ML20080U246

From kanterella
Jump to navigation Jump to search
Nonproprietary Version of CR-3,Pressurizer Surge Nozzle Stresses
ML20080U246
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 02/23/1995
From: Costa D, Shepard J
BABCOCK & WILCOX CO.
To:
Shared Package
ML20080U237 List:
References
32-1236435, 32-1236435--R, 32-1236435-00, 32-1236435-00-R00, NUDOCS 9503140293
Download: ML20080U246 (26)


Text

_

)

.l Yd[PW9-)'

I

_ CALCULATION

SUMMARY

SHEET (CSS) 32-1236435-00 DOCUMENT IDENTIFIER CR-3, PRESSURIZER SURGE NOZZLE STRESSES TITLE PREPARED BY:

REVIEWED BY:

D.E.

COSTA J.

F.

SHEPARD

,4,g NAME b

SIGNATURE SIGNATURE oxyg/]_7'4fff f PRINCIPAL ENGR SUPERVISORY ENGR TITLE DATE TITLE 41020 5

COST CENTER REF. PAGE(S)

TM STATEMENT: REVIEWER INDEPENDENCE i

PURPOSE AND

SUMMARY

OF RESULTS:

PURPOSE:

The purpose of this analyr a is to determine and document the stresses at the juncture of the pressurizer surge nozzle-to-pressurizer lower head.

Stresses due to pressure, temperature, and external load.s associated with surge line stratification are included.

The stresses will be used as input to the fatigue crack growth analysis of Reference [1].

RESULTS:

The pertinent results for input to the fatigue crack growth analysis are contained in microfiche CR3SCL2.OUT and summarized in Table 7-1.

l THIS DOCUMENT IS A NON-PROPRIETARY VERSION OF THE BWNT PROPRIETARY DOCUMENT 32-1235087-00.

THIS DOCUMENT IS BASICALLY IDENTICAL TO THE PROPRIETARY VERSION EXCEPT APPENDIX A HAS BEEN REMOVED.

THE f0LLOWhWG COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:

CODE / VERSION / REV CODE / VER$10N / REV V IFIE PRI T L SE NONE oN SAFETY-RELATED WORK YES (

) NO ( X) 9503140293 950309 PDR ADOCK 05000302 PAGE 1 or 26 P

PDR

  • 5

.y

<g je 4:

. B&W NUCLEAR TECIDIOLOGIES.

- ** NON-PROPRIETARY ** 1236435-00 RECORD OF REVISIONS REVISION DESCRIPTION g

00 ORIGINAL RELEASE

'2/95 f

i. :.

)

a F

)

I s.

I

'?

l Li G

1 Y

\\

PREPARED BY D. E. COSTA DATE:

i

. REVIEWED BY J.

F.

SHEPARD DATE:

PAGE:

2 i

4

eL 2.; 1

+

A:

2..

h-4

' 1;4[ '

.B&W NUCLEAR TECENOLOGIES

    • NON-PROPRIETARY **

32-1236435.:

h TABLE OF CONTENTS SECTION DESCRIPTION M

- t RECORD OF REVISIONS.

21

' l, TABLE OF CONTENTS

.3 I

e 10z INTRODUCTION.

4 2.0

.RESULTS/ CONCLUSION' 4

3.0 LIST OF ASSUMPTIONS 5

I

<t 4'0' REFERENCES' 5'

'l P

5.O DISCUSSION OF. ANALYSIS 6

{

6.0 BASE CASE STRESSES 9

7.0 NOZZLE-TO-HEAD WELD STRESS

SUMMARY

12

's APPENDIX A FORTEAN. PROGRAM LISTING 21

[

l APPENDIX B FORTRAN PROGRAM VERIFICATION 22~

-t, APPENDIX C MICROFICHE 26 i

PREPARED BY: D.

E.

COSTA DATE:

REVIEWED BY:

J.

F.

SHEPARD DATE:

PAGE:

3

l

,h('l j

l

.A

- c 1

c

(

'BisW NUCLEAR TECENOLOGIES

    • MON-PROPRIETARY **

32-1236435-00 1.0' INTRODUCTION:

During 9R Section XI examinations of the pressurizer, a flaw indicatibn was found in the weld connecting the pressurizer surge nozzle to the pressurizer lower head. The flaw was determined to exceed the flaw acceptance st'andards of ASME i

Section XI,'IWE-3500.

A fatigue crack growth analysis, Reference [4), as prepared to justify continued operation of the plant. Due to time constraints and lack of detailed stresses at the-location of the flaw, the analysis was performed assuming the maximum stress ranges from any transient were applicable for all transient cycles. This very conservative approach resulted in a flaw acceptability of only one fuel cycle.

I In order to perform a less conservative more realistic flaw evaluation, the 1

membrane and bending stresses through the thickness of the pressurizer lower head at the location of the flaw (surge nozzle-to-head weld) are required.

The purpose of this analysis is to determine and document the stresses at the juncture (weld) of the pressurizer surge - nozzle-to-pressurizer lower. head.

Stresses due to pressure, temperature, and external loads associated with surge line stratification are included.

The stresses will be used as input to the fatigue crack growth analysis of Reference [1].

2.0 RESULTS/ CONCLUSIONS: The pertinent results for input to the fatigue crack growth analysis are contained in microfiche CR3SCL2.OUT and summarized in Table 7-1.

PREPARED BY: D.

E.

COSTA DATE:

REVIEWED BY: J.

F.

gue#ARD DATE:

PAGE:

4

t, 9

4 B&W NUCLEAR TECHNOLOGIES

    • NON-PROPRIETARY **

32-1236435-00

, e 3.0 LIST OF ASSUMPTIONS:

1) Although the stresses due to the external loads (moments) are tensile on one side of the nozzle and compressive on the other, only the tensile stresses are added to the thermal and pressure transient stresses.

By i

adding the external load tensile stress to the thermal and pressure transient stresses,.the membrane and membrane plus bending tensile t

stresses are maximized. The maximum external load stress at the nozz to-head juncture is 8.6 kei, Reference [2] page 54.

4.0 PEFERENCES

1) BWNT Document # 32-1235116-00, "FM Assessment of CR-3 Pzr WP-15 Flaw Until End-of-Life", by L.T. Hill (this document is proprietary to BWNT, a non-proprietary version is contained in BWNT document 32-1236235-00)
2) BWNT Document #~32-1179379-00, "LL Pressurizer Surge Nozzle Evaluation, Thermal Stratification", by D.E. Costa
3) BWNT Document # 32-1202340-01, "TE Pressurizer Surge Nozzle Thermal Stratification Analysis", by D.E. Costa
4) BWNT Document # 32-1233483-00, "CR-3 Pressurizer Surge Nozzle Flaw Evaluation", by L.T. Hill
5) BWNT Locument # 32-12350B7-00, "CR-3, Pressurizer Surge Nozzle Stresses",.

by D.E. Costa NOTE: Reference [5] is the proprietary version of this document.

i t

PREPARED BYs D.

E.

COSTA DATE:

REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

5

i a

k' B&W NUCLEAR TECENOLOGIES

    • NON-PROPRIETARY **

32-1236435-00 5.0 DISCUSSION OF ANALYSIS:

Stresses in the surge nozzle-to-pressurizer weld (the flaw location) are caused

-by the pressure, thermal,.and external loadings associated with thermal stratification of the surge line. Reference [2] contains the detailed stress and

' fatigue analysis of the' pressurizer surge nozzle for the B&W lower loop plants

-(including CR-3) for surge line stratification. Although Reference [2] provides the complete stress and fatigue analysis of the surge nozzle, it does not include

[

a listing of the detailed transient stresses at the location of the flaw.

In addition to the lower loop surge nozzle analysis, Reference [3] contains the detailed stress and fatigue analysis of the pressurizer surge nozzle for the B&W raised loop plant (Davis Besse) for surge line stratification.

The lower and raised loop nozzle analyses used the same methodology for determining stresses at various locations in the nozzles.

The raised loop analysis actually uses

)

(references) many of the stresses from the lower loop analysis.

The one-difference in the two analyses is that the raised loop analysis uses a FORTRAN program to manipulate all the data associated with the surge line stratification -

transients.

The stresses at the flaw location will be determined using a combination ' of '

information from References [2] and [3). The methodology used in both Reference

[2] and [3] for determining stresses at other locations in the nozzle will be used for determining the stresses at the nozzle-to-head weld.

The following summary describes the method of analysis used in the surge nozzle evaluations of References [2] and (3);

Due to the number of transient data points (PVs, peaks and valleys) associated with surge line stratification it was not practical to evaluate each one individually. Therefore, the transient PVs (572 for lower loop) were reviewed and a series of thermal " base cases" (94) were created using l

various ramp rates, starting temperatures and delta temperatures.. A l

pressure base case using 2200 psi was also made..The base cases were designed to cover the broad spectrum of actual transient conditions.

The thertral stressos for each PV were determined by comparing the PV thermal parameters to the base case thermal parameters and using the base case stresses from the most representative base case.

The pressure stresses for each PV were determined by multiplying the base case pressure stresses by the ratio of the PV pressure to the bare case pressure (2200 psi). Stresses due to the PV external loads were determined and added to l

PREPARED BY: D. E.

COSTA DATE:

REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

6

L.

l B&W NUCLEAR TECHNOLOGIk's

    • NON-PROPRIETARY **

32-1236435-00 the thermal. and pressure stresses for each PV for use in ASME code analysis.

The same method described above for the surge nozzle analyses will be used for the nozzle-to-head weld. The procedure outline for determining the nozzle-to-head stresses is given below.

1) SUMMARIZE TRANSIENT CONDITIONS FOR CR-3:

The transient data for the lowered loop plants (including CR-3) is taken from Table A-1 of Reference

[2].

The transient information includes starting temperature, ending temperature, ramp rate, pressure, and external load (moment) associated with the thermal stratification of the surge line.

A summary of the thermal stratification transient parameters in contained in the FORTRAN output of microfiche CR3SCL2.OUT. The transient cycles for CR-3 are taken from Table C-0 (page C-3) of Reference [2] and are also summarized in the FORTRAN output of microfiche CR3SCL2.OUT and in Table 7-1.

2)

TABULATE BASE CASE CONDITIONS AND RESULTING STRESSES:

The base case transient parameters are taken from Table 10-3 of Reference [3].

Per Reference [4] and Figure 10-2 of Reference [2], stress classification line number 2 is appropriate for the nozzle-to-head weld.

The linearized component stresses for the nozzle-to-head weld, SCL 2, are taken from the microfiche of References [2] and [3].

A summary of the base case parameters and resulting stresses is contained in Table 6-1.

3),ql!OOSE BASE CASE FOR EACH TRANSIENT PV:

The FORTRAN program listed in Appendix A is used to determine the appropriate base case for each PV.

The program compares ramp rate, starting temperature, and delta temperature of the PVs to those of the base cases and selects the base case that best represents the PV thermal parameters.

The selected base case for each transient PV is summarized in the FORTRAN output of microfiche CR3SCL2.OUT.

Verification of tbs selection process is contained in Appendix B.

4)

DETFttMINE PV THERMAL STRESSES: The thermal stresses from the appropriate base case determined in step 3 above are multiplied by the ratio of the transient PV AT to base case AT to arrive at the transient PV thermal stresses. The resulting thermal stresses for each PV are tabulated in the FORTRAN output of microfiche CR3SCL2.OUT. Verification of the procedure is contained in Appendix B.

PREPARED BYs D.

E.

COSTA DATE:

REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

7

~ ~ -

~ -

4 M?.4.,

r

~

M<s

~. -

jE s

s i<n

,e39q W":n ;

y;,,

r v

cy.

9

(;

e m.sy, y;*

tj Y "

g..
m. L S v<

t-j ns i

    • NON-PROPRIETART **J 32-1236435400 M

g '(i U S&W NOCEsEAR T*'unant.navne 1

,,?

x-

/f. '

t

,N" 5)! PEFINE PV METAL TEMPERATUSES::

In i addition : to ' stresses, the fracture 1

' mechanics ' evaluation of - Reference [1] requires; the metal temperatures' for(

?

1 J

l

.the PVs.',.The metal temperatures from the selected base case are used;tol 1

? }

approximate' ' the v actual < PV metalb temperatures.

.The base case [ metal

~,.

. temperatures'at,the' wall ID,:00, andl flaw location (nodes 88, 96i and'.93'

]

~

' respectively) are taken 'from the microfiche of References :[2] and = [3]; and j

s yJ

' listed in CR3SCL2.OUT. The sele'cted PV metal' temperatures-are' contained" in'the stress intensity summary table of CR3SCL2.OUT.

q i

l

((

From Reference [4]',. the flaw is located' approximately '1.5" radially i' rom' l

t the outer surface of the pressurizer wall'. ' Node 93 ',of the finite ' element.

?k. '

a model of References 4 [2] and -[3] corresponds to this location.

Node ', 88 e;

~

' represents the base, metal;ID and node 96 represents the base' metal'OD.

f

..?

.s..

}

i;

6) DETERMINE PV PRESSURE STRESSES:- The pressure stresses from the base case

-1 i

a

~

pressure case are multiplied by the ratio of the transient PV pressure to' j

. base. case pressure (2200 psi)- to arrive atL the transientD PV pressure '

,' d The resulting~ pressure stresses for'each"PV are tabulatedTin'

~

stresses..

the FORTRAN output. of', microfiche CR3SCL2.OUT.

Verification oft.the l

procedure is contained in Appendix B.

.y

!q

7) DETERMINE PV EXTERNAL LO5D STRESSES The. resultant external' moments used

(

the. surge nozzle analysis are also: used for the ' nozzle-to-head weld j

"I stresses. The stresses for.the' nozzle-to-head' weld arejdetermined_using-thE Bijlaard method for determination of: stresses for'cylindNr-to-sphere' d

connections.

From pages. 54 " and.55 f of. Reference. '[2], the -stresses -

c, associated with a moment of 2508422.in-lbs are i

i

.t stress outside surface

inside ' surface l[

stress stress-to-moment stress streas-to-moment'

'f (psi)

' ratio ~

(ksi).

ratio'-

radial 0.0 "0.0 0.03

'O.0

'I

,6 longitudinal 640'0

'O.0026 3800' O.0015 hoop 8600 0.0034:

-6200?

0.0025 Note: moment = 2508422 in-lbs-

~i The moments for each transient'PV,are multiplied by thelstress-to-moment' f

g

= ratio'to arrive at the PV external load stresses.

'The-PV moment' and 1

resulting external load hoop stress for'each PV are tabulated ~ in : the -

9 -

no PREPARED BY: D.

E. CUSTA DATE:

REVIEWED BY: J.

F.

DATE:

PAGE:.

8

?

.[

i i

h 4+

+-

+ -. =.,, -

,fm+m.

_)

[VQy Q g qcy r,

3 gc

,4._

-;6

~

%~

zw ;

y-e

-. ban NUCLEAR TBGNOTAGIES1

    • NON, PROPRIETARY,**' ^ '

32-1236435-00' N

f c

,4 1

- output of microfiche CR3SCL2.'OUT..' The !resulting ' external load radial" and '

'i longitudinal stresses ~are'ealculated and used,in tho' FORTRAN evaluation

]

')'

.]

7'

, but are not printed:out Lin the microfiche.. Verificat' ion of this procedure i

1

. is! cont!ained in Appendix B.

.f1 '

,; A:

..t y

q As stated in Assunption'1), onlyf the tensile stress associatied with the ;

b-.

mennents are considered.:.This'.is conservative because it maximizes 1 the s

, tensile membrane and L bending ' stresses o used in. the i fracture mechanics

- evaluation.-

' }

r'i 08): DETERMINE PV TOTAL STRESSES The PV thermal;stressesi pressure stresses i

and external stresses determined'.in step. 4,5 : and 6 5 above are ; added ' to

~

i I

- achieve.the PV total' stresses.

The PV total.. stresses-are summarized in;

. l the FORTRAN output of microfiche CR3SCL2.OUT and sunnarized in Table.7.-l.

)

?

- These results are used as' input to the fracture mechanics evaluations.of.

Reference [1].

3

.i 6.0 BASE CASE STRESSES:

- This section contains a the base case stresses ; used s in ' the determination ~ of

~

transient stresses. The base-case temperatures 'and pressures are sumnarized in Table 10-3'of Reference [3] and the stresses.:are taken from the' microfiche of-t.

References [2] and [3),

d 4

i e

i

)

)

{

l 1

s 3.

I

.1 j

a 1

j PREPARED BY: 'D.

E.

COSTA DATE:

REVIEWED BY J.'F.

SPEPARD DATE:

PAGE:

9 1

I'l

. s a.1.,

'}

p.

PT e' ( y

.g -

4; l

NON PROPRIETARN **

32-1236435 00 4

- Stat NUCLEAR TECHNOLOC"..SS.

~**

t.

l TABLB 6 1 BASE CASE STRESSES, SCL 2 M01112-10-N3hD NEIA e

TRANSIONT IN90mMET10N LINEAR 11ED STRB8858 DWFAI,TEMPSRAftNtBS MICROFICME taae Tonyeratures (F)

Resp Prese Inside Surface Outside Surface (BASB MrrAL, MODE 9)

NAfe Run.

Rete SAD 140R3 N00F RAD EdlNG N00F ID FLAN OD 6

(kei (kei) (kei) (kei) 54 93 DE THRM STRS,it

./Mr (pel)

.l..(kell..(.ke.i)

Strt and Dmite F

'3R S..

e

...e 1.1 60 462 402 900 0 -15.9 -14.3 0 19.S 19.6 362 249 230 GDNR GBKJ,7

+

1.2 80 446 366

- 900 0 34.T.15.1 0

14' 18.1 331 223 206 6

1.9 +12.4 0 14.5 14.0 269 177

' 162 5

0 3.9.3 1.3 80 373 ' 293 900 0

9.8 0 11.4 it.T 216 141 129 4

' 1. 4 80 - 309 229 900 3.5 80 ' 283 173 900 0

-6.9

-7.3 0

0.4 - 8.9 174

. 114

. 106

'3 1,6 80 209 129 900 0

+4.0

-l.1 0

6' 6.4 142 90 92 2

1.7 80 172 92 900 0

3.1

-3.3 0

3.9 4.2 119 GG 05 1

2.1 250

$S0 300 1000 0 -15.3 -15.7 0 19.1 20 449 342 325 QMCD GBKK,7 2.3 250 ott 234 2000 0 31.9 12.2 0

15 16.3 394 301 294 6

i 2.3 250 430 180 1000 0

0.9 9

0 11.S 12.9 352 283 273 5

F" 2.4 250 302 132 1000 0

6

-5.0 0

8.1 9.6 317 267 240 4-7 2.5 250 346 96 1000 0

3.8 3.4 0

5.5 6.9 293

. 254 254 3

2.6 250 316 66 1000 0

2 1.4 0

3.4 4.1 275 253 251 2

2.7 250 292 - 42 1000 0

-0.7 0

0 1.9 3

262 251 250 1

3.1 150 600 350 1500 0 -17.6 -10.8 0 21.6 22.5 373 241 221 00FK GRJN,7 3.2 150 443 293 1500 0 14.0 -15.7 0 18.2 19.3 331 216 199 6

3.3 150 343 233 1500 0

31 -11.7 0 13.7 14.9 251 149 177 5

.t 3.4 180 327 177 1500 0

7.1

.s.1 0

9.9 11 240

-171 163 4

(

3.5 150 285 135 1500 0

-5.3

.$.4 0

6.9 8

212 161 156 3

3.6 150 248 94 1500 0

-3.2 3.1 0

4.4 5.3 tot 155 152 2

3.1 150 220, 70 1500 0

1.7

  • 1.5 0

2.1 3.4 174 152 151 1

1 4.1 250 482 232 2000 0 11.4 12 0 14.7 14.6 371 276 265 GJT2 GBKL,5 r

t 4.2 250 431 181 2000 0

8

  • 0.2 0 10.7 12.5 336 264 257 4

4.3 250 309 139 2000 0

.$ 3

-5.1 0

7.5 p.1 309 257 253 3

4.4 250 352 102 2000 0

3

-2.6 9

4.0 6.2 287 253 251 2

4. 5 250 320 70 2000 0

-1.4

-0.1 0

2.7 4

271 251 250 1

t 5.1 200 450 250 5000 0 -13.7 34.8 0 17.1 19.1 338 225 211 BCOL EDEG.?

5.2 200 420 220 5000 0 12.1 13 0

15 16.0 321 222 210 ese notes 5.3 200. 370 170 5000 0

9.3 -10.1 0 11.6 13 294 217 207

see notee 5.4 200 330 130 5000 0

-1.1

.T.7 0

5.9 9.9 272 213 206 ese notes 5.5 200 290 90 5000 0

4.9 5.3 0

6.2 6.9 250 209 304 ese notes 5.6 200 360 40 5000 0

3.3

-3.6 0

4.1 4.6 233 206 203 see notes 6.1 to 400 320 99999 0 14.9 -16.6 0 18.3 19.9 342 102 87 BC0Y EDJE,2 T.1 500 650 150 1000 0

.S.6 4.2 0 12.1 14,5 544 521 513 GBFF GRKT,4 7.2 500 611 til 1000 0

.S.7 4.9 0

e.T 11.1

$59 511 506 3

T3 500 579 79 2000

~0 3.2

-2 0

5.8 4.1 537 504

$02 2

7.4 500 555 55 1000 0

1.4 0

0 3.7 5.9 521 502 500 1

8.1 500 650 150 1500 0

-7.9

-1.5 0 11.4 14.1 580 513 506 GNLU GEK1,3.

9.2 500 624 - 124 1500 0

5.5 5.1 0

9 11.6

$61 508 503 2

0 3.3 0

6 S.4 539 503 Sc1 1

0 -14.9.-2.2 t

S.3 500 590 - 90 1500 15.5

0. 19.3 21.6 546 432 418 GNNE GREN,5 9.1 400 450 250 2000 9.2 400 635 235 2000 0 -13.0 -14.2 0

14 20.3

$34 427 ell 4

9.3 400 580 180 2000 0

9.4

-9.4 0

13 15.2 494 414 407 3

9.4 400 535 135 2000 0

5.9 5.5 0

8.9 10.D 463 407 402 2

9.5 400

$00 100 2000 0

3.4

-2.7 0

5.9 - 1.9 441 403 401 1

y 10.1 500 650 150 21000 0

30.

9.9 0 13.6 16.4 590 515 506 EDK2 EDT2.6

?

10.2 500 604 104 21000 0

-4.9 6.9 0

9.4 11.4 562 510 504 ese notes b

10.3 500'

$69 49 21000 0

-4.6

-4.6 0 ' 6.3 7.5 541

. 607 503 ese notes 10.4 500 546 46 21000 0

-3.1 3

0 4.2 5

520 505 502 ese notes 11.1 500 600 100 99999 0

6.4

.$.6 0

9.2 11.7

- 559

. 511 505 EDLS EDUE,2 y

12.1 550

$$0 0

0 0

0.8 2.6 0

1.1 3

550 550 550 GJGJ GNMW,1 12.2 450 450 0

0 0

0.7 2.2 0

0.9 2.6 450 450 450 QAF2 GCrf.1 13.3 300 300 0

0 0

0.4 1.5 0

0.6 1.8 300 300 300 GrGE aklu,1 12.4 70 70 0

0 0-0 0

0 0-0 70 70 70 none none 13.1 550 300.250 000 0 16.3 19.3 0 11,4 14.6 344

465 481 GJGJ GMvu,8 13.2 5$0 332 -218 000 0

15 16.1 0 15.7 13.3 392 404 499

?

13.3 550 306 164 400 0

12 15.2 0 +12.2 +10.3 437 513 524 5

13.4

$50 432 +118

-800 0

8.8 11.6 0

.s.4 6.8 475 532 539 5

13.5 550 468 82 800 0

6 8.?

O

-5.2 3.6 502 542 546 4

11.6

$50 493 57 800 0

3.9 6.3 0

2.8 1.1

$20 547 549 3

13.7 550 514 36 800 0

2.3 4.4 0

-0.8 0.9

$35 549

$50 3.

14.1 450 100 350 1700 0 22.1 25.9 0 24.8 23.2 210 364 388 GJDK GMVG,8 14.2 450 145 30$

1700 0 19.9 23.8 0 22.1 -20.9 247 306 406 1.

14.3 450 215 -235

-1700 0 15.7 19.3 0 37.2 -16.2 302 413 428 6

I 14.4 450 270 190 1700 0 11.8 14.9 0 12.6 *11.1 344 430 440 14.5 450 315 135 1700 0

8.3 11 0

8.5

.?.5 377 441 446 4

,{

14.6 450 350 100 1700 6

5.6 1.9 0

.$ 3 4.1 401 446 449 3

14.7 450 350 70

-170P 0

3.4 5.5 0

2.T 1.4 421 449 450 2

'14.9 450 405 45 1774 0

1.9 3.7 0

-0.8 0.7 435 450 450 1

15.1 450 100'-350

-3 00 0 22.7 27.4 0 25.8 -25.5 234 404 425 GkF2 GCTT,8 15.2 450 135 315

+.000 0 20.3 24.8 0

-23 22.T

' 260 414 432 7

15.3 450 190 252 3000 0 15.7 19.6 0 17.5 17.2 307 429 441 6

18.4 450 254 196 3000 0 11.3 14.5 0 12.4 -11.8 347

' 440 446 5

15.5 450 296 384 ' 3000 0

0.1 10.9 0

8.5

-T.T 375 445 449 4-15.4 450 338 112

-3000 0

8.1 T4 0

4.9 3.8 402 440

- 450 3

15.7 450 373 77 3000 0

2.9 4.9 0

2.2

-0.9 422 449 450 2

16.1 482 160 32.

4000 0 24.4 28.8 0 36.8 *25.5 253 410 437 GESV QFRP,5

[

14.2 482 210 24 4000 0

to 23.6 0

22 -20.9 294

' 423 445 ese notes 16.3 482 276.* a6 4000 0 15.6 14.4 0 -17.1 36.3 335 436 483 ese notes t

16.4 462 321 161 4000 0 12.2 14.4 0 13.4 12.9 369 446 460 ese notes

'i 17.1 450 200 -250

-20000 0 18.4 22.9 0 20.6 -20.5 293 429 443 EDMDlEDUJ,5 i

17.2 450 240 210

-20000 0 15.4 19.2 0 17.3 17.2

- 318 432 444 ese notes St.$

430 300 150 30000 0 11.2 13.7 0 12.4 12.3 356 437 446 eso notee

'17.4 450 380 -100 30000 0

9.4 9.2 0

-8.2 4.2 387 442 447 eee notes 10.5 600

$20-00 99999 0

7.2 10.1 0

6.2 4.9 148

' 592 597 EDMMlEDUQ,2 e

PREPARED BYs D. E. COSTA DATE:

REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

10 i

e

g e=

p

,c ev 4

t l

i.b [.

.5&W NUCLEAR TBCENOIAGIES

    • NOIt-PROPRIETARY **

32-1236435-00' j

s-p 5

w e

i ranLa s.1

.E B488 chSS 8T858885, SCL 2, NDESIA.TO-NBAD ustb -

i

'IRANSIMFf INFOINETION

-- LIEWARISED STRESSES MBT &1. TSIFBBATURSS 'MICROFICNE f

Press HABE Dese temperatures (F)

R.eap Inside S.urface, O.u.tende su.rf a.ce,- (th.SS 2WTAL IBODE.0) m, st.

um

.oo

-u oo 1

,u

.O

.BR.$. S.t.r.t..S.e.d D..e.tte

.F./N.r

.(pe.l.l..(.keil..(.kal.l..(ke.l.l.

.(.ke.i.l..(ke.i.l (ke.i.l.. S.G -..92..

96..

STRS.,.i.t,

THRN 19.1 200 - 500 300

  • 700 0

9.9 11.7 0

+11

=9.6 16S 23T 249 OfGE GAIN.6

~19.2 200 227 -152 700 0

8.7 10.5 0

9.4 4.2 196 258

.268 5

?

' 19.2 200 - 182 117

.700

' O 6.8 8.2 0

6.0

  • ,8 231 279 206 4

[

19.4 200 217 42

-100 9

4.5 6.2 0

-4. 4.s e.S 257 290 294 2

I 12,$

200 243

-97 700 0

2.9 -' 4.4 0

2.5. A.S 214 294 298 2

p.J. [

2G.1 250 100. -150 1500 0 - T.2 9.1

'O 0.1 7.6 174

, 225

- 242 EMI6 3005.4..

20.2 260 ' 148

-*102

+1500 0

4.4 S.9 0

4.7

-4.1 205 244 240 2

20,2 250 100

  • ?D 1900 0

2.S 2.8 0

.2.4

-1.1 224 248 249 2

7 22.4 290 209

-41

-1900 0

1.2 - 2.2 0

-0.1 0.2 239 250 250

- 1

,i f.

20.1 2200 2.2

.2.6 '12.8 0 10.2 11,8 none eaMC.1

~j s

T NOTESI

1) ' The stresses for ~ these. cases are calculatedL by: multiplying the' maximum stresses for the ramp rate by the ratio of desired delta T.

to maximum stress-delta T.

2) The-temperatures for these cases are' determined.by,the following equations

~

?

T e max AT = values from microfiche for iteration in question 1

T e other ATs = Tetre + (T e max 6T.- Tegre) ( AT 6,/AT.)

~i

+

-1 e

9 9

i t

i F

i

'i

?

.I I

1 i

.I I

I k

t l

-5

~!

PREPARED BYs D.

E.

COSTA DATE:

REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

11 i

i

~ _. _

4

e r

p af B&W NUCLEAR TECHNOLOGIES

    • NON-PROPRIETARY **

32-1236435-00 7.0 NOZZLE-TO-HEAD WELD STRESS

SUMMARY

Reference microfiche CR3SCL2.OUT This section contains a summary of the transient stresses at the surge nozzle-to-pressurizer head weld.

As previously mentioned, these stresses include the effects of thermal, pressure, and external loads associated with surge line stratification transients.

The table is taken from the microfiche output of CR3SCL2.OUT TABLE 7-1

...........**************** LINEARIZED STRESS

SUMMARY

, SCL 2 **************************

TOTAL LINEARIZED STRESS (ksi)

BASE METAL TRANS PV TRANSIENT INSIDE SURFACE OTTISIDE SURFACE TEMPERATURES (F)

NAME CYCLES RAD LONG HOOP RAD LONG HOOP ID FLAW OD

====..............

HU1A1 1.

10.

0.0 0.0 0.1 0.0 0.1 0.1 70.

70.

70.

HU1A1 2.

10.

-0.6

-11.7

-7.2 0.0 29.1 31.5 362.

249.

230.

HU1A1 3.

10.

-0.6 26.0 33.3 0.0

-22.5

-20.5 253.

410.

437.

HU1A1 4.

10.

-0.6

-0.1

-3.6 0.0 25.0 27.4 331.

223.

206.

HU1A1 5.

10.

-0.6 30.5 38.5 0.0

-28.6

-26.5 253.

410.

437.

HU1A1 6.

10.

-0.6

-1.0 3.6 0.0 16.1 11.8 174.

114.

106.

HU1A1 7.

10.

-0.6 11.9 18.4 0.0 1.3 4.6 196.

258.

268.

HU1A1 8.

10,

-0.6

-7.1

-3.0 0.0 23.7 26.9 331.

216.

199.

HU1A1 9.

10.

-0.6 16.3 22.8 0.0

-12.7

-11.7 307.

429.

441.

HU1A1 10.

10.

-0.6

-3.6 0.2 0.0 16.9 19.7 240.

171.

163.

HU1A1 11.

10.

-0.6 8.9 13.2 0.0

-3.8

-2.1 196.

258, 268.

HU1A1 12.

10.

-0.6 0.6 3.6 0.0 5.6 6.8 174.

152.

151.

HU1A1 13.

10.

-0.6 5.1 9.2 0.0

-0.2 1.1 257.

290.

294.

HU1A1 14.

10.

-0.6

-1.8 2.5 0.0 16.2 19.1 240.

171.

163.

HU1A1 15.

10.

-0.6 8.7 13.1 0.0

-3.9

-2.2 196.

258.

268.

HU1A1 16.

10.

-0.6

-3.7

-G.1 0.0 15.3 18.2 336.

264.

257.

HU1A1 17.

10.

-0.6 9.4 13.9 0.0

-4.9

-3.2 196.

258.

268.

HU1A1 18.

10.

-0.6

-2.1 1.7 0.0 13.7 15.7 174.

114.

106.

HU1A1 19.

10.

-0.6 8.3 12.6 0.0

-3.4

-1.8 196.

258.

268.

KU1A1 20, 10.

-0.6

-5.5

-2.0 0.0 18.3 21.0 281.

189.

177.

HU1A1 21.

10.

-0.6 14.0 19.4 0.0

-9.3

-6.7 392.

484.

499.

HU1A1 22.

10.

-0.6

-15.8

-14.4 0.0 23.9 25.2 373.

241.

221.

HU1A1 23.

10.

-0.6 15.2 21.6 0.0

-5.8

-2.3 392.

484.

499.

HU1A1 24.

10.

-0.6 0.7 5.2 0.0 11.1 14.1 441.

403.

401.

HU1A1 25.

10.

-0.6 12.5 19.0 0.0

-2.7 0.3 437.

513.

524.

HU1A1 26.

10.

-0.6 2.1 6.2 0.0 8.5 10.5 174.

152.

151.

HU1A1 27.

10.

-0.6 5.1 9.3 0.0

-0.2 1.2 257.

290.

294.

HU1A1 28.

10.

-0.6

-6.9

-3.7 0.0 18.8 21.8 371.

276.

265.

HU1A1 29.

10.

-0.6 14.5 20.0 0.0

-9.8

-7.1 392.

484.

499.

HU1A1 30.

10.

-0.6

-0.4 3.0 0.0 9.0 10.8 189.

155.

152.

HU1A1 31.

10.

-0.6 8.2 13.2 0.0

-3.7

-2.0 475.

532.

539.

HU1A1 32.

10.

-0.6

-8.3 5.8 0.0 15.9 16.8 269.

177.

162.

HU1A1 33, 10.

-0.6 19.3 26.4 0.0

-9.8

-5.4 364.

465.

481.

HU1A1 34.

10.

-0.6

-5.7

-2.5 0.0 17.1 19.4 281.

189.

177.

HULA 1 35.

10.

-0.6 6.5 11.5 0.0 1.2 3.1 401.

446.

449.

HU1A1 36.

10.

-0.6

-0.3 4.4 0.0 11.6 15.2 539.

503.

501.

HU1A1 37.

10.

-0.7 11.8 17.6 0,0

-6.4

-4.9 344.

430.

440.

HU1A1 38.

10.

-0.7

-1.6 3.2 0.0 14.7 17.9 309.

257.

253.

HU1A1 39.

10.

-0.9 11.3 17.9 0.0

-4.7

-2.5 437.

513.

524.

HU1A1 40.

10.

-1.5

-10.1

-2.0 0.0 32.3 35.8

449, 342.

325.

HU1A1 41.

10.

-1.6 7.1 16.6 0.0 8.8 11.9 422.

449.

450.

HU1A1 42.

10.

-1.6 2.9 12.2 0.0 16.5 20.5 537.

504.

502.

HU1A1 43.

10.

-1.7 13.4 24.7 0.0 3.3 7.0 475.

532.

539.

HU1A1 44.

10.

-1.7 2.7 12.6 0.0 17.8 22.3 539.

503.

501.

HU1A1 45.

10.

-1.8 15.0 26.0 0.0

-1.8 0.5 344.

430.

440.

HU1A1 46, 10.

-1.8

-0.8 8.2 0.0 20.7 24.7 562.

510.

504.

HU1A1 47.

10.

-2.0 12.8 23.8 0.0 0.9 3.7 437.

513.

524.

HU1A1 48.

10.

-2.0

-1.2 9.1 0.0 24.1 28.3 494.

414.

407 HU1A1 49.

10.

-2.1 9.2 20.7 0.0 8.4 11.3 401.

446.

449.

HU1A1 50.

10.

-2.1 1.5 13.0 0.0 22.4 27.2 561.

508.

503.

)

i PRFPARED BY: D.

E. COSTA DATE:

REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

12 j

l

fII

~

~

v-h:11-3 eu

?

~^

FaJ

-B&W NUCLEAR TECENOLOGIES

' ** NON-PROPRIETARY **

32-1235435 00

)

TABLE 7-1 cont.

.............*************LINEARIZEDSTRESS

SUMMARY

,SC1.[2************************

r TOTAL LINEARIZED STRESS (ksi)

BASE NETAL -

L7RANS PV TRANSIENT ~

INSIDE SURFACE OUTSIDE SURFACE

. TEMPERATURES (F)

' NAME -

CYCLES RAD LONG HOOP RAD LONG HOOP -

-ID FLAN OD NU1A1 51.

10.

-2.2 10.8 22.5-0.0 3.9 6.1 377.

441.

446.

-HULA 1 52.

10.

-2.2-

-7.8 4.1 0.0 35.7 42.4 588.

521.

513.

NULA1 53.

10.

-2.2

.18.2 30.9 0.0

-2.0 1.9 392.

-484.

499.

HU1A1 54.

10.

-2.2 1.0 12.1 0.0 21.8-25.9 463.

407.

402.

.HU1A1 55.

10.

-2.2

'13.1 25.9 0.0 4.0-7.3 475.

532.

'539.

NU1A1 56.

10.

-2.2

2. 8 '

8.7

.0.0

'27.9 33.6 500.

513.

506.

'l NULA1 '

57.

10.

-2,2 15.4' 28.2 0.0 1.0 4.4 437.

513.

524.

i HULA 1 58.

10.

-2.2 1.6 12.9 0.0 21.0 25.3 561.

508.

503, t

' NU1A1 59.

10.

-2.2

' 7.8

19.6 0.0 8.5 11.5 520.

547.

549.

,i NULA1 60.

10.

-2.2

-2.4 8.5

0. 0 - 24.7 29.1 -

588.

521.

513.

L

'NU1A1 61.

10.

-2.2 12.6 25.2 0.0 4.6 7.8' 475.

532.

539.

F f

HULA 1 62.

10.

-2.2 2.8-14.1 0.0 17.8 21.8

537, 504.

502.

HU1A1 63.

10.

-2.2-10.7 22.7 0.0

-5.9 8.7 475.

532.

539.

i HU1A1 64.

10.

-2.2

-2.8 7.2 0.0 21.4

~25.3 580.

513.

506.

NUif.1 65.

10.

-2.2 13.7 25.9 0.0 2.3.

5.4

.437.

513.

524.

t' NULA1 66, 10.

-2.2 4.0 15.6 0.0 16.7 20.8

521, 502.

500.

HU1A1 67.

10.

-2.2 8.1 20.1 0.0 8.8 12.1 520.

547.

'549.

HULA 1 68.

10.

.-2,2

-1.6 9.1 0.0 22.9 26.9 588.

521.

513.

HULA 1 69.

10.

-2.2 9.8 22.0 0.0 7.3' 10.3 502.

542.

546.

NULA1 70.

20.

-2.2 3.4 14.3 0.0 14.6 17.9 521.

502.

' 500.

i HULA 2 1.

8.

0.0 0.0 -

0.0 0.0 0.0 0.0 70.

70.

70.

NU1A2 2.

8.

-0.2

-9.8

-7.2 0.0 22.6 24.4 331.

223.

206.

HU1A2 3.

8.

-0.2 18.3 23.5 0.0

-17.2

-16.5 260.

414, 432.

HULA 2 4.

8.

-0.2

-7.3

-4.7 0.0 19.8 21.5 269.

177.

162.

HULA 2 5.

8.

-0.2 21.9 27.6 0.0

-22.3

-21.7 234.

404.

425.

HU1A2 6.

8.

-0.2

-3.1

.-2.0 0.0 6.6 7.2 142.

98.

92.

?

HU1A2

'7.

8.

-0.2 9.1 13.7 0.0 0.7 3.3.

231, 279.

286.

307.

294.

HU1A2 8.

8.

-0.2

-6.6

-3.7 0.0 19.2 22.1' 394.

1 HULA 2 9,

8.

-0.4 11.0 15.3 0.0

-8.3

-7.1 174.

- 235, 242.

NU1A2 10, 8.

-0.4

-4.4

-1.2 0.0 16.1 18.9 352.

283.

273.

HU1A2 11.

8.

-0.4

9. 2.- 12.7

.0.0

-6.4

-4.9 196.

258.

268.

HU1A2 12.

8.

-0.4

-5.4

-2.2 0.0 19.2 22.2 281.

189.

177.

HULA 2 13.

8.

-0.4 11.0 14.8 0.0

-8.0

-6.1 165.

237, 249.

HULA 2 14.

8.

-0.4

-4.3

-1.6 0.0 14.5 17.3 336.

264.

257.

HULA 2 15.

8.

-0.4 9.4 13.0 0.0

-6.3

-4.7 196.

258.

268.

HU1A2 16.

8.

-0.4

-2.8 0.1 0.0 12.9 14.8 174.

114.

106.

)

HULA 2 17.

8.

-0.4 8.2 11.7 0.0

-4.8

-3.3 196.

258.

268.

HU1A2 18.

8.

-0.4

-5.8

-3.2 0.0 17.2 19.7.

281.

189.

177.

HULA 2 19.

8.

-0.4 9.6 12.9 0.0

-7.2

-5.6 165.

237.

249, f

HU1A2 20.

8.

-0.4

-3.2

-0.9 0.0 10.6 12.5.

212.

161.

156.

+

HU1A2 21.

8.

-0.4 3.2 6.2 0.0

-0.1 1.1 274.

296.

298.

3 NULA2 22.

8.

-0.4

-9.3

-8.0 0.0 14.3 14.8 269.

177.

162.

[

HU1A2 23.

8.

-0.4 14.7 20.2 0.0

-6.9

-3.6 392.

484.

499.

NULA2 24.

8.

-0.4 0.7 4.0 0.0 8.9 11.2 287

' 253, 251.

-}

HULA 2

~ 2 5.

8.

-0.4 11.7 17.1 0.0

-3.5

-0.8

437, 513.

524.

6 HULA 2 26.

8.

-0.4 1.6 4.7 0.0 7.4 9.3 174.

152.

151.

i HU1A2 27, 8.

-0.4 5.1 8.5 0.0

-1.6

-0.4 257.

290.

294.

l I

HU1A2 28.

8.

~-0.4

-7.5

-5.3 0.0 17.7 20.5 371.

276.

265.

NULA2 29.

8.

-0.4 14.2 18.8 0.0

-11.1-

'-8.5 392.

484.

499.

HULA 2 30.

8.

-0.4

-1.0 1.5 0.0 7.9 9.6 189.

155.

152.

'j HU1A2 31.

8.

-0.4 6.2 p.3 0.0

-3.6

.-2.5 231.

279.

286.

HULA 2 32

.8.

-0.4

-9.3

-8.1 0.0 14.4 14.8 269.

177.

162.

L HU1A2 33.

8.

-0.4 18.5 24.5-0.0

-10.7

-6.6 364.

465.

.481.

f HU1A2 34.

8.

-0.4

-7.4

-5.1 0.0 17.9 20.3 281.

189.

177.

KU1A2 35.

8.

-0.4 6.0 10.3 0.0 0.6 2.4 402.

448.

450.'

f HU1A2 36.

8.

-0.4

-1.7 1.8 0.0 11.8 14.8 559.

511.

506.

HU1A2 37.

8.

-0.4 13.6 18.5 0.0

-11.5

-10.4 302.

413.

428.

.i HU1A2 38.

8.

-0.6

-7.7

-4.1 0.0 19.9 21.5 269.

177.

162.

i HU1A2 39.

8.

-0.6 4.8 9.8 0.0 3.3 5.3 421.

449.

450.

,l HU1A2 40.

8.

-0.6 1.8 7.0 0.0 9.6 12.9 521.

502.

500.

HU1A2 41.

8.

-0.7 9.8 16.0 0.0

-1.9 0.5 475.

532.

539.

-j HULA 2 42.

8.

-0.7 0.9 5.8 0.0-10.6 13.7 539.

503.

501.

i HU1A2 43.

8.

-0.7 10.8 16.7 0.0

-4.4

-2.3 437.

513.

.524.

i HULA 2 44.

8.

-0.8

-2.3 3.2 0.0 16.4 20.6 561.

508.

503.

HU1A2 45.

8.

-1.0 11.6 18.7 0.0

-3.5

-1.1 437.

513.

524.

j i

PREPARED BY: D.

E.

COSTA DATE:

REVIEWED BY: J. F. BREPARD DATE:

PAGE:

13 A

l

-W'

, y

~

r 9fs, ' : ~ ' ' }

f'

(-

s s

g

. ~... a. +-

v,

'** NON-PROPRIETARY **

~

~32-1236435-00>

4

ban NUCLEAR TSCENOLOGIES.

% e,jy. a-

. TABLE 7-1 cont.

g

..u u

.e******* m ******" LINEARIEED STRESS St204ARY, SCL 2*"***********"******"**'

TOTAL LINEARIEED STRESS (kai).

BASE METAL.

INSIDE 'tURFACE.

~ OUTSIDE SIRFACE' TWEPERATURES (F).

' TRAN4 '~

PV TRANSIENT.

NAME..

CYCLES RAD LOIN N00P RAD.

..LONG-NOOP ID. - FLAN 00. '

NULA2 46, 8.

-1.0

-6.7"'-0.1 0.0 25.2 L30.3

'588.

521.

.513.

NUIA2, 47.

8.

-1.2' 13.9 21.5 0.0

-6.1

-3.4 392.

484.

499.

NU1A2-48.

8.

-1.4

- 9. 0 '

-0.7

'O.0~

30.8 ~ 36.9 588.

521.

513.

NU1A2 49.

8.

1.7 15.5 - 27.3 0.0

' -1.2 2.6 392.

484.

499.

4 NULA2 50.

8.

-1.7 0.8.

9.8 0.0 18.9 22.5.

463.

' 4 07.-

402.

NU1A2 51.

8.

-1.9 12.7 24.4 0.0 2.4 5.5 475.

-532.

539.

KU1A2' 52.

8.

-2.2

-5. 0 ^

4.8 0.0 31.2

,36.0

$34, 427.

> 415.

NULA2 53,'

8.

-2.2 16.5 28.9 0.0

-0.6

, 3.1 392.

-484.

499.

. NULA2 54.

8.

-2.2 1.2 12.5 0.0 22.6 26.9:

463..

407.

402.

a NU1A2 iSS.

'O.

-2.2 9.4 21.4

.0.0' 6.5 9.4.

502.

- 543.

.546.

NULA2 56.

8.

-2.2

-5.2 5.2 0.0 26.0 30.5 588.

521.

513.z HULA 2.

57.

8.

-2.2

?14.9 27.9 0.0

.4.0 7.7, 437.

513.

524.

NU1A2 58.

8.

-2.2

-2.8 7.1' O.0 21.5 25.4 500.

513.

506.

NULA2 59.

8.

-2.2 14.7 27.6 0.0 3.7 7.3 437.

513.

524.

NU1A2 60.

8.

-2.2 2.8

,14.1 0.0 17.8 - 21.8 537.

504.

502.

HULA 2 61.

8.

-2.2 9.1 20.9 0.0 7.5 10.3 502.

542.

546.

a' ~ ':

NU1A2 62.

8.

-2.2

-0.5 10.7 0.0 22.0 26.6 561.

508.

503.

NU1A2 63.

8.

-2.2 9.8 22.0 0.0 7.3

'10.3 502.

542.

545.

NULA2 64.

8.

-2.2 3.9 15.1 0.0 15.4 19.0 521.

502.

500.

NULA3 1.

45.

0.0 0.0 0.1 0.0 0.1

,24.2 331.

223.

'206.

NU1A3 2.

45.

-0.2

-10.0

-7.4 0.0 22.4

. 70.

0.1 70.

70.

NU1A3 3.

45.

-0.2 17.3' 22.4 0.0

-16.3

-15.6 260.

414.

432.

NU1A3 4.

45.

-0.2

-6.9

-4.4' O.0 18.9 20.7

269, 177.

162.

NU1A3 5.

45.

-0.2 20.3 25.9 0.0

-20.5

-19.9 260.

414.'

432.

92.

NU1A3 6.

45.

-0.2

-2.8

-1.8 0.0 6.2 6.5 142.

.- 98.

. 206.

HU1A3 7.

45.

-0.2 8.3 12.7 0.0 0.9

. 3.3 231.

.' 279.

NU1A3 8.

45.

-0.2

-6.0

-3.3 0.0 17.9 20,5 394.

307.

'294.

NULA3 9.

45.

-0.4 10.0 14.1 0.0

-7.3

-6.2 174.

235.

242.

NULA3 10.

45.

-0.4

-3.8

-0.8 0.0 14.7 17.3 352.

283.

273.

HULA 3 11.

45.

-0.4 7.9 11.2 0.0

-5.2

.-3.8 196.

258.

268.

NU1A3 12.

45.

-0.4 5.1

-1.E 0.0 18.4 21.7

352, 283.

273.

NULA3 13.

45.

-0.4 10.0 13.5 0.0

-7.0

-5.2 165.

237.

249.

NU1A3 14.

45.

-0.4

-3.7

-1.3 0.0 - 12.9 14.9

240, 171.

-163.

'NULA3 15.

45.

-0.4.

8.3 11.7 0.0

-5.2.

3.7

196, 258.

268.

sNULA3 15.

45.

-0.4

-2.0

. 0.7 0.0 11.5 13.2'

142, 98.

92.

NU1A3 17.

45.

-0.4 7.6-11.3 0.0

-4.0

-2.5 231.

279.

'206.

NU1A3 18.

45.

-0.4

-5.7

-2.8 0.0 16.6 - 19.4 352.

283.

273.

NULA3 19.

45.

-0.4 13.0 18.1 0.0

-9.4

-7.1 437.

513.

524.

HULA 3 20.

45.

-0.4

-14.0

-13.4 0.0 20.3 21.3 373.

241.

'221.

HU1A3 21.

45.

-0.4

.12.9

.18.5 0.0

-5.5

-2.7

437, 513.

.524.

NULA3 22.

45.

-0.4 1.0 4.0 0.0 7.4 9.2 174.

152.

151.

NU1AJ 23.

45.

-0.4 10.5 16.0 0.0

-2.5 0.1 475.

532.

539.

NUIA3 24.

45.

-0.4 1.5 4.5 0.0 6.6 8.2

174.

152.

151.

HULA 3 25.

45.

-0.4 3.8 7.1 0.0 0.0 1.3 274.

.296.

298.

HULA 3.

26.

45.

-0.4

-5.0

-2.6 0.0 14.3 17.0 336.

264.

s 257.

NULA3 27.

45.

-0.4' 12.4 - 17.3 0.0

-8.8

-6.5 437.

-513.

- 524.

HU1A3 28.

45.

-0.4

-0.5 1.9 0.0 7.0 0.4.

189.

'155.

152.

- NULA3-29.

45.

-0.4 6.5 10.8 0.0-2.9.

-1.1 502.

542.

546.

NULA3 30.

45.

-0.4

~7.3

-6.1 0.0-12.0 12.5 216.

141.

.129.

HU1A3 31.

45.

-0.4 16.5 22.3 0.0

- 9. C.

-5.5 392.

484.

499.

NULA3 32.

45.

-0.4

~-6.2-

-4.7 0.0 11.7 12.5 216.

141.

129.

NULA3 33, 45.

-0.4 6.5 10.9 0.0

1.1 3.1 401.

-446.

449.

NULA3

-34.

45.

-0.4

~ -0.3 3.5 0.0 9.8

'12.9 537.

504.

502.

NU1A3 35.

45.

-0.4 11.7 15.6 0.0

-7.8

-5.6

.437.

513, 524.

NULA3 36.

45.

-0.4 0.4 3.0 0.0

' 6.9 8.1 119.

St.

85.

NU1A3 37.

45.

-0.4 3.9 7.8 0.0 0.4 2.1

520, 547.

549.

NUlk3 38.

45.

-0.6

-5.E

-2.3 0.0 16.2 17.7 216.

141.

129.

NU1A3 39.

45.

0.6 3.9 8.8 0.0 4.1

. 10.3 521.

502.

500.'

6.4 435.

450i 450.

NULA3 40.

45

-0.5 1.2 5.6 0.0 7.7 NU1A3 -

41.

45.

-0.7" 8.3 14.8 0.0 1.2 4.0.

502.

'542.

546.

NU1A3 42.

45.

-0.7 1.5 6.8 0.0 9.2 12.4 521.

502.

.500.

NULA3 43.

45.

-0.7 9.1 15.1 0.0

-2.3

-0.2 475.

532.

539.

HU121 44.

45.

-0.8

. 1.6 3.5 0.0 14.0 17.5 559.

511.

506.

HU1A3 45.

45.

-1.0 9.3 16.3 0.0

-0.0 1.4 475.

532.

539.

NULA3 46.

45.

-1.0

-5.3 1.0 0.0 22.3 26.7 588.

521.

513.

-PREPARED BY: D. E. COSTA DATE:

REVIEWED BY: J.

F.

m eARD DATE:

PAGE:

14

-m s

4 a

y B&W NUCLEAR TECENOLOGIES

' ** NON-PROPRIETARY **

32-1236435-00 TABLE 7-1 cont.

...................* * * * * * *

  • LINEARIZED STRESS

SUMMARY

, SCL 2 **************************

TOTAL LINEARIZED STRESS (ksi) '

BASE METAL TRANSIENT INSIDE SURFACE OUTSIDE SURFACE

. TEMPERATURES (F).

TRANS ~

PV NAME CYCLES RAD LONG HOOP RAD LONG HOOP ID, FLAN OD.-

NULA3 47.

45.

-1.2 11.9 19.6 0.0

-3.7

-1.3 437.

513.

524.

~,

NULA3 48.

45.

-1.4

-8.5

-1.9 0.0 23.0 27.1 588.

521.

513.

5.6 437.

$13.

524.

NU1A3 49.

45.

-1.7 14.7 25.9 0.0 1.9

. 21.81 539.

503.

'501.

HULA 3

' 50.

45.

-1.7 2.0 11.7 0.0 17.5 HULA 3 51.

45.

-1.9 10.9 22.0 -

0.0 4.3-7.1 475.

532.

539.

HULA 3 52.

~45.

-2.1

-0.8 10.0

0. 0 ' 23.9 28.7 580.

513.

506.

.HU1A3 53.

45.

-2.2 11.5 23.9-0.0 6.1'

. 9.2 475.

-532.

539.

Hulk 3 54.

45.

-2.2 3.0 14.7 0.0-19.8 24.4 539.

503.

501.

HU1A3 55.

45.

-2.2 8.3 19.8 0.0-7.5 10.1 502.

542.

-546.

HU1A3 56.

45.

-2.2

-2.6 8.3 0.0 25.1 29.6 588.

521.

513.

HULA 3 57.

45.

-2.2 12.9

-25.6 0.0 4.2 7.5 475.

532.

539.

HULA 3 58.

45.

-2.2 2.9 14.1 0.0 17.6 21.5 539.

503.

501.

HULA 3 59.

45.

-2.2 10.6 22.5 0.0 6.0 8.7 475.

532.

539.

NU3A3 60.

45.

-2.2

-1.6 9.2 0.0 23.5 28.0 580.

513.

506.

HU1A3 61.

45.

-2.2 13.6 25.7 0.0 1.9 4.9 437.

513.

524.

HULA 3 62.

45.

-2.2 3.2 14.2 0.0 17.0 20.7 539.

503.

501.

I'-

HU1A3 63.

45.

-2.2 8.8 20.5 0.0 7.7 10.5 502.

542.

546.

HULA 3 64.

45.

-2.2

-0.5 10.6 0.0 ~ 22.0 26.6 561.

508.

503.

HULA 3 65.

45.

-2.2 9.8 22.0 0.0 7.3 10.3

502, 542.

546.

KU1A3 66.

45.

-2.2 3.9-15.1 0.0 15.4 19.0 521.

502.

500.

i HU1A4' 1.

29.

0.0 0.0 0.0 0.0 0.0 0.0' 70.

70.

70.

HULA 4 2.

29.

-0.4-

-10.6

-7.1

0. 0 ' 25.4 27.5 362.

249.

230.

HU1A4 3.

29.

0.4 23.8 29.9 0.0

-21.7

-19.9 253.

410.

437.

NU1A4 4.

29.

-0.4

-7.9

-4.3 0.0 22.3 24.5 331.

223.

206.

HU1A4 5.

29.

-0.4 28.5 35.3 0.0

-27.8

-25.9 253.

410.

437.

98.

92.

NULA4 6.

29.

-0.4

-3.3

-1.8 0.0 7.8 8.6

142,

.'279.

286.

HU1A4 7.

29.

-0.4 10.4 16.0 0.0 1.2 4.2 231.

HULA 4 8.

29.

-0.4

-6.2

-3.0 0.0 20.5.

23.7 281.

189.

177 NU1A4 9.

29.

-0.4 12.0 16.6' O.0

-9.3

-8.1 174.

235, 242.

NU1A4 10.

29.

-0.4

-4.3

-1.1 0.0 16.0 15.8 352.

283.

273.

HU1A4 11.

29.

-0.4.

9.1 12.6 0.0

-6.4

-4.8 196.

258.

268, HULA 4 12.

29.

-0.4

-5.4

-2.2 0.0 19.2 22.2 281.

189.

177.

HU1A4 13.

29.

-0.4 11.0 14.8 0.0

-8.0.

-6.1 165.

237.

249.

NULA4 14.

29.

-0.4

-4.3

-1,6 0.0 14.5 17.3 336.

264.

257.

HULA 4 15.

29.

-0.4 9.0 12.5 0.0

-6.0

-4.5 196.

258.

268.

HU1A4 16.

29.

-0.4

-2.2 0.5 0.0 11.0 13.0

212, 161.

156.

HU1A4 17.

29.

-0.4 4.8 8.1 0.0

-0.1

-1.1-205.

244.

248.

HULA 4 18.

29.

-0.4

-0.1 2.6 0.0 8.3 9.8 119.

88.

85.

HU1A4 19.

-29.

-0.4 5.8 8.9 0.0

-2.9

- 1. 7.

231.

279.

286.

HULA 4 20.

29.

-0.6

-5.2

-2.2 0.0 15.0 17.1 240.

171.

163.

HU1A4 21, 29.

-0.6 3.8 7.8 0.0 1.0 2.3 274.

296.

298.

HU1A4 22.

29.

-0.6

-8.7

-6.5 0.0 15.4 16.0 269.

177.

162.

HULA 4 23.

29.

0.6 13.4 18.5 0.0-

-9.5

-7.1 392.

484.

499.

HULA 4 24.

29.

-0.6 0.9 5.5 0.0

<11.1 14.0 441.

403.

401.

HULA 4 25.

29.

-0.6 12.6 19.2 0.0

-2.6-0.5 437.'

513.

524.

HU1A4 26.

29.

-0.6 2.1 6.4 0.0 8.8 10.9 174.

152.

151.

NU1A4 27.

29.

-0.6 5.1 9.3 0.0 0.1 1.4

257, 290.

294.

HULA 4 28.

29.

-0.6

-7.0

-3.7 0.0 19.2 22.3

371, 276.

265.

HU1A4 29.

29.

-0.6 14.9 20.5 0.0

-10.0

-7.2 392.

484.

499.

HU1A4 30.

29.

-0.6

-0.4 3.1 9.0 9.2 11.1 189.

155.

152.

HULA 4 31.

29.

-0.6-8.4 13.5 0.C

-3.7

-2.0 475.

.532.

539.

HULA 4 32.

29.

-0.6

-8.9

-6.7 0.0 15.0 16.2 269.

177.

162.

NULA4 33, 29.

0.6 19.6 26.8 0.0

'-9.9

- 5.~ 4 364.

465.

481.

NU1A4 34.

29.

-0.6

-5.8

~2.5 0.0 17.3 19.7 281.

'189.

177.

l HULA 4 35.

29.

-0.6 6.8 12.0 0.0 1.1 3.1 401.

446.

449.

HU1A4 36.

29.

-0.6

-0.3 4.5 0.0 11.9 15.6 539.

503.

501.

HU1A4 37.

29.

-0.6 11.8 17.4 0.0

-6.8

.-5.3 344.

430.

440.

HU1A4 38.

29.

-0.6

-1.6 2.6 0.0 13.5 16.5 309.

257.

253.

l HU1A4 39.

29.

-0.6 10.1 15.2 0.0

-5.7

-3.8 437.

513.

524.

j HU1A4 40.

29.

-0.6

-5.4

-2.1 0.0 16.1 17.6 216.

141.

129.

)

HU'1A4 41.

29.

-0.6 6.9 12.3 0.0 2.1 4.3 401.

446.

449.

NU1A4 42.

29.

-0.6 0.6 4.7 0.0 6.9 p.2 521.

502, 500.

NU1A4 43.

29.

-0.6 8.9 14.4 0.0

-2.9

-0.8 475.

532.

539.

HU1A4 44.

29.

-0.6 0.6 4.7 0.0 8.8 11.2 539.

503.

501.

HU1A4 45.

29.

-0.8 6.7 12.6 0.0 0.4 2.4 502.

542.

546.

'j i

i PREPARED BY: D.

E.

COSTA DATE:

REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

15 i

y 1

L.

4 4,

B&W NUCLEAR TECHNOLOGIES

    • NON-PROPRIETARY **

32-1236435-00 TABLE 7-1 cont.

.n

.......* "************ LINEARIZED STRESS S*JMMARY, SCL 2******""*"**"*********

TOTAL LINEARIZED STRESS (kai)

RASE METAL TRANS PV TRANSIENT INSIDE SURFACE OUTSIDE SURFACE TEMPERATURES (F)

NAME 9

CYCLES RAD LONG HOOP RAD LONG HOOP ID FLAN OD HULA 4 46, 29.

0.9

-1.2 4.3 0.0 14.0 17.2 '

559.

511.

506.

HU1A4 47.

29.

-0.9 5.8 12.3 0.0 4.0 6.4 520.

547.

549.

HU1A4 48.

29.

-1.0 0.6 7.2 0.0 13.3 16.9

537, 504.

502.

HULA 4 49, 29.

-1.2 6.6 13.6 0.0 2.2 4.2

502, 542.

546.

[

HU1A4 50.

29.

-1.4

-6.3 1.3 0.0 25.1 30.0 588.

521.

513.

l-HULA 4 51, 29.

-1.6 13.7 23.7 0.0

-1.4 1.5 437.

513.

524.

HU1A4 52.

29.

1.6 0.1 8.8 0.0 17.7 21.6 561.

508.

503.

HULA 4 53, 29.

-1.8 10.5 20.8 0.0 3.6 6.3 475.

532.

539.

HULA 4 54, 29.

-1.9

-2.7 7.5 0.0 25.4 30.6 580.

513.

506.

HULA 4 55.

29.

-2.2 14.2 26.6 0.0 2.0 5.3 437.

513.

524.

HU1A4 56.

29.

-2.2 1.5 12.9 0.0 21.0 25.4 561.

508.

503.

HU1A4 57.

29.

-2.2 7.8 19.6 0.0 8.5 11.6 520.

547.

549.

HU1A4 58.

29.

-2.2

-2.4 8.5 0.0 24.7 29.2 588.

521.

513.

HULA 4 59, 29.

-2.2 12.6 25.2 0.0 4.6 7.8 475.

532.

539.

HU1A4 60.

29.

-2.2 2.8 14.1 0.0 17.8 21.8 537.

504.

502.

HU1A4 61.

29.

-2.2 10.7 22.7 0.0 5.9 8.7 475.

532.

539.

HU1A4 62.

29.

-2.2

-2.8 7.2 0.0 21.4 25.3 580.

513.

506.

HULA 4 63.

29.

-2.2 13.7 25.9 0.0 2.3 5.4 437.

513.

524.

HULA 4 64, 29.

-2.2 4.0 15.6 0.0 16.7 20.8 521.

502.

500.

HULA 4 65.

29.

-2,2 8.1 20.2 0.0 8.8 12.1 520.

547.

549.

HULA 4 66.

29.

-2.2

-1.6 9.1 0.0 22.9 26.9 588.

521.

513.

HU1A4 67.

29.

-2.2 9.8 22.0 0.0 7.2 10.3 502.

542.

546.

HU1A4 68.

29.

-2.2 3.4 14.3 0.0 14.6 17.9 521.

502.

500.

HULA 5 1.

148.

0.0 0.1 0.1 0.0 0.1 0.2 70.

70.

70.

HULAS 2.

148.

-0.2

-9.5

-7.3 0.0 20.7 22.3 331.

223, 206.

HULA 5 3.

148.

-0.2 15.1 19.8 0.0

-13.9

-13.2 307.

429.

441.

HU1A5 4.

148.

-0.2

-6.3

-4.2 0.0 16.8 18.6 216.

141.

129.

HULAS 5.

148.

-0.2 18.0 22.9 0.0

-18.2

-17.6 260.

414.

432.

HU1A5 6.

148.

-0.2

-2.2

-1.4 0.0 5.1 5.7 119.

88.

85.

HULA 5 7.

148.

-0.2 7.6 11.5

0. 0.

0.5 2.7 231.

279.

286.

HU1A5 8.

148.

-0.2

-3.7

-1.5 0.0 13.4 15.4 174.

114.

106.

HU1A5 9.

148.

-0.2 8.7 11.8 0.0

-7.1

-6.2 174.

235, 242.

HU1A5 10.

148.

-0.3

-2.1 0.2 0.0 10.7 12.4 142.

98.

92.

HULAS 11.

148.

-0.4 7.3 10.4 0.0

-4.4

-3.2 196.

258.

268.

HULAS 12.

148.

-0.4

-3.2

-0.1 0.0 15.2 17.5 174.

114.

106.

HU1A5 13.

148.

-0.4 9.9 13.4 0.0

-6.8

~5.1 165.

237.

249.

HU1A5 14.

148.

-0.4

-3.6

-1.1 0.0 12.6 14.6 240.

171.

163.

HULAS 15.

148.

-0.4 8.3 11.6 0.0

-5.1

-3.7

196, 258.

268.

HU1A5 16, 148.

-0.4 1.9 0.0 0.0 11.3 13.1

142, 98.

92.

HULAS 17.

148.

-0.4 7.7 11.4 0.0

-4.0

-2.5

231, 279.

286.

HU1A5 18.

148.

-0.4

-5.6

-2.7 0.0 16.5 19.2 352.

283.

273.

HULA 5 19.

148.

-0.4 13.0 18.0 0.0

-9.4

-7.0 437.

513.

524.

HULA 5 20.

148.

-0.6

-16.1

-14.6 0.0 24.4 25.7 373.

241.

221.

HU1A5 21.

148.

-0.6 15.5 22.0 0.0

-5.0

-2.3 392.

484.

499.

HU1A5 22.

148.

-0.6 0.7 5.3 0.0 11.4 14.4 441.

403.

401.

HU1A5 23.

148.

-0.6 12.8 19.4 0.0

-2.8 0.3 437.

513.

524.

HU1A5 24.

148.

-0.6 2.2 6.4 0.0 8.7 10.8 174.

152.

151.

HULA 5 25.

148.

-0.6 6.5 11.7 0.0

-0.8 1.1 502.

542.

546.

HULA 5 26.

148.

-0.6

-7.0

-3.7 0.0 19.2 22.3 371.

276.

265.

HULA 5 27.

148.

-0.6 14.8 20.5 0.0

-10.0

-7.2 392.

484.

499.

HULAS 28, 148.

-0.6

-0.4 3.1 0.0 9.2 11.1 189.

155.

152.

HULA 5 29, 148.

-0.6 8.4 13.5 0.0

-3.7

-2.0 475.

532.

539.

HU1A5 30.

148.

-0.6

-8.5

-5.9 0.0 16.3 17.2 269.

177.

162.

HU1A5 31.

148.

-0.6 19.7 26.9 0.0

-10.0

-5.5 364.

465.

481.

HU1A5 32.

148.

-0.6

-5.8

-2.5 0.0 17.5 19.9 281.

189.

177.

HULA 5 33.

148.

-0.6 6.6 11.8-0.0

1. 3 -

3.3 401.

446.

449.

HU1A5 34.

148.

-0.6

-0.3 4.6 0.0 11.9 15.5 539.

503.

501.

HULA 5 35.

148.

-0.6 11.9 17.5 0.0

-6.8

-5.4 344.

430.

440.

HU1AS 36.

148.

-0.6

-1.6 2.6 0.0 13.5 16.5 309.

257.

253.

HULAS 37.

148.

-0.6 10.2 15.2 0.0

-5.8

-3.9 437 513.

524.

HULA 5 38.

148.

0.6

-5.4

-2.1 0.0 16.1 17.7 216.

141.

129.

HULA 5 39.

148.

-0.6 6.9 12.3 0.0 2.2 4.3 401.

446.

449.

HU1A5 40.

148.

-0.6 0.6 4.7 0.0 6.9 9.2 521.

502.

500.

HULAS 41.

148.

-0.6 8.9 14.4 0.0

-2.9

-0.8 475.

532.

539.

HU1A5 42.

148.

-0.6 0.6 4.7 0.0 8.8 11.2 539.

503.

501.

PREPARED BY: D.

E.

COSTA DATE:

REVIEWED BY: J.

F. SHEPARD DATE:

PAGE:

16 w.

~

<~

me.,.

~;

ss 32-1235435-00'

=t B&W NUCLEAR TECENOLOGIES

    • NOK-PROPRIETARY **

D.

t t

TABLE 7-1 cont.

,2

......u.u.........u...... LINEAAIzRD STRESS supSEARY, SCL 2""****

i'.

^~

TOTAL LINEARIZED STRESS (ksi)

BASE METAL i

TRANS.

FV TRANSIENT-INSIDE SIRFACE OUTSIDE SURFACE TEMPERATURES (F)

RAD LONG N00P.

RAD 14NG MOOP ID FLAN

.CD NANE -

8.

'. CYCLES b'

HU1A5 43.

148.

-0.8 6.7 12.6

' 0.0 0.4 2.4 502.

.542.

546.

HULA 5 44.

148.

-0.9

-1.2 4.3 0.0 14.0 17.3 559.

511.

506.'

NU1A5 45.

148.

--0.9 5.8 12.4 0.0 4.0 6.4 520..

547.

549.

j NULAS 46, 148.

-1.0

.0.5

. 7.1 0.0 13.3 17.0 537.

504.

502.

+

I'.'

NULAS 47.

148.

-1.2 6.6 13.7 0.0 2.2 4.2 502.

-542.

546.

HU1A5 48.

148.

-1.4

-6.3 1.3 0.0 25.1 29.9 588.

521, 513.

NULAS 49.

148.

-1,6 13.7 23.7 0.0

-1.4 1.5 437.

513.

524.

,I NULAS 50.

148.

-1.6 0.1 8.8 0.0 17.7 21.6 561.

508.

503.

t c

NU1A5 51.

148.

-1.8 10.5 20.0 0.0 3.6

. 6.3 I475.

532.

539.

KU1A5 52.

148.

' -1.9

-2.7 7.5 0.0 25.4 30.6.

580.

513.

506.

NU1A5 53.

148.

y2.2 14.2 26.6 0.0 2.0 5.3

437, 513.

524.

NULA5-54.

148.

-2.2 1.5 12.9 0.0 21.0 25.4' 561.

508.

'503.

o NULA5 55.

148.

-2.2 7.8 19.6 0.0 0.5-11.6

~ 520.

547.

549.

HU1A5 56.

148.

-2.2

-2.4 8.5 0.0 24.7 29.2 588.

'521, 513.

'l NU1A5 57.

148.

-2.2 12.6 25.2 0.0 4.6 7.8 475.

532, 539.

NULA5 58.

148.

-2.2 2.8 14.1 0.0 17.8

-21.8 537.

504.

502.

.I NULAS 59.

148.

-2.2 10.7 22.7 0.0 5.9 8.7 475.

532.

535.

KU1A5 60.

148.

-2.2

-2.8 7.2 0.0 21.4' 25.3 580.

513.

506.

HULA 5 61.

148.

-2.2 13.7 25.9 0.0 2.3 5.4 437.

513.

524.

NU1A5 62.

148.

-2.2 4.0 15.6 0.0 36.7 20.8

521, 502.

~500.

NU1AS 63.

148.

-2.2 8.1

.20.1 0.0 8.8 12.1 520.

547.

549.

KU1A5 64.

148.

-2.2

-1.6 9.1 0.0 22.9 26.9 580.

521.

513.

NU1A5 65.

148.

-2.2 9.8 22.0 0.0 7.3 10.3 502.

542.

546.

HULA 5 66.

148.

-2.2 3.4 14.3 0.0 14.6

.17.9 521.

502.

500.

.CD151 1.

40.

-2.2 5.1 15.7 0.0 13.8 16.3 521.

502, 500.

CD181 2.

40.

-2,2 8.2 20.3 0.0 10.1 13.4 520.

547.

549.

CD151 3.

40.

-2.2 4.7 16.4 0.0 17.0 21.1 521.

502.

500.

CD181 4.

40.

-2.2 12.7 24.5 0.0 1.9 4.6 437.

513.

524 CD181 5.

40.

2.2

-6.6 4.8 0.0 32.4 38.4 588.'

521.

513.

CD181 6.

40.

-2.2 7.8 19.9 0.0 11.7 15.0

422, 449.

450.

3 CD181 7.

40.

-2.2 3.8 15.6 0.0 19.4.

23.9 537.

504.

502.

CD181.

8.

40.

-2.0 13.6 26.4 0.0 5.4 8.5

~375.

445.

449.

CD191 9.

40.

-1.0 0.9 6.9 0.0 9.3 12.2 521.

502.

500.

CD1B1 10.

40.

-1.0 22.0 30.3 0.0

-16.5

-14.4 247.

386.

406.

CD181 11.

40.

-0.7

-4.2

-1.0 0.0 13.8 15.8

-272.

213.

206.

?

CD181

'12.

40.

-0.7 10.5 16.7 0.0

-4.1

-1.9 475.

532.

539.

CD181 13.

40.

-0.7

-1.4 2.4 0.0 11.1 13.1 212.

161.

156.

CD1B1 14.

40.

-0.7 8.8 14.5 0.0

-2.9

-1.0 475.

532.

539.

CD181 15.

40.

-0.7

-3.7 0.4 0.0 16.7' 19.4 240.

171.

163.

CD181 16.

40.

-0.7 14.2 20.0 0.0

-9.1

-6.5 392.

484.

-499.

CDial 17.

40.

-0.7

-5.4

-2.3 0.0 15.7 18.1 294.

217.

207.

CD181 18.

40.

-0.7 11.6 17.5 0.0

-6.1

-3.8 437.

513.

524.

CD181 19.

40.

-0.7

-4.1

-0.2 0.0:

15.0-10.5 240.

171.

163.

CD1B1 20.

40.

-0.7 12.9 19.4 0.0

-6.0

-3.4 437.

513.

524.

j CDiB1 21.

40.

-0.7

-0.1 4.2 0.0 10.7 13.2 207.

253.

251.

CD181 22.

40.

-0.7 10.0 16.0 0.0

-4.8

-2.7 475.

532.

539.

CD181 23.

40.

-0.7

-9.5

-5.5 0.0 23.5 25.9 449.

342.

325.

CD1B1 24.

40.

-0.7 18.6 25.0 0.0

-13.9

-10.3 364.

465.

481.

CD181 25.

40.

-0.7

-6.5

-2.9 0.0 18.9 21.4 281.

189.

177.

CD181 26.

40.

-0.7 16.1 22.2 0.0

+11.3

-8.3 392.

484.

499.

1 CD1B1 27.

40.

-0.7

-4.4

-1.2 0.0 13.9~

16.0

272, 213.

206.

CD181 28.

4C.

-0.7 10.0 16.1 0.0

-3.8-

-1.6 475.

532.

539.

j 1

CD181 29.

40.

-0.7

-2.3 1.7 0.0 13.0 15.3 212.

161.

156.

CD181 30.

40.

-0.7 10.6 16.1 0.0

-5.0

-3.0 437.

513.

524.

CD181 31.

40.

-0.7

-3.8 0.1 0.0 16.1 18.6 240.

171.

163.

CD181 32.

40.

-0.7 12.0 17.8 0.0

-7.9

-6.7 344.

430.

440.

'l CD1B1 33.

40.

-0.7

-6.6

-2.6 0.0 19.6 21.3 269.

177.

162.

CD181 34.

40.

-0.7 12.3 18.7 0.0

-4.6

-2.7 344.

430, 440.

l CD181 35.

40.

-0.6

-3.6 0.9 0.0 16.5 19.9 588.

521.

513.

CD181 36.

40.

-0.6 13.0 19.0 0.0

-8.4

-7.0 344.

430.

440.

j CD181 37.

40.

-0.6

-5.3

-1.5 0.0 18.8 21.5 281.

189.

177.

j CD181 38.

40.

-0.6 10.3 16.5 0.0

-1.9 0.2 377.

441.

446.

CD1B1 39.

40.

-0.6

-3.0 1.5 0.0 16.5 20.1 588.

521.

513.

CD181 40.

40.

-0.6 14.1 21.0 0.0

-4.0

-1.5 344.

430.

440.

]

CD181 41.

40.

-0.6

-7.5

-4.4 0.0 16.2 19.2 588.

521, 513.

i 1

1 l

1 i

I PREPARED BY: D.

E.

COSTA DATE:

REVIEWED BY J.

F.

SHEPARD DATE:

PAGE:

17

[

I 1

BEM NUCLEAR TECHNOLOGIES

    • NON-PROPRIETARY **

32-1236435=00 TABLE 7-1 cont.

...........eeeeeeeeeee***** LINEARIZED STRESS SIDMARY, SCL 2 **************************

TOTAL LINEARIZED STRESS (ksi)

BASE METAL TRANS PV TRANSIENT INSIDE SURFACE OUTSIDE SURFACE TEMPERATURES (F)

NAME 8

CYCLES RAD LONG HOOP RAD LONG HOOP ID FLAW CD CD1D1 42.

40.

-0.5 7.6 13.3 0.0 2.9 5.5 401.

446.

449.

CD181 43.

40.

-0.5

-0.6 3.4 0.0 9.5 12.4 537.

504.

502.

CDiB1 44.

40.

-0.5 11.2 16.5 0.0

-4.8

-3.1 344.

430.

440.

CD1B1 45.

40.

-0.5

-3.6 0.3 0.0 16.2 19.7 588.

521.

513.

CD181 46.

40.

-0.4 5.7 10.7 0.0 4.5 7.0 421.

449.

450.

CD1B1 -

47.

40.

-0.4

-0.2 2.8 0.0 5.3 7.4 521.

502.

500.

CD181 48.

40.

-0.4 16.0 21.6 0.0

-14.6

-14.0 307.

429.

441.

CD1B1 49.

40.

-0.4

-7.0

-4.2 0.0 18.1 19.7 269.

177.

162.

CD1B1 50, 40.

+0.4 16.8 21.8 0.0

-14.9

-13.5 247.

386.

406.

CD181 51.

40.

-0.4

-6.5

-3.8 0.0 17.9 20.5 281.

189.

177.

CD181 52.

40.

-0.4 16.3 21.6 0.0

-12.3

-9.4 392.

484.

499.

CD1B1 53.

40.

-0.4

-5.5

-3.4 0.0 14.3 16.5 294.

217.

207.

CD181 54, 40.

-0.4 12.4 17.4 0.0

-8.9

-6.7 437.

513.

524.

i CD1B1 55.

40.

-0.4

-6.6

-5.0 0.0 12.4 13.9 240.

171.

163.

CD181 56.

40.

-0.4 6.1 10.4 0.0

-1.9

-0.1 502.

542.

546.

CD1B1 57.

40.

~0.4

-1.6 0.5 0.0 6.1 7.3 189.

'155.

152.

CD181 58.

40.

-0.4 8.6 14.5 0.0 2.2 5.2 502.

542.

546.

CD1D1 59.

40.

-0.4 2.0 5.7 0.0 9.0 11.2 174.

152.

151.

CD1B1 60.

40.

-0.4 8.5 14.3 0.0 2.3 5.3 502.

542.

546.

CD181 61.

40.

-0.4 0.2 3.9 0.0 11.1 13.6 189.

155.

152.

CD1B1 62.

60.

-0.4 15.1 20.2 0.0

-13.4

-12.1 302.

413.

428.

CD181 63.

40.

-0.4

-11.4

-9.0 0.0 23.4 25.9 331.

216.

199.

l CD1B1 64.

40.

-0.4 19.4 25.5 0.0

-18.3

-17.6 260.

414.

432.

I CD1B1 65.

40.

-0.4

-5.4

-3.7 0.0 10.7 12.0 240.

171.

163.

CD1B1 66.

40.

~0.4 14.1 20.7 0.0

-3.5 0.0 437.

513.

524.

CD1B1 67.

40.

-0.4

-9.3

-6.2 0.0 23.8 27.7 371.

276.

265.

CD181 68.

40.

-0.4 19.8 25.5 0.0

-18.6

-17.1 247.

386.

406.

CD1B1 69.

40.

-0.4

-11.7

-9.6 0.0 23.1 25.4 331.

216.

199.

CD1B1 70.

40.

-0.3 11.4 16.1 0.0

-6.5

-4.9 344.

430.

440.

CD1B1 71.

40.

-0.3

-2.6 0.0 0.0 11.8 14.2 212.

161.

156.

CD181 72.

40.

-0.3 14.2 18.8 0.0

-11.9

-10.6

302, 413.

428.

CD181 73.

40.

-0.2

-3.6

-2.1 0.0 10.7 12.1 174.

114.

106.

CD1B1 74.

40.

-0.2 14.2 17.7 0.0

-13.6

-11.2 392.

484.

499.

CDiB1 75.

40.

0.0

-1.3

-1.2 0.0 2.0 2.2 119.

88.

85.

CD1B1 76.

40.

0.0 3.4 4.8 0.0

-3.0

-2.3 257.

290.

294.

CD182 1.

200.

-2.2 5.1 15.7 0.0 13.8 16.3 521.

502.

500.

CD1B2 2.

200.

-2.2 8.2 20.3 0.0 10.1 13.4 520.

547.

549.

CD1B2 3.

200.

-2.2 4.7 16.4 0.0 17.0 21.1 521.

502.

500.

CD1B2 4.

200.

-2.2 12.7 24.3 0.0 1.8 4.5 437.

513.

524.

CD1B2 5.

200.

-1.5

-5.0 2.8 0.0 22.7 27.0 588.

521.

513.

CD182 6.

200.

-1.3 7.1 14.9 0.0 3.7 5.7 401.

446.

449.

CD1B2 7.

200.

-1.3 0.2 7.2 0.0 12.3 15.3 537.

504.

502.

CD1B2 8.

200.

-1.2 23.7 32.8 0.0

-17.3

-14.8 210.

364.

388.

CD182 9.

200.

-0.4

-1.1 1.4 0.0 7.8 9.8 287.

253.

251.

CD1B2 10.

200.

0.4 7.6 11.6 0.0

-3.7

-2.1 475.

532.

539.

CD182 11.

200.

-0.4

-0.8 1.6 0.0 7.2 8.8 189.

155.

152.

CD182 12.

200.

-0.4 6.3 10.4 0.0

-2.3

-0.5 502.

542.

546.

CD1B2 13.

200.

-0.4

-4.1

-1.7 0.0 13.3 15.0 174.

114.

106.

CD1B2 14.

200.

-0.4 13.5 17.9 0.0

-10.7

-8.3 392.

484.

499.

CD182 15.

200.

-0.4

-2.5

-0.1 0.0 9.6 11.7

309, 257, 253.

CD1B2 16.

200.

-0.4 8.7 13.0 0.0 4.8

-3.0 475.

532.

539.

CD182 17.

200.

-0.4

-2.5

-0.2 0.0 10.3 11.7 142.

98.

92.

CD182 18.

200.

-0.4 9.7 14.5 0.0

-4.9

+2.8 475.

532.

539.

CD182 19.

200.

-0.4

-0.5 1.9 0.0 7.2 8.7 189.

155.

152.

CD182 20.

200.

-0.4 7.3 11.2 0.0

-4.3

-2.8 475.

532.

539.

CD1B2 21.

200.

-0.4

-5.5

-3.2 0.0 14.2 15.6 216.

141.

129.

CD182 22.

200.

-0.4 14.6 19.2 0.0

-11.6

-9.0 392.

484.

499.

CD1B2 23.

200.

-0.4

-4.6

-2.4 0.0 13.2 15.2 240.

171.

163.

CD182 24, 200.

-0.4 12.5 17.3 0.0

- 9. (

-7.3 437 513.

524.

CD182 25.

200.

-0.4

-1.2 1.3 0.0 7.8 9.8 287 253.

251.

CD182 26.

200.

-0.4 7.3 11.2 0.0

-3.4

-1.8 475.

532.

539.

CD182 27.

200.

-0.4

-1.9 0.4 0.0 9.1 10.8 212.

161.

156.

CD192 28.

200.

-0.4 7.7 11.7 0.0

-4.0

-2.4 475.

532.

539.

CD1B2 29.

200.

-0.4

-3.8

-1.5 0.0 12.2 13.8 174.

114.

106.

CD182 30.

200,

-0.4 10.8 15.0 0.0

-8.8

+7.7 344.

430.

440.

i PREPARED BYs D. E. COSTA DATE:

REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

18 l

4

y LE

~

    • NON-PROPRIETARY-**

32-1236435-00 B&W NUCLEAR TECHNOLOGIES TABLE 7-1 cont.

                                                      • LINEARIEED STRESS

SUMMARY

, SCL 2m"*******"**********"

TOTAL LINEARIZED STRESS (ksi)

BASE METAL TRANS PV TRANSIENT INSIDE SURFACE OUTSIDE SURFACE TEMPERATURES (F)

NAMS 8

CYCLES RAD LONG HOOP RAD LONG HOOP ID FLAN OD CD1B2 31, 200.

-0.4

-4.8

-2.5 0.0 13.6 15.0 216.

141, 129.

CD1B2 32, 200.

-0.4 13.9 18.9 0.0

-7.2

-4.2 392.

484.

499.

CD1B2 33.

200.

-0.4

-1.0 0.3 0.0 6.7 8.4 287.

253.

251.

CD1B2 34.

200.

-0.4 9.7 13.7 0.0

-6.6

-4.8 437.

513.

524.

CD1B2 35, 200.

-0.4

-3.7

-1.0 0.0 12.4 14.9 317.

267.

260.

CD122 36.

200.

-0.4 11.1 15.7 0.0

-6.8

-4.7 437.

513.

524.

CD1B2 37.

200.

-0.4

-0.5 2.2 0.0 7.5 9.5 287.

253.

251.

CD1B2 38.

200.

-0.4 9.2 13.8 0.0

-5.6

-3.7 475.

532.

539.

CD182 39, 200.

-0.4

-0.2 1.6 0.0 4.2 5.0 174.

152.

151.

CD1B2 40.

200.

-0.4 5.1 9.2 0.0 2.5 4.6 274.

296.

298.

CD182 41.

200,

-0.4

-5.2

-2.9 0.0 14.6 16.8 240.

171.

163.

CD182 42, 200.

-0.4 13.0 17.1 0.0

-11.0

-8.7 392.

484.

499.

CD182 43, 200.

-0.4 6.9

-4.4 0.0 17.1 18.6 269.

177.

162.

CD192 44.

200.

-0.4 15.6 20.0 0.0

-13.4

-10.5 364.

465.

481.

CD1B2 45, 200.

-0.4

-7.1

-4.7 0.0 17.9 20.4 281.

189.

177.

CD1B2 46.

200.

-0.4 15.9 20.5 0.0

-12.7

-9.6 364.

465.

481.

CD1B2 47.

200.

-0.4

-5.2

-3.4 0.0 13.2 15.3 294.

217, 207.

CD1B2 48.

200.

-0.4 11.6 16.1 0.0

-8.6

-6.5 437.

513.

524.

CD1B2 49.

200.

-0.4

-6.2

-4.9 0.0 11.4 12.8 240.

171.

163.

CD182 50, 200.

-0.4 5.7 9.6 0.0

-1.9

-0.3 502.

542.

546.

CD182

$1.

200,

-0.4 0.6 3.7 0.0 9.2 11.4 189.

155.

152.

CD182 52.

200.

-0.4 7.9 13.2 0.0 1.6 4.4 502.

542.

546.

CD1B2 53.

200.

-0.4 1.6 4.9 0.0 8.0 10.0 174.

152.

151.

CD1B2 54.

200.

-0.4 7.8 13.0 0.0 1.7 4.5 502.

542.

'546.

CD1B2 55, 200.

-0.4 0.0 3.2 0.0 9.9 12.2 189.

155.

152.

CD1B2 56.

200.

-0.3 14.4 18.7 0.0

-12.5

-10.0 392.

484.

499.

CD182 57.

200.

-0.2

-6.9

-5.2 0.0 15.1 16.5 216.

141.

129.

CD1B2 58,

200,

-0.2 15.8 20.4 0.0

-15.4

-14.2 302.

413.

428.

CD1B2 59.

200.

-0.1

-1.2 0.1 0.0 6.9 8.1 119.

88.

85.

CD1B2 60.

200.

-0.1 6.8 9.7 0.0

-2.1

-0.4 231.

279.

286.

CD182 61.

200.

-0.1

-5.3

-4.7 0.0 7.9 9.4 317.

267.

260.

CD1B2 62.

200.

-0.1 7.5 9.3 0.0

-7.3

-6.2 196.

258, 268.

CD1B2 63.

200.

0.0

-2.9

-2.5 0.0 5.9 6.6 142.

98.

92.

CD1B2 64.

200.

0.0 6.0 7.8 0.0

-5.7

-4.8 231.

279.

286.

CD1B2 65.

200.

0.0

-0.9

-0.5 0.0 3.1 3.6 119.

88.

85.

CD1B2 66.

200.

0.0 2.5 3.8 0.0

-1.8

-0.9 274.

296.

298.

CD1B2 67.

200.

0.0

-1.3

-1.0 0.0 3.7 4.2 119.

88.

85.

CD182 68.

200.

0.0 3.4 4.8 0.0

-3.0

-2.3 257.

290.

294.

TRAN2A 1.

1440.

2.2 5.2 16.8 0.0 12.8 16.3 550.

550, 550.

TRAN2A 2.

1440.

-2.2 2.0 13.5 0.0 18.7 22.9 537.

504.

502.

TRAN2B 1.

1440.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

TRAN2B 2.

1440.

-2.2 1.0 11.9 0.0 19.5 23.3 559.

511.

506.

TRAN2B 3,

1440.

-2.2 9.1 20.6 0.0 6.3 8.8 401.

446.

449.

TRAN2B 4.

1440.

-2.2 0.6 11.5 0.0 20.1 24.0

559, 511.

506.

TRAN3 1.

48000.

-2.2 5.3 16.8 0.0 12.9 16.5 550.

550.

550.

TRAN3 2.

48000.

-2.3

-0.3 10.9 0.0 21.3 25.5 559.

511.

506.

TRAN4 1.

48000.

-2.2 3.7 15.1 0.0 15.9 19.8 521.

502.

500.

TRAN4 2.

48000.

-2.2 8.9 20.7 0.0 7.4 10.1 502.

542.

546.

TRANS 0.

8000.

-2.2 3.4 13.6 0.0 12.8 15.3 521.

502.

500.

TRAN5 0.

8000.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

TRAN6 0.

8000.

-2.2 3.7 13.6 0.0 12.1 14.2 521.

502.

500.

TRANG 0,

8000.

-2.2 4.9 16.2 0.0 12.2 15.6-550.

550.

550.

TRAN7 1.

310.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

TRAN7 2.

310.

-2.1 2.5 12.9 0.0 16.2 19.7 537.

504.

502.

TRAN7 3.

310.

-2.2 9.1 20.9 0.0 6.9 9.7 502.

542.

546.

TRAN7 4.

310.

-2.2 2.1 13.4 0.0 18.1 22.2 537.

504.

502.

TRAN8A 1.

80.

-2.5 2.0 13.8 0.0 17.2 20.7 537.

504.

502.

TRAN8A 2.

80.

-2.2 12.6 25.3 0.0 5.6 8.9 475.

532.

539.

TRAN8B 1.

162.

-2.4 6.3 18.6 0.0 11.8 14.7 535.

549.

550.

TRAN8B 2.

162.

-2.2 2.2 13.7 0.0 18.7 23.0 537.

504.

502.

TRAN8C 1.

88.

-2.6 5.0 17.7 0.0 16.7 20.0 521.

502, 500.

TRANOC 2.

88.

-2.2 8.4 20.6 0.0 10.4 13.8 520.

547.

549.

I TRAN8D 1.

70.

-2.4 5.3 17.1 0.0 15.6 18.5 521.

502.

500.

TRAN8D 2.

70.

-2.2 8.4 20.7 0.0 11.1 14.6 520.

547.

549.

TRAN9 0.

40.

-2.2 4.0 14.8 0.0 14.4 17.4 521.

502.

500.

TRAN9 0.

40.

-2.2 11.4 23.4 0.0 3.8 6.6 475.

532.

539.

1 PREPARED BY: D.

E.

COSTA DATE:

REVIEWED BY J.

F.

SHEPARD DATE:

PAGE:

19 l

    • NON-PROPRIETARY **.

32-1236435-00

~

B&W NUCLEAR TECHNOLOGIES I

1 TABLE 7-1 cont.

)

9

...........................Lir,

,,TRE,,,UNRART,,CL 2..........................

I iAL LINEARIZED STRESS (ksi)

BASE METAL TRANS PV TRANSIENT INb DE SURFACE OUTSIDE SURFACE TEMPERATURES (F)

NAME CYCLES RAD LONG HOOP RAD LONG HOOP ID FLAN OD

{

TRANIO 0.

20.

-2.2 4.2 15.1 0.0 14.7 17.8 541.

502.

500.

TRANIO 0.

20.

-2.2 5.2 16.7 0.0 12.8 16.3 550.

550.

550.

140000.

-2.2 4.9 16.2 0.0 12.2 15.6

550, 550.

550.

J TRAN13 0.

~ 140000.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

TRAN13 0.

TRAN14 1.

40.

-2.2 4.8 16.0 0.0 12.1 15.4 550.

550.

550.

TRAN14 2.

40.

-2.3 1.8 12.8 0.0 16.3 19.7 537.

504.

502.

TRAN19 0.

4000.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

TRAN19 0.

4000.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

TRN20A 0.

30000.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

TRN20A 0.

30000.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

TRN20B 1.

20000.

-2.2 4.8 16.0 0.0 12.1 15.4 550.

550.

550.

1 TRN20B 2.

20000.

-2.2 2.8 13.4 0.0 14.4 17.8 521.

502.

500, i

TRN20C 0.

4000000.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

TRN20C 0.

4000000.

-2.2 4.9 16.2 0.0 12.2 15.6 550.

550.

550.

l TR20D1 1.

O.

-2.2 4.8 16.0 0.0 12.1 15.4 550.

550.

550.

TR20D1 2.

O.

-2.2 2.9 13.4 0.0 13.9 17.0 521.

502.

500.

i TR20D2 1.

34000.

-2.2 5.7 17.4 0.0 13.6 17.4 550.

550.

550.

l TR20D2 2.

34000.

-2.2 1.7 12.2 0.0 16.2 19.6 537.

504.

502.

TR22A1 1.

5.

-0.6 1.3 3.9 0.0 3.2 3.7 70.

70.

70.

TR22A1 2.

5.

-0.6 6.6

-2.3 0.0 22.6 25.0 269.

177.

162.

TR22B1 1.

15.

-0.2 0.7 1.9 0.0 1.7 1.9 70.

70.

70.

TR22B1 2.

15.

-0.2

-6.5

-3.9 0.0 18.5 20.4 269.

177.

162.

TR22C1 1.

10.

-0.9 2.5 7.7 0.0 5.8 7.8 300.

300.

300.

TR22C1 2.

10.

-0.9

-3.0 2.2 0.0 18.0 20.3

216, 141.

129.

TR22D1 1.

10.

-0.7 2.1 6.4 0.0 4.8 6.7 300.

300.

300.

TR22D1 2.

10.

0.7

-2.9 1.3 0.0 15.6 17.8 174.

114.

106.

TR22A2 1.

7.

-0.6 1.2 3.8 0.0 3.2 3.7 70.

70.

70.

TR22A2 2.

7.

-0.6

-6.7

-2.4 0.0 22.4 24.8 269.

177.

162.

TR22A2 3.

7.

-0.6 9.7 15.7 0.0

-1.5 0.5 375.

445.

449.

TR22A2 4.

7.

-0.6

-3.5 0.8 0.0 18.5 21.0 216.

141, 129.

TR22A2 5.

7.

-0.6 15.7 21.6 0.0

-8,5

-6.6 335.

436.

453.

TR22A2 6.

7.

-0.6

-3.1 1.2 0.0 18.0 20.5 216.

141.

129.

TR22A2 7.

7.

-0.6 16.3 22.2 0.0

-9.1

-7.2 335.

436.

453.

TR22A2 8.

7.

-0.6

-1.9 2.4 0.0 16.2 18.8 174.

114.

106.

TR22A2 9.

7.

-0.6 18.0 25.3 0.0

-11.3

-9.8 307.

429.

441.

TR22A2 10.

7.

-0.6 1.2 3.8 0.0 3.2 3.7 70.

70.

70.

TR22B2 1.

42.

-0.2 0.7 1.9 0.0 1.6 1.9 70.

70.

70.

TR22B2 2.

42.

-0.2

-6.6

-4.0 0.0 18.4 20.3 269.

177.

162.

TR22B2 3.

42.

-0.2 8.1 12.3 0.0

-2.7

-1.2 375.

445.

449.

TR22B2 4.

42.

-0.2

-3.3

-0.7 0.0 14.4 16.6 174.

114.

106.

TR22B2 5.

42.

-0.2 9.7 14.5 0.0

-4.5

-2.8 375.

445.

.49.

TR22B2 6.

42.

-0.2

-3.0

-0.3 0.0 14.0 16.2 174.

114.

106.

TR22B2 7.

42.

-0.2 10.0 14.8 0.0

-4.8

-3.1 375.

445.

449.

TR22B2 8.

42.

-0.2

-2.2 0.5 0.0 12.7 14.8 174.

114.

106.

TR22B2 9.

42.

-0.2 14.7 19.9 0.0

-10.6

-9.4 307.

429.

441.

l TR22B2 10.

42.

-0.2 0.7 1.9 0.0 1.6 1.9 70.

70.

70.

I PR22C2 1.

7.

-0.9 2.4 7.6 0.0 5.7 7.7 300.

300.

300.

TR22C2 2.

7.

-0.9

-3.2 2.0 0.0 18.0 20.2 216.

141.

129.

TR22C2 3.

7.

-0.9 7.6 14.3 0.0 2.6 4.9 401.

446.

449.

TR22C2 4.

7.

-0.9

-3.1 2.7 0.0 19.1 23.1 588.

521.

513.

TR22C2 5,

7.

-0.9 7.9 14.9 0.0 2.0 4.4 402.

448.

450.

TR22C2 6.

7.

-0.9

-2.7 3.1 0.0 18.4 22.2 58t.

521.

513.

TR22C2 7.

7.

-0.9 8.9 15.7 0.0 0.4 2.3 375.

445.

449.

TR22C2 8.

7.

-0.9

-1.1 5.1 0.0 16.5 20.5 559.

511.

506.

TR22C2 9.

7.

-0.9 13.7 21.6 0.0

-5.1

-3.3 347.

440.

446.

TR22C2 10.

7.

-0.9 2.4 7.6 0.0 5.7 7.7 300.

300, 300.

TR22D2 1.

100.

-0.7 2.0 6.3 0.0 4.7 6.6 300.

300.

300.

TR22D2 2.

100.

-0.7

-3.0 1.1 0.0 15.5 17.7 174.

114.

106.

TR22D2 3.

100.

-0.7 6.6 12.1 0.0 1.8 3.8 401.

446.

449.

TR22D2 4.

100.

-0.7

-2.9 1.9 0.0 16.5 19.9 588.

521.

513.

TR22D2 5.

100.

-0.7 6.9 12.7 0.0 1.3 3.4 402.

448.

450.

TR22D2 6.

100.

-0.7

-1.9 3.3 0.0 15.7 19.6 559.

511.

506.

TR22D2 7.

100.

-0.7 7.1 12.9 0.0 1.1 3.2

402, 448.

450.

TR22D2 8.

100.

-0.7

-1.1 3.9 0.0 14.2 17.8 559.

511.

506.

TR22D2 9.

100.

-0.7 14.8 21.3 0.0

-7.9

-6.1 302.

413.

428.

j TR22D2 10, 100.

-0.7 2.0 6.3 0.0 4.7 6.6 300.

300, 300.

I i

l PREPARED BY D. E.

COSTA DATE:

I 1

REVIEWED BY:

J.

F.

SHEPARD DATE:

PAGE:

20 1

1

-__-______________-__________-___________-________-________________a

r,

[

.5

,e c.

, BAN NUCLEAR TECENOLOGIES.

    • NON-PROPRIETARY **

32-1236435-00 APPENDIX As FORTRAN PROGRAM LISTING l

TMIS APPENDIX CONTAINS INFORMATION PROPRIETARY TO BNNT AND IS THEREFORE REMOVED i

FROM THIS NON-PROPRIETARY DOCUMENT. THE CONTENTS OF THIS APPENDIX ARE CONTAINED

.IN THE PROPRIETARY VERSION OF THIS DOCUMENT, REFERENCE [5].

t k

?

PREPARED BY D.

E.

COSTA DATE:

REVIENED BYs J.

F.

SHEPARD DATE:

PAGE:

21 l

J

7

._,(

w L

a

,. x I

s 7

g B&W NUCLEAR TECENOLOGIES~

    • MON-PROPRIETARY **.

32-1236435-00 l APPENDIX B: FORTRAN PROGRAM VERIFICATION This appendix contains a set of; calculations used to verify the FORTRAN program-

. listed in Appendix A.

It should be noted that the program is m' modification of -

the - FORTRAN, programs : used - previously in the ~ fatigue analysis of the.TE pressurizer surge nozzle for thermal stratification, Reference [3).

Test-cases were run at several stages to verify the various routines as they were added to.(or modified) the program. For example, after the routine to pick the

[

base case for each pv was added, a sample of 200+ pv's was run and the actual pv data (starting temperature, AT, and ramp rate) was compared to the equivalent.

base case parameters chosen by the program.

In addition to intermediate verifications and verification contained herein, both the preparer and reviewer have reviewed the programs-logic and structure.

~

It should be noted that the program listing contained in Appendix A also contains numerous comument cards explaining the various program cossaands and routines. By l

reviewing the comument cards and the FORTRAN statements following, it is possible I

to verify if the intended procedure has been satisfied.

To verify thst' the program performs ' as intended, hand calculations will be performed to show that the results given in the output of the FORTRAN program are correct. HU1A1 pv 5 and HU1A1 pv 40 have been arbitrarily chosen for review.

VERIFICATION CASE. SCL 2 (nozzle-to-head iuncture). FICHE CR3SCL2.OUT Data for HU1A1 DV 5:

r Input Data Starting Temperature = 482F Ref [2), Table A-1 Ending Temperature = 97F Ref. [2), Table A-1 Delta Temperature (AT) = -385F Ref [2], Table A-1 Ramp Rate = -3849 F/Hr Ref-[2], Table A-1 Internal Pressure = 578 psi Ref [2], Table A-1 280908 in-lbs Ref. [2], Table A-1 Resultant Moment (Mr)

=

'280.908 in-kips Stress-to-Moment Ratio: ID radial = 0.0 Section 5.0 ID long = 0.0015 ID hoop = 0.0025 OD radial = 0.0 DD long = 0.0026 OD hoop = 0.0034-Number of Cycles = 10 for CR-3 Ref [2], Table C-0 Choose Base Case:

1) ramp rate is negative, therefore base cases 13.1 to 20.4
2) start temp = 482, therefore base cases 13.1 to 18.5 (tstrt > 300)

. PREPARED BY: D.

E.

COSTA DATE:

f REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

22

(p)j r

sr-Ni r

s

'U+

'A J

')

l uf q '

B&W' NUCLEAR TECENOLOGIES

    • NON-PROPRIETARY **

32-1236435-00 i

i S) ' ramp ' rate = -3849, therefore base cases;16.1 to'16.4 (rate = '.-4 000)

-)

4) AT = -385, therefore base case 16.1 (AT = -322)
Base Case Metal Temperatures:

I b

inside surface temperature = 2539P flaw temperaturo = 41n9r-t outside surface'tempecature - 1379F_

l

{

Base Case Stresses (linearised) :

Table 6 thermal stresses -(base case 16.1) inside surfaces radial = 0.0 kai longitudinal - 24.4 kai hoop = 28.8 kai i

\\

.t outside surface: radial = 0.0 kai longitudinal = -26.8 kai

.I hoop = -25.5 kai j

pressure stresses (base case 30.1) inside surfaces radial

-2.2 kai longitudinal - 3.6 kai hoop = 12.8 kai l

outside surfaces radial = 0.0 kai longitudinal = 10.3 kai hoop = 11.5 kai 5

j

...uiting P,str....s

. thermal stress:

AT ratio = -385/-322 = 1.196' inside surfaces radial = 0.0(1.196) = 0.0 kai

{

longitudinal = 24. A (1.196) ~ = - 29.18 kai.

hoop = 28.8(1.196) =-34.44 kai

[

t outside surface: radial = 0.0(1.196)

. 0.0 kai.

longitudinal = -26.8 (1.196) = -32.05 kai hoop = -25.5 (1.196) = -30.49 kai f

1 pressure stresses:

pressure ratio = 578/2200 = 0.263 l

)

inside surfaces radial - -2.2 (0.263) = -0.58 kai

~!

longitudinal = 3.6(0.263) = 0.95 kai hoop = 12.8(0.263) = 3'.36 kai f

outside surface: radial = 0.0(0.263) = 0.0 kai longitudinal = 10.3(0.263) = 2.71 kai hoop = 11.5(0.263) = 3.02 kai

.[

-moment stress:

i ins;~- surfaces radial = 280.908(0.0) = 0.0 kai longitudinal = 280.908(0.0015) = 0.42 kai hoop = 280.908 (0.0025) = 0.70 kai 9

i

! ~

PREPARED BY: D.

E.

COSTA DATE:

11 REVIEWED BY: J.

F.

SHEPARD

_ DATE:

,PAGE:

2 3.....

~!

t

.. J

bl-6 c,

55W NUCLEAR TECENOLOGIES-

    • NON-PROPRIETARY **

32-1236435-00 outside surfaces radial =~ 280.908 (0.0) ' = 0.0 kai loogitudinal = 280.908(0.0026) = 0.73 kai hvop = 280.908(0.0034) = 0.96 kai j.

C bin.d P,str.....:

inside surfaces radial = 0.0 + (-0.58) + 0.0 = -0.58 kai longitudinal = 29.18 + 0.95 + 0.42 = 30.55 kai

' hoop = 34.44 + 3.36 + 0.70 = 38.50 kai l

outside surfaces radiel = 0.0 + 0.0 + 0.0 = 0.0 kai longitudinal = -32.05 + 2.71 + 0.73 = -28.61 kai hoop = -30.49 + 3.02 + 0.96 - -26.51'kai Data for HU1A1 Dv 40 Input Data:

Starting Temperature = 282F Ref [2], Table A-1 Ending Temperature = 591F Ref [2], Table A-1 Delta Temperature (AT) = 309F Ref [2], Table A-1 Ramp Rate - 1058 F/Hr Ref [2], Table A-1 Internal Pressure = 1543 pai Ref [2), Table A-1 Resultant Moment (Mr) = 2092208 in-lbs Ref [2], Table A-1 2092.208 in-kips Stress-to-Moment Patio: ID radial = 0.0 Section 5.0 ID long = 0.0015 i

ID hoop = 0.0025 OD radial = 0.0 OD long = 0.0026 OD hoop = 0.0034 Number of Cycles = 10 for CR-3 Ref [2), Table C-0 Choose Base Case:

1) ramp rate is positive, therefore base cases 1.1 to 11.1
2) start temp = 282, therefore base cases 1.1 to 6.1 (tstrt < 300)
3) ramp rate = 1058, therefore base cases 2.1 to 2.7 (1.1 rate = 1100)
4) AT = 3 0 9, therefore base case 2.1 (AT = 300)

Base Case Metal Temperatures inside surface temperature - 449'F ilaw temperature = 342*F outside surface temperature = 325'F Base Case Stresses (linearised):

Table 6-1 thermal stresses (base case 2.1) inside surface:

radial = 0.0 kai longitudinal

-15.3 kai hoop = -15.7 kai outside surfaces radial = 0.0 kai longitudinal = 19.1 kai hoop = 20.0 ksi PREPARED BY D.

E.

COSTA DATE:

REVIFWED BY: J.

F.

SHEPARD DATE:

PAGE:

24

r*+

.e B&W NUCLEAR TECHNOLOGIES

    • NON-PROPRIETARY **

32-1236435-00 pressure stresses (base case 30.1) inside surfaces radial = -2.2 kai f

longitudinal = 3.6 kai hoop = 12.8 kai outside surface radial - 0.0 kai longitudinal = 10.3 kai hoop = 11.5 ksi t

Resulting PV stresses:

thermal stress:

AT ratio = 309/300 = 1.03 inside surface:

radial = 0.0(1.03) = 0.0 kai longitudinal = -15.3 (1.03) = -15.76 kai hoop = -15.7(1.03) = -16.17 kai outside surfaces radial = 0.0(1.03) = 3.a her 19 6'

'91 longitudinal = 19.1(*.03) hoop = 20.0(1.03) = 20.L" ke!

t pressure stresses pressurc ratio = 1543/2200 = 2 90

-1.54 kai inside surfaces radial = -2.2 (0.70)

=

longitudinal - 3.6 (0.70) = 2.52 kai hoop = 12.8(0.70) = 8.96 kai 0.0 kai outside surface: radial - 0.0(0.70)

=

longitudinal = 10.3(0.70) = 7.21 kai hoop = 11. 5 (0. 7 0) = 8.05 kai moment stress:

inside surfaces radial - 2092.208(0.0) = 0.0 kai longitudinal - 2092.208(0.0015) = 3.14 kai hoop = 2092.208 (0.0025) = 5.23 kni i

outside surface: radial = 2092.208(0.0) = 0.0 kai longitudinal = 2092.208(0.0026) = 5.44 kai hoop = 2092.208(0.0034) = 7.11 kai Combined PV stresses:

inside surface:

radial - 0.0 - 1.54 + 0.0 = -1.54 kai longitudinal - -15.76 + 2.52 + 3.14 = -10.10 kai hoop = -16.17 + 8.96 + 5.23 = -1.98 kai outside surfaces radial = 0.0 + 0.0 + 0.0 = 0.0 kai longitudinal = 19.67 + 7.21 + 5.44 = 32.32 kai hoop = 20.60 + 8.05 + 7.11 = 35.76 ksi CONCLUSION:

The values determined above are comparable to the values resulting from the FORTRAN calculations of CR3SCL2.OUT. It is therefore concluded that the FORTRAN program is correct.

PREPARED BY: D.

E.

COSTA DATE:

REVIEWED BY: J.

F.

SHEFARD DATE:

PAGE:

25 l

I

(,

i,

.x il. ;. s - ::,.

l

! a'

' B&N NUCLEAR TECIDIOLOGIES.

    • NON-PROPRIETARY **

32-1236435-00

'J r

APPENDIX C: MICROFICHE I

CR3SCL2.IN

~ Echo of FORTRAN input file l

dated 11-06-94 e 11:31 am Stress results for the nozzle-to-head weld region (stress CR3SCL2.OUT classification line 2).

The stresses are a result of surge.

line stratification.

dated 11-06-94 e 1:22 pm

[

COPIES OF MICROFICHE ARE NOT CONTAINED IN THIS DOCUMENT.

THE MICROFICHE ARE h

CONTAINED IN REFERENCE [5],

r f

P i

t t

i l

l i

h PREPARED BY: D.

E. COSTA DATE:

REVIEWED BY: J.

F.

SHEPARD DATE:

PAGE:

26

.