ML20086P328
| ML20086P328 | |
| Person / Time | |
|---|---|
| Site: | Fermi |
| Issue date: | 11/30/1983 |
| From: | Edwards N, Steinert L NUTECH ENGINEERS, INC. |
| To: | |
| Shared Package | |
| ML20086P296 | List: |
| References | |
| DET-04-028-2, DET-04-028-2-R01, DET-4-28-2, DET-4-28-2-R1, NUDOCS 8402270103 | |
| Download: ML20086P328 (11) | |
Text
_
O DET-04-028-2 Revision 1 November 1983 ENRICO FER"I ATOMIC POWER PLANT UNIT 2 PLANT UNIQUE ANALYSIS REPORT VOLUME 2 SUPPRESSION CHAMBER ANALYSIS Prepared for:
Detroit Edison Company O
Prepared by:
NUTECH Engineers, Inc.
Approved by:
Issued by:
Dr.
N.
W.
- Edwards, P.E.
L.
D.
Steinert President Project Manager NUTECH Engineers, Inc.
.d mamaatdih nute.sh A
REVISION CONTROL SHEET
SUBJECT:
Enrico Fermi Atomic REPORT NUMBER:
DET-04-028-2 y)
Power Plant, Unit 2 Revision 1 (Q
Plant Unique Analysis Report Volume 2 f.1 s
\\
=b 1:Q$-
lk l
J. C. Attwood / Senior Consultant Initials k
~r14ft id ta c k[
A. Imandoust / Specialist Initials h!M N.
.e V. Kdmdr / Project Engineer Initials I
R. A.
Lehnert / Eng. Manager Initials
/
i K. I.oo / Specialist Initials
[Sf 3
[)
R. D. Quinn / Consultant Initials
\\
d S
uctA in n A i S. P. Quinn / Senior Technician Initials S. H. Rosenblum / Consultant I Initials b si L4W b b
s W. s. Smith / Asso61 ate Engineer Initials udn p~
c.*$ 7 C. S. Teramoto / Consultant I Initials 04Abuda
%T J.Q4. Treiber / Specialist Inidials D
M Y. C."Yiu"/ Enginehr Initials' WDSM WD5 Initials L.
D.
Steinert/ Project Manager 2-ii g
REVISION' CONTROL SHEET (Continuation)
ENRICO FERMI ATOMIC REPORT NUMBER:
DET-04-028-2 Cj) TITLE:
m PLANT, UNIT 2 REVISION 1 PLANT UNIQUE ANALYSIS REPORT VOLUP2 2 PRE-ACCURACY CRITERIA PRE-ACCURACY CRITERIA E
REV E
REV PARED CHECK CHECK PARED CHECK CHECK PAGE(S)
PAGE (S) 484 2-2.97 0
2-2.143 0
S pT throu Rg PT
/2 A 2-2.144 jwe
<j e.,
vw through g,
g gL 2-2.146 2-2.99 2-2.100 2-2.147 j$4
%T
.1 cit MR IMk N
2-2.148 jf/X pT fM 2-2.149 2-2.115 throu through RAC VK 5&
%T E#4 2-2.118 0
2-2.119
.5.A, G67 ML 2
2-2.120 MM R.M VK
-2.155 2-2.121 AAe TAT VK 2-3.1 3A VE 84L u
o Vk 2-2.122 5A ST g
2-11 1 ADS VK
^
2-2.123 VK PJ 2-iv 1
through hd 2-2.39 1
y 2-2.128 1
9 2-2.48 1
2-2.129
/N4
$e41 2-2.143 1 dd)3 VK vK' 2-2.130 Q
jf/4 l])
2-2.131 JM 4pc')
VK 2-2.132 through g/tL gpf VK 2-2.135 g
g@
bb-2-2.136 2-2 137 through hhrL g (kg Vk.
2-2.138 gT I l-O Vk.
2-2.139 2-2.140 g
pT RM l
2-2.141 U
$T M
v(
2-2.142 0
g yg i
n f
QEP-001.4-00 a
2-iv l
nutggb l
l
Loads are developed for the case with the d
maximum source strength at the nearest twol downcomers acting both in phase and out of phase.
The results of these cases are evaluated to determine the controlling loads.
The resulting magnitudes and distribution of post-chug drag pressures acting on the ring beam and quencher bean for the controlling post-chug drag load case are shown in Table 2-2.2-9.
These results include the effects of velocity
- drag, acceleration
- drag, torus shell FSI acceleration drag, interference effects, wall
- effects, and acceleration drag volumes.
A typical pool acceleration profile from which the FSI accelerations are derived is shown in Figure 2-2.2-11.
The results cf each harmonic in the post-chug loading are combined using the methodology discussed in Section 1-4.1.8.
7.
Safety Relief Valve Discharge Loads I
a-c. SRV Discharge Torus Shell Loads:
pressures are postulated to act on the sub-DET-04-028-2
~
l b)
Revision 1 2-2.39 nutech l
merged portion of the suppression chamber shell during the air clearing phase of an SRV discharge event.
The procedure used to develop SRV discharge torus shell loads is discussed in Section 1-4.2.3.
The maximum torus shell pressures and characteristics of the SRV discharge pressure transients are developed using an attenuated bubble model.
Pressure transients which include the addi-tional load mitigation effects of the 20" diameter T-quenchers are developsd.
The SRV actuation cases considered are discussed in Section 1-4.2.1.
The location of each quencher and the corresponding SRV set point pressure are shown in Figure 2-2.1-11.
The cases which result in controlling load or load combination effects for which torus shell pressures are developed include the single valve actuation case with normal operating initial conditions (7a-Case A1.1/A1.3 for the quencher location which results in the highest shell pressures), the multiple valve actuation case with elevated drywell pressures and temperatures (7b-Case A1.2/C3.2 with pressures i
G DET-04-028-2 Revision 0 2-2.40 nutggh
O Table 2-2.2-2 i
SUPPRESSION POOL TEMPERATURE RESPONSE ANALYSIS RESULTS-MAXIMUM TEMPERATURES ase W
.[s Temperature (8l U
Condition o
F)
Number Actuated 1A 1
154.0 1B 1
172.0 Normal Operating 2A 5
165.0 2B 1
162.0 2C 5
168.0 SBA 3A 5 (ADS) 171.0 Event 3B 5
169.0 g
Note:
1.
See Section 1-5.1 for description of SRV discharge events considered.
)
l
\\d DET-04-028-2 Revision 0 2-2.47 nutech
Table 2-2.2-3 TORUS SHELL PRESSURES DUE TO POOL SWELL AT KEY TIMES AND SELECTED LOCATIONS C*
g v:,
N e
x e
n s
{
{
270*~
]
- 90*
-:/I.
I 180*
0.0 0.5 1.0 T.ey Diacram IP"il y,w.4 d4=1 h azurtial Location (Z/L) h4 m(9) (dog) Peak W 1
- Peak coload ft=0.30sec)
(t=0.54sec) 0.000 180 10.5 3.0 0.000 150,210 9.6 2.9 0.000 120,240 5.9 1.7 0.000 0-90,270-0 0.3 1.0 0.3G1 180 11.3 3.2 l
i 0.361 150,210 10.3 3.2 0.361 120,240 6.4 2.4 0.361 0-90,270-0 9.3 7.0 0.552 180 11.8 3.5 0.552 150,210 10.8 3.4 0.552 120,240 6.6 2.5 0.!!2 0-90.270-0 0.3 7.0 0.724 180 12.3 3.5 0.724 150,210 11.1 3.2 0.724 120,240 6.8 2.5 a.974 0-90.270-0 0.3 7.0 0.895 180 12.8 3.5 0.895 150,210 11.6 3.5 0.895 120,240 7.2 2.7 n,oac 0-90.270-0 0.3 7.0 NOTE:
- 1. SEE THE RESPCNSE TO NRO QUESTION 13 IN APPINDIX A TCR AOCITIONAL INTORMATION CN TORUS PRESSURES OUE To PoC swI:.:..
DET-04-028-2 Revision 1 2-2.48 nutp_qh
Table 2-2.5-3 (Concluded)
MAXIMUM SUPPRESSION CHAMBER STRESSES FOR CONTROLLING LOAD COMBINATIONS Load Combination Stresses (ksi)
Il I
Stress IBA III IBA IV DBA II DBA III Item Type (2)
(2) 2)
(2)
Calc.
Calc.
Calc. Calc.
Calc.
Ca c.
Calc.
Calc.
Stress Allow Allow Stress AllowStress Allow WELDS Primary 10.24 0.68 10.51 0.70 7.29 0.49 13.47 0.49 Secondary 29.70 0.66 30.00 0.67 18.80 0.42 N/A Primary 6.90 0.46 8.70 0.58 4.90 0.33 7.80 0.28 Column Connecticn to Shell Secondary 26.20 0.58 30.20 0.67 13.40 0.30 N/A Saddle Primary 9.00 0.60 8.90 0.59 6.50 0.43 12.20 0'.44 Secondary 23.30 0.52 23.10 0.51 13.40 0.30 N/A Notes:
1.
Reference Table 2-2.2-12 for load combination designation.
2.
Reference Table 2-2.3-1 for allowable stresses.
O DET-04-028-2 Revision 0 2-2.142 nutp_qh
l Table 2-2.5-4 t
l MAXIMUM VERTICAL SUPPORT REACTIONS 1
FOR CONTROLLING SUPPRESSION CHAMBER 1
l LOAD COMBINATIONS l
l I
l l
- 1. cad Combination Reactions (kips) i l
vertical 8
31A III(" i IIA I 38A II C8A III Support Direction Component Calc.
Caled' Calc.
en3*!*'
Calc.
C a l e'.
Calc.
Ca' e?J
}
I.oad g g{
Mad ggg,,
ggg,,
Mad
' oad ggg,,
l l22s.51 0.52 77.st 0.is 100.fi 0.17 Upward 229.64' O.52 Downward 636.41 l0.75 631.89 0.75 361.A6 0.43 485.57 0.43 Column Upward 235.31 0.53 239.29 0.54 82.64 0.13 108.33 0.19 Downward 689.81 0.82 689.48 0.82 396.55 0.47 453.43 0.43 m
197.5k0.27 132.03 0.13 Upward
$45.65 0.74 535.56 0.73 Downward 609.25 0.67 593.45 0.66 435.21 0.40 638.10 0.53 Saddle Upward 591.66 0.01 601.41 0.82 155.03 0.22 196.71 0.20 l
Outside Downward 661.54 0.73 654.82 0.74 548.83 0.61 892.91 0.14 516.3d 0.22 472.67 c.13 Upward (3' 1584.61 0.67 1586.61 0.67 Downward 2584.1?
0.14
- 2566.43 0.73 1740.47 0.50 2439.34 0.53 l
NOTES:
(1) REFERENCE TABLE 2-2.2-12 FOR LOAD COMSINATION DESIGNATION.
(2) PITERENCE TABLE 2-2. 3-2 FOR ALLOWA8LE SUPPORT LOADS.
131 MAXIMUM REACTOR BUILDING BASEMAT CAPACITY RESERVED FOR TORUS UPLIFT IS 1.680 KIPS FOR Tilt INDICATED LOAD COMBINATIONS.
l l
I L
DET-04-028-2 Revision 1 2-2.143 nutech
Tablo 2-2.5-4 MAXIMUM VERTICAL SUPPORT REACTIONS O
FOR CONTROLLING SUPPRESSION CHAMBER
\\.
l LOAD COMBINATIONS l
Load Combination Reactions (kips) vertical W
III SEA III IBA I DBA II ORA III Support Direction Component Calc.
Cale!
Calc.
Cale?
Calc.
Cale?
Calc.
C a M.h M
- 1. cad 1,oad und
- . cad
- ggio, ggg,,
ggg,,
ggg,,
Upward 229.64 0.52 228.51 0.52 77.89 0.18 100.fi 0.*1 Inside Downward 636.81 0.75 631.89 0.75 361.A8 0.43 465.57 0.43 Column Upward 235.81 0.53 239.29 0.54 82.64 0.18 101.33 0.19 Downward 689.81 0.32 689.48 0.82 396.55 0.47 483.43 0.43 cpward 545.65 0.74 535.56 0.73 197.50 0.27 132.33 0.13 N
Downward 609.25 0.67 593.45 0.66 435.2*
0.43 638.10 0.53
)
raddle
\\j Cpward 591.66 0.11 601.41 0.82 150.02 0.22 196.71 0.20 Outside Downward 661.54 0.73 664.82 0.74 548.82 0.61 892.91 C.74 upward 1584.61 0.67 1586.61 0.67 516.3*
0.22 472.67 0.15 I33 Total Downward 2584.17 0.74 2566.43 0.73 1740.47 0.50 2489.34i 0.53 NOTES (1) REFERENCE TABLE 2-2.2-12 FOR LOAD COMBINATION DESIGNATION.
(2) PZFERENCE TABLE 2-2. 3-2 FOR ALLOWAB12 SUPPORT LOADS.
( 3) MAXIMUM PEACTOR BUILDING B ASEMAT CAPACITY RESERVED FOR TORUS UPLIFT IS 1.680 K!PS FOR Tilt INDICATED LOAD COMBINATIONS.
O DET-04-028-2 Revision 1 2-2.143 g
O Table 2-2.5-5 MAXIMUM SUPPRESSION CHAMBER SHELL STRESSES DUE TO LATERAL LOADS Secti '
Shell Stress Type (ksi)
Ds n
Primary +
Load Load Case Iccal Pritrary Secondary Type Number Mmbrane Stress Pange OPJE 2a 4.38 7.98 S
c 2b 8.60 N/A E
Pre-Chug 6a 3.27 12.93 SRV Discharge 7c 8.49 43.12 Note:
1.
Stresses shown are in suppression chamber shell adjacent to seismic restraint pad plate.
O DET-04-028-2 Revision 0 2-2.144 nutggh
,-