ML20084U270

From kanterella
Jump to navigation Jump to search
Rc Pressure (Wide Range) Loop Accuracy,RC-158-PT & RC-159-PT
ML20084U270
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 04/13/1995
From: Couvillon P
FLORIDA POWER CORP.
To:
Shared Package
ML20084U233 List:
References
1-88-0020, 1-88-0020-R07, 1-88-20, 1-88-20-R7, NUDOCS 9506130141
Download: ML20084U270 (117)


Text

Florida INTEROFFICE CORRESPONDENCE MI Nuclear Enaineerina Desian NA1E-240-3434 eoaPoa Areo=

SUBJECT:

Crystal River Unit 3 Quality Document Transmittal. Analysis / Calculation File: CALC TO: Records Management-NR2A The following analysis / calculation package is submitted as the QA Record copy:

occuo rPc occuucm ocmrc4 Ton suueca arv.

sysTruall TOTAL PAGES TRANSMrTTED l-88-0020 7

RC 97 TrrtE RC PRESSURE (WIDE RANGE) LOOP ACCURACY, RC-158-PT and RC-159-PT

.mos ocurry rryworos Fon t4Trn acTarvAu RC Pressure, Error, Indication, DSS, RECALL, Calculation oxREF (FIEFERENCES OR FILES + UST PF9 MARY FILE FIRST)

SP95-002 SP-161C Calculation l-84-0001 SP-120A Calculation 1-92-0003 mo n~uos wAue>

nsuos occuutur uuuma oxari sueessecco occuuuas pAsee)

FPC/GCI C423-5510-043 l-88-0020 Revision 6 RC-158-PT l

RC-158-PIR l

RC 159-P11 RC-158-P11 l

RC-158-PS1 l

RC-159-Pl2 RC-158-P12 l

RC-159-PT l

RC-159-PS1 RC-158-PY1 thru RC-158-PY7 0

RC-159-PY1 thru RC 159-PY6 ll l

0 l

l couwtuTS usAoE asracio.s, eromoAsv. cTc4 This Revision replaces Revision 6 in its entirety.

NOTE:

Use Tag number only for valid tag numbers (i.e., RCV-8, SWV-34, DCH-99), otherwise; use Part number field (i.e.,

CSC14599, AC1459). If more space is required, write 'See Attachment

  • and list on separate sheet.

oE$sGN ENC # VEER DATE ICATON ENGINL Es DATE SueUMSOR, huCLEAs ENG.

oATE P.E. Cowillon t$/,/,/g k@ k }b lD/p f, )(,

dnhg b

cc: MAR Office (N MAR Related) 0Yes E No Plant Document Review Aequired 5Yes O No MAR / Project File Supervisor, Nuclear Document Control w/ Plant Doc. Rev.

Mgr. Nucl. Config. Mgt.

Eval. and Analysis / Calc. Summary (N Plant Doc. Rev., is Yes)

File (CALC) FPES

  • Original" w/ attach A/E N/A Oyes E No Mgr., Site Nuct Eng Serv. w/ attach (N yes, Transmit w/ attach) 950630141i5$3[

O MNN

  • l ""

PDR ADOCK 05000302 net: uw e nese: www. Em em ns P

PDR t

1 l

} Florida Page 1 of 1

(( j / corner.ii.aPowerPLANT DOCUMENT REVIEW EVALUATION DOCUMENT TYM / NUMBER To BE EVALUATEo Calculation I-88-0020 Revision 7 PARTI INSTRUCTIONS: Calculations, Document Change Notices, and Plant Equipment Equivalency Replacements have the potential to affect plant documents. The Originator of any of these documents is required to determine which, if any, plant organizations should review the subject document for impact. The Originator should use the best judgment to make this determination based on the nature of the changes. If in doubt as to whether or not a plant organization should review a particular document, it is suggested that the subject organization be contacted.

The Originator is to check the appropriate boxes below and attach to the subject package as follows:

Calculations insert behind Analysis / Calculation Transmitta!

DCNs - Insert behind DCN page 1 PEERE: Insert behind PEERE page 3 CIDPs. Insert behind CIDP page 1 The above referenced document must be distributed as follows:

Senior Radiation Protection Engineer b

Other(s):

O uanager, Sit. Nucioar Servic.s D e. uennerson vor Caiib,. tion D.ta Sheet nevisions E Manager, Nuclear Maintenance 2 Supervisor, Operations Engineering & Support Supervisor. Nuclear Trainino Controls b Manager, Nuclear Plant Technical Support Manaaer. Nucisar Ooerations Trainina l

A ORKMNATOR / DArE SUPERVISOR / DATE ifpf

,.b b. b E

I P.E. Couvillon J

y a o 9r

/

Upon completion of Part I, if applicable, attach to the subject document, check " Plant Document Review Acouired' block. "Yes? and oive to Nuclear Enoineerina Deoartment Sucoort Soecialist for distribution.

CIDPs Dstribute with Attachments Calce - Dstribute with Transmittal Memo. Summary. PEERE Dstribute with Attachments - DCNs - Distribute with Attachments and Drawings PART11 INSTRUCTIONS: Upon receipt of the subject document, the assigned Reviewer enters the " Reviewing Department' name below, reviews the subject document for impact on plant procedures, and completes the evaluation below.

CAUTION: IF THE SUBJECT DOCUMENT STATES SPECIFIC PLANT PROCEDURES / DOCUMENTS MUST BE DEVELOPED REVISED AND IT IS DETERMINED BY THE REYlEWER NOT TO REVISE OR DEVELOP THOSE PROCEDURES / DOCUMENTS, THE ORIGINATOR MUST BE CONTACTED BY THE REVtEWER.

MVIEWING DLPAMMENT PLANT REYlEW IMPACT EVALUATION: The above referenced document has been reviewed and evaluated as follows:

No Action Required Action Required: The below listed document (s) is affected and requires revision and/or other actions as indicated (i.e., generate a new procedure, void a procedure, etc.)

DOCUMENTS / ACTIONS l

\\

l nEvovER / OArE SuPERV!SOR / DArE Upon completion, forward evaluation form ojn to Nuclear Document Control (NR2A)

  • If the Supervisor or designee acts as the Originator or Reviewer, tne applicable " Originator / Reviewer" block should be NA'd.

sz y w

C,'s Florklaf*::'w'*er

\\'

ANALYSIS / CALCULATION

SUMMARY

oeceu.c cOwnot wo.

mvmon tevn DOCUMENT IDENT!FICATION NUMBER l

88-0020 7

mts etAsarcATon pecx One RC PRESSURE (WIDE RANGE) LOOP ACCURACY, RC-158-PTand RC-159-PT

@ safety a.ieted O Noa s i tr.iet.d a

i MAR /sP/COWR/PEEPE NuuBER/FLE SP 95-002 vswoon oocuutuiuuusen C-423-5510-043 i

l REWSa NEMS REWSED l

-g Design Engineer P.E. Couvillon [Marious Date

_ _ g/i fqh Verification Engineer [m,k(gd-Date/ Method

  • k23/95 b

Supervisor

,,f. J, d h Date Q[,3 / 9 5-

  • VERIFICATION METHODS: R - DesignReview; A - AlternateCalculation; T - QualificationTesting DESCRIBE BELOW IF uETHOO OF vf AIFICATION WAs OTHER THAN DEtiGN REVIEW PuFease suuuAm This Revision replaces Revision 6 in its entirety. This revision includes a modified methodoloov for determinina errors compared to the method used in Revision 6.

assutis suuurm See Section VI 'RESULTS/ CONCLUSIONS'.

l

]

. ii/

art t,.., % ar-em.= =

1 9N DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 i

Sheet 1 of sa Em = NT KANff GTION NO.

EV90N ffJ/MAA/SP NUWOLR/ FILE l88-0020 7

SP95-002

)

I.

PURPOSE:

The purpose of this calculation is to determine the instrument loop accuracy of the RC Wide Range Pressure loops (transmitters RC-158-PT and RC-159-PT) that provide Control Room indication and recording for Normal and Post-Accident Monitoring (Technical Specification 3.3.17.2.(3)

Reference 2),

RECALL /SPDS, Remote Shutdown Indication (Technical Specification 3.3.18.2.(2a) - Reference 2) and input to ATWS.

INSTRUMENT LOOPS I

I I

RB IB CC CC EO Zone 66 EQ Zone 43 EQ Zone 58 g

g I

Foxboro I

Baley l

l N2AO-val l

6623819-1 1

I l

l VN 410 E i

PS DSS Rosemount Foxboro E

l E

yy g

1154GP9RA N2Al-12V (RC-158-PY7)

I (RC-158-PS1)

(

)

(

5 p S1)

PT l

l4-20 r A 0-10 VDC in I

i PTN l l

W Intemabonal Instruments

[

p PTA l l

(RC-158-PY1) 1251 l

(RC-158-PT) l l

(RC-159-PY1)

)

(RC-159-PT) l l

Pl1 0-3000 PSIG 0-3000 PSIG lI I

E l

g (RC-158-Pl1)

(___

I I

(RC-159-Pli)

I CC l

l l

EO Zone 13 I

I l

l l

Foxboro l

Baley l

l N2AO-val l

RY-1101 VN 410 E P12 0-3000 PSIG l

1 N

I PQ l

I (RC-158-PY3) l (RC-158-Pl2) l I

(RC-159-PY3) l (RC-159-Pl2) i I

I I

i l

l l

Foxboro Foxboro g

N2AO-val N227P-1R6 g

g I

I VN

% RECALL I

PIR 0-3000 PSIG I

Tu h

25l j

T,,

l l

(RC-158-PY2) and g

(RC-158-PIR) l l

(RC-159-PY2)

SPOS

1 9 ga DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet __2_. of _H._

DOCUMLNT OLNTIFICATION NO.

EWSON f(J/ MAR /SP NUMBLA/ FILE l-88-0020 7

SP95-002 II.

DEJIGN INPUT (DI):

1.

Drawing 205-047 sheet RC-02 (Reference 27) shows the circuit configuration for the RC Wide Range Prcssure loops.

2.

The Design Basis Document for Post-Accident Monitoring

)

Instrumentation, Section 5/11 (Reference 4), states that the RC Wide Range Pressure indication is a Type A, B and C, Category 1 Reg. Guide 1.97 variable. The RC Wide Range Pressure is indicated (RC-158-PI2 and

~,

RC-159-PI2) and recorded (RC-158-PIR) in the Main Control Room, and is on demand in the TSC (Technical Support Center) and the EOF (Emergency Offsite Facility) via RECALL. CMIS states that these are required post-accident for six months (See Attachment 12).

3.

Pressure transmitters RC-158-PT and RC-159-PT are located in the 1

Reactor Building.

(1)

Per drawing 308-606 (Reference 31), RC-158-PT is located at the North "Y" Station at an elevation of 103'-11" (i 1") in the Reactor Building.

(2)

Per drawing 308-603 sheet 2 (Reference 30), RC-159-PT is located at the South "Y" Rack at an elevation of 102'-9" (1 4") in the Reactor Building.

(3)

The connections for RC-158-PT and RC-159-PT's sensing lines are shown on drawings 308-601 (Reference 28) and 308-602 (Reference 29), respectively. The connections to the RCS Hot Legs are at an elevation of 167'-2%".

Per CMIS and REA 94-1210 (Reference 6), RC-158-PT and RC-159-PT are located in EQ Zone 66. Per the Environmental and Seismic Qualification Program Manual (E/SQPM - Reference 7) EQ Zone 66 is " HARSH" and has the following specifications:

7 Radiation - Normal:

1.4 x 10 rads TID for 40 year dose.

7 Radiation - Accident:

2.8 x 10 rads TID (40 year TID + 6 months).

Temperature - Normal:

70* to 109'F.

Temperature - LOCA:

110' to 298'F.

Temperature - HELB:

110* to 386*F.

I

.n

\\

O g%

DESIGN ANALYSIS / CALCULATION a

Crystal River Unit 3 Sheet 3 of 58 Em *" Ni lDL.HTIFICATION,40.

MVISION El/MAA/SP NUMBER / FILE l-88-0020 7

SP95-002 Per drawing 308-601 (Reference 28) and 308-602 (Reference 29), the majority of the sensing lines are routed inside the D-Rings, from the connection point 'to just below the 119' elevation of the Reactor Building. The area inside the D-Rings is designated as EQ Zone 40 per the E/SQPM (Reference 7) and has the following specifications:

7 Radiation - Normal:

3.3 x 10 rads TID for 40 year dose.

Radiation - Accident:

6.6 x 10 rads TID (40 year TID + 6 7

months).

Temperature - Normal:

110* to 149'F.

Temperature - LOCA:

110* to 298'F.

Temperature - HELB:

110* to 386*F.

Calculation I-90-0014 (Reference 14) provides a point specific 10 year radiation dose for Zone 66.

(4)

Since RC-158-PT is located at the North "Y" Station if the Reactor Building, it has a 10 year dose rate of 2.1 x 10 rads at an elevation of 104'.

(5)

Since RC-159-PT is located at the South "Y" Rack irg the Reactor Building, it has a 10 year dose rate of 8.0 x 10 rads at an elevation of 104'.

4.

Instrument Data Sheets RC-158-PT (Reference 26.e) and RC-159-PT (Reference 26.n) show that the pressure transmitters are Rosemount Model ll54GP9RA pressure transmitters with a span of 0 to 3,000 psig.

The specifications for these transmitters are described in Instruction Manual 1260 (Reference 35). The transmitters have the following specifications (See Attachment 1):

Upper Range Limit (URL):

3,000 psig.

i Reference Accuracy:

1 0.75% of calibrated span.

Temperature Effect:

1 (0.75% URL + 0.5% span)/100*F.

Drift (Stability):

1 0.2% of upper range limit for 30 l

months.

Overpressure Effect:

1 0.5%

of upper range limit after exposure to 4,500 psig.

Power Supply Effect:

< 0.005% per volt.

Steam Pressure / Temp:

1 (2.5% URL + 0.5% span) during and after sequential exposure to steam at the following temperature and pressure, concurrent with chemical spray for the first 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />s:

420*F, 50 psig for 3 minutes 350*F, 110 psig for 7 minutes 320*F, 75 psig for 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 265'F, 24 psig for 56 hours6.481481e-4 days <br />0.0156 hours <br />9.259259e-5 weeks <br />2.1308e-5 months <br />.

ex en

~

IN DES 12N ANALYSIS / CALCULATION

  • /

3 Crystal Mwer UnN 3 w

~ a e w w w o,ee.

' Sheet 4 of sa m

omme -- pu l-88-0020 7

SP95-002 Seismic Effect:

1 0.5% URL after a disturbance defined by a required response spectrum with a ZPA of 7 g's.

j Radiation Effect:

1 (1.5%URL+1.0% span) exposure to -55 x 10' during and after 1

rads TID gamma i

radiation at the centerline per. the following pose rate schedule of:

2 x 10' rads /hr for 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, 1.5 x J0' rads /hr for 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />,

1 x 10" rads rads TID and an a/hr up to 55 x 1 dditional 55 41 rads TID at a rate of I x 10 rads /hr during post-accident operation.

Mounting Position Effect:

Effect is superseded by accuracy.

specifications, e

(1)

The Temperature Effect is superseded by the Steam Pressure / Temperature Effect during Accident conditions.

(2)

Per the Enhanced Design Basis Document for the Reactor Coolant System, Section 6/1 (Reference 5), the RCS pressure is limited to 2750 psig due to the Code Safety Valves and the Reactor Protection System (RPS). Therefore, the overpressure effect for the pressure transmitters will be considered as 10.0% since the pressure transmitters will not experience 3,000.psig, because the overpressure limit for the transmitter is' it's Upper Range Limit.

(3)

Since the conditions required for the Steam Pressure / Temperature effect during Normal operating conditions is not applicable, the Norma 1' Steam Pressure / Temperature effect will be considered as 1 0.0%.

s (4)

Per Letter LFM90-0006 (Reference 38); "It is not required to apply LOCA + MHE simultaneous 1v to system functions." Thus, a Seismic event (MHE) and a LOCA do not need to be considered to L

occur simultaneously. Thus, this calculation will only consider the LOCA/HELB effects (Radiation Effect and Steam / Temperature Effect). Therefore, the Seismic effect will be considered as 10.0% for Normal and Accident conditions.

i (5)

Per Letter SNES94-0276 (Reference 39); "...Rosemount has stated L

that any of these radiation induced errors may be compensated by L.

calibration up to the tested dose from environmental cualification testina or about 110 MRads. Thus, it is shown that compensation of the radiation induced errors by calibration is a viable method up to the qualification level of 110 MRads."

etee 800 s71

(

/ g DESl2N ANALYSIS / CALCULATION

\\

Crystal fllver Unit 3 Nu Sheet s of as

& m ec o m u.,o.

eso.

eenwver couvru l-88-0020 7

SP95402 Per the Attachment to Letter SNES94-0276; "The lower the dose rate, the lesser tge effect on instrument accuracy. For the lower dose pates (10 Rads / hour) it was shown that a TID of less than 1 x 10 Rads resulted in a maximum output shift within the stated accuracy of the transmitter. These results are meant to be an aid in determining effects of radiation on accuracy of Rosemount transmitters."

Since the highest dose rate expected for RC-158-PT and RC-159-PT 3

is 8 x 10 rads for 10 years per Dgign Input (DI #3, the total I

dose rate for 30 months is 2 x 10' rads (8 x 10) rads /10 years x 2.5 years). Therefore, the radiation effect for NORMAL operating conditions will be considgred as 10.0% since the transmitters receive le s than 1 x 10 rads / hour and a 30 month TID of less than 1 x 10 rads.

5.

Current to Voltage Converter (I/V)

RC-158-PYI,

. Signal i

Converter / Isolator (V/V) RC-158-PY2, RC-158-PY3 and RC-158-PY7 are i

located in Remote Shutdown Auxiliary Equipment Cabinet "A" on the 108' i

elevation of the Control Complex.

Current to Voltage Converter (I/V)

RC-159-PYl, Signal Converters / Isolators (V/V) RC-159-PY2, RC-159-PY3 and RC-159-PY6 are located in Remote Shutdown Auxiliary Equipment Cabinet "B" on the 108' elevation of the Control Complex.

Pressure Indicators RC-158-PIl and RC-159-PIl are located on Remote Shutdown Panel "AB" on the 108' elevation of the Control Complex.

Per the E/SQPM (Reference 7), the 108' elevation of the Control Complex is designated as EQ Zone 43, which is " MILD" and has the folkwing specifications:

Radiation - Normal:

1.75 x 10*

Radiation - Accident:

1.75 x 10, rads TID for 40 year dose.

rads TID (40 year TID + 6 months).

Temperature - Normal:

70* to 80*F.

I 6.

Instrument Data Sheets RC-158-PY1 (Reference 26.f) and RC-159-PY1 (Reference 26.o) show that these I/V converters are Foxboro Model N2Al-12V converters with a 4 to 20 ma input and 0 to 10 VDC output.

This Foxboro module also has an isolated 24 VDC transmitter power supply, which is powered from the 30 VDC nest field bus. The specifications for these I/V converters are described in Foxboro Product Specifications PS3 2E-IAl-A, which is located in Instruction Manual 586 (Reference 34). The I/Vs have the following specifications (See Attachment 2):

Reference Accuracy:

1 0.25% of output span.

Temperature Effect:

1 0.5% of output span for 45'F change.

em m C_________.-_

- - - - ~ - - - - - - - - - ~ - - ' ~ - ~

~

~

' fda DESIGN ANALYSIS / CALCULATION wY Crystal River Unit 3 Sheet 6 of 58 DOCUMENT Ot.NTIF CATON NCA Myt3ON Pnl/MAA/SP NUMBER /FLE l-88-0020 7

SP95-002 7.

Instrument Data Sheets RC-158-PY2 (Reference 26 9), RC-158-PY3 (Reference 26.h), which includes RC-158-PY7, RC-159-PY2 (Reference 26.p), and RC-159-PY3 (Reference 26.q), which includes RC-159-PY6 show that these V/V converters are Foxboro Model N2AO-VAI converters with a 0 to 10 VDC input and 0 to 10 VDC output. The specifications for these V/V converters are described in Foxboro Product Specifications PSS 2E-1Al-G and Foxboro Supporting Literature Instruction SI l-01762, which are located in Instruction Manual 586 (Reference 34). The V/Vs have the following specifications (See Attachment 3):

P ference Accuracy:

1 0.5% of output span, a perature Effect:

1 0.5% of output span for 45'F change.

8.

Instrument Data Sheets RC-158-PIl (Reference 26.a), which includes RC-159-Pil show that the pressure indicators are International Instruments Model 1251WV-8010DCV-B010DCV with a 0 to 10 VDC input for a span of 0 to 3,000 psig. The specifications for this pressure indicator is described in International Instruments Series 1151/1251 bulletin, which is located in Instruction Manual 586 (Reference 34).

The pressure indicator has the following specifications (See ).

Specified Accuracy:

1 1.5% span for DC ranges.

Repeatability:

1 2% span.

Minor Scale Division:

50 psig.

Per Assumption (A) #6, the SRSS (Square Root of the Sum of the Squares) methodology for the Specified Accuracy and Repeatability will be used to determine the Reference Accuracy.

9.

Pressure Switch RC-158-PSI and RC-159-PS1 are located in ATWS Logic Cabinet on the 124' elevation of the Control Complex.

Per the E/SQPM (Reference 7), the 124' elevation of the Control Complex is designated as EQ Zone 58, which is " MILD" and has the following specifications:

Radiation - Normal:

1.75 x 10' Radiation - Accident:

1.75 x 10, rads TID for 40 year dose.

rads TID (40 year TID + 6 months).

Temperature - Normal:

70* to 80*F.

ein exiR

[)"

DESIGN ANALYSIS / CALCULATION

(

)

Crystal River Unit 3 WJ Sheet 7 of DOCUME 1 KKMTWICATON NO.

- sa NVIIIUN MJ/tdAR/ P Nuhe8ER/FLE l-88-0020 7

SP95-002

10. Instrument Data Sheets RC-158-PS1 (Reference 26.d) and RC-159-PSI (Reference 26.m) show that these pressure switches (signal monitors) are Bailey Model 6623819-1 signal monitors with a 0 to 10 VDC input for a span of 0 to 3,000 psig. The specifications for these signal monitors are described in Bailey Product Instruction E92-74, which is located in Instruction Manual 49 Volume IB (Reference 33). The signal monitors have the following specifications (See Attachment 5):

Reference Accuracy:

1 0.25% of span.

Temperature Effect:

1 0.25% of span for 100'F.

11. Per FSAR Section 7.5.2.1 (Reference 3), the actuation of DSS (Diverse Scram System) via RC-158-PT and RC-159-PT (RC Wide Range Pressure transmitters) is at a nominal setpoint (Design Setpoint) of 2450 psig.

12.

Pressure indicators RC-158-PI2 and RC-159-PI2 and pressure indicating recorder RC-158-PIR are located in the Main Control Room on the 145' elevation of the Control Complex.

Per the E/SQPM (Reference 7), the 145' elevation of the Control Complex is designated as EQ Zone 13, which is " MILD" and has the following specifications:

Radiation - Normal:

1.75 x 10*

Radiation - Accident:

1.75 x 10, rads TID for 40 year dose.

rads TID (40 year TID + 6 months).

Temperature - Normal:

70* to 80'F.

13. Instrument Data Sheets RC-158-PI2 (Reference 26.b) and RC-159-PI2 (Reference 26.1), show that these pressure indicators are Bailey Controls Model RY-1101 with a 0 to 10 VDC input for a span of 0 to 3,000 psig. The specifications for these pressure indicators are described in Bailey Product Instruction E12-9-2, which is located in Instruction Manual 1400 (Reference 36). The pressure indicators have the following specifications (See Attachment 6):

Specified Accuracy:

1 1.0% of span.

Linearity:

1 1.0% of span.

Repeatability:

1 0.5% of span.

Deadband:

1 0.5% of span.

Temperature Effect:

1 0.001% output span /'F.

Power Supply Effect:

t 0.013% output span / volt AC.

Supply Voltage:

118 VAC.

Hinor Scale Division:

100 psig.

Per Assumption (A) #6, the SRSS (Square Root of the Sum of the Squares) methodology will be used to determine the Reference Accuracy.

(1)

RC-158-PI2 and RC-159-PI2 from VBDP-3 Breaker 35 and VBDP-4 Breaker 8, respectively.

ex an

9 DESIEN ANALYSIS / CALCULATION Crystal River Unit 3 theet 8 of 58 DOCUMt.NT OLNTif'". MON NO.

HEVl!MUN El/ MAR /$P NUMSLR/Ft.E l-88 @ 20 7

SP95-002 Per drawing 206-041 (Reference 44), VBDP-3 is powered from Inverter VBIT-1A or 480V E.S. MCC 3A2 via Regulating Transformer VBTR-4A. Per the Enhanced Design Basis Document (EDBD) for the Class IE AC System (Reference 42), the regulation associated with VBIT-1A and VBTR-4A is 12.0%.

Per drawing 206-041 (Reference 44), VBDP-4 is powered from Inverter VBIT-18 or 480V E.S. MCC 381 via Regulating Transformer VBTR-4B. Per the Enhanced Design Basis Document (EDBD) for the Class IE AC System (Reference 42), the regulation associated with VBIT-1B and VBTR-4B is 12.0%.

Therefore, the voltage supplied to RC-158-PI2 and RC-159-PI2 will be considered as 118 VAC 12.0%.

14. Instrument Data Sheet RC-158-PIR (Reference 26.c), shows that the pressure indicating recorder is a Foxboro Model N227P-1R6-CS-N/SRC with an 0 to 10 VDC input for a span of 0 to 3,000 psig. The specifications for this pressure indicating recorder are described in Foxboro Product Specifications PSS 9-7Cl-A, which is located in Instruction Manual 1524 (Reference 45). The pressure indicating recorders have the following specifications (See Attachment 7):

Indicating Accuracy:

1 0.5% of span.

Recording Accuracy:

i 0.75% of span.

Temperature Effect:

i 0.5% of span /50*F change.

Humidity Influence:

Indicating:

1 0.3% of span for a change of 50 to 95%

relative humidity.

Recording:

+ 0.75% to - 1.5% of span for a change of 50 to 95% relative humidity.

Power Supply Effect:

1 0.1% of span for 15% change from nominal.

Minor Scale Division:

50 psig (Indicating / Recording).

C/ta 800 57

lorida DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 9 of__58-QQCUMLNT EM.NiaFIGAilON NO.

EVISION FU/MAH/SP NR/FM l-88-0020 7

SP95-002

15. Foxboro Model N2AX-PS9A nest power supplies are used to supply power for the above mentioned Foxboro modules, Rosemount pressure transmitters and pressure indicating recorder. The Specifications for these power supplies are described in Foxboro TI 2AX-151, which is located in Instruction Manual 586 (Reference 34). The power supplies have the following specifications (See Att e ment 8):

Output:

+15 VDC at 1.5 amps and -15 VDC at 1.5 amps.

Regulation - Line:

0.2% output voltage change for 110%

change from nominal line voltage.

Regulation - Load:

1.5% output voltage change for load change from 50 to 100%.

(1)

Power supply ZZ-1-JY (Reference 26.x) provides power to RC-158-PIR. ZZ-1-JY is powered from VBDP-3 Breaker 2.

(2)

Power supply RC-198-J2A (Reference 26.t) provides power to RC-158-PT. RC-198-J2A is powered frofi VBDP-8 Breaker 3.

(3)

Power supply RC-198-J28 (Reference 26.u) provides power to RC-159-PT. RC-198-J28 is powered form VBDP-10 Breaker 3.

For conservatism, the total regulation associated with the power supplies will be considered as 11.7% (0.2% + 1.5%)

for the transmitters and recorder.

16. Foxboro distribution module (terminal block) RC-158-PY4 (Reference 26.i),

test modules RC-158-PY5 (Reference 26.j)

& RC-159-PY4 (Reference 26.r) and signal generators RC-158-PY6 (Reference 26.k) &

RC-159-PY5 (Reference 26.s) will not be considered in this calculation, because the above mentioned modules are only used for distribution or for testing. The modules do not contribute to the loop error.

17. The I&C Design Crf teria (Reference 1) and Calculation I-89-0004 (Reference 12) prov:de the bases for the development of calculations which require the incorporation of Insulation Resistance (IR) effects.

The transmitter loop is not grounded, except at the power source.

Therefore, the IR effects are due to conductor-to-conductor current leakage, but will be conservatively evaluated as conductor-to-ground leakage for cables due to the potential of the cables grounding in the field.

./

900 671

9orida DESIGN ANALYSIS /CALCUL.ATION Crystal River Unit 3 Sheet to of 5s

!"'" NT OLNTIFCAflON NO, REvaCN REJ/MML/SP NUM80R/ FILE

~

1-88-0020 7

SP95-002

18. Per Calculation I-88-0015 (Reference 11), the following is a list of the circuit data for the loop components which are located in 4

" HARSH" environment:

(1)

Sensor: RC-158-PT (a) Rosemount Model 1154 transmitter.

(b) Rosemount conduit seal.

(c) Circuit number RCR265 (EK-35A, Reel 342).

(d) Circuit length - 95 feet.

(e) 2 splices in circuit RCR265.

(f) Penetration 129 (PEN-129, previously identified as MTBD-9A).

(2)

Sensor: RC-159-PT (a) Rosemount Model 1154 transmitter.

(b) Rosemount conduit seal.

(c) Circuit number RCR271 (EK-35A, Reel 341).

(d) Circuit length - 360 feet.

(e) 2 splices in circuit RCR271.

(f) Penetration 406 (PEN-406, previously identified as HTBD-118).

19. Per Calculation I-88-0006 (Reference 10), the IR accuracy for Foxboro nest loops is:

A

+ [22.8/(4.8 + (0.016 x R,))] x 100 n

Where R,),is the equivalent parallel resistance of the cable (s),

splice (s connector (s) and/or penetration (s).

Per Section 6.2.8 of the Instrument String Error /Setpoint Determination Methodology (Reference 1): "IR error due to accident environments are considered systematic." These errors are therefore, additive.

een

.= m

I

,m f

)

orida DESIGN ANALYSIS / CALCULATION

(

)

Crystal River Unit 3 Sheet 11 of 58 cocuw.an um ccm eo.

emm no/we/se eaavu l-88-0020 7

SP95-002

20. The cables used in these instrument loops is Bill Of Material (8.0.M.)

I No. EK-35A, which is a 2 conductor #16 AWG cable. VQP CABL-B365-01 (Reference 17) is used to determine the IR value associated the EK-35A cable. Per Tab 11 of the VQP, all EK-35A cable has the same

(

construction as the BIW (Boston Insulated Wire) Bostrad 7E, whose test I

data is documented under the VQP.

The peak temperature in the Reactor Building (RB) is 386*F per Design Input (DI) #3. This temperature peak in the RB lasts approximately 3 minutes before returning to 300*F.

)

\\

BIW Bostrad 7E cable was tested under Sandia National Laboratories Report SAND 89-1755C, which is included Attachment 82 to Calculation I-89-0004 (Reference 12). Per Conclusion 4.e of the report; " Total thermal lag time was typically 3 minutes for multiconductor cables and 30 secon(s for single conductors." Therefore the minimum cable IR of 2.9 x 10 ohms for the 20 foot specimen length, which is listed in Figure 7 of VQP CABL-8365-01 (Reference 17) will be used in this calculation. Therefore, the following information is applicable:

1 Specimen Length (L Minimum IR value (h, )::

20 feet.6 2.9 x 10 ohms at 300*F.

l The cable IR (R is derived from the cable qualification test specimen IR (R ),eg)he specimen length (L,t)in t

and the total length of l

c s

cable in the HARSH environment (Leg 1),

feet. Therefore, the j

following formula is used:

l R, = (R x L,pt)/L c

e eg7 l

l wm am m

DES 12N ANALYSIS [ CALCULATION

@25 Elorida l

crystas mver unit a l

l Sheet 12 of 58 fr_#1" NT OLNiFGATON NO.

REVISON El/IMA/SP NUMBEA/FLE l-88-0020 7

SP95-002

21. Based on the Walkdown Packages for transmitters RC-158-PT (Reference l
24) and RC-159-PT (Reference 25), the splices in the circuits j

l associated with RC-158-PT and RC-159-PT consists of butt splices with

)

Raychem heat shrink tubing. No VQP were available for the associated i

penetrations, but no non-standard splice configurations were identified. The splices at the transmitters were identified as having Raychem WCSF-N tubing sleeves; therefore, VQP TERM-R098-04 (Reference

23) which documents the test data associated with Raychem WCSF-N splice sleeves will be used for this calculation.

Per Tab F5 of the VQP (Wyle Test Report 58442-1), each test circuit consists of three (3) test splices each consisting of a single layer of WCSF-N sleeving. Per Table 1 of the test report, the minimum IR during the simulated LOCA/MSLB test was:

(

Cable Splice (R,):

1.8 x 10 ohms at 314*F (excluding I

7 the test specimens that had cable I

insulation failures).

{

Figure 1 of Tab 01, in the above mentioned VQP, describes the thermal l

lag associated with the Raychem sleeving. The RB temperature profile I

and the thermal lag associated with the Raychem sle9ving cross at

)

approximately 310*F. Therefore, the use of the 1.8 x 10 ohms at 314*F is acceptable.

22. VQP INST-R369-03 (Reference 19) covers Rosemount Model 1154 transmitters. Per Note 1 in Tab D; " Full sequential testing which verifies the design capabilities of these transmitters is dependent on the testing of the 1153 Series D as documented and evaluated in VQP l

No. INSTR-369-02."

VQP INST-R369-02 (Reference 18) covers Rosemount Model 1153 Series D transmitters.

Tab F,

Section II, page II-5 states that the transmitters use a Conax conduit seal during the qualification testing. Per the Walkdown Packages for RC-158-PT (Reference 24) and RC-159-PT (Reference 25), Rosemount 353C conduit seals are used on the transmitters.

Since VQP INST-R369-02 does not list the IR associated with the Conax conduit seal, and because a Rosemount 353C conduit seal is actually use in the plant configuration, the IR values associated with the Rosemount 353C conduit seal will be used for conservatism.

l VQP PEN-R369-01 (Reference 20) documents the testing of the Rosemount i

Model 353C conduit seals. Calculation I-88-0003 (Reference 9) l documents the IR value of the Rosemount 353C conduit seals as:

l 5

Conduit Seal (Ra):

5x 10 ohms for temperatures up to 420*F, based on the above mentioned VQP.

[

] "a DESIE'N ANALYSIS / CALCULATION

(

/

Crystal River Unit 3

%/

Sheet 13 of 58 frM **ENT Of.NMICATON NO.

MEviSON MLl/nAAM/SP NUM8t.R/ FILE l-884XT20 7

SP95-002

23. Per CMIS (Attachment 12), Penetration 129 (MTBD-9A) is covered under VQP PEN-C515-04 (Reference 22) and Penetration 406 (MTBD-llB) is covered under VQP PEN-C515-03 (Reference 21). Per Tab B, Section 1.0, VQP PEN-C515-03 does not include the #16 AWG feedthroughs installed at CR3; however, successful Conax testing of sim.ilar penetrations and feedthrough assemblies with #16 AWG conductors is found in VQP PEN-C515-04. Therefore, VQP PEN-C515-04 will be used for Penetration 129 and 406.

Tab Dl, Note 3 of VQP PEN-C515-04 states that the test profile envelopes the plant composite profile for the entire test duration except for 16 seconds at the beginning of the test. It also states that the thermal stress imposed by the test is considered to be more severe than the short (16 second) 15'F temperature spike in the plant.

Tab 01, Note 1 of VQP PEN-C515-04 states that the test contained in Tab F1 is applicable to the penetrations installed at CR3, and Note 9 states that the instrument and thermocouple feedthroughs used at CR3 utilize #14 AWG.

Tab F1, Section 6.20 describes the DBE testing. IR tests were also performed during the DBE testing and are documented on Data Sheet P in Appendix A. The minimum IR for the #14 AWG conductors during the 7

testing was 2 x 10 ohms (conductor #30 to ground). Leakage current was measured throughout the test and are documented on Data Sheet L of Appendix A. The maximum leakage current for the #14 AWG conductorg was 0.12 mA at 536 VAC; therefore, the IR at that point was 4.47 x 10 j

ohms (536 VAC/0.12 mA). Therefore, for conservatism, the minimum IR value is:

Penetration (Rm):

4.47 x 10' ohms for post-accident conditions.

24. The Remote Shutdown equipment is not postulated to be required concurrent with a Design Basis Accident (DBA), per FSAR Section 7.4.6.5 (Reference 3).

l I

ex.n

ga DESIGN ANALYSIS /CALCUL.ATION Crystal River Unit 3 Sheet 14 of 58 DOCUMLVI OENTFCATON NO.

MVISON El/MAA/SP NUMBEA/FLE l-88-0020 7

SP95-002

25. Per Section 3.0 of Calculation I-83-0001 (Reference 8), RPS High Pressure Trips actuate due to a Start-Up Accident, Rod Withdrawal at Rated Power Operation Accident, Moderator Dilution Accident, Rod Ejection Accident or a Loss of FW & MFW Line Break Accident. Per Section 4.0 of Calculation I-83-0001, only a Small Break LOCA (SBLOCA) has a period of operation (P00), which can cause a harsh environment for the transmitters and circuit components in the Reactor Building prior to actuation. Since a SBLOCA will not result in a RPS trip on High RCS pressure, then the Diverse Scram System (DSS), which actuates on High RCS pressure via RC-158-PT & RC-159-PT, will function during Normal Reactor Building environmental conditions.

Per FSAR Section 7.5.2.1 (Reference 3), the nominal setpoint for the actuation of DSS is 2450 psig.

26. The "As-Left" tolerances are to be determined from the SRSS of the Reference Accuracy for all of the components in the string. Since "As-Left" tolerances are only used to determine drift between calibrations, only Normal operating condition parameters affect the determination of the tolerances.
27. The " Calibrated" Loop Error will be determined from the summation of the " Calculated" Loop Error plus the "As-Found" tolerances for the components in the loop plus any Margin, if applicable.

The

" Calibrated" Loop Error is the maximum error that operations could expect after the calibration of the loop.

28. The "As-Found" tolerances are to be determined from the summation of the "As-Left" tolerances plus the SRSS of the Drift of any components and the M&TE error associated with the string.
29. " Partial Loop" tolerances are to be determined from the difference of the Total Loop tolerances ("As-Left" and "As-Found"). " Partial Loop" tolerances are determined to aid in the calibration of loops which include bistables (i.e.: pressure switches).

era.

900 671

9 da DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 l

l Sheet 15 of 58

{

nm--m umcum eso.

swam ro/w/sp ewem/ Fits i

l-88-0020 7

SP95-002 I

t

30. Surveillance Procedure SP-161C (Reference 40) describes the 1

calibration equipment to be used during the calibration of RC-158-PT l

and RC-159-PT loop components. The procedure presently states that a 1

Fluke 8600 DAM (Digital Multi-Meter) or equivalent, and an Ashcroft 0-3028 psig Test Gauge or equivalent; however, the Fluke Model 8600 DVM are being removed from service at CR3.

Per the String Calibration Data Sheets from SP-161C for RC-158-PT, the calibration which was performed in April 1994 (Attachment 9), used a Druck DPI-510, 3000 psig (M&TE #TG2362) and a Keithley 197A (M&TE

  1. TIl971).

Per the Calibration Work Sheet for the Druck DPI-510 Pressure Controller / Calibrator, M&TE #TG2362, with range O to 3000 psig (Attachment 10), the Druck DPI is calibrated to the following specifications:

Accuracy (MTE,f) the Druck DPIeguals 10.15% of Full Scale for pressure. Since the Full Scale o is the same as the span of the transmitters (3,000psig):

MTE,, -

R$]IL5CsM Accuracy (MTE,,) equals 1(0.05% + 1 digit) for the 20 ma range, where 1 digit equals 0.01 mA. Therefore, MTE,, -

(Oilfiliid 1

4 i

Per the Calibration Work Sheet for the Keithley 197A Digital Multimeter, M&TE #TIl971 (Attachment 11), and Instruction Manual 1981 (Reference 37), the Keithley 197A is calibrated to the following l

specifications:

Accuracy (MTE with a resolul) ion of 100 x 10 Volts; therefore: equals f(0.015% input + 3 cou 1

MTE t [(0.00015 x 10 Volts) + (3 x 100 x 10)]

y i [0.0015 + 0.0003)

=

10.0018 volts lio(0.0018 volts /10voltspan)x100%

1

".'0J80iiiss Accuracy (MTE,) equals 1(g.1% input + 15 counts) for 20 mA range with a resolution of 100 x 10' amps; therefore:

I l

t [(2.0 x 10',0 x 10'3 Amps) + (15 x 100 x 10 *]

MTE, t [(0.001 x 2 12.15 x 10'5 )mps (1.5 x 10)]

+

A l

1 (2.15 x 10'5 Amps /16 mA span) x 100%

i

=

i 0;134% Tspari 4

ein ooo en

,-(

} ga DESIGN ANALYSIS / CALCULATION

(

Crystal River Unit 3 f

ss Sheet _16 _ of _ 58__

87NMNT OLNilfICATION NO.

HEWSiON REl/ MAR /SP NUMUCH/FLE l-88-0020 7

SP95-002

31. Surveillance Procedure SP-161C (Reference 40) has the following "As-Left" and "As-Found" tolerances:

gg.ggg.;

gggg jg;pg;;

RC-158-PIl 150 PSIG 175 PSIG RC-158-PSI 120 PSIG 120 PSIG RC-158-PI2 150 PSIG 175 PSIG RECALL #224 (RC-158-PT) 125 PSIG 150 PSIG RC-158-PIR (Chart) 130 PSIG 150 PSIG RC-158-PIR (Indicator) 125 PSIG 150 PSIG RC-159-PIl 150 PSIG 175 PSIG RC-159-PSI 120 PSIG 120 PSIG RC-159-PI2 150 PSIG 175 PSIG RECALL #225 (RC-159-PT) 125 PSIG 150 PSIG

32. SP-120A (Reference 41), provides for the 6 month functional testing of the DSS portion of the ATWS circuitry. SP-120A checks / calibrates just the pressure switches and has the following "As-Left" and "As-Found" tolerances:

LDeficel fASdEFT3 IN5@0ENDI!

- ^

RC-158-PSI

-0.025 VDC (7.5 psig)

-0.025 VDC (7.5 psig)

RC-159-PS1

-0.025 VDC (7.5 psig)

-0.025 VDC (7.5 psig)

33. Per Section 7.1.C of the Instrument String Error /Setpoint Determination Methodology (Reference 1);

"The accuracies of calibrating instruments for any one calibration are considered dependent errors and are added algebraically."

34. Per Calculation I-94-0012 (Reference 16), the error associated with RECALL /SPDS is 10.366% of Full Scale Range (20 VDC or 4096 counts).

900 571

/,,'T DESIGN ANALYSIS / CALCULATION a

\\,v, Crystal River Urdt 3 Sheet 17 of _ _ 58 w -x umawo<on.

m mimir m,a l-88-0020 7

SP95-002

35. Industry standard and the NRC, via Reg. Guide 1.105 (Reference 43),

have accepted a minimum level of random error probability of 95% (2 sigma) for instrument error analysis. Since some manufacturer data presented can reflect 2 sigma data, this calculation will be considered 2 sigma. This will ensure that the calculation does not have a level of confidence, which is not justified; therefore, the results of the calculation will be conservative in nature.

36. The following method will be used to determine the overall error for component (s) and/or loop (s) that has Positive (+) and/or Negative (-)

Biases:

(1)

Positive Biases will be added to the SRSS of the Positive random errors, while ignoring Negative Biases.

(2)

Negative Biases will be added to the SRSS of the Negative random errors, while ignoring Positive Biases.

9 ga DESIGN ANALYSIS / CALCULATION i

Crystal River Unit 3 SW 18 of 58

!m MNT OLNTE N',ATON #C KVtSON REi/ MAR /SP NUMSLR/FLI l 884020 7

SP95002 III. ASSUMPTIONS (A):

1.

Assume that modules, indicators and recorders located in EQ Zones 13, 43 and 58 are calibrated at 70'F (minimum temperature for the Zones).

Since 80*F is the maximum temperature for these Zones, a 10*F change will be used in the calculation. This will ensure that any temperature effects are conservatively calculated.

2.

Assume that the pressure transmitters located in EQ Zone 66 are calibrated at 70*F (minimum temperature for this Zone). This will ensure that any temperature effects are conservatively calculated.

3.

It is assumed that the test equipment referenced under Design Input (DI) #30 will be used in the future to calibrate RC-158-PT and RC-159-PT loops.

(1)

The transmitters are calibrated using the Druck DPI-510.

Therefore, the M&TE error for the pressure transmitter is:

MTE 1 (MTEop + MTE )

DI30 pr oi 1 (0.15 + 0.1 i.!01259 span)

(2)

The pressure switch is calibrated using one (1) Keithley 197A for voltage. Therefore, per Design Input (D) #30, the M&TE required is:

MTE,

1 (MTE )

p y

RIOJ01(jM5

=

(3)

The Pressure Switch Loop is to be calibrated by calibrating the pressure transmitter, then inputting the transmitter current values (measured via a Keithley 197A for current) into the I/V while monitoring the voltage input to the pressure switch.

Therefore, per Design Input (DI) #30 and Assumption 3.1, the MTE required is:

MTE 1 (MTEpp + MTE

+ MTE, + MTE )

pst pi y

i_(0.15 + 0.I + 0.134 + 0.018) il0;402%' span 9/85 900 871

@a DESIGN ANALYSIS / CALCULATION crystai nivw unn a Sheet is of 58 9V*"NT OLNTif CATON NO.

NVISCN FWJ/ MAR /SP NUMBER /FRE l-88-0020 7

SP95-002 (4)

The other Loops are to be calibrated by calibrating the pressure transmitter, then inputting the transmitter current values (measured via a Keithley 197A for current) into the I/V while monitoring the indicators, recorders, etc.

MTE 1 (MTE,, + MTE,, + MTE,)

a t (0.15 + 0.1 + 0.134)

[0lM[#@

4.

For components where a drift term is not specified, it is assumed that any drift present is bounded by the Reference Accuracy of the device.

5.

The Control Complex is considered a Controlled Environment; therefore, no significant changes in humidity will be considered.

6.

Per Section 6.3.A of I&C Design Criteria (Reference 1);

" Accuracy as identified in a vendor specification is usually assumed to be Reference Accuracy.

..... Reference Accuracy includes the combined effects of conformity (linearity),

hysteresis and repeatability."

Where conformity (linearity), hysteresis and repeatability values are less than the specified accuracy, the above statement is to be considered true. For conservatism, where conformity (linearity),

hysteresis and/or repeatability values are equal to or greater than the specified accuracy, then the value(s) will be combined via the SRSS method with the specified accuracy term to determine the Reference Accuracy value, em en

9wY porida DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 20 of 58 W_".NT KANTFCATEJN NO.

PEV90N FE/ MAR SP NUMBUt/FLi i

/

l-88-0020 7

SP95-002 IV.

REFERENCES:

1.

I&C Design Criteria - Instrument String Error /Setpoint Determination i

Methodology, Revision 1.

I 2.

Technical Specifications 3.3.17.2.(3) and 3.3.18.2. (2a), Amendment 150.

3.

FSAR Sections 7.4.6.5 and 7.5.2.1, Revision 21.

4.

Design Basis Document (DBD) for Post-Accident Monitoring Instrumentation (Section 5/11), Revision 2.

5.

Enhanced Design Basis Document (EDBD) for the Reactor Coolant System (Section 6/1), Revision 3.

6.

Request for Engineering Assistance (REA) 94-1210.

7.

Environmental and Seismic Qualification Program Manual (E/SQPM),

Revision 7.

8.

Calculation I-83-0001, " Calculation for Statistical Errors, Crystal River 3 RPS", Revision 4.

9.

Calculation I-88-0003, " Insulation Resistance of Rosemount Conduit Seal", Revision 3.

10. Calculation I-88-0006, "IR Accuracy, 4-20 mA (Foxboro Nest)", Revision 4.
11. Calculation I-88-0015, " Selection of Circuit Data for IR Accuracy Calculations", Revision 6.
12. Calculation I-89-0004, " Instrument Loop and Insulation Resistance (IR)

Accuracy Calculation", Revision 5.

13. Calculation I-89-0028, " DSS /AMSAC MFW Flow Loop Error", Revision 7.
14. Calculation I-90-0014, "EQ Zone 66 Normal 10 Year Radiation Levels",

Revision 2.

15. Calculation I-90-1014, "ATWS DSS /AMSAC Setpoint/ Tolerances", Revision 3.
16. Calculation I-94-0012, " Computer Instrument Accuracy", Revision 1.
17. Vendor Qualification Package (VQP) CABL-8365-01, " Boston Insulated Wire Bostrad 7E Instrumentation & Control Cable", Revision 2.

S/SS ECO 671

9 da DESIGN ANALYSIS /CALCUL.ATION crystas niver una a Shen 21 of 58 rmmm wascum esa m/wfse e gu l-88-0020 7

SP95-002

18. Vendor Qualification Package (VQP) INST-R369-02, "Rosemount Model 1153 D Transmitters", Revision 3.
19. Vendor Qualification Package (VQP) INST-R369-03, "Rosemount Model 1154 Transmitters", Revision 4.
20. Vendor Qualification Package (VQP) PEN-R369-01, "Rosemount Model 353C Conduit Seals", Revision 2.
21. Vendor Qualification Package (VQP) PEN-C515-03, "Conax P/N 2325-7870 Electrical Penetration Assembly (Trixial)", Revision 2.
22. Vendor Qualification Package (VQP) PEN-C515-04, "Conax P/N 2325-7867/7868 Electrical Penetration Assembly", Revision 3.
23. Vendor Qualification Package (VQP) TERM-R098-04, "Raychem NPKC, NPKP, and NPKS Transition Splice Assemblies", Revision 2.
24. Walkdown Package for RC-158-PT, dated 4/10/93.
25. Walkdown Package for RC-159-PT, dated 7/1/92.
26. Instrument Data Sheets:

a.

RC-158-PII, Revision 3 b.

RC-158-PI2, Revision 3 c.

RC-158-PIR, Revision 3 d.

RC-158-PSI, Revision 2 e.

RC-158-PT, Revision 4 f.

RC-158-PYI, Revision 2 g.

RC-158-PY2, Revision 2 h.

RC-158-PY3, Revision 2 1.

RC-158-PY4, Revision 2 j.

RC-158-PY5, Revision 1 k.

RC-158-PY6, Revision 1 1.

RC-159-PI2, Revision 4 m.

RC-159-PSI, Revision 2 n.

RC-159-PT, Revision 5 o.

RC-159-PYI, Revision 2 p.

RC-159-PY2, Revision 2 q.

RC-159-PY3, Revision 2 r.

RC-159-PY4, Revision I s.

RC-159-PY5, Revision 1 1

t.

RC-198-J2A, Revision 2 u.

RC-198-J28, Revision 2 v.

RC-198-J3A, Revision 2 w.

RC-198-J3B, Revision 2 x.

ZZ-1-JY, Revision 1

27. Drawing 205-047 sheet RC-02, Revision 7.

ex w

9 da DESIGN ANALYSIS / CALCULATION crystas nivw unn a Sheet _22 of 58 OXWENT OENTIFICATON NO.

EVISON NJ/h4AA SP NUMBLR/Ft.E

/

l-88-0020 7

SP95-002

28. Drawing 308-601, Revision 10.
29. Drawing 308-602, Revision 11.
30. Drawing 308-603 sheet 2 Revision 1.
31. Drawing 308-606, Revision 15.
32. 1967 ASME Steam Tables, Second Edition.
33. Instruction Manual 49 Volume 18, Revision 15.
34. Instruction Manual 586, Revision 6.
35. Instruction Manual 1260. Revision 7.
36. Instruction Manual 1400, Revision 1.
37. Instruction Manual 1981, Revision O.
38. Letter LFM90-0006, dated 1/29/90

" Licensing Interpretation Seismic and LOCA".

39. Letter SNES94-0276, dated 9/12/94

" Response to NEA94-0694 on RPS Instruments".

40. Surveillance Procedure SP-161C, " Remote Shutdown Instrumentation Calibration", Revision 11.
41. Surveillance Procedure SP-120A, "ATWS DSS Functional Test", Revision 2.
42. Enhanced Design Basis Document (EDBD) for the Class IE AC System (Section 4/1), Revision 2.
43. Reg. Guide 1.105, " Instrument Setpoints for Safety-Related Systems",

Revision 2.

44. Drawing 206-041, Revision 15.
45. Instruction Manual 1524, Revision 4
46. Calculation I-84-0001, "CR-3 SPDS Saturation Curve Errors", Revision i

7.

47. Calculation I-88-0014, " Selection of Instrument Loops in a Harsh Environment for IR", Revision 7.

l ein

9a DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 23 of 58

[

"NiIDENTIFIC ATON NCA ff.Vt9CN ff.J/MAA/SP NUMEMiR/Ft.E l-88 0020 7

SP95-002

48. Calculation I-89-0001, " DSS /AMSAC Trip Response Times", Revision 3.
49. Calculation I-89-0009,

" Allowable Instrument Loop Indication Accuracies", Revision 4.

50. Calculation I-92-0003, " Instrument Error for HPI Flow Verification",

Revision 0.

51. Request for Engineering Assistance (REA) 95-0056.
52. Request for Engineering Assistance (REA) 95-0243.

l l

1 1

i I

.n

da DESIGN ANALYSIS / CALCULATION crystas nivw una a mx umcuo. e Sheet _24 of ___58

==

l-88-0020 mwfse euenu 7

SP9M)02 V.

DETAILED CALCULATION:

This calculation will evaluate the instrument loop accuracies associated with the RCS Wide Range pressure transmitters (RC-158-PT and RC-159-PT) during Normal and Accident conditions.

COMPONENT ERRORS:

Process Error:

Per Design Input (DI) #3, the majority of the sensing lines associated with RC-158-PT and RC-159-PT are routed through EQ Zone 40, which has the following temperature ranges:

Temperature - Normal:

110' to 149'F.

Temperature - LOCA:

110' to 298'F.

Temperature - HELB:

110' to 386*F.

The water in the wet leg of the pressure transmitter is at the same temperature as the Reactor Building inside the D-Rings. Per the E/SQPM (Reference 7) the temperature in EQ Zone 40 is between 130* and 149'F a majority of the time; therefore,140*F will be used as the average Normal sense line temperature. In addition, the normal operating pressure of the RCS is 2155 psig per EDBD for the Reactor Coolant System (Reference 5).

Per Design Input (DI) #3, the change in elevation between the tap connections for the transmitters and the location of the transmitters is 63.29 feet (167.21' - 103.92') for RC-158-PT and 64.46 feet (106.21' -

102.75') for RC-159-PT.

Per Table 3 of the 1967 ASME Steam Tables (Reference 32); Spgcific Volum of water at 140*F and at 2200 psia (2185.3 psig) is 0.01618 ft /lbm and the Spp/lbm. Since the difference between the Specific Volume isc ft minimal and because the actual operating pressure is closer to 2200 psia, the Specific i

Volume at 2200 psia will be used in th}/lbm)s calculation. Thus Density is 61.805 lbm/ft (1/0.01618 ft Therefore, the following 3

corrections are required for the calibration of the transmitters:

RC-158-PT:

3 2

2 z

(61.805 lbm/ft ) x (1 ft /144 in ) - 0.429 lbm/(in -ft)

[0.429 lbm/(in'-ft)] x (63.29 ft) - 27.2;psig i

TRANSMITTER SCALINGL V 272 psi's(0%)Lto!3027.2fpsigl(100%)

NOTE:

The transraitter is not to be calibrated above its Upper Range Limit (URL) of 3000 psig.

9/89 900 871

9Y da DESIGN ANALYSIS /CALCUL.ATION Crystal River Unit 3 Shoot - 25 of esa nefwa/se umagu

- 58__

ex umcum m.

l-88 0020 7

SP95-002 RC-159-PT:

3 (61.805 lbm/ft ) x (1 ft'/144 in') = 0.429 lbnV(in -ft) z

[0.429 lbm/(in'-ft)) x (64.46 ft) - QMs3 N N N EI N E $!1I$$$ N 2 NIfi} $ 5 1 % bl2N.!Ii5(I M I NOTE:

The transmitter is not to be calibrated above its Upper Range Limit (URL) of 3000 psig.

Although the HELB temperature peaks at 386*F post-accident, it returns to 313*F within the first 2 minutes. Since this temperature envelopes the LOCA conditions (298'F), 310*F will be used to determine the maximum error due to density change. The hotter, less dense post-accident condition in the sense lines will lower the indicated pressure. Per Table 3 of the 1967 ASME Steam Tables, the Specific Volume of water at 310*F betwpen 80 psia (65.3 psjg) and 2200 psia (2185.3 psig) is between 0.01755 ft/lbm. Therefore, the We1ght Density is between 56.98 lbm/ftft /lbg and 0.017 (1/0.01755 Density of 56.98 lbm/ft{t3(1/0.01739 ft /lbm). For conservatism, a Weig ft /lbm) and 57.50 lbm/

3 will be used for this calculation.

The change in pressure for the sense lines of the pressure transmitters is related to the change in sense line density as follows.

Astusg.ti,,

[(dr2 - d )/(144 in'/1 ft')) x [L/ span] x 100%

n where dp_and dra is the Weight Density of the sense lines are 140 F and 310*F, respectively and L is the length of the sense line.

Therefore, the effect on the transmitters' span is as follows:

RC-158-PT:

A

[(56.98 - 61.805)/144) x [63.29/3000] x 100%

SENSE-UNE

[-0.0335)x[0.0211)x100%

-0j07%jsp,q a

RC-159-PT:

A

[(56.98 - 61.805)/144) x [64.46/3000] x 100%

SE NSE-U NE

[-0.0335Lx[0.0215]x100%

-0.07%Lspan e:

900 871

@ M8

lorida DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 E"_^'ENT OLNTIFGATCH NO.

Sheet 26 of - 58 fEV!SICM PE3/MAA/8P NUMDER/ FILE 148-0020 7

SP95-002 Device PT:

Rosemount ll54GP9RA pressure transmitter 014 Span 3,000 psig URL 3,000 psig (Upper Range Limit)

Normal Conditions (E,1,)

E,g, Reference Accuracy - 1 0.25%

=

E, Temperature Effect - 1 (0.75% URL + 0.5% span)/100*F A2 i [(0.75 x 3000 + 0.5 x 3000)/3000] x (109' - 70*)/100*F t [(2250 + 1500)/3000] x 0.39 1 (1.25) x (0.39) 1 0.49% span E,

Overpressure Effect - 1 0.0%

0I4.2

=

E,se Power Supply Effect - 1 0.005% span / volt i [0.005 span / volt x (0.017 x 24 volts)]

DIA & 15 i [0.005 x 0.408]

=

1 0.002% span

=

This effect will be ignored because it is negligible compared to the other effects.

E,,,

Steam Pressure / Temperature Effect - 1 0.0%

DI4.3 E,

Seismic Effect - 1 0.0%

014.4 E,.

Radiation Effect - 1 0.0%

014.5 i [(E,)2 + Ur)T E

rru ng (0.49)2)w t [(0.25) +

1[0.3026)+(0.2401)]*

1 [(0.0625

=

210;55%3p]an

=

D/54 900 $71

DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 27 of 58

!"**NT OENTIFICATON NO, PEV100N Ns/MAA/SP NUMOLR/FRE 148-0020 7

SP95-002 Accident Conditions (E,)

pr E,,,

Reference Accuracy - 10.25%

Er Temperature Effect - t 0.0%

014.1 Eop Overpressure Effect - 1 0.0%

DI4.2 E,,,

Power Supply Effect - t 0.005% span / volt i [0.005 span / volt x (0.017 x 24 volts)]

DI6 & 15 i [0.005 x 0.408]

t 0.002% span This effect will be ignored because it is negligible compared to the other effects.

E,fy Steam Pressure / Temperature Etfect = i (2.5% URL + 0.5% span) 1 (2.5 x 3000 psig) + (0.5 x 3000 psig)]/3000 psig 1 3.0% span Eg Seismic Effect - 1 0.0%

DI4.4 E,,

Radiation Effect - 1 (1.5% URL + 1.0% span)

=

t [(1.5 x 3000 psig) + (1.0 x 3000 psig)]/3000 psig t 2.5% span i

i [U,,,f + Upfr)2 + (E,,o)T E

pra l

i [(0.25)2 + (3.0)*

(2.5)2)w

+

i [(0.0625) + (9.0) + (6.25)]*

E3:91xMa]*i i [15.3125 r

SCE E71

9 e:lorida DESIGN ANALYSIS / CALCULATION zower Crystal River Unit 3 DOCUMLNT M.NTif CATiOH NO.

Sheet 2s of__58 FOMON N.1/ MAR /$P NUMBE.R/ FILA l-88-0020 7

SP95-002 Device 1/V:

Foxboro N2AI-I2V Current-to-Voltage Converter (Euv)

DI6 E,g, Reference Accuracy - 10.25% span 4

E Temperature Effect = 10.5% span /45'F r

1 (0.5/45'F) x (10*F)

A1 1 0.11% span i [(E,,,)' + (E )']'

E uv r

i [(0.25)' + (0.11)']*

i[0.0746)+(0.0121)]*

i [(0.0625

  • 10]27pp)i?

Device V/V:

Foxboro N2AO-VAI Signal Converter / Isolator (Eyfy)

DI7 E,c, Reference Accuracy - t 0.5% span E

Temperature Effect - 1 0.5% span /45'F r

1 (0.5/45'F) x (10*F)

Al t 0.11% span i [(E,g,)2 + ( E,)']*

E yfy i [(0.5)' + (0.11)']'

G[0.2621]{(0.0121)]'

[(0.25)

=

i

!!CsRah 800 571

da DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 29 of _ 58

~_moa umcum oc.

mvem mimise mira 1-88-0020 7

SP95-002 Device P!1:

International Instruments 1251 indicator (Epn) 018 l

E,t, Reference Accuracy

=

i [(Specified Accuracy)* + (Repeatability)']*

A6 i [(1.5)* + (2.0)2 t[(2.25]+(4.0)))w

=

i [6.25) 1 2.5% span.

E Scale Error - 1 % minor scale division sc t [(0.5 x 50 psig)/3000 psig) x 100%

t 0.83% span

=

t [(E,)

+ (E )2]'

E pn ar sc i [(2.5)* + (0.83)2jn q(6.9389]*(0.6889)]*

t [(6.25) +

i s3xjpsti Device PS:

Bailey 6623819-1 switch (signal monitor) (E )

0110 ps E,

Reference Accuracy = 1 0.25% span

=

ar E

Temperature Effect - 1 0.25% span /100*F r

1 (0.25/100*F) x 10'F Al 1 0.025% span i [(E,)

+ (E ) l*

E, p

ar r

t [(0.25)2 + (0.025)2)*

i[0.0631)+(0.0006)]'

t [(0.0625 i!02.2Ksp)id 1

i ein am

.o DESIGN ANALYSIS / CALCULATION crystai mver unn a Sheet 30 of -

58__

l-88-0020 7

SP95-002 Device P12:

Bailey RY-1101 pressure indicator (Epiz)

DIl3 E,,,

Reference Accuracy

=

i [(Specified Accupacy)2 + (Linep)r,ity)2 +

A6 (Repeatability) + (Deadband) i [(1.0)2 + (1.0)2 + (0.5)2 + (0.5)2 '

i[2.5]j+(1.0)+(0.25)+(0.25)]j i [(1.0 1 1.58% span.

E Temperature Effect - t 0.001% span /*F r

i (0.001/*F) x 10*F

=

Al 1 0.01% span E

Scale Error - 1 % minor scale division sc t [(0.5 x 100 psig)/3000 psig) x 100%

1 1.67% span E,

Power Supply Effect - 10.013% span / volt ps t [0.013% span / volt x (0.02 x 118 volts)]

0113 t [0.013 x 2.36]

1 0.031% span

=

i [(E,g,)2 + (E )2 + (E )2 + (Epse)2]'

E eiz r

sc t [(1.58)2 + (0.01)2 + (1.67)2 + (0.031)2]*

t [(2.4964 i[5.2864))+(0.0001)+(2.7889)+(0.001)]*

%I24MIEPM 9/88 900 671

9 ga DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 vnex unre caro. m.

Sheet 31 of - 58

nevoo, mfwjy -/F u l-88-0020 7

SP95-002 Device PIR:

Foxboro N227P-1R6 recorder Recording (E,,,,)

DIl4 E,,,,

Recording Reference Accuracy = 1 0.75% span

=

E Temperature Effect = 1 0.5% span /50'F r

i (0.5/50*F) x 10*F

=

Al 1 0.1% span E,

Humidity Influence = 10.0% span A5

=

E, Power Supply Effect = 1 0.1% span

=

ps E,

Recording Scale Error - i % minor scale division

=

sc i [(0.5 x 50 psig)/3000 psig) x 100%

t 0.83% span

=

E,,,,

t [(Earra) + (E )" + (Epse)" + (E,)T r

sc i

t i [(0.75)2 + (0.1)2 + (0.1) + (0.83)*]*

i [(0.5625 6.El#$5])+(0.01)+(0.01)+(0.6889)]

=

i 1.2714 PE

.n

l

@T da DESIGN ANALYSIS / CALCULATION Crystal River Urdt 3 Sheet 32 of sa E'n_"M IDENTW-lGATON NO.

NVISON NJ/ MAR /SP NUMBER / FILE l-88 @ 20 7

SP95-002 Indicating (E,3) oil 4 pi E,,,,

Indicating Reference Accuracy - t 0.5% span E

Temperature Effect - t 0.5% span /50*F r

1 (0.5/50*F) x 10'F Al t 0.1% span E,

Humidity Influence - t 0.0%. span AS E,

Power Supply Effect - 10.1% span ps E

Recording Scale Error - i ) minor scale division sci t [(0.5 x 50 psig)/3000 psig] x 100%

1 0.83% span

=

i [(E,g,3)2 + (E,)2 + (E,)' + Usci)Y E,,

pi ps i [(0.5)2 + (0.1)2 + (0.1)2 + (0.83)*]*

i [(0.25) t(IsaEyp]4(0.01)+(0.01)+(0.6889)]*

0.9589 Ro g

RECALUSPOS:

E,3tt RECALL Reference Accuracy - 10.366% FSR DI34 1(l?34!s)ph(20VDC/10VDC) 0.366% x

[0 l

l i

(

ofee eco 671

9 "a DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet _21_ of _5L Em_"NT M.NTIF8CA70N NQ, fEVISON FEl/ MAR /SP NUMBER /FLE l-88-0020 7

SP95-002 IR Errors:

A,,

+ [22.8/(4.8 + (0.016 x R ))] x 100 DIl9 p

1/R, 1/R, + 2/R, + 1/%,,o + 1/%,

c R,

Cable IR = (R x L,pt)/L DI20 c

c cri RC-158-PT IR Error:

L for RCR265 is 95 feet.

0118 egy (2.9 x 10' ohms x 20 feet)/95 feet R,

=

e 6.11 x 10 ohms 7

R, 1.8 x 10 ohms DI21 5

R,s,t 5 x 10 ohms 0122 4.47 x 10' ohms R,

0123 pg 5

7 5

6 1/R, (1/6.11 x 3.97 x 10'J0 ) + (2/1.8 x 10 ) + (1/5 x 10 ) + (1/4.47 x 10 )

l (1/3.97 x 10)

I R,

5 2.52 x 10 ohms 5

A,

[22.8/(4.8 + (0 916 x 2.52 x 10 ))] x 100 i

[22 DM. 8((4.03 x 10')] x 100

span 1

l l

l r

I ew en

_9 da DESIGN ANALYSIS /CALCUl.ATION Crystal River Unit 3 cm-x um c.cm.a Sheet - 34 of sa avem l-88 0020

=vey -gu 7

SP95-002 RC-159-PT IR Error:

L for RCR271 is 360 feet.

m DIl8 R

1.61 x 10,' ohmsohms x 20 feet)/360 feet (2.9 x 10 cr 7

R, 1.8 x 10 ohms

=

DI21 5

R 5 x 10 ohms sER DI22 R,g, 6

4.47 x 10 ohms DI23 1/R, i

5 7

5 (1/1.61 x 8.55 x 10'J0 ) + (2/1.8 x 10 ) + (1/5 x 10 ) + (1/4.47 x 10')

R, (1/8.55 x 10)

5 1.17 x 10 ohms A

[22.8/(4.8 + (0.pl6 x 1.17 x 10 ))] x 100 5

=

a

[22.8/(1.88 x 10 )) x 100

=

IS21%}_spii

=

I i

i 9/04 000 671

9 da DESIGN ANALYSIS / CALCULATION crystas nevw unit a Sheet 35 of 58 F_R=.MT Of NTEICATON NO.

MVLfMON MI/ MAR /SP NUMBLH/f LE l-88-0020 7

SP95-002 LOOP ERRORS:

Remote Shutdown Indication (E,,,)

D124 i

i [(E,1,)* + (E,fy)' + (E,,i)']'

E, ns t [(0.55)2 + (0.27)' + (2.63)']'

t[(0.3025)+(0.0729)+(6.9169)]'

1

'7.2923).

=

Rjj20[jph = (2.70% x 3000 psig) - [8QOgsfi OSS Pressure Switch (Signal Monitor) (Eass) 0125 i [(E,)* + (E,fy)" + (Eyfy)2 + (E )']*

E oss gy ps i [(0.55)" + (0.27)2 + (0.51)' + (0.25)']*

i [(0.3025 i[0.6980)()+(0.0729)+(0.2601)+(0.

[0!84Wsp ri - (0.84% x 3000 psig) - R25j2ipsti 9/44 900 571

r-9 da DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 36 of __ _ 58 W "'ENT OLNTE CATION NO.

NVISON EJ/WAA/SP NUW9LH/HLA l-884020 7

SP95-002 Output to RECALL /SPDS (Normal - E,c,; Accident - E,c,)

i [(E,1,)8 + (Erfy)' + (Eyfy)' + (E,c,tt)2)w E,c, i [(0.55)" + (0.27)' + (0.51)* + (0.732) ]*

t[(0.3025j+(0.0729)+(0.2601)+(0.5358)]*

t [1.1713 E 1108%Jsp]s.H - (1.08% x 3000 psig) - [ 3 G4[piJ RC-158-PT:

+ [(E,1,)* + R,fyf + Myfy)3 + g,c,tt)T + A,

E,c, DI36 i

+ [(3.91)' + (0.27)* + (0.51)2 + (0.732)2)w + O 56

+ [16.1569]) + 0.56+ (0.0729) + (0.2601) + (0.5358)]g + 0.56

+ [(15.2881

+ 4.02.+ 0.5

? 3 58% )_ pan 6- (44.58% x 3000 psig) - f137_M.jji}

=

- [(E,7,f + M,fy)' + Ryfy)' + Rec,tt)T - Agusg.ti,e 0136

- [(3.91)' + (0.27)2 + (0.51)' + (0.732)*]* - O 07

- (16.1569]) - 0.07+ (0.0729) + (0.2601) + (0.5358)]g - 0.07

- [(15.2881

- 4.02 - 0.07 E4109%3piii - (-4.09% x 3000 psig) - 322!7J"piji RC-159-PT:

+ [(Epra)' + (E,fy)' + (Eyfy)2 + (E,c,tt)2)w + A,,

DI36 E,c,

+ [(3.91)' + (0.27)* + (0.51)2 + (0.732)2)w + 1 21

+ [16.1569]) + 1.21+ (0.0729) + (0.2601) + (0.535

+ [(15.2881

=

=

+ 4.02 + 1.21 ES{23%5 spin - (+5.23% x 3000 psig) - B5.619]i}g l

- [(E,)* + (E,fy)2 + gyfy)* + U,c,tt)T - A,sg.ti,c pt DI36 ss

- [(3.91)3 + (0.27)2 + (0.51)' + (0.732)3]' - O 07

- [(15.2881

- [16.1569)) - 0.07+ (0.0729) + (0.2601) + (0.5358)]g - 0.07

- 4.02 - 0.07

-14.09%[ span - (-4.09% x 3000 psig) 2122.7l.'psjg e:en ex en

@ gda DESIGN ANALYSIS / CALCULATION Crystal River Unit 3

""N1 OLNTIF GATON NO.

Sheet _37 of sa HEVISION El/ MAR /SP NUWBER/F.i 1-88-0020 7

SP95-002 Control Room Indication (Normal - E,,; Accident - E,)

p pi E,,,

1 ((Erru) + (E,fy)2 + (Eyfy)2 + (E,,2)']'

=

i i [(0.55)' + (0.27)* + (0.51)' + (2.3)2]"

i [(0.3025 i[5.9255)+(0.0729)+(0.2601)+(5.29)]'

E.23$l)p.]iti - (2.43% x 3000 psig) - Q2Kpiij

=

RC-158-PT:

E,

- + [(Erra) + (Eify)' + (Eyfy)2 + (E,,2)2)w + A,

0136 p3 i

[(3.91)' + (0.27)2 + (0.51)2 + (2.3)*]" + O 56

- +

[(15.2881

[20.9111]) + 0.56+ (0.0729) + (0.2601) + (5.29)]g + 0.56

- +

+

- + 4.57 + 0.56 Q[13s[j)jd = (+5.13% x 3000 psig) = y])3i9[Nij

=

- [ ( E,) * + U,fy)' + Ryfy) * + Up 2)T - A DI36

=

py stuss true

- [(3.91)2 + (0.27)2 + (0.51)8 + (2.3)2]"

- O o7

- [(15.2881

- [20.9111]) - 0.07+ (0.0729) + (0.2601) + (5.29)]g - 0.07

- 4.57 - 0.07 E4J64Q@f-(-4.64%x3000psig)-939[Qi}j RC-159-PT:

+ [(E,1,f + R,fy)2, gvfV)2, g !2)

+ A,,

DIM E,,,

p

+ [(3.91)' + (0.27)2 + (0.51)2 + (2.3)2)w + 1 21

=

+ [(15.2881

+ [20.9111]) + 1.,21+ (0.0729) + (0.2601) + (5.29)]h + 1.21

=

=

+ 4.57 + 1.21

=

E 5[780 ipih, b5.78% x 3000 psig) - il73? Q Q i

- [(E,)* + (Eify)' + (Eyfy)2 + (E,,z)2]' -A 0136

=

pr stust tiwr

- [(3.91) + (0.27)2 + (0.51)* + (2.3)2)w - O 07

- [(15.2881

-(20.9111])-0.07+ (0.0729) + (0.2601) + (5.29)]g - 0.07

- 4.57 - 0.07

-14.64% span-(-4.64%x3000psig)-$139.2piig er 800 871

(a

}> bg DESIGN ANALYCIS/ CALCULATION i%J Crystal River Unit 3 Im MNT OLNTIFICATON NQ.

Sheet __38 of 5s NMSION l-88-0020 MI/ MAR /SP NUMBER /$4.E 7

SP95-002 Control Room Recording (Normal - E,,,; Accident - Epau) p t [(E,)2 + (E,fy)' + (Eyfy)* + (E,,,)T E,,,

p pr p

i [(0.55)2 + (0.27)3 + (0.51)2, (1,33)zjs

=

t [(0.3025

((jj g } #]) + (0.0729) + (0.2601) + (1.2769)]*

1 'l.9124

-(1.38%x3000psig)-[(4Q[@j

=

{

RC-158-PT:

l l

+ [(E,)' + (E,fy)2 + (Eyfy)2 + (E,,,)T + A,,

W E

rnu pr p

+ [(3.91)2 + (0.27)* + (0.51)2 + (1.13)2)w + 0.(6

+ [(15.2881 + (0.0729) + (0.2601) + (1.2769)] + 0.56

+ [16.8980]) + 0.56 l

+ 4.11 + 0.56

{416ZQpiri - (+4.67% x 3000 psig) = +140fl_ips},g

- [(Epr4)' + U,fy)' + (Eyfy)2, gPIRR DI36

~

SENSE-LINE

- [(3.91)2 + (0.27)2 + (0.51)' + (1.13)']' - 0.q7

- [(15.2881 + (0.0729) + (0.2601) + (1.2769)] - 0.07

- [16.8980]) - 0.07

- 4.11 - 0.07 E4!!853piii - (-4.18% x 3000 psig) = {125?4[ pili 1

1 l

l l

l l

l 9/04 l

000 671

_ _ _ _ - - _ _ _ _ - - _ - - - _ -. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -------- -- --- ----------- -- ----- ~ --------- ------------ - -

n_

i e

da DESIGN ANALYSIS /CALCUl ATION Crystal River Unit 3 Sheet 39 of 58 NT'MNT OLNTIFICATON NO.

FEvtaON T0/ MAR /SP NUW9E.R/flLE l-88-0020 7

SP95-002 Control Room Recorder Indicating (Normal - E,,,,; Accident - E,,,,)

i [(E,1,)" + (Eify)" + (Eyfy)2 + (E,,,5)*]'

E,,,,

i [(0.55)2 + (0.27)' + (0.51)

(0.98)*]*

+

1[(0.3025)+(0.0729)+(0.2601)+(0.9604)]*

=

1 'l.5959

[${2M[sp)ip = (1.26% x 3000 psig) = [37[81@j

=

RC-158-PT:

a

+ [(E,,,)2 + (E,,y)2 + Myfy)2 + Upi, )T + A,,

E,,,,

DW

+ [(3.91)2 + (0.27)' + (0.51)2 + (0.98)2)w + 0.

=

+ [16.5815]) + 0.56+ (0.0729) + (0.26

+ [(15.2881

+ 0.56

+ 4.07 + 0.56

=

Efl6gshis=(+4.63%x3000psig)-B38!9]Mi

=

- [(Epra) + 6 /vf + Kviv) + Upani) T - A,,,3,.ti,,

D136

- [(3.91)2 + (0.27)2 + (0.51)2 + (0.98)2)n - 0.

-[16.5815])-0.07+ (0.0729) + (0.2601) + (0.9604

- [(15.2881

- 0.07

- 4.07 - 0.07 64J14(Mip-(-4.14%x3000psig)-j124i2]piji 9/M 900 671

m_.

e g DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 W'_" MT OLNTFCAYapN eso.

Sheet _ 40 of sa__i NVteION l-88-0020 N.1/ MAR /SP NUMBER /HLE 7

SP95-002 "AS-LEFT" TOLERANCES:

DI26 Pressure Transmitters (Al )

er AL,7 1 (PT-E,,,)

DI4 t 0.25% span - (0.25% x 3000 psig) - i 7.5 psig t [(0.25%/100%) x 16 mA] - 1 0.04 mA Per the Calibration Data Sheets for RC-158-PT (Attachment 13 RC-159-PT (Attachment 14), the currently used "As-Left" tolera)nce for and calibrating RC-158-PT is 1 0.04 mA. Since the calculated tolerance is the same as currently used, the "As-Left" tolerance for the pressure transmitters will remain at 10.04 mA. Therefore:

AL,1 E0125%]spiiiRX[jQijjlKol041iiiA Pressure Switch (AL,,)

AL,,

i (PS-Entr)

=

0110 t 0.25% span - (0.25% x 3000 psig) - i 7.5 psig 1 [(0.25%/100%) x 10 VDC] = 1 0.025 VDC

=

Per Design Input (DI) #32, the "As-Left" tolerance currently used in SP-120A for the DSS (RC-158-PSI and RC-159-PSI) is - 0.025 VDC setpoint associated with DSS will be provided with a negative tolerance instead of just a negative tolerance. positive and Therefore:

Al EDI2.5%[jpgj?Mfj5[ pig lH0];0i51VDC es t

si e 900 67t

I

@ g DESIGN ANALYSIS / CALCULATION 1

Crystal River Unit 3 Sheet W.MNT (ANTIFICATION NO.

- 41 of ss FEvtSION F0/MAM/SP NUheBER/HLE l-88-0020 7

SP95-002 Remote Shutdown Indication (AL,,,)

i [(PT-E,)

+ (I/V-E,)* + (PIl-E,,,)']*

AL,,,

nt ng t [(0.25)3 + (0.25)' + (2.5)']*

l i[(0.062g)+(0.0625)+(6.25)]'

l i [6.375]

1 2.52% span - (2.52% x 3000 psig) - t 75.6 psig

{

Since RC-158-PIl and RC-159-PIl can only be read to 25 psig (% minor division), and because the calculated tolerance is close to a % minor division point, the "As-Left" tolerance for the Remote Shutdown l

Indication will be rounded down to 75 psig or 2.50%.

Per Design Input (DI) #31, the "As-Left" tolerance currently used in SP-161C for the Remote Shutdown Indication (RC-158-PIl and RC-159-PII) is i 50 psig. Based on past experiences of being able to calibrate the indicator loop to the tighter tolerance of i 50 psig and to remove additional conservatisms, which could affect the ability of the operator using the indicator, an "As-Left" tolerance of i 50 psig will be used. Therefore:

R}{(ZQpaG[50Xiji AL,,, l DSS Pressure Switch (Signal Monitor) (ALoss) AL, (1/V-E,g,)* + W/M,g,)" + W-E,)T i [(PT-E,) + = os ar ng i [(0.25)* + (0.25)' + (0.5)* + (0.25)']' i [(0.0625 i[0.4375]j+(0.0625)+(0.25)+(0.0625)]* = 1 0.66% span - (0.66% x 3000 psig) - 1 19.8 psig 1 0.066 VDC [(0.66%/100%) x 10 VDC) = i Per Design Input (01) #31, the "As-Left" tolerance currently used in SP-161C for the DSS (RC-158-PSI and RC-159-PSI calculated value is so close to the curren)tly used value for theis i 20 psig. Since th pressure switch loop, the tolerance of i 20 psig will continue to be used. Therefore: E0!667%[spaii1=7F20Jpiig AL, os eise i ex m

l da DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 un-x amcum o. Sheet 42 of ss eam mm,,umeu l-88-0020 7 SP95CO2 Output to RECALL /SPDS (Atacw) AL,c, i [(PT-E,,,)' + (IM-E,g,)2 + M-E g,)2 + y,c,tt# t [(0.25)2 + (0.25)2 + (0.5)2 + (0.732)*]' i [(0.0625 i[0.9108])+(0.0625)+(0.25)+(0.5358)]' 1 0.95% span - (0.95% x 3000 psig) = 1 28.5 psig = Per Design Input (DI) #31, the "As-Left" tolerance currently used in SP-161C for the RECALL /SPDS is i 25 psig. Based on past experiences of being able to calibrate RECALL /SPDS loop to the tighter tolerance of i 25 psig and to remove additional conservatisms, which could affect the ability of the operator using RECALL /SPDS, an "As-Left" tolerance of i 25 psig will be used. Therefore: Ky{8.3%I)@hEjl25]Mlii AL,c, Control Room Indication (AL,,) i [(PT-E,)* + (I/V-E,)* + (V/V-E,,,)2 + (PI2-Earr)3* AL,, ng ng i [(0.25)2 + (0.25)2 + (0.5)2 + (1.58)2)w i [(0.0625 i[2.8714])+(0.0625)+(0.25)+(2.4964)]' 1 1.7% span - (1.7% x 3000 psig) = 1 51.0 psig = Since RC-158-P12 and RC-159-PI2 can only be read to 50 psig (% minor division), the "As-Left" tolerance for the Control Room Indicator will be rounded down to 50 psig or 1.67%. Per Design Input (DI) #31, the "As-Left" tolerance currently used in SP-161C for the Control Room Indication (RC-158-PI2 and RC-159-PI2) is i 50 psig. Based on past experiences of being able to calibrate the indicator loop to the tolerance of i 50 psig and because the calculated l "As-Left" tolerance is the same as currently used in the procedure, an "As-Left" tolerance of i 50 psig will be used. Therefore: AL,, R1167%]hi(MM50]ilj L ~ N$

9a DESIGN ANALYSIS / CALCULATION crysw mver unn a Sheet 43 of 58 8.Y.h"_NT OENTlHCATON NO. fEVISON FEJ/ MAR /3P NUMBEM/ FILE l-88-0020 7 SP95@2 Control Room Recording (Al,,) c i [(PT-E,g,)2 + (I/V-EntrN + (V/V4arr) +(PIR-E,,,)T Al,, c t [(0.25)2 + (0.25)2 + (0.5)2 + (0.75)2jn t[0.9375]j+(0.0625)+(0.25)+(0.5625)]' t [(0.0625 1 0.968% span - (0.968% x 3000 psig) = 1 29.05 psig = Since RC-158-PIR Recordings can only be read to 25 psig (\\ minor division), the "As-Left" tolerance for the Control Room Indicator will be rounded down to 25 psig or 0.83%. Per Design Input (DI) #31, the "As-Left" tolerance currently used in SP-161C for the Control Room Recording (RC-158-PIR) is i 30 psig. Because the recorder can only be read to 25 psig increments, the existing tolerance will need to be changed to i 25 psig. Therefore: {$,@]@2[1]Q{$ AL,, c Control Room Recorder Indicating (Alcia) t [(PT-E,g,)2 + (I/V-E,g,)2 + (V/V-E,g,)2 + (PIR-E,g,)2]* Al, ci i [(0.25)2 + (0.25)2 + (0.5)2 + (0.5)2)w i[(0.0625)+(0.0625)+(0.25)+(0.25)]' i [0.6250] 1 0.79% span - (0.79% x 3000 psig) = 1 23.7 psig Since PIR Indicator can only be read to 25 psig (% minor division), the "As-Left" tolerance for the Control Room Indicator will be rounded up to 25 psig or 0.83%. Per Design Input (DI) #31, the "As-Left" tolerance currently used in SP-161C for the Control Room Recorder Indicator (RC-158-PIR) is i 25 psig. Based on past experiences of being able to calibrate the indicator to the tolerance of i 25 psig and because the calculated "As-Left" tolerance is the same as currently used in the procedure, an "As-Left" tolerance of i 25 psig will be used. Therefore: iT0!83 R)phs % W 25?pilj Al cia Site 900 671

9 da DESl2N ANALYSIS / CALCULATION Crystal River Unit 3 NW'ENT OLN18FICATION NO Sheet __44 of sa PEVISION Ml/ MAN SP NUWBER/ FILE l-88-0020 / 7 SP95-002 "AS-FOUND" TOLERANCES: 0128 The only component which has a specified Drift is the Rosemount transmitter; therefore, the only drift term in the following calculations will be the drift associated with the transmitters (PT-E )- u Pressure Transmitters (AF,1) AF,7 i (Aler + [(PT-E ) + (MTE )2jn) DI4 & A3.1 u py i {(0.25) + [(0.2)' + (0.25)2]*) 1 ((0.25) + [(0.04) 1 ((0.25) + [0.1025)4)(0.0625)]') = i ((0.25) + (0.32)) 1 0.57% span = (0.57% x 3000 psig) - t 17.1 psig = i [(0.57%/100%) x 16 mA) - 0.09 mA Per the Calibration Data Sheets for RC-158-PT (Attachment 13 RC-159-PT (Attachment 14), the currently used "As-Found" tolera)nce for and calibrating RC-158-PT and RC-159-PT is 10.05 mA. Based on past calibrations, the transmitters have been able to meet to the tighter tolerance of i 0.05 mA. Thus, to remove additional conservatisms, the "As-Found" tolerance for the transmitters will remain at 10.05 mA. Therefore: AF, [01313QpiH3X9M~R{KR0[05]Q = p Pressure Switch (AF ) es AF, i ((Al,) + [(MTE,)2)w) p p p A3.2 1 ((0.25) + [(0.018)2jn) i [(0.25) + (0.0018)) 1 0.25% span - (0.25% x 3000 psig) - i 7.5 psig i [(0.25%/100%) x 10 VDC] = 0.025 VDC Per Design Input (DI) #32, the "As-Found" tolerance currently used in l SP-120A fo the DSS (RC-158-PSI and RC-159-PSI) is - 0.025 VDC. The new setpoint. wciatec with DSS will be provided with a negative tolerance instead of just a negative tolerance. positive and Therefore: ilo!25 G pi @ T 7.!$((sQ~y[0'.(025[YDC AF,, eise ex en

9 y"a DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 45 of 58 M".XT IDLNTIF GA flON NO. NveON El/MAM/SP NUMBER / FILE l-88-0020 7 SP95-002 Remote Shutdown Indication (AF,,) i 1 { {AL,,i) + [(PT-E,,)2 + (MTE )')') 014 & A3.4 AF,,, = g 1 ((1.67) + [(0.2)2 + (0.384)*]')} i ((1.67) + [(0.04) (0.1475)] = i((1.67)+[0.1875)g) = i ((1.67) + (0.43)) = t 2.10% span - (2.10% x 3000 psig) - t 63.0 psig Since RC-158-PIl and RC-159-PIl can only be read to 25 psig (% minor division), and because the calculated tolerance is close to a % minor division point, the "As-Found" tolerance for the Remote Shutdown Indication will be rounded up to 75 psig or 2.50%. Per Design Input (DI) #31, the "As-Found" tolerance currently used in SP-161C for the Remote Shutdown Indication (RC-158-Pil and RC-159-PII) is t 75 psig. Since the calculated tolerance is the same as the tolerance currently used, the "As-Found" tolerance will remain i 75 psig. Therefore: O]50Gpjft]EM75]pyi) A F,,, 9/94 g 900 671 5

I G g DESl3'N ANALYSIS / CALCULATION Crystal River Unit 3 Em-"NT OENTIFCAflON NO. Sheet 48 of 58 NMidQN I-88-0020 MI/tMR/GP >* m_R/ FILE 7 SP95402 DSS Pressure Switch (Signal Monitor) (AF,) os AF,, o 1 ((Aloss) + [(PT-E )2 + (MTEm)*]') DI4 & A3.3 s 1 ((0.667) + [(0.2)2 + (0.402)']')) 1 ((0.667) + [(0.04) (0.1616)] i{(0.667)+[0.2016]{) l i {(0.667) + (0.45)) i 1.12% span - (1.12% x 3000 psig) - i 33.6 psig = 1 t [(1.12%/100%) x 10 VDC] = 1 0.112 VDC Per Design Input (DI) #31, the "As-Found" tolerance currently used in SP-161C for the DSS (RC-158-PSI and RC-159-PSI) is i 20 psig. Based on past experiences the pressure switch loop is capable of being calibrated to the tolerance of i 20 psig. However, to provide additional Engineering Margin the calculated "As-Found" tolerance will be used in this calculation, which will determine the plant setpoint. Therefore, the "As-Found" value in the procedure will remain at i 20 psig, but the calculation will use i 33.6 ("As-Found" + Margin). Therefore: AF, gi20j((jEQ[6,67%;ippij os DSS Margin - {13'[63 51,j H [0I453 Q pij Output to RECALL /SPDS (AF,c,) AF 1 ((AL,e,) + [(PT-E,)" + (MTE )2)w) DI4 & A3.4 acu s a 1 ((0.83) + [(0.2)2 + (0.384)2)w)} 1 {(0.83) + [(0.04) + (0.1475)] = 1 {(0.83) + [0.1875]*) = i ((0.83) + (0.43)) i 1.26% span - (1.26% x 3000 psig) - 1 37.8 psig Per Design Input (DI) #31, the "As-Found" tolerance currently used in SP-161C for the RECALL /SPDS is i 50 psig. However, the calculated "As-Found" is i 37.8 psig. Therefore, the calculated "As-Found" tolerance will be used in the calculation and procedure. The tighter tolerance of i 37.8 psig will remove additional conservatisms, which could affect the ability of the operator using RECALL /SPDS. Therefore: { AF,c, 17126% span 7137.8lphij

p"orida DESIGN ANALYSIS /CALCUL.ATION Crystal River Unit 3 Sheet 47 of 58 00CUMENT E4NTdXATION NO, NVliMON f0/MAA/$P NU6ABER/FLi l-88-0020 7 SP95-002 Control Room Indication (AF,,) 1 ((AL,,) + [(PT-E ) + (MTE )*]*) 014 & A3.4 AF,, sa at 1 ((1.67) + [(0.2)2 + (0.384)2)n)) 1 ((1.67) + [(0.04) (0.1475)] 1((1.67)+[0.1875]{) 1 ((1.67) + (0.43)) 1 2.10% span = (2.10% x 3000 psig) = 1 63.0 psig = Since RC-158-PI2 and RC-159-PI2 can only be read to 50 psig (% minor division), and because the calculated tolerance is close to a % minor division point, the "As-Found" tolerance for the Control Room Indication will be rounded down to 50 psig or 1.67%. Per Design Input (DI) #31, the "As-Found" tolerance currently used in SP-161C for the Control Room Indication (RC-158-PI2 and RC-159-PI2) is t 75 psig. Because the indicator can only be read to 50 psig increments, the existing "As-Found" tolerance will be changed to i 50 psig. Therefore: fli67QpsGl[50j)s]) A F,, Control Room Recording (AF,,) e i @c,,) + [ W-E,)2 # ( g )2)s) DI4 & A3.4 AF,, c s 0L 1 ((0.83) + [(0.2)2 + (0.384)']') 1 ((0.83) + [(0.04) 1((0.83)+[0.1875]4)(0.1475)]) 1 ((0.83) + (0.43)) i 1.26% span - (1.26% x 3000 psig) - 1 37.8 psig Since RC-158-PIR can only be read to 25 psig (% minor division), and because the calculated tolerance is close to a % minor division point, the "As-Found" tolerance for the Control Room Indication will be rounded up to 50 psig or 1.67%. Per Design Input (DI) #31, the "As-Found" tolerance currently used in SP-161C for the Control Room Recording (RC-158-PIR) is i 50 psig. Since the calculated tolerance is the same as the tolerance currently used by the procedure, the "As-Found" tolerance will remain i 50 psig. Therefore-1 1 1 T.67[ span = T 50Lpsig AF,, c S/M 900 671

S ga DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Em_^";NT OEMilFICATON NO. Sheet __48_ of 58 _ t IEVISION I-88-0020 fEi/ MAR /SP NUMBER / FILL 7 SP95-002 Control Room Recorder Indicating (AF,) ei AF, t ((Al,) + [(PT-E,)" + (MTE )2)s) DI4 & A3.4 ei es s g 1 ((0.83) + [(0.2)' + (0.384)']')} 1 ((0.83) + [(0.04) i((0.83)+[0,1875]g} (0.1475)] 1 ((0.83) + (0.43)) 1 1.26% span - (1.26% x 3000 psig) - t 37.8 psig Since RC-158-PIR Indicator can only be read to 25 psig (\\ minor division), and because the calculated tolerance is close to a % minor division point, the "As-Found" tolerance for the Control Room Indication will be rounded up to 50 psig or 1.67%. Per Design Input (DI) #31, the "As-Found" tolerance currently used in SP-161C for the Control Room Recorder Indicator psig. Since the calculated tolerance is the sam (RC-158-PIR) is 50 e as the tolerance currently used in the procedure, the "As-Found" tolerance will remain i 50 psig will be used. Therefore: AF, OjgiljpWE[f50]M.jj ei oree

iorida DESIGN ANALYSIS / CALCULATION crystal nwer unit s (m "NT OLNTIFCAflCN NO.

Sheet 49 of 58 fEVISON i-88-0020 FE/MAA/SP NUMBIA/ FILE ) 7 SP95-002 CALIBRATED LOOP ERRORS: 0127 Remote Shutdown Indication (CEast) C E,,, t [(E,,,) + (AF,,,)] E.j( M is)pjj(- (5.20% x 3000 psig) - E! M @ }{ 1 2.70 + 2.50)] = DSS Pressure Switch (Signal Monitor) (CE,) os CE, i [(E,) + (AFoss) + (DSS Margin)] os os = 1 [(0.84) + (0.667) + (0.453)] 1 1.96% span <= [(1.96%) x (3000 psig)] = 1 58.8 psig = Since DSS actuates on increasing pressure at a Design Basis Setpoint of 2450 psig, per Design Input (DI) #11, the actual setpoint is to be set below 2450 psig. Therefore, the setpoint for DSS actuation will be as follows: Setpoint = FSAR Value - CE, os - 2450 psig - 58.8 psig - 2391.2 psig - 7.9707 VDC - [(2391.2 psi /3000 psi) x 10 VDC] = li9Z[VDC (Setpoint rounded down for ease of setting) -2391!0?psfi-[(7.97VDC/10VDC)x3000psig] Therefore, CE -(2450psig-2391.0psig)-59!0Tpili oss - [(59.0 psig/3000 psig) x 100%)'~QJ etee 900 871

DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 50 of 58 mm ame cuo. no. awso. nafme wuwemieits 1-88-0020 7 SP95-002 Output to RECALL /SPDS (Normal - CE,c,, Accident - CE,c,) C E,c, i [(E,c,) + (AF,c,)] = t[(1.08 + 1.26)] fi213(s)pij(- (2.34% x 3000 psig) - [7012[psli = RC-158-PT: CE,3 i [(E,u) + (AF,c,)) +[ + 1.26)] {l5j(4.58)jis(-(+5.84%x3000psig)-jn5]2]Tsilj (s = Eip[l35()pis(- (-5.35% x 3000 psig) - FJ6015?p{li (4.09 + 1.26)] s RC-159-PT: C E,3 i [(E,3) + (AF,c,)] +[(5.23)+ 1.26)] E6j49%[spiii(- (+6.49% x 3000 psig) = {i967]ijsii = - [ 4.09 + 1.26)] ((5(35Kis)55(-(-5.35%x3000psig)-[16025[pMj l i 9/84 900 671

da DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 = Sheet 51 of 58 DOCUMENT OENTIFCATON NO. REVSON FE.1/tAAA/3P NUMBER /FLE l-88-0020 7 SP95@2 Control Room Indication (Normal - CE,,,, Accident - CE,,,) CE, t [(E,) + (AF,i)) pi pi if(2.43 + 1.67)] [dfl05Is) @ (= (4.10% x 3000 psig) = {}23j f g(( = RC-158-PT: t [(E,) + (M, )] CE, pi pi j[6l[(80%)))@(= (+6.80% x 3000 psig) - {20Q0Id{j + 5.13 + 1.67)] = = - [(4.64 + 1.67)] T+16s317s)ph(- (-6.31% x 3000 psig) - yl89]3?Rji = RC-159-PT: i [(E,) + (M, )] CE, pi pi + [(5.78) + 1.67)] }37jl5(s@(= (+7.45% x 3000 psig) = {2l23]S])ii]j = K6(31[s}{ sis (- (-6.31% x 3000 psig) - yl89J3]@{j - [ 4.64 + 1.67)] = i \\

_.~. @ ga DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 me amewm =>. Sheet 52 of - 58 ave nu/w/w emanfru l-88-0020 7 SP95-002 Control Room Recording (Normal - CE,,, Accident - CE,,) C E,, i [(E,,,) + We,,)] = p i [ 1.38 + 1.67)] E3(0$$s)_ @ (= (3.05% x 3000 psig) - Q RS3 @ = 3 RC-158-PT: C E,, i [(E,,,) + ( AF,,)] = p e +[ + 1.67)] ((6](4.67)pM(=(+6.34%x3000psig)-M90j21[s]j = 33 [s = -[4.18 + 1.67)] E6(8Ks)pij(-(-5.85%x3000psig)-f]75151Ipijj = = Control Room Recorder Indicating (Normal - CE,,,, Accident - CE,,,) C E,,, i [(E,,) + ( AF,,)) p3 c i [(1.26 + 1.67)] 02 937s) pali (- (2.93% x 3000 psig) - {87j9]@j = i RC-158-PT: C E,,, i [(E,,) + (AF,)] pi ei +[(4.63 + 1.67)] E6.30Ms)p[fj(= (+6.30% x 3000 psig) - M893]jifj = = l - [ 4.14 + 1.67)] E5.(8Ks)pM(-(-5.81%x3000psig)-374j3[@j e/es eco on

9 p_orlda DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 53 of 58 DOCUMEN106.NYW CA10N NO. fEVLSON FW.1/ MAR /SP NUMBLH/ FILE l-88 @ 20 7 SP95-002 PARTIAL LOOP TOLERANCE: (Loop Error - Bistable) D129 Partial Loop Error is the difference between the Total Loop Error and the Bistable (Pressure Switch) Error. Partial Loop "As-Left" Tolerance (PL,t.ps) 1 (AL,- Al ) P L,t.p, os ps 1 (20 psig - 7.5 psig) 112,5 psig = [(12.5 psig/3000 psig) x 100%] = 10.417% span t [(0.417%/100%) x 10 VDC) = 1 0.0417 VDC For ease of setting and to ensure that the sum of the Partial Loop errors do not exceed the Total Loop error, the tolerance will be rounded down to 1 0.041 VDC. Therefore: $Jl.,M._%(._EM.MM[ Mig}.MQ PL,t.p, = Partial Loop "As-Found" Tolerance (PL,,.ps) 1 (AFoss - AF ) P L,,.ps es 1 (20 - 7.5) i 12.5 psig = [(12.5 psig/3000 psig) x 100%] = 10.417% span i [(0.417%/100%) x 10 VDC) - 1 0.0417 VDC For ease of setting and to ensure that the sum of the Partial Loop errors do not exceed the Total Loop error, the tolerance will be rounded down to i 0.041 VDC. Therefore: {Qig_MEQM%])MQE4 IGM PL,,.ps 9/06 900 871 I

l 9 ga DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 54 of 58 DOCUMENT OLNTIFICATIOre NO. KVilWON El/ MAR /DF* NUWBER/FLE l-88-0020 7 SP95-002 VI. RESULTS/LONCLUSIONS: The following Tables list the applicable results of this calculation. TABLE I FSAR/ Technical Specification Setpoints Teufiiiidsr@$$yfirsis$f^ ' dffiiMniled$$iildnisisii$ff -J ' sy s nwt ETP0fNT T "N M@**%4 6 WMD'NF#W RC 158 PS1 2450 PSIG FSAR SECTION 7.5.2.1 RC 159-PS1 2450 PSIG FSAR SECT 10N 7.5.2.1 i TABLE II Transmitter Scaling / Calibration % esEint@Wf ige NsRcm.imana'ansin d d$ mensTTu?' M ceamscTim. O.ety phsMsgME%dtestJW ' + 0 RC-158-PT 27.2 PSIG 27.2 PSIG 3027.2 PSIG RC 159-PT 27.7 PSIG 27.7 PSIG 3027.7 PSIG NOTE: Ths3FeisdFsifFilisiifttiFilareinotTlii(~iisT16Fited aboIVeh hi[ Mp'per) Range [ Quit [Of[ N js[i k [j TABLE III Transmitter Setting Tolerances + ......., s% a na W ~>-.. rn. ' wuama ^ stic.;ame.. ste [.$hhhlafN,. %,, ly bbh $fh Y,.,,hh* Wh..L,,... I M_IDsh k ^ 'n.., ~ ik.3.9PAllitmAfP$telf.nba algisk(t,5 WAN2aAl MI6SpM9: RC-158 PT 20.25% SPAN, 0.04 ma, 7.5 PSIG 20.3131 SPAN, 0.05 mA, 9.4 PSIG RC-159 Py 20.25% SPAN, 0.04 mA, 7.5 PSIG 0.3131 SPAN, 0.05 mA, 9.4 PSIG TABLE IV Pressure Switch Setting Tolerances Perssunt'wrics { mananticatiestoj 1[As;UttrL ' [i{s-ia$sij *.. ... ? ETPolsf.?.

  1. 2 un
iVISCf PS 8)5 * '

.i (i 18CE+PSIE) ? g e;pggg y. 23 y yg ;. -. - - - yr -- RC 158 PS1 7.97 VDC, 2418.2 PSIG 20.025 VDC, 7.5 PSIG 20.025 VDC, 7.5 PSIG (DSS) RC 159-PS1 7.97 VDC, 2418.7 PSIG 20.025 VDC, 7.5 PSIC 20.025 VDC, 7.5 PSIG (DSS) Thef pressbia7 kitch'sittinifW 2391^;0751g'p'ibij thi Schling s Correctiori forieach transmotteri. ' ~ Ofes 900 871

1 i Powerda DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 55 of 58 OOCUMLNT OLNTtCATON NO. EMON El/ MAR /SP NUMBLR/ FILI l-88-0020 7 SP95-002 TABLE V Total Loop Tolerances .u. m s,. ;,...,,r. .,., n ~, n /, sa .x.w,;.z. ; ; -..;, . ' l$GIF O. [$NGINERINGj .cALIMATB IJMP.j LEF' ., s[LGP,'pMRADj(tl3 was,Pste) g EaB DEVim ..L.4 HEA41tl,..; %,.. 4 RealR f&,j'a hjyd(e'5#AR7 9 dj x 4 ~ 'WMPb"nf ' ~ p" .g, 'r ^ eg spg7PSIG)V- ' GM7 PSIS)W ' N f" " W 4 N E

  • RC 158 PS1 0.453%, 13.6 PSIC 1.97%, 59.0 PSIG t0.667% SPAN, 20.0 PSlc to.667% SPAN, 20.0 PSIG RC-159-PS1 0.4531, 13.6 PSIG 1.971, 59.0 PSIG 20.667% SPAN, 20.0 PSIG t0.667% SPAN, 20.0 PSIG TABLE VI Partial Loop Tolerance (Transmitter to Input of Bistable) x w.,.u.,.

.,.,r. e.. 3fM.$g,.am..e..acac,.+n:.:,.nm,m, ' Eg -- 3.;; J(ggyMiparamar mitTCE %n" LDirMFE4552f WITCW4; i l -[Eb BEviars i > $ fdAS-LEFi ni,'dsd %r? W'~w W iscyPass>%'W~M$$@ nd!3AliflMS Q e 1 m cte werPslep e >^ RC-158 PS1 20.041 VDC, 12.3 PSIG 20.041 VDC, 12.3 PSIG (DSS) RC-159 PS1 20.041 VDC, 12.3 PSIG 0.041 VDC, 12.3 PSIG (DSS) TABLE VII Total Loop Errors 7 9'.W "X-Y F4,. d--T9..w.; -.)'+/.--v..v.<..- Q :r.*,,,..-,.K-.3 ,b._.., "f'ggygg'f,, 4 ~ < LOOP Eamot V ' CAL 10 G TB LOOP'EtelRji fAS4EMd [AS.eNRESJ (+;i t EPAN) +W ^iAk 1 GPM, PSIC)J, &g%&;.;Psis) A]! 99 [C ' xR PSIE) ;~ " ^ I R PSIG)~ M@ta 3 s >s s RC-158-PI1 25.20%, 156.0 PSIG N/A 250 275 (Remote Shutdown) 1 RC 159-PI1 25.20%, 156.0 PSIG N/A 250 275 (Remote Shutdown) RC 158 P12 24.10%, 123.0 FSIG +6.80, -6.31% t50 ISO (Control Room) +204.0, 189.3 PSIG RC-159 PI2 14.10%, 123.0 PSIG +7.451, -6.31% 250 iS0 (Control Room) +223.5, -189.3 PSIG RC-158 PIR 23.05%, 91.5 PSIG +6.341, -5.85% 225 250 (Recording-158) +190.2, -175.5 PSIG RC 158 PIR t2.93%, 87.9 PSIG +6.30%, -5.81% 225 250 (Indicating 158) +189.0, 174.3 PSIG RECALL /SPOS 22.34%, 70.2 PSIG +5.841, -5.35% 225 137.8 (RC 158-PT) +175.2, -160.5 PSIG RECALL /SPOS 22.34%, 70.2 PSIG +6.49%, -5.35% 225 237.8 (RC-159 PT) +194.7, 160.5 PSIG j s 'as soo sn

A @g DESIGN ANALYSIS /CALCUL.ATION Crystal River Unit 3 Sheet se of sa DOCUh4NT CLMfifICATON NO. MVISON El/ MAR /F NUhSER/ FILE l-88-0020 7 SP95-002 FIGURE I ATWS/ DSS TRIP DATA --- E --- 2450.0 psig - ATWS/ DSS Design Trip (FSAR Section 7.5.2.1) Z--- 2424.6 psig - Upper Limit of Margin ^ [ [.'j t: 8 fi. l w.c


4---

1411.0 psig - (+) Loop As-Left/As-Found Tolerance kNp p3 ? --.------ 2391.0 psig - Calibrated Setpoint .:a.; P i f; $ .t --- $ --- 2371.0 psig - (-) Loop As-Left/As-Found Tolerance ---[{'{--- 2355.0 psig = RPS Tech Spec HI Press Trip (Tech. Spec. Section 3.3.1, Table 3.3.1-1) 2155.0 psig - Normal Operating Pressure


~---

NOTE: Pressures given in the above Figure are absolute and are not scaled to the specific transmitter calibration spans. ei ow en

9 ga DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet _1Z_ of 58 !""NT OLNTW CATON NO. Em MI/MAA/SP NUMBER /FLE l-88-0020 7 SP95@2 FIGURE II ATWS/ DSS PRESSURE SWITCH DATA ---EW--- 2398.5 psig - (+) Switch As-Left/As-Found Tolerance H .--gn;--- 2391.0 psig - Calibrated Setpoint (p"in y;,_ (b ---jy+;--- 2383.5 psig - (-) Switch As-Left/As-Found Tolerance NOTE: Pressures given in the above Figure are absolute and are not scaled to the specific transmitter calibration spans. i 8/08 800 671

9 DESIGN ANALYSIS / CALCULATION Crystal River Unit 3 Sheet 58 of as rrrymucy w g w m m m gjgjgp gpq 1-88-0020 7 SP95-002 VII. ATTACHMENTS: 1. Specifications for Rosemount Il54GP9RA transmitters from Instruction Manual 1260, Revision 7 (4 pages). 2. Foxboro Product Specification PSS 2E-1Al-A from Instruction Manual 586, Revision 5 (1 page). 3. Foxboro Product Specification PSS 2E-1Al-G and Foxboro Supporting Literature Instruction SI l-01762 from Instruction Manual 586, Revision 5 (3 pages). 4. International Instruments Series 1151/1251 bulletin from Instruction Manual 586, Revision 5 (2 pages). 5. Bailey Product Instruction E92-74 from Instruction Manual 49 Volume 18, Revision 14 (2 pages). 6. Bailey Product Instruction E12-9-2 from Instruction Manual 1400, Revision 1, (2 pages). 7. Foxboro Product Specification PSS 9-7Cl-A (1 page). 8. Foxboro Technical Information TI 2AX-151 from Instruction Manual 586, Revision 5 (2 pages). 9. String Calibration Data Sheet from SP-161C for RC-158-PT dated April 1994 - SEEK Reel 7389, Frame 1017 (6 pages). 10. Calibration Work Sheet for Druck DPI-510 Pressure Controller / Calibrator, M&TE #TG2362 - SEEK Reel 7242, Frame 0386 (2 pages). 11. Calibration Work Sheet for Keithley 197A Digital Multimeter, M&TE

  1. T11971 - SEEK Reel 7366, Frame 0914 (4 pages).

12. CMIS Printouts for MTBD-9A, MTBD-118, RC-158-PT, RC-159-PT, RCR265 and RCR271, dated 11/17/94 (5 pages). 13. Calibration Data Sheet for RC-158-PT, Revision 4 (1 page). 14. Calibration Data Sheet for RC-159-PT, Revision 4 (1 page). t/es 900 671

ANALYSIS / CALCULATION 000 ID #E-B6.aoE* ATT e I ~V 7 __ cHggy_ / op d Section 4 SPECIFICATIONS AND REFERENCE DATA l O i NUCLEAR SPECIFICATIONS Traceability (Qualified to IEEE Std. 3231974 and In accordance with NQA-1 and 10CFR50, Appendix B; IEEE Std. 34M975 per Rosemount Report D8400102) chenucal and physical material certification of process amn wetted pants. i' Accuracy within f(1.5% of upper range limit + 1.0% of Quallfled Life span) during and after exposure to 55 megarads TID Dependent on ambient temperature at the installation j 4 gamma radiation at the centerline per the following dose site, as shown in Figure 4-1. Replacing amplifier and rate schedule: 2 megarads/hr for 2 hours,1.5 megarad/ calibrataon circuit boards at the end of their qualified life hr for 4 hours,1 megarad/hr up to 55 megarads TID and pernes extension of the transnutter's qualified life to an additional 55 megarads TID at a rate of1 megarad/ the module's qualified life. See Rosemount Report hr during post-accident operation. D8400102 for details. Range Code 0:1(2.25% of upper range limit + 1.0% of (Values do not include margin.) span) Selsmic Accuracy within 10.5% of upper range limit afler a disturbance de6ned by a required response spectrum s x with a ZPA of 7 g's. \\%_ d.d 3 \\ - ou.ased ~ Range Code 0: 10.75% of upper range limit. _s_eir,onics - \\ ut. w j Steam Pressure / Temperatures m 1 .l, us. N A l Accuracy within f(2.5% of upper range limit + 0.5% of

  • l*

\\\\ span) during and after sequential exposure to steam at N \\ the following temperatures and pressures, concurrent O with chemical spray for the first 24 hours: \\' \\ 420 *F,50 psig for 3 minutes 350 *F,110 psig for 7 minutes 320 *F,75 psig for a hours 265 *F,24 psig for 56 hours Range Code 0:1(3.75% of upper range limit + 0.5% of span). FIGURE 41. Qualified Life vs. Ambient Temperature. Chemical Spray Composition is 0.28 molar boric acid,0.064 molar sodium thiosulfate, and sodium hydroxide as required to PERFORMANCE SPECIFICATIONS make an initial pH of 11.0 and a subsequent pH ranging from 8.5 to 11.0. Chenucal spray is sprayed at a rate of d w,@ee d' tim 0.25 gal /mirvit. 2 Accuracy Post DBE Operation 10.25% of calibrated span. Includes combined efTects of Amuracy at reference conditions shall be within 12.5% linearity, hysteresis, and repeatability. of upper range limit (3.75% for Range 0) after exposure } Dead Band to DBE as described above for one year following DBE. None. Quality Assurance Program Drift in accordance with NQA-1 and 10CFR50, Appendix B. 0.2% of upper range limit for 30 months. Nuclear Cleanin9 To 1 ppm maximum chloride content. Temperature Effect Ranges 4-9: 1(0.75% upper range limit +0.5% span) per Hydrostatic Testing 100 *F(55.6 *C) ambient temperaturechange. O To 150% of maximum working pressure or 2,000 psi, Range 0: 1(1.13% upper range limit +0.5% span)per (13.8 MPa), whichever is greater. 100 *F(55.6 *C) ambient temperature change. l l J

ANALYSIS /CALCUl.ATION DOC ID g %- 88-ee Po ATT

  • I d

REV 7 SHEET 7 OF Model1154 Pressure Transmitter Overpressure Effect Response Time Model1154DP Fixed time mnstant (63%) at 100 *F (37.8 *C) as follows: Maximum zero shift after 2,000 psi (13.8 MPa) overpressure: 0.5 seconds for Range 4. 10.25% of upper range limit (Rance 4). 0.2 seconds for all other ranges. 11.0% ofupper range limit (Rar>p 5). A4ustable damping electronics are available that can provide damping of at least 1.2 seconds on Range 4 and 13.0% of upper range limit (f tanges 6 and 7). 0.8 seconds on all other ranges when a4usted to the 16% of upper range limit (Range 3). Nrnum PosWon. Models 1154GP Maximum zero shift abr 2,000 psi (13.8 MPa) FUNCTIONAL SPECIFICATIONS overpressure: Service 10.25% of upper range limit (Range 4). Liquid, gas, or vapor. 11.0% of upper range limit (Ranges 5,6,7, and 8). Maximum zero shift after 4,500 psi (31.0 MPa) Output overpressure: 4-20 mA de. 10.5% of upper range limit (Range 9). Pcwor Supply Maximum zero shift after 6,000 psi (41.34 MPa) Design limita (Figure 16). overpressure: Span and Zero 10.25% of upper range limit (Range 0). Continuously a4ustable externally. Model1154HP Zero Elevation and Suppression Maximum zero shift after 3,000 psi (20.68 MPa) Maximum zero elevation: 600% of calibrated span (400% overpressure: of calibrated span for Range Code 0). Maximum zero 11.0% of upper range limit (Range 4). suppression: 500% of calibrated span (300% of calibrated 12.0% of upper range limit (Range 5), span for Range Code 0). Zero elevation and suppression must be such that neither the span nor the upper or 15.0% of upper range limit (Ranges 6 and 7). lower range value exceed 100% of the upper range limit. Static Pressure Zero Effect Temperature Limits Model1154DP Normal Operating Design Limits: 40 to 200 *F(4.4 to 10.2% of upper range limit per 1,000 psi (6.89 MPa) 93.3 *C). (Ranges 4 and 5). Qualified Storage limits:-40 to 120 *F(-.40.0 to 10.5% of upper range limit per 1,000 psi (6.89 MPa) 48.9 *C). (Ranges 6,7, and 8). Humidity Limits Model1154HP 0-100% relative humidity (hT.MA 4X). 10.66% of upper range limit per 1,000 psi (6.9 MPa) (all ranges). Volumetric Displacement Static Pressure Span Effect less than 0.01 in (0.16 cm ). 8 3 Is systematic and can be calibrated out for a particular uMnhe pressure before installation. Conection uncertainty: 2 semnds maximum. No warm.up required. 10.5% of reading /1,000 psi. Power Supply Effect MODELS 1154DP AND 1154HP Less than 0.005% per volt. Ranges Load Effect (4) 0-25 to 0-150 inh 2O (0-6.22 to 0-37.50 kPa). No load etTect other than the change in voltage supplied (5) 0-125 to 0-750 inh 2O (0-31.08 to 0-186.50 kPa). to the transmitter. (6) 0-17 to 0-100 pai (04.12 to 0--0.69 MPa). j Mounting Position Effect (7) 0-50 to 0,300 psi (0-0.34 to 0-2.07 MPa). No span efTect. Zero shift of up to 1.5 inh 2O (372 MPa) (8) 0-170 to 0-1,000 psi (D units onlyX0-1.17 to (Ranges 4 and 5), which can be calibrated out. For 0-6.89 MPa). higher ranges, effect is superseded by accuracy Maximum Working Pressure specifications. Static pressure limit.

5 Specifications and Fleforence Data Static Pressure and Overpressure Limits "*d*' ' '#D" PHYSICAL SPECIFICATIONS 0.5 psia to 2,000 psig (3.4 kPa to 13,78 MPa) maximum ALL MODELS rated static pressure for operation within specifications. 2,000 psig (13.8 MPa) overpressure on either side Materials of Construction - without damage to the transnutter. isolating Diaphragms Model1154HP 316 SST. 0.5 psia to 3,000 peig (3.4 kPa to 20.7 MPa) maximum DrWnNent VWyos rated static pressure for operation within specifications. 316 SST. 3,000 peig (20.7 MPa) overpressure on either side Process Flanges without damage to the transmitter. 316 SST. Process 0 rings MODEL 1154GP 316 SST. i Electronics Housing 0 rings (4 25 to 0-150 inh 2O (0-6.22 to 0,17.50 kPa). Ethylene propylene. (5) 0-125 to 0-750 inh 2O (0-31.08 to 0-186.50 kPa).Fill Fluid (6) 0-17 to 0-100 psig (0-0.12 to 0-0.69 MPa). Silimoe oil. (7) 0-50 to 0-300 peig(0-0.34 to 0-2.07 MPa). Flange Bolts (8) 0-170 to 0-1,000 psig (0-1.17 to 04.89 MPa). Plated alloy steel, per ASTM A.540. (9) 0-500 to 0-3,000 psig(0,1.45 to 0-20.68 MPa)- (0) 0-1,000 to 0-4,000 psi (04.89 to 0-27.56 MPa). Electronics Housing 316 SST. Maximum Working Pressure Upper range limit. Process Connections 3 -inch Swagelok compression fitting,316 SST /s Overpressure Limits (%-18 NFr optional). Operates within specifications from 0.5 psia (3.45 kPa) to upper range limit. Overpressure limit is 2,000 psig Electrical Connections O ((6,000 psig [41.34 MPa} for Range Code 0) without 13.8 MPa)(4,500 psig [31.0 MPa] for Range 9) 1 / -14 NPT conduit with screw terminals. 2 damage to the transmitter. Weight 24 lb (10.9 kg) including mounting bracket. ANALYSIS / CALCULATION - DOC 10 r_r-B8-co r' ATT

  • I DEV

~7 SHEET-J OF-- E O

6 ^ M.- 6h O s Model1154 Pressure Transmitter TABLE 4-1. Transmitter Design Specifications. e s EL ' i ALPHALINE PRESSURE TRANSMITTERS FOR NUCL E AR APPLIC ATIONS LEE E 3231974 AND IEE E 344-1975 ee - URE MEASUREMENT i DP Differential Pressure,2.000 psig (13.8 MPa) Static Pressure Rating HP Ditterential Pressure,3,000 psig (20.62 MPa) Static Pressure Rating GP Gage Pressure I ..= g ee s 4 0 25 to 0150 inHp 0-25 to 0-150 inHp 0-25 to 0-150 inHp (0-6.22 to 0-37.50 kPa) (0-6.22 to 0-37.50 kPa) (0-6.22 to 0-37.50 kPa) 5 0125 to 0-750 inHp 0-125 to 0 750 inHp 0-125 to 0-750 inHp (0-31.08 to 0-186.50 kPa) (0-31.08 to 0186.50 kPa) (0-31.08 to 0-186.50 kPa) i 6 0-171o 0-100 psid 0-17 to 0-100 psid 0-17 to 0-100 psig (0-0.1210 0-0.69 MPa) (0-0.12 to 0-0.69 MPa) (0-0.12 to 0-0.69 MPa) j 7 0 50 to 0 300 psid 0 50 to 0-300 psid 0-50 to 0-300 psig 4 (0-0.35 to C 2.07 MPa) (0-0.35 to 0 2.07 MPa) (0-0.35 to 0-2.07 MPa) 8 0170 to 01,000 psid N/A 0-170 to 0-1,000 psig i (0-1.15 to 0-6.89 MPa) (01.15 to 0-6.89 MPa) 9 N/A N/A 0 500 to 0-3,000 psig { (0 3.45 to 0 20.62 MPa) O N/A N/A 01,000 to 0-4,000 psig t ( (0-6.89 to 0-27.56 MPa) ee: e R@ Standard 4-20 mA h LANGE OPTION' A Welded 3/8-in. Swagelok compression fitting process connection and welded j drairWent valve B@ 1/4-18 NPT process connection and welded drain / vent valve CD 1/4-18 NPT process connection and drain hole (drsirWent valve not supplied) D One Flange Code Option A and one remote seal E@ Ona Flange Code Option B and one remote seal F@ One Flange Code Option C and one remote seal G Two remote seals H Welded 3/8-in. Swagelok compression fittings on both process connection and drairWent connection J@ Welded 3/8-in. Swagelok compression fitting process connection and 1/4-18 NPT drain hole L One Flange Code Option H and one remote seal M3 One Flange Code Option J and one remote seal e y y p @ The Model 1154 wlth the R Output Code Electronics is also available with adjustab!e damping. This option is specified by Appending 'N0037" to the end of the complete model number. For Example: 1154DP4RAN0037. @ Customer assumes responsibility for quaktying process interfaces on these options. Contact Rosemount Inc. tor details. ANALYSIS / CALCULATION ~ C O O

  • Eld-cero ATT #

/ 4 7V 7 SH ET-OF-1 1 44 l

_... ~ ~ pSS 2E.1A1 A Peoe 2 o STANDAAD SPECIFICATIONS The following specificatons apply unless noted otherwise in the indmoval component listing. All percentage fsgures input Filtering (Current converters) 3 08 down at to H2 are percent of output span. Loop Compliance Voltage (Current converters) See Ta m 1. Dual Converters Two identical endepenoent channets Fleid Connections Screw temunals accept wires frorn Output 0 to 10 V oc into 2 ka load mansmum M W to 1.5 W w from 24 to 16 AM Accuracy 20.5% scw retam c t M a 2AW b Repeatability Less than 0.1 % nos nest Ambient Temperature Effect Less than 0.5 % ror 25'C C:r;:xr with Adjustable Aange Specific range (45'F) change within normal operating ismrts of 5 and within callbration limits achieved by jumper position and 50*C (40 and 120'F) potentiometer adjustment. Model Functional Description !;nifications 2Al 13V Current to Voltage Converter input 4 to 20 mA Non isolated input and non-isolated 30 V de Accuracy 20.25% fransmmer power supply. Zero Adjustment 7% input Roelstance 250 0 2Al 12V Current to Voltage Converter input 4 to 20 mA Transformer isolated input and isolated 24 V de Accuracy 20.25% fransmrtter power supply. Zero A4justment 4% Span Adjustment 10%

..fai Resistence 40 0 2AS131 Current to Voltage Converter input 4 to 20 mA Non-tsolated combined with a norvisolated 4 to 20 mA output function. Provides non-isolated Zero Adjustment 5%

30 V de transmitter power. W Accurocy 20.25% Input Reelstance 250 O Vil Accuracy 20.5% input Meslotence 500 kO min. Output Load 775 0 max. 2AS-121 Current.to Voltage Converter Input 4 to 20 mA Transformer isolated input combined with an Zero Adjustment 4% isolated 4 to 20 mA output function. Provides Span Adjustment 10% solated 24 V de transmmer power. W Accuracy 20.25% i input Reeletance 40 O Vil Accuracy 20.5% input Resistance 500 k0 min. Output Load 600 O max. j 2Al-H2V Current.to Voltop Converter input 10 to 50 mA

Transformer isolated tr$.rt.

Zero AJJustment 5% Span Adjustment 7% Reovires 40 to 100 V de transmitter power applied ex-j i temally or connected to nest field bus via a 2AX + DP10-E Power Distributen Moduie tRALYSIS/ CALCULATION 200 (D ( ED 88-#* ATT # 1 7 I REV SHEET / OF

955 St$A10 e.9 2 STANDARD SPECIFICATIONS The following specifications apply unless otherwise noted Table 1. in the inomoval component listing. All percentage figures are percent of output scan. Output Load Voltage to Current Converters Dual Converters Two acentical ancependent channels Input 0 to 10 V de into 500 kO minsmum Load (ohms)l4 Output Load Current conveners, see Table 1 M V de Field 8% Model No Sypeas Module Accuracy 20.5% 2AO-V31(Noncertified) 77S1) Repeatability Less than 0.1% ~ Ambient Temperature Effect Less inan 0.5% for a -CG8 600 -FGB 600 25'C (45'F) change wrthin normal operating limits of 5 and 50'C (40 and 120'F) -PG8 775 -AGB 775 Field Connections Screw terminals accept wires from -YGB 775 0.5 to 1.5 mm2. or from 22 to 16 AWG 2AO-V51(Noncertified) 7 7 S 13 Mounting Two screws retain component in a 2ANU Se. -CGB 600 ties nest -FGB 600 Electrical Classification Ordinary locations 2AS-131 (Non Certified) 77S1) -8GB 775 -CGB 775 -FGB 600 -PGB 775 -AG8 775 -YGB 775 2AO-V21 and 2AO VAX All Versions 600(2) 2AS-121 (Non Certified) 600er) -CGB 600 -FGB 600 2AO-V2H 400f3) ru Non certtr.ed versons of 2AO-V31. 2AO-V51 and 2AS-131 TNALYSIS/ CALCULATION can oo rate wnn fa ous vana9e of 24 v oc. Load capanis. ary a Sao n. gc 19 e _ l-~ 88-oc7' ATT # d aWon centfied versons of 2AO-v21. 2AO val and 2AS-t2f can utilize an ertemai sucoty of up to a8 Y oc. Load capabil- ~tEV SHEET / OF 3 ny e 1800 c. Use of bypass moduie not apolcacie. omeoveres 30 to 100 V de power acc4ied to load extema#y or connected to nest field bus na a 2AX + DP10LE power distr 6 buten rnootte. Load R = 20E-200 where E is the supoty venage Use of bypass rnodule not applicab4e to 2AO-V2H.

    • Dyonss moduie and na assocated standby sernce unit (2AT-SBU) adas resstance to the output of a current con.

vener (not accicaose to 2AO-V2H). The above load values must be reduced as fonows. Non Certified Version 50 0 Certtfled Versions CSA.FM 150 0 BASEEFA. FTB. SAA. Stommessen 250 0 e m.

Summortina Literature $l m MI 1AO-130 1-01762 E' ~. lnStruCtlOn =. a102n April 1981 ~ CUSTOM N-2AO-VAI VOLTACE-TO-CURRENT CONVERTER MODITIED TO FUNCTION AS A VOLTAGE-TO-VOLTAGE CONVERTER VITH 0 TO 10 VOLT OUTPUTS IN-ECEP-9206) .. - !!!!N.or i- + &4 44 49 /, D e Jr e py ,g,gy NNECTIONS

4..

W ka p". [T.TIONS 49 W A '-.se VOLTA 0E TO

  1. VOLTA 0E CONVERTER Tigure 1 The Model Code N-2AO-VAI modified by N-ICIP-9206 is offered for nuclear Class 1E safety related service based on type testing. The tatt results are provided in Foxboro documents QOAAA20, Part 1 (seismic) and QOAAB44 (parformance). These documents are available for purchase from the Foxboro Company.

Ceneral This N-2AO-VA1 Voltage-to-Current Converter has been modified to function as a voltage-to-voltage converter. To accomplish this a 500 0 t5E, 2 W resistor is i connected externally across each pair of outpuc terminals TC1 and TC2. The converter slides into the nest assembly and is held by two captive screws on the top and bottom of tLa front place. The converter receives its power from the supply bus in the nest assembly. The signal connections and adjustments are made on the front plate. i,).. \\ "MALYSIS/ CALCULATION

c D
  • 7-Z/-c07 ATT #

J uv 7 SHEET 1 OF J C1981 D, The foncore Comomay

O $1 1-01762 Fase 2 O g g l Yd's oc i. N lo*Lhac. NNsO MM64AT :cs. de e%"d [Nsoc I O ANALYSIS / CALCULATION Tigure 2 OCC !D r r /B-oszo ATT

  • J RSV

] SHEET. ? OF 3 y,g The signal connections are located on the f rene plate of the converter. The top connections are for Inputs A and B; the lover connections are for Outputs A and B. The input sad output signals are 0 to 10 volts dc. Calibration Procedure

1. Apply 1 volt to Input A and adjust Zero A (R36) for 1 volt 20.5%

at output A.

2. Apply 10 volts to Input A and adjust Span A (R41) for 10 volts 20.5:

at output A.

3. Repeat Steps 1 and 2 as required for 0.5% accuracy.
4. Check voltage at Output A for 0.5% accuracy using input voltage of 0 V, 2.5 V, 5 V, and,7.5 V dc.

w

5. To calibrate output B, u'se same procedure as outlined in Steps 1 through 4 using Zero 1 (R26) and Span B (R9).

l l intemationat instruments 1151 1251 .s,_ scMa Single Dual 6" Edgewise Switchboardinstruments 4 i Description _.n .1 The Series 1151 is a single, edgewise, switchboard class instrument utilizing a patented flat meter movement. The exclusive cantilevered coil construction \\ of the jeweled D'Arsonval movement produces torque t weight ratios (meter efficiency) four times greater 5-60 than conventional edgewise movements of equivalent size. -. -dg The availability of this thin, high performance movement permits the inclusion of two fully independent meters in 4..~ g f a single popular case.1251 is the Series Number ~ i for the dual unit. The case of the Series 1151 or 1251 is made of a self-4 1 A extin9uishino, non-drippino piastic. and the window c A is 'e=an ' An e=ternai zaro adiustor scre-for each %{ movement is located in the front. ~ [ j 3 Anti-paraiiax, bi-ievei scaies reduce reading errors on A botn Series iisi and Series 1251. J V '""*'"*'*d'"'"**"'''***d*- 0 l l2 Exclusive Features [ ~ ', s.,

    • Designed for Nuclear Power industry

~

  • W6*-

The Series 1151/1251 edgewise switchboard instru-3 3 ,C ments were initially developed to meet the demated-ing specifications of the Atomic Energy Commission -e ~ ]Q Y'# ' with respect to seismic qualifications, long-life and high accuracy. The resulting product line is the most ] rugged and reliable instrument available, -v-j 3 - Independent DualInstruments Two independent meters can be included in one 0 0 ~y popular size six inch instrument case. Thus, related j functions from a single source can be displayed in 1 ~ l% a single unit, e g., specific gravity and temperature, _? tank level and density, speed and R.P.M. etc. ., a Additionally, you save three ways with the Series wa ___._M 1251 through: Lower Initial Cost per Meter g g g g gg: g r 4 yy Reduced Panet Space Vertica!!y Mounted instrumenCI' #w -i T. with two independent inputa%FR *:T,*t Less panel fabrication and assembly labor time aw - % w :ar: s m, &... "

NALY3IS/C/ LCULATION

^ I Series 1151 II"9 * ^ CC 30 #- ES-u r o ATT # I I...........,.7..........,,, w a Horizontally 7 l Mounted X '/ SHEET / OF 7-d Instrument l i

Standard Engineering Legends ELECTRICAL TIME AC DC Misc. Hours Minutes Seconds Misc. AC Amperes DC Amperes Hertz BBLlHR BBL / MIN Gallons Per Minute I AC Ksloamperes DC Kiloamperes Horsepower CFH CFM CFS LBS Per Minute AC Kifovars DC Kilovolts Generator Amps CPH CPM Tons Per Hour AC Kilovolts DC Micreamperes Percent Current FPH FPM FPS LBS/HR x 10' AC Kilowatts DC Milliamperes Percent Load GPH GPM GPS LBS/HR AC Megawatts DC Melhvolts Phase Angle IPH IPM IPS AC Milliamperes DC Volls Power Factor KPH KPM KPS AC Millivolts LPH LPM LPS AC Vars MPH MPM AC Volts PPH PPM PPS AC Watts RPH RPM RPS YPH YPM YPS TEMPERATURE PRESSURE (VACUUM) VOLUME /WElGHT LEVEL (LENGTH) MISCELLANEOUS Degrees PSI Gallons Feet Percent Deg.C PSIA LBS Feet W.C. Percent Open Deg.F PSID LBS Per Gallon Feet Water Level Steps / Min. Deg.K PSIG Tons Inches VAC. IN. HG. Inches W.C. VAC. MM. HG. LevelFeet Level Gallons Level inches Level Percent Specifications Standard Ranges Accuracy; 1.W % F S. Value for DC Aanges 2 5 % F.S Value for AC Ranges APPROX. APPROX. RESISTANCE REsl5TANCE Repeatability: = 2% F.S. "A"GE8 IOHMS} AANGtS (OHMS} D.C. Microammeters D.C. Millivoltmeters Overload: Sustained-120% for 8 hours 0 100 2300 0 50 12.5 Momentary-10 times rated current 0 200 1540 0 100 25 0 0 500 275 Response Time: 2 5 Secs. Max. 'D.C. Voltmeters 05 1000 anms/ voit Damping Factor: 5 mansmum (Per ASA C39.1) 0 10 unsitivity 01 0 0 15 ait ranges Hl. Pot: 2600 Volts AMS terminal to case for 1 minute 42 o.3 gy 05 27 Temperature (Operating): -20 to 50*C 0 10 1e 0 50 S100 0 50 08 o.,$o Shock: 50 G's 0-100 0.5 0 200 0 200 0 25 0 300 Pointer: Triangular type, color-cerise red 0 0 500 Scale: Length-4.5 inches A.C. Mittlammetor Marking-black lettering on white background. 41 1000 Other combinations available. Suppressed 15 2 20 0 10 125 a.20 1 25 0M to Standard Movement: Zero lef t on horizontal or zero bottom on 10 50 4500 2 vertical (Zero center, right of top optional) y Mounting: Front of panel mth captivated mounting assembly

  • 01 0 05 s si v y Terminals:

% ".28 %

  • long (Plug in connector optional)

MV 00 0 10 50 MV 0 500 Materials of Construction: Case-No ryl* Crystai-L e n a9 overts Aeau re enternas A.C. Amm.

  • s O.15 50 MV

'inish: Standard-black case Optional-gray case e uv has o.s Weight: Singie Movement-25 or. Dual Movement-30 oz. 1:MLYG!S/ CALCULATION l l Siesmic Qualification: See international testruments ZC ;D p 7-88-u2 O ATT # b I Test Aeport : S 81 2 '5V 7 SHEET 2 op z

l Product instruction E 92-74 I s" ~ l t , Welin 1 *' 8 v r]J k ? L v \\ y Ne) 5== Y4 ANALYSIS / CALCULATION 300 ID #586

  • 20 ATT#

f REV 7 -SHEET OF 2 Signal Monitor Pt. No. 6623819-1

Bla'illeV Babcock &Wilcox

I Signal Monitor E9 pr I SPECIFICATIONS Accuracy

  • 20.2ss of sosa Repeatsbility 20.1% of spen Hysterseis (switching) About o.oss of seen input signal range " Reverse: +10 to. low DC
  • '"*n 10 to +1ov oc Input resistense 1 mesohm minimum i

j I $eures impedante sooo ohms meaimum Output,Metey contacts (2-Form C contacts por .ievl. 7 emps e 2ev oc or i t s, Ac. I Relay time deley " rop"u; t: o.'1 seconds 0 ' '**"*' i D o i 1 Ambient temperature Normec 4o.i4cF range Umit: 21 eof Ambient temperature i o.2ss of soon over omtwent temperature i effegg rense of oo teoF Positive and nogetive i P** '"' ten po nt : stov oc avitch point adjust Neestive switch point: 11ov DC ment range 1 24v DC

N/ LYSIS / CALCULATION P"' 8"PP4 "*'".c.n 22.s to 2s.2 oc um 22 to 2ev oc OCO ;D L F F F*8 ATT #

f Curi uit requitement,*2Yv"keom"e* REV 7 SHEET Z OF 2 .I._ reggirement 4 noits l Connecter reting 7 emps et 2ev OC $ite 1-1/e" a 7" n 11" Weight 1.1efin Desiened for plut n mountine in a i stonderd seeley e6ectronac systems estunet (Product Sosoitication Gl7 lol, in a pipe M0gnting or vuolleounted vuesthorproof enciosure (Product Specsfication G1711), or in a srnett systems mountine endoeure (Prod-uct Specafication G17-12). Input test pch on front plate permets Checkpoints moa'torias of input saenei =he+e unit ca in service. Lights endscate state of relays.

  • As defened by SAMA Standard PMC2o.

s e

i E12-9 2 Page 9 l ROUTINE SERVICING The Type RY Edgewise indicator under Removing Indicator Window, Figure 7 normal operating conditions does not require routine servicing except for periodic cleaning of

1. Pull handle (15) in lower bezel and remove the scale window. Remove scale window from Edgewise Indicator from mounting case, front mounting frame and dip in hot water to clean. (NOTE: Scale window is metallized, do not
2. Remove designation plate (20) from rub.) Use a clean, grit-free cloth and soap and module frame (2) by pushing blunt object thru water when cleaning the outside cover.

1/8-inch hole in frame, if trouble is traced to the Edgewise Indicator,

3. Remove four screws (45) holding window check for loose or broken wires. Recalibrate the to front of module frame.

Edgewise Indicator as described under " Adjusting The Indicator For Service". If the Edgewise

4. Reverse above procedure to install window.

Indicator still fails to operate correctly, return it to the factory for service or contact a Bailey Service representative (see outside back cover). ANALYSIS / CALCULATION For schematic, wiring and component location diagrams see Figures 3,4 and 5. 20010 #E-#t-eers ATT e-0 REV '7 SHEET- / _OF 2 EXPLANATION OF NOMENCLATURE NUMBER OF INDICATORS LEFT INDICATOR RANGE ELECTRICAL EDGEWISE INDICATOR RIGHT INDICATOR RANGE WITH SOLID STATE METER MOVEMENT i l SUPPLY VOLTAGE l I TYPE RY I i 1 ONE INDICATOR 0 124V DC 2 TWO INDICATORS 1 118V AC 50/60 HZ 0 OMIT 1 GENERAL DC 2 110V DC ) 3 1 SV DC 1 An X in any Nomenclature position indicates that in that respect the unit is special. An X as a suffix to the Nomenclatu're indicates that the unit includes some special feature not covered by the Nomenclature. l l f

~ E 13-9e2 Page1I SPECIFICATIONS Accuracy

  • 11.0 of span Number of minor devisions: 60 maximum.

Amb.ent Ternperature:40 to 140F Number of maior divisions: 4, 5, 6, 8. or Supply Voltage: AC,107127v AC 48 52 g o. 1 Ha or 5842 Hr. OC,122 126v OC SCd3 Number of range figures: 12 maximum. Amb.ent Temperature Ef fegt terrplifieri: Characteristics Number of digits per range figure: 2 Normal 0perating* i.001% of output spen per F maximum. AC Supper voltap Ef fect: 1.013 of Conditions output span per volt AC Scale length: 5 3nches. Frequency Effect: negheible. Magnetically shielded 10ma D'Arsonval DC Supply Voltage Effect: 10.03% of Meter Movement mo,e,nen,. output seen per voit DC. DC veristion: 10.015% of output span pe' voit DC. Mein service legend: 10 characters and spaces per line,2 lines available. linetilty 11.0% of output span Service Legend Sub*rvice seend: 5 characters and spaces per line, 2 lines 13 lines if main service Repeatability 10.5 of output span '*""d*"'Y*"'""' Dead Band 20.5% of output span Zinc frosted matte chrome finish: supposed Tr.im Piece Damping Factor s.3 ' at each end of a grouping of RY indicating end/or R2 pushbutton modules. Step Response 1.60 acond '*"'*""d;'" '"*""*"8 Mount.ing chos supplied with each unit (see Figure input Ripple w;n not fono, frequencies above 20 Hz Damping Moduie: plus in design with dust tight input Impedance creater than 1 megohm m*t ******nt. po5'ove Grip 8atch. noa-Construction magnetic red pointer, and removable daig-Source lmpedance O to 2000 ohms tmaximum) nation plate; enclosure: die <ast rine, platinum <olcved. Input Voltage Variable hoe Table 1) Internal connections are made to e card 8008 edge connector on rear of unit. Connector input Voltage 4v DC minimum,2Ov DC maximum Connections is daigned for mating with external Span (30v DC maximum voltage above ground) connector and cable asumbly Part No. 662739600 LENGTH. Screw terminals Bias Voltage 0 io -9 oC (max.i era not ev.iiabie. 2.5VA typical. 3.5VA maximum osm NEM A 1 (general purpose). "(Indoor) Power Requ.irement i,,,,,,,,, po,e,,,,,,, o,,,,,3,,, Classification ' As defined by SAMA standard PMC20. 'As defined by National Electrical Manufacturers Association (NEMA) Part ICSI 1101973, SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. REPLACEMENT PARTS Figures 7 and 8 are parts drawings of the Therefore, when ordering individerst parts, Type RY Indicator and mounting box. These assure receipt of correct replacements by drawings will normally apply to the units specifying on the order: furnished. Ilowever, there may be individual differences in specific assemblies due to:

1. Complete nomenclature, code number, part number, series label number and S.O. number of
a. Design changes made since the printing of equipment for which parts are desired.

this Product Instruction. 2.The Parts Drawing Number on which each

b. Special design of equipment furnished to part is illustrated.

make it suitable for special application. ' NALYS:3/C ALCULATION v c p),.r-/F c e r. o ATT # 0 7V 7 SHET Z OF 2

I PSS S 7C1 A Page 3 \\ CONTROL, MANUAL, AND INDICATOR DISPLAY N 250H. N 255H, and N-257H stations, with or without an STATIONS output station, are panel mounted by means of individual The N 250 family includes control. manual, and indicator msmgs separateh speediet Shady, WW stabons display stations. N 2AX + M Senes Jutput Stations are of-used mdependently require individua1 housings Up to ten fered for use in conjunction with N 250H Senes stations smgs o same 6 N@er can ocmpy a smgfe . '.. Housings.rmab n n menting s given i

  1. 8" "I"'

er or for independent use All are designed for both Class 1E the section. Models N 2AX + H048, and Class 11 quahfication. N 2AX + H096, N 2AX + H144." All power and signal con. nections are made by plug in cables of the N 2AK Senes. RECORDER DISPLAY STATIONS i N 227 Series PERFORMANCE SPECIFICATIONS (Under Reference Operating Conditions) Indicating Accuracy *0.5% of span Recording Accuracy 2 0.75% of spanafter trimof zero Repeatability 0.4% of span and/or span to match chart rather than indicator scale FUNCTIONAL SPECIFICATIONS Number of Pens 1,2, or 3, as specified Mounting Nominal Pen Speed 5 s to travel from 0 to 100% of N 227S Series Each recorder occupies one unit of scale capacity in an N 202S Senes Shelf. Refer to the sec-tion " Shelves for Recorders." Input Signal 0 to 10 V de N 227P Series Each N 227P Series recorder resides input Impedance 100 kO minimum in an individual panel mounted Model N 2AX + HS1 Chart Housing. The housing is reta;ned in panel by top and Type Rectilinear, roll bottom screw clamps. A hold-down bracket at rear is Scale Length 100 mm (4 in) fastened to a horizontal framing member supplied by USE Speed 20 mm/h, others optional Initial Supply One 30 day chart with each recorder Aoproximate Mass Ink 1 pen Recorder 2.9 kg (6.5 lb) Reservoir Disposable snap-in cartridge with fiber tip 2 pen Recorder 3.2 kg (7.0 lb) pen provides a 915 mm (3000 ft) ink kne (a nominal 3-pen Recorder 3.4 kg (7.5 lb) 3 month supply). Model Codes Inillal Supply 1 cartridge per pen y.227P = Housing-mounted Recorder Ambient Temperature influence Less than 0.5% of span N 227S = Snetf-mounted Recorder for 28'C (50*F) change between 5 and 50'C (40 and 120*F) Number of Pens Humidity influence For a change of 50 to 95% relative 4 = One pen 2=w pens humidity at maximum wet bulb temperature of 30'C (86*F) Indication 20 3% of cpan 3 = Three pens Ro ord + 0.75 to-1.5% of span (chiefly chart paper RS = 50 H char d ve R6 = 60 Hz chart drive Power Requirements Examole: N 227S-2R6 Supply Voltage + 15 and -15 V de 10 % Typical Current 80 mA for 1 pen,140 mA for 2 pens, IN 2AX + HS1 = Housino for 227P Senes Recorder l 200 mA tor 3 pens Chart Drive Supply 24 V,50 or 60 Hz,3 W,4.2 VA Oualification Code Supply Voltage Influence Less than 0.1 % of span for CS N/SRC = Type-tested for Class 1E qualification 15% change from nominal per IEEE Standards 323-1974 and 344-Connections 30-pin receptacle for cable connector 1975 CS N/SRD = Type tested for Class 11 (structural in-tegrity) qualification per IEEE Standard 344 1975 "'?ALY3iS/CALCULATlON .QC D > C-8f-etro g33 4 ~7 OPTIONAL FEATURE / / Al REV 7 SHEET OF ernate Chart Speed 5 mm/h or 10 mm/h l

1 Tl 2AX 151 w. .>.1,-. 7 -w,., .my =.. s 2AX + PS9 SERIES STYLE B SINGLE NEST dc POWER SUPPLIES Energize the SPEC 200 system components in one nest These power supplies mount in a Model 2ANU P Nest and provide up to 1.5 A of direct current at + 15 and overcurrent, and reverse polarity protection is incorpo- -15 V for $PEC 200 system components also mounted rated. Also included are in-line filters for the suppres. in the nest. When applicable, they provide power for sion of radio frequency interference (RFI), voltage surge transmitters and/or display stations connected to these protection, and a power security turn off circuit.. components. An on-off switch, fuse access, and indicating lamps are For high reliability, industnal grade components oper. on the front panel. When the indicating lamps are lit. Sted well below normal ratings are used. Overvoltage, both the + 15 and -15 V outputs are energized. TALYstS/ CALCULATION = ::., Z-28.ro z o g33 p 8 sev 7 sarer FOXBORG" a.en.re Tr.o.m.ru - oF a n m

fl 2AX.151 Page2 SPECIFICATIONS Outputs + 15 V Ue'e"ed :o comment at 15 A dc. and -15 V treferred to cceoni at 15 A dc Surge Voltage Protection The voltage surges Regulation oeserced in IEEE Standard 4721974 will not affec at d apphed to m inNt power leads. and win not trig. Line 0 2% output voltage change for : 10 % ger m overvouage protecten circuits d apphed to the change from normnal kne voltage outWt comectons. Load 15% output vol' age change for load change from 50 to 100% RFI Protection RFI typically produces less than 1% Frequency 01% output voltage change for fre-output voltage change for a field strengtn at the power quency enange from 47 to 63 Hz supply of 15 Vim at trecuencies between 410 and 512 MHz. Ripple 20 mV maximum Power Requirements Electrical Classification Ordinary locations Line Voltage 100,120. 220. or 240 V ac + 10% Mounting Occupies two units of space in a Model -15 %, as specified, 2ANU.P Nest; leaves nsne units of space for other sys-tem componems. Line Frequency 47 to 63 Hz Maximum Consumption 100 W or 135 VA at full Ambient Temperature load Normal Operating Limits 5 and 50*C (40 and 120*F) Warm Up Time 30 minutes Short Circuit Protection A continuous short circuit on influence Less than 0 5% output voltage change either the + 15 or -15 V output will not damage the sup. for 25'C (45'F) change within normal operating limits Humidity ply. Upon removal of the short circuit, the power supply returns to normal operation. Normal Operating Limits 10 and 95% relative hu-midity with a maximum wet bulb temperature of 30*C Overvoltage Protection Both outputs are shut off if NO any power supply failure raises either output above influence Less than 0.1% output voltage change 3 9 y. for relative humidity changes within normal operating Security Turn Off To assure the predictable response hmits of connected loads. both outputs are shut off upon loss of either output PRINCIPLE OF OPERATION As illustrated in Figure 1, two identical power supolies are connected to provide + 15 V de referred to common The overvoltage protection circuit consists of a zener and -15 V cc referred to common. In each supply, a diode overvoltage detector, a transistor driver, and a si-regulator amphfier varies the voitage drop across a se. ticon controtted rectifier (SCR). The SCR. when fired by ries pass transistor as recuired to maintain output vott-an overvoltage condition, shorts the power supply out-age The desired value of output voltage is set by the put to common. Shunt diodes protect against externalty. voltage ad ust circuit. The overcurrent circuit takes con-apphed reverse or forward transients above 20 V. l trol et the regulator starting at 110% of rated output The + 15. -15, and common leads to the power security current. Overicad or short Circuit Current from either turnoff circuit include RFI filters. output is hmited to a value between 1.55 and 1.70 A. Upon removat of the overload or short circuit, normal operation is restored

  • MAL'.' SIS / CALCULATION

'~: O d ?E~Co?O ATT# 8 7 GEET 1 OF-1 s

t !l {'( jti' 4'

)i .i! l!F} [ L~,. >Z,r<Y@ abo gq6z o8 0 ~ N' E 7 >d % r M N 4-r /r f mQ d $ m* ' p R I I* E 4 /r X g v A / / M A n. r. r 1 4s w Ee ? R< I/ E G C e TM M K I I t I S S a e G A P P D t R / a IP 1 E 5 0 s D l 7 L 7 2 l / 9 O a s i mA T t 1 t i 1 E2 L a i l T n t Sc

  • r 1

D I i E T1 A G G y In T C E R R I I 'o N S S y 3 A P P d b - P S 0 0 t ,e e d Y 0 0 a e C 0 0- ) r v P A A 3 3 b o le / R n N r i a U 1 p P C a p C E A C n A S E N w I o S C I E I E d C V 1 E T t I' E ) U u A V D i S IS P h / E P P T S N D E A I LO e C 8 8 T A E I 5 5 eD t L V 1 1 D o 0 E m R V E C C I R m 8 T e O R S R R R A R R E R C ( R 0 o o C G S l l 1 1 E Af - R S 0 l I IEA B I P GN n LI 8 I o 6 o u I AR 5 D 0 e 1 A 0 5 S 2 7 w CH e 5 E T ) E E R 7 / 2 2 t G f I i i S R E m P i I R tfT F 0 S m TN 2 T RI T e uO ) 1 ) f3 1 R E U 5 5 5 R P 1 1 7 2 7 uP ( P TI 5 5 5 3 9 A I e A ll 7 2 1 2 2 g A t OI G 0o 08 0 - 0 - 0 - n s P I t 5 - 05 55 05 ) .a n D-S 5 75 52 27 92 sA E8 P 7 7 14 21 2f 2 wr o t R R5 6 1 2 2 3 we i t I1 f f ( ( ( w S - 6 sl a E 4 sbGc DE i

  • 2 eaI o r

t w lG

2. o l

rtSL ppP A1 0I 3t e 3 9 PS 4 d c 2. b TP 42 ac a . B M 2 ea5C

s. E 3

h 1 G 2 reNle s 1 s 4 3 8 8 8 8 2 ot g I

E S

7 2 7 2 ( f a s s. P 7 5 2 9 .9 ciI 1 2 2 l s' I Gi 3 T ( Ides Tg I I Snuu P T O Pill E T - C C aA U8 N A 8sV h 8 D 5 A R E 2i a I 1 P

c.

c I dl I - S E 0 5 0 5 7 S s a n ' s a wM ' 7 6 E P e W 2-d 9 l S* e Y S* bl kP br Il _ E I M I 3 .~- { c. g Ei 5

I i i 9:- L Jp 3 f ANALYSIS / CALCULATION ooc to #_J-pg-trorv_ATT* 9 ~ \\ REV-. 7 k _ SHEET 1 OF_ b 9 h N $ E[ R s s il d R i 2 t [D 2 2 r e s2 m g a e 3E ~ ~ m2 m g~ g 2 2 3 2 5 o o o o o e c g

34 r

E i i: i7 w a a e m g e h ~ s 3 O d N d o 6 g E c' g ~ % E< 9 e i e E g pl g E i i 8 ~ OsE s m 9 m i a I 8 i s i e gg i e ~ w w 3 I _I w- -g 5 l BE s 3 x a E 5 a v $, a@E e i ~ B e e" a e 3 E e g j *$ g55 ~ c E E = = g 9m E *t E Ri@jll E ,a 555 $ $ I I g ~ l N $ a d b i i i 6 I a 33 g g + ll, ~ e i R [$ g .. :-)-,..e p .a s c e, u pr s JL y r c 1 ~ .. wg

o i v1- 'U STRIE CALINtATION OtTA 9EET (Page 5 of 14) STRIE # s. 7h mm ANT AS-ftue futpla: LL 3A v1DE RMGE PRES 5URE TEST EQulI90lT/DE E N -FT rf-23n M O2tr , g, TJ- /77/ SY. coar m o z ( < o 3 5 Q INLIT DESIRED OUTRIT IE!CATED OUTPUT INC. F 9 K-158-FT K-158-PIR g' Q d I O RC-158-PIR (PEM) RC-158-PIR (IE) yh% ]; h CF SPNI PSIG PSIG READIE ERROR RDolE ERROR "4 k m o o ' l 8 3 0 I Q$d t-50toS01 2f JS-o o is 25 Us 750 Q,@ Ji (700 - 8001 77f 25" 75d o I50 1522 1500 (1450 - 15501 IfiS 2T /S'* o o 'e .I 75 2278 2250

l f2200 - 2300) 125b o

225d o yI96.7 7328 2900 3fC i n - 2950) 2 *:0 o 2700 o ?~ MRVICE DEVICIS-ACuRACY 7 SDtVICE DEVICES SPAM TOLERANCE MX. ERROR k.. d RC-158-PIR (PDf) 0-3000 PSIG 1 50 PSIG If NT RC-158-PIR (IND) 0-3000 PSIG t 50 PSIG g pg Ca11trated by Initials /Date O / VM ~h ?,,. Appr a ed by InttIals/Date n n/ s/.r/fy YY i .. ~. '. -' I k 5

_{[~~~~~'"~~"

+p ,3 ; - w . o. gi 2,,, ~ i m d gg g g k in 1:a: i,l e = 0 is lf l E E I lllll l i 1 3 E l i i o ii 5 l 3 5 l qqlqlqqa;i;; ol .g i g m i;l ji; lk $lSl5li l5 l $ 3 8 l11: l y = n,: 3 l_ "jal!jilj Ell IEII E-i gj E mij ,Ej' i 1 u E" [{ a

.c h,. C ] 7 '~ ~5 ^ (H,Qyn %,7;y Oct wi(' & :,' - '8 ANALYSIS / CALCULATION a f Doc to #5-BF-elo ATT # Y Q REV 7 SHEET I OF 0 f n. i a k O L r i s a @m l ~ ~ 3 D l l E E 3 I I o s1 [ e In e ae 4 g l li SE 45 g g j ! "sli4l H l i:l i j a;'l i Is lI rlHa.s llB II y 4 ls i 2 jl[ i s ~ r las ? f 3 sg li i 4*ia ] a s + ~ gls !lghigi a t 1G I 2 gy~ .~- g 2.. : g .,jl' 'i

,{^ ' '

y; ,g:- ,4: gg;g[ ~] t Mer i ww r.,v.

a.;

'l'. y R 4...y n ANALYSIS / CALCULATION coc to < Pa6-"to ATT # REV 7 SHEET 0 OF S k f n i k d i u a$l s g o g e e ks.!. 2 A 2 23 h g u u g g k* g E 0 o L E 3x ,l g,E, =1 j l a '"yleja $s e 4 4 3 g l EI l El N L g g g e E-lI *l5ld*d'a g : : O' i l is E E s 'lll2g8 vlEll$ll5 i4 AE r W j W s j I "l E i 8I$ ~ I 5 i d-8 I sia E ag! sits 2 .. Eis .g 1 i' I. I. '. l

-~~ 4 ;13 :.. - r .3,e, ..4,..

),;

Q 7 Q1;m : >, a ..s i .u, ."i j' [g.J'. d

    • T ?x.

i. f(gjt. ) + I W I g t4 .iw ANALYSIS / CALCULATION i 70CID# I-88-oo7F ATT# /# I REV 7 SHEET / OF Z l \\ n i t 377; I 3

saa

. '4 a 5: : t i 3 m 3: e i 4 i E /,395

  1. :S ::

3 at'g

  • .::l g.:

8 l' :: I:: r. 5: :s :: e '- saI.Xe N

:: ::.s 8 9

8.,. : i s.

j :: vaeg f% q(

l n: i as? g!! l I:: 3::

ss:

S c: . ;;.g I as i a i xggxx!xvs*el s. :: 41 4: 4 :. !.il 2 g:- 8 :8 e 5: I::::

.*3
8 i
ss ::c
. :.:: :1
- oaI e!

e enI:: 3 g::a v v:s: 8 :' :: q I: sg

Ijy::

s I!8a . it x ag, g 8 g g::.: : s 8i)I 2:2

$001 I
- 2:

l .5 12 5: g;,! 3: 5:a 88 3 3: e I'

2 e s: ::::

3:: O!gg:

5

.I

'ccclj:!j,,,,

Ee; e 3.:.[.-1.: jig: jg Is::8 5::,: . o 4 g4 4 e :.X :. 9 I rr -] : rr = 8X. :...:y:n :: l s: g :.:. x. e 2,. 3 .a ! -I n, g,:::,

:: gr! -

Ij-e s 1-1 lssg i e=..I =.$ Y:: c m) jg E asgj.8 g: I .: a g ig: j:: 1-g

1.gr
8 8

g : :2 % q i e Isa x .: e:: x 8 i' r:::: s:: -- s m 4 W2%tJa. ..js.

"j. ) dry Standeds Lab ji, r BRA TN AC

h. HOD 7

9s R y s b h. r $$ yon:: ppg"gg N 'b Y 7* > [ I* f '[ V/ptg.gi N*['. '. .h/BPECg 7,p ,j ACcuR g g g g gp g g (g,. e TEST INSTRUMENTS TO BE USED FOR CALIDRATION ID NUMBER IDUE DATE TS-523 [Mj i3 I N$$ TS-SD/ lhA'NY i NOTE: 1.fSE DRY AIR ONLY. 1 I OR rDu! VALENT STANDARD STANDARD AS FOUND AE. L[r-tot.ERANi f RANGI: INPUT / OUTPUT INDICATION IN!' I C A CODE g g CODE. 'JN[ h PS! PSI PSI Pb '. O TO 3000 0 PSI o 500 [ T - 4.5 4.5 495.50 ' 504.50 1000 f / 99L.50 / 1004.5 ~ 2000 "6 1995.T / 2004.5 2500 ._,p 2495.50 2504.50 CONNECTIONS ARE MADE AT PTX R RN AND GRO'JNI: iSCREEN) FOR eAMPS. mAMPS mAMPS m P dMF.9 20 mAMPS.05'4+1010 19.9E / 20.02 50 [ 1 49.974 / 50.026 l CONNECTIONS ARE MADE AT SIGINAL POTi!TIVE Af>D EIGINAL NEGAT!s'E cOR mVDC OR F*IN 12 + AND PIN 24 - i mVDC mVDC m D mVE 200 20 j ^ mVDC. 05'4+ 1 D IO l 19.90 / 20.02 50 8 'l 49.96 / 50.04 100 ,,/ 0 6 O C I/ 99.94 / 100.06 200 f7,4!clLdtD_, \\[ 199.89 / 200.11 CALIBRATED BY 8 I-I S DATE. /[ M-[_3 D, APPROVE DATE REVISION

^

DATE \\ 02/12/47 ANALYSIS / CALCULATION COCID *_7 3 8-c07"ATT *

  1. 0 4

PEV 7 SHEET Z OF 1

Y s _; ( 'e -4 y **. ;h, s it 4.,g e .[i h,,.,r ; ,g ., '..s, '? [ [ ( s i 4.,. u g t-b ,- ~, f,+. w. s,...n 4 L.6

' 4 g,..
t.:..,,J

.f t t,',', '5 . _ : ) < <. ' ' t ' f j 'h ' *'l ? L _3 G i r *[

  • N T,' A :L,*.56 ' ' \\ * *. 'r. '; ' ~ ' ' : 5

.. l.y Q 5 s. ~:;. 'v y +16 s 1 c~% r s i f bly ') ; y.L. ,;sy,: q 1r cy.. ' J n. ...... - /. 1. ;... ;'. - ' t,,. z ; ;hu s '

Qh}&b'pp.'

i o o n '.. '

@y

? ., ? 1 ~,. ' '? $ N..', P $r triginatort C&L' 1A3 33p73 en!,TSRATION LAS 7 . ~ -CALIB1&TICE Lh3 583 ONLY. .UtTIFIED PER iI? OUTN?.TOLEtANCE 'ALIBRATED PER F01 t T? ADJUS19 TENT REQUIRED -JAl UNCTIONAL CH3CK PER s Wa REPAIR REQUIRED is i RNOVED4Es grup..e -.- %AA.s.4.;..vUPDATED,5.30T.USS g..y 1 * ? OUT-OF-SERTICE 1 escribe Work PerformeAt LRs sca M ROURat [ /OSC: i _. ROURt /08Cs NOURs EST INsTRtMIL'T CAL DATE S*/8 8 / 4 8.J DUE DAT 00$ eststir,oARDsvsD "T AV.. Et CAL nAT: 00: Dara connzwTs ce) out- _ os-I s 5 o s-- _9h du d2s/ey i a ve noa.o tS 37A ghNf.3 JIn/t4 } rS 'YIo dissies nis1es rS 1 uhsk AlsIsqmzsse, suonn rs ws 4/,.feu sIis/'tr t sioni as: pproved By8 M 'DATE 3/NV i e cP-us e .v. va.- 3,..x. i ANALYSIS / CALCULATION CCC O*- 7-Ef*2D ATTo iI EV 7 SHEET / OF M i

.v -w , n 1 i e e ~ .: n;,W *c,.%p. u s - s m.g i y,My g tp.,... . L, 6 s . Q'. s, p,,. n+ * %.

  • - J '. + :;...

s. 6 e s- .i....... .'J *, J 4 *,' 'k. :

  • 9 *
  • r s '..n

. ' p i[ 4,,,7 _ ;,,, + 1-6 1 L.... _.... _-.,...,. y....g. g... )

  • *::;:' a.2:uJ%$ T3R > *.K' s

.m.. .s..4 , -.. 3 Ps-1s u TS '470 eal9lov Ts-, T', 5 ~7 8 eo/zA/4V on sourmmF & yp gg ;,p3,jj, STANDARD ' - STANDARD *'. AS FOUND AS 1. EFT TOLERANCE RANGE INFUT/00TPPP 2NDICATION l COOR Ay INDICATION C003 Ay O# gge<898tet#V3.Cg.".r.0MberggC00NTs %,c 1 200e 190 4 M. (U b., I -190. 109.967/ 190.033 -. rr 9.au 4 rJe s w -109.967/-190.033 1 l 0.TO 2. VDC +/.011% OF Inrrr + A svvnav vyNO., l VDC VDC ~ VDC VDC vDe i 2. 1.9 1.19444 l -1.9 - J. r f TT S-1.99977/ 1.90023

30. TO 1000. VDC +/.015% CF aarvr + 3 s@wnas

-1.89977/=1.90023 VDC VDC VDC VDC i VDC 3 30. . 49. 7 if.4 9 9 "P -19. 18.9969/ 19.0031 .- a1.4414 =4 200. 190. -18.9969/=19.0031 i 19. 't1~ ~190. _f f f_'< 189.969 / 190.031 i f 7' 1000. 1000 -159.969 /-190.031 . T f t. fr -1000. 999.83 / 1000.17 e 4 r e r, t r- -999.s3 /-1000.17 i I cALIBRATsp af b .5 3i [ 9 y DATE AFFROVID g DATE REVISION @.krM.,65.tSh,4f M$' * :>e..(., DATE u ANALYSIS / CALCULATION DOC ID

  • _XfA-007c'_ ATT #

// R EV-- 7 SHEET 2 OF-M i

_m e m ,~ s, v 1 i 5 { 4 i ? ,,...a ,,,) ,. a ,c- 'p.- ..'/....;....'. -.p YE* v:gg s t =. .. n v.. t.. t. :. :. a....,. 4;t-n s a... ...T...m..,,, .M We... .%.3 73u,y. o. t. z y

9. - _-

s Lck d:.-...gsW. :. .c x > : U eu.. hu. +.... u

x1.

3 .s1

D 1

S t% e t., d'qu, <:y < ;.: > w. 2 w %, 4.. e as. os.t..ssa, .w f w. (- , e 2. 5

n. '
  • 1.

t b - I' 'g'g 3) ' 1.90748 . r_v. ' 29. 1 kan m :-r a g 200. j 19 0..- 1 kME E.T m 189.235 190.765 ) 1a.922s 19.07ss 1 TSO. 800.' 400 53 AAJ5rA ~ 497.5 502 5 0.TO 20 mA DC + mIcno ADC istCno/.1% OF INPtTF + 15 COUNTS ADC wigno ADC mIcso ADC NICR0 ADC ? 200. 190. 1Y1.9if 189.795 / 190.205 .I m1DC mADC j 2 1.9 0032. thDC mADt 20. 19. 1.e919s/ 1.9020s _14. e. L L k.N'Y3OD . k k a$ 18.979S / 19.0205 i i No.iN $N a 300 190 s t e'L 2000. 1900. 189.408 190.395 I _1 4 e s. u. 1894.05 1903.95 3 10 ADC +/=.75 0F TNFtrF + 15 COUNTS i ADOVR SA DERATE.15% OF READING PER AMP F01 t { ADC ADC t '8 ELF HEATING 10. ADC. ADC I + S. 64.'t984(, ADC 1 4.9610 / S.0390 2 0.TO 10. AAC j' MC t0LERANCES TARY W1TN FR300ENCY MC uc MC MC 200. MIcno 190.NIC 0 1 kMt _t4o.Ii1 I

2. m 1.9 m 4 1 kHE a 9at e 4 1ss.3s0 / 191.s20
20. m 19 m(I 1 kHE n.ms w 1.08380/

1.91520 200. m 190. mI l 1 kHE _t < L o. n s f" 13.8380 / 19.1520 2000. m 1900 mil 1 kME _ig o 1 9 a 188.380 / 191.620

10. A S.

AI)1 kMS s.onon. 1883.50 / 1916.20 4 975 / 5.025 j RANCE GREATER TRAN 20 VOI.TS IMPUT 1MPEDANCE a CR GREATER TRAN 10 M ONM8 f PMt M__ PASS / FAIL .s r a. ..n ANALYSIS / CALCULATION 7CO ID *_J_'.-f8-00 E ' ATT # ll REV 7 SHEET 3 OF

1 e l l I i t l OIBIS .:. >0 N 489 l3 / 190.b41 - j y 7,...: ~.. 200g,,,.. *.., 900..,, 4,g.,.; J Pt 4 9 3; -2 e 1.89984/ 1.90036 .,.p 20 R 01088 TO 200 E 01088 +/=.028% OF INPtFT + B, COUNTS K 01088 K 01088 R 20.' 19. _t. f f, K 001 48 K ototS 15.9949/ 19.0051 2 00,.,,,, 190. Ife.Trs, E 1st.949 /190.051 2 N 'Olets +/.035% OF INPtrf 4-t' COUNTS N 01088 M 0f088 M OletS N ON18' M 01918 8. 19

f. 2 f ff/

1.s9931/ 1.90069 2 & \\L *M ' #h^.UNNT*$ 'M #" #" '"' '

20. *>o 19.

f 4.et i C* 18.9770/ 19.0230 200 N 00088 +/- 2% OF INFUT + 1 Nhd7 200. 190. a f f 7(, 1-185.199 /193.s01 \\ ANALYSIS / CALCULATION DOC lD 9?'98-0410 g33 p pI REV ~1 SHEET M -. OF i gh*4W a'- M.F. ,, *1,. y, " {. E

= - - =- %, m rg jm..,. ;g 7 mp,.. w.;, vg .. n s-r -, s r,4 a m ,-sv. in:

t i c ;(,

/pg,,,, , s I l 2-e. i i e. .e e e e 3 t. I ANALYSIS / CALCULATION b 0C0ID,y BE

  • 20 ATT#P IE s

e e ~ l ReV 7 SHEET 1 OF f = e e e .e u ea, e e. u un. O. O. .e aw. = a e e .o > e e. e c w w u. v. ee n e 5 5 .s @&a 2 2 3 -O = v = v Z> a a 2 e O e. e O .=

  • 8v e

a. >e

==. 8N 8N e e s O J> O,

  • M nnnn-e n e

nMnMn-ce e 2. u.m o

  • - 0 0000-0 O

O C0000*O0 O e e Os .N --@9 h h a ~ ~ " 0 0 0 0 0"

  • n N N N " " " * * - * * * * * - " 0" hh*-***@de-~MN==

O e M eO 000-00 00000-~~--*-~"0000 00000000000000-= e e X W eW d a W w 2e> l e = = K ew>0 e f 4 Oeuwe e eM eM O e Jt e en en me e w w e e = v eO e o keOc4 e O e e meseem O e se e f eUOe e =

    • =-**

= v E 4e Jt e e e e ekge oe se e e OIDecee te ce w 3eq g e ee=**- .e .=

== eU t e 4 4 3 Eo a ee t 4 e 999994 4 9g g e s e* ="""**

== O Oe 4 e e a ew n n e M nnMnne n nn e n Ee e e=

  • = * = = - * *

=

=

= e e e 2e e eM N N en NNNNNN N NN e e N e I e e=

  • = **
  • = * * * * *
    • * * =

L em e ea e 0 e e e eN W eN

==**** =*

  • e
  • e e t e*

==

    • * = =

em e ee o e 8 0 ee O O n n= C00000 O 00 n, n. O g gawg 8 e, e-

== eO8 4 e O Oeee e eo e N NO m9OO@e e ee N N e i t e= O 0 * ** C00000 O DO *

  • O J EoJee e

aw8 q ee e e = Seeeee e eS== = e ab e20 e eO O O -

  1. = 0 00000C O

OO * = 0 e4 4 4 e& I I ee h O Oe NNbhbk N kk O O > e 8 8 eO O O w -O C00000 O 00 e e e 4 4 e o o ee ak e@ S Sh e W @WW p e 8 e eO U O

== O O OO C00000 U O -OO O O O e i e e w w I i e@ J e Ce e@ ee@eeeee@ N = J e oee mee .e 8 i eo W O aO O OO

  • OOOOOO-=

= = W Q

  • OO O

O=0 e e e e e u a ee . g e @g e >c gggggggee e . g Wvv e >g, e uM eO Z O 00 0 00 0OOOOOOOO O O Z O COO O OOO e u w e O O eb i H ew = n egen Mnet OW nnMMMMMnneb g as n eMM nnMeg enn M e2i Z eO M O =000 00-0 00 000000000*C 0 > 0 -00 000-0 000 o owIw e 4 4 e t> en g N NNNN MNNONnen NNNNNNNNNNe N a N NNN nNNNONneNN N e 6w eO > 0 0000 000-0000 00000000000 0 > O 000 0000-00000 e a o w w 8 e3MO eN Z =**e==*N=*=t=NtNO ~~~~~~-~*n Z

  • =-***N==*t*Nw*=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ O" 0 0 0 0 0 0 0 0 0 0

  • Oww eO w
  • O w C000000000000000 eUw e

J e 2 e I II IIIIIIIIII IIIIII IZZ F w > > F e ee- > > >Z Z IZZ 3 e Ow e > > > > F F > > > e= >Mr>> 0 o N3 e >>>>>>Z>>22>>>>ZZZZZZZZZZ ZZZZZ5>2ZZZZ>2ZZ w e

== e <<<<<<O<<0044440000000000 000000400000<000 e O *= e 90000002003300003333333333 83333330333330333 e w ek e < n n a e O eZ - * - - - =- @.= e @ @ ~ ~ ~ ~ @ @ @ @ @ @ @ @ @ @ Z 2 Z Z Z @@@@@@ec@@@@@@@@

== rm o e OJ e e 3 e (L e eO e E e. % eN NNNNN ' Ow ewwe e& < < < < < < a < < < < < < < < CL 4 4 4 < < < < < < & & & & tL Zw e a e b e e <Z OZ ( to J e ZI e p< 04 W ::D e2o* eJa eJ OU e =4 e C&< NNO O C ak < Nk eCMO ea a e e at - N M - N M 9 c a n M T c = M * *

  • N M 9 e @ h a eo c h @

eex*N-NMee-NMmec-* wo e<wa eu >KZemmIIggTwnso3vococococcotanan a= ekom ea 3 e v e u v 0 0 0 0 6 u w 3 3 3 a m m a m m a m a m a s s er r a >ZtetrIIrrsts3psoo 3*<cu50000www333as

( \\ l a CEPORT NO. 01 FL0R IOA P0WER C0RP0 RAT IOM 11/17/94 PAGE 30 IO.CULP(EQ#L7) E0mL QQ TAGS POR I N POR M A T ION ON LY emessessessee.eoseeeeeeees.eoeeeeeeeeeeeeeeeee.eeeeeeeeeeeeeees....ee ooseeeeeees.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeos TAG NumeER COMPONENT PANEL 80x CAT CODE kev $ NFG VENOM 00EL NUMBER SLDG ELEv COL / row CESIGN REF EO ZONE (5)------------- FLOPTH 4/P OPTIME EO event (s)------------------------------------------- sAreiv FUCTION($)-=*===----====---==--*==*-**-******** Y w mBER e...................e..e......e..e.........se...........................e...............e.O.P...o.........e...............o......... EF3 A 6 MONTH 04 10 18 On RCI P2 NA 02 03 04 05 06 07 08 09 10 11 12 13 14 15 18 02 KG4 A 6 MONTH 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 18 11 RPIO P2 NA 01 02 11 01 RP5 P2 NA 03 05 07 09 12 15 On .w RF6 P2 NA 01 ~ R?? P2 NA 11 Of iw EP9 P2 NA 01 02 04 06 11 18 01 PEN-C515-04

  • 6 %

CTBO-10A PENETRATION, ELEC A Q Ex 00 CONx ,p IM-PLANT 38 RS 133-1 ye RC25 A 8 MONTH 08 02 03 04 OS 06 07 08 09 10 11 12 13 14 15 18 11 tmh pen-Csts-04 MT80-108 PEMETRATION. ELEC A O Ex 00 - COMM IN-PLANT 39 RB 137-5 13 C1 )> 4 [$ C3 IC CGS A 6 MONTH 01 02 03 04 05 06 07 08 09 30 11 12 13 14 15 18 tt C3 3> PEN-Cats-02 E3 F~ CTBO-11A PEMETRATION. ELEC A O Ex 11 00 CONx N-PLANT 39 R8 140-8 P CO KGt A 6 MONTH On 02 03 04 05 06 07 08 09 10 11 12 43 14 15 18 le d lf 'CO RG30 A 6 MONTH 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 17 18 11 i s i KG5 A 6 MONTH Of 02 03 04 05 06 07 08 09 10 14 12 13 14 45 18 11 30 C) RPt P2 NA 03 04 07 08 12 13 18 01 US Ds 3> C?4 P2 NA 18 01 hj d ' C) F~ RP7 P2 NA 11 01 b ni yC PEN-C5tS-03 -1 y I e MTBD-ItB PENETRATION, ELEC A O Ex II 00 CONx y, EN-PLANT 39 RB 140-8 g j Zd RG1 A 6 MONTH 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 18 11 () RG2 A o MONTH 01 02 03 04 c5 06 07 08 09 10 11 12 13 14 15 18 11 'I ~~ C) EG3 A 6 MONTH 01 02 03 04 05 06 07 08 09 10 11 12 13 to 15 18 14 M1 73 RG30 A 6 MONTH Of 02 03 04 05 06 07 08 09 10 11 12 13 14 15 17 18 It agm. KG4 A 6 MONTH 01 02 03 04 05 06 07 08 09 10 11 12 13 to 15 18 11

  1. w-RG5 A

6 MONTH 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 18 11 RP1 P2 NA 03 04 07 08 12 13 18 01 I KP4 P2 NA 15 Of GPF P2 NA 31 Os PEN-cst 8-03 i I; mu-t LIGHT SOCMET MU-t 8 Ex 00 4 IN-PLANT 01 A8 95 303-I WU3 Pt t HOUR Ot 02 04 05 06 09 10 11 12 13 14 15 18 Oi 03 ^ MU4 Pt i HOUR 02 03 03 MU5 Pt I HOUR 04 05 06 07 08 09 10 11 12 13 15 18 02 '6- r.~ CNTL-GO80-02 F# ' ' ~ MU-t CONTROL STATION 8 O Ex 00 IN-PLANT 01 A8 95 303-8 MU3 Pt 6 MONTH 01 02 04 05 06 09 10 11 SE 33 to 15 18 08 03 MUs Pt 6 DAYS O2 03 03 MuS Pt 6 MONTH 04 05 06 07 08 09 10 11 92 13 15 18 07

^% REPOR1 no. Of PL0miOA P O w E et CORPOA A T ION 11/977@4 PAes 36 ID.CULP(E0mL7) E0mL 00 TAGS POR I N P ON uA T 10N ON Lv eeeeeeeeeeeee........eeeeee eeeeeeeeeeee eeeeeee eeee.eeeeee.e ee ee ee eee eeee eeee e eee e e e e eee eee e eeee eeeeee. eeeeeeee ee TAG NUMBER C0mpONHT PANEL SOM CAT CODE MEv$ MFG VEN0es00EL NUm6ER DESIGN REF EG FONE(5)------------------------------ stoG ELEV COL /R0w FLOPTH A/P OP'J.mE EQ EVENT(S)------------------------------------------- SAFETV FUCTION($)-----------------------------------** oee,3eseeeeeooseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees****eeseeeee**e***e*******************VQP MumSER RG5 A 6 MONTH 01 02 03 04 05 06 07 08 09 to it 12 13 14 85 18 it IM57-R369-05 RC-103 TERM!NAL BLOCM

  1. C-103 A

Ex QC ww WENT SAK-4 IN-PLANT 40 R8 119 RG4 A e mos9fM 01 02 03 04 05 04 07 00 09 10 tt 12 13 14 15 18 11 TERM-wt?S-06 RC-ton TERutNAL BLtrCK RC-104 A Ex 00 ww WENT SAN-4 IM-PLANT 40 R6 119 RG4 A 6 MONTH 01 02 03 04 05 06 07 08 09 10 ft 12 13 14 15 18 at iERm-wI79-06 RC-105 TERutNAL BLOCK RC-105 A Ex 00 ww w@m7 SAR-4 IN-PLANT 38 RB 95 RG4 A 6 MONTH 08 02 03 04 05 06 07 08 09 10 11 12 13 14 15 18 in TEmm-wt79-06 RC-106 TERMINAL BLOCK RC-106 A Ex OQ ww wEMT SAM-4 F IN-PLANT 40 O y RS 119 l RG4 A e MONTH Ot 02 03 04 06 06 07 08 09 to 11 12 13 14 18 18 11 O ~ N f< _o TERM-wl79-06 RC-107 TERMINAL BLOCK RC-107 A Ex QQ ww WEuf SAM-4 (J I IN-PLANT 66 R8 95 g RG4 A 6 MONTH 01 02 03 04 05 06 07 08 09 10 11 12 13 to 15 18 41 O Q' TERM-wI79-06 RC-108 TERMINAL SLOCK RC-106 A R.Ex.OQ $. o iN-Pte,u .6 ww WEur SAK-4 5 RG4 A 6 MONTH 04 02 03 04 05 06 07 08 09 to at 92 13 14 15 18 11 m a O g YMRM-wi79-06 C o RC-ISS-PT TRAM 5mtTTER. PRESS b A AR CC Ex OQ ww RO RO Il54GP9AA Q g ~q IN-PLANT et RS 95 RG3 A 6 MONTH 01 02 03 04 05 06 07 OS 09 to it 12 13 14 IS 38 tt q O INST-R369-03 0 2 CC-tS8-pr SEAL RC-158-PT e Ex 00 RO 353C f TI IN-PLANT 66 R8 tot CG3 Pt 6 MONTH 01 02 03 04 05 06 07 08 09 10 tt 82 13 84 15 18 1i M ) \\ PEN-R369-01 KC-159-PT TRAN$wtTTER. PRESS { IN-PLANT 66 A AR CC Ex QQ ww RO RO ttS4GP9mA as RB 95 j-g RG3 A 6 es0 NTH Ot 02 03 04 05 06 07 08 09 10 11 12 13 14 15 18 ft 'J M INST-R369-03 CC-859-PT SEAL 1 + RC-tS9-PT sq IN-PLANT 66 e Ex 00 RO 353C RR 66 iY CG3 Pt 6 es0MTH 01 02 03 04 05 06 07 08 09 to 18 N O 14 15 18 11 .w. I 8EC-160-meta PEN-R369-01 ~ ELEMENT IN-PLANY 40 A Ex 00 xM ENCO SAsw2273Am2O Rg 160 'i t ___.__,_m. ~ - - - - - - - - - " ' - - - - - ' ' - -

..g p _~. J, h' \\ N5Njmag h h e ^ p k i

3....

.c ~.A 4 6 kg' W.L e r n 7e. N ~ .e ..e g g lj ANALY3'S/ CALCULATION 7 e 1 00C o r J -g.co o ATT # s e s .e 11 e ~ nEv E SHEET ~' M- 0F J __ ,e e. ew,. e .e . e e .J ,N e e<<N 6

  • OO O

O C000 O O e,,N e one e e e e e e ea a e O, O, O, O, e awe es M 8899 e e aw e e og e @@#9 - O e ges app,e e> 0 e O. O M. M. C. 0 0 0 O. M e i e 0000 e e e2e e e I e e e e e e . e g., g g eo a.e .S.S J 5333 .S J m o e e e6 3333 e o2 woe ww 2 wwww w 4 e z>e u a v w y; w w E e Q e -r-- e w e O e e e pu e 3 e = e

o. E

>e o e e Jo J> e e O-e 2e uw e ..e e.. O e e. e-. e e .e. eM e e 2e> 0 e e ew>e e e Oe zw. o O Co 00 Oc O 0C O O e Jo e o Os og Os O Of c meWWe e = O eO s e heCos ee x ese x ese x ese x ces x ese e x. e90g ee w eme w *** w=== w *** w ene w a x g <e Jo e e

e. @ @ @

e y eh ed Odd .d@@ Ee<e0 . Odd Od@ g W 0 e= 3.ev e e 4 e G

=

    • =

e e a eg 999 TTT TTW TTT TTT Weg g g e g ee eee ee= ewe O Os e o

  • ee ee, e

e em MMM MMM MMM MMM MMM . se g ea eee mee

=

M M M, M, e I e

  • me ee ze e

eN NNN NNN NNN NNN NNN NNN g e g ea een ene emo one ema N, we ei e we, 0 e ee a- ~~~ ~~~ ~~~ ~~~ e ee e-e==

=

-*=

=

e. =.=

= e ae e

=

.e ee so 000 000 000 000 000 000 i e xea e= --e 9

  • =~

O. 8 OsI e w e W ~~~ O Oeeee e@ - DSO e e e 8 e so C00 e 000 = eme e = 000 e C00 000 J .eJee e 8 e e coo O ewi4 ee ese e ese Q ese T See ese C ese e i e eZea eo o00 e 000 e coo I C00 000 m 000 O e t 4 e e.t u. u ea e> hhh Wh> 3 >>> Whk hhh 3 >>h e ee ao C00 000 000 000 000 000 O n e I e e e I l e@ WOO 99@ 999 eee e 8 e so COO E 000 000 000 000 000 O I e e O e 0 e ee FOO m en* 000 006 000 e e ae so C00 b 000 000 000 000 000 O 8 i e o la eg 99e E

  1. 9T 999 999 999 gqq g

e se oO 000 = 000 000 000 000 000 O s e gw e 3 e>s> em MMM MMM MMM MMM MMM MMM M M eZ42 eo C00 w 000 000 000 000 000 O o ewew e e e34) eN NNN NNN W NNN W NNN NNN W NNN N I i > e08w eo w 000 w 000 u 000 U C00 w 000 v OOO w O 1 e.~ e J J ~ ~ J 8 e3mo e= a ~~= e=== ~ .J .J J

=

=

m===

  • Oww oc g

000 < 000 000 000 < 000 .J

=

e - euw e o u e M u e 000 O e. 2 eI III III III ZZZ III IZZ g j u i Ow e-e ~. e, ,II =1 z.

=

.f <fff Offt offf O,fft <f 4 . I, O ~f f <f e w. z... M... I... - e 0 e. e.. z. OJ .o 8 . e e.ms e. e .e <, f w .e eww< 9 e e r = N

  • J z

r a .e rt

  • O. <

O< O. < O< z so- .J

v. eo. e.

N..J e.d N. J J .J .e, e N o e eN., . eN, eN., ne~,, .e~,, .M. N,.J N. N. wo e<wJ e o.

o. r o o o.

o r o o. o.

u. r o. o. o.
u. n o. c. o v r o. c. o uro.oo o _r.o sh.,

,M o-0. e 4

y g4 - 4 n l ll /NALYSfs r e ?, T CID Q as. corn s e .e ~ ATTs / 2. s. _.u . v- _7 n, e e -..,.e 7_ _ _ f____ o g--- g s, e e e

e..

e .e a .l e e e r, .Jw o 8 n va e e eO o oo o o oo o n , u .N e eae e e e e s N e2 Swee e em e e me e e 6 i e e o o 3 ow Icee e @S O e o o, e> e3en n oo o n Co n e e e i e e a3ee e aa g e aa e e o e 82e a e n p eQ e eJ 33 3 J o 3' 3' g g e. Maee m u J e g ea woee aa a e aa e e w 2' e r>ev .E. b 3 1 3 ww w e ww 4 w a v g m 2 e u ee u a o. e .z. e w g w e O e > e e 30 e = e O3 e >e aa e e e e .J e J> e 4 e o> e Ze vw e a e a e O+ < e o e m e e e e e e e e ee e e Ee> 0 e a = O s

  • w> s

+w s e e e o-on ON o on o oo O o o e i o e .J e e oo on oo o on o oe o in oe oe O e

== e w w e e = = u eo t e o he0CI e x e X e E e X e X m a y evo4 e w - W e w

  • W e-w e.-

K e X e x e x e x 2 4e .J e e e e e W - W

  • shea e

go ae e W ~ w .e x w 3ee a e w = ev s e ge e gc e ID e e w .c ac go go go e 3 ge 8 e 4 g T 9 e e e O Oe e e -9 T T T g g ~ ~ ~ e s e e g .n 6 se a e n n n n n n n n e e e e e e 2e a e N N N N N N N N = n,. e e e e = Me e i e o e n e e ~ ~ N N e

e e

e e e e e e e e e a e e o o o o o o o o o o = a gexe a e eoe a e a e o Oeea e e a m e o e e o e m

  • ~

~ s. e e e e e o e o e o o e o o a o o e o a a g J seJ6 6 e e o e, e e e i e ewI $ e a e o e - e e o e e o e a e = e e e O - e s E eZ0 i e 4 o e o 8 o o e o o e o e o 4 o e o I m e o e 3 h h 3 N g h a > g h e e a e o o o o o o o o o o u u y e 1 0 e e e I o e c e c g e 8 8 2 O O o o o o E o E o o o e e e e o e e e o a= ui e e e in e

== e

== c e c 4 I e b o O o o o o > 0 > o o o o o e a e e e ea e K g g g g 9 9 Z 9 Z v e 4e e

== 0 o o o o o a o a= o o o 4 e 4w e 3 g g e s-t > e a n n n n n n a n a n n n e egeg e w o o 3 3 o awew e o o o o en o w o o o e*ey e N w N w n N w N N N N w N w n H eO8 W e w o u o u o W o u o W o w o w o u o u o w eta e J 8 e3+O = J e e e J = eoww e e o 6 o a o < o a o e o e o e o a o a o q J J J J - e - J e - e - = eUw e u e es u e v v v e H = c s J J e 3 e Z I I I I I I I I I = J e e 3 e ow e +- O e N3 e r 2 2 2 2 2 2 Z r z u w *

==. o O Q o o o o o o o e ok o e3 as ea (E N2 e WQ e e n e K 43 m3 m3 @2 c3 e e o e c e e C C O c I n -N e e oJ e e 3 e 4 e .O e a 66 % e ( Ow

  • wwe e

4 e 4 e 4 4 4 4 g =, eeg e 6-k D-a e3 e g Z Z Z Z Z Z Z Z s 4 e32 e e 2 o n% et ce si g es gr 3 e tJ eJ @d @J e.J hJ hJ kI k J oy e

== 4, e N& N& N& N& N& N& N EL N& N& ~<

  • 4 3

&. edeo e g e n g s n E*n E8 n Een a4 M EeM S *n E en g N wo e<wJ e vzd v2O urd v2C v2d v20 uZ0 v2d uzO pm a n am 4 Pos e ang a=2 E=g E=a E=a a=E E=5 E*E a=g g g g Ng N g en g v20 v

k! q; ) q h ~ C E TAD / E DL N, ~ E D n SU o T 2s n T 1 e P N 8 E " Cs n v " Ra e E 5 t 7s = E 1 'W 4 n U 0e u T 5ss o = A C " Ea n Q D 1-a E mE 0 m a T a s 4 s. S n z a E 9 T e 4 a T O u aG i i 1 E r N a rN 0 o o o o M M c eA 1 T =.T T T S R G E E T T cn 8 = 3 A A T I 9 4 T T r T r ca 1 7 A E O u a u 9 D R i 1 B u N N m s > y O R A A i A IT T t A a R T 6 # m IE E-o L N n / AC s O 4 V e IT n A / T s S 3 / l llll = Y >t = H F T O e R N n Y O O T o B N I T / n D D E t T A n = W O t N A A e O A W L O = D. U E T n R R P E o e P 8* E E C R A E n Dn H L l V D 2-S S A s s w

  • A W

C B 5 s o o 5 T. 0 o z a R W 4 / / eE 9 S T E S I O n 4 a i i h / 1 D I 7 c G 1 yu o o o o N O S o o C Y D sA T T v 4 V. 9 = T. m r T EN A S L m

n 5

E E 2 I m E R x

== G f G E T A C V 4 1 7 .u a d P A N O E a 9 E A G D A D R s i 1 T A A E 4 E D T 5 T S A a 1 1 1 1 C a O E O o m T L L L r E N D L o ( O D a U s L e t O E n Ae-O T o R C N n O R U a T lllllll s O O C e s A TC B x E u rA 0 o o 7 A S O

  • s o

uM 0 m o n 4 O O M R e e u o 4 a z a a x i i N a i n 0 r w_T .n f t E e t 11 N 2- % p 4 U O P J 0 R R Y a a 0 o o o a O R T f a C c =S a a a a P s a PAE u A A l R N w 2 2 OmR n s n 2 C D P 9 u S R L f i OO L E O a. A Y RL T D o F s B E S so e 7 D WRY Of W v o o s o s 2 s 7 a o E T Pu 9 A ant f R iC B DW E U RUI A f A OTC P C LER FPP

j1 l I t 1 iilgg . F E T M E m s D U u s D R m u E SU O m e a T e2 R m T

  1. s1 P

N R u GoCe n RR E u 9' E W n 5 M m 77 d u 1 F W4 4 n U AoOo N m -C Q Rs>s O m m u R E Dam I 22 T 4 4 1 T A E 4 4 0 0 5 S R 0 0 2 6 9 E E B E 4 E T A 1 1 1 T O L TG E N A PN O O O O O E 1 M C EA T T T T T PS R G E CR 6 6 6 6 3 E T A H C 9 9 9 9 4 T T F A T I T r A a 7 1 5 9 M ME O 1 1 1 e 4 m S s g N M A 1 m A O R a 9 a IT T su G / M m N T m N /g A E I u E N m D RA s A t C S O E I 2 TA R i T T w S m u a m H n / u Y TR m u R s r O I u o N O m o R m E L F m E G L R m v 4 A O W W N E m O m R N m O T I D O m T / E I I I u T A T m ID M A # A W I I 5 5 2 / S L E Y U # T r R r B E 5 S 0 0 5 / ~ R A C # E R U L E 0 O 2 6 9 y O G L H A B E 4 ((r. s A 1 1 1 1 A O A S C G T P rN O O O O O e' A R C C D a T T T T T V. O 9 T I Y E E / N E N A S E A S U CR 5 5 5 5 2 7 O C 9 9 9 9 4 F S F A 3 7 1 5 9 P A E M O D 1 1 1 o m 1 A Y D S E 4 E T 5 T L I A A A C V G L 1 S C 1 O s O N O E T E A D R N T L L I W D O D O D A U M L E O B R R O T o R O C N m O e R U 2 T v w O O C 1 R M A e r P 0 0 7 c E K E N T A 0 0 u O U M 0 0 0 0 4 A S O f S E O O

  • 6 O

4 8 2 6 9 R R B 9 IT 1 1 1 N 3 x A O T R M N E L N: G B n A AU I e T O P A D Y U O w R U A A G 0 0 0 0

0. m u

RDR I T N T O F R M C M C NI 8 8 8 8 8m A A RE ROV S 2 7 2 7 2m I C O E P 7 5 2 9m LR fO R N 1 2 2m S R L F C ,L m E O G E r R G A m O O T I N S t E e E R S 5 0 5 7 o WUY 8R v D 0 O r PGC 2 5 7 6 T 9 A uT C D uE RrJ O .O C LTR FSP \\ I!l l ll[ ll' l'l' 1i l l. lll \\il I l

4. 1 y -t; f men r r c-., " - cry.e.1 nherN d r ries -Inserummet ada samey. s SURVEILLANCE REOUIREMENT - 3.3.1.6. (6) REACTOR PROTECI'lON SYSTEM A REACTOR BUILDING HIGH PRESSURE V ' j L SURVEILLANCE PROCEDURE / DEVICES: A. Surveillance promdure: SP-112. 1 B. Calibrated device included in the instrument Drift Data analysis: i DEVICE: Pressure Switch MANUFACTURER: Static "O"-Ring MODEL: 12N-K5 CM2 RANGE:.25 to 12 psig. CALIBRATED SPAN: 11.75 psig. t TAG NUMBERS: BS-59-PS, BS-60-PS, BS-61-PS, & BS-62-PS DEVICE DRIFT VALUE: None Stated 1 I IL NRC GENERIC LETTER 91-04 Analysis Criteria and DRIFT STUDY RESULTS: 1. "Corg/ inn that instnanent dr@ as detennined by "As-Found" and "As-Isp" calibmtion i data fmm suneillance and maintenance nconis has not,_ except on mas occasions, exceeded acceptable limitsfor a calibmtion intenal. " l O Per Refueling interval surveillance procedure, SP-112, " Calibration of the Reactor Protection System", the pressure switches listed above, have not exceeded acceptable "As-Found" surveillance procedure tolerances, for the surveillance' intervals investigated, except as described below. One raw calibration' data point for BS-62-PS, on 4/2/94, was found to have exceeded the calibration procedure "As-Found" tolerance in the conservative direction. It is considered a " rare occasion" exception. 'Ihe raw "As-Found" data has never exceeded the Tech.' Spec. limit of 4 psig. Raw calibration data points which have exceeded "As-Found" tolerance: 1 of-16 or 6%. Outlier Treatment i Raw calibration "As-Found" data which exceeds to acceptance' criteria of the surveillance procedure is considered to have some type of failure. Consequently, this data was removed. This is conservative since, by definition, failure of this raw calibration data to meet the surveillance procedure acceptance criteria, identifies this data and the operation of the instrument as "non-normal." Once the drift data has been calculated and the values which did not meet the I "As-Found" tolerance have been removed, an " outlier test" was performed on each remaining point. The outliers were identified by performing a statistical " critical values of T" test. The outlier criteria value was determined based on the number of total drift points. Outliers may DATE: May 2s. ms Page 1 of 8

i i Floeida Pow:r Ccrpornelon - Crystal Rinr Nuclesr Plant -Instrusnest Drift Study i SURVEILLANCE REOUIREMENT - 3.3.1.6. (6) REACTOR PROTECTION SYSTEM REACTOR BUILDING IIIGII PRESSURE result from raw calibration data which has exceeded the surveillance procedure "As-Found" tolerance, procedural or personnel errors, M&TE problems, or other deficiencies or failures. A conservative approach for dealing with outliers was utilized in that identified outliers were not removed form the drift data. 2. "Corfum that the values of driftfor each instmment type, (make, model and mnge) and application have been detennined with a high probability and a high degree of corfulence. Pmvide a summary of the methodology and assumptions used to detennine the mte of instmment drift with time based upon historicalplant data. " Standard statistical methodologies were utilized in this DRIFT STUDY. The following references were consulted to establish the techniques used in this evaluation.

1. ISA-S67.04, Part I Standard, Setpoints for Nuclear Safety-Related Instrumentation
2. ISA-S67.04, Part II Recommended Practice, Methodologies for the Detemination of Setpoints for Nuclear Safety-Related Instrumentation
3. EPRI document TR-103335, " Guidelines for Instrument Calibration Extension / Reduction Programs", Project 2409-21, final Report dated March 1994
4. American Society of Testing and Materials (ASTM) standard E178-1980, (re-approved 1989), " Standard Practice for Dealing With Outlying Observations."
5. ANSI N15.15-1974, American National Standard Assessment of the Assumption of Normahty
6. Probability and Statistics 4th Edition, Irwin Miller / John E Freund/ Richard A. Johnson The summary of the EPRI project observations, from section 9, " CONCLUSIONS" is as follows:

i A. Instrument drift tends to increase with instrument span. B. Instrument drift tends to be bounded by a normal distribution. i C. Instrument drift rarely showed any significant indication of time dependency. D. Instrument Drift Data often showed no bias for the direction of drift. E. OUTLIER checks are necessary to detect data errors. ne methods utilized in this drift study, can be summarized as follows: A. Instmment calibration data, ("As-Found" and "As-Left"), is obtained from, (typically), five intervals of the appropriate Refueling interval surveillance procedure. The number of intervals may change if instmments have been replaced with a different type, etc. pxrms.y 2s. ms Page 2 of 8 .~

y / Neida Power Corporatium - Crystal River Nuclear Plant - lastrument DrtA Study SURVEILLANCE REOUIREMENT - 3.3.1.6. (6) REACTOR PROTECTION SYSTEM REACTOR BUILDING HIGH PRESSURE v B. A spread sheet computer program, which can be mn on a personal computer is utilized for case of analysis. Florida Power Corporation utilizes Microsoft Excel, running under a Microsoft Windows environment. See the " SPREAD SIIEET FORMAT" section below for an explanation of the spread sheet data and calculations. C. The " RAW" "As Found" and "As Left" data is obtained from the associated Refueling interval surveillance procedure, and entered onto the spread sheet. D. Drift Data information is obtained by subtracting the "As-Irft" data from the "As-Found" data from one "As-Found" date to the next. This difference is divided by the calibrated span and the Drift Data is then expressed as a PERCENT OF SPAN. E. Drift Data is analyzed and the MEAN and STANDARD DEVIATION is determined. " OUTLIER detection by critical values of T" test is performed and if required, the Drift Data OUTLIERS may be excluded from further analysis. F. Next, the tolerance interval for the data is calculated by multiplying each calculated STANDARD DEVIATION by the appropriate 95%/95% tolerance factor. His factor indicates a 95% level of confidence, that 95% of the instrument Drift Data will be _3 contained within the tolerance interval. (O G. He Drift Data is tested to verify the assumption that the data is " NORMAL". Flther a D'-test or W-test may be performed. If the Drift Data fails these tests, then a " COVERAGE ANALYSIS" is performed. The Coverage Analysis requires that Drift Data be analyzed o determine if the data is bounded by a normal distributior.. A " DATA HISTOGRAM" is plotted, as well as a comparison table of the actual distribution of the Drift Data versus the expected probability distribution to show that the Drift Data is normally bounded. H. To evaluate time dependency, the Drift Data is charted versus calibration interval, (in months), and also charted versus calibration, ("As-Found"), date. The charts can then be utilized to demonstrate no time dependent trend is observed. I. If the Drift Data is demonstrated to (1) be " normal" and (2) is not time dependent, then the 95%/95% Tolerance values for the instruments are assumed to envelop the 30-month drift values, hence the projected 30-month drift is the 95%/95% Tolerance values. D u r.:May 2s,im Page 3 of 8

_m Florida Fener Corporation - Crystal her Nuclear Plant - Instrunwed Drift Study SURVElLLANCE REOUIREMENT-3.3.1.6. (6) REACTOR PROTECTION SYSTEM REACTOR BUILDING HIGH PRESSURE O-SPREAD SIIEET FORMAT The surveillance procedure data is arranged in a spread sheet format which displays the j following information: A. Instrument Tag Number / Channel /Descriptor, B. "As-Found" and "As-12ft" calibration dates of the surveillance procedure, which are used to Calculate the calibration " INTERVAL"s, C. Raw "As-Found" and "As-I2ft" device data, (voltage, pressure, etc.), D. " DRIFT DATA", (difference between "As-Found" and "As-Ixft" data divided by the calibrated SPAN of the instrument, expressed in PERCENT of SPAN), E. " OUTLIER detection by critical values of T" test, F. Range, Calibrated Span, "As-Found" and "As-I2ft" tolerances, Instrument Error /Setpoint calculation number, device setpoint, Technical Specification Limiting Value, etc. is provided for reference. G, Drift Data statistical information: MEAN, STANDARD DEVIATION, OUTLIER l CRITERIA, number of Drift Data points, number of OUTLIERS excluded,95%/95% "k" value, and the calculated i 95%/95% tolerance values. H. The D'-test or W-test for " normal" data assumption is performed. If the data fails the appropriate test, a Drift Data Histogram and coverage analysis is performed. I. Drift Data, surveillance interval, "As-Found" dates, 95%/95% tolerance values, and zero % values are provided for charting. t 3. "Confinn that the magnitude of indrument drift has been detennined with a high pmbability and a high degree of confidence for a bounding calibmtion interval of 30 l monthsfor each innmment type; make, model number and mnge) and application that j perfonns a sqfetyfunction. Pmvide a tid of the channels by Technical Specification section j that identifies these innrument applications. " f f i O a m M.yas,i,9s Page 4 of 8 m,-, ~.-.. - -

Florida Power C-.,.-. " - CrystalIUwer No Imar Fimmt -lasseumsat Dem study SURVEILLANCE REOUIREMENT - 3.3.L6. (6) REACTOR PROTECTION SYSTEM REACTOR BUILDING HIGH PRESSURE .p 'V 'Ihe Drift Data calculations for each Surveillance Requirement, establishes the "i95%/95%" Tolerance Factor. This calculated value indicates a 95% level of confidence, that 95% of the population, (instrument Drift Data), will be within the stated interval. The RB Pressure HIGH Pressure Switch Drift Data passed the W-TEST, (the data is " normal"), and the associated charts indicate that the Drift Data is neither calibration interval dependent nor time, (age), dependent. In summary, since the Drift Data is " normal" and does not appear to be time dependent, then the 95%/95% Tolerance values can be assumed to envelope the 30-month drift values. I As indicated on page one, the Surveillance Requirement and instruments covered by this analysis, are as follows: Surveinance Reautrement: 3.3.1.6, (6); Reactor Protection System, Initiation - Reactor Building Pressure - HIGH Surveillance procedure: SP-112. Technical Specification Allowable Value: s 4 psig. Surveillance procedure setpoint: 3.34 psig. Tan Numbers: Channel "A": BS-59-PS, Channel "B": BS-60-PS, Channel "C": BS-61-PS, Channel "D": BS-62-PS i +95%/95% Tolerances: BS-59.60.61.62-PT + 1.4%, + 0.2 psig - 1.7%, - 0.2 psig 4. "Confinn that a comparison of the pmjected instrument drift ermis has been made with the values of drift used in the setpoint analysis. If this results in revised setpoints to accommodate larger drift envrs, pmvide pmposed Technical Spec (fication changes to update trip setpoints. if the drift ermrs result in a revised sqfety analysis to support existing setpoints, pmvide a summary of the updated analysis conclusions to cortfinn that the sqfety limits and sqfety analysis assumptions are not exceeded. " O v oxro M.y 2s,i,95 Page 5 of 8

Florida Fewer C.e,.; ' - Crystal IUver Nuclear Flame - Instrunnent Dsift Study SURVEILLANCE REOUIREMENT - 3.3.1.6. (6) REACTOR PROTECTION SYSTEM REACTOR BUILDING HIGH PRESSURE Engineering has a program in place to upgrade the RPS Instrument Accuracy Calculations to reflect 30 month drift error terms. It is assumed that no change will be required for the Technical Specifications due to the RPS Instrument Accuracy Calculation. The calculation for these pressure switches will provide the required I surveillance procedure setpoint and "As-Left" and "As-Found" procedure tolerances, which will include, as required, any effects due to 30-month drift. The projected 30-month drift terms for the pressure switches have never been exceeded for the surveillance intervals investigated. Hence, since Drift Data is not time dependent, we have a high level of confidence that future Drift Data will be contained within the projected tolerance interval. 5. "Cortfinn that the pmjected instrument errors caused by drift are acceptablefor control ef plant pammeters to effect a sqfe shutdown. Ilcensees must cortfinn that the instrument errors caused by drift will not qffect the capability to achieve sqfe shutdown. " l The RPS Reactor Building Pressure Switches are utilized for inputs to: A. RPS REACTOR BUILDING HIGH PRESSURE, (4 psig), Reactor Trip Actuation B. RPS REACTOR BUILDING HIGH PRESSURE, (4 psig), Alarm The pressure switches analyzed in this Drift study are not utilized for control of plant parameters, other than the RPS " TRIP" functions. Since in (4) above the 30-month drift term has been found to be acceptable, then the projected drift value will not affect the capability to achieve safe shutdown. 6. "Cortfinn that all conditions and assumptions of the setpoint and sqfety analysis have been checked and are appropriately reflected in the acceptance criteria of plant surveillance pivceduresfor CilANNEL CilECKS, CilANNEL FUNCTIONAL TESTS and CIIANNEL CALIBRATIONS. " As stated in (4) above, the calculation for these reactor building pressure switches will provide the required surveillance procedure setpoint and "As-Left" and "As-Found" procedure tolerances. The revised "As-Left" and "As-Found" surveillance procedure tolerances, will be incorporated into the appropriate CHANNEL CHECKS, CHANNEL FUNCTIONAL TEST or CHANNEL CALIBRATION surveillance procedures, as required. i O o xr n u.y2s.i,9s Page 6 of 8 p--n- ,c w -

Flodda Power Ccrporation - Crystal Rivir Nudear Plant - lastrument Drift Study SURVEILLANCE REOUIREN1ENT - 3.3.1.6. (6) REACTOR PROTECTION SYSTEM REACTOR HUILDING IIIGII PRESSURE 7. "Pmvide a summary description of the pmgmm for monitoring and assessing the effects ofincreased calibration surveillance intervals on instrument drVI and its effect on sqfety. The instrument " DRIFT PROGRAM" is an ongoing program which will monitor future surveillance procedure "As-Found" and "As-Left" data, and will incorporate new data into the Drift Study spread sheets with the existing Drift Data. The revised Drift Data MEAN, STANDARD DEVIATION, i 95%/95% TOLERANCE INTERVALS, etc., will be compared with the existing Drift Data, to ensure the conclusions reached in this report remain valid. IIL DRIFT STUDY

SUMMARY

1. Per Refueling interval surveillance procedure, SP-112, the pressur.; switches have not exceeded acceptable "As-Found" surveillance procedure tolerances, for the surveillance intervals investigated, except as follows. One raw calibration data point for BS-62-PS, on 4/2/94, was found to have exceeded the calibration procedure "As-Found" tolerance in the conservative direction. It is considered a " rare occasion" exception. The raw "As-Found" data has never exceeded the Tech. Spec. limit of 4 psig. Raw calibration data points which have exceeded "As-Found" tolerance: 1 of 16 or 6%. 2. The attached spread sheets and charts present calculated Drift Data and the associated statistical information using the methods described in the references. The methodology is summarized in section H.2, above. 3. The pressure switch Drift Data is considered " normal". The associated charts indicate that the Drift Data for the switches are neither calibration interval dependent rior time, (age), dependent. Hence, the 95%/95% Tolerance values can be assumed to envelop the 30-month drift values. 4. Engineering has a program in place to upgrade the RPS Instrument Accuracy Calculations to reflect 30 month drift error terms. It is assumed that no change will be required for the Technical Specifications due to the RPS Instrument Accuracy Calculation. The calculation for these pressure switches will provide the required surveillance procedure setpoint and "As-Left" and "As-Found" procedure tolerances, which will include, as required, any effects due to 30-month drift. The projected 30-month drift terms for the pressure switches have never been exceeded for the surveillance intervals investigated. Hence, since Drift Data is not time dependent, ~N j (O dam u y 2s.199s Page 7 of 8

.) n.esa.r rc, cry.sw akerNws en e an enruise.dy SURVElLLANCE REOUIREMENT - 3.3.1.6. (6) REACTOR PROTECTION SYSTEM BEA_{ TOR BUILDING HIGil PRESSURE we have a high level of confidence that future Drift Data will be contained within the projected tolerance interval. 5. The pressure switches analyzed in this Drift study are not utilized for control of plant parameters, other than the RPS " TRIP" functions. Since in (4) above the 30-month drift term has been found to be acceptable, then the projected drift value will not affect the capability to achieve safe shutdown. 6. As stated in (4) above, the calculation for these reactor building pressure switches will provide the required surveillance procedure setpoint and "As-Left" and "As-Found" procedure tolerances. The revised "As-12ft" and "As-Found" surveillance procedure - tolerances, will be incorporated into the appropriate CHANNEL CHECKS, CHANNEL FUNCTIONAL TEST or CHANNEL CALIBRATION surveillance procedures, as required. 7. The instrument " DRIFT PROGRAM" is an ongoing program which will monitor future surveillance procedure "As-Found" and "As-Left" data, and will incorporate new data into the Drift Study spread sheets with the existing Drift Data. The revised Drift Data MEAN, STANDARD DEVIATION, 95%/95% TOLERANCE INTERVALS, etc., will be compared with the existing Drift Data, to ensure the conclusions reached in this i report remain valid. IV. CONCLUSION: Ba.ed on the above summary, the Surveillance Interval for this Technical Specification calibration requirement can be extended to 30-months. E t O dam u.y 2s,1995 Page 8 of 8

m (d~ ) a SP-112 S.R. 3.3.1.6, (6) BS-59,60,61 & 62-PS Reactor Blailding HIGH Pressure s W- "" e Procedere: SP-Il2 Calthrustem Interval Tsip Deift Dean TAG NUMBER Duee (Memahn) Duca Ounner Evalmaalem BS 59-PS Asid 9/30/38 3300 RPS CHANNEL A As Sound 4/3/90 18.I 3.210 -0.77% PS CAB. 3At As Ed 4/190 3.320 DATA IS OK As Psamd 9/I6/91 173 3.300 4 17 % As Ed 11/3/91 3.250 DATA IS OK As Femmd 3/2493 IS.2 3 350 0 60 % As IA 3/2493 3350 DATA IS OK As Faumd 4/2/94 123 3320 -0.26% As14 4/2,94 3.320 DATA IS OK BSee-PS As id 9/30/B3 3350 RPS CllANNEL B As Found 4/3/90 18.1 3.290 -0.51% PSCAB 3A2 As 14 4/3/90 3.290 DATA IS OK As Faumd 9/16/91 17.5 3.250 -034% As14 11/5/98 3330 DATA IS OK As Found 3/24/93 18.2 3.430 0.25% As IA 3/24/93 3.430 DATA IS OK As Found 4/2/94 123 3310 -1.02% As LA 4/2/94 3310 DATAIS OK BS41-PS As IA 9/30/88 3.250 RPS CHANNEL C As Found 4/3/90 a 5.1 3.130 0 60 % PS Call 3A3 As IA 4/3/90 3.320 DATA IS OK As Found 9/16/91 17.3 3.330 0.09 % As id 11/5/98 3340 DATA IS OK As Found 3/2493 IS.2 3.400 0.51 % As IA 3/24/93 3.400 DATA IS OK As Found 4/2/94 123 3340 -0.31% As14 4/2/94 3340 DATAIS OK B&42-PS As LA 9/30/88 3.340 RPS CHANNEL D As Found 4/3/90 15.8 3380 034% PS CAB. 3A4 As14 4/3/90 3300 DATAIS OK As Found 9/16/91 17.3 3.280 4.17% As1d I t/5/91 3.270 DATAIS OK As Found 3/2493 18.2 3.200 -0.60% As IA 3/24/93 3300 DATA IS OK As Found 4/2/94 123 3.000 -1.87% As 1 A 4/2.94 3 330 OllTI,IER Preemere Range: .25 to 12 peig Meem: -0.17% Perrent pang Pressure Span: 11.75 palg

    • ==d==d Devemalee 0.32 %

+95%/95%: 1.4% 0,2 SP-il2 Seepetme: 334 pelg Nasaber ef reemen: 16 -95%/95%: -1.7% -0.2 TS I 8-danne vehme: <=4 pela Perreme Ouemers Escheded: I saepshst Calculestme: 183 4001 SP-Il2 As Famed Tel: 0.19 pda 1.62% Ousmer Crtnerta. 2.443 SP-Il2 As IA Tel: 0.19 male I.62% 95%/95% Ic 2.954 DATL artw9s Page 1 of 2 ram asnartars

4-e O O 4 [ s Iw' n v5 } (- d ( ( ( f f d d ( :f f ( f f

4,, a a a

a a o o j k k k $ $ k k ! k 9 9 o 9 9 9 o r 9 4 o 9 o 9 9 i b , - o ... o s = = = = s ~ 3= 1 E U. i, d u s d f,

  • g a s ; : : e o

4 -x fb"

  • es C

M h 'j g e 'il o o o o o 9 9 o o o o o o o o o o o o o o o o o o o } ses,sk s,s,s, ssssssssssssssssss 9, b k h 6 h k E d d d d d d d d d d d d d d d d d d 2 : 2 2 2 2 2 0 0 0 00 0 0 0 0 0 0 i iI.I ] ] k k k k k k $ k k k $ sk ! s k o ,, o,,, o , o., o,, o - - n. l N ? U ? N N $ g Z h h

  • g g 8

g i l ~ g i E

  • g l =

e n e s t e n e c e n e t s c e 1 g l >j ] s o e v e [ '\\ U s if a i I e

b d Suveillarce Regrirement 3.3.1.6,(6) BS-59,60,61 & 62-PS 4 psig RB Pressure High Pressere Switch Drift Data 95%/95% Tolerance Drift Data VS InterTal ,/ / 1.50 % - / 1.38 % I 1.00% - a I 0.50% - c a g 3 0.00% -- = 0.00 % o= m k c g -0.50% -- a g, e f -1.00 % - e -1.50% -; -1.72% -2.00 % l l i l l 11 12 13 14 15 16 17 18 19 Calibration Interval (Months) Page1of1 ras:amersma r omer onta vs sevenvat.

S S:rveill=ce Requirement 3.3.1.6,(6) BS-59,60,61 & 62-PS 4 psig RB Pressure High Pressure Switch Drift Data Drift Data VS "As-Found" Date 1.tMi% e 0.80% -[ 0.60% -[ E E 0.40% - m 0.20% -[ w =- m v, 0.00% - f 0.00 % C$ ei C 3* -0.20 % -: Ag E a -0.40% -: a 5 f8 8 -0.60% - -0.80% -[ -1.00 % -3 4 -1.20% ''''''i''''''i""""""""i"'''''i''''''i 1/1/90 1/1/91 1/1/92 1/1/93 1/1/94 1/1/95 Date of Calibration Page 1 ofI ras.t ensesarsi4 rsse enet omia vs oars

._s Surveillance Requirement 3.3.1.1,(6) BS-59,60,61 & 62-PS l l l 4 psig RB Pressure High Pressure Switch Drift Data Absolute Yahoe of Drift Data VS "As-Found" Date 1.20% -- 1.00% - m 0.80% -- m E a "E ydi a m e g 0.60% - c u. og a a m 0.40% -- m 0.20% -- m e 0.00 % ""'''';'""'""i """i*'''" 1/1/90 1/IMI 1/IM2 1/183 1/154 1/1/95 l Date of Calibration Page1 of1 , awn.,.ma,. , ra vs n .an.,os

S'. ~ nau. r, c, --cry iaw.,u.a,n i e-ona sewy SURVEII,L ANCE REOUIREMENT - 3.3.5.3. m ENGINEERED SAFEGUARDS ACTUATION SYSTEM 3 RCS PRESSURE LOW G L SURVEILLANCE PROCEDURE / DEVICES: A. Surveillance procedure: SP-132. B. Calibrated devices included in the instrument loop Drift Data analysis: I. DEVICE: Pressure Transmitter. MANUFACTURER: Rosemount. MODEL: ll54GP9RA. RANGE: 0 to 3000 psig. CALIBRATED SPAN: 0 to 2500 psig. TAG NUMBERS: RC-3A-FI'3, RC-3A-FT4 & RC-3B-Fr3 DEVICE 30-MONTII DRIFT VALUE: i 0.2% of URL, (from vendor manual), or ( 0.2% x 3000/2500) = i 0.24%. 2. DEVICE: Buffer Amplifier. MANUFACTURER: Bailey Meter Company. MODEL: 6621670A1241. INPUT SPAN: 1 to 5 volts DC = 0 to 2500 psig OUTPUT SPAN: 0 to 10 volts DC = 0 to 2500 psig TAG NUMBERS: RC-3A-PY3, RC-3A-PY4-1, RC-3B-PY3 DEVICE DRIFT VALUE: i 0.1 % Full Scale, (30 days, from B&W Calc. 183-0001, Rev. 4), 3. DEVICE: Bistable. MANUFACTURER: Bailey Meter Company. MODEL: 6621500A1. INPUT SPAN: 0 to 10 volts DC = 0 to 2500 psig TAG NUMBERS: RC-3-BT1, RC-3-BT2, RC-3-BT3 DEVICE DRIFT VALUE: i 0.03% Full Scale, (30 days, from B&W Calc. I834X)01, Rev. 4). Q DATo M.y 2s. ms Page 1 of 10

y. l '/' Horida Power Corporation - Crystal River Nuclear Plant - Instrument DriA Study SURVEILLANCE REOUIREMENT-3.3.5.3. O) ENGINEERED SAFEGUARDS ACTUATION SYSTEM RCS PRESSURE LOW p \\ U. NRC GFNERIC LlilTER 91-04 Analysis Criteria nnd DRIFT STUDY RESULTS: 1. "Cor$nn that instmment drill as detennined by "As-Found" and "As-Left" calibmtion data fmm surveillance and maintenance records has not, except on mre occasions, i exceeded acceptable limitsfor a calibmtion interval. " l Per Refueling interval surveillance procedure, SP-132, " Engineered Safeguards Channel Calibration", the components listed on the preceding page, have not exceeded acceptable, "As-Found" surveillance procedure tolerances, for the surveillance intervals investigated, except as indicated below. I BISTABLES: For RC-3-BT1, one OUTLIER was identified. The Drift Data of 3/20/90 was identified as an OUTLIER. The raw "As Found" calibration data EXCEEDS the procedure "As Found" tolerance. Hence, this OUTLIER was removed from the data. For RC-3-BT2, l one OUTLIER was identified. The Drift Data of 3/20/90 was identified as an OUTLIER. The mw "As Found" calibration data EXCEEDS the procedure "As Found" tolerance. Hence, this OUTLIER was removed from the data. Raw calibration data points which have exceeded "As-Found" tolerance: 2 of 15, or 13%. TRANSMITTER & BUFFER / AMPLIFIERS: For RC-3A-PT3, the 75% and 100% raw "As-Found" calibration data point for 10/14/88, was found to exceed the calibration procedure "As-Found" tolerance Hence, these OUTLIERS were removed and are considered l " rare occasion" exceptions. Once the OUTLIERS were removed from the Drift Data, the 50% Drift Data of 10/15/88 was identified as an OUTLIER. The raw calibration data for this point is within the procedure calibration tolerance, hence this OUTLIER was not removed. (NOTE: Transmitter RC-3A-PT3 caused outliers in all drift data studies for both ESAS functions: RCS LOW PRESSURE 1500 psig bistable and RCS LOW-LOW PRESSURE 900 psig bistable). For RC-3A-PT4, the 100% raw "As-Found" calibration data point for 10/15/88, was found to exceed the calibration procedure "As-Found" tolerance Hence, this OUTLIER was removed and is considered a " rare occasion" exception. (NOTE: Transmitter RC-3Aff4 caused outliers in all drift data studies for both ESAS functions: RCS LOW PRESSURE: 1500 and 1700 psig bistables and RCS LOW-LOW PRESSURE: 900 & 500 psig bistables). Raw calibration data points which have exceeded "As-Found" tolerance: 3 of 75 or 4%. Outlier Treatment Raw calibration "As-Found" data which exceeds to acceptance criteria of the surveillance procedure is considered to have some type of failure. Consequently, this data was removed. This is conservative since, by definition, failure of this raw calibration data to meet the surveillance procedure acceptance criteria, identifies this data and the operation of the s instrument as "non-normal." Once the drift data has been calculated and the values which did DA m u.y2s.i m Page 2 of 10

0' Horlds Power Corporcelom - Crystal hsr Nucle:r Plant - Instnament Drift Study SURVEILLANCE REOUIREMENT - 3.3.5.3. Q1 ENGINEERED SAFEGUARDS ACTUATION SYSTEM Q RCS PRESSURE LOW V not meet the "As-Found" tolerance have been removed, an " outlier test" was performed on each remaining point. The outliers were identified by performing a statistical " critical values of T" test. The outlier criteria value was determined based on the number of total drift points. Outliers may result from raw calibration data which has exceeded the surveillance procedure "As-Found" tolerance, procedural or personnel errors, M&TE problems, or other deficiencies or failures. A conservative approach for dealing with outliers was utilized in that identified outliers were not removed form the drift data. 2. "Confinn that the values of driftfor each instmment type, (make, model and mnge) and application have been detennined with a high pmbability and a high degree of corfulence. Pmvide a summary of the methodology and assumptions used to detennine the mte of instnament drift with time based upon historicalplant data. " Standard statistical methodologies were utilized in this DRIFT STUDY. The following references were consulted to establish the techniques used in this evaluation.

1. ISA-S67.04, Part I Standard, Setpoints for Nuclear Safety-Related Instrumentation
2. ISA-S67.04, Part II Recommended Practice, Methodologies for the Determination of Setpoints for Nuclear Safety-Related Instrumentation
3. EPRI document TR-103335, " Guidelines for Instrument Calibration Extension / Reduction Programs", Project 2409-21, final Report dated March 1994
4. American Society of Testing and Materials (ASTM) standard E178-1980, (re-approved 1989), " Standard Practice for Dealing With Outlying Observations."
5. ANSI N15.15-1974, American National Standard Assessment of the Assumption of Normality
6. Probability and Statistics 4th Edition, Irwin Miller / John E Freund/ Richard A. Johnson The summary of the EPRI project observations, from section 9, " CONCLUSIONS" is as follows:

A. Instrument drift tends to increase with instrument span. B. Instrument drift tends to be bounded by a normal distribution. C. Instrument drift rarely showed any significant indication of time dependency. D. Instrument Drift Data often showed no bias for the direction of drift. E. OUTLIER checks are necessary to detect data errors. o m a t.y 2s 1995 Page 3 of 10

y. Florida Power Corporatium - Crystal Rher Nuclear Plant -Instriuneet Drift Study SURVEILLANCE REOUIREMENT - 3.3.5.3. m ENGINEERED SAFEGUARDS ACTUATION SYSTEM /' RCS PRESSURE LOW G] The methods utilized in this drift study, can be summarized as follows: A. Instrument calibration data, ("As-Found" and "As-Left"), is obtained from, (typically), five intervals of the appropriate Refueling interval surveillance procedure. The number of intervals may change if instruments have been replaced with a different type, etc. B. A spread sheet computer program, which can be run on a personal computer is utilized ) l for ease of analysis. Florida Power Corporation utilizu Microsoft Excel, running under 4 a Microsoft Wm' dows environment. See the " SPREAD SIIEET FORMAT" section below for an explanation of the spread sheet data and calculations. j t l i C. The " RAW" "As Found" and "As I2ft" data is obtained from the associated Refueling interval surveillance procedure, and entered onto the spread sheet. D. Drift Data information is obtained by subtracting the "As-Ixft" data from the "As-Found" data from one "As-Found" date to the next. This difference is divided by the calibrated span and the Drift Data is then expressed as a PERCENT OF SPAN. E. Drift Data is analyzed and the MEAN and STANDARD DEVIATION is determined. j " OUTLIER detection by critical values of T" test is performed and if required, the Drift l Data OUTLIERS may be excluded from further analysis. F. Next, the tolerance interval for the data is calculated by multiplying each calculated l STANDARD DEVIATION by the appropriate 95%/95% tolerance factor. This factor indicates a 95% level of confidence, that 95% of the instrument Drift Data will be contained within the tolerance interval. G. The Drift Data is tested to verify the assumption that the data is " NORMAL". Either a D'-test or W-test may be performed. If the Drift Data fails these tests, then a " COVERAGE ANALYSIS" is performed. The Coverage Analysis requires that Drift Data be analyzed to determine if the data is bounded by a normal distribution. A " DATA HISTOGRAM" is plotted, as well as a comparison table of the actual distribution of the Drift Data versus the expected probability distribution to show that the Drift Data is normally bounded. H. To evaluate time dependency, the Drift Data is charted versus calibration interval, (in months), and also charted versus calibration, ("As-Found"), date. The charts can then be utilized to demonstrate no time dependent trend is observed. I. If the Drift Data is demonstrated to (1) be " normal" and (2) is not time dependent, then the 95%/95% Tolerance values for the instruments are assumed to envelop the 30-month drift values, hence the projected 30-month drift is the 95%/95% Tolerance v values. dam u.y 2s. ms Page 4 of 10

Florida Power Corporatine - Crystal Riv:r Nuclear Pland - Instrwnent Drtit Study SURVEILLANCE REOUIREMENT - 3.3.5.3. m ENGINEERED SAFEGUARDS ACTUATION SYSTEM RCS PRESSURE LOW v 1 SPREAD SIIEET FORMAT The surveillance procedme data is arranged in a spread sheet format which displays the following information: A. Instrument Tag Number / Channel /Descriptor. B. "As-Found" and "As-Left" calibration dates of the surveillance procedure, which are used to Calculate the calibration " INTERVALS". C. Raw "As-Found" and "As-Left" device data, (voltage, pressure, etc.). D. " DRIFT DATA", (difference between "As-Found" and "As-Left" data divided by the calibrated SPAN of the instrument, expressed in PERCENT of SPAN). 1 E. " OUTLIER detection by critical values of T" test. F. Range, Calibrated Span, "As-Found" and "As-Ieft" tolerances, Instrument Error /Setpoint calculation number, device setpoint, Technical Specification Limiting Value, etc. is provided for reference. G. Drift Data statistical information: MEAN, STANDARD DEVIATION, OUTLIER CRITERIA, number of Drift Data points, number of OUTLIERS excluded,95%/95% "k" value, and the calculated i 95 %/95% tolerance values. H. The D'-test or W-test for " normal" data assumption is performed. If the data fails the appropriate test, a Drift Data Histogram and coverage analysis is performed. I. Drift Data, surveillance interval, "As-Found" dates, i95%/95% tolerance values, and zero % values are provided for charting. 3. "Cordirm that the magnitude of instnament dr@ has been detennined with a high pmbability and a high degree of cort (u'tence for a bounding calibmtion interval of 30 monthsfor each instnament type, make, model number and mnge) and application that perfonns a sqfetyfunction. Prvvide a list of the channels by Technical Specification section that identifies these instnament applications. " The Drift Data calculations for each Surveillance Requirement, establishes the "i95%/95%" Tolerance Factor. This calculated value indicates a 95% level of confidence, that 95% of the population, (instrument Drift Data), will be within the stated interval. Dxtrai.yas,1*s Page 5 of10

Nrida Power Corperstles - Crystal River Nuclear Plant -Instrument DriA Study SURVEILLANCE REOUIREMENT-3.3.5.3 (1) ENGINEERED SAFEGUARDS ACTUATION SYSTEM RCS PRESSURE LOW v The Bistable Drift Data passed the W-TEST, (the data is " normal"), and the associated charts indicate that the Drift Data is neither calibration interval dependent nor time, (age), dependent. The loop Drift Data, (Transmitter / Buffer Amp), did not pass the D'-TEST. However, a " COVERAGE ANALYSIS" was performed on the data, including a " DATA HISTOGRAM" chart and also a " NORMAL DISTRIBUTION" comparison. The " Actual" covesage distribution envelopes the " Expected Value", from 0 to 4 sigma. Therefore, for the purposes of this Drift Study, the Drift Data is considered " normal". The associated charts indicate that the Drift Data is neither calibration interval dependent nor time, (age), dependent. In summary, since the Drift Data is " normal" and does not appear to be time dependent, then the 95%/95% Tolerance values are assumed to be the limits of the predicted 30-month drift values. As indicated on page one, the Surveillance Requirement and instruments covered by this analysis, are as follows: Surveillance Reauirement: 3.3.5.3, (1); ESAS Initiation - RCS Pressure Low. Surveillance orocedure: SP-132. Technical Specification Allowable Value: s 1500 psig. Surveillance Procedure Setooint: 1540 psig. Tae Numbers: Channel "1": RC-3A-IYT3, RC-3A-PY3 & RC-3A-BTl; Channel "2": RC-3A-I'f4, RC-3A-PY4-1 & RC-3A-BT2; Channel "3": RC-3B-PT3, RC-3B-PY3 & RC-3-BT3. +95%/95% Tolerancest Transmitter & Buffer / Amp J1istable + 0.55 %, + 13.7 psig + 0.37%, + 9.3 psig - 0.62%, - 15.4 psig - 0.36%, - 9.1 psig 4. "Corzfinn that a comparison of the projected instrument drift errors has been made with the values of drift used in the setpoint analysis. If this results in revised setpoints to accommodate larger drift errors, provide pivposed Technical Specification changes to update trip setpoints. If the drift errors result in a revised sqfety analysis to support existing setpoints, provide a summary of the updated analysis conclusions to confirm that the safety limits and safety analysis assumptions are not exceeded. " l nA m si.y2s,1995 Page 6 of 10 1

Fleside Power C,.-. " - Crystal Rher Nuclear Plant -Instrumment DrtA Study I~ SURVEILLANCE REOUIREMENT - 3.3.5.3. m f: ENGINEERED SAFEGUARDS ACTUATION SYSTEM RCS PRESSURE LOW Engineering has a program in place to review, revise and upgrade the Instrument Accuracy Calculations, as required, to reflect 30-month drift error terms. It is assumed that no change will be required for the Technical Specifications due to the revision of the ESAS Instrument Accuracy Calculation. The revised calculation for this RCS LOW PRESSURE TRIP function will provide the required surveillance procedure setpoint and "As-Left" and "As-Found" procedure tolerances, which will include, as required, any c effects due to 30-month drift. l The projected 30-month drift terms for the low RCS pressure bistables has never been exceeded for the surveillance intervals investigated. The projected 30-month drift terms for the pressure transmitter & buffer / amps have only been exceeded in 2 of 72 Drift Data points, or 2.8% of the total Drift Data points. Hence, since Drift Data is not tbne dependent, we have a high level of confidence that future Drift Data will be containd within the projected tolerance interval. 5. "Confinn that the pmjected instrument ermn caused by drift are acceptablefor contml of plant pammeten to effect a sqfe shutdown. Licensees must confinn that the instrument envrs caused by drift will not qffect the capability to achieve de 1 shutdown. " Per the instrument error calculation, 189-0014, Rev. 4, the ESAS RC Pressure transmitters are utilized for inputs to: A. ESAS LOW PRESSURE, (1540 psig), HPI Actuation B. ESAS LOW-LOW PRESSURE, (540 psig) LPI Actuation C. ESAS HPI BYPASS PERMIT, (1700 psig). D. ESAS HPI BYPASS REMOVAL, (1725 psig). E. ESAS LPI BYPASS PERMIT, (900 psig). F. ESAS LPI BYPASS REMOVAL, (925 psig). G. HPI NOT RESET - NOT BYPASSED Alarm, (1640 psig). H LPI NOT RESET - NOT BYPASSED Alarm, (710 psig). I. ESAS LPI BYPASS AUTO RESET (1700 psig). J. LOW RCS PRESSURE Alarm, (1550 psig). ) K. CFT ISO VLV NOT CLOSED Alarm, (715 psig). L. CFT ISO VLV NOT CLOSED Alarm, (700 psig). M. LTOP EVENT IN PROGRESS Alarm, (500 psig). N. DHR ACI VLV POSITION Alarm, (200 psig) O. Pressure recorders & indicators. ~ P. Reactor Vessel Level, (RCITS). Q. T-SAT monitors. R. RCS PRESSURE Outputs to RECALL, Plant Computer, etc. 9 { oxtr.: M.y as, ins Page 7 of10

P.. Flose Fewer Ccrporealan - Crystal Riur Nuclesr Plant - lastnument DdA Study SURVEILLANCE REOUIREMENT - 3.3.5.3. m ENGINEERED SAFEGUARDS ACTUATION SYSTEM RCS PRESSURE LOW The RCS Pressure loop devices analyzed in this Drift study are not utilized for control of - plant parameters, other than the ESAS RCS PRESSURE TRIP function. Since in (4) above the 30-month drift term has been found to be acceptable, then the projected drift value will not affect the capability to achieve safe shutdown, i 6. " Confirm that all conditions and assumptions of the setpoint and sqfety analysis have been checked and are appmpdately reflected in the acceptance enteria of plant surveillance pmceduresfor CHANNEL CHECKS, CHANNEL FUNCTIONAL TESTS and CHANNEL CALIBRATIONS. " As stated in (4) above, the revised calculation for these RCS Pressure loop devices will provide the required surveillance procedure setpoint and "As-Left" and "As-Found" procedure tolerances. The revised "As-Left" and "As-Found" surveillance procedure colerances, will be incorporated into the appropriate CHANNEL CHECK.S, CHANNEL FUNCTIONAL TEST or CHANNEL CALIBRATION surveillance procedures, as required. 7. "Pmvide a summary descdption of the program for monitonng and assessing the effects ofincreased calibration surveillance intervals on instrument drift and its effect on sgety. The instrument " DRIFT PROGRAM" is an ongoing program which will monitor future surveillance procedure "As-Found" and "As-Left" data, and will incorporate new data into the; Drift Study spread sheets with the existing Drift Data. The revised Drift Data MEAN, STANDARD DEVIATION, i 95%/95% TOLERANCE INTERVALS, etc., will be compared with the existing Drift Data, to ensure the conclusions reached in this report remain valid. IIL DRIFT STUDY

SUMMARY

i 1. Per Refueling interval surveillance procedure, SP-132, the RCS Pressure components have not exceeded acceptable, "As-Found" surveillance procedure tolerances, for the surveillance interials investigated, except as indicated below. BISTABLES: For RC ILTl, one OUTLIER was identified. The Drift Data of 3/20/90 was identified as an OUTLIER. The ravi "As Found" calibration data EXCEEDS the procedure "As Found" tolerance. Hence, this OUTLIER was removed from the data. For RC-3-BT2, one l OUTLIER was identified. The Drift Data of 3/20/90 was identified as an OUTLIER. 1 The raw "As Found" ealibration data EXCEEDS the procedure "As Found" tolerance. Hence, this OUTLIER was removed from the data. Raw calibration data points which have exceeded "As-Found" tolerance: 2 of 15, or 13%. TRANSMITTER & BUFFER / AMPLIFIERS: For RC-3A-PT3, the 75% and 100% raw "As-Found" onr2 u.y :s,1,9s Page 8 of10

E Floridi Power Corporstlos - Crystal River Nuclezr Nnt -lastrumint Drin Study SURVElLLANCE REOUIREMENT-3.3.5.3 d) ENGINEERED SAFEGUARDS ACTUATION SYSTEM RCS PRESSURE LOW calibration data point for 10/14/88, was found to exceed the calibration procedure "As-Found" tolerance Hence, these OUTLIERS were removed and are considered " rare occasion" exceptions. Once the OUTLIERS were removed from the Drift Data, the 50% Drift Data of 10/14/88 was identified as an OUTLIER. The raw calibration data for this point is within the procedure calibration tolerance, hence this OUTLIER was not removed. (NOTE: Transmitter RC-3A-PT3 caused outliers in all drift data studies for both ESAS functions: RCS LOW PRESSURE 1500 psig bistable and RCS LOW-LOW PRESSURE 900 psig bistable). For RC-3A-PT4, the 100% raw "As-Found" calibration data point for 10/15/88, was found to exceed the calibration procedure "As-Found" tolerance Hence, this OUTLIER was removed and is considered a " rare occasion" exception. (NOTE: Transmitter RC-3A-PT4 caused outliers in all drift data studies for both ESAS functions: RCS LOW PRESSURE 1500 psig bistable and RCS LOW-LOW PRESSURE 900 psig bistable). Raw calibration data points which have exceeded "As-Found" tolerance: 3 of 75 or 4%. 2. The attached spread sheets and charts present calculated Drift Data and the associated statistical information using the methods described in the references. The methodology is summarized in section II.2, above. 3. The RCS PRESSURE bistable Drift Data passed the W-TEST and pressure transmitter / buffer amp Drift Data was determined by a " COVERAGE ANALYSIS" to be " normal", and the associated charts indicate that the Drift Data is neither calibration interval dependent nor time, (age), dependent. Hence, then the 95%/95% Tolerance values can be assumed to envelopa the 30-month drift values. 4. Engineering has a program in place to review, revise and upgrade the Instrument Accuracy Calculations, as required, to reflect 30-month drift error terms. It is assumed that no change will be required for the Technical Specifications due to the revision of the ESAS Instrument Accuracy Calculation. The revised calculation for this RCS LOW PRESSURE TRIP function will provide the required surveillance procedure setpoint and "As-Left" and "As-Found" procedure tolerances, which will include, as required, any effects due to 30-month drift. The projected 30-month drift terms for the low RCS pressure bistables have never been exceeded for the surveillance intervals investigated. The projected 30-month drift terms for the pressure transmitter & buffer / amps have only been exceeded in 2 of 72 Drift Data points, or 2.8% of the total Drift Data points. Hence, since Drift Data is not time dependent, we have a high level of confidence that future Drift Data will be contained within the projected tolerance interval. 5. The RCS Pressure loop devices analyzed in this Drift study are not utilized for control of plant parameters, other than the ESAS RCS PRESSURE TRIP function. Since in (4) nam M.y 2s, ms Page 9 of 10

~ Florida Fewer C.c " - Crydel IUvir Nudear Flame - Inesnument Ddit Study r SURVEILLANCE REOUIREMENT - 3.3.5.3,0) ENGINEERED SAFEGUARDS ACTUATION SYSTEM RCS PRESSURE LOW above the 30-month drift term has been found to be acceptable, then the projected drift value will not affect the capability to achieve safe shutdown. 6. As stated in (4) above, the revised calculation for these RCS Pressure loop devices will provide the required surveillance procedure setpoint and "As-Left" and "As-Found" procedure tolerances. The revised "As-Left" and "As-Found" surveillance procedure tolerances, will be incorporated into the appropriate CHANNEL CHECKS, CHANNEL FUNCTIONAL TEST or CHANNEL CALIBRATION surveillance procedures, as required. 7. The instrument " DRIFT PROGRAM" is an ongoing program which will monitor future surveillance procedure "As-Found" and "As-Left" data, and will incorporate new data into the Drift Study spread sheets with the existing Drift Data. The revised Drift Data MEAN, STANDARD DEVIATION, i 95%/95% TOLERANCE INTERVALS, etc., will be compared with the existing Drift Data, to ensure the conclusions reached in this report remain valid. IV. CONCLUSION: Based on the above summary, the Surveillance Interval for this Technical Specification calibration requirement can be extended to 30-months. i l O Dam u.y as. I,9s Page 10 of10 l

0 ~ SP-132 S.R. 3.3 5.3,(I) RC-3-BTI, RC-3-BT2 RC-3-BT3 1500 psig RC Pressure LOW Surv. Procedu e:'SP-132 ! Calibration! Inten al Trip _ Drift Data TAG NUMBER Date (Month (. Data Outlier Evaluation RC-3-BTI As Left.. 10/6/87 6 1594 i RC-3A-PT3 As Found 10/15/88 12.3 6 1602 0 01 % RC-1, TEST CA B. I As 1xil 10/15/88 6.1602 DATA IS OK _ As Found 3/20/90 17.1 6.2520 0.92 % As left 6/1/90 6 1570 OliTI.IER j As Found 10/22/91 16.7 6.15E 4101 % X rnosed - Flood MAR _- As left V29/92 6.1610 DATA IS OK no "As Founds" taken. As Fotr.d 3/16/93 8.5 6.16tM) -001% As lx11 3/18/93 6 1600 DAT/ IS OK As Found 9/13/94 17.9 6.1560

4) 34 %

As tell 9/13/94 6.1600 DATA IS OK RC-3-BT2 _,_As letl 10/1/87 6.1613 RC-3A-PT4 A2 F w id 10/15/88 12.5 6.1359 -0 25 % RC-2, TEST CAB.2 AsLetl 10/15MS 6.1633 DATA IS OK As Found 3/20/90 17.1 6.2580 0.95*/. As left 6/1/90 6.1610 OUTLIER As Found 10/23/91 16.7 6.1590

4) 02 %

i nw**d - Flood MAR - As i.ett 6/29/92 6.1660 DATA IS OK no "A

  • Founds" taken.

As Found 3/18/93 86 6.1670 0 01 % As i.ett 3/19/u3 6.1670 DATA IS OK As Found 4/23/94 13.2 6.I850 018% ~ As left 4/23/94 6.1680 DATA IS OK RC-3-BT3 As Ixtl l')/4/87 6.1518 RC-3 B-PT3 As Found 10/17/88 12.5 6.1438 -0 08 % } RC-3, TEST CAB. 3 As tell 10/17/88 6 1603 DATA IS OK As Found 3/20/90 17.I 6.I880 0.28% As Left 6/1/90 6.1560 DATA IS OK As Found 10/24/91 16 8 6 1510 4105 % As left 10/24/91 6 1590 DATA IS OK As Found 3/19/93 16.8 6.1610 002% As i.ett 4/1/93 6.1580 DATA IS OK As Found 9/14/94 17.5 6 1600 0 02 % As I ett 9/14/94 f 6 1600 DATA IS OK DATE-4'27/,s Page t of 2 ritx: listenHs Esrlisee PSIG BISTAHI E IMU FT DATA

.,-q SP-132 S.R. 3.3.5.3, (1) RC-3-BTI, RC-3-BT2 RC-3-BT3 1500 psig RC Pressure LOW Pressure Ma_nge:_ 0 to 2500 psig Mean: 0 (XM% Percent Volts DC psig Pressure Span: j500 _ psig Standard Deviation: 0.119 % +95%/95%: 0 3 T% 0 037 93 ~ Output Range: G to 10 Volts DC Number of Points: 15 -95%/95%: -0 36 % -0 036 -91 Output Span: 10 Volts DC Outliers Excluded: 2 SP-132 Setpoint: 1540 psig Outlier Criteria: 2.409 SP-132 Setpoint: 6 160 Volts DC 95%/95% Ic 3 081 espoint Calculation: 189-0014, Rev. 4 TS Limitingyalue: >=1500 Jsig _ Pertent psig SP-132 As Found Tol: 0 06 Volts DC 0 60 % 15 SP-132 As Isft Tol: 0 01 Volts DC 010% 25 l W-TEST DATA Coefficientsi Sorted Test Data i B terms

  1. of Pts.

Data Sorted Number of Points: 13 0.5359 4)25 % 0.28 % 0.28% 1 0 01 % 4125 % Variance (s^2): 1.43E4)6 0.3325 -0.08% 0 18 % 0 Op. 2 4)01 % -008% ~ S^2: 1.71E-05 0.2412 4)05 % 0.02 % 0.02 % 3 -001% -005% B: 4.02E-03 01707 411M% 0 02 % 0 01 % 4 -o (M% -0 nl% B^2: 1.62E-05 01099 -o 02 % 0 01 % 0 00 % 5 -0 25 % -0 02 % W =JB^2 / S^2): 0946 0 0539 -0.01% 0 01 % 0.00 % 6 4t02% -001% Critical W r : 95*/.: 0859 7 0 01 % 028% a W Test: PASS 8 0.18% 0.18 % CilART DATA 9 -0 08 % 002% Calibration Drift 10 0 28% 0 02 % Interval Data 95%!95% Value Zero % 11 -005% 0 01 % 8 0.37 % J) 36% 0 00 % 12 0 02 % 0.01% 12 0 01 % 0 37 % -0.36% 0 00 % 13 0 02 % 4t01% 17 0 37 % -0.36% 0 00 % 14 17 -001% 0.37 % 4136 % 0.00 % 15 9 0 01 % 0.37 % -0.36% 0 00 % 18 -0 N% 0.37 % -0.36% 0 00*4 12 -0 25 % 0.37 % -0.36% 0 00 % 17 0 37 % -0.36% 0 00 % 17 -0 02 % 0.37 % -0.36*4 0 00 % 9 0 01 % 0.31 % -0 36 % 0.00 % 13 0 18 % 0.37 %

4) 36 %

0 00 % I2 -0 08 % 0.37 % -0.36% 0 (XI% I7 0 28% 0 37 % -0 36*A 0 00 % 17

4) U5%

0.37 % -0.36% 0 00 % 17 002% 0 37 % -0.36% 0.00 % 17 002% 0.37 % -0 36 % 0 00 % 19 0 17 % -O %'A 0 00*-4 DATL 4/27/,s Page 2 of 2 rit.n liseestis.Esrlisee esta utsTAnt.E puterr DATA

= [. ". SurveiHance Requirement 3.3.5.3,(1) .:1 RC-3-BTI, RC-3-BT2 RC-3-BT3 1500 psig RC Pressure LOW Bistable Drift Data Drift Data VS Interval 95%/95% Tolerance /} 0.40% -- l 0.37 % O..HI% -- 0.20% -- 0.10% -- mu 33 \\ $5 f 0.00 % a u ) E e g 0.00% -, g Tw a a -0.10% -- -0.20% - rs -0.30% -- l- -0.36% -0.40% i l i l i i l 'i 8 9 to 11 12 13 14 15 16 17 18 19 Calibration Interval (Months) DATE: 4/2735 Page1ofI FILE:[154MWRS.E5FIRISTABLE DRIET DATA V5 INT ERVAL i m _.z, ,.e.-. . _..,, -, -.. _, - ~

n ,[.. ; \\ l) v Surveilluce Reqrirement 3.3.5.3, (1) RC-3-BTI, RC-3-BT2 RC-3-BT3 1500 psig RC Pmsure LOW Bistable Drift Data Drift Data VS "As-Found" Date 0.30% -- e N 0.20% -- a 0.10% -- c a3 a w Q W ~ m = 0.00% -- 0.00 % ES E og m m -0.10% -- -0.20 % - a 4,,,,,,, 1/1/88 12/31/88 12/31/89 12/31/90 1/1/92 12/31/92 12?31/93 1/1/95 Date of Calibration DAT F.: #27as Page1of1 Fill:ll50MBSISF]Bl5 TABLE DRIlT DATA VS DATE

-g U Surveill=ce Req:irement 3.3.5.3,(1) ,f RC-3-BT1, RC-3-BT2 RC-3-HT3 1500 psig RC Pressure LOW Bistable Drift Data Absolute Value of Drift Data VS "As-Found" Date 0.30% - = 0.25% -- 0.20% - 33 f5 Y $.1s% -- =0 c*6 0.10% -- a 0.05% - m m .........a............ .....e.................a................ 9, 1/1/88 12/31/88 12/31/89 12/3100 1/102 12/3152 12/31/93 1/185 Date of Calibration DATE: 4/27/95 Page1of1 FILE:l 5mwH1ESFlHISTABLE ABS DRIIT luTA V5 DATE

~. SP-132 S.R. 3.3.5.3, (1) ,.[ RC-3A-PT3/RC-3A-PY3, RC-3B-PT3/RC-3B-PY3 & RC-3A-PT4/RC-3A-PY4-1 1500 psig RC PIrssure LOW Nurseillaeur Pratedare:!NP-132 ! Cahbrath n! Intersal l Ehe Padat Data t lirtft Dsta & Dis lier Esaleath.n. TE Sl5HIEII)) .._ d Dase j Olanths) ~ s% 25*. 50 % { 75 % 100*'. F . { __. 0% i 25 % 50*. j 75 % j 100 % i i 0 n111 2 5172 5 0242 I 7 5114 10 0054 I I I I Asleft{[l0C27 f RC-3 A PT3/RC-3.OPYJ ! RC-l, TINT Call I l As l~ mn i! 0/14 ** 12 3 410047 2 4573 4 9077 l 7.3553 l 9N051 l -0 16 % -060*. - l.17*. -1.56*. -2.u0% l%0 PNIG BISTAHl.E IA M)PI _As_l ett IOUR 0 0101 _2 5114 { 5 0149 7.5044 l 10 0153 DATA IS OKhATA IS OK mrll_II R, Ol'Ti lF R Ol'TI IFR As Found) F2090 __171 0 0200 2 5100 J 5 0200 7 5100 l 10 0100 0 10 % ' -001% 0 05 % } 0 0e% -0 05 % As left[W/0 0050 2 5690' 50070 7 5020 to 0070 DATAISOls DATA IS OK DATA IS OK' DAT A IS OK, DATA IS Ok 3_""d'd N ""d3 3 E ~ C_ _ _ _. _ _ - __ __ ^*J (yp(_ l6 7 -0 W62 As f anS 00060 2 4N10__ 4 9900 _j 4990 9 9990 _ -0 10*._ -026%_ _._-017% _-0 03_%_ _ -0 08 % C29 92 i 2509 5 WO3 7 4951 10 0004 DATA IS OK DATA IS OK DATAISOK DATA IS OK D A TA IS Ok 4 _aOWa'ad'" 'akea- ^$ FouadL3;i693 8.5 -0 also g2 4x50 49910 7.5010 9 9x20 -012%. -020% -007% 0 0x% -0 is*. As Icit{ 3'IN.93 -00180 2 4450 4 9930 7.5030 9 9820 DATA IS OK DATA IS OK DATA IS OK DA T A IS OK.. DATA IS Ok I As Found' 9/I194 17 9 00250 2 4780 4 97 so 7 4740 9 9820 0 4 **. -007% -0 a 9*. -0 29 % 0 00 % As left 91194 0 0250 2.47k0 4 9740 7 4740 9 9R20 DATAISOK DTTA IS OK DATA IS Ok DATA IS OK DATA IS Ok RC-3A PI'4 RC-3t PY4 i As left toIM7 0 0212 25147 4 9990 7 4XO3 9 9R16 I ~ RC-2.TFST Call. 2 As Fmnd 10/1512 12.5 0 0069 2 4990 4 9864 7 4512 l 9 N2MO l 4114 % 4)16 % -0 13 % -0 28*. . l.54% 4 19m PSIG lilvTABI.E I AM)P As left 10:15 88 0 0141 2.9135 5 0155 7 49x7 9 9930 DATA IS OK DATA IS Ok DATA IS OK DAl'A IS Ok 01 11 IFR AsFound 32090 17 1 0 0050 2.49x0 4 9N50 7 4840 9 9972 -0 09 % -0 15 % -0 31 % -0 16 % 0 04 % As Iett &I90 0 0150 2 50x0 50050 7.5020 9 9900 DATA is OK DATA is OK DATA IS OK DATA is OK DATA IS OK As Found 10239 L 16 7 0 0500 2 5490 5 0550 7.5550 to 0440 0 35 % 0 41% 0 50 % 0 51% 0 54 % X nun ed - F1.md %I A R - As Istt C2992 0 0050 2 5090 50040 7 4970 9 995 DATA IS Ok DATA IS OK DATA IS OK DATA IS OK DATA IS Ok [ no " As Founds" taken. As Found 1:I8 93 86 -00160 2 4M90 4 9920 7 4920 9 9840 -021% -0 20*. -0.12% -o05% -0 1 1 *. As left 3:1991 -00160 2.4890 4 7920 7 4920 9 9840 DATA IS OK DATA IS OK DATA IS OK DATA IS OK D ATA IS Ok As Found 4'23 94 13 2 0 0020 2 4900 4 9890 7.4780 9 9740 0 18 % 0 01 % -0 03% -0 14 % -0 10 % l As Lett 4.2394 0 0010 2 5060 50000 7.4950 9 99 to DATA IS OK DATA IS OK DATA IS OK DATA IS OK DATA IS Ok RC;3tl PT3/RC-311 PY3 As lett 10,4 x7 0 0011 2 5000 50055 7.4917 9 9803 RC-3 TEST Call 3 As Fmnd 10 17 88 12 5 -00060 2.4975 4 9964 7 4913 9 99 % 4)07*. 0 02 % -o 09 % 0 00 % 0 13 % (to 0051DATA IS OK DATA is OK DATA IS OK DATA IS OK DATA IS OK 15am PNIG llINTAi!I.E I A M)P As Estt t o,17. 88 -0 005I 2 3016 5 0042 7.5024 i As Found F2090 I7. I -000NO 2 5020 5.0090 7.5040 10 0020 -0 01*. -0 02 % 0 05 % 0 02*. -003% As left 6ilSO O0060 2.5090 50240 7.5210 10 0240 DATA 15OK DATA IS OK DATA IS OK DATA IS OK DATA IS ON As Found IW24 91 16 8 0 0060 25190 5 01x0 7.5380 10 0310 0 00 % 0.10 % 0.14% 0.17% 0.07 % As keft 10/24 9I -00010 2 49N0 5 0070 7.5130 to 0020 DATA is OK DATA IS OK DATA IS OK D ATA 15 OK DATAisOk As Found 3119.93 16 8 -o0040 2 5250 5 0160 7.5180 9 9300 -003% 0 27*. 0 29*. 0 25*. -0.72% AsIbundf__N.VI 0 017 { _2_pj20 50}20

_U270__,

Ig O!jg _. IQTA.15 O.K. DAR$K DATA IS OK DATA IS OK DATA IS OK ^5 _ 410IN 0 02 % [f 2*. -005% -003% t 9I494 17.5 0 0140 2 5340 5 ul00 7 5240 t o 012G As I ett i 9I494 0 00NO 2 5i10 500x0 7 5040 9 9910 DATA IS Ok D ATA IS OK iDATA 11OK DATA IS OK DATA IS Ok Prenaar e Range: 0 to 2500 _ psig NP-132 Volts IM? Percent psig [ Sican: -005% Persent j Valts IM7 psig _ Pres..re Span: 2500 psig_ /- As Found 1 1;

0. I 3 1.30 %

32 5 standard Desiation: 0 25 % +95%/95%: 0.55 % 0 055 13 7 0 04 0 40 % 10 0 Suniber of Paints; 75 j -95%!95%: -0 02 % -0062 -15 4 Output _ Range: 0 to 10 salts DC +/- As I eft Tel:. Netpo6nt Calculation: IN9 0014, Res. 4 ._Ouj_liert glededi 3 95%/95% k: 2?>9 ""'P"' S 8"E -... I.O_ _ _. _s ohs DC E P 4 Outlier Criteria: 1107 l. p.t.: v29,5 hge I of 4 h: p*40mBs.)M11500 I%IG l.EM AP DRIPT DA1 A 1 f

,j'-

SP-132 S.R. 3.3.5.3, (1) '

.,' [

RC-3A-PT3/RC-3A-PY3, RC-3B-PT3/RC-3B-PY3 & RC-3A-PT4/RC-3A-PY4-1 1500 psig RC Pressure LOW IF-TENT DATA I T terms I T tenas

  1. of Pts.

Data Nasted W en Pts. D=sa S rted n

  • Namiber of Paints:

72 3

4. I4E-01 37

-1.50E-04 1 -0.16% -1.17% 37 -031% -o03% (n +1)/ 2: 36.5 2 2 48E 01 38 -4. 50E-04 2 0.10% -0 72 % 38 0 50 % -0.03% Variance (s*2): 6 41E-06 3 2.0l E-01 39 -7.50E-04 3 -0.10% -0 60 % 39 -0 12 % -0 03% S*2: 4.56E-04 4 9 91 E-02 40 -1.0 5E-03 4 412% -031% 40 -0 03 % -003% S: 2.13E 02 5 9.13 E-02 41 -131E 03 5 0 43 % 0 29 % 41 -0 09 % -003% T: 3.25 E+00 6 8 42E-02 42 -137E-0 3 6 4 14 % -0.28% 42 0 05% -002% D' = T / s: 152.22 7 7 67E-02 43 -130E-03 7 o 09 % -0.26% 43

0. I4%

-o 02 % D*I: 166 60 8 5.99E-02 44 -1.20E-03 8 035% -0.21*s 44 0 29 % -002% D*2: 174 90 9 538E 02 45 -l.19E-03 9 -0 21 % 4 20 % 45 -0.02% -0 01 % D* Test: FAIL 10 5 30E-02 46 -3 80E-04 to 0.18% -0.20% 46 0.06 % 0 00 % II 4 85E 02 47 0 00E+00 II -0 07's -0 19 % 47 -00s% 0 00*4 12 4 5 t E-02 48 0 00E+00 12 4 03% 418% 48 0.08 % 0.00 % 13 3 99E-02 49 1.25E-03 13 0 00 % 4 17 % 49 4 29 % 0.01% 14 3.56E-02 50 2.16E-03 14 -0 03 % 416% 50 0 28 % 0 02% 15 338E-02 51 2.90E-03 15 -0 01% 4 16*. 51 4 16 % 0.02% 16 3 22E-02 52 6.51 E-03 16 -0 60 % 486% 52 0.53 % 0 04 % 17 3.02E-02 53 7.92E 03 17 -0 01 % -0.15% 53 -0 05 % 0 05 % 18 2.65E-02 54 8 92E-03 18 -0.26% 4 14 % $4 414% 0 05 % 19 2.45E-02 55 1.04E-02 19 0.20 % -0 14 % 55 0 00 % 0 06*. 20 2.08E-02 56 137E-02 20 -0 07% 413% 56 0 02% 0 07 % 21 1.86E-02 57 162E-02 21 -0 16 % -0 12 % $7 0 17 % 0 08 % 22 1.71E-02 $8 2.13E-02 22 -0 15 % 4 12 % $8 0.25 % 0.10 % 23 148FAr2 39 2 25E-02 23 0.41% alls 59 0 03 % 0.10 % 24 I.25 E-02 60 313E-02 24 4 20 % -0 10 % 60 -0.05% 0.13% 25 1.15 E-02 61 3.43E-02 25 0 01 % -010% 61 -0 08 % 0 14 % i 26 9 56E-03 62 4 34E-02 26 -002% -009% 62 -0 18 % 0.17% 2'F 8 64E-03 63 4.77E-02 27 -o 02 % -0 09 % 63 0 00 % 0 18 % 28 6.80E-03 64 6 88E-02 28 0 10 % -0 08 % t 64 0.04% 0 25 % 29 5 47FA)3 65 7.69E-02 29 027% -007% 65 0.54% 0 27 % 30 4 62E-03 66 8.55 E-02 30 0 02*. -0 07*6 66 -0 11 % 0 29 % 31 3 85E-03 67 107E-01 31 -1.17% -0 07 % 67 -0 10 % 0 35 % 32 2 39E-03 68 1.29E-01 32 0 05 % -0 05% 68 013% 0 41 % 33 l.75 E-03 69 1.40E-01 33 -0 17 % -o 05*. 69 -o 03*. 0 43 % 34 7.75 E-04 70 167E-01 34 4 07 % -0 03% 70 0 07 % 0 50 % 35 4.50E-04 71 1.83E-01 35 4195 -0 03% 71 -0.72% 0.53% 4 36 1.50E-04 72 192E-01 36 -013% 403% 72 -0 0 3*. 0 54 % i Dese: vtM3 Page 2 of 4. Fue:Uteeses Earpsee PSIG ump MUFT Dm

r=. p 3 \\ ) s SP-132 S.R. 3.3.f.3, (1)( RC-3A-PT3/RC-3A-PY3, RC-3B-PT3/RC-3B-PY3 & RC-3A-PT4/RC-3A-PY4-1 1500 psig RC Pressere LOW CilANT DATA I i i i Cambrusten Fhe Painst DetR Deam laterval 0% 25 % 50 % 75 % 190*4 95*495% Vahme Zero 5 0.55% -062% 0.00 % 12 -0.16% -0 60*6 -1.17% 0.55 % -0 62 % 0 00*. 17 0.10 % -0 01 % 0 05 % 0 06 % -0 05 % 0.55 % -0 62% 0.00 % 17 -0 10 % -0.26% -0 17 % -0 03 % -008% 0.55 % -062% 0 00 % 9 -0 12*6 -0 20*6 -007% 0 08 % -0 18 % 0 55 % -062% 0 00 % 18 0 43 % -0 0's% -0.19*. 4.29*6 0 00 % 0.55*e -0 62 % 0 00 % 12 -0 14 % -0 16 % -0.13% -0.28% 055% -062% 0 00 % 17 -0 09 % -0 15 % -0.31% -0.16% 0 04 % 0.55 % -0 62 % 0 00 % 17 0.35 % 04t*. 0.50*. 0.53*. 0.54 % 0 55 % -0 62% 0 00 % 9 -0.21% 0 20*,6 -0.12% -0.05% -0 11 % 0 55 % -0 62*. 0.00 % 13 0 18*. 0 0l*e 4 03 % -0.14% 0.10*4 0 55 % -0 62 % 0 00 % i2 0 07 % -0 02 % -o 09 % 0 00 %

0. I3%

0 55 % - -0.62% 0.00*6 17 4 03's -0 02 % 0 0$*. 0.02 % -0 03 % 0.55 % -062% 0 00 % l 17 0 00 % 0.10*. 0.14 % 017*e 0 07 % 055% -0 62*. 0.00 % 17 -0 03% 0 27 % 0.29 % 0 25 % 4 72 % 0 55 % -062% 0 00 % I7 -0 03 % 0 02 % -0.02% -0.03% -0 03 % 0.55 % -0 62 % 0.00 % 19 0 55*6 -0 62*s 0 00*. i. 4 ? I 1 6 1 %. m7f,s Page 3 of 4 yw,. gisemmes.msnisse psio ax.or DairT DATA l

... x y s., 1 SP-132 S.R. 3.3.5.3, (1) ; RC-3A-PT3/RC-3A-PY3, RC-3B-PT3/RC-38-PY3 & RC-3A-PT4/RC-3A-PY4-1 1500 psig RC Pressure LOW IIINTOG5LOI DATA g i Itin iFrequenc,i l Prwhability l Obsert ed -4 000 .IOS*. 0% 0.053 0% -1 05 % 0 l far a siguaa l Prop rti.= 3,750 0 98% 0% 0.139 0% -0 98 % 0 0% 25.35 % -3.500 -092% 0*. 0 345 0% -O 92 % 0 19 74*. 45 07*. -3 250 -0_x6% 0's 0 801 0% -0 86*. 0 38 29*. 67 61% 3 000 -0 79*. 0% 1.750 0*s -0 79 % 0 54 67 % 78 87 % 2750 0 73*. 1% 3 590 0*. 0.73 % 1 6N 27% 34.51 % ^ -2.500 -0 67 % 0% 6 920 0% -0 67*. 0 86 64 % 9014% -2 250 -0 60's 1% 12.531 1% -0 60 % i 95.45 % 95.77 % -2.000 -0 54?. 0% 21.316 1% -0 54 % 0 98.76*s 9850% -I.750 -0 48 % 0% 14 063 2*s -0 48*. 0 99 73 % 100.00 % -1 500 -0 41*. 0*. 5I 134 3% -0 41*. 0 99 95 % 100 00 % 1 250 -0 35 % 3*. 72.111 5?. 4 35 % 2 99 9994*. 100.00*. 1000 4 29 % 3% 95.531 6% -0. 29* e 2 Expected Vahne Actual -0.750 -0. 22*. 8% 1I8 890 8's 4 22 % 6 -0 500 -0 16 % 87 % 138.997 9% -0 16 % 12 i -0.250 -0.10% II*. 152 65% 10 % -0+ 10*. R 0 000 -0.0 3*. 25 % 157.504 10 % -0 03 % IR 0250 0.03 % 8*. I52 658 10 % 0 03 % 6 0.500 0 09 % 6% 138.997 _9's 0 09 % 4 0 750 016% 3% 118 890 8*. 0 16*6 2 1.000 0 22*. 3*. 95.53I 6% 0 22*. 1.250 0 28% I% 72 111 5% t r., 26% 1 l' l 500 0 35 % l*= $1.134 3% 0.3 5* h 1 i 1.750 0 41 % 3% 34 063 2?. 0.41 % 2 2 000 0.47 % 3?. 21.316 1% 0 47 % 2 i 2.250 0 54 % l*s 12.531 1% 0 54 % I -l 2.500 0 60 % 0% 6.920 0*. 060*. 0 2.750 0 66 % 0% 3 590 0% 0.66 % 0 3 000 0 73*. 0% 1.750 0% 0 73 % 0 3.250 0 79*. 0% 0 801 0% 0.79*-s 0 3.500 0 85 % 0% 0.345 0% 0 R5% 0 3.750 0 92*s 0% 0139 0% 092% 0 4 000 0 98% 0% 0053 0% 098*s 0 100*. 1579 100 % 71 Page 4 of 4 ni.: pmaanmnine rsic t oor part om

o. : arzms

-+.r--- -w-,-i e-. ---,+-.e.s-w-en-u- --+r1-.-w4-.---- e- ,--w-< --e +e, e-+ c-i.i,+.=.4=+40-y a..* ,w--e.#

Surveillrce Req irement 3.3.5.3,(1) RC-3A-PT3/RC-3A-PY3, RC-3B-PT3/RC-3B-PY3 & RC-3A-PT4/RC-3A-PY4-1 i l 1500 psig RC Pressure LOW Transmitter /BufferAmp Drift Data 95%/95% Value Drift Data VS Intenal 0.55% -- 0.55 % g- \\ a 6.35% -- u \\ \\ I 0.15% -- a l" 2 =

  • 3yy I

E E = 5 "-" 80% g g -0.05% - a cw mE g a a a -0.25% - a m -0.45% - -0.62% -0.65% i i i i l i"; 7 8 9 10 11 12 13 14 15 16 17 18 19 Calibration Inten al (Months) DATE:427M5 PageIofi FIF.E:p5mns1SFl1.OOP DRIET DATA VS INTERVAL

f% O fm ,i S:neill::ce Req irement 3.3.5.3,(1) RC-3A-PT3/RC-3A-PY3, RC-3B-PT3/RC-38-PY3 & RC-3A-PT4/RC-3A-PY4-1 1500 psig RC Pressure LOW Transmitter / Buffer Amp Drift Data Drift Data VS "As-Found" Date 0.60% E 8 0.40% -: a = ~ E 0.20% -[ m = 1 E--l 0.00 % 5 0.00% 3i = E e $ 3 -0.20% -: 8 g a Q$ a 8 c3 a M -0.40% -[ -0.60% -[ m a -0.80% - -1.00% - R -1.20% 1/1/88 12/31/88 12/31/89 12/31/90 1/1/92 12/31/92 12/31/93 1/1/95 Date of Calibration DATE: 4/27/95 PageIofI Fil E:p5mMBS.E.NFRNP DRIFT DATA VS DATE

t U Os m S:rveill=ce Req:ireme t 3.3.5.3,(1) RC-3A-PT3/RC-3A-PY3, RC-3B-PT3/RC-3B-PY3 & RC-3A-PT4/RC-3A-PY4-1 1500 psig RC Pressure LOW Transmitter / Buffer Amp Drift Data Absolute Value of Drift Data VS "As-Found" Date 1.20% -- n i.0ow -- 0.80% -- T E am 8tX = 0.60% -- E Ed o,. g e 0.40% - m m g = f l e 0.20% - E 8 8 g E E I E a -........m...............I................n...............E.............n...n... 0.00 % i I/1/M8 12/31/88 12/31/M9 12/31Mo 1/IM2 12/31/92 12/31/93 1/1/95 Date of Calibration DAT E: 42ms Page1ofI FILE:(1500#BSESFBBS IAM)P DRIIT DATA VS DATE

h. I Proportion Per Bar G E U e u e l l l l -1.05%

  • I

+ -0.98 % l l -0.92 % o l -0.86% o i O -0.79 % o _L 6 -0.73% 3 -0.67 % 3 )v L\\ l -0.60% & \\ O -0.54 % L __ \\ p -0.48% k e \\ 3w -0.41 % b ge av \\ 3 Md ! -0.35% \\ OE ,T O$ P. -0.29% E a, a , -( c y* ='

2. -0.22%
2. -

q% r {"n,> W2 h -0.16% g Nm o p :e > O, s 4.10 % q g fnmh k 2 E -0.03% f y2e '5 + ' j c) 3 *m j- 0.03 % Me g / a G . O'"9 . / Er yg b 2h Mh E 0,16% E e i / 0 an [ 0.22% e' 6,'"* / ~ { 0.28% & y y 8 0.35 % e .s t y 0.41 % q _s e { 0.47 % E y 'g 0.54 % ] Y 5 0.60 % 7 di 0.66 % > U-l 5 0.73 % s 3 y 0.79 % o 3 0.85 % 7 y 0.92 %

  • T

=- 0.98 */.

  • b 1

s ?= },* \\s

-d m re c-r** - w mw N=le= M - L*==* Dra wr SURVEILL ANCE REOUIREMENT - 3.3.17.2. (3) POST ACCIDENT MONITORING fq: RCS PRESSURE (WIDE RANGE) G. L SURVEILLANCE PROCEDURE & DEVICES: A. Surveillance procedure: SP-161C. B. Calibrated devices included in the individual instrument Drift Data analysis: 1. DEVICE: Pressure Transmitter MANUFACTURER: Rosemount MODEL: 1154GP9RA RANG & 0 to 3000 psi SPAN: 0 to 3000 psi TAG NUMBERS: RC-158-PT & RC-159-PT i 0.2% URL. Upper Range Limit), for 30 DEVICE 30-MONTII DRIFT VALUE: ( 3000/3000 x 0.2% y /2 (r i 0.2%). 2i months, from vendor manual; or o a 2. DEVICL Current To Voltage Converter MANUFACTURER: Foxboro MODEL: 2AI-12V. INPUT SPAN: 4 to 20 mA DC O OUTPUT SPAN: 0 to 10 volts DC TAG NUMBERS: RC-158-PY-1 & RC-159-PY1 v DEVICE DRIFT VALUB None Stated 3. DEVICE: Voltage Buffer i MANUFACTURER: Foxboro MODEL: N2AO-VAI INPUT SPAN: 0 to 10 volts DC OUTPUT SPAN: 0 to 10 volts DC TAG NUMBERS: RC-158-PY3 & RC-159-PY3 DEVICE DRIFT VALUE: None Stated 4. DEVICE: PressureIndicator MANUFACTURER: Bailey MODEL: RY INPUT SPAN: 0 to 10 volts DC INDICATING RANGE: 0 to 3000 psig TAG NUMBERS: RC-158-PI-2 & RC-159-PI-2 DEVICE DRIFT VALUE: None Stated O i onr.: u.y as. tws Page 1 of 9 i

iw 3 naus e ,c+. -crymd up.,n.d r n -man oda anwy SURVEILLANCE REOUIREMENT - 3.3.17.2. O) a POST ACCIDENT MONITORING ] f RCS PRESSURE (WIDE RANGE) 5. DEVICE: Pressure Recorder MANUFACTURER: Foxboro - MODEL: N227P-1R6-CS-N/SRC j INPUT SPAN: 0 to 10 volts DC INDICATING RANGE: 0 to 3000 psig TAG NUMBERS: RC-158-PIR DEVICEDRIFTVALUE: NoneStated l IL NRC GENERIC LETTER 91-04 Analysis Criteria and DRIFT STUDY RESULTS: I. " Confirm that imtmment dQ as determined by "As-Found" and "As-Left" caDmtion ' data fmm surveillance and maintenance nconis has not, except on mn occasions, exceeded acceptaMe limitsfor a calibmtion intenal. " 'Per Refueling interval surveillance procedure, SP-161C, " Remote Shutdown Instrument . i Calibration", the components listed on the preceding page have not exceeded acceptable "As- - Found" surveillance procedure tolerances, for the surveillance intervals investigated. l O INDICA 1DR LOOP: Three OUTLIERS were identified. However, the OUTLIERS do not exceed the "As-Found" procedure tolerance. Hence, these OUTilERS are ACCEPTABLE i and will mg be removed from the Drift Data. Raw calibration data points which have exceeded "As-Found" tolerance: 0 of 40. RECORDER IDOP: No OUTLIERS were identified. P.aw calibration data points which l have exceeded "As-Found" tolerance: 0 of 25. . 2. " Cont'um that the mlues of dQfor each instrument type, (make, model and mage) and application have been determined with a high pmbability and a high degree of confidence. Pmvide a summary of the methodology and assumptions used to determine the mte of instmment dQ with time based upon historicalplant data. " Standard statistical methodologies were utilized in this DRIFT STUDY. The following references were consulted to establish the techniques used in this evaluation.

1. ISA-S67.04, Part I Standard, Setpoints for Nuclear Safety-Related Instmmentation
2. ISA-S67.04, Part II Recommended Practice, Methodologies for the Determination of Setpoints for Nuclear Safety-Related Instmmentation
3. EPRI document TR-10',335, " Guidelines for Instmment Calibration Extension / Reduction Programs", Project 2409-21, final Report dated March 1994 O

DAM M,as, ms Page 2 of 9 a-- m m h -+---e-es .- + i,-+c. t- ,wer

i 4 Wrlda Power CorporatJoe - Crystal RJvir Nuclear that -lastrument Drtit Study SURVEILLANCE REOUIREMENT - 3.3.17.2. (3) POST ACCIDENT MONITORING RCS PRESSURE (WIDE RANGE) v

4. American Society of Testing and Materials (ASTM) standard E178-1980, (re-approved 1989), " Standard Practice for Dealing With Outlying Observations."
5. ANSI N15.15-1974, American National Standard Assessment of the Assumption of Normality
6. Probability and Statistics 4th Edition, Irwin Miller / John E Freund/ Richard A. Johnson ne summary of the EPRI project observations, from section 9, " CONCLUSIONS" is as follows:

A. Instrument drift tends to increase with instrument span. B. Instrument drift tends to be bounded by a normal distribution. C. Instrument drift rarely showed any significant indication of time dependency. D. Instrument Drift Data often showed no bias for the direction of drift. E. OUTLIER checks are necessary to detect data errors. The methods utilized in this drift study, can be summarized as follows: A. Instrument calibratien data, ("As-Found" and "As-Left"), is obtained from, (typically), five intervals of the appropriate Refueling interval surveillance procedure. The number of intervals may change if instruments have been replaced with a different type, etc. B. A spread sheet computer program, which can be run on a personal computer is utilized for ease of analysis. Florida Power Corporation utilizes Microsoft Excel, running under a Microsoft Windows environment. See the " SPREAD SIIEET FORMAT" section below for an explanation of the spread sheet data and calculations. C. The " RAW" "As Found" and "As 12ft" data is obtained from the associated Refueling interval surveillance procedure, and entered onto the spread sheet. D. Drift Data information is obtained by subtracting the "As-left" data from the "As-Found" data from one "As-Found" date to the next. This difference is divided by the calibrated span and the Drift Data is then expressed as a PERCENT OF SPAN. E. Drift Data is analyzed and the MEAN and STANDARD DEVIATION is determined. " OUTLIER detection by critical values of T" test is performed and if required, the Drift Data OUTLIERS may be excluded from further analysis. r nxrr way2s.s ws Page 3 of 9 )

d Flodda Power Corporation - Crystal Rivir Nuclear Plant - Instrument DetA Study StiRVEILLANCE REOUIREMENT - 3.3.17.2. O) POST ACCIDENT MONITORING p RCS PRESSURE (WIDE RANGE) L) F. Next, the tolerance interval for the data is calculated by multiplying each calculated STANDARD DEVIATION by the appropriate 95%/95% tolerance factor. This factor indicates a 95% level of confidence, that 95% of the instrument Drift Data will be contained within the tolerance interval. G. The Drift Data is tested to verify the assumption that the data is " NORMAL". Either a D'-test or W-test may be performed. If the Drift Data fails these tests, then a " COVERAGE ANALYSIS" is performed. The Coverage Analysis requires that Drift Data be analyzed to determine if the data is bounded by a normal distribution. A " DATA HISTOGRAM" is plotted, as well as a comparison table of the actual distribution of the Drift Data versus the expected probability distribution to show that the Drift Data is normally bounded. H. To evaluate time dependency, the Drift Data is charted versus calibration interval, (in months), and also charted versus calibration, ("As-Found"), date. The charts can then be utilized to demonstrate no time dependent trend is observed. I. If the Drift Data is demonstrated to (1) be " normal" and (2) is not time dependent, then the 95%/95% Tolerance values for the instruments are assumed to envelop the 30-month drift values, hence the projected 30-month drift is the 95%/95% Tolerance values. SPREAD SIIEET FORMAT The surveillance procedure data is arranged in a spread sheet format which displays the following information: A. Instrument Tag Number / Channel /Descriptor, B. "As-Found" and "As-Irft" calibration dates of the surveillance procedure, which are used to Calculate the calibration " INTERVAL"s, C. Raw "As-Found" and "As-Ixft" device data, (voltage, pressure, etc.), D. " DRIFT DATA", (difference between "As-Found" and "As-Ixft" data divided by the calibrated SPAN of the instrument, expressed in PERCENT of SPAN), J E. " OUTLIER detection by critical values of T" test, (3 C/ l DATr.: May 2s, ins Page 4 of 9

~.. - a e'

m n

r ,c - - c., i as,.,si ,n -i e n,isi si r i SURVEILLANCE REOUIREMENT - 3.3.17.2. (3) f POST ACCIDENT MONITORING i RCS PRESSURE (WIDE RANGE) F. Range, Calibrated Span, "As-Found" and "As Ixtl" tolerances, Instrument j Fnor/Setpoint calculation number, device setpoint, Technical Specification Limiting i Value, etc. is provided for reference. I G. DriR Data statistical information: MEAN, STANDARD DEVIATION, OUTLIER CRITERIA, number of Drift Data points, number of OUTLIERS excluded, 95%/95% "k" value, and the calculated i 95%/95% tolerance values. i H. De D'-test or W-test for " normal" data assumption is performed. If the data fails the j appropriate test, a Drift Data Histogram and coverage analysis is performed. I. Drift Data, surveillance interval, "As-Found" dates, i95%/95% tolerance values, and o zero % values are provided for charting. 3. "Confinn that the magnitude qf instmment dr(lt has been detennined with a high pmbability and a high degree pf confidence for a bounding salibmtion interval of 30 monthsfor each instrument type, (make, model number and mnge) and npplication that i perfonns a sqfetyfunction. Pmvide a list of the channels by Technical Specification section i that identifies these instmment applications. " l O ne Drift Data calculations fer each Surveillance Requirement, establishes the "i95%/95%" l Tolerance Factor. His calculated value indicates a 95% level of confidence, that 95% of the population, (instrument Drift Data), will be within the stated interval. INDICA'IOR LOOP: De RC Wide Range Pressure Indicators Drift Data, did not pass the W-TEST. However, a " COVERAGE ANALYSIS" was performed on the data, including a " DATA HISTOGRAM" chart and also a " NORMAL DISTRIBUTION" comparison. I A review of the Drift Data Histogram, indicates a high "kunosis", (large peak), at 0% drift, I (27 of 40 Drift Data points), which virtually assure that the data will fail a normality test. The " Actual" coverage distribution envelopes the " Expected Value", from 0 to 1.5 sigma. I However, tne " Actual" Histogram distribution is slightly smaller than the " Expected Value", at 2 sigma, (90% vs 95.45%, a difference two Drift Data' points). He " Actual" again envelopes the " Expected" at 3.5 sigma, (100% vs 99.95%) and above. For the purposes of this Drift Study, the Drift Data will be considered " normal". 1 RECORDER LOOP: The RC Wide Range Pressure Recorder Drift Data, passed the W-l TEST, (the data is " normal"), and the associated charts indicate that the Drift Data is neither i calibration interval dependent nor time, (age), dependent. { nA m u.,as.no,s Page 5 of 9 -a m u-a . = + ~. -w m s ,w g6 4 me -e-v4 -7 w an m

n-u. e, c, - -crymd no r N.d, n.m -. ram-w one m.ey e SURVEILLANCE REOUIREMENT - 3.3.17.2. O) POST ACCIDENT MONITORING RCS PRESSURE (WIDE RANGE) ) In summary, the Drift Data for both indicators and recorder is considered " normal" and does not appear to be time dependent. ^ i As indicated on page one, the Surveillance Requirement and instruments covered by this analysis, are as follows: Survellinnee Reautrement: 3.3.17.2, (3); Post Accident Monitoring - RCS Pressuit - Wide Range. Surveillance procedure: SP-161C. Technical Snecification Allowable Value: None, since this is Post Accident Monitoring instrumentation only. 4 Surveillance Procedure Setnoint: No setpoints are associated with this Post Accident Monitoring Instrumentation. Tan Numbers: RC-158-Irr, RC-158-PY-1, RC-158-PY3 & RC-158-PI-2 & RC-158-PIR j RC-159-PT, RC-159-PYl, RC-159-PY3, RC-159-PI-2 O +95%/95% Tolerances: RC-158/159-PI-2 RC-158-PIR + 0.70%,20.9 psig + 1.32%,39.5 psig - 0.61 %, -l8.4 psig - 1.07%, -32.0 psig 4. " Coq / inn that a comparison ofthepmjectedinstnunent dQ enon has been made with the mlues of dQ used in the setpoint analysis. If this results in raised setpoints to accommodate larger dQ envrs, pmvide pmposed Technical Specification changes to update trip setpoints. if the dQ enors result in a nvised sqfety analysis to support existing. setpoints, pmride a summary of the updated analysis conclusions to confum that the sqfety lbnits and sqfety analysis assumptions are not exceeded. " i These Post Accident Monitoring, (PAM), indicators have no setpoints, hence no setpoint analysis changes will be required. 'Ihe projected 30-month drift terms for the recorder has never been exceeded in the intervals investigated. The projected 30-month drift terms for the indicators has only been exceeded by 3 of 40 or 7.5% of the total Drift Data points. Note that the three Drift Data points we;e identified as OUTLIERS, but were not removed from the Drift Data because the points did h not exceed allowable "As-Found" tolerances. Hence, since Drift Data is not time dependent, nam u,2s. ms Page 6 of 9 i l i i ~

I* -- mu. e, c - - cry nuv., u.a, n -- Den se.sy - SURVEILLANCE REOUIREMENT - 3.3.17.2. O) POST ACCIDENT MONITORING RCS PRESSURE (WIDE RANGE) O we have a high level of confidence, that future Drift Data will be contained within the projected tolerance interval. 5. "Confinn that the pmjected instmment enon caused by d# are acceptablefor contml of plant pammelen to dect a sqfe shutdown. Licensees must confinn that the instmment enon caused by dQ will not qVert the capability to achieve sqfe shutdown. " Per the Instrument Accuracy Calculation, (I88-0020, Rev. 7), and FPC drawing, 205-047 RC42, the RCS Wide Range Pressure loops input to: A. RCS Wide Range Pressure Recorder at MCB (RC-158-PT loop only). B. RCS Wide Range Pressure Indicators at MCB. C. RCS Wide Range P: ssure Indicators at RSP. D. RCS Wide Range Pressure to RECALL. E. RCS Wide Range Pressure to ATWS-DSS. l With the exception of the outputs to ATWS-DSS, all the above functions are recording and indication only. Per the methodology utilized in the revised Instrument Accuracy Calculation, a new ATWS-DSS setpoint has been provided, and will be incorporated into the associated surveillance procedures, as required.- Hence, the 30-month drift value will not affect the capability to achieve safe shutdown. 6. "Confinn that all conditions and assumptions of the setpoint and sqfety analysis have been checked and are oppmpdately reflected in the acceptance entena of plant surveillance pmceduresfor CHANNEL CHECKS, CilANNEL FUNCTIONAL TESTS and CHANNEL CALIBRATIONS. " Engineering has revised and upgraded the Instrument Accuracy Calculation, (188-0020, Rev. l 7), for these PAM devices. The majority of string devices have no 30-month drift error terms. However, revised "As-Ixft" and "As-Found" calibration tolerances and the revised ATWS-DSS setpoints will be incorporated into the appropriate CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION surveillance procedures, as required. 7. "Pwride a summary description of the pmgmm for monitonng and assessing the 6ects of increased calibmtion surveillance intervals on instmment dQ and its effect on sqfety. i ne instrument " DRIFT PROGRAM" is an ongoing program which will monitor future l surveillance procedure "As-Found" and "As-Ixft" data, and will incorporate new data into l the Drift Study spread sheets with the existing Drift Data. He revised Drift Data MEAN, STANDARD DEVIATION, 95%/95% TOLERANCE INTERVAIS, etc., will be i dam May 2s.199s Page 7 of 9 j

Wrida Power Ce ryormtlam - Crystal IUver Nuclear Plant - Instrument DriA Study SURVEILL ANCE REOUIREMENT - 3.3.17.2. O) POST ACCIDENT MONITORING n RCS PRESSURE (WIDE RANGE) L} compared with the existing Drift Data, to ensure the conclusions reached in this report remain valid. IIL DRIFT STUDY

SUMMARY

1. Per Refueling interval surveillance procedure, SP-161C, the PAM instruments have not exceeded acceptable, "As-Found" surveillance procedure tolerances. INDICATOR LOOP: Three OUTLIERS were identified. However, the OUTLIERS do not exceed the "As-Found" procedure tolerance. Hence, these OUTLIERS are ACCEPTABLE and will not be removed from the Drift Data. Raw calibration data points which have exceeded "As-Found" tolerance: 0 of 40. RECORDER LOOP: No OUTLIERS were identified. Raw calibration data points which have exceeded " As-Found" tolerance: 0 of 25. 2. The attached spread sheets and charts present calculated Drift Data and the associated statistical information using the methods described in the references. The methodology is summarized in section II.2, above. A' v' 3. The pressure indicators and the pressure recorder Drift Data is considered " normal". The associated charts indicate that the Drift Data for both indicator and recorder is neither calibration interval dependent nor time, (age), dependent. Hence, the 95%/95% Tolerance values can be assumed to envelop the 30-month drift values. 4. These Post Accident Monitoring indicators have no setpoints, hence no setpoint analysis changes will be required. The projected 30-month drift terms for the recorder has never been exceeded in the intervals investigated. The projected 30-month drift terms for the indicators has only been exceeded by 3 of 40 or 7.5% of the total Drift Data poir ts. Note that the three Drift Data points were identified as OUTLIERS, but were not removed from the Drift Data because the points did not exceed allowable "As-Found" tolerances. Hence, since Drift Data is not time dependent, we have a high level of confidence, that future Drift Data will be contained within the projected tolerance interval. 5. With the exception of the outputs to ATWS-DSS, all the above functions are recording and indication only. Per the methodology utilized in the revised Instrument Accuracy Calculation, a new ATWS-DSS setpoint has been provided, and will be incorporated into the associated surveillance procedures, as required. Hence, the 30-month drift value will not affect the capability to achieve safe shutdowm. /^'\\ U DAM May 25. W5 Page 8 of 9

l l Florid a Fewsr Carporation - Crystal IUvsr Nucless Plant - Instrument Dra study i SURVEILLANCE REOUIREMENT - 3.3.17.2. (3) ) POST ACCIDENT MONITORING RCS PRESSURE (WIDE RANGE) j O 6. Engineering has revised and upgraded the Instrument Accuracy Calculation, (188-0020, Rev. 7), for these PAM devices. The majority of string devices have no 30-month drift error terms. However, revised "As-Left" and "As-Found" calibration tolerances and the revised ) ATWS-DSS setpoint will be incorporated into the appropriate CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION surveillance procedures, as required. 1 7. The instrument " DRIFT PROGRAM" is an ongoing program which will monitor future surveillance procedure "As-Found" and "As-Left" data, and will incorporate new data into the existing Drift Study spread sheets. The revised Drift Data will be compared with the existing Drift Data, to ensure the conclusions reached in this report remain valid. IV. CONCLUSION: l Based on the above summary, the Surveillance Interval for this Technical Specification calibration requirement can be extended to 30-montits. O ( O dam hiny 25,1995 Page 9 of 9 1

b -l' y.- p t SP.111C SR 3.3.17 2 (3) ; 2. RC-15M/159-PI-2 RC PRESSURE IN DICATION - WIDE It.OGE SP-161C Cahbration Intersal Fise Point Data i Drift Data & Outtier Esatuathm. TAGStalBER Date (Month 9 0% 25 % 50 % 75 % 100 % 0% 25 % 50 % 75 % too?[ RC-158-PI-2 As Lett 9289 0 750 1500 2275 30LO RC-158-I'r Replaced 9-89 As Found 33a90 69 0 750 1500 2250 3000 0 00 % 0 00 % 0 00 % -o.s3% 0 00 %~ As lett 57790 0 750 1500 2250 3000 DATA IS OK DATA IS OK DATA IS OK 01TTI.lER DATAIS OK 4-20-94 As-!E*u~nd A As-Lcft As Found iInNI I74 0 760 1520 2275 3000 0 00 % 0.33% 0 67 % 0.83 % 0 00 % ~' Data Taken at 96.7% Vs As Left iINSI O 750 1500 2260 3000 DATA IS OK DATA IS OK DATA IS OK OUTIJER DATA IS U~K 100%. Dsta Extrapolated To As round 6/2932 7.7 0 745 1505 2255 3000 0 00 % -0 17*. 0.17*. -0.17% 0.00 % j 100% To He Casastent As left 6G9N2 5 745 1505 2255 3000 DATA IS OK DATA IS OK DATA IS OK DATA IS OK DATA IS OK With Previous Data As Found 415N3 9.2 0 750 1500 2250 3000 -0.17% 0.17% -0.17% -0.17% 0.00 % As Iett 4'5S3 0 750 1500 2250 3000 DATA IS OK DATA IS OK DATA IS OK DATA IS OK DATAIS OK Asfound 4/20 94 12.5 0 750 1500 2250 3000 0 00 % 0.00 % 0 00 % 0 00 % 0.00 % As 1xft 4.20S4 0 750 1500 2250 3000 DATA IS OK DATAIS OK DATA IS OK DATAIS OK DATAIS UN RC-159-PI-2 As le t 5a7S0 0 725 1490 2250 3000 ~ f RC I59-PT Replaced 5 90 As Found 111791 17.4 0 750 1500 2250 3000 0 00 % 0.83 % 033% 0 00 % 0 00 % 4-20-94 As-round & As-left As Ixtt 1INSI O 750 1500 2250 3000 DATA IS OK OUTI.lER DATA IS OK DATA IS OK DATA ISIiK i Dats Taken at 96 7% Vs As Found 4/5N3 16 9 0 750 1500 2250 3000 0.00 % 0 00 % 0 00% 0 00 % 0 00 % 100% Data Extrapolated To As lett 4/5N3 0 750 1500 2250 3000 DATA IS OK DATA IS OK DATA IS OK DATAISOK DATA IS OK 100% To Be Consistent As Found 40034 12.5 0 750 1500 2250 3000 0 00 % 0 00 % 0.00 % 0 00 % 0 00 % Wnh Prewous Data As I ett 47034 0 750 1500 2250 3000 DATA IS OK DATA IS OK DATA IS OK DATAIS OK f DATA IS OU RC-15N/159-PI-2 Range: 0 to 3000 psig l Mean:i 0.04 % Percent psig Span: 3000 p4g Standard Deviation: 0.27 % +95%M5%: 0.70 % 20.9 SP-161C As Found Tol.: 75 psig 2.50 % Nusnber of Points: 40 -95%/95%: -0.61 % -l 8.4 SP-161C As left Tat: 50 psig 1.67 % Outtiers Eschaded: 0 ~ Imop Accuracy Csiculathm: 158-0020, Rev. 7 Outlier Criteria: 2.866 ~ i 95%MS% L: 2 445 Page t of 3 fa mcemma nniac isa. ins te sata e.= eitos

.c .g L p i i Fi l i j,I 1 i, s 1 e = \\ nm r ~ i. s i k5 ? ? E E k b k % % h k k t h h k i e

A o o o oo o e o o o e o o o e o o o e o 1

h i k4 k k S E E E k k k k k k k k k k % k e o o o 9 o 9 9 e o o o e o o o o o o o e U Q E N 4 N N R A A X 2 4 4 A S ~ ~ g U i b b h b b b k k k k k k k k k k k k k k k k k k k k k k k I A e o o o e o e o e o e

A 9 9 9 9 9 9 o o o o o e o o o e o e o o e

ad w N 3 $ $ h k k k k k k R E O k G k I k G C C ~ c e c o c o c e c e f N I c o o 9 e c e o o. 9 6 e o c o c o o 9 9 9 9 9 9 9 9 9 9 9 C7 + m uas s a s=- j-ssl ~ e .. - - e s = 2

: s t e m a E 4 4 4 k g g R p h.p

) c o c o.. o e, x-w= 5 1 4 h h k S k % % k k k k k k h k % k k i t hk % k k k k g , o o o o o o o o o o o o o o o o o o o. o o o o. -u i S 5 5 4 % E E h k k k k k k k k k k k k S S E E k k k k 2. e o o o e o e o e o o o o e o o o e o 9 o 9 9 e o e o t& 2 1 5 E E E E E k k k k h k k k k h k k k k j I E E E k E k k j 9 9 9 9 9 9 e o o o o e o o c o c c o o c c o 6 9 e o c o o. .s e i

  • i 7

.t a m a g e s e n s s g a = g l g a s 4 e i g k G k h ch k A e m n a n e s = : c s s s s o o s s 1 y o o o o o o o o o o o o o o o o o o o e c o 9 e c o e,o u l ( I k k k $ $ 8 w$ N ~ Z c o o 9 o o o o w n e a 1 2 $ 7 ~ e e n e ow t i N N j ),

  • k E H 7
y k Tl 1

1 H hi s j j $.]" ' 'c j e n t = o c 0 0 0 " e, s 2 4.s j u t e

~ JE 9- { k sj A_ SP-1IIC SR 3 3.17.2 (3) RC-158/159-PI-2 RC PRESSURE DDICATION -WIDE RANGE llistograsa Data l l Prieability Ote.erseal Itise i Freipsraerv t I for t-signas Prarer%se -4.00 -1.03*. 0 0*. 0.05 0.0's -I 03?. O O 000 3 0*. e.00*. -3.75 -0.96'. 00's 0.13 0.0's -0 96's 0 0250 19.74's 72.50*6 ~ -3.50 -0.90'. 2.5'i 033 0.0's -0.90's 1 0.500 38.29*. 72.50'. -3.25 -0.83'i 0.0* 6 0.76 0.1% -0 83 % 0 0.750 M.07% 72.50'. -3 00 -0.76', 0.0% 1.65 0.l?4 -0.76?& n 1.000 68.27?k 90 n0*4 ,hal Pts -2.75 -0.70*i 0.0% 339 02's -0.70'4 0 1.500 86 64'i 90 00'. 3 2.50 -0 63 % 0.0* 6 6.54 0.4?e -0.63? & 0 2.000 95 45 % 9#.90% 97.50 % -2.25 -0.56*6 0.0's I1.84 08's' -0.56?4 0 2.500 98.76*6 92.50 % -2 00 -0.49*. 00'4 20.14 13% -0.49'i 0 3 000 99.73'. 97.50 % -1.75 -0.4 3?. 0.0* i 32.18 2.2?6 -0 43% 0 3.500 99.95's 100 00's -1.50 -036% 0.0's 4831 3.2's -036% 0 4.000 99 9994's 100.00*& -1.25 -0.29's 00's 68.13 4.6'i -0.29% 0 Especteil Value Actual -I.00 -0.23*6 12.5's 90.26 6.0% -0.23% 5 -0.75 -0. I 6* 6 0.0's II232 7.5% -0. I 6% 0 -0.50 -0.09'. 0.0% 13L32 8.8% ?09% 0 -0.25 -0.03?i 67.5's 14423 9.7?i A% 27 0.00 0.04 % 0.0'i 148.81 10.0*4

  • 'i 0

0.25 0.ll's 5.0's 144 23 9.7'. t 's 2 0.50

0. I8%

0.0's 13132 8.8% 0.I8% 0 ~ 0.75 0.24's 0.0' 6 I1232 7.5? 6 0.24? & 0 I 00 031% 50*i 90.26 6.0% 031?6 2 1.25 038's 00*i 6833 4 6*. 038% 0 1.50 0.44's 0.0* i 4831 3.2% 0 44 % 0 l.75 0.51 % 0.0* k 32.18 2.2* 4 0.51 % 0 2 00 0.58 % 0.0's 20.14 13% 0.58's 0 2 25 0 64 % 2.5* 6 11.84 08?4 0 M*4 1 2.50 0.71 % 00's 6.54 0.4% 0.71 % 0 2.75 0.78'i 50's 339 0.2? 4 0.78's 2 3.00 0 85's 0 0'h I.65 0.1% 0.85?s 0 3 25 0.91*i 0.0's 0.76

0. l's 0.91 %

0 3.50 0 98 % 00's 0.33 0 0'e 0.98 % 0 3.75 1.05'. 0.0*6 0.13 0.0* i 1.05'i 0 4 00 1.Il'.

0. 0*.

0.05 0.0'. 1.I1?4 0 100 0 % 1491.95 100 0*h 40 t e.= etess Pagte 3 nf 3 Fm uscmminene sse.ise m enta

z. ?.. O O~~~ SP-161C

  • ?-

Surveillnace Requirement 3.3.17.2,(3) RC-158/159-PI-2 Reactor Coolant Pressure Indication Transmitter / Rack / indicator Drift Data Drift Data Vs Interval 95%/95% Tolerance 1 1.00% -- j/ a 0.80% - 0.70 % g 0.60% -[ 0.40% -[ m , 0.20% - a a 55 e a a 5 0.00 % E-5 g g 0.00% -- cw 6, -0.20% -- -0.40% - j -0.60% -: -0.61% -0.80% - -1.00 % i 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 Calibration InterTal (Months) Page1 of1 ,umemm.,assiiiin onni enia es sirisent

q 3 O \\A SP-161C ?. Surveillance Requirement 3.3.17.2,(3) RC-158/159-PI-2 Reactor Coolant Pressure Indication Transmitter / Rack / Indicator Drift Data Drift Data VS "As-Found" Date 1.00% 0.80% -[ 0.60% -: 0.40% - p 0.20% -[ m a w0 Om g g 0.00% -[ m 0.00 % a e a e 'C w Q# a m -0.20% -- -0.40 % - -0.60% - l -0.80 % - -1.im% 1/1/89 1/1/90 1/1/91 1/132 1/183 1/1/94 1/185 Date of Calibration l PageI ofI ru inemm enesumin esmer esta es ne enti

= - SP-161C Sun eillance Requirement 3.3.17.2,(3) RC-158/159-PI-2 Reactor Coolant Pressure Indication Transmitter / Rack / Indicator Drift Data Absolute Value of Drift Data VS "As-Found" Date 0.90% [ m u 0.80% -: 0.70% - a 0.60% - o $ ~6 0.50% -[ mm .C 5 5 b 0.40% -- 2 a 0.30% -- ~ 0.20% -- a m 0.10% -_ ~ GM% 1/1/89 I/l/90 1/1/91 IlI/92 1/3/93 1/1/94 1/1/95 Date of Calibration Par,cIofI rummissess an ew enn is a sus m

U SP-161C Surveillance Requirement 3.3.17.2,(3) RC-158/159-PI-2 DATA lilSTOGRAM Reactor Coolant Pressure Indication Transmitter / Rack / Indicator Drift Data 70.0 % -- 60.0 % 50.0 % N m t. 0.0=/. -- e .2 1:g 30.0% -- E 20.0% -- 10.0 % -- . a - --* - * ~ ' '.~'6, pe' a# 0.0% - -*+a -i l . 2't=* P

  • T ' i t

i fH 'l F *=1 - ; i

a +a+ *-i i

i i i i i 2iR2EEOEOO4AA2S22 2A4M4EE3EEEERE: 44444444444444446 6 6 6 6 6 6 iid & 6 6 i i " ' Percent Drift - All Data Points PageIofI w mawnm,w anni onn asusum

r SP-16iC SR 3.3.17.2 (3) 4 ~ RC-158-PIR RCS PRESSURE INDICATION - WIDE ROGE SP-161C Cabbration Interval Fhe Point Data Drift Data & Outher Esaluatiem. TAG N13ti!FR Date (Months) 0% 25 % 50 % 75 % 100 % 0% 25 % 50 % 75 % 1055~ ~ RC-158-PIR (PEN) As l ett 9 2:89 0 750 1525 2250 3000 RC-158-PT Replaced 9-89 As l'ound 3'30 90 69 0 750 1500 2250 3000 0 00*. 0.00*. -0 8it. 0 00'. 000*. r As Left 5'2730 9 757.3 1500 2245 3000 DATA IS OK DATA IS OK DATA IS OK DATA IS OK DATA IS OK ' ~ 4-20-94 As-Found & As-1. cit As1ound II/7NI 17.4 25 770 1530 2270 3000 0 51'. 0.42*. I OtF. 0 83'. 0 00'. i)ata Talen at 96.7?. Vs As i.ett 11/7NI 10 760 1510 2260 3000 DATA IS OK DATA IS OK. DATA IS OK DATA IS OK DATA IS OK 100%. Data Extrapolated To As Found 6/29 92 7.7 2 760 1515 2250 3000 -0 27 % 0 00'. 0.17's -0 33'. 0 0tr. 100'.To He Consistent As Left 6/29 92 2 760 1515 2250 3000 DATA IS OK DATA IS OK DATA IS OK DATA IS OK DATA 15OK With Predous Data. As Found 4/533 9.2 0 750 1500 2250 3000 -0.07'. -0.3 3'. -0 50'. 0 00*. 0 00 % As I ett 4/5N3 0 750 1500 2250 3000 DATA IS OK DATA IS OK DATAIS OK DATAISOK DATA IS Old As Found 4-20N4 12.5 25 775 1525 2250 3000 0 83% 0 83*. 0 83 % 0 00 % 0 00'. As I.ett 4'20N4 25 775 1525 2275 30 % DATA IS OK DATA IS OK DATA IS OK DATA IS OK DATA IS OK Mean: 0.12*. Percent psig RC-158-PIR (PEN) Range: O to 3000 psig SP-161C As Found Tel.: 50 psig I 67?. Standard Desistion: 0 45's +95%/95%: 1.32*. 39.5 SP-161C As Isft ToL: 30 psig 1.00 % Number of Points: 25 -95%!95%: -1 07'i -32.0 Imop Accuracy Calculation: 158-0020, Rev. 7 Outhers Escluded: , O_ ~-~ Outlier Criteria: 2.663 95%/95% k: 2 611 W-1ESI DATA Coefficients Sorted Test Data 11 ternes

  1. of Pts.

Data Sorted

  1. of Pts.

Data sorted I Number of Points: 25 04450 -0 83 % l.00 % 0 82*4 1 0 00'. -0 83 % I4 -0. 50'. 1 00 % ariance (s^2): 2.05E-05 03069 -0 50 % 0.83% 0 41 % 2 0 53*. -0.50% 15 0 83*. 0 83% S*2: 4 91E-N O 2543 -0 33'. 0.83*i 0.30 % 3 -0 27?. -0 33 % 16 0 00'. 0 81*. B' 2.14 E-02 0.2148 -0.33'i 0.83 % 0 25'i 4 -0 07'. -033% 17 0 83'. 0 83% H '2: 4 56F-N 0.1822 -0.27% 0.83 % 020% 5 0 83'. -0 27'. 18 -0.3 3'. 0.83% WMH'2 / S^2): 0.929 0.I519 -0.07?. 0 53*& 0 09 % 6 0.00'. -0.07% 19 0 00 % 0.5 3'. ] Critical W La 95%: 0 918 01283 0 00'. 0.42?. 0 05 % 7 0 42*. 0 00 % 20 0 00*. 0.42% l W Test: PASS 0.1046 0 00 % 0.17 % 0 02*. 8 0 00 % 0 00 % 21 0 00 % 0 I7?. i~ 00823 0 00 % 0 00 % 0 00 % 9 -0.3 3% 0 00 % 22 0 00 % 0.00*. 00610 0 00 % 0 00*i 0 00 % 10 0 83*. 0 00 % 23 0 00 % 0 00 % O0403 0 00*i 0 00*i 0 00'. I1 -0 8 3*. 0 00 % 24 0 00 % 0.00 % 0.0200 0 00'. 0 00'. 0.00 % 12 1.00 % 0.00 % 25 0 00'. 000'. I3 0 17 % 0 00 % + (hart Data t Calahration inters al Fise Point Drift Data 0% 25 % 50 % 75 % 100 % 95%/95% lineits Zern % 6 1.32*. -1.07% 0 00 % 7 0 00 % 0 00 % -0 83'. 0.00'. 0 00 % I.32'. -I.07% 0 00*. I7 0.5 3*. 042*. I 00 % 0 83'. 0 00 % 1.32*. -107% 0 00'. 8 -0 27 % 0 00'. 0 17'i -0.3 3% 0 00 % 1.32 % - 1.07'. 0.00 % 9 -007% -0 3 3*. -0 50*i 000% 0.00 % 1.32'. -I07% . 0 00 % 12 0 83'. 0 83*. 0.83 % 0.00 % 0 00 % 1.32 % -1.07'. 0 00 % 18 1.12% -107% 0 00 % s estes PageIofI ni. pern,s panime to en esia

_s. V SP-161C 4 Surveillance Requirement 3.3.17.2,(3) RC-158-PIR Reactor Coolant Pressure Indication Transmitter / Rack / Recorder Drift Data Drift Data Vs Inten al 95%/95% Tolerance 1.50 % - / l 1.32 % 1.00% -- E a a 0.50% -- 3 $m 8 m = 0.00% -- 5 "c i E a -0.50% -- E m -1.(Hi% -- -1.07% -1.50% l i l l i l i l l i i l I l 5 6 7 8 9 to 11 12 13 14 15 16 17 IN 19 Calibration Interval (Months) Page1ofI ru memeninavne sent enta visum ... ~

g 7.s C k) SP-161(: 1. Surveillance Requirement 3.3.17.2,(3) RC-158-PIR Reactor Coolant Pressure Indication Transmitter / Rack / Recorder Drift Data Drift Data VS "As-Found" Date 1.00% a 0.80% -[ O.60% - 0.40% -[ p 0.20% [ W3 om a 0.00 % e e a a-T = 0.00% -- g e ag -0.20 % -I a a m -0.40% - -0.60% - -0.80% - a 1/1/89 1/1/90 1/1M1 1/1/92 1/1M3 1/1/94 1/1M5 Date of Calibration Page 1 of 1 ,u ncemennemec esen sata vs ar ean

. /s; f~ ~ ) .,w/ s e SP-16t(: 1. Surveillance Requirement 3.3.17.2,(3) RC-158-PIR Reactor Coolant Pressure Indication Transmitter / Rack / Recorder Drift Data Absolute Value of Drift Data VS "As-Found" Date 1.00% a 0.90% -[ e a m 0.80% -: 0.70*/o -: 9 0.60 % -[ 3 "E Ee a = 0.50 /. - a 't s,s. a

  • 0.40% - ;

[- m u 0.30% - a 0.20% -: m f 0.10% - a ,,g.f, .=..................=.......=........=............_........ 1/1/89 1/1/90 1/1/91 1/1/92 1/1/93 1/1/94 1/135 Date of Calibration Page1of1 ,munemminmeme an omisata a ne san e.= = ten .}}