ML20069M709

From kanterella
Jump to navigation Jump to search
Rev 0 to CR-3 Analysis of S/N ECT Data for SG Tubes
ML20069M709
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 04/08/1994
From: Careitte R
MPR ASSOCIATES, INC.
To:
Shared Package
ML20069M635 List:
References
RMC-102-071-1, RMC-102-071-1-R00, RMC-102-71-1, RMC-102-71-1-R, NUDOCS 9406220104
Download: ML20069M709 (47)


Text

703 519 2224 F,25 MFR ASSOCIATE 3 INC.

PR-06-1994 15:19 MPR Associates, Inc.

320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE

/

Client Page 1 of /f Florias b c C <po< dl,,,

Plw 3 Fagons Task No, f

- U^if b (C R:Sb got. p Project CryshsI ks'vec Calculation No.

CR 3 A~.Jyra of r/a Ec7 A A

'** # ~I i

Title fe C+ cum G en < rr4.e Tube.t Reviewer /Date Rev. No.

Checker /Date Preparer /Date 0

T..Al (4aa.ad o6+'R1Y Y U

y

~

qq

  1. MW gfs 9406220104 940419 PDF:

ADCC!? 0500030,0 D

PDR

703 519 222e.

P.26

pq-as-1994 15
19 NFR A55CC:ATES INC.

MPR Associates, Inc.

320 King Stroot Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.

Prepared By C ecked B Page d 9.mCton0+/-/

12 (4 D A d 4. 476 Description Revision A.. l T4 N t.

....O.......

.18 L

i l

)

1 i

i i

i

~~'

i

[~

i i

3 t

.i i

i i

.l i

.... 6 I

j l

i i

i i

i 1

e

f,FR-N-1994 15:19 MPR ASSCCIATE3 INC.

703 513 0224 P.07 MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By C

eked By Page 3 RN;.IODo*H-l R.m (M it<We*

V j

Uff 43%

Th e purpx <

of 1%

ca te u k %

is 4

passhly As h&c <,./G t4 e.

SH eefely currank h d ek k 1

Cyhd %e - Wil 3 ricum pnen4w A lu.

he th

..... __ _1be.

ejyhs Es du h.

s e 41 ses ;

.0 Bokhte hb<. velb.y.

d h b 44 sp 4de leoK

n hh p4. v.14 y LA Ac p.It<J Mee (F,N V.lfp)

S kkb peds v. lh.3s dA Ac aR.e t occL.r (M& %h

...S)

M RP..C._f<.ebt ctc<.4.ec Wl u4c 4 d*4s &c Gr.<f...._...

spe h b*r

.!D MRPC._.ysk cire w Ca u M O en%& ok 4x FM bbu N mRec. ph[

e hyU((l_3.g4td.dJ[_3e o E.d isSe.hdaa.

MR PC..p.be _. a.id e 54e4. ckk. Ae Gef spa..hbca

.- =. _..

.._.._ th..M?C. peab ed.d e x4en4-d A b pJte.d.bbu

- D. TAR tt._p sk<._w l.. e.rbat Ju.b. 6-eMar 1 53.h.9nt__

3

.U.

.~..._

I a

APR-08-1994 15:20 t1PR ASSC,CI ATES INC.

703 519 0224 P.08 l

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By ecked By Page Y RN. to a.o w - I R. M C4aener

.T.

Re.su I4.s app e ca.fle. 44.. snd l-

?qu

.f thra4 4 N

ful fta fMthe numlec s{.ra.mp ea (c.un +),

enmik um, l

e v erug t v s /v e.t,

c,d me y,%k<n,

me dian and s

s

. S & her). deviuho'n

.eac h t/c.!s.... Je}.

..Sc s.....

fzgg..3,L_,

p/ f

  • f n m bcr of oce re,cn i

F, jure I is r

f.e A_

theer

\\

peds vo 14s3e r eud,63 vers a.s loeuha%t j br:.spsn f4(pe.J, f'sllsl h &,

GY a1ter

/.e h.4 Fyurs.2 u n pla+-.af numbsc..aS eeeNu v esas creemm4.res&t u+es4 ceudi L

m.. + Lee c.

loc <,%

3 4._oceu.m m 4 v er.sy,s

. __E w < < 3

.i.a _c( _ pl

  • f M. _ _n e Lt.

4 M_.The*S I ee Ab_hJ _ _

Q.r.i.d._ tMd NN b.)

far

. ' _'Acit m,,t GG.i) ~ cMsG-(wJ ) - v,tq t ---

.. a su b ht 4 su tev C,+

% SWbe.

Cr

.r.1 _

o. n....o.2.t Ace 4

..F. M T A. %

o.ta.

. og._.. rif o.r.y o.os

- - = _

_PJJ T49 _ oa4.

o.93 n.

o.ie o.oy

.n.__ 0 4 3 _ o.af, 20

'N La#% oA o.or.

43..._ o V..' O.or..jv3._g3'i oMr n 2.

I

703 519 0224 P.a9 APR-08-1994 15:20

,FR ASSOCIATES INC.

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 C

eked By Calculation No.

Prepared By y

Page y f#

RMc ioaow-1 l1. M e ua.&

c Y

g.t% JL.J.L,3 ( C,. Ic u hb

.]..

Edd Ca r ~.F dslu g a e, J. f G ia

4. lay es 4 u /edis%

.. w u c.

a 4 b..u J. fr ~,

f/o e A P. m e G g er M,.

e y

Ma c n r.45 E.rcef ~

usa l de ca /c u /a/e urt,a-, 7.0 w

e 2.

(aver y), an /

s /.. A r d e l e a rs h.;.

meJaan, mee a s
e. e d..

fatl __na ~ *.n m m J m s x.m a, m v e, la <a

~

vs !.~.L<

ca en c8 (ca /e f ei oo

.._.. 3. %,s.. w o.<

u f.tt.-

Exc l

Auu tJ i.s numlec{se><pu

-X'f

( Kc couJ) f/-t-

4. he.Lin.. 4 L%

weIbek _wist.-(

het e

aid /le

.f fl.s e44

.sef v

d

. S_%)s.r.$._bei45. verIue.. wre..cde ut. 4 as

.3

_4 hs_:.

g__q ) f

. _.sti dev em N-1 i 1

R o u l b _.3v < cc c k cu k,J. e n :a, s eplA_. 6a s e _.us.g

. f..

c._ Mewl.4f fkc.V4

%1. _e (c.u idm.

i

.~ ~* ~

+

t I

l

}

}

m

~m m

4.u kw N

703 519 0224 o.la APR-08-1994 15:20 FPR A55CCI ATE 5 !NC.

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 C ecked By Calculation No.

Prepared By A m C.IocitO M -I R N1 CA a.e.t(Ti f

6 Crystal River Unit 3 May 1992 Eddy Current Voltage Readings Data for First Span Tubes - Volts 600 kHz S/N 0.66 0.79 0.70 0.45 0.35 0.82 1.19 0.37 0.71 0.50 0.41 0.55 0.30 0.20 0.67 0.52 0.82 0.78 0.72 0.42 0.61 0.40 0.58 0.79 0.44 0.64 0.61 0.53 0.64 0.39 0.36 0.52 0.82 0.46 0.58 0.53 0.29 0.34 0.58 0.57 0.74 0.81 0.42 0.47 0.14 0.56 0.69 0.92 0.28 1.39 0.51 0.50 0.52 0.52 0.48 0.31 0.63 0.48 0.54 0.93 0.54 0.52 0.45 0.47 0.88 0.59 0.42 0.50 0.47 0.60 0.79 0.45 0.45 1.13 0.60 0.64 1.13 0.49 0.32 0.41 0.41 0.55 0.24 0.50 0.43 0.79 0.58 0.47 0.52 0.49 0.53 0.51 0.35 0.34 0.43 0.43 0.65 1.00 0.50 1.32 0.43 0.57 0.49 0.50 0.72 0.75 0.59 0.85 0.54 0.66 0.62 0.65 0.55 0.59 0.47 0.52 0.46 0.88 0.52 0.76 0.62 0.27 0.83 0.53 0.40 0.63 0.63 034 0.36 0.47 0.43 0.65 0.66 0.70 0.60 0.65 0.63 0.75 0.47 0.55 0.43 0.78 0.60 0.39 0.55 0.66 0.55 0.45 0.59 0.39 0.35 0.43 0.71 0.63 0.51 0.57 0.30 0.89 0.56 0.57 0.49 0.61 0.54 0.37 0.90 0.39 0.79 0.43 1.20 0.78 0.73 0.47 0.44 0.77 0.52 -

0.69 0.60 0.79 0.91 0.56 0.48 0.28 0.60 0.90 0.39 I

1.51 0.67 0.37 0.73 0.85 1.01 0.79 0.64 0.82 0.81 0.66 0.40 0.77 0.47 0.83 Count 200 l

Min Value 0.14 Max Value 1.51' Median 0.55 Average 0.59 Std Dev 0.21

AFG-CG-1994 15:21 PFR AS5CCIATE5 INC.

702 513 0224 P.11 MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Checked B Calculation No.

Prepared By

&[ y

"** ?

Rmt lokom-f R.m Cwm t

Crystal River Unit 3 i

May 1992 Eddy current Voltage Readings Data For Tubes Other Ths.3 Span - Mixed Volts S/N 0.98 0.82 0.74

'29 1.56 0.82 0.43 0.45 0.60 3.10 0.55 0.77 0.s 1.61 0.78 0.57 1.07 0.68 1.09 0.73 0.64 0.46 0.66 0.62 0.47 1.08 0.56 1.64 1.42 0.76 0.51 0.91 0.57 0.53 0.84 0.89 0.81 0.96 0.48 0.73 0.80 0.53 0.50 0.31 0.54 0.77 0.63 0.59 0.48 1.96 2.41 0.76 0.64 0.31 1.45 0.48 1.16 0.53 1.94 0.43 0.68 0 47 0.47 1.38 0.73 0.58 0.70 1.09 0.79 0.53 0.45 0.55 i

0.71 0.61 0.87 0.79 0.52 0.95 0.49 0.53 1.33 0.63 1.09 0.84 0.40 0.63 0.67 0.82 1.22 0.50 1.49 0.44 0.42 0.86 0.67 0.54 0.99 0.79 0.89-0.77 0.49 0.43 0.43 0.56 0.66 0.73 0.74 1.48 0.63 0.55 0.44 2.07 0.60 1.00 0.78 0.88 0.65

~

0.55 0.24 0.37 0.68 0.56 0.62 0.47 0.68 0.45-O.54 1.11 0.55 0.64 0.48 1.28 0.63 0.64 0.49 _

0.93 0.65 0.50 0.57 0.65 0.32 0.41 0.99 1.15 0.89 0.81 0.35 1.13 0.56 0.57 0.49 0.74 0.43 - -

0.43 0.64 1.13 0.76 1.17 0.54 0.70 0.63 0.56 0.58 0.66 0.95 0.58 0.61 0.57 0.65 1.02 0.60 1,64 0.68 1.06 0.46 0.48 0.90 1.25 0.75 0.74 0.41 0.52 0.97 0.95 0.77 0.89 0.36 0.63 0.46 0.44 0.54 0.70 0.53 0.55 0.66 0.68 0.97 0.43 1.06 0.71 0.50 1.21 0.60 0.52 0.59 0.37 0.57 0.58 0.64 0.85 0.39 0.51 0.81 0.71 1.11 0.43 0.92 0.86 1.16 0.62 0.93 0.81 0.61 0.49 0.90 0.79 0.51 0.68 1.02 0.48 0.51 1.37 0.85 0.84 0.46 0.63 0.80 0.70 0.62 0.57 0.48 0.64 0.34 1.07 0.67 1.02 0.87 0.61 0.80 0.74 0.54 0.39 1.53 0.66 0.53 5.58 0.60 0.66 1.05 0.56 0.87 0.54 1.04 0.80 2.02 0.49 0.42 0.67 0.63 0.34 0.80 0.56 0.89 1.83 1.26 0.57 0.47 0.82 0.68 0.39 ~ 0.75 0.61 1.06 0.69 0.50 0.86 1.12 1.67 0.75 0.54 1.33 0.52 0.44 0.61 0.66 0.38 0.55 0.61 0.92 0.36 1.24 2.38 1.69 0.51 0.72 0.53 1.07 0.57 0.84 0.94 0.69 0.85 0.44 0.39 0.47 0.40 0.71 0.61 0.98 1.00 0.56 0.59 0.71 0.38 Count 324 Cont]nued.....

APR-08-1994 15:21 MPR ASSOCIATE 5 INC.

703 519 0224 P.12 MPR Associates. Inc.

320 King Street p

Alexandria, VA 22314 Calculation No.

Prepared By C ec ed By Page $

~

Q MC. lOlOTI-l E.M Cage.ari Crystal River Unit 3 May 1992 Eddy Current Voltage Readings Data For Tubes Other Than First Span - Mixed Volts 8/N (Continued) 0.76 0.53 0.45 0.70 0.50 0.55 0.88 0.61 0.64 0.69 1.04 0.56 0.61 0.68 0.35 0.67 0.53 0.49 0.05 0.62 0.59 1.04 0.31 0.56 0.20 0.79 0.62 0.74 0.92 0.96 0.88 0.48 1.01 0.62 0.38 0.50 1.32 0.43 0.58 0.79 0.88 1.11 0.61 0.44 0.35 0.77 0.87 0.37 0.13 0.60 0.47 1.45 0.89 0.66 0.62 0.55 0.82 0.48 0.55 0.75 0.47 0.58 0.84 022 0.80 0.61 0.78 0.74 0.60 0.75 0.50 0.44 0.79 0.81 0.63 0.41 0.44 0.44 0.75 1.02 0.44 0.41 1.05 1.00 0.79 0.42 0.62 0.53 0.83 0.70 0.89 0.86 0.84 0.51 0.7t 0.41 1.35 0.34 0.64 1.08 0.63 0.42 0.48 0.28 0.49 0.63 0.77 0.56 0.75 0.71 0.83 0.52 0.48 0.57 0.61 0.46 0.70 1.51 0.38 0.92 0.65 0.69 0.54 1.60 - - 0.63 0.73 0.40 z,0.73 0.46 0.57 0.56 0.77 0.74 0.28 0.98 0.00 0.31 1.04 Count 462 Min Value 0.05 Max Value 5.58 Median 0.64 Average 0.74 Std Dev 0.41

. ?"

l.

703 519 0224 P.13

!1PR ASSOCI ATE 5 INC.

AFR-08-1994 15:21 MPR Associates, Inc.

320 King Street Alexandria, VA 22314 C ecked By Calculation No.

Prepared By Page 9

R M C*hM R MC,10.2OH - I Crystal River Unk 3 May 1992 Eddy Current Voltage Readings Data for Pulled Tubes - Final Volts S/N 0.47 0.52 1.03 0.30 0.63 0.88 0.89 1.08 0.85 0.34 0.31 y

0 04 0.34 t-0.48 0.98 0.95 0.79 0.60 0.55 0.57 l

20 l

Count 0.30 Min Value 1.08 MaxValue Median Value 0.62 0.67 Mean Value 02 Std Deviation

~

^PR-06-1594 15:22 MFR ASSOCIATES INC.

703 519 0224 P.14 MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By ecked By

/

l f(nC Io ko M = i

0. M CA L4 *M Crystal River Unit 3 May 1992 Eddy Current MRPC Probe Circumferential Extent Readings For First Span Tubes 0.15 0.17 0.12 0.06 0.15 0.19 0.17 0.17 0.21 0.09 0.15 0.16 020 0.12 0.20 0.13 0.15 0.28 0.13 0.00 0.17 0.17 0.21 0.16

+

0.21 0.22 0.16 0.22 0.14 0.15 0.14 0.23 0.18 0.19 0.18 0.40 0.15 0.14 0.00 0.14 0.18 0.00 0.17 0.17 0.19 0.18 0.07 0.17 0.20 0.19 0.18 0.15 0.19 0.13 Count 54 Min Value 0.00 Max Value 0.40 Median 0.17 Average 0.16 Std Dev 0.06

i AFR-25-1994 15:22 MPR AS5CCIAT55 INC.

703 519 2224 P.15 MPR Associates, Inc.

PR a 2 o xi"9 sir Alexandria, VA 22314 Calculation No.

Prepared By Checked By ll Rme tazoM-l t m C <a e,rre'

&/

l Crystal River Unit 3 May 1H2 Eddy Current MRPC Probe Readings Circumferential Ezfent ReadinOs For Pulled Tubes 020 0.17 0.17 0.19 0.14 0.20 0.19 0.19 0.19 0.17 0.19 0.25 5

0.18 0.10 0.18

- ~ ~

0.14 0.11 0.19 0.13 0.15 0.19 0.25 Count 22 Min Value 0.10 Max Value 0.25 Medlan 0.19 Average 0.18 Std Dev 0.04

703 519 0224 P.16 FPR-08-1994 15:22 MPR ASECC: ATE 5 INC.

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By ecked By l5 l

(?thC lo3 0M-I RM CA Qt r Tid Crystal River Unit 3 May 1992 Eddy current MRPC Probe Readings Circumferential Extent ReadinOs For Tubes Other Than First Span 0.12 0.15 0.18 0.18 0.14 0.16 0.16 0.17 0.05 0.13 0.19 0.21 0.22 0.23 0.15 0.13 0.10 0.08 0.09 0.19 0.17 0.20 0.18 0.14 0.18

' O.14 0.13 0.15 f

0.15 0.12 0.16 0.00 0.14 0.22 0.12 0.22 0.21 0.18 0.20-0.20 0.16~

0.10 0.18 Count 43 Min Value 0.00 MaxValue 0.23 Median 0.16 Average 0.16 Std Dev 0.05

l l

703 519 0224 P.17 AFR-26-1994 15:23 FFR ASSOCIATES INC.

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By C eck d By Page j3 gmc t Cao41-l AM CA fu n TW F

Crystal River Unit 3 May 1992 Eddy Current MRPC Probe Raadings l

_ Axial Extent Readinos For First Span Tubes _

0.18 0.08 0.14 0.08 0.04 0.11 0.16 0.11 0.04 0.11 0.22 0.12 0.12 0.15 0.11 0.07 0.07 0.14 0.16 0.00 0.15 0.18 0.11 0.11 0.15 0.18

~

0.18 0.17 0.08 0.08 0.14 0.15 0.11 0.15 0.14 0.31 l

0.11 l

0.08 0.00 0.10 0.04 0.08 0.14 0.05 0.06 0.17 0.07 0.15 0.14 0.14 ^-

0.07 0.16 0.11 0.14 count 54 Min Value 0.00 Max Value 0.31 Median 0.12 Average 0.12 Std Dev 0.05

AFR-08-1994 15:23 MFR A550C' ATE 5 INC.

703 519 0224 P.18 MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By hecked By Al%C.IO20M ~l A M Ck t t MG I'E

~

t ' '=

i Crystal River Unit 3 May 1992 Eddy Current MRPC Probe Readings Axla! Extent ReadinOs For Puned Tubes 0.15 0.19 0.19 0.14 0.11 0.16 0.19 0.15 0.15 0.15 0.15 0.06 t-0.16 0.11 i

0.13 0.11 0.11 0.12 0.15 0.11 Count 22 Min Value 0.08 Max Value 0.19 Median 0.15 Average 0.14 Std Dev 0.03 gp-M 64 W

l 703 519 0224 P.19 FFR ASSOCIATES INC.

APR-08-1994 15:23 MPR Associates, Inc.

320 King Street EM Alexandria, VA 22314 C ecked By Calculation No.

Prepared By Pm y Q t%C. l c1b"t I-I

f. 61 C444 iEC' Crystal River Unit 3 May 1992 Eddy Current MRPC Probe Readings Axial Extent Readinas For Tubes Other Than First Span _

0.12 0.15 0.12 0.12 0.12 0.18 0.11 0.11 0.15 0.10

)

0.12 0.12 l

0.16 0.29 l

)

0.14 0.07 i

0.08 0.08 f

O.05 0.14 s

0.11 0.12 0.31 0.12 0.07 0.10 0.15 0.10 0.05 0.15 0.01 0.11 0.21 0.12 0.15 0.13 0.14 0.13 --- -

0.14 0.0f 0.08-0.14 Count 43 Min Value 0.01 Max Value 0.31 Median 0.12 Average 0.12 Std Dev 0.05

_.m B

?o 9,]

Figure 1 - Crystal River Unit 3 Bobbin Probe -Voltage Readings u

I.n to u

aFirst Span 300 - "

WPuNed Tubes BCMherlocations j 250- - ---

E D

u, k

2 a

~

a 200 -- - - -

m n

UI ee N.

3 u

8 150-y

-It ea z 100 -

50 23 u

~

y 0.01-0.51-1.01-1.51-2.01-2.51-3.01-3.51-4.01-4.51-5.01-a 0-0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Elu Voltage ItaadinOs Si Calc RMC102071-1 4MW94 MPR Associates

B

?

Si A

Figure 2 - Crystal River Unit 3 MRPC Probe - Circuaderential Extent G

25 i

..-_~

Qx y.

EFkst Span 3

IS EPulled Tubes b

SOther Locations n

5 y.

gj g 15 a

?

8

-3 10 5

2 l

5 g

0 1

i I

i t

i t

a o.co.e.os o.os-o.10 c.t1-o.1s 0.16-o.2e c.214.2s c.26-o.so o.314.35 o.ss.o.40 g

Probe Reading W)

?

1 Calc RMC102071-1 4/5/94 MPR Associales

M f

CJ Figure 3 - Crystal River Unit 3 MRPC Probe - Axial Extent s.

Un 30 7,5 25 Yi xs D

l EFirst Spen y

EP M h O

20 v

8 5 Other Locations gj c

u>

t!

E P

O

$5 E

.I I

S 2

10 I

i 5- -

is}

u m

c3 0.00-0.06 0.06-0.10 0.11-4.15 0.164.20 0.21 0.25 0.26 4.30 0.31-0.35 0.36-0.40 Mu Probe Reading (inches)

?

O I

MPR Assodates Calc RMC102071-1 4/5/94 i

a Wrns b.

Wi

-*a 2

u m.

I i

i j

(

a APPENDIX D VOLTAGE TO DEFECT PERCENT THROUGH WALL CORRELATION BY THE EPRI NDE CENTER

EPRI NDE CENTER Electne Power Research instnyte Nancestructne Evaluaten Center leadershipin Technology Transfer December 6,1993 Mr. Jeffery C. Brown B&W Nuclear Service Company Special Products & Integrated Services 155 Mill Ridge Road Lynchburg, VA 24502

SUBJECT:

P.O. 83-786323: Eddy Current Voltage-to-Volume Wall Loss Evaluation (13-19)

Dear Jeff:

Evaluation results of the subject work are summarized in this letter report. The main objective was to investigate the relation between eddy current signal amplitude and intergranular attack (IGA) volume wallloss. Our evaluation results were encouraging; a high degree of correlation between the eddy current signal amplitude and IGA wallloss was attained. Due to limited resources and time available, only the analyses of narrow-groove (510 M/ULC/HF/NG) and conventional (510 M/ULC/HF) bobbin-coil data were performed. No rotating pancake coil data was analyzed.

As indicated in my March 24,1993 letter correspondence to P. Sherburne, no correlation between the eddy current phase angle and percent wall loss was noted for the identified IGA patches. This activity, therefore, involved evaluating the signal amplitude of IGA signal to known IGA walllosses. Specifically, the vertical amplitude, VMax, of IGA signal was measured and compared with metallurgically derived percent wall losses at frequencies of 600,400, and 200 kHz. Initial attempts to correlate the ASME based VMax amplitude to IGA wall j

loss was unsuccessful due mainly to larger flat-bottom hole signals of the l

ASME standard being compared to smaller amplitude IGA signals.

To overcome this problem, actual lGA data was used to establish the relevant VMax amplitude-to percent wall loss curves at three different frequencies. This was accomplished by referring to the tabulated destructive analysis results of IGAs from four pulled tubes, e.g., tubes 52-51, 90 28, 97-91, and 106-32.

Corresponding VMax amplitude information was obtained from both laboratory (narrow-groove bobbin coils) and field (conventional bobbin coils) eddy current data. Care was taken to select only those isolated, and not clustered, IGAs which were detectable by eddy current. Ten isolated signals were then used to 1300 Harris Bowevard = Chartma_ mgEctsta untu - '

^^

Mr. Jeffery C. Brown Page Twn December 6,1993 establish the calibration curves using both first order and second order curve fits. Examples of established calibration curves from 600,400, and 200 kHz narrow-groove bobbin coil data are included as Figures A1-A3 in Attac in the final analysis, more linear first order fit was selected over the second order fit to extend the calibration curve up to the 100% wall loss point. Figu A4 A6 show examples of calibration curves based just on the first order curve fit using the conventional bobbin coil data. For mo the slope of the curve decreases with the higher operating frequency. This w especially true for the narrow-groove bobbin coils. With conventional bobb coils, however, there were slight differences in the slope between the 600 a 400 kHz calibration curves (see Figures A4 and A5).

The next step was to estimate the IGA depths by using the established calibration curves. Derived estimates were then compared with the destructiv analysis results. Attachment B shows the comparative analysis results o the narrow groove and conventional bobbin coils. Table B1 shows 10 speci IGA points used to establish the VMax calibration curves plus 24 additiona points based on the laboratory data (narrow groove bobbin coils). Figure B3 show comparison of destructive analysis results versus eddy current estimates for 600,400, and 200 kHz. It should be noted that the 34 test point used in the linear regression analysis included the original 10 points used to establish the calibration curve. Best analysis results were obtained using the 600 kHz differential VMax amplitude curve. The following statistically derived values were obtained: correlation coefficient of 74%; RMS error of 8%; and slope of 0.83. The overall accuracy of sizing increases with higher corre coefficient and slope values accompanied by the smaller RMS error value.

These values represent significant improvements over the phase angle analy results, which yielded correlation coefficient of 25%, RMS error of 27%, and slope of 0.65.

To determine if comparable analysis results can be obtained from the field da similar comparisons were made using the same data set as shown in Table Comparative results of 600,400, and 200 kHz data are graphically illustra Figures B4 86, respectively. Although the analysis results of field data were slightly degraded, especially the slope value, they still represented improvements over the phase angle analysis results. Of the three frequen analysis results, the 600 kHz results showed slightly better performance ove others as shown below.

Mr. Jeffery C. Brown Page Three December 6,1993 Correlation RMS Coefficient Error Slope 600 kHz VMax 73 %

7%

0.69 400 kHz VMax 74 %

7%

0.56 200 kHz VMax 70 %

7%

0.56 It should be noted that no IGA patches of less than 30% penetration depths will be reliably detected nor sized based on the currently established calibration curves from either laboratory or field data (see calibration curves A1 A6). This basically defines the current limitation of the bobbin coil technology.

Although useful, the established calibration curves can not be used in their original forms by either DDA-4 or Eddynet analysis software. Consequently, an attempt was made to transpose the IGA curve using the readily available ASME standard readings. This attempt was made using the 400 kHz differential field data. Initially, two ASME standard readings,100% and 40% VMax readings, were used to establish a linear calibration curve. This line was then rotated and translated to mimic the originalIGA curve. These two ASME points, however, corresponded only to higher percent wall losses in the IGA curve, e.g., 99%

)

and 72%. Thus, to complete the lower end of the calibration curve,0 volt reading was also used, which for the 400 kHz data corresponded to 32%. The above steps are tabulated and graphically shown as Table C1 and Figure C1 in Attachment C. Figure C2 shows an example of transposed IGA curve based on the derived percent wall loss points corresponding to various ASME VMax readings.

Since calibration runs produce slightly different voltage readings, depending on the probe and ASME flaw orientations, any changes in the percent wall losses due to different VMax readings were investigated. From the four field calibration runs, the following highest and lowest VMax readings and the corresponding percent wall losses were compared with the original IGA wall losses.

ASME Min VMax Volts /

Max VMax Volts /

Actual IGA %

Hole Forced Percent Forced Percent Min / Max 100 3.22/99 3.38/99 96/99 40 2.00N4 2.1193 72/74 20 2.44/83 2.77/87 81/87 0

0/32 0/30 32/32

~.

i Mr. Jeffery C. Brown Page Four December 6,1993 Deviations in percent walllosses were minor as shown in Figures C3 and CA Consequently, any VMax readings in the smallest to largest voltage range should provide comparable analysis results as in the original lGA calibration curves. This amplitude curve can be saved as one of mixed channels. It should be noted that these readings are good for the specific probe type and the extension cable length used to acquire the field data. Any probe or extension cable changes may necessitate recalculation of the forced -

percentage points.

l In summary, by using the actual IGA data points, it was possible to correlate the VMax amplitude signals to IGA depths. In addition, the transposed IGA curves, established from the ASME readings, can easily be established as one of the analysis curves for evaluating IGA patches, if you have any questions or require additionalinformation, please feel free to l

contact us.

Sincerely, n

' 'y&s Kenp.]KrzywoszC Manager, Heat Exchanger & Electromagnetic NDE l

EPRI NDE Center KK: mph l

Attachments l

cc:

S. Overstreet, B&W R.-Thompson, Crystal River J. Lance, EPRI R. Stone F. Ammirato S. Hastings D. Spake G. Henry

l l

1 i

ATTACHMENT A l

FIGURE A1 CR-3 IGA AMPLFUDE VS. VOLUME SIZING REVIEW GROUND TRUTH % VS. AMPLITUDE [ VOLTS) 10 0 90 Y=26.690+32.193X

~

2 Y=24.241+44.074X-11.093X 70 c

60 O

50

+

A 40 3

30

++

20 10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 600kHz Diff. Amplitude (Vmax)

Curve based on 10 seleted data points.

FIGURE A2 CR-3 IGA AMPLITUDE VS. VOLUME SIZING R VIEW GROUND TRUTH % VS. AMPLITUDE (VOLTS) 10 0 t

90 Y=23.468+41.978X 80 70 c

6 60 Y=18.003+69.318X-28.164X 2

O 50

+

~

40

?

+

j 30 20 10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 400kHz Diff. Amplitude (Vmax)

Curve based on 10 seleted data points.

FIGURE A3 CR-3 IGA AMPLITUDE VS, VOLUME SIZING EV EW GROUND TRUTH % VS. AMPUTUDE : VOLTS:

10 0 90 Y=22.251+73.004X 80 70 c

0 60 t

4 2

x n

Y=18.273+104.531X-53.191X g

'0 4

A 40

~8 f

30 20 10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 200kHz Oiff. Amplitude (Vmax)

Curve based on 10 seleted data points.

FIGURE A4 CR-3 IGA AMPLITUDE ANALYSIS / lELD DA~A GROUND TRUTH % VS. AMPLITUDE VOLTS:

10 0 90 80 70 d

60 3

+

++

Y=33.903+18.968X 50 q

+

+

A 40 -+

3g 30 *+

20 10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 600kHz Diff. Amplitude (Vmax)

Curve based on 10 seleted dato points.

FIGURE A5 CR-3 IGA AMPLITUDE ANALYSIS / FIELD DATA GROUND TRUTH % VS. AMPLITUDE [ VOLTS) 10 0 90 80 70 6

60 3

+

+

y=3.67a+20.042x 50 s

+

+

A 40

?e 30 - +

20 10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 400kHz Diff. Amplitude [Vmax)

Curve based on 10 seleted data points.

FIGURE A6 CR-3 IGA AMPLITUDE ANALYSIS / FIELD DATA GROUND TRUTH % VS. AMPLITUDE N0LTS) 10 0 90 80 70 Y=29.925+38.864X D

60 5

+

x 50

+

A 40 Ey 30

+

20 10 0

O.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 200kHz Diff. Amplitude (Vmax)

Curve based on 10 seleted dato points.

' ru dd.se p me w

'-Jurm-a.e a es epr dmas m 4 +- ---


a mw I

b a

I i-I t

i e

4

.I e

i i

w4sa_

m=

ATTACHMENT B l

l i

J l

l l

i s

s l

l i

l

[

a.

CR-3 IGA ANAL YSIS REVIEW ist Order Curve Fit (Includes 10 selected data pointsfrom laboratory data with a voltage of> :ero.)

TABLE B1 f

9 LOCAT13N i

GRO7ND 60*kEs O!FF 40*a.Es DIFF l

2 00kJia O!FF T"BE i

FLAWl51 1

' T$ F e i

TRtTE%

1 YMAX EST. 4 VMAX EST. % 9 VMAX EST. %

j 52-51 2 ID

+6.50) 344 0 41 40r C.441 421 0.22.

Ja i

tF**

l

+4.901 531 0.73; 50*

0.711 53I 0.45 55 j

,G" l

9.16l 341 0 16 32 0 221 331 0.12 31 10 001 42' O 63 47-0.631 501 0 4:

51

/

II2/2+

i 11.001 45i 3.28 36 c.29s 361 0.16 35 IFl/K1 1

+

12.40i 301 0.26t 35 0.226 336 0.12 31 lN2/N1 13.101 331 0 181 324 0.151 105 0.09 29 lP l

l iS**

  • 14.701 331 04:

40' O.341 381 0.2:

37 281 356 0.16 34 16.101 378 0.22 344 i,

9C-28 2 iAD1/AD2

+

4AB 1

  • 15.50s 301 0.16 32 0.186 31 '-

0.13 32

  • 14.601 43) 0 61 46 0.59I 481 0.33 46 IX2/X1 i

IV2/V1

+14.001 488 0.90; 56i 0.821 581 0.52:

60 10 "

  • 12.30) 451 0.381 391 0.38l 39 0 22i 38 10/N/M
  • 11.501 43l 0 65 481 0.54l 46 0.301 44 lI/N/G
  • 10.20 496 0.961 581 0.81 57 0.421 53 s
  • 1.80 50i 1.401 121 1.27 77 0.661 70 c/n
  • 6.10 41 0.98!

Sai 0.90 41 0.50I 59 97 91-2 W**

  • 14.10 54 0.946 571 0.79

$7 0.461 56 U/T/S

+31.50 461 0.62!

47 0.63 50 0.45i P'

+8.55 46l 0.639 47 0.53 46) 0.32l 46 0**

+8.30 541 0 78 52' O.661 51I 0.38 5:

IK**

+6.60i 291 0.20' 331 0 ISI 311 0.15 33 I

ic6 32 2 IX2/Y/X1 l

+6.40i 281 0 44 421 0.531 46j 0.36 49 f

l i2/AA I

  • 1.001 348 0 2C 33i 0.22i 33i 0.13-32 l AC1/ AB 1
  • 1.404 181 c.11-.

301 0.251 34t 0.22 38 IAE/AD/A02

+7.10I 241 0.26 35l 0.181 311 0.15 33 iA02/AM

  • S.80i 351 0.28i 361 0.331 371 0 20' 37 IAJ

+9.601 381 0.246 344 0.221 33I 0.17 35 iAK**

I et. pol 401 0.40-40' O.411 43I 0.25 41 lAP/A0 l

  • 11.201 211 0.48-42 0 461 43I 0.29 43 IA02/A01 l
  • 11.70l 351 0.3c 36-0.341 381 0.22 18 lAT/AU/AV 1

+13.20f 341 0.38 39-0.381 39 0.22 36

!AX

  • 14.301 32l 0.17:

321 0.21) 32 0.16 34 LAY **

  • 14.60i 361 0.26, 351 0.291 36 0.22i 38 109 30-2
  • 13.4 5 No Me t Work )

0.26(

35 0.32 31 0.221 38

    • 11.03 50 0.651 48 0.71 53 0.451 55 l
    • 9.81 40 0.281 36 0.25 34 0.16l 34
    • 9.211No Met Work 0.298 36l 0.33 31 0.281 43
  • *8. 361No Met Work l 0.201 33I 0.18 31 0.15l 33
    • 6.41lNo Met Work C.221 341 0 20 32_

0.15' 33 f

l 41 44 2

  • 21. 0 0 iWo Me t Work 0.171 511 0.69 52) 0.441 54
  • *18.861No Met Work 0.461 41i 0.41 411 0.32 46 1
  • 11. 3 9 tNo Met Work 0.731 50l 0.67 52l 0.441 54 t

i

    • 16.33fNo Met Work l

0.251 351 0.20 324 0.091 29 f

    • 14.64iNo Met Work l 0.266 35i 0.29 361 0.18:

35 l

  • *12.771No Met Work l 0.59I 466 0 54 46 0.373 49
    • 11.44tNo Met Work 0.40; 40 0.41 41 0.29' 43
  • *10. 93 lNo Met Work O.28l 36 0.32 37 0.161 34 l
    • 10.50lNo Met Work i

D.446 41 0 40 40-0.25 41 l

}

)

l l

l l

I

  • indicates that the location is measured from the inspection end of the lab pull.

j r$w. t i

FIGURE B1 CR-3 IGA AMPLITUDE ANALYSIS / NARROW GR00VE _A 600kHz Differential Amplitude (Vmax

<=n24siae28x 10 0

  1. "" "=4'88*

90-

"d *" " "84*

80" Std Error = 6.7%

+

3R:

Forr Coef = 75.9%

by 60-

+g+

4 M

50:

o l Observed = 34

-lE

+

te

_:a 30=

+

20=

10

=

u.uiu 0

u.uiniu.inuuiiuiiiuiiunuuuunuiiuiui..iuuniou uniiuu u'O 10 0 0

10 20 30 40 50 60 70 80 9

Ground Truth in.% Thru-Wall includes oil dato points

FIGURE B2 CR-3 IGA AMPLITUDE ANALYSIS / NARROW GROOVE 400kHz Differential Amplitude (Vmax) f=9.43510 8SSX 10 0 r ue n = 42.47x 90=

S'd = #89*

80=

+

Std Error = 7.6%

g ist;

" ""7"8*

b 60=

+4 4

Rus = a74x

+

+

50 =

+

' * " *d = 54

=

+~

J 40

+

.E

+

dj 30 =

20-10

=

omo,,no ooinooounou.a.oooum 0

iuo a.io.uuoio.oooiu.m.onouou'O 60 70 80 90 10 0 0

10 20 30 40 5

Ground Truth in % Thru-Wall includes all data points

FIGURE B3 CR-3 IGA AMPLTUDE ANALYSIS / NARROW GR00VE LAB D 200kHz Differential Amplitude ymax)

<=i2.5704o.77ax 10 0 y ue n = 42.37x 90=

m ev = n22x 80=

Std Error = 7.7%

W N

60 =

++

C

+

RMS = 8.71%

+ + +

x 50=

+

+

' *d " 54 o5 40 =

+

.@ 30-

+-

a

+

20=

10 0

uo.uono..onio..oin.oi.o no,o.onimo.un o o.n uoo.niooo nou a.10 0 0

10 20 30 40 50 60 70 80 90 i

Ground Truth in % Thru-Wall includes all dato points

CR-3 IG4 ANAL YSIS REVIEW lst Order Curve Fit (includes 10 selected datapointsfrom originalfield data with a voltage of > zero.)

TABLE B2 i

LOCAT! N O R O'*ND 400kKs CIFF 40:11s CIFF i

2:CkE4 CIFF

' *73 8 Flawls) 6 LTSF

  • 6

'"R *"In VKAZ f

EST. %

VM.AI i

EST. %

W.A1 i

SST. %

52 51-2 iD I

e6.501 34!

0.311 4;

381 391 3.221 38 F**

1 48.906 53l 0.371 4 11 C.501 42i 0.351 44

+9.16l 34l 0.12:

34

. 193 351 0.111 34 3**

.2/ 1 i

at: 00-42i 0.308 4:

471 til 311 4:

r.2 / K1 i

+11.CC' 456 0.311 4C~

. 31 381 0 101 3*

iN2/N1

  • 12.40(

30 0.161 37 0.21t 36!

3.1Cl 34 ep

  • 13.301 331 0.12i 361 0.131 341 0.071 3)

?S**

  • 14.70$

331 C.131 36' 2 191 35!

0.15l 36 9 ;82 i A ;1/ A 2 i

  • 16.104 376 0.231 38' s.25l 37}

3.18i 3*

AB I

  • 15 501 30t 0.csi 35:

. 158 35' O 151 36 ix2/xt i

14.60 43t 0 til 41 57:

43I 0.321 42 IV2/V1

+14.001 481 0.741 484

.911 501 0.526 SC (Q**
  • 12.301 45 0.291 391 0.41I 401 0.24~

39

)

jo/N/M

  • 11.504 43 0.441 421 3.47 41 0.23 39 l!/H/0
  • 10.20 49 0.66 461 0.79 48 0.42 46 i

it

+7.80:

50 1.09 SSI 1.31 58 0.70 57 lC/8

+6.10 41 0.75 481 0.87 49 0.53 51 97-91 2 IWe*

  • 14.10 54 0.91 51 1.04 53 0.61 54 iUiT/S
  • 11.50 46 0.78 49 0.91 50 0.66 56 IP**

.0.55 46 0.77 49 0.82 48 0.44 47 10**

I

+8.301 541 1.191 56-

. 291 58 0 121 58 1

IK++

+6.601 291 0.304 40i C.281

-31}

0.166 36

)

106 32 2 eX2/Y/X1

+6.40!

281 0.45i 42' O.561 43l 3.361 44 12/AA

'7.001 341 0.081 35.

2.231 361 0.121 35 IAC1/A3

  • 7.401 181 3.146 37 C.Jol 38 0.26l 4C l AZ / A:;/ A02

+7.704 24 0.131 364 0.171 350 0.12I 15 IA02/AH

+0.801 35 0.231 34i 0 261 374 0.171 37 IAJ

+9.601 38 0.111 361 0.21i 36l 0.151 36 j

}AK**

+9.90' 40j 0.19) 38:

341 388 0.231 39

.AP/A0 i

  • 11.20s 27I 0.21i 38' O.36I 39I 0.24l 39

.A02/A01 i

  • 11.706 351 0.181 37 C.34l 381 C 4 19

'AT/AU/AV

  • 13 20!

341 0.1 71 37f 0.191 351 3 111 34 IAX

  • 14.301 321 0.261 391 0.26j 371 0.171 37 1AYe*
  • 14.601 361 0.211 381 0.291 371 0.201 38 109 30-2 e

4 6.17 No Me t Work 0.24 38) 0.33 38 0.24 19 j

l 44.50 50 0.51 44l 0.68 45 0.41 46 1

i

  • 9.72 40 0.20 381 0.29 17 0.17 37 l
  • 10.32iNo Met Work 0.24 391 0.24l 39 0.24 19 l
  • 11.17:No Met Work 0.13 361 0.161 35 0.11 34 l

+13.06lN3 Met Work 0.15 371 0.216 16 0.15 36 41 44 2 i

  • 15. 9 9 t No Met Work 0.42 42l 0.501 42 0.30j 42 I
  • 13. 811No Met Work 0.25 391 0.301 38 0.22 38
  • 12.14 Mo Met Work 0.40 ell 0.48j til 0.29 41 i

l l

  • 11.011N3 Met Work 0.08 35l 0.081 33l 0.08 33 I

+ 9. 6 3 iNo Me t Work 0.181 37I 0.19 351 0.131 35

+ 7. 351N 3 ret Work 0.49 431 0.57 431 0.33i 43

+6.111No Me t Work 0.23 381 0.31 381 0.23i 39

  • S.63tNo Met Work 0.10 361 0.16 35l 0.101 34 I

+5.23No Met Work 0.14 371 0.23 341 0 181 37 l

l

" indicates flaws used as calibration points.

PageI

FIGURE B4 CR-3 IGA AMPi~ UE ANALYSIS / FIELD DATA 600kHz Differential Amplitude (Vmax)

<=masasx 10 0

  • =45 90=

'S'd " "

80=

Std Enor = 3.98%

=

"" met = n2x b

60=

m = s62x A

50=

+ + +

r asen<ed = 34

=

-y 49 :

+ +j+, +

+

.E3 30=

20-10

=

uoogooogo o.g o io i ioogi omog, ooogooug,ougo,o 0

Ground Truth in % Thru-Wall includes all dato points

FIGURE B5 CR-3 IGA AM3LITUDE ANALYSIS / FIELD JATA 400kHz Differential Amplitude (Vmax:

10 0

<=aa35+0.sssx f"* "=4' 6*

90=

S'd "" " *"

80 Std Error = 4.62%

35:

Corr Coef = 73.%

5 60; 15 RMS = 6.57%

o3

+

+

f Observed = 34 40 -.

+

+,,

oE re i

3 30 =

20=

10 =

0 a iu.uiu.ou..iiuiu.uiu,uuuioui.iuiuuuu.iuiouu'So.uuiuiouui.uiou.10 0 0

10 20 30 40 50 60 7

80 90 Ground Truth in % Thru-Wall Includes all data points

FIGURE B6 CR-3 IGA AMPLITUDE ANALYSIS / FIELD DATA 200kHz Differential Amplitude Vmax r=a7mo.5 sox 10 0

' "*" = " 6%

90-

  • "" 7 **

80=

Std Error = 5.22%

g BC F,orr Coct = 69.6%

h

+++

C

+

x 50=

Y

+

+

I obmed = M 49

+

+

=

d 30=

20-10 -

.ouuonuuuinuuuo 0

o.o iunuuu.inoiou.n ouo.v.uoo.no.u.ono.o.o10 80 90 10 0 0

10 20 30 40 50 60 Ground Truth in % Thru-Wall includes all data points I

n l

ATTACHMENT C l

{

l l

l l

i l

I I

TABLE C1 CA LIBRA TION TRANS/ROTA TION AIA TRIX 400 Khz DIFFERENTIAL VERT A1AX 100% ASME VOLTAGE READING / %Thru-Wall ROTATION MATRIX RCTATED DATA DATA 6.119017 0.999621723 0.027502920 p.'

3
3 7i t V

99.864487 100 0.027502920 0.999621723

==

==

mm.

m 40% ASME VOLTAGE READING / %Thru-Wall ROTATION MATRIX

=

==

ROTATED DATA DATA 0.999621723 0.027502920 23 5 3.129349 V

39.929038 0.027502920 0.999621723 40,

=-

m,.

TRANSLATION OF VOLTACE READINGS TRANSLATED DATA TRANSLATION MATRIX Volta

%THRU WALL 3.37 3.404867207 100%

0 2.0)

E2.714150 0.415198898 40%

LINEAR INTERPOLATION OF ROTATED AND TR.ANSLATED DATA ACTUAL IGA CURVE ASME GT %THRU_ WALL

% DIFFERENCE VOLTS Forced %THRU WALL FROM PULLED TUDES ASME FLAW 99 2128 c.o440s0500 100 3.37 99 3002 %

72.3592 0 033454203 40 2.0)

72. 407G %

83.7820 0.038792024 f60)

S3 8470 %

20 W

31.6780 0.016851801 0

, '0 0, 31 6673 %

FORCE THE ASME FLAWS IN BLACK TO THE CORRESPONDING NOTE:

%THRU-WALL IN BLACK TO GENERATE THE IGA CALIBRATION CURVE BASED ON PULLED TUBE DATA L

FIGURE C1 Progression of Rota: ion / Translation Matrix for 400 kHz Diff Vert Max 100.00 g 93.40 Rotated and Translated 0010 86.80 j Conned IGA Curve 80.20 i Row ASME Dato 5 73.60 j 3

k 67.00 l f~

i

,x 60.40 Rotated ASME Dato 53.80 47.20 -;l 40.60 34.00 g.....d'h' ' " "1$'$" " "15'$" " '$'M" " ' S'M" ' "S'h" " '4'M" " ' A'M" " '$'$' ' " ' E m Voltage V:

l FIGURE C2 i

IS!E SU$isia;isi,!;iiSsS!!EiO! Dis"Ye'ise"EMiihidsis'YEi"i555,'50"IEEe 'a's 's'eEEAn'[5"ai" Ad5["Mif65!5ibl1IiO!iil'

.!E6 II"I L

Analysis ' System Graphics.

Tube Coment:

Ch; 3 Volts-%

Exit-i 100%

i l

I l

l l

l l

l.

1-

.i.

i l

'4:

' 0.1 v', ' 31 %' -

3:

2.1v, 73%

! 2:

2. 6 v:, 84%

1:

3. 4 v',.

99%

0%

volts 4.0

FIGURE C3 Plot of Canned IGA to TRANS/ ROTATED ASME Field Data for Smallest Voltage's 100 90

//

70-60-50

  • /

0 05 1

1.5 2

2[5 b

3.5 Voltage Derived from Matrix Canned IGA

0 APPENDIX E MPR MINilMUM LIGAMENT CALCULATION 1

i

M INTEROFFICE CORRESPONDENCE Power conMAhoM Nuclear Engineering Au zc, Jwc w,z oFree iAac FmNa

SUBJECT:

Crystal River Unit No. 3 OualityDocumentTransmittal AnatysisCalculations File: CALC To: Records Management NR2A The following analysis / calculation package is submitted as the QA Record copy:

DOCNo # PC ooCUuD(T CENTWICArioN NuustM)

AEv sysitutS)

TOTAL PAGtS TRANSWTTED Y$ Q4-CC25 C

Rc/rns

/o Trtta

$TG//M blIU4KATOR 7~uf36 mrtyimistr7 Li6pmtA>7 C ALLut 97/oN rwos totNTry asvwoaos Foa tersa aETaisvAt DT66

~T0 865, S 7 6 / 7 / 11 C/ttl6goWoK i

DAREF (REFERENCES oH FILI $. U$1 PRiR4ARY FIL1 fir $T)

VTNQ (VENQoR NAME)

VEN(X)R

>(T NUhS(M (oAREF)

SLPt RSEDED DOCUMENT S (OXPEF)

. l,A 2'071-HtJM3

,V/A m

Al% -IP AC % - /A PART NO.

cr.n 4NTS tusAoc usT=CToe.moPacTaav.stc ISE N6Cbd UMbhuAb0iA O(10/.

l 4

NOTE:

Use Tag number only for vahd tag numbers (i.e., RCV-8, SWV 34, DCH 99), otherwise; use Part number field (i.e., CSC14599. AC1459). If more space is required, wnte 'See Attachment' and ist on sepa[ ate sheet.

%ceDENoaretaL /ha- +/atnm

'1"EEtNo4M oAhtW oAft vtRwcAroN ooktra oars

' c: #

o MAR Oficw (N MAR Related) O Yes %No Supervisor.

Document Control w/ Plant Doc. P.

MAR,Proped Fee Eval. and

/ Cale. Summary Mgr., Nud. Cordg. Mgt.

Plant Documort Redsw Re@ ired 7 Yes d No Flo (CALC)- FPES. W w/ensch A/E O Yes J5 No Mgr.. Sne Nuct. Eng Serv. w/sttach (N Yes. Trenmodt w/ensch) art: n.m er swo nesamme, t,,,

evg om en

% ses

l l

AN ALYSIS / CALCULATION Power Continuation Sheet l

Crystal River Unit 3

~ " " " '

Sheet

/ of L REOMAR NLuBE A N ' Li [b l

COMMENTS (Continued from coversheet)

MPR calculation 102-071-HWM3 determined the steam generator tube wall minimum ligament which must be present to prevent leakage under a differential pressure equal to the RCS normal operating pressure.

For conservatism, NRC staff has requested that FPC look at the effect of using a higher differential pressure (2600 psid) on the minimum ligament required.

From the figure on page 5 of the calculation, it can be determined that the maximum degradation

(% wall) corresonding to a burst pressure of 2600 psi would be approximately 88%.

The remaining wall thickness would then be:

0.00408" (1-0.88)

  • 0.034" ta

=

=

The adjusted remaining wall thickness with the CR#3 actual material properties at operating temperature would be:

(99.8 ksi/92.9 ksi) = 0.004383" t, + 0.00408"

  • Which corresponds to a percent wall degradation of:

Allowable % wall loss = 1 - (0.004383"/0.034")

87.1%

=

Therefore, increasing the pressure _dif f erential f rom, RCS normal operating to 2600 psid decreases the allowable wall loss to prevent l

leakage from 91.5% to 87.1%.

l l

l i

'a an u., %, air %ci., ee,...

c. oe