ML20010F297

From kanterella
Jump to navigation Jump to search
Errata Pages to CEN-160-(S)-P, CETOP-D Code Structure & Modeling Methods for San Onofre Nuclear Generating Station, Units 2 & 3. Formal Submittal Will Be Provided
ML20010F297
Person / Time
Site: San Onofre  Southern California Edison icon.png
Issue date: 09/03/1981
From:
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY
To:
Shared Package
ML13308B946 List:
References
CEN-160-(S)-P, CEN-160-(S)-P-ERR, NUDOCS 8109100012
Download: ML20010F297 (10)


Text

.,

54 ENCLOSURE III CEN-160-(S)-P (CT0P-D)

Errata pages I

%\\c MC%C'S ecsgsoc t\\%

o.mw. h wi A

pol

F g

9 CHRA)GE P8GES FO/2.

CE TOP -b O!)

sodas (cw)->60(S)DP).

R PORmRL S u S R1r 77A L.

W Z L.L N O L L O.'c).

h a b'.

."1

= q' j - (h -h ) w'

+ (h -h*)w (1.5) 3x,

j j

j jj Ccnsidering all adjacent flow channels, the energy equation becomes:

5 oh.

q ' '.

N w'.

  • H w'..

I (h -h ) m;'I + r

(

~

3 5 j (h -h*)

=

I j

(1.6) ex m;

j=j y,j m;

c 1.2.1.3 Axial Icmentum Equation Referring to Figure 1.3b, the axial momentum equation for channel i, considering only one adjacent channel j, has the form:

-f dx + p dAj - gAj p; dx + p; A; - (p; Aj+

p;A dx) =

j j

j 8

-m u; 4 (m ujj+

-m u dx) -w'jj ju dx + w'jj ju dx + w u*dx j

7 jj jj (1,7) where u* = 1/2 (u +u.).

g.J By using the assumption w'..=w'.., one has:

13 J1 a p'.

= h m u; + (u -u )w'jj + uiw (1.8)

-f - gA ojj-Ag 3x j

j j jj Substituting the following definitions:

2 (A v f c5 m vp; A Kcjv; ) (E~ )

j j

m; j jj u; r.

j

Fj 1

1.

(l*0) 20e.

2a i

and Eq. (1.2) into Eq. (1.8), one obtains:

ap A; 3

= -A (g1m!- )2 [-gg,1 v f ? '.

Kg;v

'~

jj j

g; i i A; 3 - (hv p )] - gA o; (1.10) 8 4

j

)

0

- (u -o,) w s, + (au -o.)w,

s s

s 1-4 t

- -. -.. ~. - - -

- - ~ - - - - - -

~ ~ ~ ~ -

~'~ ~ ~ '~~

1

,. P ^ i 4j Pi^i'IX i

l._

L i

i e

g l

I i

8 1

j

,lwj;u'dx

'l-

' CONTROL' I

I g.

g VOLUf.1E I

g I

l Y

Cil A N N E L il i

I CHANNELj F;dx I Y

1 l

dx Oi Pi dx A

I I

I I

iPl; 1

l Wjij U dx

+

l l

l I

w;;u dx P dA; p i

g m;u.

i

_4 i

T

)

._ 3.

_. j DOUNDARY SU3 CHANNELS

. 4, A

Pi i (A) CONTROL VOLUt.iE FOR LUT.iPED CHANNEL mju; + 0 m;uj x d

px

. _.A. __ __.4 _ _

(

_q J

I p ;A; + 1 p;A;dx CONTROL i

VOLUT.iE l

->- w;ju'dx F8dx

[

l CHANNELi CHANNELj y

j l

U^i # i x I

dx d

~

I w' uj x f

d d-j

,I

->- wf.ui x d

Al 1

y p ;dA; I

I m;u; i

p;A; I

I q.g l

m __ _ -

(B) CONTROL VOLUt.1E F03 AVER.iGED ClfANNEL Figure 1.3 CONTROL Vol. tit.1ES Foit A:(1/sl. f.lCf.iENTut.' EOUATIOfJ 1-14 20:~~ -

--.._ ~.

e p

b.

1 2.0 EMPIRICAL CORREL.ATIC'IS CETOP-D retains the empirical correlations which fit current C-E reactors and li the ASME steam table routines which are included in the TORC ccde.-

S

~

f.

3 In CETOP-0, the following correlations are used:

o 2.1 Fluid Procerties

~

Flu.id properties are determined with a series of subroutines that use a o

l set of curve-fitted equations developed in References 7 and 8 for describing

-the fluid properties in the ASME steam tables.

In CETOP-0, these equations

~

cover the subcooled and saturated regimes.

l 2.2 Heat Transfer Ceefficient Correlations p

The film temperature drop across the thermal boundary layer adjacent to the surface of the fuel cladding is dependent on the local-heati flux, the temperature 9f the local coolant,, and the effective surface heat transfer coefficient:

(2.1) l-DTF = Tg)) - Tcool

=

h

.For the forced convection, non-boiling regime, the surface heat transfer coeffi-c'ient h is given by the Dittus-Soelter correlation, Reference 9:

0.8

0. 4 -

h=

23k(Re)

(Pr)

(2.2)

For the nucleate boiling regime, the film temperature drop is deten:iined frca the Jens-Lottes correlation, Reference 10:

cool) + 60W/10%

(2.3)

DTJL = (T

-I sat p/900 e

h The initiation of nucleate boiling is determined by calculating the film temperature drcp on the bases of forced convection and nucleate boiling.

2-1 3-

~ -

Q x

Fyle (Reference 13) to account f,or mass-velocity and pressure level dependencies.

d L

2.5 Void fraction Correlations.

. The modified Martinelli-lielson correlation is used for calculating void,

~ fr, action in the following ways:

1)

For pressures below 1850 psia, the void fraction is given by the

~

Martinelli-!!elson model from Reference 12:

3 a=B

+B X+BX +BX (2.6 )

o 2

3 where the coefficients B are defined in Reference 10 as folloys:

n For the quality range 0 1 X.<0.01:

Oh the homogeneous model is.used for

'B

= B) = B

=B g

3 calculating void fraction:

l l

a=0 For X < 0 Xv (2.7)

For X > 0

" * '(1-x)v7 + xvg For the quality range 0.01 1 X <0.10:

r

-3

-7 2

-10 3 B = 0.5973-1.275x10 p + 9.010x10 p -2.065x10 p

-2

-5 2 + 9.867x10' p3 B = 4.746 4 4.156x10 p -4.0lix10 p

1

-4 2

-7 3 (2.8)

B = -31.27 -0.5599p +5.580x10 p

-1. 378x10 p 2

-3 2 + 5.694x10' p3 B = 89.07 + 2.408p - 2.367x10 p

3 For the quality range 0.10 -1 X <0.90:

h r

-7 2

-li3 B = 0.7847 -3.900x10 'p + 1.14Sx10 p

- 2.711x10 p

-4

-72 2.012x10'II 3 B = 0.7707 4 9.619x10 p - 2.010x10 p 1

p (p,9) 2 = -1.060 - 1.194 x 10-3 p + 2.618 x 10-7 2 -6.893 x 10-12 3 B

p p

2-3

= - + - - - - - - - - - * * - ' ' ~ ~ " ~ ~

~, -. _ _.

~

..,,. n..

i

~.~

+/

2-p.

where:

q CIIF critical heat flux, BTU /hr-f t

=

g

,p pressure, psia

=

5 d.

heated equivalent diameter of the subchannel, inches

=

~

d heated equivalent diameter of a matrix subchannel with the same

=

m rod diameter and pitch, inches I

G

, local mass velocity at CilF location, lb/hr-ft

=

local coolant quality at CIII location, decimal fraction X

=

f?

},

h fg latent heat of vaporization, BTU /lb

=

-3 and b

2.8922x10

=

j

-0.50749 -

b

=

2 b

405.32

=

3

-2 b

-9.9290 x 10

=

4 b

-0.67757

=

S

~4 a

b 6.8235x10

=

6 3.1240x10'4

. ~

l b

=

7

~2 b

-8.3245x10 l

=

8 The ebove. parameters were defined from source data obtained under following conditions:

pressure (psia) 1785 to 2415 local coo'lant quality

-0.16 to 0.20 2

6 6

l local mass velocity (1b/hr-ft )

0.87x10 to 3.2x10 inlet temperature ( F) 382 to 644 l

subchannel wetted equivalent 0.3588 to 0.5447 i

diameter (inches) subchannel heated equivalent 0.4713 to 0.7837 diameter (inches)

'heatedlength(inches) 84,150.

To account for a non-uniform axial heat flux distribution, a correction factor FS is used.

The f5 factor is defined as:'

9,8filF. Eauivalent Uni form 73 O

S CilF, lion-unifom t

y(g).

FS(J)=

C(J)

!q"(x)e-C(J) (X(J)a) dx (J) (1-c'

)

~

_ g, '. a.--; M.

w. - -

~

k ble 2.2 Fu'nctional Relationship in the Two-Phase friction L

Factor 14!tiplier (Referentcs 11,12,13)

~

e 7-.

P For local boiling:

i*

I f) = C) (1 + 0.76 ( -

) (I

)

w)

~

where C) = (1.05) (1-0.00250*)

~

o* = The smaller of OTJL and DTF w = 1 - 0*/0TF For bulk boiling:

7x.75 o

FtJ4 = 1 + (of jo6)l+x x(0.9326 - (0.2263x10_3)P) 3

~

1.65x10-3 + (2.988x10-5) P-(2.528x10 9) P2 + (1.14x10-II)p X(1.0205 - ('0.2053x10-3) p),

H'42 =

3 7.876x10~4 + (3.177x10-5) P-(8.728x10-9) P2 + (1.073x10 II)P 2

fliN3 =

1 + (-0.0103166X + 0.005333X ) (P-3206) 2 = 1.26 - 0.0004P + 0.119 (I

) + 0.00028P (

-)

f 3 = 1.36 + 0.0005P + 0.1 ( '6) - 0.000714P ( 0 )

f 1 + 0.93 (0.7 -,)-

f

=

6 4

10

~

O i

2-9

~

A_

7,

,/

3-

~

s p

-(u - u )n 2u wj g. (. g + u) j j

g 2

8

)"ij (3.3)

+

U j

J

?

(4) Lateral f4er.entum Equation j

jj(J) wjj(J) p (J - 1) - p (J - 1) w 2

h 13 p

2gs p,

'u*(J)wjj(J) - u*(J - 1)wjj(b - 1)

(3.4) 5 g

+

s ax Where J is the axial elevation indicator and Ax is the axial nodal length.

. 3.2 Prediction - Correction 14ethod In CETOP-D a non-iterative numerical scheme is used to solve the conservation-equations.

This prediction-correction method provides a fa'st yet accurate j

j jj and p; at each axial level.

The steps scheme for the solution of m, h, w used in the CETOP-D solution are as follows:

and fluid properties The channel flous, m, enthalpics h, pressures pg j

j are c>.i;ulated at the node interfaces.

The linear heat rates gj, cross-flows, u.., and turbulent mixing, w.., 'are calculated at mid-node.

The 1J IJ Q

solution nethod starts at the bottom of the core and. marches upward using the core inlat flows as one boundary condition and equal core exit pressures as another.

~

3-2

> ~. - - - _

_ _. _ =

- -,s _..

cach flo.< channel, thus, for a channel containing n rods, the idea of

\\

f j'

ef fective radial po'.lcr factor is used:

L t

n J f"(1,j)

I c

ci.n)

O f ciL >=1 a

.n g

g j=1 j

p where c} is the fraction of the rod j enclosed in channel i.

r 4.3.2 A,xial Po.ter Distributions

~

The fuel rod axial power distribution is characterized by the axial shape index(ASI),definedas:

t /2 t

/

F()

-/

F()dZ Z

Z o

t /2 (4.12)

ASI

=

t F(k)dZ o

Z where the axial power factor at elevation k, F (h), satisfies the normalization Z

, condition:

L

/

F(k)dZ=1

~

(4.13) 7 o

and L dZ are total f'uel length ard axial length increment resptctively.

The total heat flux supplied to channel i at elevation k is:

4,=(core average heat flux) (f (i)) (F (k))

O.W g

7 1

4.3.3 Effective Cod Diameter

~

For a flow channel containing n rods of identical diameter d, the effective rod dia..:eter defined by:

n d

(4.15) g g(i)=E r,j is used to give effective heated perimeter in channel i.

The follwing expression, derived. fro;a Eq's. (4.5) and (4.9), ir. plies that equivalent energy is being received by channel i:

-