ML20070Q456

From kanterella
Jump to navigation Jump to search
Nuclear Power Plant Sys Sourcebook,Millstone 2
ML20070Q456
Person / Time
Site: Millstone Dominion icon.png
Issue date: 01/31/1989
From: Goldman L, Lobner P
SCIENCE APPLICATIONS INTERNATIONAL CORP. (FORMERLY
To:
NRC
References
CON-FIN-D-1763, CON-NRC-03-87-029, CON-NRC-3-87-29 SAIC-89-1018, NUDOCS 9103290092
Download: ML20070Q456 (98)


Text

_- _ . _ - - . . . - . . _ , . - - - . , . - . - . . . - - .

1

\

l

/ eneco%

% .t.

8 5 ,

n NUCLEAR POWER PLANT ei SYSTEM SOURCEBOOK o,

L' y %we+ e pl _

MILLSTCNE 2 .

o n.nc l

l O .- _=_= ,. = =

b ll ) r; PDR

1

\

sAic swlois  :

kR R E G (j

$ 0 4' " .

NUCLEAR POWER PLANT e $[.,,.,n. ,i SYSTEM SOURCEBOOK O #

Q

%9 ' @. 6 j' 44,4> --

1 t

4 MILLSTONE 2

50 336 Editor: Peter Lohner Author: Lewis Goldinan i

l l

r Prepared for:

U.S. Nuclear Regulatory Commission l Washington, D.C. 20555 i

Contract NRC.03 87 029 1

FIN D.1763

- - M g.-

manfM5ance -

- - - - . - . - - - _ ~ .

- = . - -.. - . . - - . . . . - . . - - -

hiillstone 2 TABLE OF CONTENTS Section g 1 S Uh lh 1A RY D ATA ON PLANT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , . 1 2 IDENTIFICATION OF Slh11LAR NUCLEAR POWER PLANTS .... 1 l 3 S Y STEh ! INFORhi ATI ON . . . . . . . . . . . . . . . . . . . . . . . . . . .2. . . . . . . . . . . . ' . .

3.1 Reactor Coolant System (R CS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S l 3.2 Auxiliarv Feedwater System (AFWS) and Secondar S e am k eli ef S ys tem (S S R S)..........................y ......... 14 3.3 Emergency Core Cooling System (ECCS) ................... 19 3.4 Charging System................................................. 28 3.5 Instrumentatlon and Control (I & C) Systems................ 33 3.6 Ele c tric Po we r S ys t e m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 Reactor Building Closed Cooling Water (RBCCW)

System............................................................ 48 3.8 Se rvice Water Syste m (S WS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4

PLA NT I N FOR.\ ! ATI ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55- .............

4.1 Site and B uilding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SS 4.2 Facility Layou t Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 B1 B LIOG R A P1I Y FOR hilLLSTON E 2........................,...., g1 APPENDIN A, Definition of Symbols Used in the System and L a y o u t D ra wi n g s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 APPENDIX B. Definition of Terms Used in the Data Tables .......... 89 4

s

\.

i 1/gg

- - - - - . . . - . . . - _ . - . - - -- -. -. - _---. -.-- -- --.. -= - - ~

Millstone 2 LIST OF FIGURES a

nws bus 31 Cmling Water Systems Functional Diagram for Millstone 2............. 7 3.1 1 Elevation View of the RCS of a Typical Combustion En P 1 a n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................... . . . . . . . . . . . 10 ................

3.1 2 Millston e 2 React or Coolant S yste m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I1 3.1 3 Millstone 2 Reactor Coolant System Showing Component Locations... 12 3.2 1 Millstone 2 Auxiliary Fe ed wa ter Syste m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 2 Millstone 2 Auxiliary Feedwater System Showing Component Loc a ti o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17. . . . . . . . . . . . . . . . .

3.3 1 Mill st one 2 S afe ty Inje etion Sys tem.......................................... 23 332 Millstone 2 Safety injection System Showing Component Locations ... 24 3.3 3 Millstone 2 Containment S pray System . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 25 3.3 4 Millstone 2 Containment Spray System Showing Component Loc a ti o n s . . . . . . . . . . . . . . . . . . . . . . . . , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 1 Millstone 2 Chemical and Volume Control System .......... ............. 30 3.4 2 Millstone 2 Chemical and Volume Control System Sho <

Component Locations................................... ............

31 3.61 Millstone 2 Electric Power S ystem . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.6 2 Millstone 2 Electric Power System Showing Component Locations.... 40 l 3.6 3 Millstone 2125 VDC and 120 VAC Electric Power Distribution -

System.............,............................................................. 41 3.6 4 Millstone 2125 VDC and 120 VAC Electric Power Distribution S ystem S hewing Component Locations..................................... 42 3.7 1 Millstone 2 Reactor Building Closed Cooling Water System......,...... : 3.7 2 Millstone 2 Reactor Building Closed Cooling Water System Showing Component Loeations..........................................................-51 3.81 M illston e 2 S ervice Water Syste m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.S.2 Millstone 2 Ser ice Water System Showing Component Locadons- ....

......................:........................................ . 56

~

7 k.

ii 1/89 w a . a.-.- ,..,,,.,,,,p,.g.y.- ,-p. --,v.i,,%. w,.

99. _ . c.,.i,.- mym._.- i-. , , - .,.

.,-,..y.,t+-- w-

, 9 - 9 w-'

hiillstone 2 LIST Ol' l'lGURES (continued)

Em Em 41 Genrral View of hii!! stone Site and Vicinity............................... 59 42 Simplified Site Plan for hiillstone 1 and 2.................................. 60 43 Elevation View of hiillstone 2 Conta Building s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .inmen t, A u xiliary and Control

....................................... 61 44 Elevation View of hiillstone 2 Containment, Auxillary and Diesel Generator Buildings...........................................................

62 45 Elevation View of hlillstone 2 Auxiliar Fuel Storage Areas)......................y Building (Spent and New

..................................... 63 46 Elevation View of hiillstone 2 Auxiliar

Arc a5 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .y B uildin g (Radioactive Wa ste

..................................... 64 47 Eles ation View of h!illstone 2 Turbine Building .......................... 65 48 h1illstone 2 Containment and Auxiliary Building. Elevation 45'6",... 66 49 h!illstone 2 Containment and Auxiliary Building. Elevation 25'6".... 67

> 4 10 h1illstone 2 Containment and Auxiliar Turbine Building Elevation 1*6".....y Building Elevation - 5'0", and

...................................... 6S 4 11 hiillstone 2 Containment, Auxiliary and Turbine Buildings.

El e v a t i o n 1 4 '6" . . . . . . . . . . . . . . . . . . . . . . . . . .69. . . . . . . . . . . . . . . . . . .

4 12 h1111 stone 2 Containment. Auxiliary and Turbine Buildings.

E lev a tio n 2 5 '6" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70........................

4 13 hiillstone 2 Containment and Auxiliary Buildin and Turbine Building, Elevation 31'6",..........gs, Elevation 38'6",

.......................... 71 4 14 hiillstone 2 Containment, Auxili and Turbine Buildings, Elevation 54'6" ....................ary

............................................ 72 4 15 Plan and Elevation Views of hiillstone 2 Intake Structure................ 73 A1 Key to . Symbols in Fluid System Drawings................................

85 A2 Key to Symbols in Electrical System Drawings ........................... 87 A3 Key to Symbols in Facility Layout Drawings..............................

88

-i 111 1/89

htillstone 2 LIST OF TAllLCS TMk t Exc l 31 Summary of hlillstone 2 Systems Covered in this Report................ 3 3.1 1 hliihtone 2 Reactor Coolant System Data Summary for Sclemed Components..................................... ............................ 13 3.2 1 hlillstone 2 Auxiliary Feedi.ater System Data Summary for

- S e le c ted Compone nt s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 .....

3.3 1 hlillstone 2 Emergency Core Cooling System Data Summary for S ele c te d Com pon e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 3.4 1 hiillstone 2 Charging System Data Summar C o m p o n e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .y for S elected

................................. 32 3.6 1 hlillstone 2 Electne Power System Data Summar C o m p o n e n t s . . . . . . . . . . . . . . . . . ........ . . . . ..................

. . . . . . . . . . . . . . . . . . . .y for Selec 43-3.6 2 Panial Listir; of Electrical Sources and Loads at Alllistone 2........... 45 3.7 1 hiillstone 2 Reactor Building Closed Cooling Water System -

Data S ummaty for S e1eeted Componenis...................................

52 9 3 S.1 Alillstone 2 Serdec Water System Data Summar Co m p o n e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .y for Selected

........................... 57-41 Definition of hlitistone 2 Building and Location Codes .................. 74 42 Part.'al Listing of Components by Location at blillstone 2................ 77 B.1 Compon e n t Type Code s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90. ............

1.

l I

i-i i

f i

l t

a (O

iv' i 1/89 i

l ma -wir*y r*gw w.w 7 p -y- - e < 9- vt

1 1

hiillstone 2 CAUTION f

The infonnation in this report has been developed over an extended neriod of tirne based on a site visit, the Final Safety Analysis Report, systm and layout drawings, and other published information. To the best of our knowledge,it accurately reflects the plant configuration at the time the information was obtained, however, the information in this document has not been independently verified by the licensee or the NRC.

4 NOTICE This sourcebook will be periodically updated with new and/or replacement pages as appropriate to incorporate additional information on this reactor plant. Techmcal errors in this report should be brought to the attention of

, the following:

!. hir. blark Rubin U.S. Nuclear Regulatory Commission

' Office of Nuclear Reactor Regulation Division of Engineering and Systems Technology hiall stop 7E4 Washington, D.C. 20555 With copy to:

hir. Peter Lobner hianager, Systems Engineering Division Science Applications International Corporation 10210 Campus Point Drive San Diego, CA 92131 (619)458 2673 Correction and other recommended changes should be submitted in the fomt of marked up copies of the affected text, tables or figures. Supporting documentation should be included if possible.

O

~!

v 1/89  !

l l

1 h

l AllLLSTONE 2 RECollD OF REYlSIONS a

, Iti: VISION ISS tlC COhlhlENTS 0 1/89 Original report 1

I

)

i f

3 3

t

\

vi' ;1/S9' 4

.w,-wn,,-.~

,,v ,-,wL.-,-,-.r--<wm,w-~ --Ae--e---.+----~,nr---,+-r- ,---,,,w?

51illstone 2 TilLLSTONE 2 SYSTESI SOURCEllOOK This sourcebook contains summary information on blillstone 2. Summary data on this plant are presented in Section 1. and s'imilar nuclear power plants are identif'ied in Section 2. Information on selected reactor plant systems is presented in Section 3, and the site and building layout is illustrated in Section 4. A bibliography of repotts that describe features of this plant or site is presented in Section 5. Symbols used in the system and layout drawings are defined in Appendix A. Terms used in data tables are defined in Appendis it

1. SDDIARY DATA ON PLANT Basic infonnation on the 51illstone 2 nuclear power pLvit is listed below:

Docket number 50 336 Operator Northeast Utilities Location Waterford, Connecticu.

Commercial operation date 12n5 Reacter type PWR NSSS vendor Number of loops Combustion Engineering, Inc.

2 Power (SlWt/NIVe) 2560/S70 Architect engineer Bechtel Comainment type Reinforced concrete cylinder with steel uner 2.

IDENTIFICATION OF SDilLAR NUCLEAR POWER PLANTS j 51illstone 2 has a Combustion Engineering PWR two loop nuclear steam supply system (NSSSL Other Combustion Engineering PWR plants in the United States include:

Fort Calhoun Alaine Yankee (3 loop)

Palisades Palo Verde 1. 2 & 3 Calvert Cliffs 1 & 2 St. Lucie 1 & 2 ANO 2 San Onofre 2 & 3 Waterford 3 WNP3 C

1 1/89

Millstone 2 gp 3. SYSTEM INFORMATION This section contains descriptions of selected systems at Millstone 2 in terms of general function, operation, system success criteria, major components, and support system requiremems. A summary of major systems at Millstone 2 is presented in Table 3-

1. In the ' Report Secilon" column of this table, a section reference (i.e. 3.1,3.2, etc.) is provided for all systems thm are described in this report. An entry of "X" in this column means that the s column, a cross ystem is not described in this report. In the "FS sR Section Reference"

' where additional information on each system can be found, Other sources on this p'. ant are identified in the bibliography in Section 5.

Several cooling water systems are identified in Table 31. The functional relationships that exist among cooling water systems required for safe shutdown are shown in Figure 3-1. Details on the individual cooling water systems are provided in the repon sections identified in Table 31.

O O

2 1/89

. .~~.- -.. . -_-.._- _ _ . - . - - . - - _ -

i.  :

I Table 3-1. ' Summary of Millstone 2 Splems Corcrcel in this Report Generic Plant-Specifie f

' Report US AR Section System Name S5 stem Name Section Reference Reactor. IIcat Removal Systems - _

i

- . Reactor Coolant System (RCS). Same 3.1 4 f' i  !

. + Auxiliary Feedwater(Al'W) and Same 3.2 to 1.5.3 l Secondary Steam Relief (SSR) - '
Systems

=f -

Emergency Core Cooling Systems L

j. (ECCS) . l i .. r. , - Iligh-Pressure Injection . Safety injection System 3.3 6.3

& Recirculation i (Iligh Pressure, I.ow I*ressure

- Low-pressure Injection and Passive Subsystems)  !

& Recirculation c "

p Decay IIcat Removal (DIIR) . Shutdown Cooling System 3.3 - 9.3 j .. - System (ResidualIIcat Removal- i

- ..- -(RIIR) System) k t

E

- . Main Steam and Power Conversion Main Steam Supply System, X 9.7.1, 10

. Systems -

^

. Condensate and Fecdwater System, j i Circulating WaterSystem  !

1

~ OtherIIcat Renoval Systems . N'one identified X -

}  ;

i Reactor Coolant Inventory Control Systetas '

Chemical and Volume Control System . Same 3.4- 9.2

l. (CVCS)(Charging System) .

i i - . ECCS .. See ECCS,above - -

i il 5' .e i

i 1

i: '

f 4  ;

. , ,- , . _ - . ~

\ V Table 3-I. Summary of Millstone 2 Systems Cmcrcel in this Report (Continuevil Generic Plant-Specific Report IISTR Section Ststem Name Sutem Name Section Re ference Containment Systems Omuinment Sanc X 5.2 Containment IIcat Renovat Spccms Same 3.3 6!

- Containment Spray Systan

- Centainment Fan CmierSystem Gmtainnent Air Recireni.nion arwi 3.3 6.5 Cmbng System Centainment Nonnal Ventilation Systems Containmem an<l I~ncimure X 9.'). 2 Hnilding Purge System Combustible Gas Gmtrol Systems Omtainnent i . : incident X 6.6 2-ITydrogen Control System Reactor and Reactivity Control Systems ReactorCore Sane X 3 Omtrol Rod System Omtrol Element Drise System X 7.4.2 Horation Systems See CVCS, ainve - -

Instrumentation & Control (I&C) Systems

- Reactor Protection System (RPS) Same 3.5 7.2 Engineered Safety Rature Actuation Same 3.5 7..

System (ESFAS)

Remote Shutdown System Ihit Shutdown P.mel X 7.6.4 -

2;B C

i

'T U

i Table 3-1. Summary of Millstone 2 Sysicms Cmcred in this Report (Continued) l Generie Plant-Specific Ststem Name Report USAR Serlion System Name Section Referenrc Instrumentation & Control (I&C) Systems (continued)

Other I&C Systems Various systems X 7.4. I 7.4.3 thru 7.4.M.

7.5. 7.6.1 thru 7.6 3.

7.6.5 Support System Class IE Electric Power System Same 3.6 8.2 thru 8.7 Non-Class IE Electric Power System Same 3.6 3.2 thru 8.7 Diesel Generator Auxiliary Systems Same a 3.6 8.3. 9.7.2, 9.9.1I Component Cooling Water (CCW) Reactor Iluilding Closed Cmling

v. System 3.7 9.!

Water System (R!!CCW)

Service Water System (SWS) Same 3.8 9.7.2 i -

Other Cooling Water Systems i Spent Fuel Pool Cooling System, X 9.0 Turbine Building Chised Cmling X 974 WaterSystem GilCCW)

Fire Protection Systems. Same X 9.10 RoomIIcating Ventilating,and Air- Plant Ventilation Systems

Conditioning (IIVAC) Systems X 9.9 j Instrument and Service AirSystems Compressed AirSystem X 9.I 1 Refueling and Spent Fuel Systems Fuel Storage and Ilandling X 9.8 c -

Radioactive Waste Systems Radioactive Waste Processing X i 1.1 System 6

w

-.>6u.-ow. Mw-_-mM aja.M&&m.a mha+ mas.g-m.m-mF#w.Ae Ji. 4_u4m_4 aaaa- - - . .emn.- e4.hw.4 a a4 . m--E- , .m.=_46s4-.-

4 l

l l

S em 96 h

i' '

  • b l

1

  • W f, 8

- 9 **

e== b I

5

?b tl V. u "

j

=

e ==

~v W ** *"*

1 em 0

.#, j W

f w ,

i es *=

i 6 k. . C .

d j - V Y y Y b

1 .M- N '/si V

/

e.m.

h

- see f

see w

de sm W

8%

9 W 3 i E =4

.C 7

W

, W=..

.. C. -

4 Va -

e4

  • =

- M i

o n< =

, C *'" *:

m 'J. V

}-

./

Emme S SW l m*.

b O

h 6

N E

E

= 2 VJ O

.C S /a

    • = >,

m' M 9

.o., -

m m **

Q 'd 7-f"'

N C L Z 5:

.v. g

. a u

  • x Q w jj

= = .

Y

9. Y

%9 e D 1/89

7_ w Q' )I ) ]

\J w/

OTHER

& SAFEGUARD HEAT LOAUS y

& SHUTDOWtt RBCCWS > HEAT q y EXCHANGERS j 4

a V r 3 r 3 tJ! ANTIC m RBCCWS HEAT BAY

' gwg ',

EXCHAt1GER *TO DISCHARGE COtJDUIT

% ) '

t )

r m

~# DIESEL GENERATORS

( )

I VITAL AC

_w SWITCHGEAR -

i ROOM COOLERS

% )

HBCCWS - Reador DuMng Closed Coofirg Water System g SWS - Service Water System e

Figure 3-1. Cooling Water Systems Func.tional Diagram for Millstone 2

l n

Millstone 2

( 3,1 REACTOR COOLANT SYSTEM (RCS)

\_./

3.1.1 Sntem Function The RCS transfers heat from the reactor core to the secondary coolant system m the steam generators. The RCS pressure boundary also establishes a boundary against the uncontrolled re! case of radioactive material from the reactor core and primary coolant.

3,1.2 Sutem Def1Dil10B The RCS includes: (a) the reactor vessel, (b) two parallel reactor coolant loops, )

' cach containing one steam generator and two reacter coolant pumps, (c) a pressurizer connected to one of the reactor vessel outlet pipes, and (d) associated piping out to a suitable isolation valve boundary. An elevation view of a two loop Combustion Engineering RCS is shown in Figure 3.1-1. Simplified diagrams of the RCS and important system interfaces are shown in Figures 3.12 and 3.13. A summary of data on selected RCS components is presented in Table 3,1-1.

3,1.3 Sutem Oneration Dunng power operation, circulation in the RCS is maintained bv two reactor

~

coolant pumps in each of the two reactor coolant loops. RCS pressure is maintained within a prescribed band by the combined action of pressurizer heaters and pressurizer spray.

RCS coolant inventory is measuted by pressurizer water level which is maintained within a prescribed band by the chemical and volume control system (CVCS).

At power, core heat is transferred to secondary coolant (feedwater) in the steam generators. The heat transfer path to the ultimate heat sink is completed by the main steam and power conversion system and the circulating water system.

O Following a transient or small LOCA (if RC$ inventory is maintained), reactor core heat is still transferred to secondary coolant in the steam generators. Flow in the RCS is mr.intained by the reactor coolant pumps or by natural circulation, The heat transf path to the ultimate heat sink can be established by using the secondary steam relief system to vent main steam to atmosphere when the power conversion and circulating water systems are not availat31e. If reactor core heat removal by thist al ernate path is oot adequate, tue RCS pressure will increase and a heat balance will be established in the RCS w by ver,

' steam or reactor coolant to the reactor quench tank through tne There are two power operated relief valves, two safetyand valves, pressurizer two motor operasedrelief valvd.

relief valve isolation valves on the pressurizer. The power operated relief valves are solenoid pilot type valves with a fail closed position. A continued inability to establish i adequate cooling to the steam generators will result in a LOCA-like condition (i.e.

continuing loss of reactor coolant through the pressurizer relief valves). Repeated cycling of these relief valves has resulted in valve failure (i.e. relief valves stuck open).

Following a large LOCA, reactor core heat is dumped to the containment as reactor coolant and ECCS makeup water s containment can act as a heat sink; however, pills from the break. For a short period, the the containment cooling systems must operate in order to complete a heat transfer path to the ultimate heat sink (see Section 3.3).

3.1.4 Svetem Succeu Criteria Tne mitigation, as RCS follows: success criteria can be described in terms of LOCA and transien An unmiticatible LOCA is not initiated.

If a mitifatible LOCA is initiated, then LOCA mitigating systems are successful, p

g If a transient is initiated, then either:

S I 1/S9 i

m

9 r.lillstone 2 l -

RCS integrity is maintaineo and transient n'iriguing systems are successful, or

) -

RCS integrity is not maintained, leading to a LOCA like condition (i.e.

l stuck open safety or relief valve, reactor coolant pump seal falh:re), and  !

LOCA mitigating systems are successful.

{

3.1.5 Com nngn t Informntion 1

A.RCS l

1. Volume: 9435 ft3 (without
2. Nomial operating pressure:pressurir.er) 2235 psig B. Pressurizer
1. Volume: 1500 ft3 C. Reactor Coolant Pumps (4)
1. Design flow 81.200 ppm @ 2485 psig
2. Type: Vertical Centnfugal D. Safety Valves (2)

, 1. Set pressure: 2485 psig

2. Relief capacity: 294,(00lb/hreach E. Power Operated Relief Valves (2)
1. Set Pressure
2385 psig

[ 2. Relief capacity: 153,000 lb/hr each y,) F. Steam Generators

, 1. Type: Vertical U Tube G. Pressurizer He .ters

1. Capacity: 1600 kW
2. T3pe: Immersion 3.1.6 Sunnnrt Systems and interfaces l

A. Motive Power l

i 1. The reactor coolant pumps are supplied from Non-Class lE switchgear,

2. The pressurizer heaters are Class lE AC loads that can be supplied from the standby diesel generators as described in Section 3.6.

B. Reactor Coolant Pump Seal lnjection Water System The chemical and volume control system supplies seal water to cool the reactor coolant pump shaft seals and to maintain a controlled inleakage of seal water into the RCS. Loss of seal water flow may result in RCS leakage through the pump shaft seals which will resemble a small LOCA.

O

)

9 1/89

~

O O O ,

STt Asa et ast nAyos h t t *88 08 88 P A RO88

, - - --i s g raisseistert a e

\

1 t.3.

PUnarss. 3A Pssar es 3

/

j .j g=eacroa 8 g -

i.

. J. [ '

  • l 1 I ,

i 1 ,

UcJ '

, -r j <

- o u

% ,- m p ,#5 m/

, _,, a.e y <~~

9,,

, - t avoerte r  !

e ar mter s p _ ___ j, -

.. , =rea _, <

( -

s {['

l Figure 3.1-1. Elevation View of the RCS of,a Typical Combustion Engineering Plant.

-____-______=___: - - - ~ .

--w-- -

--- -- -- - - - - - - - - - - - - = - - .

/

i

\

w/

l' R

p 2 i

/s ,

a 1

  • l l[

e-e-:4 4 r .

/

II

  • 4  : ~& ~

'y/ j E

I k l

+v ,

%@1 .

- OID- . .

, e x

4 n 4 I I aI y gic 4 1

!b .

- o ,. - m,

,t

,.,C 4-  ;

oIh,, .

-- E ao

+ i;6 ( ,- 3 i e

aa a

-W.

  • 2 O

o

,g av.

f' f O

/ %

[y N N W* + 1' U

)$ L

"'I 4.1 _ N es V ' e!gJ $

.klII . kl I, ,i ,

ill-3 C

b

~+3,3 0. . E g

(e-x

  • 3E

=

2 k E

.  : .y

+ I F. T 2 acc i;

~

)3y e f ,

ei!

! i + 3 O-y 1 .i h t2iZE2F &

i!os 4 + 4 ,

! c r:

'{

a,

.s k, ,g , W

.e a,

l, D

3 a

5 3 $

b

! t.

93

_ l j !g-g,-i- oZ: i aa l

!gh  : E

-g-  : fi t2S 5h,!

[

(s v/

ii 1/89

rw

'e, ~ 'e=,__

l

  • i 8
  • =

E 0

g e

al *2 El le, y ~ e g

1 si ! /

a n=y~~

y w ~% +f kg .(,

~

g eo e

ac,h g

I g

~

9 i

t J*

0552 I

,r j  :

n s.

~

I s t i

8' i

h%! Lye r- ~

' /,

(

E>

?g 1 ~.

% ,l5 E I 1 s

e f

n j

1 3lY '

4,:;,I

, 8

$9 10;  :

I t'. (-  % 'n* 2 a

e

_.. /_ /_f -

n

+-,

=a 4-

' S[

e N

f

!! . ~-

c c as p f~f'e ,,

h a Su f* i 5 y 2 g - f4

-T e

e n" +7 b J, iw gg ur v in -

oX; 0

-11 6

pa 12 1/sg

y )

i Table 3.1-1. Millstone 2 Reactor Coolant System Data Summary for Selected f'omponents COMPONENT ID COMP. LOCATION POWER SOURCE VOLTAGE POf/ER SOURCE EMERG.

TYPE- ' CO ATION 515 fJV LOAD GRP.

HC 516 NV flC '

HCS-VESSEL HV HC ~

S402 l'OHV HC  !

t S404 POHV HC V405- MOV HC MCC-B61 480 14GENAH AC/B - '

V405 MOV HC MCC-US1 480 14GENAH AC/A I

L e

k e '

f i

i

StilStone 2 3.2 AUXlLI ARY FEEDWATER S Y S T E .Tl ( AFWS) AND V SI:CONDART STEA.Tl RELIEF SYSTE31 (SSRS) 3.2,1 Sntem Function The AFWS provides an independent means of supplying feedwater to the steam generaten i JJition to the main feedwater system. The AFWS is intended to provide a sufficient supply of feedwater to permit the plant to operate at hot standby after a transient or smao break LOCA for eight hours followed by an orderly plant cooldown to the point where the shutdown cooling system may be initiated. The Secondary Steam Relief System (SSRS) provides a stearn vent path from the steam generators to the atmosphere, thereby completing the heat transfer path to an ultimate heat sink when the main steam and power conversion systems are not available. The AFWS and SSRS constitute a open loop fluid system that prosides for heat transfer from the RCS following transients and small break LOCAs.

3.2.2 Sutem Definition The AFWS consists of two safety related Seismic Category I motor-driven pumps, one safety related Seismic Category I steam turbine driven pump, associated piping, comtrols and instrumentation. Each pump can supply both steam generators. The pnmary source of auxiliary feedwater is the Seismic Category I condensate storage tank (CST;. The secondary source is the primary water storage tank.

The SSRS consists of eight safety valves and one pneumatically operated atmospherie dunm valve on each of the main steam lines (one per steam generator).

S".!"ej drawings of the AFWS and the SSRS are shown in Figures 3.21 and 3.2 i. summary of data on selected AFW system components is presented in Table 3.2 2. A A

( 3.2.3 Sutem Operntion k

Dunn; normal operation the AFWS is in standby until the system pumps are manually actuated (Ref.1 & 2) by an operator upon a steam generator low level signal from the Auxiliary Feedwater Automatic Initiation system. The operator has the capability of manually controlline the auxiliary feedwater flow.

' The priniary sourceo ' f auxiliary feedwater is the condensate storage tank. A minimum capacity of 150,000 shutdown conditions. This provides an orderly RCS cooldown to the initiation conditions. An additional available.

150,000 gallons are adequate to remove decay heat for more than cooldown rate of 1000F/lb (Ref. 2).

3.2.4 Sutem Rocceu Criterin For the decay heat removal function to be successful, both the AFW system and the SSR (Ref. 2): system must operate successfully. The AFW success criteria are the followin Any one AFW pump can provide adequate flow.

Water must be provided from the condensate storage tank or the primary water storage tank to the AFW pump suctions hiakeup to any one steam generate provides adequate decay heat removal from the reactor coolant system.

The SSR system must operate to complete the heat transfer path to the environment. The number of safety valves that must open for the decay heat removal function is not known.

l 14 1/89

Millstone 2 3.2.5 Comnonent information A. .\lotor driven AFW pumps (2)

1. RateC low: 300 ppm @ 2437 ft. head (1056 psid)
2. Type: Centrifugal B. Turbine-driven AFW pump
1. Rated flow: 600 gpm @ 2437 ft head (1056 psid)
2. Type: Centnfugal C. Condensate storage tank
1. Capacity: 250,000 gallons (150,000 gallons operational low level) 3.2.6 Sunnort h<tems and Interfaces A. Control Signals
1. Manual The AFWS is manually started by an operator when needed (Ref.1 &

2 ).

2. Remote manual The AFWS can be operated from the control room or a remote shutdown station.

B. Motive power 1.

The safety-related motor driven AFWS pumps and AFWS motor j

operated valves receive Class IE loads that can be supplied from the v standby diesel generators as described in Section 3.6.

2. The turbine driven pump is supplied with steam from either steam generator upstream of the main steam line isolation valves. The valves associated with this pump receive power from the Class IE DC bus B.

C. Other

1. Lubrication, cooling, and ventilation are provided locally for the pumps.

3,2,7 Section 3.2 References

1. " Generic Evaluation of Feedwater Transients and Small Break Loss of-Coolant Accidents in Combustion Engineering Designed Operating Plants," NUREG.

0635, January 1980.

2. Millstone 2 Updated Final Safety Analysis Report, Revision 2, Section 10.4.5.3.

(G 15 1/sg

.-~+.._...~.w.,., . . , - - - -- - . . ----- - - - - - - - - - - - - . - - - -

e i

C$T TOATae 6Mesw

~ - <> ak Ter*

4' W FC k (86 X. X,. AFW

,, ,6

-A no

-- I - E q

l Af w $C 48$44A peg Af w MOS 66 98 104 au "I"a gi

.y, .j SK 32.

H- ><

048 As w V se.A AFw V201 sA FHORA

~

A Mw SOA 8A SA yw , '"'*"

~- are W vm J [O FE fDWATER y

84A vu i 10 aTMOSPHE RE " O

'9P aw - . 26 6 ,

JL re sa j i

ive */ sw I- FC

( CF 41 V202 l

! Er ., '  ?< , *

wma .

c.

J [4 me

]. , Mw TDP gg t

[

i.

M uw uw ' AN MW

.M ww

.X

~Arw

~ X Arw y,c ,

sa a s s,s . ,

sl~

snAu rTA " 33 I 80 M 42 -MS' gg 176 H V As w f c .

to . .

, ATMOSPHERE  !

2 ,,

Acw ,

v4sse t

. .5,,, ,

C. -p W

d

)

~

Figure 3.2-1.. Millstone 2 Auxiliary Feedwater System' -j i ,

.s

. . . _m.._ - - . . + , , _ . - -

1 _ . . . . ~ _ . - . . .

I m -

, , .,t.... ,

Cs1 10 m?WrJ'HE AF

- , c C57 l

,C &

';," X X;- -

Xo

< , t . . . si

__ M,,, _ _ _. _ _ _ s.

S e

- h,C_dCI 9,. ;

. . L.a.

.s.

-:w .

..e ..

v

,,9 v w uw y ua I "j4 *

  • Xt j (

~:: = >5 ,

=tx2

\

M.e.

~~,.w.+

,19.

,u -.-

~~

)

=.-

u -.

f fo ?egnE MS se I ; r  :,.y4

....... i FC-

. y .,.

a_g v20,

.F.,

. .ROM ( t.f m, ,

W.TtA - , .4C '

. 1scs

.,w-1DP . ,e O TO

$ ld i ,.

8 J -2 ung

. ;,4  : ,,g uw . uw , '..

,, u. , , -

,c .

, s os . sfr.M gyg . . g .. - 7 : .C :' ICS 438 113 gpg 129 i

.T W

'70 ~

368 ,c

.' ATMOSPHERE'

?

w

! .,W.

V41 l ._. .'.

l IDruPRes l Cr3

\

c l M 5 Y.E N w l f Tot. l i

Figure 3.2-2. Millstone 2 Auxiliary Feedwater System Showing Component Locations m__

-s Table 3.2-1. Millstone 2 Auxiliary Feedwater System Data Summary for ScicCted Components COMPONENT ID COMP. LOCATION POWER SOURCE VOLTAGE POWER SOURCE EMERG.

TYPE LOCATION Al W-MDA MOP . LOAD GRP.

MDf'MPHM BUSB1 4160 Z14KVHM AC/A

. AFW-MDB MDP MDPMPHM BUS-B2 4160 224KVHM

' AC/B ACW-IDP TDP. TDPMPRM Al W-V?01 MOV MSIMENE. MCC-US2 480 ENBD'VIRM AC/A '

AFW-V202 MOV MSIMENW MCC-B62 480 CRHVACHM AC/B ~!

AF W-V4188 MOV TDPMPRM BUS-201B 125 DCSWGRMB DC/B i AF W-V44 MOV T814 MCC-862 480 CH11VACHM AC/B 1

CST IK CST

SG HX RC

SG-2 Hx- frC 1

1 CC q

d i

j-j

. 'i I

d

-o 1

}

t Millstone 2 3.3 EMERGENCY CORE COOLING SYSTEM (ECCS) 3.3.1 Sutem Functinn The ECCS is an integrated set of subsystems that perform emergency coolant injection and recirculation functions to maintain reactor core coolant inventory and adequate decay heat removal following a LOCA. The coolant injection function is performed during a relatively short term period after LOCA initiation, followed by realignment to a recirculation mode of operation to maintain long term, post LOCA core cooling. Heat from the reactor core is transferred to the containment. The heat transfer path.to the' ultimate heat sink is completed by the containment spray system.

3.3.2 Svstem Definition The emergency coolant injection (ECI) function is performed by the following ECCS subsystems:

Safety injection Tanks High Pressure Safety injection (HPSD system (Tmin A and Train B)

Low Pressure Safety injection (LPSI) system (Train A and Train B)

The contamment heat removal function is provided by the following systems:

Containment Spray System Containment Fan Cooiers The HPSI system provides the high pressure coolant injection capability, and ,

the LPSI system perform the low pressure injection function. The Refueling Water Storage 1

- Tank (RWST) is the water source for both the high and low pressure injection pumps. <

and 3.3-2. Simplified drawings of the HPSI and LPSI systems are shown in Figures 3.31 The Comainment Spray system is shown in Figures 3.3-3 and 3.3 4 A'-

summary of dra on selected ECCS components is presented in Table 3.3-1. -

3.3.3 Sntem Oneration the ECCS meets short term cooling requirements primarily in1 two w ~

. passive safety injection tanks discharge into the cold legs of the RCS to provide core cooling and refill when the reactor pressure falls below the tank pressure. Adequate fluid is.

contained in the safety injection tanks to accomplish this function with one tank discharging-through the LOCA break.; Secondly, each train containing one high pressure injection pump and one low pressure injection pump delivers borated makup water from the RWST to the RCS, One ECCS train is capable of performing this short term cooling function with one of the injection flow paths discharging through the LOCA break. .

Long term core cooling =is accomplished by rceirculating-water in the containment upon reaching a preset sump.levelThe switchover in the RWST. from injection to recirculation occurs automatically Decay heat is rejected to the containment atmosphere.1 Heat removal from the containment-atmosphere is accomplished by the Containment Spray System and Containment Fans. Heat is removed from the shutdown cooling heat exchangers and fan coolers via the Reactor Building Closed Cooling Water System.

For long term cooling of small breaks, the high pressure safety injection pumps provide make up while the RCS is cooled down and depressurized to shutdown coohng initiation conditions utilizing the steam generator atmospheric dump valves and the Auxiliary Feedwater System. This is followed by a normal shutdown cooling operation.

19 1/89 l

l Millstone 2 The shutdown cooling tresidual heat removal) system operates when the RCS O temperature and pressure are below 350*F and 40 psia respectively. This " system"is an operating mode of the LPSI system in which the pump suctions are aligned to the RCS

!mp 2 hot le; via the shutdown cooling suction lines Reactor coolant is circulated through

ne shutdown cooling heat exchangers where heat is transferred to the Reactor Building Closed Cooling Water System and is returned to the RCS through the four cold leg injection paths.

When the RCS temperature is below 200*F, the containment spray pumps can be realigned to prov:de additional shutdown cooling flow.

3.3,4 Sntem success Criteria LOCA mitication requires that both the emergency coolant injection and emergency coolant recirculation functions be accomplished. The ECl success criteria for a large LOCA is the following (Ref,1):

3 of 4 safety injection tanks provide makeup as RCS pressure drops below tank pressure, and 1 of 3 hich pressure safety injection pumps delivers 75% of its rated flow to the RCS, and 1 of 2 low pressure safety injection pumps delivers 50% ofits rated Dow to I

the RCS.

ECi su: cess criteria for a small LOCA is the following (Ref. 2):

1 of 3 HPSI pumps injects into the RCS, O If the ECl success criteria is met, then the following large LOCA ECR success criteria will Q apply (Ref. I and 2):

At least one HPSI pump is realigned for recirculation and takes a suction on the containment sump and injects into the RCS, 3,3,5 Comnonent in fo rma tion A. High Pressure Safety injection pumps P41 A, B and C

1. Rated flow: 315 gpm @ 2500 ft head (1084 psid) j 2. Rated capacity: 100%

l 3. Type: Muldstage, horizontal, centrifugal i

B. Low Pressure Safety injection pumps P42A and B

1. Rated now: 3000 ppm @ 350 ft head (152 psid)
2. Rated capacity: 100 %
3. Type: Single stage, vertical, centrifugal C. Containment Spray Pumps P43A and B
1. Rated flow: 1350 ppm @ 450 ft head (195 psid)
2. Rated Capacity: 50%

D. Safety injection Tanks (4)

1. Volume: 2019 ft3
2. Nomial operating pressure: 215 psig O

(

x 20  ;/89

1 Millstone 2 E. Refueling water storace tarA

1. Capacityt- 475,000 gallons ,

- F. - Shutdown cooling heat exchangers HX 23A and B

1. Design duty: 27.2 x 106 Bru/hr t
2. Type: Sheli& Tube _

G. Containment Fans A, B, C, and D -

1. Design duty: 8 x 106 B:u/hr
2. Capacity:331/37c s

3.3.6 Sunnnrt Sntems and interfaces t

A. Control signals

1. Automatic The ECCS subsystems are automatically actuated by a safety injection actuation signal (SIAS). Conditions initiating an SIAS trip are:
a. Low pressurizer pressure
b. High contamment pressure
c. Manual actuation i

The SIAS automatically initiates the following actions:

i

starts the HPSI and LPSI pumps- '

aligns the pumps forinjection

-- aligns the pump suction to the RWST initiates the containment spray actuation signal which starts the -

Containment Spray Pumps initiates the Containment Air Coolers Switch over to the low pressure recirculation mode occurs automatically'on:

low levelin the RWST.

3

2. Remote manual . .

An SIAS signal can be initiated by remote manual means from the main control room. ECCS operation can be initiated by remote manual meansi B. Motive Power

1. All ECCS motordriven pumps and motor operated v' alves are Class 1E AC.

loads that can be supplied from the standby diesel generators as described in--

Section 3.6.

C. Other li The Shutdown Cooling Heat Exchangers and the containment air coolers are t cooled by the Reactor Building Closed Cooling Water System (see Section 3.7). ..

2. Lubrication is provided locally for the ECCS puinps and motors.
3. Pump room cooling is provided by the RBCCW. .

21 1/g9

Millstone 2

, 3.3,7 Section 3.3 References

1. Millstone 2 Updated Final Safety Analysis Report, Section 6.3.3.1.

Millstone 2 Updated Final Safety Analysis Report, Section 6.3.2.2.

i i

l i

9

)

I 4

l l

t i

I i

e i

i d

t

! 22 i 1/89' d

} r

. e-.__.-. ., - , . - . . _ . . . - , . . . . , . . _ . . . . , . - .

. , , _ . . . , , . . . . . . . . _ . - . . . . - , . . . . + , . . . . - - . . .

o op @ @ @

(v) . . . l1 L t 1

47. .-

.. 4,ne 4, ey 4,1:

1 i

I 7 :.

4m l' 47 :. 4.x -

i t-tZ: i tZ: tZ: I tZe tZ: tX! tZI t2!

j cDi cDI oI: oI:

__ I I cD cD co oI- oI oli oli oI:

i l- '

l l

E c.>

I E

It 1* C o m .O 1

l 20i,Isoss U l

t

.)

l 1 e -

i tO- '

E i l 3 l t: S C"$ C-EsE i!

', ;4}it  :'

N

/n i  !

im G E^}xIt i

  • ' C e

's__/

3 0 g N - W --

j C y; g; O O O G i

79 l L.y s Zi 12 ; EE 10 Zi i 1 ) "

n

,tZ, i 4 I E

a t. I f's f3 OI!OI!

e a CD i

3 -,

! hI h.

-a r

a a .

j g i i Es tII i

2i

~ i

r. .

oli

,q g , :.I -

!! X3 sII Ig:

43 5 4X; 5 Ed

.f .2 E 3 X =x a a l

. H X v* q O O OIs }

t g p.  :

- i- 93 -o e ol.i

  • e oil t'

47 : 25

'y - 4Z i  :- !linU

,/ ._N . ' m L j.

~- OS k,

i. l. 5e e

a g .--.____x i. OZ.!

VI X 23 1/89

M O s;;:

i u

rig-4 n

s;;r.

b.

e;le i

I

[I t

tZi tZio tf1 i  ! -

4 o

o_n l il Il il l o

t2 t2s t2 = . .

tf,'

tZ:

11 tZ tZ: ll tXs tit I tXe fil1 1. tX!  !

I oI r

oIs oIm oI,e s I t- e.

-- , c== g oI:

l' oI: oIs "

oIs oIs "

oIs oI: oIs t

4 .

.l, 4 f g

, O a

r . F E I

C It - O s tn

.t. t .s

!! 20-XI 20-35  ! $

t 1 05 Q' =1 E

,,  ! 2 I $

ajil- di a di a i

  • i 5  ? l slla -

=

g m ~~- U h

'o' T T 6 I_s Zi . I ,,:

I l- D I o XS I

t5 ZE E5 - Xii 3

,[I w

lI iki ){_ -

f :i=

f"5, fI oIl OIj; j

  • T 3 lh!:

i r

-l A ' ,i h..l ..(

! il  ! 5

, , ,.e-

~ ki sit OI I Jni  :.1 4T;'

' kigki::yg!" 41;. $

. gi

--  !!]lf - i: 'i-

.e 2 4

kE t2 w--g'fi

'O' J 013 Jill!  !.

5 E

i l I

" ' ~ l i

.......i IL yo 5; 1  ! n "m I I! ll ,gI. y ;. g

, ........., n tIf s!- tM!;

!lll  :

i{

+ '-

l d  : p- .x^

OE! -l!

oE  !

~

! U ' .; _, -

24 4

t/89

sa a -- - n - + --

r. P U

a

.1 j;

n. e , e 45 &

ft f

i. ,. r.

oI! ii OI! -

en 2'

13 :, 5:  !! g.eoss s#'t 1 EsE BE 8 str

+ 4 4 f-j

-H i IteI,t Is

' i Si H E

,1 ' '

e

~

u t m

y (I

-g. M oI; .

oIr i

i i

m C ;s C C e .- x n'9 ee i 7e g i -+'3 4 5 ) c h-+ f b c :s- *

.5 e

i C

!! tb li f:  !

H i 11 oI! oil s ir e

,s (

n

!O 2

e a o

>< #2 it L' y t) I! et I" g.

EL 24 Q SE 22 m I i 5 S' f I YE h_SE m

3 4'74

@ 47; 420 M- p (s

' l l e s' 025 0$!

m i's e,x o

.. y 25 jfs9 J

' 7'; ,f!$ t .jts,.[!{; b 5 .;,r t [;' , ,>f  ? { ,6!;i{ l!

- j t

_ , a l, ,

1

_ .. ,  ?

. , u a

c

, t .

. ,s m

_ . c m 3 e -

ee n

- yl s

=

I. .

s e

. =

  • s
s. - Ogw .
  • e e

. o

- u e s

._ ug n

s a 'tres . o m

w a

4

[

us si To s .

e it e

t e =o . a a ds

e. e tc c e c cmt c v e c M o s a

c ** ssra o*E Tp t

oa o e c

o s5T T L

+ + + lEF e '

N_s .

s ,.

t n

e H s. e,H M a a.

. n

I, - - -

1A

^ a co i. .

o p

r

,- m c . o 5'

~

U.

. m.

a c.

C g

_ 4 i

n

_ t .

. w I o h

n I S e .. ,

R w

cc w1 m a- ))g,N"e n * .

e e

n _. sc e

'm; s

c m t s

E-I y

  1. 3 S

y H - >g a i

p QY p r

S W- 5 *

'a a

c Qi 's t

t n

e M' O-f* -

" m v

f  :. Se s ' '

e yi 8 .

n uc.,

1 a 5 s i

mM' F

~ K= n r a sa s . sK 7 = s 5a 8 d,3s_c . e t*. 8 t

n era eC -_wK ou - .

T 5 o tn

', v c 74 ..'m. -

s .

o e TP . . .

TM e q (poM . C u .- ^

, I' 5,j;q.

^

i

+ '

2 e

a

.- " r -  ; 7' .

",_+

x3 3 -

n w

4- o M'"'4.mm .l

.i t

ls M

I T

4-

. 3

, 3 c.

. e r

.. g u

, i F

c,

" s

.s.

s e

k'.

3 3

- *pc ow

}.

' ." Je l

g l

p -

a.

[8 ,.

y, I

t's 2 5 ,

r e

s ~  ;

_W E J*

f 53 j- j; ,$ <n + . _ij< 4i=  ;

3 .j$} ,

?i. t .l4 1;4 );t  : , 1ll ;).

\%

Table' 3.3-1. Millstone 2 Emergency Core Cooling System Data Summary for Selected Components COMPOf1ENT ID COMP. LOCATION POWER SOURCE VOLTAGE POWER SOURCE EMERG.

TYPE LOCATION LOAD GRP.

616 MOV PPPENSW MCC-B61 460 14GENAR AC/B 617 MOV PPPENSW MCC-BS1 480 14GENAH AC/A 626 MOV PPPENSW MCC-B61 400 14GENAH AC/B 627 MOV PPPENSW MCC-851 480 14GENAR AC/A 636 MOV PPPENSW MCC-361 480 14GENAR AC/B l

637 MOV PPPENSW MCC-B51 480 14GENAH - AC/A 646 MOV PPPENSW MCC-861 480 14GENAR AC/B 647 MOV PPPENSW . MCC-BS1 480 14GENAH AC/A HWST- TK HWST-SI FM A MDP ESF1 BUS-B1 4160 Z14KVHM AC/A y '. St PM B . MDP ESFSWB BUS-85 4160 Z14KVRM AC/A SI-FM-C MDP ESF2 BUS-82 4160 Z24KVHM AC/B SI-V008 MOV. ESF1 MCC-861 480 14GENAH AC/B SI-V009 MOV ESF1 MCC-851 480 14GENAH AC/A SI-V010 MOV HWSTVENCL MCC-861 480 14GENAH AC/B SI-V011 MOV HWSTVENCL MCC-851 480 14GENAR AC/A SI-V411 MOV- ESF1 MCC-861 480 14GENAH AC/B SI-V412 MOV ESF2 MCC-851 - 480- 14GENAH AC/A SI-V654 MOV ESF2 MCC-861 480 14GENAH AC/B SI-V656 MOV ESF1 MCC-BS1 480 14GENAH AC/A C

w

. . . . . . . . , . . , . . . , . , . . i- . _m , ... .... ,. ...........,...-......y . .....m . . . . . . . _ . . . . _ _ . . , . . . . . . . . . . . .. .......i

Millstone 2 3.4 Cll ARGING SYST131 O

Q 3.4,1 Svstem Function (CYCSL The The charcing system is part of the Chemical and Volume Control System CVCS is responsible for maintaining the proper water inventory in the Reactor Coolant System and maintaining water purity and the proper concentration of neutron absorbing and corrosion inhibiting chemicals in the reactor coolant. The makeup function of the CYCS is required to maintain the plant in a long term hot standby condition following a transient.

3.4.2 Sntem Definition The CVCS provides a means for injection of control poison in the form of boric acid solution, chemical additions for corrosion control, and reactor coolant cleanup and degasification.

The system also maintains the required water inventory in the RCS.

reprocesses water that is letdown from the RCS, and prevides auxiliary pressurizer spray and collects the bleed off from the RCP seals.

The CVCS consists of several subsystems: the charging, letdown, seal water collection system, the reactor coolant purification and chemistry control system, the reactor makeup control sys:em, and the boron thermal regeneration system. The functions of the CYCS are performed by the following components: (a) the charging pumps,(b) boric acid transfer pumps, (c) volume control tank, (d) boric acid tanks, and (e) various heat exchangers and demineralizers.

Simplified drawings of the CVCS, focusing on the charging portion of the system are shown in Figures 3.41 and 3.4 2. A summary of data on selected charging system components is presented in Table 3.41, 3.4.3 Sntem Oneration During normal plant operation, two charging pumps are running with suction V aligned to the Volume Control Tank (VCT). The letdown flow from the RCS cold leg is cooled in the tube side of the regenerative heat exchanger, then directed to the VCT, The bulk of the charging flow is pumped back to the RCS through the shell side of the regenerative heat exchanger via the charging lines.

The charging pumps can be aligned to take a suction on the Refueling Water Storage Tank (RWST) and provide long term makeup to the RCS following a transient, The CVCS letdown lirie is automatically isolated upon detection of a LOCA.

3,4,4 Svstem Succeu Criterin For post transient makeup to the RCS the following charging system success criteria ir, assumed:

A long term water source must be available to the charging pumps.

One of three charging pumps is available.

A makeup path to the RCS is available.

3,4,5 Comnonent Information A. Charging Pumps PISA, B, and C
1. Rated capacity: 44 gpm 2, Nomial discharge pressure: 2735 psig
3. Type: Positive Displacement B. Refueling Water Storage Tank (1) 1
1. Volume: 475,000 gallons 2S 1/89

_ - - . . , ,n . ~ ,- --s. -~ , . e. ,

Millstone 2 C. Regenerative Heat Exchanger (1)

1. Flow: 40 gpm (letdown),44 gpm (charging)
2. Type: Shell and tube, vertical (charging: shell; letdown: tube) 3.4.6 Sunnnrt Rvstems and interfaces A. Control Signals
1. Remote Manual The charging pumps and motor operated valves can be actuated by remote means from the control room.
2. Manual Manual valves can be actuated by hand at their specific locations.

B. Motive Power

1. The positive displacernent charging pumps and motor operated valves of the CVCS are Class lE AC loads that can be supplied from the standby diesel generators as described in Section 3.6.

C. Other

  • 1. No external cooling water or lubrication systems for the charging pumps have been iden:ified.

l 2. Pump room cooling systems have not been identified, i

l n l

k b

a 29 1/89

i

  • , 95 9% g -t g!: E$ 's$

en 89 -8s ls-as tki tk? tkB l.

SG-5b e WEE 8 E 2 iE

.ua- g F. -

tg. o E r< ' ~

s*l i g I 09'

> > wm ~R t X m 1, 7~%e-e . ,

j y

i

j. C O

13 R O

.s- OK!c-

, o N E.

1 .

l. 3 X$. XE' 21 _s H.E.

e

!k~ $

i v-W Mo+E t E? t2h tZi

  • m p s o' 4} ff;~

. .e

g--g J i, '

2 5

2 5

! E

- 5- .E -

l- ,

o 2C-1E eOl!a-  ! R R "

e o

-H o

g I I.

3 c

.s. t29 t2~=  ;

4 -

tZi tZi ,

l.! .

I R gy- #

7 e o-I - -

or 4-OK $ '1 uwsgr [1o .'

EPs [ -W E5 Em W I-ps$

E

-- :.8

@*T Rh:

9-

$[t - g[g N? 4 E .'e $

4

-5 r,tZi X -t e Ogia  !

ur i

-l 30- -

-- 'l

'i i ,j i ,,

,) j I!11 l{l

! , ,! I I R

N S R

mmA Y

%"A- E t

w4' eM o P xR E

I E rH t

A s

. TS 1 l uCx n

-- oEr i o

'43 43 b3 g

4 3

4 2

4 miNcvOs r a I.n t

a Ei 4u tr9 s 4 c o _

- C9WO N .L ,.

L R7 9 s C pw$ 1 C, l

JP s' C t c m t u sOTO t

F vT uF i V

r " n r

a

. s r

a f TOE f 1 e u

i w

n P.

T o n

e AR EE p

t; HG NA N m

= o l

4 16 EH~

4

,M CC 5

C M2 V EX RE

+

0 h n g

4 i

. 4 C C F F '-

w

_- o h

0 4

3 , Ga v2 9

S 3

3 D' 4 m

- c e k,

t

, ]

9 s 3

3 V - W3 '3 g3 6, S

y SH A v C11 o l A

  1. 4 5 is s

v 8

o r

. Ri H 8 " j. t nI 8

. F S C 8 3

2 3' 3

3 2 n W

h

~

o s

- Q -

4 8

ss i

c, C

s e

An 1 8 i

9 P1- .' P~

NC

!O V

e 9

' H-C H

g o

m I

E T '

c c u l t l C

7

.8 0 o V

- 5 s

1 C v. 4-Y~.

M f v F 1 -

H H 3 d

9 3 C C

W Ik 9

11 n d -"

0 7 a

v

,.. l

, 81 ,

, a I

_? i c

6 a C K

1 4%t s I

N R TA' x 1, . m 0

3 O

B

, T 2 e

[ h u8 MO~

OCc k c, t,-.

C

^

R A

F g.

Cn A

2 O

B~

M e

n

~

CiP f

Oo

= OPSAfM uU AP Rc FA t t

o M

l s

l i

+

. I. Rf IB S

P T EJ N

W M

w YR" Af 4

LS NY 1 O

r O

st W. A I S I. C AY N .

HW 2A P SO ON CRS OPE K 2-fP S TSY ON J A0 1. C 1A Tt P

MK f

t SD

  • 6 4

l f A FM ON I A 3

4 2 3

  • 4 9 1 e

n

. hsvc i

r u

[# g m [ -; 1 1 i T

S 0

V F W 1 D $

r_

. ~ me

) ,l i ,  !, ,j ' , , : - 4 * ,

(1:

N Table 3.4-1. Millstone 2 Charging System Data Summary '

for Selected Components COMPOt1ENT ID COMP. LOCATION POWER SOURCE VOLTAG E POWER SOURCE EMERG.

TYPE LOCATION LOAD GFTP.

Cil-P18A MDP CIfGPMPHM MCC-851 480 14GENAR AC/A  !

Cil-P188 MDP CifGPMPHM MCC-BG1 480 14GENAR AC/B -

Clf-P18C MDP C11GPMPHM MCC-861 480 14GErJAR AC/B

, Cit-V429 MOV C11GPMPHM MCC-US1 480 14GENAR AC/A Cil-VSO4 MOV VCIRM MCC-B51 480 14GENAR AC/A i RWST TK RWST i

. b I

g 4

t 1

i C-i m -. __m.._ , ..

Millstone 2 O 3,5 INSTRUMENTATION AND CONTROL (I & C) SYSTEMS 3,5.1 Svctem Function The instrumentation and control systems onsist of the Reactor Protection System (RPSh the Engineered Safety Features Actuation System (ESFAS), and systems for the display of plant information to the operators The RPS and the Engineered Safety Features Actuation System monitor the reactor plant, and alert the operator to take corrective action before specified limits are exceeded. The RPS will initiate an automatic reactor trip (scram) to rapidly hutdown the reactor when plant conditions exceed one or rnare spectfied limits. The Engineered Safety Features Actuation System will automatically actuate selected safety systems based on the specific limits or combinations of limits that are exceeded. A remote shutdown capability is provided to ensure that the reactor can be placed in a safe condition in the event that the main control room must be evacuated.

3.5.2 Svetem Definition The RPS includes sensor and transmitter units, logic units, and output trip relays that operate reactor trip circuit breakers to cause a reactor scram. The Engineered Safety Features Actuation System includes independent sensor and transmitter units, logic units and relays that interface with the control circuits for the many different sets of components that can be actuated by this system. Operator instrumentation display systems consist of display panels in the control room that are powered by the 120 VAC electric power sys'em (see Section 3.6). Remote shutdown capability is provided by the Hot Shutdown Panel, designated C21, 3,5,3 Svetem Onerntion y A. RPS The RPS has four redundant input instrument channels for each sensed

! parameter and two ourput actuation trains (A and B). The A and B logic trains independently generate a reactor trip command when prescribed parameters are outside the safe operating range upon a 2 out of-4 coincidence from the input instrument channels. Either RPS train is capable of opening a separate and independent reactor trip circuit breaker to cause a scram, The manual scram A i

and B circuits bypass the RPS logic trains and send a reactor trip command directly to shunt tnp circuitry in the reactor trip circuit breakers.

B. ESFAS The Engineered Safety Features Actuation System has three or four input instrument channels for each sensed parameter, and two output actuation trains  :

(A and B), in general, each train controls equipment powered from different Class lE AC electricalload groups. An individual component usually receives an actuation signal from only one train. The Engineered Safety Features Actuation System generates the following signals: (a) safet signal (SIAS), (b) containment isolation (CIAS), (c) yinjectionspray containment actuanon actuation (CSAS), (d) enclosure building filtration actuation system (EBFAS),

(e) diesel generator start, and (f) auxiliary feedwater automatic initiation signal (AFAI). The control room operators can manually trip the various logic subsystems. Details regarding actuation logic are included in the system description for the actuated system.

C Remote Shutdown In the event the operator is forced to abandon the control room a: i the reactor is tripped, it is possible for the operator to maintain the unit in the hot shutdown J

condition oy controls and instrumentation provided on the Hot Shutdown l

33 1/89

Millstone 2 l n Panel. This panel is built and analyzed to meet seismic Class I specifications.

3 The panel including all mounted equipment will remain structurally intact such

. (d that no equipment will become loose, separated, or dislocated when subjected to  ;

a design basis earthquake, The following controls are provided on the Hot Shutdown Panel (Ref.1):

Steam dump to atmosphere Letdown flow Pressurizer spray Charging pump Pressurizer heater Auxiliary RV valve Auxiliary RV pump Auxiliary RV pump crossover valve Auxiliary RV pump turbine speed Main Steam to Auxiliary RV Pump turbine stop valve All controls and instrumentation are compatible with those provided on the main control board. Subsequent to a hot shutdown,it is possible to 5.ng the unit to the cold shutdown condition safely (external to the contr-; room) with the i following additional provisions and procedures:

Boric acid transfer pumps can be controlled by pushbuttons from the l associated emergency motor control cente-- located in the plant.

(

(

Low pressure safety injection pumps can be controlled by control switches w provided on the associated 4160 volt emergency switch-gear cubicles.

Normally con' rolling instruments on this panel are set in the "By Pass"

' ?osition i.e., the main control board has direct corcrol of the final elements.

t However, the system is connected in such a manner that it is possible to overnde the main board instruments and take conuol at this panel.

Since the hot shutdown panel is never used except in case of an emergency, full bright doors are provided to close off the panel front. Doors are normally closed but not locked. A.i open door is alarmed in the control room.

To ensure maximum availability, tow channels of controls and instrumentation are provided on this panel. One channelis capable of performing its function to maintain hot shutdown.

3.5.4 Svstem Success Criteria A. RPS The RPS uses hindrance logic (normal = 1, trip = 0) in both the input and output logic. Therefore, a channel will be in a trip state when input signals are lost or when control power is lost. A 2-out of 4 coincidence from the channels is required to cause a scram. When the channel is temporarily removed from service for testing or maintenance the logic can be changed to a 2-out of 3 coincidence. A reactor scram will ot er upon loss of control power to the RPS.

A reactor scram usually is implemt, ed by the scram circuit breakers which

,o i \

V 34 1/g9-

hiillstone 2 p) g V

must open in response to a scram signal. Typically, there are two series scram circuit breakers in the power patn to the scram rods. In th s case, one of two circuit breakers must open. Details of the scram system for hiillstone 2 have not been determined. (Ref,2)

B.ESFAS A single component usually receives a signal from only one ESFAS output train. ESFAS Trains A and B must be available in order to automatically actuate their respective components. ESFAS uses hindrance input logic (normal = 1, trip = 0) and transmission output logic (normal = 0, trip = !). In this case, an input channel will be in a tri a state when input signals are lost or when control power is lost. When the ciannel is temporarily removed from service for testing or maintenance, the channel can be bypassed, leaving it in a non tripped state. Control power is needed for the ESFAS output channels to send an actuation signal. Note that there may be some ESFAS actuation subsystems that utilize hindrance output logic. For these subsystems, loss of control power will cause system or component actuation, as is the case with the RPS. Details of the ESFAS system for Millstone 2 have not been determined. (Ref. 3)

C. 51anually-Initiated Protective Actions When re'asonable time is available, certain protective actions may be performed manually by plant personnel. The control room operators are capable of operatine individual components using no; mal control circuitry, or operating groups of components by manually tripping the RPS or an ESFAS subsystem.

The control room operators also may send qualified persons into the plant to

  • Q Q

operate components locally or from some other remote control location (i.e., the Hot Shutdown Panel or a motor control center). To make these judgments, data on key plant parameters must be available to the operators.

{

3.5.5 Sunnnrt Sutems and interfaces A. Control Power

1. RPS The RPS input instrument channels are powered from the 120 VAC instrument buses (see Section 3.6). It is assumed that the RPS A and B output logic trains are powered from separate 125 VDC distribution panels.
2. Engineered Safety Features Actuation System The input instrument channels are powered from 120 VAC instrument buses. It is assumed that the A and B output logic trains are powered from separate 125 VDC distribution panels.
3. OperatorInstrumentation Operator instrumentation displays are powered from the 120 VAC instrument buses. 1 3.5.6 Section 33 References
1. hiillstone 2 Updated Final Safety Analysis Report, Section 7.6.4.
2. hiillstone 2 Updated Final Safety Analysis Report, Section 7.2.1.2.
3. Niillstone 2 Updated Final Safety Analysis Report, Section 7.3.2.

35 1/89

V Millstone 2 3.6 ELECTRIC POWER SYSTEhl 3.6.1 Dstem Function '

Be electric power system supplies power to various equipment and systems needed fr mnnal operation and/or response to accidents. The onsite Class IE electric a power spe suppons the operation of safety class systems and instrumentation needed to establish a maintain a safe shutdown plant condition following an. accident; when the .

normal eimrt power sources are not available.

3.6.2 L, gun Definition W vnsite Class IE electric power system consists of two AC load groups.

Diesel genetw A is connected to 4160 VAC bus B1, and diesel generator B is connected

' to 4160 VAC W B2, A third 4160 VAC bus (BS) can be connected to either diesel generator. Thenre two emergency 480 VAC buses designated buses 22E and 22F.

These are conned to the B1 and B2 busses respectively through transformers U% and UB6 respectively. . mtor control centers B51 and B52 receive their power from bu 22E and motor control ceners B61 and B62 receive their pawer from Bus 22F, Emergency Inwer for vital instruments, control, and emergency lighting is supplied by two 125 VDC load groups. Two station batteries energize ruo DC buses, <

designated bus 201 A and bus 2018. Four 120 VAC instrument panel buses (panels VA10, V A20. V A30, and VA40) are connected to the DC buses through inveners;

' Simplified one l.ine diagrams of the electric power system are shown in Figures 3.61 and 3.6 2. A summar: of data on selected electric power system corcpenents is '

presented in Table 3.5-1. - A partial listing of electrical sources and loads is presented in Table 3.6 2.

! 3.6.3 Svctem nneration i

Dunng normal operation, the Class IE electric power system is supplied from the 345 kV switchyard. The emergency sources of AC power are the diesel generators.

The transfer from-the preferred power source to the diesel generaars is accomplished automatically by opening the nonnal source circuit breakers and then reenergizing the Class -

lE ponlon of the electric power system from the diesel generators. .

The DC power system nonnally is supplied through the battery chargers, with' the batteries " floating". on the system, maintaining a full charge. ~Upon loss of AC power, the entire DC load draws from the batteries, The batteries are sized'to supply power to-design loads for up to I hour (Ref.1). .

respective 'inverters.

The 120 VAC vital buses normall' receive power from the DC buses through Redundant safeguards equipment such as motor driven pumps and motor operated valves are supplied by different VAC buses 'For the purpose of discussion, this equipment has been grouped into " load groups" JLoad group AC/A contains components powered either directly or indirectly from 4160 bus Bl. Load g oup.AC/B contains components powerea c!:her directly or indirectly by bus B2 Bus B5 is a swing bus that can be manually connected to either load group AC/A or AC/B, and is located in the same area as bus Bl. Components receiving DC power are assigned to load groupt D(s/J or DC/B, based on the battery power source.

3.6.4 Svetem Success Criterin Basic system success criteria for: mitigating transients _and loss of coolant

..Jents are 6 fined by front line systems, which-then create demands on support systems. Elec ric power system success criteria are defined as follows, witliour taking credit for cross ties that may exist between independent load groups:

\.

36 1/s9 i

- . _ . _ . _ _ __ - - -_._._.. , ..,_ _ . _ . _ .~.- _ -

~

l hiills'one 2 A

' Each Class lE DC load group is supplied initially from its respective battery (also needed for diesel starting)

Each Class lE AC load group is isolated fros > the ncn class 1E system and ic supplied from its respective emergency power svece (i.e diesel generator)

Power distribution paths to essential loads are hact Power to the battery chargers is restored before the botted,8 are exhausted In order to maimain an extended hot: shutdown condition, one diesel generator is required.

3.6.5 comnnnent information

  • i A. Standby diesel generators (2)
1. hiaxitoum continuous rating: 2750 kW 2, 300 hour0.00347 days <br />0.0833 hours <br />4.960317e-4 weeks <br />1.1415e-4 months <br /> rating: 3250 kW
3. Rated voltage: 4160 VAC 4 hianufacturer: Fairbanks h1orse B. Batteries (2)
1. Type: lead acid (60 celD 2, Rated voltage: 125 VDC 3, Raung with design load: I hour per battery 3.6.6 Sunnort Enter 1.anr1 interfaces i

O A. Controt Signals l

V l . Automanc The standby diesel generators are automatically started based on:

Undervoltage on the nomial bus, loss of offsite power (LOSPW) .

l Safety mjecuon actuanon signal (SIAS) -

l l 2. Remote manual The diesel generators can be started, and many distribution circuit breakers -

l can be operated, from the main control room. -

B. Diesel Generator Auxiliary Systems t

1. Diesel Cooling Water System l Heat from both diesel generators is transferred from a jacket water system to the Service Water System (SW, see Section 3.8).
2. D;esel Starting System Each diesel has an air starting system.
3. Diesel Fuel Oil Transfer and Storage System A " day tank" supplies enough fuel for about 3.5 days without replenishment. Each day tank can be replenished from a storage tank during engme operanon.
4. Diesel Lubrication Svstem~

Each diesel generator has its own lubrication system.

5. Diesel Room Ventilation System This system consists of exhaust fans which maintain the environmental conditions in the diesel room within limits for which the diesel generator I

and switchgear have been qualified. This system may be needed for long-l h]

Q.

term operanon of the diesel generator.

37 1/89

Millstone 2 l

j ( 3.6.7 hetion 3.6 References

1. Millstone 2 Updated Final Safety Analysis Report, Chapter 8, I

i I

i i

4 I

4 i

5 i

1

]

i 4

f 38 jfgg C

r , ,

a a

a . ,,

~ e.s  ; a F

]

tr . e 7

a-a 2 5r r

a e

sg;,, ,

l s

e

= ee y

s g _

. a

=

t

=

( _

m, * ,, C a m,. f = a t m _

t

. ,. o m a t

s t

e -

, e 6

. 1 _. c: s y

. . w

. S l -. l n

. i o

j t m j u r, m y .

$g, ,

b i

t r

. m8 emI

a. .

-ee g

e s s _

wTSm s

. ca t*w?e s.

ar 7I _. _ .

p g

s e

f r

e t

s i

D _

s 1a m ]

$ e -

e t

x- 7 B a,

y,

., m x ,-

i L G a

s 4 o w

m ,

  • . . - E c

P te m = -

. e v c x c.

i e

s e , m i

t r

. . l i

. . , 4 c p ra g e 15A .  ;. q l E

{ 7) m.h

. C y ~ e A l

V

.C 4 0 h a . .

- 8 r 4 o)..

,.77 1 F . n .

a . d

,s

,.S T . c n sm=c c.

. ,, a v S1

. x .

0 6

-, 1 x { . ,

4 2

.. i e

r.

+ .. n t o

0 8 l s

l 6'

9 i

j j

4 D 2" R M

= S u t. P4

?

S

+ 4AnU l

li 1 C -

- _- A W

5aFJ 4aG 7

W 6

w . P

. + .

4 e

s 3 Vt J n E ,, .

mM4 9 e

r

  1. av

= ,V

, pv

() a C . .

3 R u S

  • H AJ S

U rP2 t g

,Pa at eP 3C . S i 0Y ,4a + s u F

-}A-j 1 wu = Ca wCv Af E

,R '%s, e w aBG z

. n I O e

s P Pu .,G e u = *

s. m. m:s e

=

  • C 7

2 S

U R,)

E.P T

l S Av U i

C +4J6

.- s37R r a

v reg Z

t xf 0 e1E n- e P

.8 e

+ u oTsE u' s

,,.4 9

a sT1 suu*w vgRC 4 7 2

_ =

3<

gt a

7) =

c a

w

  • g a

4 net a ae vr V

i

+ <.r.a Ue isG n

C Jc A

T,

%n.e

1 l

l t , ,

: g g g a

{ }'[1 - E 5 k[! g E

~*~~

y j "u'n -

u 3: -

i =

-*- y!

g -

r

'I

';L

. 1 j

C- *- -+

[.

y  : g X

i p- E

-R 5

5 y

,i e - [ W,_ - $

v, -

, , c

. o

~

g

, -.-o- E s - @

1 3 r.-i r.,e'.-,t r a i f

.  ! s* r a ly!! -y X

~*-- 9 0 leMy -

I s u e  :

E s

y I o

,R

,; y .:: c -*- a oe p .__J.t i +2 e

<- v 3ey g

. n) -

f

'g u ._

a H j g  :-

: L w T, y

g@

d

oo

!,)(Gu

. !. .g

.- p i 2 a,  : e oe

-- o <t 7,

e -. 3 g a >E c l

e 5

y - . -

W oae s

4 n.

-o_ : >

c 3 e,o

. r f  ; eu 4

(- n s . 2. . E e c g,;q,, .y a een

.n ,

._  : i y s,

y '." .

. I ,

e ::-

. ,3 e.- O y , e .c

,- v v)

It -

4

, c -.

. S l

> c I C

. E

f. -*

I -

S ag[ ~

m EA! g 5 it-

=

w

  • E.

+gp; .

1 n li - W

'sta a 5

ly - *- lU s  ! d o

,e u , - .

n

.. p' :s , s

.s Ij - il , jgi t.---. . ,y.. q;d ~ en i +--.  ;

se g. it a :I ,

el5 u

y

+ s!Ec I

17,3 n;k r g -;

0 e Il I! ~

- - I 11 -

! . p!5i p

-t Rie.

.Il,,d i T:

blat

?!

.-  ! ~

O li t

+(t e.6 O

40 1/g9

N

, ,r"% f ss j s> ~ -

)

f nnaa ery vac f tw ** asu) V AC s+F*Aem VAC E MF EIG IM G rF fu ls; ERG.7f 8 *

  • e C f" G rF REC 17',1 #ACC B*.2 t t t > -

e S S' S Ps' C mt eAcc rie..-

E t S 3Z BC 'l fiC 'FC I' I of 'I c2 IP' p,77ggy { - 2 l t*3 Z

NI$N NisT eMC?T?O - pA TTT Rf 8 " #'

t ATTitt(

4 IB I h 4 4%1.M 107,Z %g* .

  • O' * #

-[

l pp r ! ,a

't ll. . .... ..-- - -f1- g l i

_] t I r m

Y# 125 VDC ER1S 201 A 5

,/' l t.% VDCPiG 20?B , . _ .

/

'%- I I ,

~ _J.. rtv S

I I -

6

"~

u 4 L, ,_l_

E 12C VAC KEGUL Af f D PNL VR15 r

92c VAC 5%CirA7F D f*4 VICT i ,7 , i di vs3 . VSa oft ge VS1 YO2

.a . S u i e i 120 VAC srf5T 8Tt VNIO T20 VAC PGT F*( VA?S 120 VAC 7",T ftJL "AO 123 V AC PdST PNL V4 eft

q Figure 3.6-3. Millstone 2125 VDC and 120 VAC Electric Power Distribution System

Bat tfeue l l l st a t s sews FraOu em3 VAC FSC8J 4!v3 V AC i a ** 49C V AC i LF HG 9J5 M ( M[ fy;DtG 22E 4 "$ it". Fi %76

,,V . .,

MCC H51 MCCB52 f f

7 8.9 C B61 DEC 842 i t

t j- l i- e: I t s eC . .

vis se -

5Z Ot 2 D3 2 D2 p NN N 880/120 8 *C123 D C *

,v,1 N PAT tif 3Y =

l __________..7,_.

Y PATM ut

'P I P

_l t I 'r p, _-- 125 YDC BUS 201 A  ??$ VOC PtG 20tB , _ ,

O

/J6 5 , t C

, , [

M

~ ~

[ ,L

~

s

~'

sJ 120 V AC 51EGA AT ED M(VR11 r 120 VAC AEGA. ATE 0 8*t W1 O-_. c._.1 I

3 d

A' e I Vs3 k VS4 3 ,

e ,

VS1 VS2 120liAC INST PNL VA30 120 VAC INST Mt VATO 120 VAC Fe57 8WL VA?O 120 VAC FGT Pt VA40 i ocs.ca-A I i ocs.ou.e i

.- nortamS uAnor m Parsi nr ACrun cun t so n ec er rwun wrus cc o

Figure 3.6-4. Millstone 2125 VDC and 120 VAC Electric Power Distribution System i'

Showing Component Locations

Table 3.6-1. Millstone 2 EicCtriC Power System Data Summary for ScieCted Components COMPONENT ID COMP. LOC A TIOP3 POWER SOURCE VOLTAGE POWER SOURCE EMERG.

TYPE LOC ATIOtt LOAD GnP.

BAT T-A BAlT BATT HMA 125 DC/A BAII B BAII BAI IH'AU 125 DC/B BC-DC1 BC DCSWGHMA BUS-22E 125 W480VHM DC/A CC-DC2 BC DGCNGHMB BUS-22F 125 E480VRM UC/B UC-DC3 BC DCSWGHfAA BUS-22E 125 W480VHM DC/A BUS 22E BUS W480VHM TH UBS 4160 214KVHfA AC/A I BUS 22F BUS E480VHM TH UBG 4160 Z24KVTU.1 ~ ~ [9, ~~ f BUS B1 BUS Z14KVHM DGA 4160 IXIA ~ [ADA

'ih1S B2 BUS Z24KVHM DGB 4160 UGb ~ AC/B BUSBS BUS Z14KVRM DGA 4160 DGA AC/A BUS B5 . BUS Z14KVHM DG B 4160 DGB AC/B BUS-201 A BUS DCSWGHMA BC-DC1 125 W480VHfA DC/A BUS-201A BUS- DC5 N AA BC-DC3 125 *#480VHM DC/A BUS-201A BUS DCSWGHMA BAT T-A' 125 'BATIHMA DCIA BUS-201 B BUS DCSWGHMB BCDC2 125 E480VHM DC/B BUS-2018 BUS DCSWGHMB BG DC3 125 E480VHM DC/B BUS-2018 - BUS DCSWGHMS. BATT-B 125 BAITHMB OC/B CBC1 CB Z14KVRM DG-A 4160 DGA AC/A CB-C2 CB Z24KVHM DG B 4160 DGB AC/B CB-CS-DA CB Z14KVRM - DGA 4160 DGA AC/A GB-CS-DB - CB Z24KVHM DG-B 4160 DGB AC/B DGA DG DGA 4160 DGA AC/A DG B DG DGB 4160 DGB AC/B

) INV-1 IfW DCSWGHMA BUS-201A 125 DCSWG3MA DC/A trW-2 : NV DCSWGHMS BUS-2010 125 DCSWGHMB DC/B IfW-3 IrW - DCSWGHMA BUS-201 A 12.5 DCSWGHMA DC/A IfN-4 IrW DCSWGHMB BUS-2018 125 DCSWGHMS DC/B OCC-UST FACC 14GEfJAH BUS-22E 480 W480VHM AC/A

i i

Table 3.6-1. Millstone 2 Electric Power System Data Summary,  !

j for Selected Components (Continued)

COMPONENT ID COMP. LOCATION POWER SOURCE VOLTAGE POWER SOUACE EMERG.

TYPE LOCATION LOAD GAP. '

MCC-852 MCC ENBDVIHM BUS-22E 480 W480V11M AC/A MCC-861 MCC 14GENAH BUS-22F 480 E480VHM AC/B i MCC-862 MCC CRHVACHM BUS-22F 400 E480VilM AC/B PtJL-VA10 PtJL DCSWGHMA I?JV-1 120 DCSWGHMA DC/A l PtJL-VA20 PtJL DCSWGHMB ItJV-2 120 DCSWGHMB DC/B .t PfJL-VA30 PNL DCSWGHMA INV-3 120 DCSWGHMA DC/A i PNL-VA40 PtJL DCSWGHMS INV-4 120 DCSWGHMB DC/B PNL-VH11 PNL DCSWGHMA MCC-852 480 ENBDVIHM AC/A PNL-VH21 PNL DCSWGHMB MCC 062 - 480 CRHVACIlM AC/B <

TH UB5 TRAN Z14KVHM BUS-B1 4160 Z14KVilM AC/A I H-UB6 THAN Z24KVHM UUS-B2 4160 Z24KVHM AC/B - l t ,

f

.C ,

I

Table 3 6 L Partial Listing of Electrical Sources arid Loads at Mllistone 2 ECnER v0LT AGE EMERG kQuiR Sou6E LOAD LOAD COMP COMPONENT SDUME LOAD GRP LOCAT!ON SYSTEM COMPONENT ID TYPE LOCATION 6AIT A . lit DC. A t,ATIAN% EP OVS 201 A bVS DCSWGRMA DIT 6 12$ DC. B BATTRMB EP bus 2010 BUS DCSWGRMB EC De t ti5 DCsA W460VRM EP OVS 201 A BUS DCSWGAMA SCDC2 126 DC D E480VRM EP BUS 2018 BUS DCSWGRMB BC DC3 12b DC, A W460VRM EP BUS 201 A DUS DCSWGRMA EC DC3 le$ DCe b kd60VRM EP BUS 201D bus DCSWGRMB bvS201A '1;b DC, A DC$nGRN% EP INV 1 INv DCSWGRMA DuSs01A 125 DC A DCSWGRN% EP INV 3 INV DCSAGAMA 6 w s01B ist DC,b DCSWGRMB AF W AFW V4188 MOV TOPMPRM E A 2016 1;i CCb DCSAGRVB EP INV2 INV DCSWGRMB bswiptB 125 DC 6 DCSWGRM6 EP iNv 4 (Nv DCSWGRMB s w iiE 460 A'uA W460VRM iiCCS ACV RC E s S-i d 460 AC A W460v4M ECCS ACV RC EUSI;E 1st DC A W400VRM EP BC DC) DC DCSWGRN%

6v5 ZiE 12b v EUS-2if 460 DC A A C, A W480VRM W460vhM EP EP BC DC3 MCC BS)

BC MCC DCSWGRNw 14G EN AR EvS ;2E 460 AC/A W480iRM EP MCC B52 MCC ENBDVIRM BUS 2if 460 AC/D E460VRM ECCS ACU RC bus 22F ab0 ACib E460VRM ,

ECCS ACU RC Bus 22F 12b DC, B E480VRM EP BC DC2 BC DCSWGRMS BUS 22F 460 AC, B E460VRM EP MCC B61 MCC 14GENAR BUS-22 F '460 A C.B E480VRM EP MCCB62 WC CRHVACRM BVS B1 4160 AC. A 214NVRM AFW AFW MDA MDP MDPMPRM bWS 61 4160 A Ci A 214NvRM CCW CCW Pila MDP 25GENAR

~ BUS B) 4160 ACiA 214NyRM CS CS P42A MDP ESF) hVS B) 4160 AciA 214KvRM ECCS SI PM-A MDP ESF1 BUS-B1 4160 AC, A 214 KVRM EP TR US$ 1RAN 214 AVRM BUS B1 4160 AC/A 214NvRM SW SW P5A MDP INTSTR i

BUS B2 4160 AC/B 224NVRY AFW s. W MDB ]

MDP MDPMPRM i bus 62 4160 ACs B 224KvRM i CCW CCW P11C MDP 25GENAR i

BUS 62 AC,6 l4100 2246vRM CS Gb P420 MDP ESF2 j

I 45 IM ,

I

-- - -~ - _ - . - . . - . . _ . - -- .- . . - - . - . - . . . - . - . ..

Taale 3.6 2. Partial Listing of Electrical Sources and Loads at Millstone 2 (Continued)

O LOWL4 VOLTAGE EMERG POWER 60VRCE LOAD LOAD COMP COMPONENT LDURCE LOAD GRP LOCATION SYSTEM COMPONENT 10 TYPE LOCATION

~

Bv5.k2 4160 AC,8 224KVRM ECCS Lif M-C MDP ESF2 6V>bi 414,0 Aceb 224NvkM EP 1R V66 TRAt7 224AVRM Lv5 b2 416; ACsB 224% RM SW SWS5C MOP INISTR SvS<b5 4160 AC. A 214 NvRM CCW CCW P110 MDP 25GENAR Ev5 63 4160 AC/A 214 Nv4M ECCS SLPtA B MDP ESFSWB bus 85 d i t.0 A C, A 2146VRM SW bW P50 MDP (NIS1R DG A 4160 AC/A DGA EP BUS 61 BUS 214 KvRM DLA 4100 AC A DCA EP BUS BS bub 214NVRM DG-A 4160 AC/A DGA EP CD Cl CB 214 AVRM DG'A 4160 AC A DGA EP CB.C5CA CB 2)46VRM D46 4160 A C< b DGB EP BUS B2 BUS Zieu RM D&D 4160 AC e DGB EP bvS b5 BUS 214hvhM DGD 4160 %e DGb EP C B-C 2 CB 224%hM DG b 4160 AC D DGB EP Cb C$-DB CB 224NVRM tNV 1 120 DC. A DCSWGRMA EP Pt@ VA10 PNL DCSWGRi$%

iN 62 120 DC 6 DCSWG%$ EP PNvvA20 PNL DCSWGRM8 INV 3 120 DCcA DCSWGRN% EP PNL VA30 PNL DCSWGRh%

INV 4 120 DCc6 DCSWGRMS FP PNL VA40 PNL DCSWGRMB MCCB51 4B0 ACsA 14GE N AR CS CS V41 A MOV PPPENSW MCC 651 400 AC/A 14GENAR CS StV009 MOV ESFt MCC b51 460 AC/A 14GtiN AR CVCS CH Pl8A MOP CHGPMPRM MCC BS) 460 AC, A 14 GE NAR CVCS CH V429 MOV CHGPMPRM MCC651 480 AC/A 14GE NAR CVCS CH-V504 MOV VCTRM i MCC 65) 460 AC/A 14GENAR CVCS SLV011 MOV RWST VENCL MCC 051 46a AC/A 14GENAR ECCS 617 MOV PPPENSW

{ MCC-B51 460 AC/A 14GE NAR ECCS 627 MOV PPPEN5W MOC BS1 460 AC/A 140iNAR l

ECCS'~ 637 MOV PPPEN5W MCC B51 460 AC/A 14GENAR ECCS 647 MOV PPPENSW MCC BS) 460 ACiA 14 GE NAR ECCS Shv009 MOV ESF)

MCC E51 440 AC A 14GENAR ECCS Shv011 MOV RWSTVENGL MCC+ B 51 4E0 Acc6 - 14GENAR ECCS SbV412 MOV ESF2

\

l A6 UN

Table 3.0 2. Partial Listing of Electrical Sources and Loads at lAlilstone 2 (Continued)

FOMR VC[TAGE EMERG PQAERSQvR0E LOAD LOAD COMP COMPONE NT SOURCE LOAD G9P LOCATION SYSTEM COMPONENT 10 TYPE EOCATION MCC-b t ) 460 ACrA 14 GE N A4 ECCb blV412 MOV ELF 2 M;C451 460 AC/A 14GENAR ECCS biV6b6 MOV E$F1 MeC Lb1 460 AC<A 14GENAR RCS V406 MOV RC MCCb52 400 AC/A ENBDVTRM AF W AFW V201 MOV M$1MENE MCC 652 480 ACiA ENBDVIRM EP PNL4R11 PNL DCSWGRN%

MCC-D61 480 AC;b 14GENAR CS CS V41B MOV kkPENtk MCC b61 460 AceB 14 GE N AR Cb bi- V000 Mov ESF1 MCC661 460 ACsb 14GE N AR CYCS CH P16B MDP CMGAMkRM MCC 061 460 A C,b 14GE NAR CVCS CH P16C MDP CHGPMPRM mig-6t1 460 AC D 14GENAR ECCS 616 MOV PPPENbW MCC Ett 460 AC B 14 GE N AR ECCS 626 MOV PPPEN6W MCC b61 4b0 AC b 14 GE NAR ECCS 636 MOV PPPENbW MCC co 460 AC,e 14 GE NAR ECCS 646 MOV FPPEN5W MCC 661 460 A C. b 14 GE NAR ECCS SIV006 MOV ESF1 MCC 66) 460 AC,B 14GENAR ECCS SIVolo MOV RAsikENCL MCC4t1 4b0 A C. B 14 GE NAR ECCS SIV411 MOV E6F1 MCC b61 460 AC/B 14 GENAR ECCS StV411 M5V ESF)

MCC061 460 AC/b 14 GE NAR ECCS SiV654 MOV ESF2 MCC-661 460 ACsb 14GENAR RCS V406 MOV RC MCC b62 460 AC/D CRHVACRM AFW AFW V202 MOV MSIMENW MCC 662 460 AC,B CRHVACRM AFW AFW V44 MOV T B 14 MCC 662 460 AC/B CRHVACRM '

EP PNL VR21 PNL DCSWGRMB TR UB5 4160 AC/A 214KVRM EP BUS 22E Bus W4sov4M T R-v E6 4160 A Cs 0 Zi46VRM EP dk, JF bus E460VRM 47 1/89

Millstone 2 3.-

RI. ACTOR ltUILDING CLOSED COOLING WATER SYSTEM (RllCCW) 3.7.1 Sutem Function The RBCCW system provides cooling water to various plant components d

during normal operation, plant shutdown, and after an accident to act as an intermediate 4

system between the components being cooled and the Service Water (SW) system.

' Separation is required to minimize the possible release of radioactive material. The RBCCW also serves to remove residual and sensible heat from the RCS during plant shutdown by cooling the shutdown heat exchangers, and to cool the letdown flow from the CYCS during power operation.

3,7,2 Sutem Definttlon

'I he RBCCW is c closed loop system consisting of three motor driven pumps, three heat exchangers, one surge tank, and associated pir.ing and valves. The heat loads in the plant that are cooled by the RBCCW are served by iiJ ping coming off either of the two headers. The heat exchangers transfer heat to the Service Water system. The surge tank accommodates expansion, contraction, and in leakage of water.

A simplified drawing of the RBCCW is shown in Figures 3,71 and 3.7 2. A summary of the data on selected CCW system components is presented in Table 3.71, 3.7,3 Sutem Onerntion ihnny nomial operation and shutdown one component cooling pum a and one heat eschanger accommodate the heat removalloads. The remaining pum? and one heat eschanger serve as a spare Cooling water is circulated by the pumps throug1 the shell side of the heat eschangers to the components being cooled, then back to the pump suction.

Demineralieed or primary water can be supplied to the system into the surge tank as a source of makevo water, lleat loads supported by the RBCCW include the following:

Shuidewn heat exchangers and pumps Engineered Safety Features Room air coolers Seal coolers for Core Spra

- Containment coolers A,C, Byand andD Si pumps Spent fuel pit heat exchanger hon regenerative heat exchanger Component cooling is also provided for additional components, such as the Reactor Coolant Pumps and Degasifier Coolers.

3,7,4 Sutem Rocceu Criterin each loop (Ref.1). Tne success entena tor normal operation is one pump and one heat exchanger in required load. During a LOCA, one pump and one heat exchanger in one loop can carry the 3,7,5 Comnonent Information A. Component Cooling Water Pumps P11 A, B, and C

'). Rated flow: 7000 ppm @ 150 ft head (65 psid)

2. Rated capacity: 100%
3. Typ: horizontalcentrifugal

\

i 48 1/89

hiillstone 2  !

B. Component Cooling Heat Exchangers ISA B cr d C

1. Design dutv: 26.3 x 106Btu /hr
2. Type: shell and straight tube 3.7,6 Sunnnrt Ststems and interfaces A. Col.gol Signals
1. Auamatic Autcmatically actuated by SIAS.
2. Remo*e blanual -

The PBCCW .o, ,a by remote manual means from the core >l room. pumps can be t B. hiotin Power 1 Rt3CCW pumps A, B, and C are Class 1E AC loads that can be supplied from the standby diesel generators as described in Section 3.6.

C. Other

1. The RBCCW heat exchangers are cooled by the Service Water system.
2. Lubrication, ventilation, and cooling are provided locally for the RBCCW pumps.

3,7,7 Section 3.7 References

1. hlillstone 2 Updated Final Safety Analysis Report, Section 9.4.3.1. -

i

2. hiillstone 2 Updated Final Safety Analysis Report, Section 9.4.3.2, i

4 j $

1 i

j

O 40 1/89

cc'~:s  :

r ci i.i . , T

. . w.

L J s -, z.

l. ,. .. .., .u, . . . ., 'l

.....m.

-l u. ... l 9 i I ,

j M,-

.- -:4..

, l g

d ra I N 3 n.n

,i

- n,,,,.u.u f.".

s 4 = m..m& r"'""

.. -do I.%Nd

. , .e .,

g *.'I'

, ___. i.M..t.0.Wf.h]

en ~..

... I i

IC 4

0

l .m u.n.P...a... ,l

. ( D.g .pn. l m

A

';' l

-e- ,

_ i..

u ..

=LRd

! Hj

-w.-r

'" un. mm%' e-@

' f i

... .. .. .e.i  : r ..m.

w ... o u.r .q i

t un.. m.. .uJ "I:

7 l

-A, I' ~Pi i _( "iJ.".'!',

l 1

._,t

) u......, I i r ._ Q;,,,.--{ v O ~a &w x M . %. n % . a~ ... i ,,

l (s i ec. ..ic - '

I w

i ,1.,.,,.,,

.... i

j.. . .. .on~ l i

1 l i

l /wi.... I L J l I de L w... comm) um . u.nc w.

5

'L h C04846. . C D. .

>l_._

1

-l

_y .c.co iu.g.

.Ib a il m er

!, A

\

'V' Fig v.*e 3.7 1.

Millstone 2 Reactor Duliding Closed Cooling Water System (RDCCW) 50 1/89'

i. i i , , . . . . . . i -

..s.

r c=> ~.  : / u* :.'.,0. I

, L J l m

. ;'. .y . ..

i .. m .. .... i ut iau.. . .

l .

l s -

- _ u-a . .,. .. . ,

! i R; A- a v,oo .. m G...._ % p M

- b --- -

^

. . .4.v'C E I

a'

p.1,.. wc) .

{ _(ow.=.=x. un eas . ) i

I

, 30 . . . s l l

!"'".".I'.c".n'i

. ..' I O -+O

__y_ , ,4, - v,- r.

..u cc . i f 1

~

....... ,_2 ua:iaa. o :r .w......

n .....u i n1 c44% Ih. . )

Aw i q Q ...... g


b. " - D j u 6 ecu.s.se.s.

. i l cc. .

P g ,

N

('; 4.gO,,,

~

,,,4,-N--D.c'

/M ~ l

. .... i l

l V ... _

..,c,e J. s , eva eca= l i .......

+,_ ,_ ) .

ic..v..... . . . . . . . ....,,,,

c u.....

4 T

... cou,,,1 J

LfiDo.in utat tao anxa

, I so....

u . ea i . . . ....... .... , . . . . . , , , ,

2 CO 1 --

~ t ~

,I cc=,=..ed.geto( .

p i I i  ! [ r)8

- - _ u ac.u a= =

. P

- ,1 _ .

ee.. .... . . . . . . . , .. i- =..., m...,,,

figure 3.7 2.

Millstone 2 Reactor Building Closed Cooling Water System (RDCCW)

Showing Component Locations 51 1,'S9

L i , i i, ..  !

Table 3.7-1.- Millstone 2 Reactor Building Closed Cooling Water  !

i System Data Summary for Selected Components  !

{

!- I COMPONENT ID COMP. LOCATION POWER SOURCE VOLTAGE

! POWER SOURCE EMERG.

TYPE LOCATIOf4 I' CCW-HX18A liX 25GENAR LOAD GitP. l

.t CCW-ifX188 itX 25GENAR CCW-liX18C itX 25GENAR . v i CCW-P11 A MDP t

r 25GENAft - BUS-B1 4160 Z14KVHM ACIA l CCW-P118 MDP 25GENAR BUS-85 4160 Z14KVilM .

t AC/A I j ccw.Piic - MDP 25GENAR BUS-82 4160 Z24KVRM AC/B

,i CootERs - nx Rc l

t i i f

. l  !

s 3

i*

.i:

I l  !

i i  :

1 i 4

i i .-

I t 4 q [

1.1 CC . r i' i C- I t

l

i' 4

, i- .- i, _

Millstone 2 i 3,8 SERYlCE WATER SYSTC51 (SWSt 3.8.1 St< tem ronctinn

' The Semcc Water System removes heat from the diesel generators, the Reactor Building Closed Cooling Water System, the Turbine Building Closed Cooling Water System, and the vital AC switchgear room cooling coils to the ultimate heat sink, Long Island Sound.

3,8,2 St< tem Definition The SW system consists of three pumps. Two independent cross connected supply headers feed all the heat exchangers. Two discharge headers are used for RBCCW and diesel cooling with a third discharge header for the Turbine Building Closed Cooling System. Simplified drawings of the SW system are shown in Figures 3.81 and 3.8 2. A summary of the data on selected SW system components is presented in Table 3.81, 3,8,3 Ss stem Onerntion During normal operation, two pumps are operating providin TBCWW, and vital switchgear cooling. The third pump is in standbv. Each WS train is $c RBCCW, capable of supporting 1009 of the cooling functions required for a s'afe reactor shutdown er fo!!owing a LOCA. During an emergency operation, a normal reactor shutdown, or each time the standby dies,1 generators are started and there is a loss of offsite power, the SWS rrovides cooling water directly to the cooling systems of the diesel generators and to the RBCCW indirectiv thro ich the RBCCW heat exchancers. The SIAS signalisolates the TBCCW ponion of this system. Cooling water for the S'WS is supplied from the ultimate heat sink. Return now from components serviced by the SWS is returned to the discharge canal.

3,8,4 Svstem Succeu Criterin Dunng nonnal operation 2 of 3 SWS pumps are require.' to be operating in one in each loop.

Followin;: a LOCA, one SWS pump and service water header can supply all necessary cooling at'ter manual alignment to components normally supplied by the other service water header. If both pumps and both headers are operating, no manual alignment is necessary.

3,8,5 Comnonent information A. SWS pumps PSA, B, and C

1. Rated flow: 12,000 gpm @ 100 ft head (45 psid) 2 Type: venical wet pit B. Ultimate Heat Sink Long Island Sound 3,8,6 Sunnnrt Rvstem nnd interfaces A. Control Signals
1. Automatic Two pumps are normally operating SIAS isolates the TBCCW.
2. Remote hianual The system is controlled from the control room.
(

9 1/89

i j Millstone 2 i 3. Manual i

Valves in supply lines from the SWS pumps and in the return lines to the ,

discharge canal or the heat exchangers are locked open.

B. Motive Power Each SWS pump is a Class IE '- 2d that can be t,upplied from the standby diesel

{ generators as described in Section 3,6c >

l

C. Other j L No extemal systems for SWS pump lubrication and cooling water have
been identified.

4 i .

)

i 2

I l

i l

I i

i, I

i 1 ,

$4 I

_1/gg

y. -

f- w [ 'N s i

'N

  • 1r> i -, .e ts . w  ! cess tw

?? 'WM *;w", f" se $w*if f ed 3;g Pi's ras, , - g

[

"g_ Q_ _x. _; 9 cla] .._ g ~ i I g3__x g. ,

s,,,,,, _ x.

1 ,. 3 -- .. u- ,.

... o ,,.

sa r,a te rvu r w

" I * **s*s N-t; o

,q x12C x

Jyts c+

    • e r

t'^i 8

-Q_ ,., (tw1Ern

.e n g,3cg ,y,,

frew ,, tw ur w_4 2C sc 3e e.m su r$C 70 m

L'","*, H,:. x,,

, . C,&.

~

U M f W, 89.

65 o

1.

Figure 3.8-1. T.filistone 2 Service V/ater System

is b ES! RN 4

+c A, : 4c e 5 4n 2 b== k y -

    • 4E! -

4 m Z: $r ii Ex 8

.,ecO I

,,ecm ,,eoD g 9 i Y i

_  :=

e, p .1 u - z! mD gi D o

.S

is .A .

is'1, 5

I

.g o c

S

  • [I I E

rs

  • s

_a E

, = S i' -

5,

  • r se P it r  !"! y 6 en g:

H sps+'

s" gr 4 n j

.8 op og D h ks b j ja

i. :r j -

i .-

3

-  ;  ;; m

- a

-- 2

p. _.  !

]n.

i "a

.e Ru.e s , e

~ o s _  : m

~

l __

ed[1 g l

o a G

- s 2

4 w M Z:

m m

=.

v s n fb a v i e th Er. _

5 o,

5

~

h

~

r r

~

r

>A

()

A A A

^

':f

-s !if 1:t

=a -a 56 1/89

Table 3.8-1. Millstone 2 Service Water System Data Summar; for Selected Components COMPONENT ID COMP. LOCATION POWER SOURCE VOLTAGE POWER SOURCE EMERG.

TYPE LOCATION LOAD GRP SW-PSA MDP INISIR . BUS-B1 4160 Z14KVHfJ AC/A SW-PSB MOP INISTH UUSUS 4160 Z14KVilM ACIA SW-PSC MDP INISIP BUS-D2 4160 Z24KViiM AC/D 5o

_.._-_a.-.- <-,_,.-r-:,_  %..- . - - - - - - a * -- -h-- -~~--._.--ai .2 a - ---_- < - - - - - - - - - _ _ - - _ - - - - -

Millstone 2

4. PLANT INFOlulATION I

4.1 SITE AND BUILDING

SUMMARY

j The Millstone Nuclear Power Station is located in the town of Waterford, New London Countv. Connecticut, on the north shore of Long Island Sound. The site occupies

$00 acres on th'e tip of Millstone Point between Niantic Bay to the west and Jordan Cove to the east. The site is situated 3.2 miles west southwest of New London and 40 miles i southeast of llartford.

The Millstone Station consists of three operating units. Unit 2 is located immediately north of Unit I andjust south of Unit 3. No systems are shared between Unit 2 and the other two units on the site. Figure 41 (from Ref.1)is a general view of the plant and vicinity.

The major structures of the unit include the containment building, turbine building, auxiliary and control building, diesel generator building, and the intake structure.

A site plan is shown in Figure 4 2.

i The containment structure is a reinforced concrete cylinder with a steel liner, This structure contains the reactor vessel, reactor coolant pumps, steam generators, and pressuriner, pumps. Piping and valving for the reactor coolant system is completely contained in the containment structure. Piping and electrical penetration areas are on various levels of the ausiliary and control buildmg.

4 The turbine building, located west of the containment, houses the turbine generator with its associated power generating auxillaries, tue auxiliary feedwater pumps 1

and piping, :he 4 kV switchgear, and some of the 480 Y switchgear.

The auxiliary and control building is located south of the containment and contains components of the safety injection, core spray, CVCS, and electric power systems, the control room, and the spent and new fuel pools. The main steam piping is located between the containment and the auxiliary and control structure.

The diesel generator building is located east of the containment and contains the emergency diesel generators and diesel oil fuel tanks.

The intake structure is located southwest of the containment on Long Island Sound and contains the service water pumps.

The RWST and primary water storage tanks are located east of the containment.

4,2 l

! FACILITY LAYOUT DRAWINGS Figures 4 3 through 4 9 are simplified building layout drawings for the Millstone 2 containment, auxiliary building and intake structure. The turbine and service i

building, maintenance shop, and technical support building are not shown on these drawings. Major rooms, stairways, elevators, and doorways are shown in the simplified layout drawings, however, many interior walls have been omitted for clarity, Labels i

printed in uppercase correspond to the location codes listed in Table 41 and used in the component data listings and system drawings in Section 3. Some additionallabels are included for information and are printed in lowercase type.

l A listing of components by location is presented in Table 4 2. Components included in Table 4 2 are those found in the system data tables in Section 3, therefore this table is only a partial listing of the components and equipment that are located in a particular room or area of the plant.

4.3 SECTION 4 REFERENCES

1. lieddleson, F.A., " Design Data and Safety Features of Commercial Nuclear Power Plants.", ORNL NSIC 55, Volume 2, Oak Ridge National Laboratory,

, Nuclear Safety information Center, January 1972.

N 58 1/gg i

. , - . -.- - - - - , . . - - . . - .- -- . ~ . , . -

O y 7. 7- y 3 ; ,

f

)

.c . -

g e a *{N% ,

f>' + g g $c,s-1 i,

4 1

y

/rg1 o  : 0

't 5

/

y1, w^~r . .P 'p,0 , ,./  : ,.

h59,hr's s %... . . 4-} ,j c

~

a g

4,/ f8-,

't 6**/ ., m t 8

'e~:iV\ y)/

~.

a

(%e f~ s- .

f e

E a

o G

,e

./ - f i c u

5

'Sa :u-i,,-

' N 4

4 a

.g 4 6$ db

.o 4

.Y N g

.) .

) ,

4

'gr p0 f*? h. . ' ? .

t I f, g

a

  1. 4 o g

y ,,e. . ,

)

. I f D 7

'w s v

let/f/.N, -

,U 0 7'\

s 0 , #  ;

r

' " 2 s - .

' \ ,r ,c N

s.

k o >

c) e 'v ., 1  ! T j'hl4',', g., J

/ '

," : . . . . ; _ . _ _ .' _ .O. . .

y/ l~$:;

,s . .

I.

5 Or.

O

$9 1/S9

.&4 e A 4.,S 4.,A4-.s4 41-,m. 4 h 4e s,44,J.u t o-a.e_ 44b.4,.ea M ww a, m .6m w.J u h.e&' uJa 4,44 AANWX 2m...&_ifJDJa_,.MemA 4.i)e.1dszMa-.4e s_.p.@.a+CM444di.5.+.m teJ_bw .4 aJ. 4J-,D- -Jad.1<nd e- -- Ag

)

)

9 i

1 3.

)'

s N

3 l M . < N-I. -< -

i u o p l!D c u-

}3

f. n i

J. IJJO __

1 B

c '

3- M

= t '

e o .t. m p

O l- -

n g

.O- b ,'

jj w x o v .=

i .

y --

m b .. ..

e a LM J.

E

- a j !}} 0 G i;%

5 i n 4 i

CL/ 7N jj 5;k / .i 5$

M H w

. LE,

{- _,  %

Ib ' "

- - i

,: x

'l2 I

g -) ~3 '1:

f_

-(

  • n .:

1I_- -

i.

Qgg ' y! ),, ).

m T L T p t 7

I n n- x bb '/y Ib

,x 1Ih, 1

,a q n x 7

.. c - -

g x

~ u s, . - e p p{ v i- si s-g %x . _

"g-4's, 60- 1/S9 a a.- .-_ , ._.. -.....-.,_....a...--,, ..; . . . . - . , . _ , - - . _ . . . . , . . - . _ , . - . - . . . - - ,

A as 4m.L-.4@^++e-43Wm---m-Le4 am--4h.EmL-.mi.4m-4 we~=4.14.h4h-4-eat- 4-.-4K4eJ+M4 4- - 4u4 > A -mm __ e e'*dEhAwh*+'3=- 2.-Awai o

7 I

. i  ;  : m J s < . en i.

.C

  • * " " * * * ~

"$ M 7 '1 ~~r r i -

m  !

l 1 r 2- - .-ll f.J .?

r-l E  !

. i.

l;- - 's__-,,?:" t

};

o i

T"*.

ih i  ;{ .2 c

1

- .w%<l:'u6-

i. t d

^

P ~'- ';*LA M.ALf.g o

}

f" 6.% .

    • ~

Q i y

, j

'g l l . i 5.

g { *,,, t. w u . ,

.w, 9

. c.

t -- w-l il tu.=

_ m . i, c_. -I.I G .l b- ~~- , w -, i.,

. a %, e. ,

,yg p, p, r"*;u-p ,p j.;'  ; . . . 1 7l-{ t b s- t, , ,

=

r .:j;.-- .

m ,. -

' i*

. tii t

l ,j ,)

i, W, p. l

  • g n, _

x

'M / . -

m l ,

' ** \ i ,f: h j\

1
k,Y; t'

4 I

; t.c "

'T.i j

'*l. _f'MM C iQ.] [. ,* . h J

. 4

  • . . , - - , ,, ~we v a -

-n--~~ + ~

l

~

.*wrw r >

c  !

4

"*_' L-

_ 211. .r~-' O i p

. .,m

......~,,t

_ E 1

. ., , g

, ' " f emi 9.n-

  • I g- I
f. *f I i"; - ,o.r ,-. y t: -

-' w;g/,.

- - :- .-- ,if

' ih t 1-4 6 ;; C

_1 - . . i e- O

%, - -.- d t' f f , ,3) **

  • 35 - Q l ;[ ,.

, p.

+11[ ,4

%-cem - ci hi .

t ,,.

t u' 4j" g i

.l.

1, 8 t - . -

.)I , .;- ,

.j g

( 8

)

g g r,_., v m-l - - ~~ - - - - -

C t g 1

I J

t

. ,c, . : . .. . . : a g

p7 -

o

==

r _' rrg y f.*.,s,i.

[

I 1'- .

, m

-4

' 9 l, . ~~ ~ P . j

~

10 @e, - _

t:.;M,.% _p'""" '

..3 % ]hl y __ t .

E '

., ==we g 3 .- , -t M Fr*~---

, ,,, e--*' ,G P ~ O '

4 t* 8 s4 1f*,.::gr,. 4

.T.

' '. ., . .@(. 2  ?

e~ . . s,- .,. , I

,l 7 4 51.,

} - I, s 'l '=

e

  • "* ** g I# 4, A; . . . . J o.1;4..-...._...,. ^..:

,, =

l g h e

. 09- '*

- ll> -

i  ; 4 . .

[ ,

c

  • U l'i Ai j'j l . I h O

{ l; i j,f+'.k'"a

' Ajenlh{,-

!, . - n

  • b- i IgJX
    • ,* . E"

'ii>

j E " g.,r _ .[J' '

y

        • jeg7,fi,]jj---

s h  !

. q gi'it . 4 -w-

,. 4 y

i N _seg-- m it 0 e

1- .: M' t

d- 4 i m,, :T, j  ;;.

a E

m p  !.

.m - i

t i

-61 1/89

x - .,n -m n w . t w.-+ .,n-~- a- . s ..a. . - - - , + . . . - - + - ~ . . . , > . . - - . . . . . . - - . - , , = . , - . . - - ~-a+-. .~a . . . - - . - -

e t

+

h l i!

.i ;

M}-4, m . '

b  ;; 4 a If d

I

_ p-n .-

.-,,m wwar m." I k

i -

l I  !

.,_a

=

' .) l l

, I i

.i a 1 .

I . h _., 4 I

t-

  1. r

} ql g

[!

l', " f- a i

i i1 -

- E . .a.h.  : .c  ?

D t

+

L,.T..

i. .

t T.~,g!

.n

~

'O

,5 Nm i 3  : , , _

g.2 . _

II ly h./!* h'. d_ --

Q 6 y

Co O--

I *=8 @

2'

! L. '  :. W6 .

;3  := W. -
  • - C og o,, g

....,m- ,;-- Q

.  %~ -..,-- .%

.'w+.

s  ;

l g e h,l I $# 6 ll j. -

16 8'

!" i .~ . Q p, ,

fp, ';M --~w .- -t 5

].J J.

lt>t. , .

N UJ W .g

.: m =_9

>g

  • : e

. md ^

.~il~ ._.

3 C

i i

7, ";$[:1 l$;

1

' N}. - .

. . ~ . - J' ;

O ,o$

h . ,, -@

m

r i p 1

, i. -*

s.

_ - W-. ., e ll v. > .-

,il i*'l s !. *, .-'.. *

.g.

gA 6 .

r

. .( -

9 '** lm g+1 r ,l 4

_.,sj w. u,l *m

- g l' p-

-M.

i

.-7,.

t- . .  ; .es..;

.  ! , h1' '.;1. *-.

. 1 5

3 g.

u-- - gx

  • 7- .

-o. - 1f , *

. g l 1 -! go; I_- ,t.

{i g

.l .

!j m , g4

.... .-- - l- _ <

y 1

gp_ O_ t- '~~'. '. C.,,, .

. y

.! d, - .

e. - .

t w

/

4 .,

3g  ;

. f ,{ y- --

&l 1 1-

%, @g

g. lg ~~

.s . , ',3........ 2...,.. .

_' . g f:

k i c- l- '

.e 4

. "m . <

J t

--- lf 6 $1_ .- -

.. i.,

\;N.4.  %,h l -

.m,

~ - - lg /-

~

i

'r .R in t-z o-x

-s-i s ,_i .- J tk.J a > --4 y - .. .ys: , r, m, n .!

u-N.

>. < 0 .

?

s - = -. s g-

' 3 N

il 1,7 _,

u.; ~~

r a

i r . .. ,

L.*n j - .

q 4 a-

. ; r'

,*l A It i

1 t

t t

i

. 62 1/S9 l

l e -v'g-, - - . ry- ,y h 1.-- 7,r****,--v*-v--o'"em,e-*t--+-s**,"v w e - =+ v--+-+--s D'= 5 * ^'e -

'vw *e-m vv v ----r--- **v,, *wese- - -

t s 3

d n

L I . l! <

/ ' ; ;

i i I t n( l f v.

t. 4 m . .. , n-,

3 S&a8lsuspeer"1  ; _ _ __ ; C-.--

13 Il fl m

.jg3:_ 9

=:n= 1 :.2v- l '

nt.  !

rr:x.r )

. T-

-CC ! ^

- = - ED

-d- c n.

2

_14 3,_1' d) d. i _

l. J.

( ~

e u=' .= i'. y- o I

I  :, .

$ l{ ,'

e u!

  • _a
t. '9

'., e. m

  • l y

-= .n.m; . ,,_.,t --

. I

.m m i.- *. .1"-l -

ll  ;

=m x0 gu aus:w.ar n. -

l T,

3.__.._....

  • U j i .j y il - ' C. '

44

_ s. l i n .t.

3.-- * . . 9,,,.;i , .

n eCD h  ! 3 Il li - 0O

{i - ) -  !! v n ; l~.

gn

, n .-.:l- - ~

. . .w ao

=m. . -

7 ye a  ! ,li

"_._- =. o

,{.}. ,'d cw%.____. -

{9i-' ..

m.: 3 i u

  • - ~ ~ ~ - '

_ _-$ l ;y (

\ tl 0 ,

s ame *',

c

+.

..= -

i l  ! . .$ m-u._.._ lt

();

'I I

- L I' ,9 Z

]

i

- ..sA,_ ,g 3

, msnm. .

o

_aw _=-H f.

e i '*"";

. -e..a g f. :. ; CC LW 1

i -- L OM

!4 1 y'..

,_ _ a

.2, .. l

-1) . i.- n  ; ! )'

er t =

.--r,

.N.-

. mc

_ . . - ~. . e

> CD

,_ ~ -

lO p, i

q p

lQ r-L_ ~, l esas LiJ M-

    • muuuumun C

- - - . - ~ =

--f E. ,,j D b

I g;

w t --. { b. j V'

= i*

  • I. g,

! ..J t* L c)

... .. .. _ .- 6-i p. - '

o gj  !.'j ,@

1.q.. i: 2 Jl. h, r.p[ ^, , .{ .p -

, u.

s , .. nrs . . imv :m : a ni N. .

. p 4-.

c{iI q(a

- -c. .- ,

m s m. .-

n ._ ,

I, llf h. t . !

r I J'a"A,

) t d

4.-

- A ,' >j!m\Ii = .

.'t.I. , .n

~

7 .g s

, jl2]g

)

  • i* - a . - d ceg;;;;;;a..

~.__

A,

+f*- k):1+

  1. 8 -d .1

<w"" t%, htra-i

._ .. . r- _n -

P , .

.  ; }

63 y39

, g4 . . , ,g g da--e=4-+=->*=---'"#-" '

-~ ~ '

b 0 '

$ $ 4 6

  • 4 . ea .e m

to ca.

6 l 0

. . - , , . ~ - - - - -

(U

+'

f _ * .,

e r

t @

, _ - . g.. _. - . - .

%a gg m-g ,f.  ; W I El i i

! o *

'a i

1 (U

1 I

-1

..O

, i _ _ _ ~.. t

,  ; D gg i- i ..,_

'+ -

i..-, '

C')

d

.e

.r.s 9 m eq g

,' ,1

,1 dy;} "P. .a4 - 2

  • ; !sx. 1-g

- - -,e

, . ~

-.s--

~~r.-. ,,,r_..__

g' . ,.

s ,

g 6

g s.

  • , .g 89' l' l, .J k .. * -

t ab i*$

t d a: j '

. .:.;l "~ p g i R 4 ,Y

?::= myi b;f .-r x-

\

! (y __!

,8 ! j, g

'\ y g * ' -f  ;

3 wr*;Ny

1 ll -

ll ' $ 2,=~C '

q l *'M

  • _

}

q

'j#;i.

, c ' ' ' ..

L ,)'.g.T,. ,',+, je ,

.q  !,

iN q) i--- e e

". .* rrc^

j, . ..e , .3. ,

w

, , g-s.. _, :

"""'a O 8 '

.} j' h =*'N-tag,t "l%l,

~d 8

  • ene

);

1 i

~W

'J D O t n

= O

=:-

er t--  % 4 -- - -.euL . ,N -

c^' -

i 1- k mE i

a I

u_

e O

d i

+

+=a 3 s;

. O a, -

.1 '

i

,j

..-*-- n a-y

{ ij hm-. Y*  !'!  ! ;g.--- p":-if, I,'f .,

1 n

u_i

,i e .;

w.

i .

l- -

.a_

e I'

e n.

l:* p- '

3 .- '

  • f og e ,

j a. g  :

-I i, . t  ; f i .

., co 1

E ,S; g , .'U ; g i  ?-

% b,

  • f /j I

P. ,,

, i i

.j; -
_i y

ulr 1,'p lWJ 9 a

l M. . , . e I .. , _  ; w

, v =,

e-,. . -

.. m .._ _ _ _ . . . _ _

s,

,e e.

i  ; I i

! i..i , . -

5 3

ud

.i ,!

. h. I

- 3 tl .-

c).

.- \ )

)- 4 ;-

LJ L

.i  :- ,

4 -

+% y g. --.p g- -,r -4p-*rv w -w-em.w ww' - g -4.-m,- 9'-w.-wg-g-g----yvyy n.r..gp-.-yyq w.p,y.. y--y y O w-. 6&' 9-M*"-"*'"T -9"81'"-9f"NW'e'"".Fv'FM' Y'

. _ . _ . _ _ _ _ . _ . _ . ~ . _ _ . _ . _ -

l .  !

a e 4 4 l.

.. -  ;, 3-- $g r

i.

i. *.L S

,p:,-

_ --:-l

~. 5 .c --

r

.i

) ,* y )- !! .

., .c

>-3 W.

% : d w .- =pJ- CD eb
  • C -
  • -r n ,  !! o c) i

'p -Il -

';ll: C

}{ $.8 vi .

1 (U '

i

'!l,-l;kjslC')m!'

j

'! i - 1 Ie - _y I >3- w L

. 1a,,h-t-d-.d- ~. I . q gg Ws t} j,

.. ; A;;.

I+ o. U} c.m d' . N s,,;.r r . -

.-$ . - ,,y A p.,

. cp -

ll  :}hl f-

_mm1

- '.__ . _- e.h C" ,~ ~r.: .- - ktl 3 .!O

. . f . .. G)=I '. 't ic.3p- p r=

p.3: 1 d,, {

i r .3g ai;! -----Q a}. 7f' I_

.- g k

(. j ., .. u ~~--- - gg T .,

l

} m. -t . _ ,. L, s *

'2 C -_(p .9:. ~ ",; --

t yi!

9 .,d

,- -.. I

. j., at k 5

.- n 5-. -

.:={- Q i s .g, f-.'\\t;mp nQ$::=.K-

._ -} m pj .. -

m -

-,. f-

, -, ,,- y

  • I .

u,_.- J .

. - -.m. 'u .3 j.

j . - . - _

L .

- );

.;  ; k  :::

c' . .. . .

e.cr: .

.s - ! .g m _.c %, pr 9

~

J hc:;~*---l ).. #-iP. .~, :"* I

  • r-' I 4 T?t -

i

-I 7

TMmA P""'~g'y:;_.

t v

w __ w .1 .

6. - . . ,--

~~'

.I

ii, ' d-i  ;. q,.L ,

l .l.l<' J ) t. N- } J *1a _

g l

4 h.

1'

--mw

[- P- .n-1  : -- -..

-N P

~

. y

.,+_-

",=

i

.f

  • {3 s,

I-

, -- 7

  • t{ s 1 s i . l[ t,emm% , ,! JC' y L 2 s*;

6; !

.1 . - -- k O [,j;g ';d I!QC]

~'

k'.y@l.5 r

) a,- a o

.- x - -

ly

- . . ,,in m

,_ . ... [ . ..

i ;l. !

' l ib, I. ,

i m

~j__f.p s-1.

7, T.L 4:,3 i- , p p'

,_ ,j_- -:- 's il f H i

4 l ,,-

T '+

'. n .~...': ,s I s .s  ;

- -~

% e~ }}-.- -

,,;*{.y .i

)! }' 4 +

._..g,

-, ,) ,

w ,7, llye w,

~'V I.Ud I .." .'k.gl* }3i-s.i ,,

d' ] t l i,' t .

.* I, - f4 ,' h. { '  ; l d

j  ! " l
:
  • A8 4
65. pgg

i

(

i D

O h 0ft f H 1

l 1

l l

l l

1 l

' l l  :

/ l l D \

R

{ ne vo ,

i*hgmo ,oogu, )

[,N i 9 sr.4r

- EcwwwN w.n

]

,, , ( Laro ~ ^== g U~ *

'I !l .} Q_D .s .a..

,m m ,I 3 nstsrawe

/ t&F1 h  ! ESF2 ,8""c

.nc.,au.o c..y "J lH l~a 1

l'\ -

'sv )

Figure 4 8 f.1illstono 2 Containment and Auxiliary Buildings, Elevation 45' 6" 66 1/89

\

, NORfH 1

'UU.'

N i l w... c.. om, T.* a m

-o o c..

T.~%4, .,

f CCWSUATKPW

_f _ \

,o  !! .:-):=*

r5 /

E O Com.m e6i RC

(

g 3

250tNAR J;*gg,,

f eepeN s

(

- em

,.-w

.Q

~y /

s. *a--

^ = ^

enam no eu,n ,g.

y genceueRu

(

Figure 4 9 fAllistone 2 Contalrment and Auxiliary Buildings, Elevation 25' 6" rr 1/89 l

. ~ - - - _. -,_ _ . . . . . __ - . _ , - - - - -- _ _ -__ -- - - __ - -____-__ _ _

r 1 NORTH i

i Tendo" / HWSTpPWAv ACCela r l e e Y

f SCENAR l' ,

d vass -

P P'PE N S E .Ml.tay - M

\" Down ~

s so.ni o

, w -

1

. * -SWPPTUN

]' Trana#er Canal 4 "

Coata n em a F s = $ Equement

, I

'C Layaown Area

,l (b ^

T.seo.

^"*" ,\ t -

PPPEniw 4

'W t l* " " "

{_

l l 5m g A , ,-

, -wrmn  ;*;;~'

TDPMPRM DPMPRM i

a g) i Figure 410 Millstone 2 Containment and Auxillary Buildings, Elevation 5' 0",

and Turbine Building, Elevation 1' 6" 6S 1/g9

} j NDATH i

%> z 2

g e

-c=>- -c= #: " -

g Dew i< e s i Generator Generator {

Room A Room B wh****

DCA 000 N

O E

p

'RWST' j!

EersRM I . L* mH CQ

  • VOi ! I l l io
4',7,, l<- A* Y B*N U pN.,$r"a,fjn p p e, to una 1 i

, p, 140ENAR  : Rao*aste C Cass Swe7 i

p +- Lay O ,

c >0own g se.ne . O DCSWCRhA +- D A TTR M A v

s . F uei , y

,Poot ,

.. b -

Transfer Carw 0 centa emen, DCSWCRMS

  • -8 A TTRu o 6, m S k

',s Q: Od Emnoment h

= 14GENAR

~ To ua t 1

~ ' CONT

'- Q .

Q B+ceg Mcceal y

'ql To L%q 2,_ () y ,E Sw'echya'a ,(h'M., Fe r n l - -'

p a i Room Np Y; To-4ea Acr.o \

~ CST-ty g

< e um- . yo-

@ CUTilo E

Comensar P4 uo Tutne Bu@ng u> -

TmBq Ma.n Locker Room

! concenue- 3 To

~*

T814 TB14 no Buceg r")

{0 0g u

i To Plam Entrarte Note Sta.rs and seva>or m Wn tochee A . Room go to Unt 1.

I h v

Figure 411 Mil! stone 2 Containment, Auxiliary, and Turbine Buildings Elevation 14' 6" 69 l/E9

O v

nonta i -

=

At nwsr

(&'u

[

. 2_.r m 2,? '

6 A c,,,,,,,,,, i'.'I p g - can U e $

sr uD Y \.

Tumme Swedmg F

VO O

kj Figure 412 fAillstone 2 Containment, Auxiliary, and Turbine Buildings Elevation 25' 6"

-70 1/f9

.,. - , , , , a-., ,e,- ,- ,

4 --- N OR T H I I Oc Storage Room STHM P'!

C OC O ('* b DOA DOS Storage RWST = Errtosuro es Q v.m.aong sr.ong ie" a .- 6i g ENBDVTRM e Q

h ~,ne u.. @"

Containment Enciosur, Cerrouver MSTMENE Room ENCLDLG72 4s4 -

,,,g  %

Do -

~

8,0 Control Room CR Transfer Canal-Ooma nment T

, e',7 ','

,s,si l%"" ,, . Sw.ic eg

2.
  • l g CRHVACRM C480V C

%/ g RM

q. -

s i '

Comainment 4, -

h "#**"

' D

/ \ M ST M E NW Main Steam Panay .

Swilchgear Room 214 KVR M y,j mm > a E

Q g To Una 1 O --* Turbine W440V OW'M RM Turtune Bueng CC O'

3_

_ .nor-Room UD ~~

N c5E To UN 1 d4 m

(J\' Figure 413 Mllistone 2 Containment and Auxillary Buildings, Elevation 38' 6",

and Turbine Building, Elevation 31' 6" 71 1/89

O --- wenn r

\,  :

w/

m a.p-e ss.%

<5 .

ramanm e n - .o

%.:#s s

.,q" Ventdate $ystems *A ..

lfdM,n+< <DbIh

,k'f$

[au,Sh('Y.h. @4[#h<y q.W4y?r 3% %s-  ;

.idlRLW' e Nea M$ht

^%@fWiy

, ; ws, u eln:;u tl.Q, Rl$.

L'tyk' N * ~ 4x-awst. AmMbJWtm(. ihM fh-ikkkdk L' &

'MRW2nMEQ .%%

%qt[ iqs %m - -

R$c wair m. :gi .

wtyej,t a,

$4

_ Containment Encouro E N

cn w.:

>.--< .a, '

3 n e... s - y y p(*,f . . .

, p. -  % ,,," g eMM$pr'

~""'

Ji $$h558M##sds%;e e;d s $3j f ce,a,-.,

w.. ,c l M( @

h n-~@ngesr ~u h@ g@nApextdl@~ W 4 f i:L.

\

a3

-O g

I'a w

h l k, ,$u $. 5 y bd w~umpg kem

'5 yk h l y ?

J4 O wkm % %1ggl.a

~

w+ ~

si y+m*ny y.h  :

xy lne+% j.,g. a m Q" .

n m

s g

conwnm.ni enca,.  ;

gg & xag gt,

~ Y ~

. :83 g.;

P*

y 5

0 s.w., noo,n 2 " "" "

f

_ 3 , _ym '

utab *M ~

m E m

M E U

"# N "_

y[M"i GII u ---

D b f

  1. M @ o-- C e,

& x

-1 l

\

\

\  !

Figure 414 Millstono 2 Containrnent, Auxillary, and Turbine Buildings, Elevation 54' 6" l i

1

, 72 1/89 I l

I l

..,~ t

- . ~ . . . . . . . - . - - -

.- - . . . . . - . _ - . . . . ~ . . . . . . . . . . . ~ _ . . _ . . -.-._ - - -._ - -- - ._ - - - _ -

9

. e+ . .

'- m e. .. a

~*

.v-  :/'M.Ti*

es.: *

- + +-. i, ,

,,. . ,., .....,b s

l. -% _ . m.. p.

~', * '[ , [*' - *h._ -N

- v. o. ... t.-

y

  • 2#1_ . -

. . i . .;; 17 *1 A . _

=.t4 - - ,_ ,

p u ees. *.*%l  % *

. . +. .g *h ~ r g.3. . 3 ,4.,

n :m -

  • o sol 4g**

qT. Q- F Q- I-n .1.-w'a*0g .gu.. .w---,>

.r s., w... , . .

1' ,

+"**.*.*E"i*{r-Q' h y'~ @ iga.--- M $9,rf,., . st.,.

  • f.

.,1

...a y

4 m.,

=c* ** * *

..a_.,

a

' esee *(

~

cw#.u.+ . go . _ , . . .~

..e s

, La.i.(_e*n n= _h,3o -

,,y q. ~~ a.=--

..,_ f- '.~~.'-

~

mp i

s a m w,

_ae.e-, e=_ .

- ==me A-

? -..n

32. -_.E' -

r Na

.7 34 '*1'

, * *;eg 4*, * *

  • j .g- . . . ..x. 9 ~ .- j. -

.~ d. ht- ' ^

.4

  • ~**** ~~***

4 -

f ~ . -.

v.e.s,u.,ss va o - .+,

.n

.. t

. . . c +.,...

ae as n l++ ._ + . . .. . .

5

\~

A' _

~ . , ca e .

y

. w

.- . - y

.w=-

-T-J ' ..

. -. --$ I i

.,1%. .= .

..m..t.a. .+ 2 ..c& _. ,_. p - _ . ,

. j,

, - - - R

~~ - '

_l 4 4.,.(i .. . = 4. S. ja .... . g5

3. ,y. g 5,jfge 3 ,7 .. ..
  • *f 9L. ___I'.-

,, /.L -

..*1. .r i*

l.

. :. W

'dA#[ $TC / W O[ O_&Pjf ['; f.a.'"*

. ee ie a e. , ******

- .. a. t.m % .wpg

_a.* Et a se A.y > - *""_' ,

"%***+ ist

  • W5,m ,, ,y

, w . u. . u e, t .. . ,,, ,

j

_ .m p .". t =-M.ht"*

  • R-l m

<* cre 1 l tzp,_ 4nt.,,

' W4-): N . .r. ; ..

.v "

  • _% . 4_ m,.

, . s: -,-

  • * ='"-

4s .

j f_.  % .> uia

, n u.

,- w.

q- .

w j

u ., .

}1 .

'Nmb.. -~ .

t'

i =*

/

u....u..u.n. -
% - ~ . ..s. . . - . s"

.u.

N{.

! f, i

._ =

.* - f

, g. art,.

a

.,. . m:::, -

4 4

1 a

4 i

- Figure 4-15 -Plan and Elevation Views of~

l Millstone 2 Intake' Structure 1

D e y vv 4 e. . . - . . ~ -. .er.%, w,4-., - .., w.. ., _ ,. -. ., ~ .  %.. .....,.-www.-.4,-. .-_,,...-..E.... - - . . . . , , .

p Table 41. Definition of M% tone 2 Building and Location Codes y/

.C.O.dri Descriotions

1. 5GENAR General Area, located on the -5' elevation of the Auxiliary Building
2. 14GENAR General Area, located on the 15' elevation of the Auxiliary Building, includes hiCC B51, h1CC B61
3. 25GENAR General Area, located on the -25' elevation of the Auxiliary Building
4. 45GENAR General Area, located on the 45' elevation of the Auxiliary Building
5. BATTRh1A Battery Room A, located on the 14' elevation of the Auxiliary Building
6. BATTRMB Batterv Room B, located on the elevation 14' of the Auxiliary Building 7 CCWSURTKPW Component Cooling Water Surge Tank Pipeway, located on the m 5' to 25' elevations of the r uxiliary Building i

[V \

8. CHGPhlPRN1 Charging Pump Room, located on the 25 elevation of the Auxiliary Building
9. CR Control Building, located on the 36' elevation of the Auxiliary Building
10. CRHVACRhl Control Room HVAC Room, located on the 38' elevation of the Auxiliary Building. Includes hiCC B62
11. CSR Cable Spreading Room Cable Vault, located on the 25' elevation of the Auxiliary Building
12. CST Condensate Storage Tank
13. CSTBKHS CST Blockhouse - adjacent to CST 14 DCSWGRh1A DC Switchgear Room A, located on the 14' elevation of the Auxiliary Building
15. DCSWGRh1B DC Switchgear Room B, located on the 14' elevation of the Auxiliary Building
16. DGA Diesel Generator Room A, located on the 14' of the Auxiliary Building (O/

~.s 14 1/S9

Table 41. Definition of Millstone' 2 Building and-Location Codes (Continued) o

.i Corles Descrintions

17. DGB Diesel Generator Room B,' located on the 14' of the Auxiliary Building
18. DOA Diesel Oil Day Tank A, located on the 38' elevation of the

- Auxiliary Building

19. DOB Diesel Oil Day Tank B, located on the 38' elevation of the Auxiliary Building
20. EBFSRM Encisoure Building Filteration-Room, located on the 14'f elevation of the Auxiliary Building
21. ENBDVTRM Enclosure Building. Ventilation. Room,' located on the 3S' elevation of the Auxiliary Building. Includes MCC B52 - .i
22. ENCL' _G72 Enclosure Building - 72' elevation
23. ESFSWB '

Engineered Safety Features Room Swing B Pump, located on the -45' elevation of the Auxiliary Building ,

24 ESF1 Engineered Safety Features Room:1, located on the 45 elevation - ,

s of the Auxiliary Building -

25. ESF1 Engineered Safety Features Room 2, located on th -45 elevation

._of the Auxiliary Building;

26. E480VRM East 480V Switch Turbine Building. Includes gearBus Room 22F . , located on the 38' elevation of'th
27. INTSTR -Intake Structure .
28. .LDHXRM Letdown Heat Exchanger Room, located on the -5 elevation of-the Auxiliary Building
29. -'MDPMPRM - Motor Driven Pump Room, located on t.he l' elevation of the -

Turbine Building

30. MSTMENE Main Steam Enclosure; located on the 38' elevation of the i

Auxiliary Building - east

31. MSTMENW- l Main Steam Enclosure, located on the 38' elevation.of the -

Auxiliary Building - west

32. PPPEN5E Piping Penetration Area,. located on the -5' elevation of the Auxiliary Building east 1 4 I

\

75~ 1/89 ,

- . _ . . , . . ..,-w, ,my- ,,..,,,y.. , , . , _ -.,.u..~..,-.,..,,,,..._-.m...., mw,,.-- ,e. ,,,%m-.,,,...,...y-w

I l

- V Table-41.- Definition of- Millstone 2- Building and Location Codes (Continued) m Descrintions

33. PPPENSW Piping Penetran'on Area, located on the 5' elevation of the '

Auxiliary Building ' west

34. PPPES25 Piping Penetration Area, located on the -25' elevation of the Auxihary Building

. 35. RC- Reactor Containment  ?

36. RWST Refueling Water Storage Tank
37. RWSTPPWAY Refueling Water Storage Tank Pi elevation of the Auxiliary Building peway, located on the ~5'  ;

, 37. RWSTVENCL RWST Valve Enclosure adjacent to RWST

- 3 5. STRM Miscellaneous Storage Room, located on the 38' elevation of the i Auxiliary Building

39. SWPPTUS Service Water Pipe Tunnel, located on the 5' elevation

!O

40. TB14 14' elevation of the Turbine Building l- 41. TDPMPRM Turbine Driven Pump Room, located on the l' elevation of the: i Turbine Building
42. TSFP Spent fuel pool operating floor, located on th 54' elevation of the' Auxiliary Building,
43. ~W480VRM West 480V Switchgear Room, located on the 31' elevation of the Turbine Building. Includes Bus 22E and Hot Shutdown-

, Panel -

'44 Z14KVRM 4KV Switchgear Room, located on the 31' elevation of the-Turbine Building. Includes Bus Z1 and Bus 25

45 Z24KVRM 4KV Sivitchgear Room,-located on the 31' elevation of the l Turbine Building, includes Bus 21 and Bus 25 i

i i

1-i i

)

T

76 .1/g9

Table 4 2. Partial Listing of Components by Location 7 at Millstone 2 i \

'd LOCAh0N SYSTEM COMPONEN T ID COMP TYPE 14G EN AR EP MCC851 MCC 14GENAR EP MCC B61 MCG 25GENAR CCW CCW HA16A M 25GhNAR CCW CCW Pila MOP 25GENAR CCW CCW P118 MOP 25CENAR CCW CCW P11C MDP 25GENAR CCW CCW HA188 m 2bGENAR CCW CCW H *iSC m 25GENAR SW CCW-M AI S A M 25GENAR SW CCW HM86 M 25GENAR SW CCW HX18C M

~

6 A TT RMA EP BATT A BATT BATTRve EP BATT B BATT

] CHGPMPRM CVCS CH V429 MOV

\

CHGPMPRM CVCS CH P18A MOP CNGPMPRM CVCS CH P180 MOP CMGPMPRM CVCS CH P18B MOP CRHVACRM EP MCC 062 ACC CST AFW CST. IK OCSWGRMA EP BC-OC3 BC DCSWGRMA EP BUS-201 A BUS OCSWGRMA EP BC OC) BC OCSWGRN% hP BUS-201 A BUS OCSWGRMA EP BUS 201 A BUS OCSWGRMA EP INV 1 INV OCSWGRMA EP- IN V-3 (NV DCSWGRMA EP PNL VA10 FNL OCSWGRMA EP PNL-VA30 PNL DC5hGRMA EP PNL VR11 PNL DCSaGWs EP BUS 2016 BUS

\v/

'17 1/89

Table 4 2. Partial Listing of Components by Location at Millstone 2 (Continued)

O LOCATION SYSTEM COMPONEN T 10 COMP TYPE DCSWGFtMB EP BC DC2 BC DCSWGRMS EP D JS 201 B BUS DCSWGRMB EP BUS 2010 BUS DCSWGRMB EP INV2 INV DCSWGiMSt EP 6N V4 INV DCSWGRMB EP PNL VA20 PNL ESWGRMB EP PNL VA40 PNL DCSWGRMB EP ML VR21 PNL CGA EP OGA OG 000 EP OGB OG E480VRM EP BUS 22F BUS ENBOviRM EP MCC852 MCC ESF) CS CS 23A M N ESF1 CS S4-V009 MOV kj ESF1 CS CS P42A , MOP ESF1 CS Si V008 aOV ESF1 ECCS SI V009 MOV ESF1 ECCS SIV411 MOV ESF1 ECCS Si PM A MOP ESF1 ECCS SIV411 MOV ESF1 ECCS SIV656 MOV ESFl ECCS SI V008 MOV ESF2 CS- CS 238 m ESF2 CS CS P42B MOP ESF2 ECCS SI V412 MOV ESF2 ECCS SIPM-C MOP ESF2 ECCS Si-V4 4 2 MOV ESF2 ECCS SI V654 MOV E dF Sve b ECCS bl PM B MOP g it. icin SW SW PSB MDP kv N

1/S9

._ w Table 4 2. Partial Listing of Components by Location at f.Illistone 2 (Continued) t V

LOCATION SYSTEM COMPONEN T IO COMP TYPE INISTR SW SW P5C MOP INTSTR SW SW P5A MO ~ ~

MOPMPRM AF W AFW MOA MOP s MDPMPRM AF W AFW MOS MOP-MSTMENE AFW AF W. V MOV 1

MSTMENW AF W AF W.V202 MOV PPPENbE CS CS V416 MOV PPPENSW Cb CS V41A MOV PPPEN5W ECCS 617 MOV a

PPPENtn 616 MOV lECCS PPPEN5W ECCS C2f MOV P P P E '.t .'. 637 lECCS MOV PPPEN5W 647 MOV lECCS

/'N, PPPENSW ECCS 626 MOV I

Nj PPPENSW ECCS 636 MOV FPPENSW ECC3 646 MOV RC afb SG 2 . HA hC AFW SG-1 M

RC AFW SG 1 t

HX RC AFW SG 2 HX RC AFW SG1 HX RC AFW SG 2 M RC CCW COOLERS HA Y ECCS RCS-VESSEL VES RC RCS RCS VESSEL RV RC RCS S404 PORV RC RCS S402 PORV RC RCS V405 MOV RC RCS V405 MOV ps RC RCS t 515 NV

) L

\v) 79 1/89

Table 4 2. Partial Listing of Components by 1.ocation'-

at Millstone 2 (Continued)

LOCATiOrd SYSTEM COMPONENT 10 W 1 (PE i-

~

RC RCS 51 ti NV RW5T CVCS RWST, 16-RWM ECCS RWST TK RWSTVENGL CVCS SI V011 - MOV RWSTVENC'.. ECCS S6-V011 MOV 9WSiVENGL ECCS Si.V010 MOV-

.T B 14 AFW- AF W.V44 MOV TOPMhAM AFW AFW TOP - TDP TOPMERM AFW AFW V4188 - MOV TOPMPRM AFW AFW TDP - TDP VCI AM - CVCS CH V504 MOV W460VRM EP BUS 226 BUS e Z 146VRM EP BUSB1 BUS-214nVRM EP C B-C1 CB 214 NYRM - 'EP BUS B5- BUS 214KVRM 1EP - CB-C5 DA CB Zl4KVRM liid TR UB5 TRAN'

.I 214KVRM EP

  • JUS B5 BUS -

224KvRM .E P . BUSB2 BUS.

224KVRM - EP- CB C2 CB 224KVRM EP CB CS.OB - CB Z24KVRM - EP TR UB6 TRAN c;

1.

1 80 1l89 r ,

Millstone 2

5. IllllLIOGRAPilY FOR MILLSTONE 2
1. NUREG-0635, " Generic Evaluation of Feedwater Transients u.'.d Small Break Loss of Coolant Accidents in Combustion Engineering Designed Op rari:.g Plants."Section X.5, " Millstone 2 Auxiliary Feedwa:er System," USNRC, January 1980.

I

/

I f

l I

r l

I l

i i

4 1

i i

4

\' l 1 1/89 i

! - . . - .m. _ . . - , . . . - _ _ . . . _ _ . . _ . . . . _ _ _ , _ _ , _ , , _ _ , , . . _ _ , , _ _ , _ _ _ , , _ , _ _ _ _ _ , , , _ , _ . , _ _ , _ . , ,

Millstone 2 O APPENDIX A DEFINITION OF SYMllOLS USED IN Tile SYSTEM AND LAYOUT- DRAWINGS A 1, -SYSTEM DRAWINGS A 1.1 Fluid System Drawing',

The simplified system drawings are accurate representations of the major now paths in a system and the important interfaces with other fluid systems. As a general rule, small Guid lines that are not essential to the basic operation of the s drawings, Lines of this type include instrumentation lines,ystem are not vent lines, drain lines, shown and in these other lines that are less than 1/3 the dian eter of the connecting major flow path. There usually are two versions of each fluid system drawingt a simplified system drawing, and a comparable drawing showing component locations. The drawing conventions used in the Guid system drawings are the following:

Flow generally is left to right.

Water sources are located on the left and water " users" (i.e., heat loads) or - >

discharge paths are located on the right.

One exception is the return flow path in closed loop systems which is right to left.

Another exception is the Reactor Coolant System (RCS) drawing which is

" vessel centered", with the primary loops on both sides of the vessel, Horizontal lines always dominate and break vertical lines.

O- -

Component symbols used in the fluid system drawings are defined in Figure A- 1.

Most valve and pump symbols areidesigned to allow = the reader to distinguish among similar components based on their support system requirements (i.e., electric power for a motor or solenoidi steam to drive a turbine, pneumatic or hydraulic source for valve operation, etc.)

- Valve symbols allow the reader to distinguish among valves that allow no'w -

in either direction, check (non return) valves; and valves that perform an ovcpressure protection function. No attempt has been made to denne the specific type of valve (i.e., as a globe, gate,- butterfly, or other specific type of valve).

Pump symbols distinguish between centrifugal and positive displacement pumps and between types of pump drives (i.e.; motor, turbine, or engine). .

Locations are identified in terms of plant location codes defined in Section 4 of.

this Sourcebook. ~

Location is indicated by shaded " zones" that are not intended to represent-the actual room geometry.

Locations of discrete components represent the actual physical location of the component.

Piping locations between discrete components represent the plant areas-through which the piping passes (i.e.- including pipe tunnels .and-underground pipe tuns).-

Component' locations'that are not known are indicated by-placing the components in an unshaded (white) zone.

The primary flow path in the system is highlighted (i.e., bold white line)in the locanon version of the fluid system drawings.

82-1/89

Millstone 2 f- A 1.2 Electrical System Drawings The electric power system drawings focus on the Class IE portions of the plant's electric power system. Separate drawings are provided for the AC and DC portions of the o Class lE system. There often are two versions of each electrical system drawingt a simplified system drawing, and a comparable drawing showing component locations, The drawing conventions used in the electrical system drawings are the following:

Flow generally is top to bottom In the AC power drawings, the interface with the switchyard and/or offsite grid is shown at the top of the drawing.

In the DC power drawings, the batteries and the interface with the AC power system are shown at the top of the drawing.

Vertical lines dominate and break horizontal lines.

Component symbols used in the electrical system drawings are defined in Figure A 2.

Locations are identified in terms of plant location codes defined in Section 4 of this Sourcebook.

Locations are indicated by shaded " zones" that are not intended to represent the actual room geometry, Locations of discrete components represent the actual physical location of the component, The electrical connections (i.e., cable runs) between discrete components, as shown on the electrical system drawings, DO NOT represent the actual cable routing in the plant.

C1 -

Component locations that are not known are indicated by placing the discrete components in an unshaded (white) zone.

A2. SITE AND LAYOUT DRAWINGS A2.1 Site Drawings site plan showing the arrangement of the major buildings, tanks, and site. The general vie i the reactor site is obtained from ORNL-NSIC 55 (Ref,1) The site drawings are approximately to scale, but should not be used to estimate distances on the site. As-built scale drawings should be consulted for this purpose.

Labels printed in bold uppercase correspond to the locanon codes defined in Section 4 and used in the component data listings and system drawings in Section 3. Some additional labels are included for information and are ptinted in lowercase type.

A2.2 Layout Drawings Simplified building layout drawings are developed for the portions of the plant that contain components and systems that are described in Section 3 of this Sourcebook.

Generally, the following buildings are included:

building, diesel building, and the intake structure or pumphouse. Layout drawings reactor building, auxili generally are not developed for other buildings.

Symbols used in the simplified layout drawings are defined in Figure A-3. Major rooms, stairways, e!evators, and doorways are shown in the simplified layout drawings however, many interior walls have been o'mitted for clarity. The building layout drawings,

, 83 1/89

Millstone 2 are approximately to scale, should not be used to estimate room size or distances. As built i t'm\ scale drawings for should be consulted his purpose.

\j Labels printed in uppercase bolded also correspond to the location codes defined in Section 4 and used in the component data listings and system drawings in Section 3. Some additionallabels are included for information and are printed in lowercase type.-

A3. APPENDIX A REFERENCES

1. Heddleson, F. A., " Design Data and Safety Features of Commercial Nuclear Power Phnts.", ORNL NSIC 55, Volumes 1 to 4, Oak Ridge National Laboratory, Nuclear Safety Information Center, December 1973 (Vol.1),

January 1972 (Vol. 2), April 1974 (Vol. 3), and March 1975 (Vol. 4)

G l

e o ,

's

  • 1/89

_.....y ms., ----~w -~ rT*~t dv * " " ' '

. _ . . . . _ . . -. _ _ . _ , . . . . . . . . ~ _ . , - _ . . - . . ___m.. __ - . . _ _ . . _ . .

~

(OFEN CLC D) ALVE XCV (OPEN CLOSED)

O L >

O

%. MOTOR OPER ATED VALVE . MOV MOTOR OPER ATED F' '

(O P E N!C LO S E D) -. 3 WAY VALVE

  • MOV (CLOSED PORT M AY V ARY)

~

'> SOLENCID-OPERATED VALVE SOV F'

SOLENCID OPER ATED -

(OPEN CLOSED) 3 WAY VALVE . SOV (CLOSED PORT MAY , ARY)

' s HYORAULIC VALVE

F' HYDR AVLIC NON RETURN (O P E N!CLO S E D) 4 Q VALVE HCV (OPEN! CLOSED)

'> PNEUMATIO VALVE . NV F'

(OPEN:CLOSEDi L PNEUMATIC NON RETURN 4 VALVE . NCV (OPEN CLOSED)

- CHECK VALVE = CV SAFETY VALVE . SV i

(CLOSED) i Y O JL@

POWER OPER ATED RELIEF VALVE, POWER CPER ATED RELIEF VALVE, SOLENotD PILCT TYPE . PORY J PNEUM ATIC ALLY CPER ATED . PORY

' (CLOSED) OR DU AL.FUNC110 N S AFETY/ RELIEF VALVE . SRV (CLOSED)

CENTRIFUG AL CENTRIFUC AL MOTOR.ORIVEN PUMP

  • MDP TUR88ME.0 RIVEN PUMP
  • TDP i /-

I

,,, POSITIVE DISPLACEMENT -

MOTOR DRIVEN PVMP

  • MDP POSITIVE DISPLACEMENT TUR81NE ORIVEN PUMP . 'TLv l

-\ /

I

\,

Figure A-1. Key To Symbols in Fluid System Drawings S5 1/89

/'

\

PWRDWR _

MAIN CONDENSER . COND REACf0R YESSEL RV t J

~ -

f , m

- HE AT EXCHANGER . HX MECH ANIC AL DR AF T COOLING TOWER t

l STE AM TO. WATER CR W ATER.TO STEAM HEAT "h- r AIR C00 LING UNIT . ACU EXCHANGER (LE. FEE 0W ATER "

HC ATER, DR AIN CCCLER, ETC.) HX j CR TANK TK SPR AY NOZZLES . SN aaaaaaaa Y b

[%

l, v!

-uU RunrunE oisx . Ro it1ER . ,<1 1

j CR:?lCE. OR l

l l

i l

i

+

h

\] Figure A-1. Key To Symbols in F'uld System Drawings (Continued) 86 1/S9

.... .. ~ .. , . -...~... - - ~. . ..------.-.-.--..-_n-.-. - _ - . . . . - . - - . . - . . . - . . . . - - . .

^ -

A.C. DIESEL CENERATOR . Da CR A C, TURelNE GENERATOR TO

[ ~

B ATTERY . B ATT 1 OR I CIRCulT BRE AKER . CD I p- g { } ...-H OR. g...[] INTERLOCKED (O P E NICL O S E D)

CIRCUlf BRE AKERS . CB SWITCH . SW AUTOMATIC OR O OR CTHER TYPE OF TR ANSFER SWITCH . ATS DISCONNECT DEvlCE on (OPE NICLCS ED)

MANUAL TRANSFER i

SWITCH

f SWITCH 0E AR SUS

  • BUS l(BUS NAMC) l MOTOR CONTROL CENTER
  • MCC CR " f- " " TRANSFORMER . TRAN l OR I DISTRIBUTION PANEL = PNL I i

i B ATTERY CHARGER (RECTiflER) BC -

2 - INVERTER INV I

9 i

l 1~

  • OR RELAY CONTACTS 7~ FU'SE FS (OPENrCLOSED) -

} [-

y ELECTRIC MOTOR , MTR MOTOR GENER ATOR . MQ .

Figure-A-2.' Key To Symbols in Electrical System Drawings 1 O

t

! -S7 1/89

- . ~ . . ,

- - . _ . _ . . _ _ _ . ~ . _ - _ _ _ _ _ _ . _ . _ _ _ _ _ . _ _ ~ -

O i

F STAIRS U = Up A w

SPIRAL D=Down STAIRCASE LADDER -

('i u . Up De Down

-l l*.* ELEVATOR p HATCH 08 OPEN AREA-GRATING DECK (NO FLOOR)-

- O -- PERSONNEL DOOR --I

  • EQUIPMENT - DOOR '

$ RAILROAD TRACKS  :( FENCE LINE 1 =

t

+  :<

t T ANK/WATE R AREA Figure A 3. Key To Symbols in Facility Layout Drawings u -

,gg -

l/89 -

Millstone 2 APPENDIX B DEFINITION OF TERMS USED IN THE DATA TABLES'- 4 Terms appearing in the data tables in Sections 3 and 4 of this Sourcebook are detined as follows:

SYSTEM (also LOAD SYSTEM) All: components associated with a particular system description in the Sourcebook have the same system code in the data base. System codes used in this Sourcebook are the following:

Cei; Definition RCS Reactor Coolant System

-AFW Auxiliary Feedwater System ECCS Emergency Core Coohng System (including HPSI and LPSI)

CS Contaimnent Spray .

CVCS Charging System -

EP Electric Power System -

CCW Reactor Building Closed Cooling Water System SW Service Water System COMPONENT ID (also LOAD COMPONENT ID) - The component identification (ID) code in a data table matches the component ID that appears _in the corresponding system:

drawing.

The component ID generally begins with a system preface followed by a component number. The system preface is not necessarily the same as the system code 7 described above. For component ids, the system preface corresponds to what the plant 4

- calls the component (e.g. HPI, RHR). An example is HPI-730, deno:ing valve number 730 in the high pressure injection system, which is part of the ECCSr The component number is a contraction of the c_omponent number appearing in the plant piping and-instrumentation drawings (P&lDs) and electrical one line system drawings.

LOCATION (also COMPONENT LOCATION and POWER SOURCE LOCATIO Refer to the location codes defined in Section 4.

COMPONENT codes. TYPE (COMP TYPE)- Refer to Table B-1 for a list of component type POWER SOURCE - The component ID of the power sourc COMPONENT ID, above). In this data base, a " power for asource"e particular is listed in this field (see-component (i.e._a load or a distribution component) is the next higher electrical ~ distribution or generating component in a distribution system,- ~A single. component may have more'than one power source (i.e. a DC bus powered from a battery and a battery charger).

POWER SOURCE VOLTAGE (also VOLTAGE)- The voltage "seen'! by a load of a power source is entered in this field. The downstream (output) voltage of a transformer,

-inverter, or battery charger is used.

EMERGENCY LOAD GROUP (EMERG LOAD GROUP) AC and DC load groups (or electrical divisions) are defined as appropriate to the plant.-- Generally, AC load groups are identified as AC/A, AC/B, etc. The emergency load group for a third of a kind load (i.e. a " swing" load) that can be powered from either of two AC load identified as AC/AB. DC load group follows similar naming conventions. groups would be 89 1/89

4 TAllLE 11 1.

b COMPONENT TYPE CODES J CO\tPON G COMP TYPE VALVF5:

Motor operated valve MOV Pneumatic (air operated) valve Hydraulic valve - NVor AOV' 3 HV Solenoid operated valve SOV Manual ulve XV Check valve CV Pneumatic non retum valve Hydraulic non-return valve -

NCV.

Safety valve - HCV SV-Dual' function safety / relief valve

'SRV Power operated relief valve PORY (pneumatic or solenoid-operated)

PUMPS:

Motor-driven pump (centrifugal or PD) MDP-Turbine-driven pump (centrifugal of PD) TDP Diesel-driven pump (centrifugal of PD) DDP OTHER FLUID SYSTEM COMPONENTS:

Reactor vessel .

RV Steam generator (U tube oronce throu Heat exchanger (water to water HX, gh); SG, HX

\

or water-to air HX)

Cooling tower Tank CT Sump  : TANK or TK L Rupture disk -SUMP Orifice .RD Filter or strainer ORIF--

Spray nozzle FLT; SN Heaters (i.e. presstuizer heaters)

. HTR VENTILATION SYSTEM COMPONEWSi Fan (motor-driven, any type) FAN

, Air cooling unit (air to-water HX, usually - ACU or FCU

including a fan)

Condensing (air conditioning) unit

-COhh i- EMERGENCY POWER SOURCES:

Diesel generator Gas turbine generator DG e

Battery GT e

BATri 4

t iO

.1/89

.90

,..,a_-,-,-.-.,....-...,,,.-,,:.,..,;-.,-

. . _- . - - . - ..- - .-., , .