ML20198N594

From kanterella
Jump to navigation Jump to search
Rev 0 to FPC Calculation F-98-0013, FTI Calculation 32-5001746-00,CR-3 32 EFPY P/T Limits
ML20198N594
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 09/30/1998
From: Knoll R, Miskiewicz D
FLORIDA POWER CORP., FRAMATOME
To:
Shared Package
ML20198N568 List:
References
F-98-0013, F-98-0013-R00, F-98-13, F-98-13-R, NUDOCS 9901060164
Download: ML20198N594 (39)


Text

{{#Wiki_filter:- _ - - _ - _ _ _ _ _ FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 DOCKET NUMBER 50-302/ LICENSE NUMBER DPR-72 . ATTACHMENT A FPC Calculation F-98-0013, Revision 0 "Framatome Technologies Inc. (FTI) Calculation 32-5001746-00, CR-3 32 Effective Full Power Year (EFPY) Pressure / Temperature (PT) Limits"*

  • NOTE: FPC Calculation F-98-0013 and the Framatome Technologies, Inc. (FTI) cover page designate this document as FTI Calculation 32-5001746-00, while the subsequent pages designate the document as FTI Calculation 32-5001764-00. FPC has verified that this is the correct document for CR-3, and simply represents a transposition error during the word processing of the FTI document.

~ 9901060164 981231 PDR ADOCK 05000302 2 P PDR s .,,s,

I 4 1 T 1 Q$.... INTEROFFICE CORRESPONDENCE I Nuclear Engineering NT(.1 Office 240-3019 q

SUBJECT:

Crystal River Unit 3 MAC Telephone Quality Record Transmittal - Analysis / Calculation TO: Records Management - NR2A The following analysis / calculation package is submitted as the QA Record copy: DoCNo 178C coCUMENT toENTIFICATioN NUMBER) REV. i 1 F-98-0013 sYsTEMisi TOTAL PAGEs TRANsMITrEo 0 RC,CF,MU,DH g TITLE CR3 32 EFPY P/T Limits ~ 3 4 i KWes ilOENTIFY KtYwoRDs som LATER RETR:tVAL) Pressure. Temoerature. LTOP, Reactor Vessel, PTLR j oxRu iRertRENets on rites usT emMARY r:LEriRsT F-97-0013 i j F97-0015, I 97-0012,1-88-0021 VENO (VENooR NAMil j FTl VENooR DOCUMENT NUMBER (oxREFl 32-5001746-00 l SUPERSEDED DOCUMENTS foXREF) l } RCT-1 l l RCV-10 l l MUT-1 l l MUV 31 l l I couMauTs lusAct REsTRicTroNs. PRoPRitTARY, ITC.) bh t a n r ). (6Aha'sumthk bP ne O /$ m e Ps*1/A fc ls u

l. AR -2 3L, V

V / NOTE: Use Tag number only for valid tag numbers (i.e., RCV-8, SWV-34, DCH-99); otherwise, use Fart nu AC1459). If more space is required, write "See Attachment" and list on separate sheet. ..,CSC14599, "FOR RECORDS MANAGEMENT USE ONLY " Quality Record Transmittal received and information entered into SEEK. Entered by: Date (Retum copy of Quality Record Transmittal to DE Support Specialist.) ossicM INotNitR DATE VERIFICAfloN ENGtNffR CAT: sVP awd ddn Vtsop OtslGN ENG. cA g, tcc: a ~i - n.n~ Nuclear Projects (if MR/CdWR'IPEERE Retum to Service Related) O ve E No Calculation Review form Part ill actions required Oves @ No Supervisor. Config. Mgt. Info. Of ves, send copy of the Calculation to the Responsible Organization (s) Mgr., Design Engirwering (OriginaQ w/ attach identified in Part fit on the Calculation Review form.) k Mgr., Radiological Emergency Planning w/ attach O ves $ No Rey, s/pg

r, (x;h[_ $....wY.....r. - ANALYSIS / CALCULATION

SUMMARY

= w 444uunu ,q I DOCUMENT ICENTFICATON NUMBER OGCMPiE F 98-0013 CONTROL NO, REVISION LEVEL F 9y-oo/3 0 TITLE CR3 32 EFPY PN Limits CLASS *lCATON (CHECM ONE) h Safety Related Non Safety Related MARISP/CGWR/PEERE NUM8ER VENDOR 00CVMENT NUMBER 32-5001746-00 APPROVAL SIGNATURES PRINTED NAME D: sign Engineer g,M M y D. N. Misklewicz Date qlL9ilq g D V:rification Engineer D:te A 0. Supervisor R. W. Knoll Dyte 7/7./77 ITEM 4 REVGED \\V PURPQ$& $UMMARY Determine Reactor Coolant System Pressure / Temperature and LTOP limits based on 32 EFPY fluence. ~ RESULTS $UMMARY PC curves and setpoint information for heatup, coo!dwn, ISLH, and LTOP are contained in the calculation, t '\\ v

-. - ~ I $,w$ CALCULATION REVIEW m C4CULATION NC AEV. - CAc*Ev F= i ( F 98-0013. Rev 0 Page i of 2 CR3 32 EFPY P/T Limits PART I - DESIGN ASSUMPTIONilNPUT REVIEW: APPLICABLE @ Yes O No The following ceganizations have reviewed and concur with the design ~ this calculation: s entified for i Systems Engineering Nuclear Plant Operations 8,17. ?f M SItI 36 . OTHENS) sco.o sew o PART 11 - RESULTS REVIEW: APPLICABLE Yes No-i The following organizations have reviewed and concur with the results of this calculati understand the actions which the organizations must take to implement the results. System Engineering M8 b 8-J.7-77 Comments: Erdewd ell co, ~ fr win, L.. Airici ew:e s Nuclear Plant Operations N*l7 MN Comments: sen.wwo 31o/58 -{ l.(/ ' Nuclear Plant Maintenance Yes @ N/A Comments: Nuclear Licensed Operator Training O Yes S N/A Comments: ) Manager, Nuclear Regulatory Compliance O Yes N/A Comments: ~ Sr. Radiation Protection Engineer i Yes @ N/A Comments: Nuclear Plant EOP Group i O Yes 2 N/A Comments: p Design Engineering Yes @N/A s w w.o.= Comments: i OTHER: Yes N/A wo n

([q{gN CALCULATION REVIEW \\ W /g CALCLA,ATloN NoiREV. i F 98-0013, Rev.0 Page 2 of 2 CR3 32 EFPY P/T Limit ( PART111 CONFIGURATION CONTROL: APPLICABLE O ves E No PC#-- The following is a list of Plant procedures / lesson plans /other documen ~ calculations which require updating based on calculation results review:er ng Document Date Recuired Responsible Organization identified in Part 111. If calculations are listed, a copy sha updated to reflect this impact. N. PARTIV NUCLEAR ENGINEERING DOCUMENTATION REVIEW The responsible Design Engineer must thoroughly review the below listed documents to assess calculation requires revision to these documents. If"Yes," the change authorizations must be listed below and issued concurrently with the calculab.n. Enhanced Design Basis Document % Yes O No * 'Id Vendor Qualineation Package Yes@NoA FS R @ Yes O No Wte g.otf y Topical Design Basis Doc. OYesBNom r improved Tech. Specinca$on @Yes No NAAd 236 E&SOPM Yes @ No* tmproved Tech. Spec. Bases @ Yes O No M Other Documents rew L AK 13(, ' Config. Mgmt. Info. System @Yes A TAoWSov 0YesONo Analysis Basis Document Yes @ No

  • O YesO No owca oot nue=ca>

Design Basis Document OYesDNo* ' O Yes O No owcs occ nuamca) Appendix R Fire Study 0 Yes @ No a owc 4 ooc R$FER$NCE) Oyes No Fire Hazardous Analysis OYesGNo a owca ooc ausaeaca O Yes O No NFPA Code Confermance Document O Yes 3 No a o w nnooc nun w c.n> C Yes O No PART V - PLANT REVIEWS / APPROVALS FOR INSTRUMENT SETPOINT CHANGE i owca ooc aus=ca) PRC/DNPO approvalis required if a setpoint is to be physically changed in the plant through the NEP process. , fm PRC Review Required O ves S No i .,V-PRC Charman /Date i DNPO Review Required C Yes @ No DNPO CES;GN ENG# NEE %oArE /Date DESIGN ENCC.PRINTEo NAME o.D. Q sluln a n. namn

~ 20697 3(12/9s) f f\\^&^7.R. M S CALCULATIONAL

SUMMARY

SHEET (CSS) N DOCUA!ENT IDENTIFIER R enn17 m nn TITLE CR 3 32 EFPY PT Limits PREPARED BY: REVIEWED BY: NAhlE J. A.Weimer NAa!E BL Boman s1GNA1 URE. [ /MM s!GNATURE. TITLE sr rine. Engrg DATT ('" / p TITLE supervisory Engrg 6[7g DATE COST CENTER REF. PAGE(s) 17 T51 STATES!ENT: REVIEWER INDEPENDENCE ' PURPOSE AND sUMhlARY OF REsULTs PURPOSE This document provides the CR-3 NDT/LTOP pressure - temperature (PT) curve Reference 2 PT limits which reflect allowable pressures and temperatures at the critic contains discussion and calculations quoted fTom other references to make this a sta affecting NDT heatups and cooldowns. JWMMARY OF RESULTS corrections for temperature or pressure uncertainty (as req change when new calculations are performed. Figure 8 shows that the LTOP limit (to valve transient)is more restrictive than the entire hestup NDT limit and also more restrict limig. Figures 9 and 10 compare the 32 EFPY limits to the 15 EFPY limits (with instrument enly to quantify the magnitude of the typical differences from 15 to 32 EFPY. The 32 EFPY EFPY limits at low temperatures primarily for two reasons. First, the limiting weld / loc less limiting material. Secondly, the NDT limits have more precise location adjustmen applied to the results (compared to the conservative 4-pump location correction in the 1 additional margin at the lower temperatures (below 263F for the 32 EFPY results). It is expecte uncertainty (an estimated 10 - 15 psi in RC pressure) will also provide additional margin becaus psi (low range) uncertainty. The PORV set point for 32 EFPY must be less than 458.3 psig minus the PORV ope on the pressure indication uncertainty to be determined by CR 3. Tne ART was calculated in Reference 1 to be 213F + 50F = 263F which is 1 THE FOLLOW 1NG COh!PLTER CODES IIAVE BEEN UsED IN THIS DOCUhtENT: CODEIVERsION / REV CODEIVERsION/ rey 7m3 DOCL%rFNTCoNTAIN3 ASSUMPTIONS THAT MUSTBE None Used YERD1ED PIUOR TO USE ON SAFETY RE1ATED WORX YES( ) NO( x) Q t

l j 1 FTlDoc. 32 5001764 00 J A Weimer l l-i PURPOSE ~.-~.~....................................................................... l S UMMARY OF RES ULTS........................... s i 1 AS SUMPTIONS.................................. ............1 I CALCULATIONS................................................................................................................... i ,i-LTOP.............................................................................................................................2 Background...........................................................................................................................2 i LTOPLimit..................................................................................................................... LTOP Pressurizer Level Vs Pressure (Steam).................................. i LTOP Pressurizer Level Vs Pressure Nitro .............5 MU Tank Volume.............................(......... gen)..................... t P ORV S et-point......................................................................................................................... P ORV & Vent Flow........................................................... l Cooldown NDT................................................. ...............................................................6 HeatupNDT.................................................................................................................6 Co mbined LTOP, HU, CD Limits.......................................................... j .................12 In Service Leak Hydro (ISLH)......................................... Decay Heat Train S witching........................................................................ Pump Stan With Cold Waterin Cold Le ................................................15 Results...................................................g.....................................................................15 l REFERENCES...................................................................................................................15 FIGURES...................................................................................................................................17 l ATTACHMENT 1. LTOP Discussion.................................................................. ......................................31 1 l ASSUMPTIONS 1 This calculation assumes that the pressurizer levelis 160 inches (or less) when LTOP limits are . required. CALCULATIONS l LTOP e

Background

Attachment i lncludes a discussion of the LTOP limit and related topics (based on Reference Since LTOP concems were considered after FSAR development, the tech specs (PTLR) do not specifically address LTOP limits. If the LTOP 10 minute transient limit (discussed in Attachm is more conservative than the NDT heatup or cooldown limits (e.g. higher pressure allowed), the heatup and cooldown limits will protect against LTOP events. However, since the peak pressure during the LTOP transients is also dependent on the initial pressurizer level, the LTOP limit can be modified by specifying a maximum initial pressurizer level. In previous heatup and cooldown limits a pressurizer level of 160" was specified such that the HU/CD NDT requirements were the limiting i-curves. Due to the slight reduction in LTOP limits (from 15 EFPY to 32 EFPY), the increase in the HU/CD limits, and CR-3's desire to malntain the 160" pressurizer level, the LTOP requirement ha ' become more limiting than the entire HU NOT limit and portions of the CD NTD limit. 3 i. LTOP Limit - -t: ( The LTOP limit is used to establish two heatup/cooldown criteria. The minimum LTOP limit is the pressure used to establish'the PORV set-point (below the ART). Also, the failed open MU control valve transient (discussed in detailin Reference 3 and Attachment) dictates that the ma 2

FTIDoc. 32 500l[64-00 'p J A Weimer pressure during heatups and cooldowns be low enough to prevent exce minutes of full makeup flow' (at which time operator action is assum mit for 10 pressurization). The uncorrected 110% steady state LTOP limit pe nozzle, or closure head as a function of temperature). This PT limit is e elt line, CL leg tap (for 2/0,2/1 RC pump operation)2. Since the combinati "A" hot staging limit, Reference 4, prevents RC pump operation below -95 F minimum temperature for RC pump operation (same as the 15 EFPY pum e

3. If the temperature uncertainty is greater than 10F, th

. (The actual er by CR-than 95F.). Per Reference 3, the 3"' pump start is assumed to be 220F (u greater >330F, however, the ART was conservatively used b e The 4th this temperature region. The final eperation procedures will have a verticallimit ve in which will also include the step pressure change du s emperature, tap to the RV beltline. This will be slightly conservative for any limiting material a o eg limit corrected to the "A" hot leg tap is shown on Figure 1 and eg Since this maximum 10 minute transient pressure is a function of the initial pre since Reference 3 established an uncorrected initiallevel of 160 inches,160 in in this analysis. Reference 3 developed a pressurization rate equation for 150" ,(] levels and an interpolated pressurization for 160" level. The (/ 150",190" and the interpolated 160" pressurization rate equations are: Added Pressure = 0.833* Initial Pressure - 41.6 for 190" initial pressurizer level Added Pressure = 0.666* Initial Pressure - 58.0 for 150" initial pressurizer level Added Pressure = 0.708* Initial Pressure - 53.9 for 160" initial pressurizer level Modifying the 160" equation Final Press (FP)= lnitial Press (IP) + Added Press (AP) FP = IP + 0.708'IP - 53.9 Solving for IP 1.708

  • IP = FP + 53.9 IP = (FP + 53.9)/1.708 Solving this equatica (where FP is the LTOP limit), Figure i shows the maximum allo pressure to permit 10 minutes of full make up and not exceed the LTOP limit. Below the RCS must always be below this pressure when MU is not isolated.

Table 1 shows the tabulsted values associated with Figure 1. Table 2 shows the rr,inute transient data point used on Figure 1. (b I Reference 6 established a maximum MU flow rate of-49 lb/sec during this transient. 2 The 0/2 correction factor results in a higher allowable LTOP limit curve. However, si established based on the more conservative (lower) 2/0 pump combination, the 10 minute trans from the 2/0 pump combination for all startup pump copgurations. This is also consis

FT1Dec. 32 500176L00 /' J A Weimer TABLE 1 32 EFPY LTOP Limit data (no Instrument RC Pump Combination OP correction (Ref 7) Startup Startup SQ ) Min Press 0/0 l 2/0 l C/2 l 2/1 l 1/2 Wrth With With Temp., F Ref 2 1.ocation correctens rounded to next highestinteger 12/0-2/1-2/2 l 2/0-2/1-Location 10 Min Loca E 60 l 496 23 1 not legal l Netlegal notlegal l notlegal 473 309 473 Corrected Trans Corrected 65 ( 507 23 notlegal I Nctiegal not legal notlegal 484 315 484 ~ 70 1 520 1 23 not legal l Notlegal not legal notlegal 497 323 437 75 l 534 23 not legal i Nctiegal t not legal not legal 511 331 511 - 80 1 539 23 not legal I Nctlegal l notlegal not legal 516 334 516 85 542 23 notlegal i Notlegal nct legal notlegal 519 336 519 85.01 542 23 84 1 33 not legal notlegal 458 300 509 90 545 23 84 1 33 l notlegal not legal 461 301 512 95 I 548 23 84 1 33 I netlegal notlegal l 464 303 515 100 551 23 84 I 33 not legal netlegal 467 305 518 105 554 23 84 33 not legal notlegal 470 307 521 110 558 23 c.t 33 not legal netlegal 474 309 525 115 562 23 84 33 not legal net legal 478 312 529 120 567 23 84 33 not legal not legal 483 314 534 125 571 23 84 33 notlegal notlegal 487 317 538 130 575 23 84 l 33 not legal netlegal 491 319 542 135 581 23 84 33 i notlegal net legal 497 322 548 _ 140 586 23 84 33 notlegal not legal 502 326 553 V 145 593 23 83 33 Not legal not legal 510 330 560 150 600 23 83 33 Not legal notlegal 517 334 567 155 606 23 83 33 Not legal notlegal 523 338 573 160 l 614 23 83 ( 33 Notlegal net legal 531 342 581 165 l 622 [ 23 83 I 33 Not legal not legal 539 347 589 170 630 23 83 33 Not legal not legal 547 352 597 175 640 22 83 33 Not legal not legal 557 358 607 180 650 22 83 33 Notlegal not legal 567 364 617 185 661 22 83 1 33 Not legal notlegal 57* 370 628 190 672 22 83 1 32 Not legal net legal 589 377 640 195 685 22 82 32 Notlegal not legal 603 385 653 200 699 22 82 32 Not legal not legal 617 393 667 205 713 22 82 32 Not legal not legal 631 401 681 210 728 22 82 32 Not legal notlegal 646 410 696 215 745 22 82 32 i Notlegal not legal 663 420 713 220 763 22 82 1 32 Net legal net legal 681 431 731 220.01 763 i 22 82 l 32 99 63 664 421 700 225 782 22 82 l 32 l 98 63 684 432 719 230 l 803 22 81 32 { 98 63 705 444 740 235 l 825 22 81 32 98 62 727 457 763 240 l 849 22 81 32 98 62 751 471 787 245 l 875 22 81 } 32 98 62 777 486 013 c 250 902 22 81 32 97 62 805 503 840 _ 255 932 22 81 32 97 62 835 520 870 260 964-22 81 32 97 62 867 539 902 263 985 22 80 32 1 97 62 888 551 923 4

l l, FTl Doc. 32 5001764-00 J A Weimer Table 2 Envelopino 10 Min LTOP Ternp (F) Press (psio) l 60-L 300. 85 300. 100 305. 125 317 150 334 p 180 364. i 200 393. 220-421. 240 471. 263 551. I \\ LTOP Pressurizer Level Vs Pressure (Steam) If the initial RCS pressurizer levelis greater then 160", the RCS pressure must be accommodate the 10 minute transient. Solving the above 190" equation and the 16 the limiting pressure (458 psig), the 10 minute initial pressures are 272 and -difference of 28 psi (or ~28 psi /30 inches =.93 psi per inch) Therefore as shown i _ ressurizer level can increase to 190" if the initial pressure is 272 psig or less p on Figure 12, the ,the levelis arbitrarily extrapolated to 220 inches where the required maximum pressu 28=244 psig (also shown on Figure 12). , r); %.i i LTOP Pressurizer Level Vs Pressure (Nitrogen) When the RCS is filled ahd vented and the pressurizer has a blanket of nitrogen (v ' MU is not isolated, the 10 minute transient limit previously defined will not apply. The N w _ this condition, the pressurizer level must be reduced to ac 2 following calculation shows this required level as a function of initial pressure. The MU flow during the failed open MU valve transient will average ~49 lb/sec for 10 minut ~29400 lb of cold water will enter the RCS. This is 475 ft' of water at 62 lb/ft' density. The . g*as volume in the pressurizer (based on pressurizer level) is Vi=55.2 ft'(upper dome Re levels of 70",100",130", an 160", the initial volume is;ft (upper tap i i V11 !4 70" ' cVi=55.2+187+824 = 1066 ft' 100": Vi=55.2+187+728 = 970 ft* 160"' Vi=55.2+187+536 = 779 ft' l180" V1=55.2+187+471 = 713 ft' --V2 will be 475 ft'less after the 10 minute transient or; U F _ V2 (kJO 70" V2= 1066-475 = 591 ft' - 100" ' V2= 970-475 = 495 ft8 160"' V2= 779 475 = 304 ft' [ 180" V2= 713 -475 = 238 ft'. 5

. - -... - -.. ~. - - -. - -. - t FTl Doc. 32 5001764 00 l M J A Weimer Assuming an Isentropic compression, P1 = P2 (V2 /V1)".15 psi w Q LTOP limit with 2/0 RC pumps operating (conservative assumpti e the sa Solving for P1 70". . P1 = 190 psig i 100" P1 = 168 psig i 160" P1 = 110 psig. 180" ' P1 = 85 psig This relationship is shown on Figure 12. These values have not been co uncertainty. rument l MU Tank Volume > If the MU tarik volume depletes in less than 10 minutes, the press ' Reference 3, if the initial RCS pressure is less than 464 psig, and the M to 88 inches, the LTOP limit cannot be reached (assuming a 160 inch p or equal o maxirnum allowable pressure below the ART is 458 psig (LTOP limit), the nce the E

remains valid for the 32 EFPY analysis :

-PORV Set-point The PORV set-point for LTOP protection must be set at the minimum LTO reactor vessellimits are not violated. This minimum pressure is determined fro ^ location correction). Figure 1 and Table i show the minimum LTOP set-point limit for CR-3 to b t 458 psig at 85'F. The 0/2 pump combination has a smaller location correct i therefore a higher minimum pressure. Therefore, the 2/0 case is conserv combinations. Since the pressure indication that opens the PORV has an uncertainty asso assumed in the Reference 315 EFPY limits), the PORV must be set to open at 458 min i j uncertainty. 1 .PORV & Vent Flow 1 The PORV and vent flow rates must be large enough to prevent pressure excursio o ~ for the 0.75 in' and 1.049 in' vent holes at 446 psia Therefore m L at 458 psig (473 psia) assuring that the inadvertent MU flow transient will not exc an adequate flow will exist Reference 8 is still valid for the 32 EFPY limits, however, the vent flow rates to i L FSAR may change after the PORV uncertainty is established. p Cooldown NDT 1 The cooldown NDT limit was, calculated for 8 cases,4 ramp and 4 step change ca are described in Table 3. I' 6

FTI Doc, 32 5001i64-00 J AWeimer Table 3 Cooldown Cases Analyzed Ramps 570F 280F 100F/hr, 280F-150F 50F/hr,150F-60F 25F/hr 25F ramo in 20 see when RCP's off Set 1 DHRS Initiation @ 230F Set 2 DHRS initiation @ 230F RCP's off @200F Set 3 DHRS initiation @ 200F RCP's off @215F Set 4 DHRS Initiation @ 280F RCP's off @150F RCP's off @265F ] Step Changes 570F-280F 50F Step 30 min hold, 260F-150F Set 1 DHRS Initiation @ 230F Set 2 DHRS Initiation @ 230F RCP's off @200F Set 3 DHRS Initiation @ 200F RCP's off @215F ] Set 4 DHRS Initiation @ 280F RCP's off @150F RCP's off @265F ~ Figure 2 and 3 show the uncorrected results of Reference 2 for the low pres PT limit. Figure 4 shows the enveloping curve alo e range and the cooldown Table 4 shows the location corrections as applied to the most limiting CD peration. Most cooldowns use 2/0 pumps for virtually all of the cooldo ur pump rating. Table 4 32 EFPY Cooldown data (no Instrument Uncertainties Temp (F) Minimum RC Pump Combination DP correction (Ref.4) Pressure 0/0 l CD With 2/0 l 0/2 l 2/1 l 1/2 l 2/2 Ref 2 Location corrections rounded to next highest integer Locatior _ 570 2874 17 correctiori 64 25 77 49 88 2786 470 2566 19 71 28 85 54 97 2469 465 2554 19 71 28 86 55 98 2456 460 2543 19 71 28 86 55 98 2445 455 2532 19 72 28 86 55 99 2433 450 2522 19 72 28 87 55 99 2423 445 2512 19 72 28 87 55 99 2413 440 2503 20 72 29 87 56 100 2403 435 2493 20 73 29 88 56-100 2393 430 2485 20 73 29 88 56 101 2384 425 2476 20 73 29 88 56 101 2375 __ 420 2468 20 74 29 89 56 101 2367 415 2460 20 74 29 89 57 102 2358 410 2452 20 74 29 89 57 102 2350 405 2445 20 74 29 90 57 102 2343 400 2438 20 75 29 90 57 103 2335 395 2432 20 75 29 90 57 103 2329 390 2425 20 75 30 91 58 104 2321 385 2419 20 75 30 91 58 104 2315 380 2413 20 76 30 91 58 104 2309 ON 375 2407 20 76 30 91 58 105 2302 370 2402 21 76 30 92 58 105 2297 365 2321 21 76 30 92 59 105 2216 360 2200 21 l 77 30 92 59 106 2094 7

T 71 Doc. 32-5001754-00 l,f ~y 355 2085 { 21 77 30 93 { 59 106 197s~' J A Weimer 350 1974 21 77 30 93 59 106 345 1870 21 77 30 1 93 59 106 1764 - i 1868~ 340 1773 21 78 31 93 59 107 1666~ 335 1683 21 78 31 94 60 107 1576 - 330 1598 21 78 31 94 60 107 1491 325 1520 21 78 1 31 94 60 108 1412 i 320 1446 21 78 31 94 60 108 1338 ~ 315 1378 21 79 31 95 60 108 1270 310 1315 21 79 31 95 60 108 1207 - 305 1256 21 79 31 95 61 109 1147 300 1201 21 79 i 31 95 61 109 1092 295 1149 21 79 31 96 61 109 1040 290 1095 21 80 31 96 61 110 985 285 1042 21 80 31 96 61 110 932 280 975 22 80 31 96 61 110 865 267 836 22 80 32 97 62 111 725 265 823 22 80 32 97 62 111 712 { 263 811 22 80 32 97 62 111 700 262.99 811 22 80 32 97 62 111 731 240 680 22 81 32 98 62 112 599 235 648 22 81 32 98 62 112 567 230 624 22 81 32 98 63 112 543 220 545 22 82 32 99 63 113 463 (] 217 523 22 82 32 99 63 113 441 V 200 489 22 82 32 99 63 113 407 187 438 22 83 32 100 63 114 355 169 415 23 83 33 100 64 114 332 164 410 23 83 l 33 100 64 115 327 159 405 23 83 33 100 64 115 322 154 401 23 83 33 100 64 115 318 150.01 396 23 83 33 100 64 115 313 150 396 23 83 33 100 64 115 373 145 412 23 83 33 101 64 115 389 140 430 23 64 33 101 64 115 407 135 435 23 84 33 101 64 115 412 130 437 23 84 33 101 64 115 414 125 438 23 84 33 101 64 115 415 120 439 23 84 33 101 64 116 416 115 438 23 84 33 101 64 116 415 110 436 23 84 33 101 64 116 413 105 434 23 84 33 101 65 116 411 100 433 23 84 33 101 65 116 410 95 430 23 84 33 101 65 116 407 90 428 23 84 33 102 65 116 405 85 1 426 23 84 33 102 65 116 403 l 84.99 ( 426 23 84 33 102 65 116 403 ,p 80 424 23 84 33 102 65 116 401 () 75 411 23 84 33 102 65 its 388 70 396 23 84 33 102 65 116 373 65 383 23 84 33 102 65 its 360 60 370 23 BS 33 102 65 116 347 8

h FT1 Doc,~ 32 5001764 00 J A weimer i Table 5 shows the final enveloping cooldown limits for 32'EFPY w a n y. Table 5 Envelopino CD Limit i Temp (F) Press (psig) 60 313 j 150 313 l 187 355-217 1 441 230 543 240 599 263 710-7 267 725 280 865 300 1092-i 320 1338 340 1666 -370 2297 400 2335-425 2375 O 470 246g 570 2786 Hestup NDT Reference 2 calculated NDT for two heatup rates above 280F (50F/hr. and 70F/hr). B assumed 15F/hr below 85F and 50F/hr between 85F and 280F. The most limiting case will be assumed for this analyses (the 70F/hr above 280F). The RC pumps (2/0) are assumed to sta 85F (without temperature uncertainty). As in the cooldown, the 2/0 pressure corrections are conservative for 0/2 pump operation. The 3'" pump starts at 220F and the 4* at 263F as discus above." Figures 6 and 7 show the Reference 2 limit, the location corrected limit and fused for the enveloping HU limit. -smoothed limit. Table 6 shows the location Table 6 32 EFPY Heatup data (no Instrument Uncertainties included Temp (F) Minimum RC Pump Combination DP correction HU With Pressure 0/0 -l 2/0 l-0/2 l 2/1 l 1/2 l 2/2 Location psig Location corrections rounded to next highestinteger-correction 60 451

23 notlegal not legal notlegal notlegal notlegd 428 65 455 23-

. notlegal not legal netlegal notlegal notlegal 432 = 70 461 23 notlegal notlegal notlegal notlegal - notlegal 438 - -470 23 notlegal notlegal > notlegal notlegal notlegal 447 O, 60 460 23 notlegal notlegal notlegal notlegal notlegal-457 -64.99 469 23 notlegal notlegal. notlegal notlegal notlegal 466 65 469 23 84 33 notlegal notlegal notlegal 405 ~90 482 23 84 -33 notlegal notlegal-notlegal 398 .f ') w ~

FTl Doc. 32 5001764-00 J A Weimer 95 } 471 23 84 33 { notlegal not legal notlegal 387 ~ ! (y) j 100 ) 463 23 84 33 l netlegal netlegal net legal 379 ~ V 105 457 23 84 33 l netlegal not legal notlegal 373 1 110 453 23 84 33 net tegal notlegal notlegal 369 - 115 452 23 84 33 not legal notlegal notlegal 368~ 120 452 23 84 33 not legal net legal notlegal 368 l 125 454 23 84 33 not legal notlegar netlegal 370 ' 130 457 23 84 33 not legal not legal netlegal 135 461 23 84 33 net legal not legas notlegal~_ 373 140 467 23 84 33 not legal not legal notlegal 383 - 377 145 473 23 83 33 not legal notlegal not legal 390 150 481 23 83 33 not legal notlegal notlegal 398 155 490 23 83 33 ) netlegal not legal notlegal 407 160 499 23 83 33 ) netlegal notlegal notlegal 416 i 165 510 23 83 33 l netlegal not legal not legal 427 170 522 23 83 33 net legal not legal not lega! 439 175 535 22 83 33 not legal not legal notlegal 452 180 549 22 83 33 notlegal notlegal notlegal 466 185 564 22 83 33 not legal not legal net legal 481 190 580 22 83 32 not legal not legal not tegal 497 195 590 22 82 32 notlegal not legal notlegal 508 200 600 22 82 32 not legal not legal notlegal 518 205 610 22 82 32 not legal not legal not legal 528 210 621 22 82 32 notlegal not legal notlegal 539 g, 215 633 22 82 32 netlegal not legal notlegal 551 219.99 646 22 82 32 netlegal not legal notlegal 564 i 220 646 22 82 32 99 63 notlegal 547 225 659 22 82 32 98 63 not legal 561 _ 230 674 21 81 32 98 63 notlegal 576 235 690 22 81 32 98 62 notlegal 592 240 707 22 81 32 98 62 notlegal 609 245 725 22 81 32 98 62 notlegal 627 250 745 22 81 32 97 62 netlegaf 648 255 766 22 81 32 97 62 netiegal 669 260 789 22 81 32 97 62 notlegal 692 263 803.4 22 80 32 97 62 notlegal 706 263.01 803.4 22 80 32 97 62 111 692 265 813 22 80 32 97 62 111 702 l 270 839 22 80 32 97 62 111 728 275 867 22 80 31 96 61 110 757 279 891 22 80 31 96 61 110 781 l 280 896 22 80 3I 96 61 110 786 l 285 921 21 80 31 96 61 110 811 290 951 21 80 31 96 61 110 841 295 983 21 79 31 96 61 109 874 l 300 1018 21 79 31 95 61 109 909 305 1055 21 79 31 95 61 109 946 ,310 1096 21 79 31 95 60 108 988 O) 315 1140 21 79 31 95 60 108 1032 V' 320 1187 21 78 31 94 60 108 1079 l 325 1237 21 78 31 94 60 108 1129 330 1292 21 78 31 94 60 107 1185 i 10 I

FT! Doc. 32 5001764-00 J A Weimer g 335 1351 21 78 1 31 340 1414 21 78 31 93 59 107 1307 - 94 60 107 1244 ' 345 1481 l 21 77 30 93 59 106 1375 350 1554 21 77 30 93 59 106 1448 - 355 1632 21 77 30 93 59 106 1526 ~ { 360 1716 21 77 30 92 59 106 1610 365 1805 21 76 30 ' _ 370 1902 21 76 30 92 58 105 1797 I 92 59 105 1700 375 2005 20 76 30 91 58 105 1900 380 2115 20 76 30 91 58 104 2011 385 2228 20 75 30 91 58 104 2124 390 2348 20 75 30 91 58 104 2244 395 2476 20 75 l 29 90 57 103 2373 1 400 2613 20 75 29 90 57 103 2510 405 2759 20_ 74 29 90 57 102 2657 410 2874 20 74 29 89 57 102 2772 415 2874 20 74 29 89 57 102 2772 420 2874 20 74 29 89 56 101 2773 425 2874 20 73 29 88 56 101 2773 430 2874 20 73 29 88 56 101 2773 435 2874 20 73 29 88 56 100 2774 440 2874 20 72 29 87 56 100 2774 445 2874 19 72 28 87 55 99 2775 450 2874 19 72 28 87 55 99 2775 j 455 2874 19 72 28 86 55 99 2775 460 2874 19 71 28 86 55 98 2776 465 2874 19 71 28 86 55 98 2776 470 2874 19 71 28 85 54 97 2777 475 2874 19 70 28 85 " 54 ' ' i 480 2874 19 70 28 84 54~ 2777 97 ._ 485 2874 19 70 28 84 54 96 2778 97 2777 490 2874 19 69 27 84 53 96 2778 495 2874 19 69 27 83 53 95 2779 500 2874 19 69 27 83 53 95 2779 505 510 _ 2874 19 69 27 83 53 94 2780 2874 18 68 27 82 52 94 2780 515 2874 18 68 27 82 52 93 2781 520 2874 18 68 27 81 52 93 2781 525 2874 18 67 26 81 52 93 2781 530 2874 18 67 26 81 51 92 2782 535 2874 18 67 26 80 51 92 2782 540 2874 18 66 26 80 51 91 2783 545 2874 18 66 26 79 51 91 2783 550 2874 18 65 26 79 50 90 2784 3 555 2874 18 65 26 78 50 90 2784 560 2874 18 65 26 78 50 } 565 2874 17 64 25 78 49 89 2785 59 2785 570 2874 17 64 25 77 49 88 2786 11

1 L ~ i FTl Doc. 32 50017 (4-00 ,p. J A Weimer j 1 ' ' Table 7 Envelopino HU Limit Temp (F) Press (psig). 60 - 368 120 368 -140 383 1 160 416 190-497 220 547 263 692 300 909 -325 1129 350 1448 410 2772 570 2786 l V Combined LTOP, HU, CD Limits - Figure 8 shows the enveloping CD, HU, LTOP limits on the same plot. The LTOP i more limiting than the entire HU limit and more limiting than the CD requirements below above 200F. When the maximum allowable LTOP pressure is determined after the re ' O - - of the instrument uncertainty by CR-3), and assuming it will result in approx (im LTOP limit, the maximum allowable procedural pressure during heatups and during i be very similar for heatups and cooldowns. This may simplify procedures below the ART one limit for heatups and cooldowns. Figure BA shows a composite limit of the HU, CD, a i limits. l 4 V 'in Service Leak Hydro (ISLH) The ISLH limit is presently not used by any CR 3 preceduras but is included in the calcula location correction is shown on Figure 11. This limit is a com L l-l minimums (Reference 2), and therefore will use the more limiting pump correction L for the entire curve. Table 9 lists the enveloping ISLH curve. Table 8 - 32 EFPY ISLH data (no Instrument Uncertainties included - Temp (F) Minimum - RC Pump Combination DP correction ISLH With Pressure 0/0 l 24 l 0/2 l 2/1 l l 2/2 Location psig Location corrections rounded to next highest intet1er correction 60 492- - 23 not nogal - notlegal notlegal notlegal notlegal 469 65 508 23 notlegal notlegal notlegal. notlegal notlegal 485 70 526 23 not negal not legal not legal notlegal notlegal 503-s l 75 545 - 23 . notlegal notlegal notlegal notlegal not legal 522 i _Q 80 565 23 notlegal - notlegal notlegal notlegal notlegal - 542 V 84.99 565 23 notlegal-notlegal notlegal notlegal notlegal 481 85 567 - 23 85 33 notlegal notlegal riotlegal 482 lL 90 570 23 88 notlegal notlegal notlegal 485 l 95. 573 23 85 33 notnegal notlegal notlegal 488 j 12

)

FTlDoc. 32-500l[6000 J A Weimer g 100 576 l 23 85 33 l net tegai not legal not legat t ) 105 578 23 85 33 l net tecat not legal notlegal 493 ~ 49g 110 1 580 23 85 33 l notiegal net legal net iegai 495 - -~~ 115 582 23 } B5 33 l notlegal not legal notlegal 497 - 120 583 23 1 85 33 125 583 23 85 l 33 net tegal not legal notlegai not legal not legal not lesal 493 - 130 i 582 23 { 85 33 net legal notlegal not legai 497 498 ~ 135 552 23 85 33 not legal not legal notlegal 467 ~ 140 524 23 85 33 1 net legal notlegal not legal 439 145 526 23 85 33 150 527 23 85 33 not legal not legal not legal 441 net legal notlegal notlegal 442 155 534 23 85 33 not iegal notlegal not legal 449 ~ 160 540 23 85 33 I notiegal not legal notlegal 455 165 546 22 85 33 l netlegat not legal notlegal 461 170 567 22 85 33 ) net legal notlegal not legal 482 175 588 22 85 33 not legal not lega! not legal 503 180 594 22 83 32 net iegal not legal notlegal 511 185 600 22 82 32 net legal not legal notlegal 518 190 606 22 86 34 net legal not legal notlegal 520 195 645 22 82 32 net legal notlegal not legal 563 200 650 22 85 34 not legal not legal not legal 565 205 663 22 86 34 not legal not legal notlegal 577 210 675 22 86 34 not tegal not legal notlegal 589 215 688 22 86 34 netlegal not legat not legal 602 A 219.99 688 22 82 32 net legal not legal notlegal 606 V 220 724 22 86 34 99 63 notlegal 625 225 776 22 85 34 98 63 notlegal 678 230 828 22 85 34 98 63 notlegal 730 235 861 22 85 33 98 62 notlegal 763 240 894 22 85 33 98 62 notlegal 796 245 931 22 85 33 98 62 notlegal 833 250 971 22 85 33 97 62 notlegal 874 255 1016 22 84 33 97 62 notlegal 919 260 1048 22 84 33 97 62 notlegal 951 263 1067 22 80 32 97 62 notlegal 970 263.01 1067 22 80 32 97 62 111 956 265 1080 22 84 33 97 62 111 969 270 1115 22 84 33 97 62 111 1004 275 1152 22 84 33 96 61 110 1042 280 1190 21 83 33 96 61 110 1080 285 1224 21 83 33 95 61 110 1114 290 1263 21 83 33 96 61 110 1153 295 1305 21 83 33 96 61 109 1196 300 1351 21 83 33 95 61 109 1242 305 1401 21 82 32 95 61 109 1292 310 1455 21 82 32 95 60 108 1347 315 1513 21 82 32 ) 95 60 108 1405 320 1575 21 82 32 94 60 108 1467 h 325 1642 21 82 32 94 60 108 1534 V 330 1714 21 81 32 94 60 107 1607 ~ 335 1791 21 81 32 94 60 107 1684 340 1874 21 81 93 59 107 1767 13

FT! Doc. 32-500d64-00 J A Weimer <'] 345 1963 { j 350 2059 21 81 { 32 l 93 59 106 21 81 \\ 32 93 1857 T 355 2159 21 59 106 1953 360 2264 _ 80 32 93 59 106 2053 21 80 32 92 59 106 2158 - 365 2375 21 80 31 92 59 105 2270 ' 370 2494 20 80 31 92 58 105 2389 375 2621 20 79 31 91 58 105 2516 380 2756 20 79 31 91 58 104 2652 385 2901 20 79 31 91 58 104 2797 390 3054 20 79 31 91 58 104 2950 395 3218 20 78 31 90 57 103 3115 4 400 3251 20 78 31 90 57 103 3148 _ 05 3260 20 78 31 90 57 102 3158 / 410 3270 20 78 31 89 57 102 3168 415 3280 20 77 30 89 57 102 3178 1 420 3290 20 77 30 89 56 101 3189 I 425 3301 20 77 30 88 56 101 3200 430 3313 20 77 30 88 56 101 3212 I 435 3324 20 76 30 88 56 100 3224 440 3337 20 76 10 87 56 100 3237 445 3350 19 76 30 87 55 99 3251 450 3363 19 76 30 87 55 99 3264 455 3377 19 75 30 88 55 99 3278 460 3391 19 75 30 86 55 98 3293 /] 465 3406 19 75 29 86 55 98 3308 O 470 3421 19 74 29 85 54 97 3324 475 3438 19 74 29 85 54 97 3341 480 3454 19 74 29 84 54. 97 3357 485 3472 19 74 29 84 54 96 3376 490 3490 19 73 29 64 53 96 3394

  1. 95 3509 19 73 29 83 53 95 3414 500 3528 19 73 29 83 53 95 3433 505 3549 19 72 28 83 53 94 3455 510 3570 18 72 28 82 52 94 3476 515

'3592 18 72 28 82 52 93 3499 520 3614 18 71 28 81 52 93 3521 525 3637 18 71 28 81 52 93 3544 530 3660 18 71 28 81 51 92 3568 1 535 3684 18 70 28 80 51 92 3592 I 540 3708 18 70 28 80 51 91 3617 545 3733 18 70 27 79 51 91 3642 550 3757 18 69 27 79 50 90 3667 555 3780 18 69 27 78 50 90 3690 { 560 3802 18 69 27 78 50 89 3713 565 3820 20 68 27 78 49 89 3731 570 3832 20 68 27 77 49 88 3744 14

' FTIDoc. 32 5001364 00 ' J A Weimer O Table 9 Enveloping ISLH Limit Temp (F)' Press (psig) 60 439. 140 L 439. 160 455. 190 520. l 220 625. -k 263 956. 300 j 1242. 340 1767. 370 2389. 395 j 3115. 450 ] -3264. $70 i 3744. i Decay Heat Train Switching' a cooldown. This analysis assumed no RC pumps ur ng I and the water temperature entering the downcomer suddenly decreased to . stagnant waterin the other DHRS) and ramped back to the original temp results of Ref 5 show that the RCS pressure must be below 325 ps psig when switching at 160F and 36g sig when switching at 140F,ig when switching at 200 p tap pressure (23 psi with no RC pumps operating), the limits become 302 . Correcting this to the hot leg psig at the respective temperatures. These points are shown on Figure 4 to 1 cooldown limits, in addition, the length of soak time to achieve an isothermal co 1 ' corrected allowable of 293 psig vs. the 302 psig for the iso i Purnp Start With Cold Waterin Cold Leg 1

Prior to RC pump starts (after an outage) the core and hot leg water is he The primary water in the steam generator is heated by the warmer feedwater.

~ . lower portion of the cold legs is not exposed to this heating and can be coole the primary loop. When the RC pump starts, the downcomer will be exposed colder water. Plant data shows that this can be -20F cooler tha which exposes the downcomer to a virtually instantaneous temperature spike f Reference 5 states that the heatup NDT curve bounds this effect. 1 Results s - The final allowable NOT heatups and cooldowns limits are summarized on Fig These limits do not include any temperature or pressure uncertainty (as requ I . Figure 8'shows that the margin to the LTOP limit (t L 'is more restrictive than the entire bestup NOT limit and also more restrictive tha cooldown NOT limit. - ) 13 The Reference 5 analysis does notjusti$ decay best train switching below 140F or J 4 This asmunes a 160 inch initial pressurizar level. - ,15-

. ~ 4 FTI Doc. 32-5001364-00 J A Weimer and 25 psi instrument uncertainty removed) and show i e erence 9 with 10F I Table 10 15 EFPY CD Limits v REF9 REF 9 w/o instr uncrt CD TEMP CD PRESS CD TEMP lCD PRESS { 70 260 60 285 1 160 260 150 285 185 313 175 338 i: { 210 387 200 412 [ i 225 449 215 474 234 487 224 512 2 235 491 225 516 241.5 532 232 557 5 260-649 250 674 263 679.3 253 704 Table 11 15 EFPY HU Limits i i REF9 REF 9 w/o instr uncrt HU TEMP HU PRESS HU TEMP HU PRESS L 70. 278 60 303 i 136 278 126 303 i 160 294 150 319-O, 185 329 175 354 210 384 200 409 i 220 414 210 439-228 442 218 467 230 448 220 473 i 235 467 225 492 240 488 230 513 3-250 533 - 240 558 j. 255 556 245 583 7 260 588 250 611 t 264 615 254 640 5<. These are provided only to quantify the magnitude of the typical differences from The 32 EFPY limits are less restrictive than the 15 EFPY limits at low temp the NDT limits have the appropriate adjustment for the a provided additional margin at the lower temperatures expected that the finat instrument uncertainty (an estimated 10 - 15 psiin RC pressure wi provide additional margin because the 15 EFPY limits assumed a 25 psi (Iow

The precise value depends on the pressure indicatio The ART was calculated in Reference 1 to be 213F + 50F = 263F which is 10F EFPY calculated limit (Reference 9) 5 This value was 464 peig for 15 EFPY per Reference g

i FTl Doc. 32-500l764-00 J A Weimer ,(y The RC pump location corrections are based on the same DP's used in Re Reference 7. They assume for heatups that no RC pumps are operating operating from 220 to a 263F where the correction fa pumps are is more restrictive in the temperature region and fin rge line limit at this temp, which will also include the step pressure change. a verticallimit The only conclusion stated in Reference ; that does not apply to the assuming the pressure instrument uncertainties are similar to those s (again, CFT flow initiatien temperature. The maximum possible RCS pressure d , s the psig. Reference 3 (15 EFPY) LTOP limits were above 638 psig at 197F a on is 638 will be greater than 638 psig at 208F (see Figure 1). However, since mits the HU NDT limit, and the CD NDT limit will force the CFT's to be isolated prior ART, the CFT's will not directly affect the LTOP limits. ng below the temperatures would imply an accident condition where normal HU & CD limitsAc applicable. may not be 1 REFERENCES 1. FTI Doc 32-5000218-00 " ART for 32 EFPY for CR-3" 6/97 2. FTI Doc 32-5000854-00 "CR-3 Uncorrected FT limits at 32 EFPY" 3. FTI Doc 32-1266125-04 "CR-315 EFPY LTOP Limits" 8/98 (A) 5. 4. FTI Doc 51-1258757-02 "CR-3 FT Curves Design Bases" 12/97 iTI Doc 32-5001662-00 "CR-3 FT and Related Issues" 8/98 6. FTI Doc 32-1266172-01 "CR-3 LTOP RELAPS Analysis" 6/97 7. FTI Doc 32-1268903-00 "CR-3 Panial Pump Flow & Pressure Dist" 7/97 8. FTI Doc 32-5000279-02 "CR-3 PORV & RCS Vent Flows" 11/97 9. FTI Doc 32-5000185-01 "CR-3 Heatup & Cooldown FT Limits" 9/97 10. FTI Doc 51-1176431-00 " Summary Report - CR-3 RV LTOP" 10/89 l O v l l 17

o o o U V O 32-5001746-00 FIGURE 1 LTOP Limits for 32 EFPY (Without Instr Uncrt) 1000 s ,i 900 - LTOP Umit @ criticallocation (110% Steady State) [ [ - - LTOP Limit @ Hot Leg Tap 'A'('W/RC Pumps Operating) j/ [ ~ - - - LTOP Limit for 10 min trans (160" Initial Pzr Level) / / s / 3 --*-Enveloping LTOP 10 Min Trans / / l Yn 700 O. / / / y f ~- e 2 / / ~4 p / in 600 f / ? y D. r Location Adj.

  • ~

y 500 - d-1 ",J g -j V [ Enveloping to Min LToP e l10 Min Transient l g [#$. 400 - e5 3* s# v2s sir. d %,4-300 200 393. 220 421. 240 471. 200 - 50 100 150 200 250 300 RCS Temperature (F)~ e I% e lB 3

O O O 32-5001746-00 Figure 2. Cooldown (Ramp / Step Transient) P/T Limits at 32 EFPY For Low Pressures (Without Location Adjustments or instrument Errors) 900 t - - - - - CD Ramp, Set 1 D1 CD Ramp Set 2 3 - - CD Ramp, Set 3 a 800 - -CD Ramp Set 4 --m-CD Step Set 1 8 s CD Step Set 2 i

3 CD Step Set 3 J

A CD Step Set 4 x Min set 2 700 n. 5 E 8 600 a $500 l g ,,W = g m-( i-1 i 300 i 50 100 150 2 250 300 RCS Temperature; ; Page 19 Page

p., Y, U d 32-5001746 4 0 Figure 3. Cooldown (Ramp / Step Transient) P/T Limits at 32 EFPY Without Location Adjustments or Instrument Errors 2900 i p 2700 """ CD Ramp, Set 1 m CD Ramp, Set 2 7 - - 'CD Ramp, Set 3 E.2500 - -CD Ramp Set 4 -e-CD Step Set 1 e CD Step Set 2 $ 2300 CD Step Set 3 rn A CD Step Set 4 $ 2100 n un set E g 1900 Eo 1700 E 3: 1500 o $1300 of I e 1100 .o y 900 0* 700 f 500 g.. p 300 l 50 100 150 200 250 300 350 400 450 500 550 600 i RCS Temperature, F Page 20

gg (^\\ ( U s 32-5001746-00 FIGURE 4 Cooldown-Limits (Low Pressure) for 32 EFPY (Without instr Uncrt) 7gg l / r / / b-600 Enveloping CD Umit @ Critical Location (Ref 2 & Fig 1) / / - -CD Limit @ Hot Leg Tap 'A'(W/RC Pumps Operating) --*-Smoothed CD Limit (W/RC Pumps Operating) f C. / - 500 m Decay Heat switch Max Pressures (No RCP's operating) See pg 15 f 2a / m / } W m / r

I (E 400 -

4 ^ j 8 O // r x 300 ,1/ II 200 50 100 150 200 250 RCS Temperature (F) J Page 21

O O O 32-5001746-00 FIGURE 5 Cooldown Limits (Entire Range) for 32 EFPY (Without instr Uncrt) 3000 I I I I I 2800 - en ioping co timit a criiie.i toe.iion (n.t 2 a rio i) 2600 _ _co tw, no, t.a T.,w awac eump. op.nena) / 2400 - -*-smoomw co tw (wmc eump.op una) 2200 - 3"" Sed c" "" ^ ,E) Temp (F) IYen Quig) $ 2000 $o v it7 355 2 1800 - 2i;

i 5 1600 -

E $E 267 725 2 1400 - 2'o 5 g 300 1092 $E iE! (n 1200 - (( O 37o 22,2 E 1000 - da 2555 425 2375 42. -246, ggg. 570 2786 600 - 400 - p - -- - r 200 50 100 150 200 250 300 350 400 450 500 550 600 RCS Temperature (F) i Page 22

O O O 32-500174S-00 FIGURE 6 Heatup Limits (Low Pressure) for 32 EFPY (Without Instr Uncrt) 750 ,/ / i / HU Limit @ Hot Leg Tap 'A' (W/RC pumps Operating) j - - HU Limit @ Criticallocation (Ref 2) / 650 _ a-Enveloping HU Limit I i ^ m j / 16% p o / S 550 / M 0 b' i / / j n. v> gg0 _ / o s'y ./ / s y s ~ ~ - - "# I 450 / 400-m.___

w. _ _ _

350 50 100 150 200 250 RCS Temperature (F) i f Page 23 l

n ,m O u 'J 32-5001746-00 FIGURE 7 Heatup Limits (Entire Range) for 32 EFPY (Without instr Uncrt) 2900 L 2700 - HU Limit @ Hot Leg Tap W (W/RC pumps Operating) HU Limit @ Criticallocation (Ref 2) _ 2300 - - e-Smoothed HU Limit Temp (F) Press (psig) G 60 368 'is 2100 - 20 368 h 1900 - 140 383 e ico ais h1700 57 $ 1500-j 263 692 6 f g 300 909 ffj E 325 l129 1300 m ff 350 144: h1100 N 41 2772 // 570 2786 ,h{ 900 - 7-700 - e pW -m--- g 500 - g-gg 50 100 150 200 250 300 350 400 450 500 550 600 RCS Temperature (F) Page 24

0 O O 32-5001746-00 FIGURE 8 HU, CD, LTOP Limits (Low Pressure) for 32 EFPY (Without Instr Uncrt) 700 , j' 650 - 600 - ---e---Smoothed HU Umit .2 550 - Smoothed LTOP Limit ^ o j .o /- u - +- smoothed co umit /

  • 500 -

~- Q l l /l 5 450 - / [ [ $ 400 - Y b ,W W A / O350 / J r s t mC o _o 300 2 250 200 60 80 100 120 140 160 180 200 220 240 260 280 r RCS Temperature (F) Page 25

o t) (d-U 32-5001746-00 FIGURE 8A ENVELOPING HU, CD, LTOP Limits for 32 EFPY (Without Instr Uncrt) 3000 p 2500 gr Temp (F) Press (psig) .e g ^ ( 85 300 'ui 2000.- [ ~ 12 3 b ~ ~ 150 313 -~ g) 187 355 ^ 200 393 b1500 220 421 0) 240 471 Q, 263 551 w 263 692. 300 909 $1000 g - #[ 32s 1129 350 1448 p 389 2322 400 2335 42s 2375 500 - 470 2469 570 2786 [_-_~ d 0 60 100 140 180 220 260 300 340 380 420 460 500 540 580 RCS Temperature (F) Page 26

O O O 32-5001746-00 FIGURE 9 HU & LTOP Limits (Low Pressure) 15/32 EFPY Comparison (Without Instr Uncrt) 600 / / / i ---5---32 EFPY HU Limit / / f 2 32 EFPY LTOP Limit / / 500 - ..G - - 15 EFPY HU Limit / E. 450 / / / l E e' /

sus 400

'f E [ N a u / 350 - / m f a sd i e e-M 300.. c L 250 200 60 80 100 120 140 160 180 200 220 240 260 280 RCS Temperature (F) \\ Page 27

C, p dp V 32-5001746-00 FIGURE 10 Cooldown & LTOP Limits (Low Pressure) 15/32 EFPY Comparison (Without Instr Uncrt). 600 550 ' t-32 EFPY LTOP Limit L / 6-32 EFPY CD Limit 500 - m 15 EFPY CD LIMIT D.450 E / 5 / us 400 A k 8 kp 350 - / 8 /'. / ~ ef o' / tr o 300 ; c. j 250 200 60 80 100 120 140 160 180 200 220 240 260 280 RCS Temperature (F) Page 28

p (- v ss 32-5001746-00 FIGURE 11 ISLH Limits for 32.EFPY (Without Instr Uncrt) 4000 -ISLH Limit at Hot Leg Tap (W/RC Pumps Operating) p /> 3500 - ISLH Limit @ Critical Location (Ref 2) 9 f s -*-Smoothed ISLH Limit 3000 - f 3 I T,; 2500 - r o. 2 2 Smoothed ISLII Limit 5 2000 - ( Temp (F) Press (psig) g) J 60 439 2 140 439. Q. 2I 160 455. u) 1500 190 520 O s # 220 625. E // 263 956 1000 - g 3N 1242-g 340 1767. /# 370 2389 ~ 5 500 f yT f 5O 570 3744 0 l l 0 100 200 300 400 500 600 RCS Temperature (F) i Page 29 \\ r

,e 73 ex 'x V V 32-5001746-00 Figure 12 Max Allowable Pressurizer Level Vs RCS Pressure with MU not isolated (RCS Temp below ART) 250 230 JMax Level With Steam l h A 210 \\ ^ 190 \\ E X s 170 \\ \\ I \\ 5. ~ $ 150 .tf \\ Max Level With Nitrogen over-blanket g y m 130 \\ E \\ 110 - \\ 90 - \\\\\\ 70 50 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 RCS Pressure (psig) 1 9% 3 e 30 t

. FTlDoc. 32 500I'7h.00 - g, J A Weimer LO arracsuew1:4 troe oi cueeroa The methodology for protecting against LTOP events at B&W designed p described in thiis section.- As such, the following eterpents are presented Definition of reactor vessel pressure limit o Definition of enable temperature o o Definition of LTOP transients - o Consequences of LTOP events Definition of methods to prot' ct the reactor vessel pressure limit o e Definition of the Reactor Vessel Pressure Limit .The LTOP allowable pressure versus temperature for the reactor vessel is defined as i 110% of the steady-state Appendix G NDT limits. Thus, the flaw size,' critical depth, allowable crack growth, and the calculational methodology are identical to those used in ...O) ' the Appendix G calculations. The use of steady state temperatures, rather than the h transient resulting from technical specification heatup and cooldown limits is based on the - likelihood that LTOP events occur during steady-state operations. It is not unreasonable ' to conclude that the likelihood of an LTOP event occurring without notice by plant operations during heatups or cooldowns is small. This steady state approach has been approved by.the NRC for B&W and other operating PWR plants.- i The use of the 10% allowable increase in pressure above the Appendix G limit is justified by ASME Code Case N-514. The Code Case allows use of 110% of the ASME Section = XI, Appendix G RCS pressure limits, when determining LTOP limits. Definition of Enable Temoerature ASME Code' Case N-514 defines the LTOP enable temperature as the RTndt temperature of the limiting material plus 50*F. j i i m Definition of LTOP Transients. - LTOP events occur as the result of equipment malfunction or operator error that results in mass or energy. addition to the reactor coolant system. In the B&W plant operating i p history, only once has the technical specification Appendix G limits been violated due to V an LTOP event.: Because of restrictions that preclude water-solid operation of the i pressurizer (i.e., a steam or nitrogen bubble is maintained with the reactor vessel head > on), this plant design is less likely to exceed Appendix G limits. 31'

FTI Doc. 32-5001762-00 f J A Weimer (%) i in the B&W design, mass can be injected into the system throug (one or two of which also serve as normal makeup); (2) the cor ozzles which the core flood tank system, decay heat removal system g system (LPI) can provide added inventory; and (3) the pressurizer LPI, or the nitrogen addition system. Energy can be added to the the decay heat removal system; (2) actuation of the pressurizer he coolant pumps. As a result, the following transients were postulated a r their potential to increase reactor vessel pressure: Erroneous actuation of the High Pressure injection (HPI) system o Erroneous opening of the core flood tank discharge valve o Erroneous addition of nitrogen to the pressurizer o Makeup control valve (makeup to the RCS) fails full open o All pressurizer heaters erroneously energized o Temporary loss of the Decay Heat Removal System's (DHRS) capab o remove decay heat from the RCS ,kJ Thermal expansion of the RCS after starting an RC pump due to stored o thermal energy in the steam generator Consecuences of LTOP Events Each of the postulated LTOP events were analyzed to determine the rate of RC increase and/or the total amount of pressure increase that the system would expe A stand alone thermal hydraulic model of the pressurizer was used for these predic Capabilities to model RCS inventory increases (e.g., makeup, HPI), inventory dec (e.g., letdown), RCS expansion, and pressurizer heaters were included. A range o pressures and pressurizer levels were~ applied so that the pressurization rates could be applied to different initial P-T operating conditions. A brief summary of each transient response is provided below. Erroneous actuation of the High Pressure injection (HPI) system - this event would be the l most limiting LTOP transient. However, HPl actuation results in a very rapid pressurization of the RCS and precludes achieving the necessary 10 minutes for operator action. Thus, this event is prevented below the LTOP enable temperature through pla procedures. (y / ) Erroneous opening of the core flood tank discharge valve - this event is precluded by closing and locking out the breakers of the motor operated block valves before the RCS pressure decreases below the CFT pressure (600 psig). This will occur prior to cooling 32 l

... - - _. - - ~ - . ~ - - - i =J FTlDoc. 32 500d64-00 below the ARY J A Weimer l !o Erroneous addition of nitrogen to the pressurizer - this event can i RCS because of plant equipment that regulates the nitrogen pre rpressurize the pressure regulator and relief valves). psig (i.e., i Makeup control valve (makeup to the RCS) fails full open - this ev pressurization rate of 20 to 30 psilminute and is the most limit na events. All pressurizer heaters erroneously energized - this event is a s psilminute) and is bounded by the failed makeup control valve event. Temporary loss of the Decay Heat Removal System's (DHRS) ca heat from the RCS - this event is a slow transient (7 psilminute cay failed makeup control valve event. Thermal expansion of the RCS after starting an RC pump due the steam generator-this event results in a finite increase in pressure j margin between the Appendix G and LTOP limits. Because of the presen an the i pressurizer bubble, this event is much less severe than at other PWRs. t in summary, the most limiting, credible event is the failed open makeup .N Because of system design differences, the plant response is sens pump head-capacity cuwe and system resistance. This requires each pla plant specific response. i Definition of Methods to Protect the Reactor Vessel Pressure Limit l l L l In general, each plant is equipped with either : (1) a dual setpoint pilot op L valve that is set below the LTOP limit, or (2) an additional relief valve (e removal system relief valve) that is also set below the LTOP limit. In the event valve failure, plant operation is limited (i.e., combination of operating pre i pressurizer level) such that, in the event of the most limiting LTOP event, f makeup control valve, either: (1) ten minutes are available between the l j temperature operating limits are exceeded and the LTOP limits are violated providing adequate time for the operator to terminate the avent, or (2) the ava i makeup fank volume would be exceeded and thus terminate the event before limit is violated. Two means of setting operating limits have been used for the failed op i valve. The first approach assumes that the plant is operating at the maximum a pressure (as defined by bounds of the Appendix G heatup and cooldown limits and l PORV setpoint) at the time at which the failed open makeup control valve e - Then, using plant specific makeup flow vs. RC pressure curves, the maxim L utial pressurizer level that will cause the tenth minute pressure to equal the LTO 33 -

FT! Doc. 32 500dC4-00 J A Weimer temperatures less than the enable temperature and 'g ue for minutes of the failed open makeup control valve event. A ess than the ur ng ten The second approach is similar except that the maximum a!!owable p and the maximum allowable pressure vs. temperature curve is dete evelis set protected by the Appendix G curves (for this pr rve s lower pressures,'than this curve is implemented as the limiting operator cur In performing either approach, the integrated makeup flow is determined which can then be used as a means of LTOP protection. ma ws the In addition, RCS vent size calculations that will prevent pressurization d open makeup control valve are calculated to provide backup LTOP protection. F the PORV is declared inoperable, a vent (e.g., steam opened to protect against LTOP events. O O 34 - - _ _ _ _ _}}