ML20100R067

From kanterella
Jump to navigation Jump to search
Intervenor Exhibit I-45,consisting of Rept on Crankshaft Torsional Stresses,Tdi Model DSR-48 Serial 74010/12 for Lilco,
ML20100R067
Person / Time
Site: Shoreham File:Long Island Lighting Company icon.png
Issue date: 10/01/1984
From: Yang R
TRANSAMERICA DELAVAL, INC.
To:
References
OL-I-045, OL-I-45, NUDOCS 8412170299
Download: ML20100R067 (37)


Text

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ ____ -

9 C rl' q, N

P' N poCW" 2

8- g 21 04417 i -

)J L 9 f

REPORT b U3 "

\

f(nt ON J

CRANKSHAFT TORSIONAL STRESSES TRANSAMERICA DELAVAL MODEL D5R-LB Serial No. 74010/12 for LONG l5 LAND LIGHTING COMPANY t

I .

REVIEWED UI ACCORDA; ICE 6 .

ABS LETTER _..DATED 3pg g Roland Yang.

Acril L. IC6L A M EJJIC M I N Y t .

ak an or STEPPING NEW YORK ..

].-

8412170299 841001 PDR ADOCK 05000322 PDR o

^

- ~

i

  • 4 p; _

.k b-Y Y

n G -TA8LE OF CONTENTS 4

I introduction Pages i; & .ii e

A>

Section One- Torsional _-Analysis ~ -Pages i to 17 r p.

!'i See:Icn Two- Torslograph Tests "' 18 to 21 j Section Three . Strain Gauge Tests (FaAA) to s

Section Four Operating Hours Legged -

to 4

4

+

i 4

1 i

i T

i

?

1 i'

I l-l t

i l

i

  • l t

a 9

m

I NTR00UCT I ON This report censists of four sections and contains calculations.

test data and operating experience, which Transamerica Delaval Inc.

(TOI) considers relevant material to establish the adecuacy of these p 0$R-4B engine generator sets.

The application of these units are for emergency standby service in-the LILC0 Shoreham Nuclear Power Plant. These units are rated at 3500 KW and have an overload rating of 3900 KV (111.4%) allowed two hours per day of twenty four hours.

Section One. Torsional Analysis.

A four page introduction is included here, explaining the methoc and nomenclature used in the torsional critical speed analysis.

The mass elastic system in the analysis reflects the piston skirt which has since been superceded. The extra reciprocating weignts due to the heavier replacement piston shirt have been evaluated ard the change concluded to be negligible. The effect of the 111.U.

overload on torsional stress levels are shown in pages 12 to 15 Due to the close proximity of the calculated stresses to the ABS allowable stress , we elected to include Section .Two.

Also included in this section are mass elastic system parameters c' other 0$R-48 engine generators of identical rating, to establish tre similarity of these units, especially from a torsional standpoint.

Section Two. Torstograoh Tests.

Measurements by FaAA/SWEC and TDI are presented here , along with T;l measurements on other OSR-48 engine generators of Identical rating and similar mass elastic system. Here again, the intent is to esta:lish

- the similiarity between the various DSR-48 engine generators. The stresses evaluated from the torslograph measurements are still in cicse proximity to the ABS allcwable a,nd therefore in Section Three, we present the actual strain gage measurements, taken on the subject shaft in January , 1984.

  • Section Three. Strain Gage Test.

Here the measured strains are listed along with the corresponding stresses. With,the similar grade of cra9kshaft material, the endurance limit of the shaft is established and finally the margin of safety 1

1 1

I e

k determined using the Goodman diagram. A factor of safety of the replacement crankshaft is 1.48 without tne benefit of shot peening.

- Th's f actor of safety is 1.75 as determined by FaAA, when the effect.

of shot peening is taken into account and taken to increase the j

endurance limit by 20%.

Section Four. Ocerat ing Hours Logged.

There are seventeen engine generator sets of similar configuration and identical rating in Saudi Arabia with considerable operating hours. These similar units are running regularly and generating power today. Worthy of' note are the DSR-48 units at Rafha, with 5500 hours0.0637 days <br />1.528 hours <br />0.00909 weeks <br />0.00209 months <br /> at 3200 KV on one unit and 6200 hours0.0718 days <br />1.722 hours <br />0.0103 weeks <br />0.00236 months <br /> at 3300 KW and 8250 hours0.0955 days <br />2.292 hours <br />0.0136 weeks <br />0.00314 months <br /> at 3200 KW for the other two. The similarity of these units are listed in page 17 Examination of the mass elastic data (I & K) and the torsional natural f requencies (N) listed, will show that the-e are no essential differences between LILCO and the rest of tne units. The LILCO units are uncergoing performance tests at their Shoreham Nuclear Power Station, the total hours logged at loads of 3500 KW and above, are shown on page 28.

Summarv.

Based on the foregoing calculations, test data and operating legs.

l Transamerica Delaval, Inc. considers the adequacy of these DSR-kB engine generator sets to be established for the intended service at the LILC0 Shoreham Nuclear Power Station.

li

m l

I"!RCCCC!C':

TO TORSIONAL CRITICAL SPEED ANALYSIS The engine generator system is modeled as a system .of monents of inertia interconnected by torsional springs.

The standard procedure is to concentrate all the moment of inertia of each crankthrow, including rod and piston at the corresponding cylinder canker position. The moment of. inertia per cylinder is obtained by summing the moment of inertias of the journal, erankpin, two erankwebs, counterweights (if used), rotating part of connecting rod and the equivalent inertia of the reciprocating parts, (namely the upper. end weight of the rod and the piston).

2 The moment od inertia (I) is calculated by dividing the k'K by gravftational acceleration (g). kT2is obtained by multiplying the weight of the part gy the square of the radius of gyration (K). ky2 therefore, would be in Lb. In.-

or Lb.Ft.2 units and inertia (I)' in Lb.In.Sec.2 or Lb.Ft.Sec.2 units.

The inertia values, thus represent the concentrated inertia of the coving parts at each crankthrow.

From our torsional vibration analysis data files, we obtained the appropriate values of inertia or stiffness to make up the model.

The procedure and notations used in this analysis are explained belcw.

NATURAL FREOCENCY EVALUATION ~

This is done by Holzer's method. In our He12er's tabulation, the definitica of the notations are as follows:

' (,,j2 IIGENVELT. (Onega squared), in 106 radian /second NO. Mass number, counted fro = the free end of the engine INEKTIA Inertia of the various masses, in lb.in.sec.

THETA Relative amplitude or ,ang.slar positien, in radians.

10M2T Product of INERTIA %2

  • THETA, and is the vibratory torque due to each mass, in 10 6 ft.lb.

0 SIGNAM Surs:ation of the vibratory torques, in 10 ft.lb.

6 SHAFTK Torsional stiffness of shaft, in 10 ft.lb/ radian.

DTHETA Quotient of SIC'W! divided by SHAFTK. This is the relative angular displacement between masses. The unit is radians.

\

!! KIFF IV A**.*AT: P:

-yrce :he Mel:er Tabula:1cn, we de: ermine the following, which are la:er used in :he stress calcula:1ons.

SIGMA I

  • THI!A ** 2 This is the su= ation of :he products of INIET A and THETA squared. The first of the two prin:ed, is that of the engine up to and including the last crankthrow and the second, tha: of the

, whole systa=.

T INT and T EXT These are the =axi=u: stresses in the shaf:ing

-within the engine (Internal) and outside of the engine (IXIernal). The s:resses are evalua:ed

- for each section of shafting by this for=ula:

SIGNAM * 'fI* 16

' 180 7ID J only the =axi=u=s are printed out.

$!KI55I2 DIANITIK Oy at.

IX!IRNAL SHATT This is the diate:er of the external shif:

which the =axi=us stress oc:urs.

I IQTILI5K!CM If the applied and resisting torques are applied AMILITUOI and suddenly re=oved, the shaft is put into a state of f ree vibration and the curve of angular dis;1acement can be analy:ed inte a series of nertal l elastic curves, each corresponding to one of the nor=al =edes of free vibration of which the syste is capable. The a:plitdude of any of these =edes ef vibration under the abeve conditions is referred ::

as the IQUILIBK!CM APPLITL'DI, since it is the amplitude which is attained without any =agnificatien due to resonance with an external pulsating couple.

It is deter =ined by:

Pisten Area

  • Crank Radius
  • 180 in
  • N G) a 10C asLLG2MG~

This is left in the for:- - - - Constant g

  • Tg *2)D g T IN The work output into the syste: and is de: ermined by:
  • Pisten Area
  • Crank Radius
  • f
  • Ts:EGt:

This is left in the for: - - - -Cons: ant 2

  • Tg '45EN /'

TI Hysteresis danping due to friction, etc. and is deter =ined by:

7T *M2. 10 6 . g 79,2 .f2 25 7-

1 j

TO Visecus Da ;er ds=;ing, fr : this erpression:

- 3 150 .

tir" Ca-ter F.1 e I lb.ft.") *12*W3 * @ *-

  • 3 3000 *-C-G
  • 86700000 a 30
  • 00 FCR Rubber coupling damping, and is determined by:

p Cou;1ing Stiffness * (.00037(D-20) (D-30))

  • DTHETA of epig2 D is the durometer of the coupling rubber.

TC! Steel coupling damping, and is deter =ined by:

o Da: ping coefficient

  • TP Prepeller damping f ro= this expressien: -.

d

  • 12
  • 1.6:
  • 106 g)2
  • 106
  • bhe
  • Cear Ratie
  • THETA ef tre :

Harmenic = RPM 3 i IN- Static Stress IN!a:r.al, which is the product of T IN~ ani ECUILI3R UM AMDLITi.TI. This is left in the fer --------

  • Ccnstant 3*T3 *J G3 T EXT Static Stress External, which is the product of T EXT and EQUILIERIUM AMPLITUDI. This is lef t in the for: ---------

Constant

  • T3
  • IEG3 Tcta; dt=;ing is the su: of TI - T: - FCK - TCE - TT In the stress calculation tabulatien we have the following celu=ns, seme of which are calculated f ree the values previously deter =ined.

OK !E Hartenic of the mode of vibration.

RPM Resonant speed of the harmonic, or critical speed.

TN Tg, which is the harmonic component determined free the Tourier Analysis of a cylinder pressure diagram.

VIC IEG3 , This is the vector su==ation of THITA cf the crank-throws, f or the engine's firing order, of the particular harmonic.

TSTINT Static stress Internal and is determined by T INT, which is:

Constant *T3

  • 1GN 3

TSTEXT Static stress External and is determined by T EXT, which is:

Constant 4

  • Tg
  • IG 3 PRI f,thefrentendamplitudeindegreesatresonance,andis determined by:

T IN = Total Damping 3

O'M!  !!aximum in:er .si resenance s:ress in ?SI, -hi:5 is:

,h,.

~.':AX: Maxi =u external resonance stresses in PSI,.

which is:

. PF.I

  • T EXT

'm?.en ple::ing the s esses versus RP! ,' the of f resonan: stresses are de: ermined by:

TSINT or TSTEXT MAG:;;F;CA!!O:; FACTOR ,

RP" l Were 1:agnifica:1cn Fac:c: =1,

, nesenan": RP!'s I

i f

SECTICN ONE TORslCNAL ANALYSIS I

. i

)

I

!~

t l

I TORSIONAL AND LATERAL' CRITICAL SPEED ANALYSIS' 9

ENGINE NL?.BERS 74010/12 del AVAL-ENTERPRISE ENGINE MODEL DSR-48 .

3500 r.*/4SS9 BHP AT 450 RPM TOR STONE & .TISTER ENGINEERING CORP.

LONG ISLX:3 LICUTING CO.9K.T TRANSM2RICA DELWAL ENGINE & COMPRESSOR DIVISION 550 - 85th AVT.iUE OM:LR:3 CALITORNIA 94621 By: ROLAND YANG AUGUST 22, 1983 5

~

l LONO ISLAND LIGHTING s'ouPANY Delaval-Entercrise Engine Model DSR-LS 3500 KW/LS80 BMP at L50 Rp=

225.6 BMEP .

Engine Numbers 74010/12 _ gg C - m m a m e  % e 0 II 2 - = = = = = = = j E" f u . . . . -- c

~ ~ ' "

T ~

I I I I  %

v v 5 v v v f'

I i l I I Mass Elastic Svstem Crankshaft Gear 26.52 Water Pump Drive 63.10 Caes & Idlers 119.70 Shaft 9.63 9 218 95 lb.ft.- I = 6.805 lb.ft.sec.

Crankthrow No.1 As No.2 crankthrow 1541.85 Shaft 41.81 2 1583.66 lb.ft.2 i =49.222 lb.ft.sec.

Cranktnrow No. 2 to 7 Journal 43.13 Crankpin 202.17 Two Webs 679.81 Reciprocating Wt. 309.99 Rotating Weight 306.75 2 2 1541.85 lb.ft. i =47 922 lb.ft.sec.

Crankthrow No.8 As No. 2 Crankthrow 1541.85 Shaft /1.63 1613.48 lb.ft.2 1 =50.149 lb.ft.sec.2 Crankshaft Flange 255.08 Flywheel 73 x 6i 34764.

Generator Shaft 374. 2 2 35393 08 lb.ft. I =1100.052 lb.ft.sec.

2 Generator Rotor 85275 lb.ft.2 1 =2650.632 lb.ft.sec.

2 2 Total WK = 133335 lb.ft.

NOTE: The reciprocating weight used above are based on 800 lb.

The replacement "AE" psiten skirt is 26 lb. heavier. We have evaluated the effect of this weight difference and conclude that the change in natural fres;uencies and stresses Is less than .51; and therefore negilgtble. 6

l EQUIVALENT LENGTH 0 = 1" 6

Front Gear to Cylinder No.1 .0001661" K = 58.121 x 10 ft,,t,fr, ,

Between Cylinders .0011394" K = 84,727 x 10 ft.15./ rad.

c.

I Cylinder No. 8 to Flywheel .00125k7" K = 76.941 x 10~ ft.lb./ra:.

Flywheel to Generator

$ $ i k Sw. y'

?

/J)= _

y- Jg=

g-W _-

,I

). .

. _k '

o o o g

)

. . a s * . t i

'q ~ + - -g. - - --

.h -4 'g 4 9 y 'co ., _

'e 4 x 5 .

o

_=_ __

, , ( /

3$  !?lW 5\ . f' _ l lJf" "_ _8[ _l q}" _ l l __

.eg

  • _

isj ' _

4 .

7.- ,

t* , 3 .0515 x 16.25 . 055 x 16 + 9 + .03 x 16 20" 16"

.- .03 x 16 + 13.25 .021 x 16.572 021 x 16. 572 + 16. 5 't 18" 16.572"

=

.0000132 + .0001580 .0001183 + .000553 = .0003488" K = 276.773 x 10 ft.lb./ radian Shaft:nc Diameters Front gear ro Cylinder No. I 8" Crankpin 12" Cylinder No. 8 to Flywheel 12" Generator Shaft 16" Flywheel Weight 6935 lb.

Gen. Rotor Weight 17150 lb.

Torsional Natural Frecuencies First Moce 2323 vpm Elect rical Natural Frecuency Second Mode 5575 vpm iiioe x c; Third Moce 7000 vp : N = 35200

  • 50 133335

" ' ' **~.

Generater Shaft I.ateral Natural Frecuenev 3191 vom 7

MODE 1 CMEGA SGuARSD IN (RADIANS /SdCONDs++L = .05318702 NATURAL FREQUENCY IN V.A.M. = 23c3.19 NO. INERTIA TmETA ICM2T SIGMA M SMAFT r. DTmtTA

6. 8 1.00000 403 403 58.1 .00693 1

2 49.2 .99307 2.893 3.296 8*. 7 .03890 2.706 6.002 84.7 .07064 3 47.3 .35417 47.9 .88333 2.505 8.508 84.7 .10041 4

2.221 10.728 84.7 .12662 5 47.3 .78291 .14859 47.9 .65629 1.861 12.590 84.7 6 .16559 47.9 .50770 1.440 14.030 84.7 7 84.7 .17704 8 47.9 .34211 .970 15.000 490 15.410 76.9 .40132 p 50.1 .16507 la 1100.1 .03625 -2.360 13.130 . 2/6.8 .04746 11 2650.4 .08369 -13.129 .001 MCDE 1 CMEGA SQUARED .0592 . , _

NATURAL FREQUENCY 2323.1900 SIGMA I+TMETA++2 1385.7810 SIGMA I+TmETA++2 1707.4836 T INT 9561.73 T EXT 3619.17 16.00 STRESSED DIAMETER OF EXTEANAL 5.-AFT E3vIu!BRIum AMPLITUDE .000651131052 a IN 7667.33

IN7 8. 15 F EAT 2.91 F E 17744629.
  • D 0.

3 C9 0.

F C5 0.

F. A 0.

TSTINT TSTEX7 C.9 % TMAXI TMAXE CADER Re9 TN VEC 4646 155.86 .701 889.8 318.2 .738 7053. 1522.

.5 2323 94.58 .146 112.7 40.3 .158 1513. 541.

1. 0 1.3904 4972.

1548 129.52 1.394 1471.3 526.1 1.454

1. 5 6408. 2292.

1161 41.05 .376 125.7 45.0 .670

2. 0 10036. 3589.

929 71.71 1.394 814.6 291.3 1.050

2. 5 6. 9 .044 423. 151.
3. 0 774 16.16' .146 19.3 1286.

.701 244.3 87.4 .376 3596.

3. 5 663 42.79 560 5.285 1191.1 425.9 2.066 19754. 7063.
4. 0 27.66 2063. 738.
4. 5 516 23.76 .701 135.7 48.5 .216 464 17.37 .146 20.7 7.4 .061 587. 210.
5. 0 433 4138. 1480.
5. 5 422 12.84 1.394 145.8 52.2

.376 17.4 6. 2 .052 494 176.

6. 0 387 5.68 517.
6. 5 357 4.49 1.394 51.0 18.2 .151 1447.

331 3.69 .146 4. 4 1. 6 .013 125. 45.

7. 0 494 176.
7. 5 209 3.05 . 701 17.4 6. 2 .052 28.8 .322 3076. 1100. t
8. 0 I?O 2.52 5.285 108.4 131.

173 2.26 .701 12.9 4. 6 .038 366. l

8. 5 24 l
9. 0 258 1.97 .146 2. 3 .8 .007 67.

144 1.53 1.394 17.3 6. 2 .051 492. 176.

3. 5 110. 33.
0. 0 131 1.17 .376 3. 3 1. 4 .012 111 1.14 1.394 13.0 4.6 .038 368. 132.

10.5 12.

ill 1.02 .146 1. 2 4 .004 34 11.0 11.5 102 .89 .701 5.1 1. 8 .015 164 51.

79 5.165 23.9 11.1 .100 961. 344 I 11.0 133 I

MCDE 2 CMEGA SUwAAED IN (RADIANS /EsCCND)**2 = .3eG93021 NATURAL FRE3aENCY IN V. P. M. = 5575.52 NC. INE471A 7-dTA *0M2T 51G=A M SFAA7 K DTns A

6. 8 1.00000 2.320 2.320 38.1 .03391 1

2 49.2 .'96003 16.110 18.430 84.7 .21752 3 47.3 .74257 12.131 30.561 84.7 .36070 4 67.3 .38187 6.238 36.799 84.7 43433 5 47.9 .05266 .857 35.962 84.7 62421

' 6 47.9 .67667 -7.787 28.155 84.7 .33230 7 67.3 .80898 -13.216 14.333 84.7 .17632 8 47.3 .98530 -16.036 -1.157 84.7 .01366

.97164 -16.611 -17.768 76.9 .23033 9 50.1 10 1100.1 .74070 -277.770 -235.538 276.8 -1.06784 1* 2650.4 .32710 235.542 .004 MCDE 2 C9E3A ScuARED .3409 NAT-4A_

. FAE3vENCY 5575.5100 5:G9A +7 META ++2 2578.9556 SIGMA I+T.-ETA ++2 13306.1514 T INT 22715.43 7 Ex? 76363.02 5~4E55ED D*AMETE4 CF E17E4NA_ 5-Af* 16.00 EC_1 *:; aN A*: *TUCE .000030103703 4  : IN 7*67.33

*NT .66
Es7 2.32
E 1*0473321.

D 0.

F CR 2.

C5 0. .
; 0.

TN VEC TSTINT T5 TEAT Gm! TMAx! TMAxE

< CA:fA RPM 19624

.5 11151 155.86 1.508 160.7 5*4. 6 .255 5732.

5575 34.58 .253 16.3 55.4 .044 337. 3373.

1. 0 .635 1**18. 48851.
1. 5 3717 129.52 3.763 335.6 1137.0 j 15474 2767 41.05 .702 19.7 66.8 .201 4567.
2. 0 10407. 35260.

2230 71 71 3.789 185.8 623.5 .*58

1. 5 279. 945.
3. 0 1658 16.16 .253 2. 8 3. 5 .012 1.508 44.1 149.5 .130 2353. 10006.
3. 5 1593 42.79 1.211 22.3 77.6 .076 1726. 5649.
4. 0 1333 27.66 1694 5739.
4. 5 1233 23.76 1.508 24.5 83.0 .075
3. 0 10.2 .003 209. 703.
5. 0 1115 17.37 .253 8085.
5. 5 1013 12.84 3.789 33.3 112.7 .125 2386.
5. 5 18.6 .e15 352. 1192.
6. 0 323 11.42 .702 857 3.783 23.5 79.7 .066 1500. 5084
6. 5 9 08 278.
7. 0 736 7.61 .253 1. 3 4. 5 .004 82.

1.508 6. 4 21.6 .018 405. 1373.

7. 5 743 6.17 263. 311.

1.211 4.1 14.0 .012

6. 0 636 5.20 300. 1018.
n. 5 655 4.74 1.!O8 4. 3 16.6 .013

.E53 .7 2. 4 .002 4*, 143.

3. 0 613 4.08 1726.

3.789 6. 7 22.6 .022 510.

3. 5 586 2.58
73. 266.
0. 0 357 1.87 .702 .3 3. 0 .003
4. 4 14.8 .017 3n2. 1233.
10. 5 121 1.69 3.783
13. 77.

1.42 .253 .2 .8 .001 11.0 506 118. 400.

84 1.15 1.509 1. 2 4. 0 .005 11.5 1.211 .8 2. 7 .005 103. 363. 9 1 12.0 664 . ': 6 i

L

MCDC 3 CME 3A SauAdiD IN (AADANS/SsCOND)**2 = .C3738427 NA7wAA6 FRICLENCY *N v. P. M. = 7000.26 NC. INEATIA testa- ICM27 SI3MA M 5"A#I 6 DI" IIA

. 6. 8 1.20000 3.657 3.657 b8.1 .06292 2 49.2 .33708 24.787 28.444 84.7 .33571 3 47.9 .60137 15.487 43.931 84.7 .51650 6 47.9 .08 98 .134 46.065 84.7 .54369 5 47.9 .46081 -11.867 34.198 84.7 603E2 E 47.9 .86443 -22.261 11.936 84.7 .14088 7 47.9 -1.00531 -25.889 -13.953 84.7 .164E8 4 47.9 .84063 -21.648 -35.601 84.7 .48019 9 50.1 .42044 -11.331 -46.932 76.9 .60937 10 1100.1 .18953 112.041 65.109 276.8 .235L4

  • 1 2650.4 .04571 -65.109 .000 MCDE 3 C*EGA SCUARED .5374 NA76 4 A- F4EcuENCY

. 7000.2600 ,

SI5'A :*7mE7A**2 2375.2154 S

  • G.* A I+7-27A**2 1997.4770 7 lN- 28970.37 7 Ex- 16955.47 S 92582D DIAME7ER O* Ex7EANAL S-AFT 16.00 EC.L -R u9 AMDw:TuDE .00006*773254
IN 7487.33
N7 2.46
EAT 1. 4 *
  • E 160337560.

= D @.

F ;; 0.

05 0.

= A 0.

240EA AAM TN VEC TSTIN7 757Ex7 Am: 7 MAXI TmArg

.5 14000 155.86 .355 365.7 214.0 .111 3123. 1887

1. 0 7000 34.58 .557 199.0 116.4 .102 2369. 1738.
1. 5 6EEE 129.52 3.103 986.9 577.6 .358 10371. 6070.
2. 0 3500 41.05 2.525 254.6 149.0 498 14432. 84e6.
1. 5 4800 71.71 3.103 5*E. 4 319.8 .258 7486. 4381.
3. 0 2333 16.16 .857 34.0 19.9 .229 831. *86.
3. 5 2000 42.79 .955 100.4 58.8 .057 1644 962. *
6. 0 1750 27.66 1.370 133.9 78.3 .085 2468. 1445.
  • . 5 1555 23.76 .955 55.8 32.6 .033 943. 551.
5. 0 1600 17.37 .857 36.5 21.4 .022 623. 365.
5. 5 1272 12.84 3.103 97.8 57.3 .059 1717. 1005.

E. 0 1166 11.42 2.525 70.8 41.4 .038 till. 651.

E. 5 1076 9.08 3.103 69.2 40.5 .037 1079. 632.

7. 0 1000 7.61 .857 16.0 9. 4 .008 245. 143.
7. 5 533 6.17 .955 14.5 8. 5 .008 226. 132.
8. 0 875 5.00 1.970 24.2 14.2 .013 384 225.
8. 5 823 4.74 .955 11.1 6. 5 .006 167. 98.
3. 0 777 4.08 .857 8. 6 5. 0 .005 131. 77.
3. 5 736 2.58 3.103 19.7 11.5 .013 367. 215.
0. 0 700 1.87 2.525 11.6 6. 8 .009 248. 145.

10.5 EE6 1.69, 3.103 12.9 7. 5 .009 275. 161.

1;. 0 636 1.42 .857 3. 0 1. 7 .002 67. 39.

11.5 608 1. 15 .35 2. 7 1. 6 .002 66. 38.

12.0 563 .36 1.970 6. 7 2. 7 .004 122. 70.

1

. _~

. * *? * -

N WhH e.

.. . . . . .._N.

I n

yL i

. . . . . . .........._..L_."... .

J . ... ...

s:

ii kk \ I

..._ . _ m . . . .__ _ .

.g

. ._ _ _. ... _.. i sf< . . . . . . ..mo emowaoe l\D ..

z.

Jfj.

i

. V

' /

iZ

. . . _O . _ . . . .. .

i

q Ll. / i .T . ._ .f g

.4,

.g c . ....._......__...._

, .a . . . . . _

8 g .

if .. N e 2 / 3

, }.

...., ...._.0._9_ . . . . . _ . . _ _ . . _ _ . . .O.' 1

b. ,

t . >

1 '

... 1' y II

...$_2

~

7 l _ . _ . _1. ._ _ . _l _ .i _

'T T T '  :

~ .n

_.:.. ..b_.'j' -

/ .u i

.a.

. _._l : -

5 .

I i y {s

_ _.,: _ _. _._ _. . _Dw ..._ _ i: p..... . R. . ..u _ .

~;>Q.)O..-

W -

N .

1 _

I,i F . g) F . ._. . :._ _ . __ ._ . _ .; _ _ __.. { -

i t.

p 7 . 3 0 ., 0 m. - . ,!

  • y-
i-i ti  ;

. Z. .:._N .g. -

ws y. _ _

h*N*i**

t. (.._ ~

J 5 -

i e _

i

__b,. N. _. . .

_ i .._ _ ) .1 i~-.: 4 N .

pb, N i,,.g-...

l

_ 4j ,_ ,

W d u S M- 1 3 ..d qq

..[-) - g ..p . . _ _ _

d h. gj v':

Id 5 r- '@ i.  : ,j  :

( rs ----

1;;.Mx N.-2 4  : i: .  :  : i

[_ _ !- j, t '

( '

.a 8

.g@d [:,i" :

4 r'

' t hl 8

!* :le ,.- !u n

  • u N 4.

, . .- , . aul .!

t 2 W . . .

.g .:

~

' 6  ; i

. j g .

.j

} :. t. f : 1. .u.. : u.

t w .

i.

, - 6 i

.1 . . . l :,l:. . '1:r; .: . ..i.

^ .

i -

c .

.] ..::.1 [+ ..j:.:r.:.4:3.. !.

p .

- t ,

: .j .
: . . l.... _ . .4_. ..
.1. ... . . . . . . 1. . . _ . l t.-.. .

i

. 1 . . I. 7 . :.:::: . . . . . .

-- ;,  : . r:: .,l_....; .:. . :  !
":. .: :::...4...... g.

. i. i. .

. . . . . .l .

i

! i i l

i

. i  ; -r I ..:. . 4 ;I"M , U I"4 9/.:

p. ~i.5?-I

. :: .:_ = - : u -i.:.i

-- - :1:-

. . . 2 -. :':2- i_

. i l

. i. . . . - .

, R t .

r.

i  ; .  :

r2 4 im

i 1 1
i. .

t As ... : ;::=  :. :.:*.;.i. t -.

.s t

. 5:

5 :- h.. .1.:

l _ :....... .  : .

_ ._. _. _.5

j._...

" j. . w; ,. 11. . .-;.

. , $,.::. ,,: uut.. ::- i 5

. .i ::: ;j 1 ' . ..: ji ::.:::. i;.2:. :.i . ..: -j l

.- . i- , j -

j. . i -- - - - - - -

.._ :_. . 1

.. ....__.2. a

; i . gi y p_ i....j . ;; q g J l 1 1 4,.4.. "T 1 .

I 1

I

l The preceeding pages show the analysis based on the nameplate rating of the engines. To illustrate the changes in amplitudes and stress levels when operating at 111.4% (3900 KW) or overload condition allowed for two hours per day, we supplemented the analysis with the following I

pages.

The changes in the amplitude and stress between the two load conditions are reflected in the "T sub n" (T ) values. The following is a listing n

of.the 111.4% Tn divided by the 100% T n rte ers or ha m nics calculated. The ratios shav the increase in amplitude and stress level cue to the extra load at 111.4% load operation.

ORCER FIRST MODE SECOND MODE THIRD MODE 5 1.10'0 1.10L0 1.1040 1.0 1.0777 1.0777 1.0777 1.5 1.0963 1.0963 1.0963 2.0 .8877 .8877 .8877 2.5 1.0817 1.0817 1.0017 3.0 1.1733 1.1733 1.1733 35 1.0694 1.069L 1.069L L.0 1.0600 1.0600 1.0600 4.5 1.0669 1.0669 1.0669 5.0 1.0662 1.0662 1.0662 5.5 1.0639 1.0639 1.0639 6.0 1.0370 1.0727 1.0727 6'. 5 1.0379 1.0727 1-0727 7.0 1.0379 1.07L9 1.07L9 7.5 1.0361 1.0729 1.0729 8.0 1.0357 1.0700 1.0700 8.5 1.0398 1.0738 1.0738 9.0 1.0L06 1.0735 1.0735 95 1.0196 1.0581 1.0581 10.0 1.0157 1.0431 1.0481 10.5 1.0175 1.0473 1.0473 11.0 1.0098 1.0423 1.0423 11.5 1.0112 1.0261 1.0261 12.0 1.0000 1.0313 1.0313 From the above, the increase in amplitude or stress level due to the fourth order at 111.4% load will be about 6% higher tiian that at 100'.

If we calculate the stress levels at 450 RPM due to the .5, 1.5. 2.5.

4.0. L.S. 5.0. 5.5 orders and sum these by the 5,cuare loot of the b mc of the 5,cuares, the overall anolitude at 111.44 (415L asi).will be about 7% higher than that (3879 psi) at 1004 lead, l.

12

l w ....:

0-E'L SCJ0;E? IN ( c2::N5/5ECOND)++I = .05?!s701 N~~Uca. F E; .'E N 2 v IN v.:.v. = 2212.19 NC. INER :: 7-E70 10-17 S:G*Q M 5~A ? K O -E 1 .

i 1 6. 9 1.00000 402 402 56.1 .00ii2 l 2.19E .02&30 1 49.1 .99207 2.892 86.7 2 47.9 .95417 2.706 E.001 64.7 .0705 . i 4 47.9 .8E232 2.505 8.505 6'. 7 .100' ;

5 47.9 .78291 2.221 10.715 s'. 7 .12661 6 47.9 .65629 1.8E1 12.590 E.7 .I'i!-

7f 47.9 .50770 1.440 14.02e 6.7 .li!!) '

G 47.9 ,34211 .970 15.000 84.7 .1770 9 50.1 .16507 490 15.490 76.9 .10; 2 10 1100.1 .02625 -2.2E0 12.120 276.6 .0e7_4 11 1E 5 0. 4 .082E? -12.129 .00*

MODE 1 OMEGA SOUQ:.ED .0591 NA~U;Au CREQUENCY 1222.1900 SIGMO !+THETG++i 1295.7610 5*G*A I+T-E7C++1 1707.4596

. .r ec- s. c. : .. . . . < . -

rr-

- - 415. . c7

=re=_=.,

_. . p . sy _-:: _. c= c x. c :s _ c_.; - g g. e.s E?.I.:E::.* Av:_ITUDE .000E!1;310!!

  • N 7457.22
.N- e.,
: s- -

- . . s. .-

  • E 177e4ili.
  • D 0.

F C: 2.

F C5 c.

P

  • 4.

0;OE: RP* TN VE T57:N7 TSTEt? 09: 7masi 7* sE

.5 46*6 172.07 .701 963. 4 351.2 .806 77;C. 1757.

1. 0 1222 101.92 .146 121.5 42.4 .164 1571. 551.
1. 5 1549 161.99 1. 2 "r 4 1612.9 E76.8 1.559 1-905. 5221.
1. 0 11El 25.46 .276 111.6 39.9 .659 6205. 1155,
2. 5 91~ 77.57 1.294 821.1 215.1 1. 0":9 10505. 27!s.
2. 0 774 18.9E .14E 21.6 E.1 .042 404 145.
2. 5 662 45.76 .701 161.3 92.4 .369 3717. 1219.
4. 0 560 29.32 5.255 1262.5 451.5 2.119 20257. 72**.
4. 5 51E 15.25 .701 144.7 51.8 .222 2127. 76 ; .
5. 0 464 18.51 .146 22.1 7. 9 .0E6 62E. 124

..5 422 L3. 66 1.394 155.2 55.5 460 4402. 1574

6. 0 287 5.89 .276 18.0 6. 4 .052 5:2. 152.
6. 5 357 4.66 1.294 52.9 18.9 .157 1500. 526.
7. 0 321 2.83 .146 4. 6 1. 6 .014 129. 46.
7. 5 30? 3.16 .701 18.0 6. 5 .054 512. 152.
8. 0 4c.0 e. 61 .. ..c.. 11 a..4 4 e, . s.. .aaa 41Gc. . 112 .
6. ! 273 2.25 .70; 13.4 4. 8 .040 360. 126.

?. 0 255 2.05 .146 2. 4 .9 .007 69. 15.

9. 5 264 1.56 1.394 17.8 6.4 .052 50e. 150.

10.0 121 1.29 .276 4. 0 1. 4 .012 112. 40.

10.5 221 1.16 1.394- 13.2 4. 7 .039 37*. 124 11.0 111 1.02 .146 1. 2 4 .004 35. 12.

. , 11.5 202 .90 .701 5.1 1. 8 .015 145. 52.

c 12.0 192 .79 5.285 34.1 11.2 .10 9E?. 346.

11

\

i

)

i M__ .s c ONE30 SGvA:E; IN (RADIcN5/SECONL)++1 = .24059902 NATU40_ C;E;sEN!y IN V.D.F. = 5575,51 NO. INE:~IA 7HE ; IOri- EIGm; P 5-?:~ M D -E 1 E. 8 1.00000 1.320 2.320 5&.1 .029:.

1 49.2 . 95005 1E.110 18.420 84.7 .21751 2 47.9 .74257 12.131 30.561 84.7 .2E070 4 47.9 . 38187 E.238 3E.799 84.7 42-22 5 47.9 .05246 .657 35.962 84.7 41-11 E 47.9 .47EE7 -7.787 28.155 84.7 .22120 7f 47.9 .80897 -13.21E 14.929 84.7 .17621 8 47.9 .98520 -1E.03E -1.157 84.7 .012ii 9 50.1 .97164 -16.611 -17.7E8 7E. 9 .22C?I 10 1100.1 .74071 -E77.771 -195.539 27E.8 -1.05750 11 2650.4 ,32709 295.536 .000 o

\

YCDE ;E OME3; SOJCMEO 1

.3409 _.

N~TL;A. ~EEGUENCY 5575.5100 SIGm; 1+7dETC++2 2578.9463 SIGMA I+ THETA ++2 1220E.1291

  • I N* *. OL

-- 7. .e s r . 4.i T EXT 7E?E2.25 STAEEEED DIsMETE; 0: EXTER*.;_ 5-Q:- 1E. 00 EC_ILI5;IUM AmO.I7UDE .000020:02657

IN 74E7.32
IN- .EE
Et? 2.21 FE 11047E540.
D t.

= C; t.

C5 2.

F& 0.

G :.3E : ' .R DM TN VEC TSTIN7 T5 TEX 7 PHI 7MAYI TM tE

.5 11151 172.07 1.505 177.4 601.2 .179 E321. 21 51.

1. 0 5575 101.93 .253 17.6 59.7 .046 1036. 3509.
1. 5 2Y.7 141.99 3.789 3E7.9 1246.5 .651 15460. 51251.
2. 0 2787 3E.44 .702 17.5 59.3 .198 4492. 1521e.
2. 5 2230 77.57 3.769 201.0 681.0 4G0 1089E. 36919,
3. 0 1858 18.96 .253 3. 3 11.1 .012 2EE. 903.
3. 5 1593 45.76 1.508 47.2 159.9 .134 3051. 10341.
4. 0 1392 29.32 1.211 24.3 82.2 .078 1771. 5999.
4. 5 1239 25.35 1.508 26.1 88.6 .077 1747 5919.
5. 0 1115 18.52 .253 3. 2 10.8 .009 216, 721.
5. 5 1013 13.66 3.789 35.
  • 119.9 .108 2455. 8315.

E. 0 929 12.25 .702 5. 9 19.9 .016 3ES. 1225.

E. 5 857 9.74 3.789 25.2 85.5 .068 1556. 517;. 1

7. 0 796 8.18 .253 1. 4 4. 8 .004 85. 289. l
7. 5 743 6.62 1.508 E. 8 23.1 .019 420. 1414
8. 0 E96 5.35 1.211 4.4 15.0 .012 176. 943,
8. 5 E!! 5.09 1.508 5. 3 17.8 .014 312. 1055.
9. 0 EIS 4.38 .252 .8 2. 6 .002 46. 155.-
9. 5 58E 2.73 3.789 7.1 24.0 .013 523. 1771. l 10.0 557 1.96 .702 .9 3. 2 .004 80. 171. l 10.5 531 1.77 3.789 4. 6 15.5 .017 388, 131E. I 11.0 506 1.48 .253 .3 .9 .001 23. 75. l 11.5 484 1.18 1.508 1. 2 4.1 .005 119. 404 I 12.0 464 .99 1.211 .8 2. 8 .005 10E. 358, 14

l t l

~

I MOD ~ i

! 09 EGO SQUORED IN (2CDIANE/SE*DNU)**1 8 .52726'I'

! NA7V4GL FRE3JENCY IN V.D.M. =' 7000.26 NO. INE;7IA THE7A I C *.2 ? 5*G*A

  • 5-;#~ 6 2~-E~0

( 1 E. 8 1.00000 2.E57 3.E!7 59.1 .01292 l 2 49.1 .92705 '24.7E7 2G.444 84.7 .22!71 3 47.9 .E0127 15.4e7 42.921 84.7 .5155C 4 47.9 .e8288 2.134 4E.065 8'. 7 .5=2E9 5 47.9 .46081 -11.8E7 34.193 84.7 40262 6 47.9 .86443 -22.261 11.93E 84.7 .14055 7 47.9 -1.00:21 -25.889 -12.953 84.7 .1E-EE 8! 47.9 .84063 -21.E46 -35.601 84.7 .41019 9 50.1 .42044 -11.331 -46.922 76.9 .E299-10 1100.1 .18952 112.041 E5.109 27E. E .2251' 11 2E50. 4 .04571 -E5.109 .000 o

MCDE 3 I OMEGA SOUARED .5374 l NATURC. . FREQUENCY 7000.2E00 l-SIGMA I+7HE'A++2 2375.2154 SIGMA I+7 META ++2 1997.4770 T INT 26970.37

  • EXT 169:5.47 STRESSED DIQ*E*EA Or EXTERN _ SHA:7 15.00 EQUI IB9Iem AMO ITUDE _ .0000547732fi F IN 74E7.22 F INT 2. 4E F EX7 1.44 F E '

.A.s'.-.~."~<'.

FD 0.

C CR 0.

F C5 0.

F P' O.

0;DE9 RLM TN VEC T5 TINT T57Ex- Dm! T*::: m xE

.5 14000 172.07 .955 402.7 236.3 .112 3522. 10s1.

1. 0 7000 101.92 .857 214.4 125.5 .10E 3054 1625.
1. 5 4666 141.99 3.102 1061.9 633.2 .364 11111. E! O 9.
2. 0 3500 36.44 2.515 22E. 0 132.3 490 1419?. E 210.
1. 5 2800 77.57 2.102  !?1.1 345.9 .271 7835. 4!!7.
3. 0 2233 18.96 .857 39.9 22.3 .027 792. 46 ',
3. 5 2000 45.76 .955 107.4 61.8 .059 1699. 99e.
4. 0 1750 29.32 1.970 141.9 82.0 .087 2531. 14E2. ,
4. 5 1555 25.35 .955 59.5 34.8 .034 972. 569. l
5. 0 1400 18.52 .857 39.0 22.8 .022 E42. 276. I
5. 5 1272 12.E6 3.103 104.1 60.9 .061 1766. 1034
6. 0 1166 12.25 2.525 75.9 44.4 .040 1152. E74
6. 5 107E 9.74 3.102 74.2 . 4 3. ': .039 111?. E!E.
7. 0 1000 6.1 E .857 17.2 10.1 .009 254 I ' 9.
7. 5 933 E. 62 .955 15.5 9.1 .009 234 127.
8. 0 875 5.35 1.970 25.9 15.2 .014 395. 222.
8. 5 823 5.09 .955 12.0 7. 0 .006 174 101.
9. 0 777 4.38 .857 9. 2 5. 4 .005 13E. 80.
9. 5 736 2.72 3.102 20.8 12.2 .013 376. 210.

10.0 700 1. 9E 2.525 12.2 7.1 .009 151. 145.

10.5 666 1.77 3.103 13.5 7. 9 .010 279. 163.

11.0 636 1.48 .857 3.1 1. 8 .002 EE. 40.

11.5 608 1.18 .955 2. 8 1. E .002 E6. 39.

12.0 582 .99 1.970 4. 8 2. 8 .004 121. 71.

15 .

l

The next page (p.17) is a Tabulation of Mass Elastic Data showing other OSR-LS engines of'similar rating. Except for minor differences in flywheel and generator, the torsional characteristic of these units are very similar, as indicated by the si.nilarities between. the torsional natural f requencies. A listing of operating hours accymulated for several of these units are includec in 52ction Four of this submittal.

n m .: e e ~ co 4  %  %  %  % m w  %  %

w w w w. w w w w - $

2 e c c o = c. -

u c., o = = =

= = = =  :

w C C C C C C C C j. S e

3 3 3 3 3 3 ~3 3  : 3 I I I I i le 1 1 I

1 I

2 ( *3 4 5 6 7 8 ic 11 K K K K. K K K K 8

K. Kn 15 1 2 3

  • 5 6 7 Tveical Torsional Mass Elastic Svstem (05R-48/Generateel G

16

I T*BULAil0N OF MASS ELASTIC 0*TA Or osa LS ENGINES.

I' r eem 2!>= Chu -che he -2

SEE jl88 %B% 238 855 's i

ak;

ii u a nn a aii i R* 555

!;, 6.805 8.25c 6.805 8.560 6.805 6.805 54.389 1 49 222 49.222 49 222 54.389 49 222 2

I 47.922 L7.922 47.922 53 090 47 922 53 090 47.922 53.090 if 47.922 47.922 47.922 53 090

.32.090 i,1 47.922 47.922 47.922 47.922 47.922 53.090 53.090 47.922 47.922 53.090 6

47.922 1 47 922 47.922 47.922 53 090 47.922 53 090 7

1 47.922 47.922 67.922 53.090 47 922 53 090 1.8 50.149 50.841 50.'.49 58.257 50.149 55.316 1100.520 1009.604 426.527 368.572 1280.633 1280.633 Ij},2650.4322828.371L976.067 1; 2756.882 2650.430 2552 371 K 58.121 58.121 58.121 58.121 58.121 58.121 K! 84.727 84.727 84.727 84.727 84.727 S4.727 84.727 8L.727 84.727 84.727 SL.727 84.727 84.727 K'f K

K 84.727 8L.727 84.727 3L.727 SL.727 8L.727 84.727 84.727 84.727 84.727 84.727 K 84.727 84.727 84.727 84.727 84.727 84.727 K 84.727 84.727 84.727 BL.727 84.727 84.727 K! 8L.727 84.727 84.727 84.727 BL.727 84.727 K ," 76.9k1 67.327 76.941 76.9k1 76.941 76.9L1 252.445 KIO 276.773 326.100 309 720'

  • 229.770 254.397 N 2323 2280 2277 2143 2317 2219 N ,.i 5576 5988 6421 3669 5146 5125 Nj 7000 7064 8792 6307 6913 6619 CTW - - -

1 -

1 Note.

I Inertla values of mass elastic system (Lb. ft. sec. )

K Stiffness values of mass elastic system ( Millien ft. Ib. per Radian)

CTVT Counterweight used at each crankthrow ,

nun

  • Saudi Arabia Installations are: l Ohuba 76010 to 76014 Oneiza 76026 to 76028 wadi 7804L to 78046 Rafha 79002 to 79004 Rabigh 80001 to 80003 N' Torsional Natural Frecuencies of the first three rnodes (V.P.M. )

17

SECTION Two TOR $10 GRAPH TESTS 4

T08510 GRAPH TESTS One of the three engine'(5/N 7aC10/12) was torsiograpned by both Failure Analysis Associates (FaAA) jointly ith Stone & Webster (SWEC) as well as by Transamerica Delaval (TDI). TDI only measured overall torsional amplitudes.

On page 19 are measured results by FaAA/SWEC and-those by TDI. FaAA's measurement reflects actual peak to peak amplitudes of the overall e composite waveform. FaAA also provi~ded the S_cuare R_oot of the 5,um of the S_cuares (SRSS), which would be corparable to the overall a plitudes measured by TDI using the Bell & Howell C.E.C. Vibration Meter. Also included in page 19 are test results of other CSR-48 engine generator sets with similar mass elastic system and of identical rating. It can be readily observed that the Fourth Order amplitudes measured by FaAA/SWEC on the subject crankshaft are similar to values measured by TDI on similar CSR-48 engine generators. Alse the FaAA/SWEC SRSS acclitudes and 701 measured overall amplitudes are very similar. It may also be noted here that the Bell & Howell C.E.C. Instrumentation used by TDI is v.idely used in the trade and although the measurement do not represent a theoretically correct peak to peak amplitude, it does however provide a common method in measuring the combined effects of the various harmonics.

On page 20, reference is made- to the approval of crankshaf t drawing 03-310-05-AC, as well as the corresponding ABS forging report numcer and physical properties. For comparison of the actual crankshaft minimum tensile property between LILCO, Kousheng and Rafha, we have included the values for the latter two.

On page 21, allowaele stress levels due to single harmonic and overall are calculated using 1982 and current 1994 ABS Rules.

1 18 l

__ _ - - - - - --_- -- a

l

{

TORSIONAL TEST DATA ON DSR-48 ENGINE GENERATOR SETS.

I f A. Torsiegrach Test Results bv FaAA/SWEC l 3500 Kt! 3800 KW Fourth Order 3. .' 3106 psi 339 3242 psi l

C Overall, Pk to Pk .693 6626 psi .719 6875 psi -. . . . . .

Overall, Calculated .424 4054 psi 454 4341 psi b, SRSS .

B. Ters logra::h Test Results by Ttl. Using Bell & Howell C.E.C. ?ndel 1-117-0001 Vieratien Meter.

3500 KW 3500 KV Overall .425 4064 psi 450 L302 psi C. Torslograch Test Results bv 701. Using Bell & Howell C.E.C. M.edel 1-117-0001 vieration Meter. on otner OSR-4e Engine Generators.

S/n 76014 3500 KV 3550 KV .

Fourth Order 350 3365 psi 370 3557 psi Overall 420 4038 psi 460 L423 asi S/N 74039 Fourth Order 362 3385 psi 372 3478 psi Overall 450 4208 psi 480 4488 psi i

19

b PHYSI CAL PROPERTI ES OF CRANKSH ARTS f

ABS REPORT ON LOWER VALUE LOWER VALUE CASTINGS OR FORGINGS REPORT NO. Y! ELD PolNT - PSI TENSILE STRENGTH - PSI LILCO 58291 100777 83-ES 85280-1031 57276 101792 83-Es 85279-1031 48576 100777 83-ES 86290-365 RAFHA, 7900k 79-K078165-232 50500 93700 KOUSHENO. 75006/08 55000 93000 SLOOO 93500 57000 98000 Crankshaf t material specified is ABS Grade L which is A668 - Class E.

Minimum yield point is 43000 psi and minimum tensile strength is 83000 psi.

The crankshaf ts fer the 05R-48 cerry a, part or drawing number 03-310-05-AC, and has ABS approval stamped, dated 2-26-1976.

l 20

ALLOVADLE TORSIONAL STRESS CALCULATION.

Based on Para. 34.L7 of 1984 ABS Rules.

S=( l e-

)C k C d

C r

where U = Minimum Tensile Strength of Shaft Material 100000 PSI C is .55 for propeller shaf ts and crankshaf ts k

C is size factor, d

35 + o.487 / N = .6463 C is speed ratic fact r, 1.38 for 90% t 105'- rated RPM.

r 00 S=( + 23W ) ( .55 )( .6563 )( 1.35 )

=3357 PSI due to single order Total Allosable Stress = 150f of 3357 - 5035 PSI ALLOWABLE TORSIONAL STRESS CALCULATION.

Based on Table 3L.3 of 1982 ABS Rules.

e} x 450 RPM gjx450 RPM g ;g x hSi.t.523td

= 135 RPM = 360 RPM L27.5 to L50 L72.5 **"

Grade 2, 60000 psi 5689 psi 3556 psi 2134 psi 3556 psi Grade 4, 100000 psi 8217 psi 5136 psi 3082 psi 5136 psi

1 e

Stress limit multiplier = ( 000

~

for adjustment from 60000 psi to 100000 psi material.

21

(. ~

l.

I I

f-a t

l SECTIOrt THREE l

i STRAIN GAUGE TESTS 1

1 I

O

s Submittal to the American Bureau of Shipping for the DSR-4813-Inch by 12-Inch Replacement Crankshafts Fatigue Analysis of the Replacement Crankshafts The factor of safety against fatigue failure in the replacement (12-inch crank pins) crankshafts is calculated in this section. The stress levels in the replacement crankshafts are computed from strain gage test data. The endurance limit is first established for the failed crankshaf ts (11-inch crank pins) from strain gage test data. This endurance limit is then scaled to account for the higher ultimate tensile strength of the replaceme :t cranksnaft. The effect of shot peening the re::lacement crankshafts provides an additional margin against fatigue failure.

Stresses in Replacement Crankshafts The replacement crankshaft was instru.mented with strain gages in the fillet locations of crank pins 5 and 7 and tested under operational conditions at both 3500 kW '(100% rated load) and 3800 kW (109% rated Icad), L50 RPM syn:nec cus speed, The highest stresse were measured in crank pin 5. A dynamic model of the crankshaft confirms that this pin undergoes the greatest range of torque. Three-dimensional finite element models of a quarter crank throw show that the strain gage rosette was placed in the location of highest stress, both within the fillet and around the crank pin. The following strains were

' measured at 3500 kW:

Strain Gage Maximum Minimum 5-1 (compression) -195 uc 288 uc 5-2 (bending) 695 uc -410 ue 5-3 (tension) 737 ue -610 uc PRJ:5-03310A-d/slw 3/27/84 22

To account for the simultaneous effects of shear and bending, tne stress state ' is represented by equivalent stresses using Sine's method [1].

For a biaxial stress state, the equivalent alternating stress, Sqa, and ecut-valent mean stress, Sqm, are given by:

' 1/2

= (Sat 2 Sa:sa2.S23 S

qa a2 and Szm=S: m *S m2 where S al and S a2 are the alternating components of principal stress, and Sm.

and S m2 are the mean components of principal stress. Frcm the test report

[2], the equivalent Sternating stress, Sqa, and equivalent mean stress, S; ,

on crank pin 5 were calculated to be:

Sqa = 24.6 ksi Sqn = 4.8 ksi Equivalent stresses, S ga and S qm, are those alternating and mean un1 a ri al stresses that can be expected to give the same life as the given multiaxial stresses.

Endurance Limit for Failed Crankshaft The failed crankshaft was instrumented with strain gages in the f.illet location cf crank pin 5. This fillet on the failed crankshaft had previously experienced a fatigue crack during performance testing. After the test, the three-dimensional finite element models of a quarter crank throw showed that the strain gage location on the failed crankshaft was placed close to the location of maximum stress. The measured stress range is used to establish the endurance limit in this analysis as a conservative assumption, although the actual maximum stress range is revealed by the finite element model to be about 15 percent higher at a nearby location. From the test report [3], the following strains were measured at 3500 kW:

PRJ:S-03310A-d/slw 3/27/84 23

_ -I

Strain Gage At Maximum Torcue At Minimum Tor:ue 5-1 (tension) 1118 uc -707 uc 5-2 (een 9 ng) 773 uc 459 uc 5-3 (conpression) -389 uc 266 uc I

The equivalent alternating stress, S qa, and equivalent mean stress, S;n, were calculated to be:

Sqa = 33.7 ksi S;m e 10.9 ksi From the test logs, it was determinec that the shaf t had experienced 273 nours at equal to or greater than 100% load, or about 4 x 106 cycles. By usir; Miner's rale and typical slopes of S N curves, it was determined that the enourance limit for this mean stress was 32.4 ksi. The ultimate tensile strength for these crankshaf ts averaged 96 ksi. A line representing this endurance limit is shown on the Goodman diagram [4] in Figure 3.1.

This line is bounded by two lines showing the endurance limit for full scale cra*(shaf ts based on other test data [5].

Endurance Liait for Replacement Crankshafts The replacement crankshafts have a minimem tested ultimate tensile strength of 103 ksi. The endurance limit scales linearly with ultimate ten-sile strength. On this easis, the endurance limit for the replacement crankshaft is shown in Figure 3 1.

The fillet regions of the replacement crankshafts have been shot peened. The effect of shot peening may produce widely differing increases in fatigue endurance limit; however, a conservative minimal value v.~ t.iil s in-crease is 20 [6]. The endurance limit for the replacement crankshafts, including the effect of shot peening, is shown in Figure 3.1.

PRJ:S-03310A-d/slw 3/27/84 24

l I

l l

Factor of Safety Against Fatigue Failure The factor of safety against fatigue failure of the replacement crank-snaf ts is 1.48 when the effect of shot peening is not considered, and is 1.75 when the effect of shot peening is assumed to increase the endurance limit by 20:6 At 3800 kW, the strain gage test data [1] on the replacement crankshaf t shows that the stress level is 4 greater than it is at 3500 kW. At 3900 kW it would be.about 5 greater than it is at 3500 kW. Thus, there is an'ade-quate safety margin against fatigue failure at the specified diesel generator set two-hour-per-24-hour period rating of 3900 kW.

PRJ:S-03310A-d/slw 3/27/84 25 T M -

I l

References

1. Fuens , H.O. , and Stephens , R. I., " Metal Fatigue ir. Engineering," Wiley, 1980.
2. Bercel, E., and Hall , J.R. , " Field Test of Emergency Diesel Generator 103," Stone & Webster Engineering Corporation, March,1984
3. Bercel , E., and Hall, J.R., " Field Test of Emergency Diesel Generator 101," Stone & Webster Engineering Corporation, October,1983.

4 Collins, J.A., " Failure of Materials in Mechanical Design," Wiley,1981.

5. Nishihara, M., and Fukui, Y., " Fatigue Properties of Full Scale Forged arc Cast Steel Crankshafts," Transactions of the Institute of Marine Engineer-ing, Series ! :n Co.penset m Design for Hi gM.ly Pres:ure Cheeged Ofesel Engines, London, January,1976.
6. Burrell, N.K., " Controlled Shot Peening to Produce Residual Compressive Stress and improved Fatigue Life," Proceedings of a Conference on Residual Stress for Designers and Metallurgists, American Society for Metals, Ap ril , 1980.

9 PRJ:S-03310A-d/slw 3/27/84 26 L

i i

50 , , g , ,

47.0 -

l 3 -

-20% increase in enduranco limit due to shot peening 5 40 '_.s *- Factor of safety is 1.75 _

  • 39.2 \

Endurance limit for.eeplacement crankshalt

'g j " 36.5 without shot poening -

er

  • Factor of saloty is 1.48 F- s N M '

\s \ Stress endurance limit from test

! (3 _

N g on failed crankshall 4, 2 N s\, s s b  %

< s z

t *-Stress s\ \

" a-

, us 8-I from tost onN\ N a f replacement s I

! < 20 g cranksha f t N -

s -

F- I \ s z s s s j l Rango of f atigue test-MA J

data for other full scale NNs

crankshalts with UTS of WN g(

h 10 sN's -

I

UTS for f ailed crankshaf t . s 0 ' ' I I -- 3 f

0 20 40 60 80 100

  • 120

, a EQUIVALENT MEAN STRESS (ksi) UTS for replacement j t cra nsk.sha ll I

u E

C*

l figure 3-1. Gor,dman diagram for replau ment crasikshaf ts.

i 4

i

[ .

o a

f r

SECTION FOUR OP.ERATING HOU8.5 LOGGE3 f

W Z

l 9

AVAILABLE LOGGED ll0URS Of OPERATION Of DSR is8, RATED 3500 KW 4450 RPM AV. 10AD OTilER LOADS f.

SERIAL KILOWATT RATING TOTAL llotlRS LOGGED DATE LOGGED REPORTED 110t195 REPOR1ED NUMBER L OCAT I ON H Ie50 RPH 74010 ) ( 368 4-01-84 ) 3500 KW r. Aliove 114 Hrs. .

74011 ) LlLCO, Slioreham 3500 ( 430 4-01-84 ) --

3500 KW r. Above 116 Hrs.

74012 ) ( 345 4-01-84 ) 3500 KW t. Above 110 lirs.

( 246 3-15-8f. )

75005 ) 221 3-15-84 ) H st ,

( _.

) KOUSilENG, TAlWAN 3600 368 3-15-88 )

(

75007 ) 299 3-15-84 )

75008 ) (

( 19800 3-17-84 )

76010 ) 23300 3-17-84 )

(

76011 ) 3500 23800 3-17-84 ) --

76012 } DilUSA, SAUDI ARABIA (

76013 ) ( i9700 3-17-84 )

( 23500 3-17-84 )

i n m

76014 )

.( 1620's 3-17-84 )

76026 ) 3515 12828 3-17-84 ) -- 3000/3200 KW for 9000 lirs.

76027 } ONEllA, SAUDI ARARIA (

( I4978 3-17-81 )

76028 )

( 8180 3-15-84 1100 KW 78029 ) U. OF TEXAS 3500 5385 3-08-84 1100 KW

(

78030 )

( 10882 3-17-84 2200/3000 KW 78044 ) 3515 ( 10832 3-17-8ta '2200/3000 KW 780fi S } WADI DAWASIR, SAUDI ARABIA --

( 18212 3-17-8's 2200/3000 KW 780 6 ) 1

( 12667 3-16-84 --

3300 KW Eor 6200 lirs.

79002

)) RArt '.AUDI ARADIA 3515 ( 11655 3- 16-lile -- 3700 KW for 8250 ilrs.

i 79003

( 13186 3-16-84 --

3700 KW for 5500 lirs.

79004 )

3-16-84 2700 KW 80001 ( 10196

) 10245 1- 16 -114 2800 KW 80002 ) RAniGil, SAtial ARAntA 3515 (

( I1602 l-16-Il4 2800 KW --

80003 )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - .