, 1967 3-1
- 4. LOADING CONDITION Appendix A to the Standard Review Plan 3 9 3 and ASME Code Subsection NB provide guidance in the selection of acceptable design and service stress limits associated with various loadings and combinations there of, resulting from ' plant and system operating conditions and design basis events, and natural phenomenon. Based upon these guidance, the following applicable loading conditions have been considered in the analysis.
Design and Operating Pressures. Piping design pressures are taken from the LACBWR piping specification (Reference 9) and are 100 psig for both the HPCS Suction line 1 and 2. Operating pressures for the HPCS Suction lines are based on the LACBWR Safeguards Report (Reference 15). These are 100 psig for both the HPCS Suction line 1 and 2. Dead Weight and Sustained-Mechanical Loads. The dead weight of the piping system is calculated considering the piping to be insulated and filled with water. Sustained mechanical leads considered in the analyuis includes the weigh.t of the valves and valve operators. The uniformly distributed piping weights and the concentrated weight are given in Appendix A. Thermal Load The HPCS suction piping system is ba'sically a cold line containing room temperature water from the overhead storage tank. Thermal expansion stresses are calculated assuming the design temperature of 120 F to be the normal operating condition. Thermal discontinuity and thermal gradient secondary bending stress are negligible at this temperature and are therefore, not considered in the analysis. 4-5L
Seismic Loading The piping anchors and supports are subjected to seismic accelerations as defined by the appropriate response spectrum for each of the two horizontal and the vertical directions. The 2% damped, peak-broadened Safe Shutdown Earthquke (SSE) Spectra associated with the Containment Building at an elevation of 752 feet (Reference 4) are used for the HPCS Suction line 1. These spectra shown in Figure 4-1 through 4-3 are conservative for all elevations of the HPCS Suction line 1. Similarly, the 2% damped, peak broadened SSE spectra associated with the Containment Building at an elevation of 701 feet are used for the HPCS Sueti'on line 2. These spectra shown in Figure 4-4 through 4-6 are conservative for all elevations of the HPCS suction line 2. The digitized seismic spectra are presented in Appendix A. The relative seismic anchor movements between the various pipe support and anchor points are calculated from the low frequency displacement response obtained from the Containment Building response spectra. The relative seismic anchor movements used. in the analysis are presented in Appendix A. For load combinations including Operating' Basis Earthquake (OBE), the SSE response results are conservatively multiplied by a factor of 0 5 l l M 4-2
i .. > i..,... i.. .i....,,.i,, 4.. . i I i e e i. 6 ,....iie i i i. I i. . el e t i e 1, , i.,,,,,,,, ii,,,,e ll l l l l l l l l l l l l l l l r l l l l l ll l l 1 I ( ji l lll l jll l l ll __ l J_ l {j l l j i l,'ll l l l l I I I I Ilill F ll. j y A / ( rP / g e 6 i 6 s i 6 i t 6 p t, 4 (_ l7% e, i t i i N i 8 i e i i i ,w ,w i._~ e l ww e l 6 e t t 's g 5.] e l-6 \\\\ g i i, i l i C 4 l l l l i ) } > o w- ~ + { . g w 00 Sm e u 3 a-o = l Qd e l s e e d 1 e s 5 6 6 63 I I t g b CD H Cr 3 34 4 i
- -y.
~ s ~ \\ g n ~ i w pm a D e, ,/ 2 0 _r ar t \\. c \\ e I\\ >\\ p 1 >\\ I t \\ i e 4 1-J r. e s i D 2 \\ i I . n )Y I > j.- o -)s .l N t j p ) f e )- n 7 1 0 i L 4 i7 v. c c = n e o l i e t ( c 0 u 6 S e d r o o H F 8 4 5 e 4 r uG E R I F U G I F e e. a l' !i
m_____$ mm _ m mmmm i w ~. s y rr/ \\ ( \\. \\ i_ g l\\ I n l\\} ip ma \\ D l l 2 . I I 0 II a l r tce / p.* S.* /i" i" .r i D 3 h.[ .2 8 jj. ) o N 4 / t ) f e ]' n 1 0 i .7 L s u v. n e o l i e t ( c 0 u 6 S e r do o N F 6 9 i. 4 4 e 7 e _7 E r E u = R g U i F G IF ..a o i l
- 5. LOAD. COMBINATIONS AND ACCEPTANCE CRITERIA The requirements for load combinations and stress acceptance criteria for a Class I piping system are given in NRC Standard Review Plan 3 9 3 (Reference 6) and Subsection NB3600 of Section III of the ASME Code. These requirements are summarized below.
51 Design Considerations and Design Loadings. The primary stress intensity, resulting from design pressure shall satisfy the requirement of equation 1 of the ASME Code. 52 Service Loading combinations. Service Level A Stress Limit The piping system shall meet a service limit not greater. than Level A when subjected to sustained loads resulting from I normal plant / system operation. This requirement is satisfied by limiting the primary stress intensity due to pressure and sustained loads calculated using equation 9 of the ASME Code to 1 5 times the allowable design stress intensity, Sm, at design temperature. Service Level B Stress Limit The piping system shall meet a service limit not greater than Level B when subjected to the appropriate combination of loadings resulting from (1) sustained loads, (2) specified plant / system operating transients (SOT) and (3) the Operating Basis Earthquake (OBE) The requirement for Service level B is satisfied by limiting the primary stress due to applicable service le' vel B loadings as calculated by equation 9 of the wh.4.ch ever is smaller. In ASME Code to 1.8 S or 1 5 Sy m addition the primary plus secondary stress intensity range resulting from the combined effects of linear thermal expansion linear thermal gradient and discontinuity, operating pressure 5-1
thermal anchor movement calculated in accordance with equation 10 of the ASME Code must be less than 3 Sm. In the event equation 10 -is not satisfied, the piping component may still be acceptable provided the requirement of a simplified elastic-plastic dis-continuity analysis (NB-3653 6) are met. Service Level C Stress Limit The piping system shall meet a service limit not greater than Level C when subjected to the appropriate loadings resulting from (1) sustained loads and (2) the design basis pipe break event (not specified in this analysis) Service Level D Stress Limit The piping system shall meet a service limit not greater than Level D when subjected to the appropriate combination of loadings resulting from (1) sustained load (2) LOCA and (3) The Safe Shutdown Earthquake (SSE). The requirement for Service La~rel D is satisfied by limiting the primary stress due to applicable service level D loadings as calculated by equation 9 of the ASME Code to 2.4S or 0 7S which ever is smaller. m u N 5-2
- 6. PIPING ANALYSIS 6.1 NUPIPE ANALYTICAL PROCEDURES The basic method of anlysis used in NUPIPE is the finite element stiffness method. In accordance with this method, the continiuous piping is mathematically idealized as an assembly of elastic structural members connecting discrete nodal points.
Nodal points are placed in such a manner as to isolate particular types of piping elements, such as straight runs of pipe, elbows, valves, etc., for which force-deformation characteristics can be categorized. Nodal points are also placed at all discont-inuities, such as piping supports, concentrated weights, branch lines, and changes in cross-section. System loads such as weights, equivaent thermal forces, and earthquake inertia forces are applied at the nodal points. Stiffness charateristics of the interconne_c, ting members-are related to the effective shear area and moment of "Y inertia of the pipe. The stiffness of piping elbows and certain branch connectors is modified to account for local deformation effects by the flexibility factors suggested in the ASME Section III Code. Figures 6-1 through 6-4 shows the NUPIPE mathematical model and computer plots of the HPCS suction line 1 and 2 piping svatems. 6.1.1 Static Analysis l The static equation of equilibrium for the idealized i system may be written in matrix form, as follows: KU = P - Q (6-1) where i K = stiffness matrix for assembled system U = nodal displacement vector P = external forces, weights, etc. Q = equivalent thermal forcea = [AEmTdL l 6-1
L The nodal unknown displacements are obtained in NUPIPE by solving these simultaneous using the Gauss method. The nodal displacements are then applied to the individual members, and member stiffness used to find internal forces. The nodal displ-acements at support locations ic used along with the support stiffness to determine support reactions. 6.1.2 Dynamic Analysis 6.1.2.1 Mathematical Model For dynamic analysis, the mathematical model is described as a lumped mass, multi-degree of freedom model. The distributed piping mass is lumped at the system nodal points. The equation of equilibrium for the system is: Md + CO + KU = F (6-2) li where: M = mass gatrix for*assembl'ed system. C = damping matrix for assembled ' system U = nodal acceleration vector = U(t) O = nodal velocity vector = U(t) U = nodal displacement vector F = applied dynamic force = F(t) = MUg for earthquake U = support acceleration = U (t) g g This equation is solved for the system dynamic response as follows. First, the frequencies and mode shapes are obtained by removing the forcing and damping terms from Equation 6-2 and solving. Next, the natural mode shapes are used'to affect an orthogonal transformation of Equation 6-2. yielding a series of indepdndent equation of motion uncoupled in the system modes. Then, the uncoupled equations are solved by the response spectrum method to obtain system response in each mode, and the individual modal results N, 6-2
are then combined in accordan'ce with Regulatory Guide 1 92 (Reference 5) to determine the total system dynamic response. The mathematical formulation of these steps are as follows 6.1.2.2 Natural Frequencies and Mode Shapes The eigenvalues (natural. angular frequencies "n) and the eigenvectors (mode shapes $n) for each of the natural modes are calculated by solving the frequency equation. f$n N K-wM where th = natural frequency in n mode wn K = stiffness matrix I M = mass matrix th (n = mode shape vector in n mode 0= null vector The eigenvalues and eigenvectors are obtained in NUPIPE using the Householder-QR algorithm (NUPIPE -11M) or subspace iteration (NUPIPE-11L). i 6.1.2 3 Dynamic Response Pre and post-multiplication of Equation 6-2 by [$], the I square matrix of mode shape vectors, constitutes an orthogonal i transfornation,' from which the uncoupled equations of motion shown below are obtained. Y * *n n n * *2 Y ~ n nn n l 6-3 -2
I ( wherei Y = generalized (modal ) displacement coordinate th mode (Un = $n.I ) for the n n th An = damping ratio for the n mode expressed as percent of critical damping T P '* gen eralized force for the nth F mode = $n, n Solution to these differential equations is obtained by the method of response spectrum superposition. 6.1.2.4 Response Spectrum _ Superposition Based on this method, the maximum generalized acceleration for each mode is given by: ( $1/2' "I Y, max = 1 R Si l M (6-5) nj n (j=x,y,z jj where maximum generalized coordinate acceleration n max = response th Sa spectral acceleration for n mode in nj = in J-direction (from response spectrum data input) th R Mode participation factor for n mode in nj = 1 J-direction gs 64 N
~ The maximum internal inertia forces are given by: F "M in in 'in = maximum inertia force at nodal max max th mode mass point i in the n These inertia forces are calculated for each of the system natural modes, and applied as static forces in the same manner as the weight or equivalent thermal forces, to find internal forces in each mode. Total system response is then obtained by combining the individual modal response values in accordance with regulatory guide 192. The effects of higher modes (Frequency >33 Hz) is automatically considered by applying static loads in proportion to the non-participating mass times the zero period acceleration. T'h'e combined seismic response of the three spatial component of the earthquake is obtained by taking the square-root.-of-the-sum-of-the-squares of the corresponding maximum response value due to the three components calculated independently (Regulatory Guide 1 92). 6.1 3 Piping Stress Analysis _ The modeling of the various piping problems using the NUPIPE computer code was conducted in a manner consistent with the data available from the piping isometric drawings, the support detail drawings, and the NES design analyses. Care was taken to accurately model the mass and stiffness characteristics of the various systems. Particular care was taken to properly model the mass eccentricities associated with the operators of motor operated, air operated, and hand operated valves as well as smaller eccentricities associated with other non-axisymmetric valves. The formula used to evaluate the primary secondary stress intensity levels and fatigue analysis for Class 1 piping systems is taken from Subsection NB-3600 Section III, ASME Boiler and prescure Vessel Code. These formulas are given below. 6-5
==r.
Pressure Design Check The minimum rquired pipe wall thickness (tm) is computed from PDo
(Eqn.1) t m
2(sm + yP ) where: P = Internal design pressure D = Outside diameter of pipe o S = Maximum allowable stress in material at the m design temperature y = 0.4 Primary Stress Intensity Check The primary stress intensity is computed from and limited by k the following: PD D o a B +B2 Mi = 1 5s,
(Eqn.9) 1 Zt 21 where
= Prinary stress indices 1for the specific piping B,B2 1 component being investigated. t = tiominal wall thickness of piping component I = Moment of inertia M = Resultant moment loading from loads caused by t (1) weight, (2) earthquake, and (3) other mechanical loads (one-half the range, excluding anchor movement effects). = as in Eqn.1 P, Do, Sm Primary Plus_ Secondary Stress Intensity Range Check The primary plus secondary stress intensity range is computed from and limited by the following: 6-6 M
bI g / P,0,[) k@, ) Mi* 2(1-v) 1 3 ab "a "b b 5 35,-(Eqn.10) y I =C "A + n 1 2t where: C,C,C = Secondary stress indices for the specific 1 2 3 piping component being investigated. P = Range of operating pressure o M = Range of moment loading resulting from thermal i expansion, anchor movements from any cause, seismic effects, and other mechanical loads. V = Poison ratio = 0 3 = This term is omitted in the summer, 19'79 revision of the ASME Code. Version 1 5 of NUPIPE reflects this change. Ea = Modules of elasticity (E) times the mean coefficient of thermal expansion (a)
- g AT
= Range of absolute value (without regard to g sign) of the temperature difference between the temperature of the outside surface (T ) g and the temperature of the inside surface (T ) i of the piping component, assuming moment-generating equivalent linear temperatur distribution. E = Average modulus of elasticity of the two parts ab of the gross discontinuity. a, = Mean coefficient of expansion on side "a" of a gross discontinuity such as a branch-to-run, flange-to-pipe, or socket-fitting-to-pipe gross discontinuity. T = Range of average temperature minus the room a temperature on side "a" of a gross discontinuity. "b = Mean coefficient of expansion on side "b" of a gross discontinuity. = Range of average temperature minus the room Tb temperature on side "b" of a gross discontinuity. 6-7
D t, I = As above. gf Peak Stress Intensity Range In peak stress intensity range is calculated, for later use in the fatigue evaluation, as follows: fP,D /Dh o 1 $p 11 2t )
- K C l%
i
- W -v)
N E Ea AT 22 3 1 +KCE 3 3 ab "a a "b b + 1-v Ea aT -(Eqn.11) ~ 2 where: K,K'K, = L cal stress indices. for the specific 1 2 3 piping component being investigated. AT = Range of absolute value (without regard 2 to. sign) for that portion of the nonlinear thermal gradient through the wall thicknesg not included in AT of (Eqn.10). 1 Elastic-Plastic Discontinuity Analysis Where the primary plus secondary stress' intensity range, calculated by equation (10), does not fall within the elastic range (3Sm), the following formula (simplified elastic-plastic discontinuity analysis) are evaluated. =CI)M 5 35 ------------------------(Eqn.12) S 2 (lT g m e where: S = Expansion stress e = Secondary stress index for specific piping component C2 being investigated. = Range of moment loading resulting from thermal expan-Mi sion and anchor movements. Limit of primary plus secondary membrane, plus bending stress 6-8 M
intensity, excluding thermal expansion stresses: [0 M[ + C /P 0 ) C '+C 1 ( 2t j 2 21 ) 3 ab "a a ~ "b b $ 35,------(Eqn.13) where: C,C2 = Secondary stress indices for the specific 1 component under investigation. = Stress index value for the specific component C3 under investigation. Both equation (12) and equation (13) must be satisfied before equation (14) is used. Fatigue Evaluation li Fatigue criteria are satisfied by limiting the usage factor. The uasage factor is defined as the ratio of the number of system cycles between two load conditions to the number of cycles allowable for the alternating stress range between these conditions. This ratio is identified as U = n /N in subaricle NB3222.4 of the n n ASME, section III code. The number of cycles allowable is taken from a curve provided in appendix I of the ASFE Code and which is contained in NUPIPE. The alternating stress is calculated from: "b.ep--~~~~~~~-~~~~~---- Salt where S Alternating stress intensity dt K = Factor used to compensate for reduction in cycle e life in plastic cycling. = 1.0.for Sn 3Sm 6-9 M
Ovarh2ad Storage Tank m} s 5 g 4 9 10 ll HPCS Suction g3 Line 1 ss< ife to 'h ti Fuel Storage Well Flooding Line Y 4. L5 a 9 Mn" ag t+ 15 li 2 '.c., )( Il Node Point Spring Hanger Elastic Restraint A Rigid Restraint S.,. (Anchor) ~ 'La Valve z, 50 i s Y ~ HPCS SUCTION LINE 1 FIGURE 6,1 NUPIPE' MATHEMATICAL MODEL M 6-10
HPCS Sucticn Line Frca Overhead [ Stsrag3 Tank. t 1.1 30 si 4 st. t 32 y's 55 g ss 9 WA 41 l i 46 g p Y h c I 55 n 19 ,f '* n [ v' "i ss 4% (/ HPCS Suction Line 2 i M< so c-4 x l tso 8"
- 65 4 6 To Core Spray ss.
Header D N 2 i* g Y, j 40 6 6
- t. S High Pressure
'7 JY" type strainer Service Water n 'O' o ss hhandvalve HPCS Pump A Node Point y 8 17 g T). Sprin6 Hanger SL ,g u Elastic Restraint 4 v., R1 d Res raint rom S d Valve o. J is .+ 1 Valve with HPCS Pump B Eccentricity [ FIGURE 6-2 HPCS SUCTION LINE 2 NUPIPE MATHEMATICAL MODEL M_ 6-11
t e t I MIENIC lugl STIItse sesLYSIS F trCS Su infPirt IsifteelTICAL FSEL 19 1 5 11 amitEngse / am LNeilW 9 Etterelst LNB195 \\ W= IPS)W M PC3 I m t e-4 53010 SWFW1 [ k j= M ah (18810 JBWV i 5 4 FLE8IREIW W OEM mes i et t ,ggerga e t g.cagg e a m. F,'Tl zFLu fat = *
- i MIfWe ftM W. l.5 984/19 e
f I l y o,,,, l 2 x 0 FIGURE 6-3 HPCS SUCTION LINE 1 NUPIPE COMPUTER PLOT 6-12 WM
st Cic ne stess assLists y Mrts su BWIPE MilWWICE. ISEL Ef 3 5 1I l esa rarename W E Leset s 3 sempstet test m w-WGIS SW Q l O. SE M y 4 SSSIS SerFWI==== n 4 - FttelSE M .-== j l l E X setesse esse s.am .am 4 3-fPLM IKI e4m ggy pense W. t.se semage. 11 r> s n. - y.,at;. ssas ,,s, 8 3 222 I hm _ _ y las / b an a =-n i 4 g er i 42 i s e l 41 SCD rtD l. l FIGURE 6-4 'HPCS SUCTION LI'NE 2 I NUPIPE COMPUTER PLOT 6-13
- 7. RESULTS OF ANALYSIS The detail results of peismic and stress analysis of LACBWR High Pressure Core Spray Suction Piping systems are contained in Reference 16.
Appendix A contain the NUPIPE input data such as pipe mass and section properties, pipe supports stiffnesses, concentrated weights, digitised seismic spectra, and seismic anchor movements. Appendix B contain the support reaction loads due to various lead cases and accelerationsdue to seismic load. 71 HPCS SUCTION.LINE 1 The modal analysis of HPCS Suction Line 1 indicates 13 natural frequencies of vibration exist below the rigid response frequencg4 of 38 Hz. These are shown in Table 7-1 together with the modal participating mass fractions for each mode. The fundamental frequency of 3 12 Hz represents the x-direction horizontal displacement at -node 8. The nost important mode in terms of mass participation is mode 3 (8 32 Hz) which represents the x-direction horizontal displacement of HPCS Suction Line 1 at Node 25. The maximum deflection due to the SSE seismic inertia loading is 1.08 inches at Node 8. For a flexible piping system this deflection is acceptable. The maximum seismic acceleration is 1.44 G'at Node 8. Figure 7-1 through 7-2 represents Class 1 piping stress analysis results together with the Code allowable stress values for HPCS ~ Suct1on'Line 1. The maximum primary stress intensity of 11 37 ksi, resulting from Service Level D load combination which included SSE Seismic event' occurs at Node 1 (HPCS Suction Line 1/over head storage tank inter face) is considerably smaller than the Code allo-wable stress intensity of 48.0 ksi. The maximum primary plus secondary stress intensity of 36.19ksi due to Service Level D load combination which included SSE Seismic event occurs at Node 18 is smaller than 7-1
the Code allowable stress intensity of 60 ksi. The maximum allowable number of stress cycles based on the maximum alternating stress intensity of 18 52 ksi at Node 18 and Figure 1-9.2 of ASME Code 6 Section III Appendices, is in excess of 10 cycles. The above analysis indicates that the HPCS Suction Line 1 is adequate to sustain the effects of the SSE seismic event. The evaluation of the piping support is included in section 7 3 72 HPCS SUCTION LINE 2 The pertinent natural frequencies, of the lower 20 modes of vibration of the HPCS Suction Line 2 together with the modal paticipating mass fractions for each mode are given in Table 7-2. The fundamental fre-y quency of 3 26 Hz represents the x-direction horizontal displacement-a; Nodes 55,56. The most important mode in terms of mass participa, tion is mode 4 (8 59 Hz) which represents the horizontal displacement of HPCS Suction Line 2 at Node W6. The effects of 'nigher modes L%25 4 Hz) is adequately accounted for in the NUPIPE program by applying static loads in proportion to the non-participating mass times the zero period acce'.acation. The maximum deflection due to the SSE seismic inertia loading is 0.67 inches in horizontal x-direction at. Node 55 For a flexible piping system this deflection is acceptable. The maxi-mum combined SSE seismic acceleration is 1.63 G at Node 64. Therefore - valves in the HPCS Suction Lines should be seismically qualified at 1.63 G acceleration level. Figure 7-3 and 7-4 represents Class 1 piping stress analysis results together with the Code allowable stress values for HPCS Suction Line 2 The maximum primary intensity of 15 33 ksi, resulting from Service Level D load combination which included SSE seismic event occurs at Node 70 and is considerably smaller than the Code allowable stress intensity of 48.0 ksi. The maximum primary plus secondary stress intensity of 32 93 ksi due to Service Level D load combination which included SSE seismic event occurs at Node 70 is smaller than the Code allowable stress intensity of 60.0 ksi. The maximum allowable number 7-2
of stress cycles based on the maximum alternating stress intensity of 37 36 kai at Node 49 and Figure 1-9 2 of ASME Code Section III Appen-4 dices is 9 x 10 cycles. The above analysis indicates that the HPCS Suction Line 2 is ade-quate to sustain the effects of the SSE seismic event. The evalua-tion of the piping support is included in Section 7 3 73 PIPE SUPPORT EVALUATION The pipe supports for HPCS Suction Lines were evaluated for the Services Level D (faulted condition) load combination consisting of: DW + TE + SSE (inertia) f SSE (SAM) where: '? DW = Deadweight TE = Thermal expansion including thermal anchor dispalcement SSE(inertia) = Safe Shutdown Earthquake inertia loads SSE (SAM) = SSE Seismic Anchor Movements This combination is conservative since it conservatively assumes that the maximum support reaction loads due to thermal expansion, SSE inertia loads and SSE seismic anchor movements occurs simulta-naously. The resultant support force and movement so obtained was then compared with the similar loads used by Nuclear Energy Services (NES) on the pipe support evaluation / design. Where the above comparison indicated that the NES design / evaluation r6 action loads exceeded the SMA faulted condition loads, no further evaluation of the support was conducted noting that safety margin M
greater than 1.0 must exist by definition. Conversely, 'for those sup-ports for which the SMA reaction loads exceeded the NES reaction loads, the support design was verified either by comparing the available cargin of safety to the increase in the loads or by detail structural calculations. The evaluation of the HPCS Suction Line 1 and 2 pipe supports indicated that the supports are adequate to sustain the effects of the SSE event. h 9 l i l 7-4 M i
l TABLE 7_1 HPCS SUCTION LINE 1 MODAL FREQUENCIES AND MODAL MASS FRACTION SPECTMAL ACCELERATION VALUES =S0r EAEO P E c
- C O.-- _ - 4 G )... -- Y.(U.._
-- 2 ( O 1 3.1172 .320799 1 0779 .3087 .4e00 2 4 5631 .219148 1 1126 .75 16 .9198 s a_ toga _t?nt'* ---1. 1.530.._ : T* 23
- 9.126 4
9.6598 .103522 1 0017 .6250 .7499 5 1m.7410 .05?734 .5926 .2384 .5500 c ._.1.2. M.Ia _n a a 7t n,__ _. 5;.3.7
- 273a
.553a 7 20.4475 .048906 .5555 .2011 .4991 8 22 2345 .044975 5377 .2056 .4647
- aa
? 6 - I ' Q.7.__ 4 34.22S_. -.4 9 6 4.. 4 103_ - e 10 27.2218 .036735 .4896 .2100 4600 11 25 1925 .035470 .4A 30 .2100 .4600 ._.1.2._ _ _ _ 29.3 i 15..._.33.3 3 4 3.. . 4 e.2.4 .2100. -... 4600 13 33 4720 .025993 .4R00 .1876 .4713 2 8., M00AL MASS FRACTION 'O O E 1 Y,,, 1 1 1 .1726E+00 . 6 3 a c t. 0 6 .1122E+00 S 152ml -02 .4644E-03 . 25 7 9 E + 0 4_ - 3 .2779E+00 .32572-02 .1242E-01 4 . 5 58 8 E -0 2 4349E-03 .7453E-04 s _ a s a ar.n* _ _412.23I+00.-._ J 4C, n a. 6 316 5E -01 44 94 E -03 . 313 7E -01 7 .18 0 3 E -01 .15 3 0 E- 01 .12 76 E-0 2 t9 9 2 r -0.1 - _ _.14 h3I s.u1_..__ . 39 5 6E -0.1-d 9 .4971E-02 .1119E+00 . 55 4 4E-0 4 10 .1202E-01 .4710E-01 .1859E-01 11 7 27 n F -o 1_ _,,, .32,&QL-0A..........A14er.a1 12 .2241C-02 .1443f-03 .1152E-03 13 . 78 3 0 E -01 .30 74 E-02 .1542I-02 T o r ii etip .7311r.00 .. _. 3 ag g f.f.aa _._, _. a n s 7 r. a.D.__ M A X IM L.P. AIGID B00Y FACTOR s P S )r( 1 -SCH ( L ( !) + PHI (!)) x y 1 t c 0.ac a3...._... _.1.1..:.3 E.+ al.. __...laa.aC + 0.1. - 7-5
I TABLE 7-2 HPCS SUCTION LINE 2 MODAL FREQUENCIES AND MODAL MASS FRACTION Is7 tsp 0La7tn spec 7aat acettena710m vat.ucs res spec 7 eve 1 k FRES. Pf0188 X40) Y Z te k a... s.as r se e e.4454
- s. easy 3
S.0719 0 197143-0.7300 0 9006 0 5977 3 7.4433 0 133630 0 6800 0 4019 0 6160 e.5E M IT54ea u.eefs seeTIf ^ s.6165-3 0 9470 0 111030-3 4749 0 4279 0 614S b 10 1203 0 898735 9 4549-0 0880 0 6470 e aa...wr v. 4aw u.eaan seggsa s.a937 S 11 99356 0 083379-0 6333 0.432lf 0 5671-l 9 13.5881 0 473917 0 6120s 0 39S2 0.4874 a....r1 . r..
- v. ease u.avay s.geev 11 34 4844-3 467308 0.5419 0.3430 0.4963
. 13 IS.2293-3.460443 0.4949-8.3295 9.4475 aa "le.a e w esase e.gavs e.evem u.gsrw 14 18 2349 0 494043 0.4100 0 2648 0 3893 ~h. 13 14.7799' 8.463351 0.4106 0 34GD 3 3433 an an.eaus s,.- w u.g a ss.
- s. sva s.a m 17 22.4354 0.440381 0 410t 0 21M 0 3804 18 23 2240 0 443089 0.4100 0.4143 0 3061 i
av sw...., u.eg;_ -
- s. esse u.am es
- s. aves t
2 08 25 30&P.1.439 W 5 9.4108 0 2308 0 3906 i i j NEGAL M&B3 FRACTISS = N 1 T Z. 0.'S890E=63, 0.3741E=49 0 374M=43 1 P 9 1031E*09 0 2099fbeg
- 0. 0101E=6 2-a u.aswas =va a.avagg =sy s.aag za-s a 8 1710E=43 0 3003EM40 0 1820tt+09 5
0 3041E=03 0.4134C-47 8 386M-01 T' s.._.= a s.een,s-se s.guias=sz 7 0 9374E=83 0 232 M-4! 8 1397t+0t S 3.194M-01 0.1934t=01 0.312 0C=0
- 1 e
x -sa
- s. e.as=ws -- T.:WW1IEGWI 15 9.4SS7t=42 0 10&at=48 0 3904E=01, la 0 3300E=GS 3 1144C'=43 '
O.4647t=42 as
- u.....-. a -
u.auass=sw s.aa ves-se 13 0 1970E*00 0.8640E =0E 0 293E=44 14 .0 1019t=93 0 2444E=42 0 480aC=01 "T5 TETIWGE*WE "T33555ESTE WETTTwayr 14 0 2644t=43 0.129ttbee 0 8333E=01 .r5 S.494&E=83 0.1734t=84 0.aS89E=8 2 se e.,arou wa s., ass-.=
- s. ag r es -s a 19 9 294SE=01 0.4772t=43 0 1499t=42 at t.1637t =#1 0.7543C"=42 0 2329C=0*
su s m, = u.seras u.as. u.su s.senes.se RAEIntst a1918. SOST pac 70t a maatt-timetLgga e pw1gI33 I_ Y .........a .. a a. .s a. 7-6 r l
Ovarhotd Storago Tank i au 9 Q 3 + 8 6 7 9 to in \\L HPCS Suction ss. Line 1 0,*, 14 to bg,'h g, Fuel Storage Well Flooding Line eo L5 h h M tttf k g. L5 _i
- f
X 11 So Service Level D (Paulted Conditions) Design Pressure Dead Weight x + y + z Earthquake (SSE) I . y* Max. Primar Stress Intensity = 11 37 ksi (At Node 1 Allowable Stress Intensity.2.4 S,* 48.Okci li 3o @ s Y FIGURE 7-1 HPCS SUCTION LINE 1 Class 1 Stress Analysis Compliance with ASME Code Equation 9 7-7
Ovarh0ad Storage Tank m'b a uu 9 I' D %% et~ A 3 9 h 3 , 8 G b',' g io 14 \\L HPCS Suction 13 Line 1 i 16 to da y z. Fuel Storage Well Flooding Line b '* j 2,3 @ %= { z. IS Jf g z[' %c., x . 27 % fo Service Level D (Faulted Condition) Operating Pressure and Temperature Seismic Anchor Movements (SSE) x + y + s Earthquake (SSE) Max. Primary Plus Secondary Stress i Rk Intensity Range Sm = 36.19 ksi y (At Node 18) o , Allowable Stress Intensity Range 3 0 Sm= 60.0ksi 'C ' gg Max. Alternating stress Intensi;y S, = 18 52 kai (Node 18) Max.,KIlowable No. of Stress Cycles. N= 106 3o \\ P FIGURE 7-2 ${PCS SUCTION LINE 1 Class 1 Stress Analysis Compliance with ASME Code Equation 10 7-8
HPCS Sueticn Line Pr a Overhead q Stsraga Tank .u x 2.1 50 51 Sb c j N5 5 g; g M ! Eg y) D SW y As 88 h: c 4 33 v a w vi a gie no n' $ *N . se, ( 9* HPCS Suction Line 2 [42. @ <A x , 2,60 p 4* 65 To Core Spray 53 g%h b vn ( s High P essure Service Water ,.ac. A 4 6< ~ a:5o s. vna u is m ,8 + HPCS Pump A 73 17 -.\\ Service Level D (Faulted Conditions) 71 8L 16 g Design Pressure 40, 4 gg if Dead Weight x + y + z Earthquake (SSE) prom Sodium Pentaborate U,, 45' Max. Primary Stress Intensity = 15 33 ksi Tank ( At Node 70) i' Allowable Stress Intensity. 2.4 S = 48.Oksi O m FIGURE 7-3 HPCS Pump B HPCS SUCTION LINE 2 Class 1 Stress Analysis Compliance with ASME Code Equation 9 7-9
HPCS Suetien Line Frca Overhead q St:ragi Tank xx u 30 si 4 55 Me s,@ %'I n 'Im as se ,[ 55 35 no no h# & '[41 @N . ss HPCS Suction Line 2 / @ <. A x ,2so 3 p 6 4.s To Core Spray b (3 hr,
- E 3
4D k '68 GS High Pressure c,7Q Service Water N .o*1 h
- I ss
+ HPCS Pump A Service level D (Faulted Condition) U N Operatird Pressure and Temperature L Seismic Anchor Movements (SSE) M g g 86 x + y + z Earthquake (SSE) g P Max. Primary Plus Secondary Stress From Sodium Intensity Range. Sm = 32 93 ksi pentaDorate B"7 gg, ( At Node 70) i' i <y Allowable Stress Intensity Range. 3 0 Sm = 60.00 ksi
- '8 Max. Alternatir Stress Intensit Salt = 37 3 kai ( At Mode 49 g
N4< Max. Allowable No. of Stress Cycles. N = 9x10 FIGURE 7-4 HPCS Pump B HPCS SUCTION LINE 2 Class 1 Stress Analysis Compliance with ASME Code Equation 10 7-10
- 8. CONCLUSIONS The results of the seismic and stress analysis of the HPCS Suction Lines 1 and 2 and their support system indicates the following:
1. Deflections in the piping systems due to dead weight, and the specified SSE seismic loads are nominal and acceptable. 2. The fundamental frequencies of vibration of the flexible piping systems are reasonable. 3 The maximum primary and primary plus secondary stress in-tensities resulting from appropriate load combinations are within the ASME Code allowable stress intensity values for Class 1 components. '? 4. The piping support system are adequate to withstand the normal and abnormal loads including the effects of SSE. The acceptance criteria for the HPCS Suction piping and their support system are consistent with licensing criteria as spe-cified in the ASME Code, current NRC Regulatory Guides and the Standard Review Plan. Therefore, it has been concluded that the HPCS Suction piping and support system meet the intent of the current licensing criteria. 8-1 M WM
- 9. REFERENCES 1.
Nuclear Energy Services Inc., Danbury, Connecticut. Report NES 810090, " Seismic and Stress Analysis of the LACBWR High Pressure Core Spray Suction Line Piping System", July 1976. 2. Nuclear Energy Services Inc., Danbury, Connecticut. Report NES 810091 " Seismic and Stress Analysis of the LACBWR High Pressure Core Spray Discharge Line Piping System," May 1977 3 Gulf United Services Report No. SS-1162 " Seismic Evaluation of the La Crosse Boiling Water Reactors" dated January 1, 1974. 4. EG&G "LACBWR Containment Building Independent Seismic Analysis", Attechment to Letter from D.M. Crutchfield (USNRC) to F. Linder,(DPC), dated October 18, 1983 5 ASME Boil.er and Pressure Vessel Code Section III, Subsection NB Class I Components, 1983 Edition. 6. USNRC Standard Review Plan 3 9 3, "ASME Code Class 1, 2, and 3 Components, Component Supports and Core Support Structure 1981. 7 NUPIE II/TRHEAT - Piping Analysis Program User Information Manual. Control Data Corporation, Revision K. May 25, 1983 8. Pittsburgh Piping and Equipment Company Drawing Nos. 1087-29,-30,-42 and 35202. 9 Sargent and Lundy Engineers, " Specification for piping system La Crosse Boiling Water Reactor, "LACBWR #256. WM. ~
10. Nuclear Energy Services Inc. Danbury, Connecticut. Report 81A0042, "High Pressure Core Spray Suction and Discharge Pipe Supports for the La Crosse Boiling Water Reactor". Revision 4 dated March 22, 1983 11. Nuclear Energy Services Inc. Drawing 80E0040 Rev. O. "LACBWR Pipe Hanger Base Plates". 12. Dairyland Power Cooperative, " Field verified, as-built" informations and drawings of the HPCS Suction and Discharge System at LACBWR ", P.C. Sampson (DPC) to C. Finnan (NES), dated March 1, 1983 13 USNRC Regulatory Guide 1.61, " Damping Values for Seismic Design of Nuclear Power Plants". October, 1973 14. USNRC Regulatory Guide 1 92 " Combination of Modes and Spatial Components in Seismic Response Analysis". Revision 1. February, 1976.- 15 Allis-Chalmers, "La Crosse Boiling Water Reactor Safeguard Report Volume I and II: LACBWR #283 dated August 1967 16. Dairyland Power Cooperative, La Crosse Boiling Water Reactor (LACBWR), Seisnde and Stress Analysis of HPCS Piping Systems Project SMA-CT 30001.01: SMA-CT/DPC Computer Output Binder #1. B!h 9-2 we -ame
ADDENDitM I EVALUATION OF DISCREPANCIES DISCOVERED BY LACBWR RESIDENT INSPECTOR BETWEEN i AS-ANALYZED AND AS-BUILT CONFIGURATIONS l l l 1 =
1.
SUMMARY
This report, prepared for Dairyland Power Cooperative is being issued as an addendum to the original report. " Seismic and Stress Anavsis of the High Pressure Core Spray Suction Line Piping System" for LACBWR, SMA-CT Report 30001,01R00 August 1984. The purpose of this addendum is to account for discrepan-cies discovered by URC resident inspector between the "as-built" configuration and the analytical model of the HPCS line, and to modify and correct the results previously provided in the original report. On the basis of a combination of both quantitative and qualitative assessments, it has been found that the margin of safety of the as-built HPCS line, although reduced from that previously reported for the original model, is still adequate. 2. DISCREPACNCIES
- 1.
Dimensional errors exist between node 41 and 44. The shutoff valve between nodes 43 and 210 is actually a check valve. 2. A 3 ' inch "Y" type strainer and hand valve with pressure gage was not included in the computer model between node points 82 and 83 3 The relief valve line from the pump discharge to suction line was not in included in the analysis. Figurer 1 and 2 shows the discrepancies. Their effects are discussed in section 3
- Reference I-1 : DPC Letters, G. Lange to I. Husain LAC-10278 and 10308 dated October 22, 1984 and November 13, 1984 respectively N
W HPCS Suetien Line Prca Overhead m Storage Tank sw OEscaterions bO-to-col 3",dwaJb, 3 Ausramam Ptdr,E-7-N I 150 m j So S5 'L6 -**I e k8 A& Srzoso.3 g_, M,h D 4m 5L ! Sa-26 ci,.f j 'N 8 51 AS '%, % l $4 d' 4f A'1 gs sf 2 )- I ss h h ww 2 SY S* ^ s se, k N HPCS Suction Line 2 z/. N L. 1s, f To Core Spray [ l '* 65 s,g. A b i Header ( g.,. 5%*Y.. i s i WssM LL 1 AD J .'O-N~ ,p M@ I High Pressure i. Service Water d,6 a.s 36 / e Mode Point = = s f adj ring. Hanger 39 g S$astic Restraint i / E g 8t, f ,g p qb From Sodiusa, J Rir,1d Restraint Pentaborate ggesC-p y, (Anchor) (REF.I-1) W~# ~ 1' Valve g g e N// i Valve with gyg HPCS Pump B Eccentricity [ FIGURE l HPCS SUCTION LINE 2' NUPIPE MATHEMATICAL MODEL l I
STtAmMtit. (so.2o-co3 i ,3 a - n. y .u.i['*5 'yHPCS Pump A ,h,,h '[ ,[a 9 lu ,a ' ~~ is p i., " A< f'I d,, 9-Nr.. 9-imr ~ b nn-ne-v..a., ~,,s. m & s1/ ./,e'o -
- sj
~.s.w, w, -. % e N/ X.. 1 z u ~. s s-a - s ~ ~ a s ~... y N.,) 7* , es s 33 h ae, s3_33. 3i, u y[* ~ 4tu S. ~ - w ~s d.' 'C qq. s HPCS Pump B 4'" HPCS SUCTION LINE 2 FIGURE"4 (REF.I-1) ummer
Dairviand Power Cooporativa / 7 m
- 30901, m
uCWR eV f 14 Days 7-15i75 mECHA0KS coesasons """""* RSSOCIATES me. eV f# DaTS-~ I/al F wm HPCS Piping Svatem ~3 4 6 VAL.dAA TLBM o V: bi s c.9.E PAM dY MO I HPCS Suction Line From Overhead s q N p Storage Tank -i J .o A S - AN ALYEE b y Cod FIGdRA riot 4 f, f. J o st , t'- %,,,. l -J, q\\ N 45 )? 4t i %'in. ,, l,, r g4 Qg,a$f ',*,, / -h so / Q; ACT u AL C_ordFI - s G u R A T io bl Y t To Core Spray /* i Header / 40 mm High Pressure Service Water l l l b5 12) C. A T ED ABouE THE V'"RT\\ CAL sap o R T 15 Mo\\lE b j CLOSER To T HG CHEcx VALVE, Thr S ut LL (AEbucG Tine S rRE55E5 \\ 4 "T ME PtPiNG SyS T eM bue. To 'DtrWb \\AElGHT l 1 ANb s)ER 4 i C A L SEE15 Mtc Lo Ab TBE. SUPPORT EEMTtoN LoAb ygLL. tMcRE%SE HeAO (EVcR TH dE i5 ENG H W RG ' M L N tee mppop t-bES\\ G N TO ACCONOMME U b'I b $'E I N T HE. 9,Ehc."T1oM LoAb. As Twe y ALvc u EriG.H T \\A S Eb \\ u "T WP AN AL.15i 5 \\ _S C.oRREcT, TMRE WLL EE NoGMFGCT OF C M d Gio c, T uss swu T ofr, VALVE To A CHECK V /\\L\\/E.
ymDairvland Power Cooperat cam 2-y 7 m y'30QO1. IM uCNR cars 115 i85 mECHAnKS coesisente sv RSSOCIATES caso. sv E A' ears "I'oI S wm HPCS Piping Svatem 32 EV Al e r i og oF bis C.RE PANC.rE 5 M O. "Z. E 3 es %,,,o ;
- o
/ 4-p Pt.s PuM P A ,nl
- g e,
.%. 7' u o ,w T t +, A 5 - A9 A L.YE.Eb i s.# g. A'< - C c N AStu R A, t o M Prom Sodium b N '1~,- Pentaborate D' N. > Tank i ii., 4 's ' y W ~L HPCS Pump D N $,Y N s rman c,0 2. o. 'd*'sht. 30g33 Z X 77 ,7 u Ace v Auve s s.n... 3,viss. 68 ia teneua s m, u c e rar.. s.5 % 8 4 W t* d - u p e s 'nwp 4
- L 13 41 3g 8
eg RE LIEF VALVC L 'NT = ... _ #8.q, 8i From Sodium Pentaborate Tank NB7-45* s^ "8 to Ac Tu AL ,9 cot 3F tGuk AT)0 N g, HPCS Pump B llPCS SUCTION LINE 2 i hW AL45)s b A f A P)PE pro penyse s - i l 'E"Sch to - 'Dg= 3 T" ; 'J c4L b e tuu t, o.2 i b M ouest ej h vb I = 3. o 2. i#,' S.e c h uu M oclulus.6 e l7 2*'" P Eh % S EM Mi c A c c El.R9 A T l o N ( A PPew brx A ) ER SSur K.E a,
- v. C W, "E -E62.
7,,..q G o.9 o Gi '2. o s G Fog tn94 W AL.tmi 5-rA Ti c L o Ab I N C E L4S E T HESE A CC E LG - QWT s o N G 64 \\*6
y,yuDairvland Power Cooparativo g g)C g,,,,, 3,, 7 3 p 0got, /N oava 2.15 lits mECHRAK$ coesisente NN av ASSOCIATES cause,av / 4 save41/oIPS m HPcs Piping syatem T R.ngu.T oRY UEMrH T eF \\ " REL.1E F Lt NE 7=.5 ( 7 s + 1 Q _ q, 5 gg = 1 z. 2. M ET wob o F A+J AL. isis TwiE. Mky\\ tau M S Te.csses' i N rw E-Pi Pi MG $45ieM bue ro THE Abbtii oN AL W e ic, HT S oF T ite s T R A l c, HANb VALVE 4 f ftE9' u 1L a CAGG AMb 1" REL1 E1: t i NE. @ t L. BG Co VA~TtW L# C ALc t.> L A TE-b usiMG vus Etgut v Asi S TA Ti c. L.oA b M E'-T Hob ( $6c t g o y H { g, o g g T 6 N b A9.D REdlE" L.) PL8N s.,. z-). M Ax \\ tNM M otA EM T buE. -f u Abt)Ttog/L. m d w eisgr. VER Tic AL (Mj 6uppo R r 15 PRovibEb AT N ober Vo Mis 4-10, 'I f 7 3 4-7 9 f M Av.r e u M.54 A 9 Fo E N ET*-ri c A L LoAb - pro 3Ec Teb LetSGTH. ort X-E PL A9G - + 4 -3"+ t ' & 3,- o. 7 r, 4 6. 7s" 4-3, 2 L,y 7 '- 2. + i )
== %-%. 5 %. j M 4Y. M o MENT 9~o Y'. c ep cn Te A TE'b L. o A b M=== E b_ y _8 TOTAL CoMCgN7R ATE d L.o A.b = P __. 5 o o 4 ~5 hz. + q.5 -= /,f> 51% M 465 x m.s t z r7 e, % im b 6 l max. Moren T lu E To seissMic. L o Ab 5,' E ARTM 67u AWt". '4 X 3\\hEd.T \\ oM - X-S u? PoR.T 5 AT ~7 et, '9 Y MAX. SPAM L ENG T H F u tt V - A C C El L"'E A ~T 10 M = M 0 3 Ed "TEt PIPE LEQ6FT% Okt MT. DLkNE 1 o & 'T + 3 ' 15 + ). + 10 77,73 S Lx = =
Dnirvland Power Cooperative g,,,, 4,, 7 a H 0001. vivLE uce sv T.H oats 215125 mECHROKS comussts """"" RSSOCIATES onus. av / // save 2th>lC wm HPCS Piping Svatem x-EAR Twt 9pte \\NE%m A t oAb c Py = G.G.s x 2.t ;xi.T = 7 \\ (o
- T \\ b-s DioMtW T
=Mx= ib.rX 7M M Nt. + o 8 = 2 I o3, 7 u>s 6 EA97 boo AYE pd Y 3)i rec _.T)og., Y sv %gtvs AT A.io,gr,13 g ;q 6 PA id L.ENGrTH L.3 = \\4-6 5 Lu. Y - EhETudu Aw_ TNGTs Ar \\ o AB =Py 6,6 T v o.qx i.5-89 '78 Ilo-3 c victAEN T M 89.18 x \\%J vi 4y. M y2 B I -= \\ L4+. o \\ios lu, Ehk7H6')6Ea i N1 'V-.- t.t R E c rg o g 2.- Suwon r s A T H ohEr5 wi e,7 3 EM . M N4 sU.O WG7H : Tvolce -feb MF W-fH oN x 'y TLAfdEE L.g e 7 '-i 4- \\ \\ ' 4 d - 3' A- \\'-o" Jr G 15' 43 o " \\ e.7s tw = l2. en tweune ) were. rm \\ o Ab = Pa = 66.s x.z os M.s- =_ 7 c4. T N N 2.o4 5 Y o 1T P'1 A %. v_. M oMew t M 7, 2-8 es. s, % im
- . M =. (M h My +^f C. o o 1 W N e.b $E 15 M i e-I\\10 MENT y
g n.= b.s.9 % b a
- e + (tes.3F].
-= s evz., % iu
Dairvland Power Cooporative STELKTURAL, PA8810' 7 'ah H 0001-mg MCNR I.M oars'21 51 8 5 mECHA0KS coesasenTo sY R$$OCIATES / #* SATE l/01 W m HPCS Piping Svatem 2 CHus. SY hst1E CobE STgEss c. ALcut. A rset45 W ik b?'f G T9es3 \\M Te:Hsi TM ( E 67u A r 1D 4 9 ) .= s.z. b M c z.1 M c = mom eNT bueTo t eA d u elcpr -t-S s e SE)5Msc_ \\ o Ab5 = \\ 2 )7 8 + 3 81 E 7 5 c6 o,9 16 m. E z..=. Poe 691 5 Tg.Ess 1Mbic.es
==7 9o7 Fo g Tens-AT N oDEES ~73 %. If 2. b g.y" I .3.oz y 't-o P R\\ M O'f 6 TP-EE55 i NTEM51 TT bug - T o b DDtit o N AL. ^ D5 =2. qs?* '.T x M = egGo.g),se =- a Gs %si 3 c2.. -2.- 5-Ive.56 hMkd C'YY<C d Wtwq da 7 3 = s.so t 8 sG = 1 i o G-IASC g, 79 4 8.% :: \\'7 3 o W 7 WA sk w ss Q = 2..q-5,= %.o Yse > ri.3o ts,
- c. K
ymDairvland Power Cooperativa paggio, 7 1 m y 0Q01. iH oars 2.151A5 mECHROKS consesente ucsR av /A oAve _2 i b r5 7 RSS M RTES HPCS Piping Svatem i omme, sv ASME C.obt: 5TRt;255 C. AL.C tAL ATiOM.5 Prim A RY + se.cotah%,M s Teess T NTER5s7 M EANGE (_. E e u A T) o n i o ) C.D_e. M c Sy = 2 z.T RAWGE OF t>\\ ot4ENT D u E T o S E ls. M ic_ L' 5 LoABS
- =- 36 72. 7 \\ be tk.
C = SecoNbARy 51Res5 ItJbt c.E5 2 2 597-Fo? T EIE. AT Nobcss 7 3, 8 7_. ' Ge.ceHbhWi 5 TRE55 \\t37ETD W D M "O /Cbl T' 0%' hM'C-L.o A bc 7-69 '2.-x 3S 7 2 7 x 3 s' 2 x 3.e 2., 5,9 I 6' 4 h.3 t = 5 ii' K 54 = i OMC Yd N Y[p 3 g 7 3 ::. T r+ 32 + 5,8-2. = 7 o. 7- %v )1.q2A s,r? 2 7 3 ~14 WM 4 97 MD d Sh-e Nund 99==.3 ( = fee. o \\C-3 ' ' y l > 2.3 7<+ ci c.e. 6d N o, ,$ hp,,,43 c,,h (kd gy (Qy*, ShPAS %g 9t - 4 st. q s icsi ( >7 37 *tsQ d %7o) t u3dL\\ u u = %i #
Dairvland Power Cooperativ" pagg 7y 10001. m lM oats 2 is 185 mECHA0KS consesemYe uCWR sY case. sY Z/? El# U """'"" AS$CKIATES DATS 1 Tm HPCS Piping System 'F mRes i 5 d 'l '+- OF rus w eSceT 5 M A-cT 3 o o oi o i Rm $Houl b 95E 9.ENJ\\ SE b AS IMb IC A TC b MLCW.* r.s N 4 8< ]. C(o "Q'+' czu, 3 5. p. ' 8 HPCS Pump A 4 c)n n '. /,, '6 5; N 71 0 g 96 ,g k q, 8: 4 Prom Sodium Pentaborate g 9 Tank es q, is fir @ 7-3 94 < HPCS Pump B HPCS SUCTION LINE 2 Class 1 Stress Analysis Compliance with ASME Code Equation 9 @n (GTB z.o.z g a 7 ' ', 8 ' HPCS Pump A a J t/u ,y Nvi 'i , y as From Sodium Pentaborate
- A 9
5, Tank 88 3 i3 ( 4.e 8-q4% FIG N 7 4 gpCS Pump B HPCS SUCTION LINE 2 Class 1 Stress Analysis Compliance with ASME Code Equation 10 SuPPo R.T ent At u A T \\ ota - i Su??oR r 9.dc rin N L 3 At>5 i N T we vic.s9i7y at: m e swan M
- 1ac aw w
- n. 2. %.
u eve, mess,s Awoo ne mm,a ia % E sue) M 7 3e gisy % N c c ota o M TE 5 M At_t i Nc MW IN brhc T) O K1 uAb.
b APPENDIX A LACBWR HPCS SUCTION LINE PIPING ANALYSIS NUPIPE ANALYTICAL INPUT DATA h 6 l
HPCS SUCTION a.INE 1 LACBWR 3CCTICf. AR WCRTIES Ct??!OC WALL ~ MODULUS DES:GN NSECT DIAMETER THICMNESS Wd!GHT COLO 1 0E-6 FRESCURE != Ik LS/K.T
- e!
S ! 1 6.625 .2800 33 24 26.00000 100 00
- 1. san
_Sttn iv_ p ga nanna ina:na .i e 3 3.500 .2160 J,1. e 8 28.30000 100 00 e bCEr.TFATCO kCIGHTT . CO E..--..- EE.IC3 ..t.3 3L_..___.ai LSH L _ __.. ..u L E.. hCIGHT -... -. \\ L6 L8 LB 2 5 000 27 26.500 50 26.500 ca RTH GU AK E 4'1CHOR 0IS:LA.CEMEN73 TRANSLATICNAL SE T t.0. .40 0C x y 2 IN IN IN 1 1 .41500 0.00000 0.00000 +1 14 .22600 0 00000 0 00000 i an .tieGu v.uuuuu u.uuuvo 1 19 .06h00 0.00000 0.00000 i 1 0 00000 .05380 0 00000 e s u.uuuuu .umasu u.uuuuu 2 7 0 00000 .05380 0 00000 2 1 0.00000 0.00000 .60000 2 ~ ~~ is C.0CQUu n. s (TtT0 0 .04 i00 - 3 16 0.00000 0 00000 .25500 3 19 0 00000 0.00000 .12700 WM A-1
HACS StJCTICh LIf4E 1 LACBW4 i $1ATIC R E S TR A fie T TABLE " 00 E 'YFC .-&TI FFE SG------41 A E GT-I C's SuppeaT-TRANS LS /IN CROUP RGT IN-LB/RA0 .i626435E+12 h 1 1 TR A t45 .1- - T.R a.NS. -.5 62 3 435E + 12 --
V-----
1.-..
1 T A A /45 .5628435E+12 2 1 1 RGT .5628435E*12 X 1 1 . _ nOT-. ..5626435C+12 Y 1-.. 1 aci .562e435E+12 2 1 Ji 19 TRANS .6 0 3 4 312 E+ 11 X 1 ic 7 A i *2 9 .6 034312E+-1-1 . -V... -- - 1 19 T A A *4 h . 6 03 4312 E+ 11 2 1 19 R3T .6034312E+11 x 1 1e alt. 6 03 4 312C+ 11-a-- Y 1 19 R0T .6 03 4 312L + 11 2 1 30 TkabS .1446b20E+12 x 1 3 0.-.__I.tA MS. -.-. 14 4 652 0 E +.12 Y... -.1- - 3C inA.\\S .1446520E+12 2 1 30 ?. 0 T .1446520E+12 x 1 10 . 4 4T..-..... 1_4 4 65 2 0 E+ 1 L Y --.1..... 3C RT .1446520C+12 2 1 4 TRANS 4740000E+06 Y 1 1 T 4 H.A -.-.. 133 0 0 0 0 E
- 0 6.--
.Y ..---l--- 14 TRANS .1100000E+05 x 1 14 TP A.45 .1169000r.+0h 2 1 ia Tane . t 1 7 p g e n t,a s._ _._, _ _ 4 1 16 TRANS .1996E00E+07 Z 1 23 TAANJ .4157000E+06 Y 1 { _WM A-2
HPCS SUCTION LINE 1 LACbWR SEISMIC R ESPO NSE SOfCTRA - SET 1 INT ERPO LAT I ON uP T ION 4 LL 3 --- - X -E A.R T HO U A K E Y-EARTH &UAKE - - - - - --- E A R T HQ bA K E FEEC. ACCELFRATIOh FPEO. ACCE LFR A TIOr. FREQ. ACCELERATI0h HZ (G) HZ ---(G) H2 (G) - .400 .050 . 4 G O - - - -,010 - - - -- - --. 4 0 0 -- --.050 .600 . 150 .600 .024 .700 .150 .750 .300 .700 .050 1.000 .n00 .E50 .700 1.000 .230 1 200 1 400 1 000 000 1.4 00 .230 1.350 3.150 1.350 3.200 1.740 .25G 1.780 3.150 1.550 3.450 2.300 --.26 0 2. 3 0 0 ---- 1.300 2.050 3.450 2.400 .240 2 900 1.150 2.350 1.P00 3.1 30 .30a 3.000 .880 3.200 1.000 4.300 - .620 4.000 .880 4.000 1.000 4.9 00 .920 5.700 1.000 5.000 1.200 6.440 .920 7.500 1.000 6.500 1.200 7 400.
.840
- 8.600 .970 6.603 1.150 11 500 .450 9.900 .700 e.700 1.150 13.200 .410 11.500 .650 12.000 .640 15.500 .310 - 12.500 .550 27 000 490 17.600 .270 17.800 .550 50.000 .470 20.000 .200 23.000 .450 100.000 350 24.000 -- ---. 21 0 --24.000 .460 0.000 0.000 32.000 .210 31.000 .4R0 0.000 0.000 36.000 .200 100.000 .400 0.000 0.000 44.000 -.160 0.000 0.000 0.G00 G.000 58.000 .160 0.000 0.000 0.000 0.000 100.000
- 135 0.000 0.000 t
.y. A-3 -wm
o /* t t HPCS SUCTION LINE 2 LAC 8WR i SECTICh PRCPERTIES CUTSIDE WALL M ODULUS DESIGN NSECT DIAMETER THICKhESS WEIGHT COLD
- 1.0E-6 PRESSURE IN IN LB 'FT PSI PSI 1
3 500 .2160 ,11 88 28.30000 100.00 2 3.500 .2160 11 88 28.30000 100 00 a 0.auu .zteu 11.co z6 4u000 100 00 4 3.500 .2160 11.68 28.30000 100.00 5 1.900 .1450 4.32 28 30000 100.00 o A.su0 .A*su
- .a2 zu.couu u Auu.uu 7
1 900 .1450 4.32 28 30000 100.00 8 2 875 .2030 P.98 28 30000 100.00 5 1.v0u ".196u
- .az zu. c o u u u avu.uu CONCEhTRATEC kEIGHTS NODE W E IGHT NODE WEfGHT NODE WEIGHT 66 L6 Le as so.uuv av so.6uu zlu zu.uuu 100 10.000 63
'11 000 71 234.000 102 90.000 76 53.000 103 13.000 365 io.uuu
- n. u en.00u sc ev.vuu j
9a 20.000 23U 50 000 101 110.000 72 214.000 104 13.000 61 53.000 J Ildk A-4
i HPCS SUCTION LINE 2 LAC 8WR STATIC RESTRAINT TABLE N00E TYPE S TIFFNE SS D IR EC TION _N OD E TYPE ._ STIFFNESS D IRE C T!0* TRANS LB/Ih TRANS LB/IN ~~ - R0i in LB7RAC MUT"IN-ES7 RID 15' TRIKE .EU34312 E+'Il x "220 TRANs --"iT 58 5 00 0 E+ 0 5 - Y 19 TRAhS .6 0 34 312 E+ 11 Y 45 TRANS .148 3 0 0 0 E+ 0 6 Y 1.5 TRAAS .6 0 3 4312 E+ 11 Z 52 TRANS .6173000E+06 Y 15 RTT' . 6'03 4 312 E+'11 x si iR% n5 .5140000Evo5 1 19 RCT .6034312C+11 Y 25 C TRANS .615 0 0 00 E+ 0 4 X 19 ROT .6034312E+11 2 25 C TRAAS .2740000E+05 2 -'--" M u TRAN5 .EUT43T2DTI A b 7~ ISAns .6125U00ETU5 1 '40 TRANS .6 03 4312 E+ 11 Y 66 ' TRAhS .3555000E+06 Y 40 TRANS .6 03 4312 E + 11 2 66 TRAhS .4 0 0 0 0 0 0 E+ 0 4 2 -~40 RUT .603 4TI2r+ 11 - A zu u iRans . 1 % i 9 0 o c.+ u i 1 - 40 ROT . 6 03 4312 E + 11 Y 28 0 TRANS .1170 0 0 0 E+ 0 5 Z 4C ROT .6 03 4 312 E + 1.1 2 320 TRANS .1427000E+07 tf aC TWANS .3059107DTI A 320-iRANS- . i l70 00VD US. - ~Z 5C TRANS. .3 05 9107 E + 11 Y 77 TRANS .142 7 0 0 0 E + 0'fl Y 50 TRANS .3059107E+11 2 77 TRANS .1170000E+05 Z 5 0--- n ci .TU59 T07DTI A 41 u TRKNS .5U72300!*07 1 ~~ 50 RCT .30591076+11 Y 410 TRAhS .7770000E+05 2 50 RCT .3059107E+11 2 t 9-- iMKNs .EU3 4312E+ 1 r x. 79 TRANS .6034312E+11 Y 79 TRANS .6 03 4 312 E + 11 2 ' 79 'R CT - "' 6 03 4TI2 E+II A 79 ROT .6 03 4 312 E + 11 Y 79 RCT . 6 03 4 312 E + 11 Z y 4-- TR7h S - 4 6197887E +'I D x 94 TRAhS .6197a87E+10 Y 94 TRAAS .6197887E+10 2 1 ~- 9 4 - -- R CT ~ -.619 7 8 87E+ 10 x - 94 ROT .6197887E+10 Y 94 ROT . 619 78 8 7 E + 10 Z -- 9 8 ~" 1R A NS--- .6197887E+10 K 93 TRANS . 619,78 87 E + 10 Y 98 TRANS .619 78 87 E + 10 2 '9 G ROT ' 619 7887E + 10 -- ' I - 98 ROT . 619 78 8 7 E + 10 Y 98 ROT . 619 78 87 E + 10 Z '30 "'TRAhS ~.2730000E+0S X l 30 TRAhS .2553000E+0/ Z 32 TRANS .1104000E+05 X - 32 TRANS --' 4116 9 0 0 0 E+ 0 S -Z-39 TRANS .7o10000E+05 Y M 42 TRANS .7910000E+0S Y e2 0 'TRANS~ .2E8'5000E+05 X wem A-5
81 O i l m O'O's O c b O i sur M 50 oOOmOc DOODO@ 400300 e y C NepQQQMOOOOAOM MOOpMm 5 M O t0 C Q O O O O O. M M. @. @e Q fe WOf0@ @ @ O fe M. M O. M M p C. C. O O t w e e o e. . e e e ei. e e w a W N N OO DO g o Z M at M 4 W N OO DoO DCC oOO 3OO DQOOOO pOO oOO 3O eZ OM 3 O CD p M O p O O P O O OOOQQpCOpOO pp 3 f4 3 Me O @ f* 3 M M %e@
- OO OONOObQOOOO DC l
W e o e o e e o e e e e e e o e e e le e e e e a je e e e e W M MM MNN NeO mMMlhOe'N6ODQO.DO L MM MNN OMMO a J J l g Z l l l h I n i l M M 3 4 go G U P al-4 = e J G w M ar m co m eOm m@m.seQDOC m O O o c c is c o imOO mO. N W KC OM COM NNein C O 'N O O b Q M M Q O La O N iN o O 10M 4 g dw OO DMM NNN'NMe e e m m @ O tr e min N N N N M MM W J q d e e e e e e e o e e o e o e o e e o e e e e e le e e e o E O 3 4 g .e e m. a u I s J E l Z U 4 I m i I, z e-uJ i i O E 4 I ~ M W I N j CQ00060oOO00oOO0000000000000 'e Z QOOOOONCI.OGQOQQDQQOOOPQQQQOOO p D e O @ f* @ O M N e M O M CL M iD N M O # C O C O O O O O U M e o to e e le e e*e e e ;* e o je_ e e te o e e W e e e o e le i <w M M 'N M M e e @ h & O ed M @ O O e N @ @ g O 3 Z: M g MMM M<W N Nto M e mO W l = t M M M l l V 1 l I W E .I l-= i O I W i 6 a. e M 3 l '== l 1= i l t IJ EL a O M D O O $3 O Qin O O O O O DDC@OOpGOOCOOO M W ,gC M e p e M (C O M f G O O M @ 'O 90 @ % O M M M M O D O O O Q O f N O )O M M M M O CC @ @ W N 90 w 4,e k M M M O O p O dw Z g i O 4 J e e e e e le e e e o e o e e e e o je o ee e e e e e !e o Q. 3 J NN-y e.4 M OOOO i Vo O Q w b l e at 4 l l U ! y N QO 3OOa3OOOOOOOOOOOOOOOQO90 COO M 8 I eZ QQip @f==Q O @ b Q Q O Q O O O O O O O O O O O O O O O E i M D eO a NCC O e O O M e 5 N O e @ @ @ e @ @ O O D O O O O l M kJ e e e e e se e e le o e le e e to e e.e e e.e e e.e e e is s l w (3: M M M I N N N fy M 4 e4@c0eObMCOOOGQ MMNMOO ue i k. l l I M I i
HpCS S UCTION LINE 2 LaCOWR ARTHGUAKE ANCHCR DISPLACEMENTS TRANSLATIONAL SET AO. NGDE X Y Z IN IN IN -I 1 19 .48670 0.00000 0.00000 1 30 .37400 0.00000 0 00000 1 az .auzuu u.uuuuu u.auuuu 1 40 .19200 0'.00000 0.00000 1 50 .19800 0.00000 0.00000 1 zeu .ze uu u.uuuuo u.uuuuu 1 250 .11200 0.00000 0 00000 2 19 0.00000 .02100 0.00000 -~~~~'2-- Jo U. (TF(TOF .071uu U.00u00 2 13 0.00000 0.00000 .34050 2 30 0 00000 0.00000 .26100 a az v.UUUED u.uRUUU .zioou 3 40 0.00000 0 00000 .13400 3 50 0.00000 0.00000 .17800 230 u.uuuuu u.uuuuu .o reuo A-7
APPENDIX B as LACBWR HPCS SUCTION LINE PIPING ANLYSIS NUPIPE ANALYSIS RESULTS I
{ HPCS SUCTION LINE 1 1,AC6WR l i I l l SUPPORT RE ACTIONS FOR LO AD CASE NC. 1 nr an t r i e.w r ye cirssa mi et a n.r g _3g ep a a ;ci i_ g'4
- i O GE TYPE RE AC TION OIRECTICN (LBS CR lh-LBS) 1 FCMCE
-1. X COORD 1 F *is C E 78. Y CCORD 1 r 'trT -....... 2.:..... 2 Ct.G,%.... 1 a0 MENT -242. X CCORG 1 M 3 M E!i T 25. Y CCGR0 t se_ a r n r ____ 1 7 2 _ _,. _ z_.r n o o p 19 FORCE 18. X CCORD 19 FORCE 458. Y C03RD 1* rcn '- _ 22 - Z.. C0 0 R D 19 MCFEMT -134. X CCORD 19 d C ht' a i -472. Y CCOR0 14 " N a1 T..... ._ 2 2 0..... 2.. C 0 4Jt C -.....-- 30 F ; 3.C E -15. X Cc3RD 30 FCRCE 279 Y CG3R0
- n r-aeT
.6 - . Z.C.GGRD.. l 30 MOMENT 4976. X COORD 30 MOMENT 51. Y COCRO in a r* r t t ...._-eS t.2.... Z_ CC 3R D..... 4 FCACE 202. Y COORD 7 FORCE 208 Y CCORD ta rezer .n _ v engen 14 FCRCE -9. Z CC0A0 16 F C F.CE -1. X COORD 1 s. FOReT M- ? ' CCan 23' FGRCE 231. Y COCR0 i B-1
_HPCS. S UCTION L_INC 1 LACOWR SUPPDTT REACTIUMS FOR LOAD CASE NO. 2 THERMAL EXPANSTON NORMAL OPERATING CONOTTTON N0iO M YPE REACTION-DIRECTION ~ (LBS OR IN-LBS3 1 FCRCE -160. ~1 C00R'D~~ 1 FORCE -88. Y COORD 1 FORCE 202. Z COORD t nuntas 145'. ~X COORD ~ 1 MOM ENT 172. Y COORD ~1 MOMENT 184. Z COORD ( 17 roact - 27. ~~X C00RD 19 FC'RCE 837. Y COORD 19 FORCE 10. I C0ORD 15 nDMEhr 614. 'X COORD 19 MOMENT -1796. Y COORD 19 MOMENT 23. Z COORD i 30 PURct -67 X C QO R'6-- 30 FORCE 105. Y COORD 30 FORCC -24. Z COORD 40 noMENT 2164.- X COORD 30 MOMENT c525.- Y C.00RD 30 MOMENT' -1158.- Z COORD 4 FORGL 214. Y C 0 0' F-- R 7 FORCE -919. Y COORD 14 FORCE 243. X COORD ranct -349. I C30RU-~ ~ A9 .16 FORCE -43 X COORD l 16 FORCE 161. 2 COORD i za conca -149. Y C66RO ~ n B-2 g
HPCS S'UCTI0f4 LINE 1 LAC 2WR 40PPORT REACTio'!s FOR LOAO CASE 40. 3 so r z c a r a r_ v. v. e, e. 7 gorcros w _g_sggy g gr3 r. 79en n r3_ COM81AE0 RESULT FOR MODES 1 THRCUGH 13 GY RMS SUMMA TION FOR SPECTR UM 1 PLUS FIGIO ndOY PSEUDO-MCOES 'l0 D E TYPE PEACTIONS 0 IRE C TION n* CA 7'i-LES? 1 FORCC 2 19. X CCORD enmer se_ v
- e. c.o n 1
FLRCE 224. Z dCbod 1 MS ME*J T 3127. A COCRO 1 wurv1 2.412L- .Y-G :0 1 dCMINT 3638. Z CGORD 19 FCRCE 242. X CCORD to rnorr tis _ v ennon ( 19 FCRCE 113. " Z dbbRb 19 MCMENT 1804. X C00R0 to p, w r a_ r 715=_ v Scoo 19 MOMEsf 4867. Z C00R0 30 FORCE 169. X COORD in rnoer Smi. y_cneen 30 FCMCC 243. Z C00R0 30 r4 C Miili 10413. X C G C P.0 mn v M :_ v ' S iT.u--- Y CC'*^ 30 M C r4 E'l T 7752. Z COORD l 4 FCICE 50. Y CUCPO 7 anGP7 A9. Y FenR 1 14 FORCE 4'i 2. X CCORD 14 FORCE 461. I CCCR0 16 anner 914. v ennon '16 FORCE 311. Z CCORD 23 FCRCE 241. Y COORD l 1 1 wm 8 'A B-3
i i i i \\ ~ l [ HPc3 $UCTIDN LINE 1 L'ACENF. ffp0N RE ACTIONS FOR LOAO COMBINAiTON CASE NO. 9 SQUA RE ROOT OF SUM OF SQUARE OF X AND Y AND Z E ARTHQUAKE ANCHOR M;3VEMENT R0'OE TYPE RfA'CT10h4 '0 IR EC TION (LBS OR IN -LBS ) '" ~l~ 'FOR'CE ~ ~ 71. X C00R'O ~ ~ ~ '- ~ ~ ~ 1 FORCE 32. Y COORD 1 M6MTNT ~--'22.~ ~ ~ Z COORD 1 FORCE 90. 5 X COORD 1 M0 MENT 333. Y COORD 1 MOMENT 461. Z C00RD 13 FORCC ST. X.C00AD ~~ 19 . FORCE 383. Y COORD 19 FORCE 99. 2 COORD. ~ 19 MOMENT 5'9'04 X CbOR6 1.9 ROMENT 1651. Y COORD 19 MOMENT 3126. Z COORD (6 FORCE 51. X COORD ~~ ~ ~ ~ 30 FORCE 75. Y COORD 30 FORCE 22. Z C00RD ao nUMENT 579.- N RD TO MOMENT 786 Y C00RD 30-MOMENT 1713. I COORD 4 FORCE 80. Y COORD 7 FORCE 392. Y CODRD 1,4 FORCE 103., ,,_ X COORD 14 FORCC 169. Z C00tD 16 FORCE 97. X COORD 16 FORCE ,193. r COORD - T3 FORCE 111. Y COORD r l l B-4 M .? -
( HPCS SLCTION LINE 1 LACBW'. S YS TE P ACCELER A TION FOR LOAD C ASE N0. 3 aca 1201LIAL x. Y.- 3.C--Z-47 EC TP A 4 S AF E ~,bu7Gng.f,. E A47M,qpa G? ~ COMBIACO REhuLT FOR MCOES 1 Tt* Ruu GH 13 CY RM3 SUMMATION FOR SPECTR UM 1 PLUS RIGID BODY GSEUOu M00ES on f.1 <.n to re Tv nn v 0.rerrTton z_gtogetyou R0. (G) (G) (G3 1 .000 .000 .00 0 2 .021 .017 .020 M .Q_4 0_ _ ,031
- 03^
=... 31 .059 .045 .049 3001 .21" .0?3 .175 _ nc . 0 0 6.. - - -. - .4? ? = 5 .635 .440 .511 6 .836 .436 .675 7 1 05_^ 4 %.-.
- e* ?
8 1 116 .109 .899 ( 9 1 074 .155 .866 th
- 5t 7 ^
0-? ^ .?!? 11 .795 .006 .653 12 .721 .009 .641 13 J9.-- .... + 04 &.-
- 5^5 9002 409
.007 .376 14 .272 .006 .179 ~~ 14 .2 5.S_.._ _._. aa5. -
- a? 5 16
.324 .004 .00 1 17 .376 .004 .11 0 1A - ? q E. - 034 .13 5 40 .160 .002 .09 4 l 42 .120 .001 .066 e to nnn .nnn _ n n r. 41 .315 '.024 .149 20 .771 .350 .438 91
- _qn,
_ivg _ va g 22 .863 .337 .907 23 .982 .005 1.02 8 Sa t_ tan _giv 1; is ? i 25 1.313 .292 1.30 1 26 1.295 .327 1.223 37 t _ i _. c ,327 1;n?
- i 50 1.055
.327 .919 3003 .739 .327 .729 + ox _avo ,3gt in g 29 .189 .144 .327 g 30 000 .000 .000 s l~ M
l i 1 ] HPCS SUCTION LINE 2 LACB=P SUPPORT RCACTIONS FOR LOA 0 CASE HO. 1 DEAD L'r I GH T AND OTHER SUSYAfter0 MECHANICAL LGAOS W.,.I.EL. RCKC7TO M RffYI3er nA RETETaus oYRftYC t L3S OR 12-u 13 iLSS OR T N-La S1 W r vass. -w. A CDORO-azu F3RCE 136. FCTdi 19 FORCC 261. T C00E0 45 FORCE e4. Y C001 19 FORCC 3. Z CDORO + S2 FORCE -44. Y CCOI "1T'"""ROMtu s a. I"CUORS"' au r ensa. 17s. T-Cods 19 MOMENT =22. Y C00RO 258 FORCC +33. I C001 19 MONCNT -4. Z COORD 258 FORCC =18. Z C oot w r vasa. as. a 6ueC na rms 203. Y c GOI 40-PORCC 44. Y C00R0 M FORCC 334. Y C001 44-FORCE 3. 2 C00R0 FORCE 12. Z C005 ' *"IT""""NOnt a s asa. a CWOEW"" aus 70K66 asa. 7 CU0f 40 MOMCNT 7. T C0040 264 FORCC -0. - 2 C005 44 MORCNT 46. Z COORD 320 FORCE 657. Y C00f
- au.
run6s 23. a se0RW~ aas FOR66 =s. I GODI 50 FORCE 223. Y COORS-77 FORCE 74. T C00f 50 FORCE =2. Z COORD. TT FORCC 3. 2 COOL av - wsm a ans.- N W ton 6s 44 Y E Do# St MONENT - =422. T C0040' 418 FORCC -3. 2 C00f 50-NONCNT -842. I C0040 n renu. =a. a 6= = =. W FORCC 20. Y %0040 79 FORCC =1. Z COORD w ...... n u aai. a www=v 79 MenCNT 12. T C0040-4 mentNT' -9.. Z COORO n. r su. ~,.. a.6.was, 94 FORCC 37ar T C0040-94 FORCC 2.- Z C0040 4 WM' ama. a 600RW"" ~ 94 NOMNT 82. T C00RO. 94 NOMENT 23.. Z C0040
- n r unsa, a.-
a 6vvau 90 FORCC' 112. T C00R0i 90 FORCC.. S... 2 COORO vs. ._...a:- as.. "" ""T"TUORW" 9 04 MOMNT - 29.. ,Y COORO 90. p0MCNT-1370.. 2 C0040: '3W"" r wa sa. se a 6vune 3R FORCE -4. I C0040 32. FO RCC. =5. I COORS:
- 33' r unsu ~ -
z. 4 CMTW" 35'. FORCCs 44, Y C0040' 42' FORCC: St. Y'C0080 l 22T'" ~r unw., a. a 6uunu B-6 WM
HPCS SUCTION LI'NE 2 LiCBWR I SUPPORT REACTIONS FOR LOAD CASE NO.-
- 7. -
THE RM A L EXP ANSION NORM AL OPcRATING CONF)TTTON no us TYrt. n6aCT10m OTRCCTY0C 7DC" TYFL RCACTT5n O't a t'C T10m' t La s OR IN-6ast (L85 CA T N=t9 5) av fun 6s
- E".
a C0045"""i 7as roast D. T GOOR F 19 FOACC =32. Y C00a0 45 FORCC -35. Y C00a0 52 FORCC 3. Y COORD 19 FOACC s. 2 C0040 av nUntas aa. a 6eene MS FORCC" 5. 1*C f!OG~ T C00A0 258 FORCC 3. I C20R0 19 MonCNT =1. Z C0040 250 F3RCt -e. 2 COORD 19 MonCNT -13. is r un6s. =a. a suune na FV A 64. 3. Y c60R F 44. FORCC T3. T C0040 M FORCC -Te Y C00R0 48.. FORCC
- 14.
Z C0000 M FORCC S. Z C00R0 ge avnvi s -avs. a 6 ague as. FUns v. f* f."JOR F 40 NOMENT -T. Y C0040 248 F04CC =6. 2 C00lLO 4e nonCMT 148. 2 C00no 32s FORCC -4. Y C00A0 r u =66 5. a sue C as run6s s. asuosif um SG - FORCC 26. Y C00A0 TT F04CC -1. T C00R0 St. FORCC 16. I C00A0 TT FORCC 4. Z COORD as nuntai ges. m spese sau fun 66 aa. 1 suG W S4 ' MOMCNT 13. Y C00AO. 410 FORCC 9. Z ".00R0 Sa MORCNT -2. ! C00A0 W FOA66 3. a cM 19-F04CC 1. Y C00A0 79 '
- F ORCC".
-6. I CCOAS ~~ si .._.~i -a. a 6vene 19.. NonCNT' 3. Y C0040 79' MonCNT' 26. Z C0040 -aw. a 6uvan i., r va 6a., 94 .J OACE.
- 11.-
T C0040., 90' FORCC" =18. I'C0080 7, - -. -..i s ano. a 6.une 94'* MORCNn 256. T C0040 94
- N06CN T6
-S4. 7 C0040 "TP 'N ~ 3. a 6uvnu 96 FORCC to. .Y'C00AS. M FORCC 4. 'Z'C00A0 ""1e "N0nssu :- C. ~. a 6uvau
- MOMCMT ?
~4 9.' ' . '~ Z COORO 98 Y C00AR-90 ROMCMIT. 18 6 T
- FUNC1"""
s, a s uva.. 3A F04CC-2. Z C00AS~ "32 F04CC '" 22.1 ' -1 C00RO-T r wa6C a a 6vvav 30' FOACC 46. Y'C0080 42 FORCC' -89. T C00A0 22T"""r wass -7 s. ,, a CUORU"" l I B-7 f%dA I ~
HPCS St CTION LINE 2 L ACBUR SUPPORT REACTIONS FOR LOAD CASE tdC. 3 HOR IZONT AL XS Y. AND Z SPECTRA (S AFE SHUT 00WN EARTHQUAKE) WOOC Tf C RCACT10ms ~ '01RCCT10#'.... N00C TYPC RCACT1045 OIRECTrom stas OR In-Last i itsr0R In-tys, 19 FORCC 29. I C00RO 52 FORCC 339. Y C0040 19 FORCC 44. Y C00R0_ 33 runst vs. r Eggue av FUNC6 23. 4 GeoRO 250 FORCC 121. I C00R0 19 MonCNT 535. I C00RO 2 54-FORCC 175. 2 C00R0 19 MOMCNT 252. Y C00R0 r gabs 1 CUORG-4, no,,sn e e43 4 CUONO" M FORCC 3M. T COORD 40 FORCC 44. E C0080 g F0fLCC 52. 2 COORD 40 FORCC 309. Y C00R0 , sw run6s aav. I suune su
- TUR6a, ass.
4 se0WF 20s< FORCC
- 184.
2 C00RO 48 MONENT 6469. I C00A0 329 FORCC 235. 7 C0020 40-MenCNT 321. Y C0080 runs 6 go. 4 svene is NOMCMI 4Y29. 4 segus 77. FORCC 67. ,Y COORD 58 FORCC 137.. I C00R0 77 FORCC 72. 2 COORS-Se FORCC 326. Y COORD as r unsa.. as I savne as run6L AT9 4 COUNO 415-FORCC 12.' 2 C00RO Se 3 MORCMT 4138. I C0040 - - ~ ~ ~ " __58 MOMCmf 2185. Y COORO au suuresn 1 J537. A GUURG. 79-FORCC. 267.. I COORD. 79 FORCC .79. T C00RO' rw r un 6a. A38 4 EDUNU 19t RONENT 133'.
- I COORS 79-nonCm1 2373.
Y C00RO. su n0ENT"""* ~ aara.. 4 6eenO" 94 F ORCC' 28. 'I C0040 94 FORCC. S., ? C00RE """"W ~ r unsa. 45. 4 EUwne 94 nonC4T* 106.. I C00RO' 94 MenCNT 444. Y C0040 7
- N nsaa we..
4 6uwne 98 FORCC-103. I C00A0 90 FORCC; ""9r rw % 37.' 'T C0080 an. 4 6vune 90 NONCm1' 107.. I C00R0 9e MGMCMT 4 28.*. T C00A0 N *MONENT" ~ aes.. 4 EUGWI 30' FORCE *' '47. I COORD 38-FORCC. 4 0.. . 2 C00Rei ~ ~ au-r unsa. ~ ave a hwune: 33 'FORCC 56. 2'C00Re? 30 FORCC.
- 34. -
Y C00RO* ,a F9tCC"""" a. a.. i h uvWF 22e FORCC 105. I C0040. 228 FORCC 40. Y COORS W F6tlE % 5' T C Ao M 5'~ B-8
r HPCS SUCTION LINE 2 LACBWR SUPPORT REACTIONS FOR LOAD COMBINATION CASE NO.1 SQUARE ROOT OF SUM OF SQUARE OF X ANO Y AND Z EART.HQUAKE ANCHOR MOVEMENT TTrs RCACTIgna uaRCCTTOS g TYPt. RChCTIoms 0!R tcTf hie ~ (LSS OR IW -LSS S (LBS 04 IN=t.sS t ivR%s as. a suunu-as r unsa ag. T wavRT* 19 FORCC 64. Y COORD Se FORCC 14. y COORO 19 FORCC 13e Z COORS 25 e FORCC 11. 1 C0040 a, ...... a s
- aasa, a 6uGR5*
25T"* FORCs 2 3.. 4 C00RO 19 RORCNT 188. Y COORS 62 FORCC 11b Y COORD 19 NORCNT 1919. Z COORO 66 FORCC 13. Y COORO -runss 3s. a C00R8"
== rORss ze. ' z se0KO 4e F ORCC. es. Y C0040 20 0 FORCC 13. 4e FORCC 37. Z C0040 33 e FORCC 3. . T C0040 2 C00R0 su Mensus 1373. a c00RO~ W FURCs a. y gg5W 48 MGMCNT 423. Y COORS 32 s FORCC. 2. 2 C00RO. 4e MonCNT 1978. Z C0040 77 FORCC 4. Y C0040-ae r vuuks T. WORO r usi6s a.
- 4 gg GK5" 50-FORCC 40.
Y COORD 410. F ORCC s. T COORD S t. FORCC 34. 'I C0 080 - 41s FORCC-e. 2 C00RO-a. ......a s sa a. a C00 W Se nomCat 159.. Y C00E0 se mentmT. 278.. Z C0040 m rv=6 3. ~N 79 FORCE
- 5...
? C00R0 ry FORCC ' 7...
- I.C00E0 7y *1sONC1rT"""
as. a scene 77 'NO#CNT 194. . Y C00E0 7F NonCNT.
- 64..
2 C0080 l w 73Rgt-- ~ ~~ v.
- I"COURE f4. F ORCC.
8. .Y COORS i 94 FORCC" es.* "2 COORS m w a. a 6vvRF 54 MenCN1 5. .Y COORD 94* MSNCNT 3. 2 COORS F. r ense. a.~ ."T~CUURI 9a FORCC s. ~ 7 COORO 90-FeRCC ei. 't COORS l "yg M a .""CUDR S 1 gg nontut L T C0040-98 MenCNT
- S.,,
Z C0040_ 4 31 renss. K3. A bewas d 3a FORCC 18. .Z C0040 31 FORCt. 60. .X C0040' W r vn um. 43. ~Z"EIURT 35 FORCg-30. t C0080 42 "FORCL 77 . ~ .T COORD. t gry-yggCL av. - a wwwRU* ( 22 e FORCf 23. Y COORD 43 FORCC. 43.
- C 00R0 B-9 t
25-
HECS SLCTICh LINE 2 LAC 8hn BY AMS SUMMATION FOR SPEC 72un 3 Pcur n!C17 soo77scu005Moora Poluf x=0! REC 710N Y=01ACC710s Z=0fRECTION-- n o.. tea tsa sg3 47 s.fss s.sgs 3.g3 3 5801 0 002 0.800 8.62 8 29 0 005 8.801
- 0. 84 F wees F.384 s.8sa s.sa 6 38 8.805 8.001 0.80 0 31 8 019 8.001 8.85 1 a4 s.8si s.esa
- s. ry 4 13 8 209 8.802 8 314 34 8 267 0.832 0.51 7 as u.2ea s.sta s.3FE"""
36 0 268' 8.012 0.61 5' 37' O.228 0.013 0.64 4 as seasa sesaa ~ s e tt a. 39 8.127 0.012. 0 677 ISO 8.106.' B.006 0.69 5 . ws -
- e. awn.
s.sas-
- u. rs g.
21F 0 164 8.012 0.70 0 43 8 277' O.8141 0 798-ga s sai s.s a s.
- s. is s -
41 -0.68 9 8 883' O.61 95 5 00 0 355 0.002 0 352' ww-
- s. su s.
- s. ass-
'"* " s.ss u , 225 0 871 -0 883 g.78 0 '222: '8 557 0 019-0 790. s.rs e. ~ ~ N.
- s. sus.
s.sar 45. 1 811-0.010
- 0. 75 0 '
- 44..
1 171' O.841, 0.699*. 51 a.ai a u. u s a. somm e . 44. '8 628 0.802 S.45 5 ' 23F 5 58m 8.Seth 'O.38 7. ~~ 4 w m.a a a > s.uus s.au 1 196-0 541 0.14 r 3.38 T . 49. ' O.21.7%. 8.882?. 8.23 9- .a ae u.. s eus s.as a. 5 15 ~0 8&r 1 001. S.871 SS '8.00t 0.000. 8.89 4.. " " " ^ = *
- an.
u. se s. - u.saa s.as a 1Mk 8.318-8.894* 8 315-8.497-0.881 0 319 13 9004 3.60s. 8 133 0 319 54 8.667. 8.198 8.319 sn4T""*' ~ 7 8av s.33 s as 56
- 8.740 0 335 8 898 57 0.785 8.587*.
1 190 ~ s. ,a F. 5 KT'""" G8C v.wa 54' O 568 8.533 0.76 1 0.38 3
- Toss 3 343 0.534'. " """
u.40s s.3ss sesT6 '"~~ I dau 3?
- 8. 663 0.508 0.272' 68.
0.871 s.341 8.537 aos e.Se, s.35 T"~ ' s 54 5-8.61 5 61 0 831 0 184 62 8 798 0.836 8.63S IN7F M I
- ses, s.sas gge 0.912 0.861 0.656 1888 8.934
'1*114-0.656 a.4Il ~ s.651""
- s. sus
__6 4., 8.~762. 1 277 0.656 B-10 WM
secs si.cTION LI e 2 LAcswa, 65' ~S.792 a., s. is 1.882 "S.575 ? s.aea - " ^ 66 8 792-8 818 8 383
- s. oo g.
278 s.792 0 858 8 596 se sessa 5201 8.4 4 6e - sesap. se re s
- 8. 83 +.
&ar 8 235". J.51'3 ? T
- 8 034-0 244 sessa s.sa,
78 9 241 8.849' ' O.24 3-s.4as. 288 8 241 8 883 8 225 es .. sessa ~ s.sas 298 0 241 8 819-0 169.-
- u. ave 388:
8 248. s.319 8 148.- s. sesiv s.sa 310: 0 239 S.487 0.86 8 s.aan 328.~ . t 8 239 s.882.. g.84 3-sa. ~? "T;235"""-
- s.es1 s.sg e 82 0.238 8 817; 181
~ 1.212.
- 8. 89 8 '
' a us 375 4 S.41t/ 8 93 L. F;8tr ""WT&It , 74 0 343 0 042-5 646. 75 s 3.443' S.834 0 8WS* a.. . s. a 7." f;8 1 74 8.444'-
- s. s(5" 8 816 O.87 4
_ 103 0.464- -S.816 0 140 s a,a s.= a s.sas 77 ,' 0. 4 4 3
- 8 881 8 133 u.am a 78
..'*8.327 0 848 8 242 ~~ 51 ' t.282 8 812 "8 898 ~ *' __358 0 131 e.814 8 898 ase 57214 5 812 364 0.8S6 4 421 8 117__ 379 0.802 S.89 4
- ise 8.818 8.85 3 sessa 5 511.
5.83 8-48 0.891 0 894 0 811 ._ 79 0.446 S.889 8.888 avu sozia sects 5.89 4 83 0.280 9 125 B.89 8 44 - 8 134 8 126 8.841' sa s.444
- s. ass ses4 F 484 8.893 0 102 0 021-46 0.883 0 092 0.814-gas s.esa sessa s.53 1.-
87 S.881 0 836. 8 833 , 48 W .. g.881 5 866-8 830 s.esa., se s Ts. 5 82 T' 418: 8.88 17 3 000
- 8.89 2
~ 89 '8.881-I'.'818 '8.88 5: we ~ ~.ssy sesrs. s 5.858 429' S.872 O.809 8 8859 438. 8 872 - 0.889.'
- 8 885
"TE ' ~ ~57sge
- sessa, 5.s55,-
93' O. 83 0 84883. 8.88 8 '94-4.888
- t.888-0.80 8
~ .ru s.sws . s e s a m.7 s.s3 e. "~ 96 0 001 5.810J 0.08 8' -97 8 881 ' $. 4 8 7 '- 0.807-t M- . s,ses. -""*" " Cgs u
- s. v = -
B-11 w numsmm8- -}}