ML20086P328

From kanterella
Jump to navigation Jump to search
Rev 1 to Vol 2,to Plant-Unique Analysis Rept,Suppression Chamber Analysis
ML20086P328
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 11/30/1983
From: Edwards N, Steinert L
NUTECH ENGINEERS, INC.
To:
Shared Package
ML20086P296 List:
References
DET-04-028-2, DET-04-028-2-R01, DET-4-28-2, DET-4-28-2-R1, NUDOCS 8402270103
Download: ML20086P328 (11)


Text

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ . _ ___ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

DET-04-028-2 O Revision 1 November 1983 ENRICO FER"I ATOMIC POWER PLANT UNIT 2 PLANT UNIQUE ANALYSIS REPORT VOLUME 2 SUPPRESSION CHAMBER ANALYSIS Prepared for:

Detroit Edison Company O Prepared by:

NUTECH Engineers, Inc.

Approved by: Issued by:

Dr. N. W. Edwards, P.E. L. D. Steinert President Project Manager NUTECH Engineers, Inc.

.d mamaatdih A-nute.sh

REVISION CONTROL SHEET

SUBJECT:

Enrico Fermi Atomic REPORT NUMBER: DET-04-028-2 y) Power Plant, Unit 2 Revision 1 (Q Plant Unique Analysis Report Volume 2

= s \

f.1 b 1:Q$- lk l J. C. Attwood / Senior Consultant Initials k ~r14ft id ta c k[

A. Imandoust / Specialist Initials h!M N . .e  %

V. Kdmdr / Project Engineer Initials

. I R. A. Lehnert / Eng. Manager Initials

/ i K. I.oo / Specialist Initials 3 -

[Sf R. D. Quinn / Consultant Initials

[)

\

S uctA in n A i d S. P. Quinn / Senior Technician Initials S. H. Rosenblum / Consultant I Initials b si L4W b s b W. s. Smith / Asso61 ate Engineer Initials udn p~ c.*$ 7 C. S. Teramoto / Consultant I Initials 04Abuda %T J.Q4. Treiber / Specialist Inidials D M Y. C."Yiu"/ Enginehr #

Initials' WDSM L. D. Steinert/ Project Manager WD5 Initials 2-ii g

REVISION' CONTROL SHEET (Continuation) m ENRICO FERMI ATOMIC REPORT NUMBER: DET-04-028-2 PLANT, UNIT 2 REVISION 1 Cj) TITLE: PLANT UNIQUE ANALYSIS REPORT VOLUP2 2 ACCURACY CRITERIA PRE- ACCURACY CRITERIA E REV PRE- E REV PARED CHECK CHECK PARED CHECK CHECK PAGE (S)

PAGE(S) 2-2.97 0 2-2.143 0 S pT 484 throu Rg PT /2 A 2-2.144 jwe <j e ., vw through 2-2.99 g, g gL 2-2.146 2-2.100 2-2.147 j$4 %T .1 cit MR IMk N 2-2.148 jf/X pT fM 2-2.149 2-2.115 throu through RAC VK 5& %T E#4 2-2.118 0 2-2.119 .5.A, G67 ML 2 t

MR RM VK 2-2.120 MM R.M VK -2.155 2-2.121 AAe TAT VK 2-3.1 " 3A VE 84L u o g 2-2.122 5A Vk ^

ST 2-11 1 ADS VK 2-2.123 PJ hd VK 2-iv 1 through 2-2.39 1 y 2-2.128 2-2.48 1 1 9

/N4 VK vK' 2-2.129 $ $e41 2-2.143 1 dd)3 2-2.130 Q jf/4 l])

2-2.131 JM 4pc') VK 2-2.132 through g/tL gpf VK 2-2.135 2-2.136 g g@ bb-2-2 137 g (kg Vk.

through hhrL 2-2.138 2-2.139 gT I l- O Vk.

2-2.140 g pT RM l 2-2.141 U

$T M v(

i 2-2.142 0 g @ yg n QEP-001.4-00 f

a 2-iv l

nutggb l

l _.,_ ___ _ _ _ _ . _ _

Loads are developed for the case with the d maximum source strength at the nearest twol downcomers acting both in phase and out of phase. The results of these cases are evaluated to determine the controlling loads. The resulting magnitudes and distribution of post-chug drag pressures acting on the ring beam and quencher bean for the controlling post-chug drag load case are shown in Table 2-2.2-9.

These results include the effects of velocity drag, acceleration drag, torus shell FSI acceleration drag, interference effects, wall effects, and acceleration drag volumes. A typical pool acceleration profile from which the FSI accelerations are derived is shown in Figure 2-2.2-11. The results cf each harmonic in the post-chug loading are combined using the methodology discussed in Section 1-4.1.8.

7. Safety Relief Valve Discharge Loads I a-c. SRV Discharge Torus Shell Loads: Transient i

pressures are postulated to act on the sub-l

~ DET-04-028-2 b) Revision 1 2-2.39 nutech l

merged portion of the suppression chamber shell during the air clearing phase of an SRV discharge event. The procedure used to develop SRV discharge torus shell loads is discussed in Section 1-4.2.3. The maximum torus shell pressures and characteristics of the SRV discharge pressure transients are developed using an attenuated bubble model.

Pressure transients which include the addi-tional load mitigation effects of the 20" diameter T-quenchers are developsd.

The SRV actuation cases considered are discussed in Section 1-4.2.1. The location of each quencher and the corresponding SRV set point pressure are shown in Figure 2-2.1-11.

The cases which result in controlling load or load combination effects for which torus shell pressures are developed include the single valve actuation case with normal operating initial conditions (7a-Case A1.1/A1.3 for the quencher location which results in the highest shell pressures), the multiple valve actuation case with elevated drywell pressures and temperatures (7b-Case A1.2/C3.2 with pressures i

DET-04-028-2 Revision 0 2-2.40 G nutggh

O Table 2-2.2-2 i

SUPPRESSION POOL TEMPERATURE RESPONSE ANALYSIS RESULTS-MAXIMUM TEMPERATURES ase W o .[s U Condition Number Temperature (8lF)

Actuated 1A 1 154.0 1B 1 172.0 Normal Operating 2A 5 165.0 2B 1 162.0 2C 5 168.0 SBA 3A 5 (ADS) 171.0 Event 3B 5 169.0 g

Note:

1. See Section 1-5.1 for description of SRV discharge events considered.

)

l \d DET-04-028-2 Revision 0 2-2.47 nutech

Table 2-2.2-3 TORUS SHELL PRESSURES DUE TO POOL SWELL AT KEY TIMES AND SELECTED LOCATIONS g v:, C*

N x e e n s

{ ]

  • 90*

' 270*~

{

-:/I. I 180*

0.0 0.5 1.0 T.ey Diacram y,w.4 d4=1 h azurtial IP"il Location (Z/L) h4 m(9) (dog) Peak W 1

  • Peak coload ft=0.30sec) (t=0.54sec) 0.000 180 10.5 3.0 0.000 150,210 9.6 2.9 0.000 120,240 5.9 1.7 0.000 0-90,270-0 0.3 1.0 0.3G1 180 11.3 3.2 l

i 0.361 150,210 10.3 3.2 0.361 120,240 6.4 2.4 0.361 0-90,270-0 9.3 7.0 0.552 180 11.8 3.5 0.552 150,210 10.8 3.4 0.552 120,240 6.6 2.5 0.!!2 0-90.270-0 0.3 7.0 0.724 180 12.3 3.5 0.724 150,210 11.1 3.2 0.724 120,240 6.8 2.5 a.974 0-90.270-0 0.3 7.0 0.895 180 12.8 3.5 0.895 150,210 11.6 3.5 0.895 120,240 7.2 2.7 n,oac 0-90.270-0 0.3 7.0 NOTE:

1. SEE THE RESPCNSE TO NRO QUESTION 13 IN APPINDIX A TCR AOCITIONAL INTORMATION CN TORUS PRESSURES OUE To PoC swI:.:..

DET-04-028-2 Revision 1 2-2.48 nutp_qh

Table 2-2.5-3 (Concluded)

MAXIMUM SUPPRESSION CHAMBER STRESSES FOR CONTROLLING LOAD COMBINATIONS Load Combination Stresses (ksi)

Item Stress IBA III IBA IV Il DBA II I DBA III Type (2) (2) 2) (2) <

Calc. Calc. Calc. Calc. Calc. Ca c. Calc. Calc.

Stress Allow Allow Stress AllowStress Allow WELDS Primary 10.24 0.68 10.51 0.70 7.29 0.49 13.47 0.49 Secondary 29.70 0.66 30.00 0.67 18.80 0.42 N/A -

Primary 6.90 0.46 8.70 0.58 4.90 0.33 7.80 0.28 Column Connecticn to Shell Secondary 26.20 0.58 30.20 0.67 13.40 0.30 N/A -

Saddle Primary 9.00 0.60 8.90 0.59 6.50 0.43 12.20 0'.44 Secondary 23.30 0.52 23.10 0.51 13.40 0.30 N/A -

Notes:

1. Reference Table 2-2.2-12 for load combination designation.
2. Reference Table 2-2.3-1 for allowable stresses.

O DET-04-028-2 Revision 0 2-2.142 nutp_qh

l Table 2-2.5-4 t

l MAXIMUM VERTICAL SUPPORT REACTIONS  !

1 1

l FOR CONTROLLING SUPPRESSION CHAMBER l LOAD COMBINATIONS l

l l

I l l

1. cad Combination Reactions (kips) i l '"

' vertical C8A III Support Direction 31A III(" i IIA I 8

38A II l Caled' en3*!*' Calc. C a l e'. Calc. Ca' e?J Component Calc. Calc.

' oad ggg,, Mad g g{ Mad

} ggg,, I.oad ggg,, ,

l 229.64' O.52 0.52 77.st 0.is 100.fi 0.17 Upward l22s.51 636.41 631.89 0.75 361.A6 0.43 485.57 0.43 Downward l0.75 Column 0.19 Upward 235.31 0.53 239.29 0.54 82.64 0.13 108.33 689.81 0.82 689.48 0.82 396.55 0.47 453.43 0.43 Downward m

Upward $45.65 0.74 535.56 0.73 197.5k0.27 132.03 0.13 609.25 0.67 593.45 0.66 435.21 0.40 638.10 0.53 Downward Saddle Upward 591.66 0.01 601.41 0.82 155.03 0.22 196.71 0.20 l Outside Downward 661.54 0.73 654.82 0.74 548.83 0.61 892.91 0.14 1586.61 0.67 472.67 c.13 Upward (3' 1584.61 0.67 516.3d 0.22 0.14 ;2566.43 0.73 1740.47 0.50 2439.34 0.53 Downward 2584.1?

l NOTES:

(1) REFERENCE TABLE 2-2.2-12 FOR LOAD COMSINATION DESIGNATION.

(2) PITERENCE TABLE 2-2. 3-2 FOR ALLOWA8LE SUPPORT LOADS.

131 MAXIMUM REACTOR BUILDING BASEMAT CAPACITY RESERVED FOR TORUS UPLIFT IS 1.680 KIPS FOR Tilt INDICATED LOAD COMBINATIONS.

l l

I L

DET-04-028-2 Revision 1 2-2.143 nutech

Tablo 2-2.5-4 MAXIMUM VERTICAL SUPPORT REACTIONS O

FOR CONTROLLING SUPPRESSION CHAMBER ,

\. ,

l LOAD COMBINATIONS 1 l

Load Combination Reactions (kips) vertical SEA III W DBA II ORA III III IBA I Support Direction Component Calc. Cale! M Calc. Cale? Calc. Cale? Calc. C a M.h

. cad ggio, 1. cad ggg,,

1,oad ggg,, und ggg,,

Upward 229.64 0.52 228.51 0.52 77.89 0.18 100.fi 0.*1 Inside Downward 636.81 0.75 631.89 0.75 361.A8 0.43 465.57 0.43 Column Upward 235.81 0.53 239.29 0.54 82.64 0.18 101.33 0.19 Downward 689.81 0.32 689.48 0.82 396.55 0.47 483.43 0.43 cpward 545.65 0.74 535.56 0.73 197.50 0.27 132.33 0.13 Downward 609.25 0.67 593.45 0.66 435.2* 0.43 638.10 0.53 N

) raddle

\j Cpward 591.66 0.11 601.41 0.82 150.02 0.22 196.71 0.20 Outside Downward 661.54 0.73 664.82 0.74 548.82 0.61 892.91 C.74 upward I33 1584.61 0.67 1586.61 0.67 516.3* 0.22 472.67 0.15 Total ,

Downward 2584.17 0.74 2566.43 0.73 1740.47 0.50 2489.34i ,

0.53 NOTES (1) REFERENCE TABLE 2-2.2-12 FOR LOAD COMBINATION DESIGNATION.

(2) PZFERENCE TABLE 2-2. 3-2 FOR ALLOWAB12 SUPPORT LOADS.

( 3) MAXIMUM PEACTOR BUILDING B ASEMAT CAPACITY RESERVED FOR TORUS UPLIFT IS 1.680 K!PS FOR Tilt INDICATED LOAD COMBINATIONS.

O DET-04-028-2 Revision 1 2-2.143 g

O Table 2-2.5-5 MAXIMUM SUPPRESSION CHAMBER SHELL STRESSES DUE TO LATERAL LOADS Secti ' Shell Stress Type (ksi)

Ds n Primary +

Load Load Case Iccal Pritrary Secondary Type Number Mmbrane Stress Pange OPJE 2a 4.38 7.98 S c E 2b 8.60 N/A Pre-Chug 6a 3.27 12.93 SRV Discharge 7c , 8.49 43.12 Note:

1. Stresses shown are in suppression chamber shell adjacent to seismic restraint pad plate.

DET-04-028-2 O

Revision 0 2-2.144 nutggh

,-