ML20010F297
| ML20010F297 | |
| Person / Time | |
|---|---|
| Site: | San Onofre |
| Issue date: | 09/03/1981 |
| From: | ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY |
| To: | |
| Shared Package | |
| ML13308B946 | List: |
| References | |
| CEN-160-(S)-P, CEN-160-(S)-P-ERR, NUDOCS 8109100012 | |
| Download: ML20010F297 (10) | |
Text
.,
54 ENCLOSURE III CEN-160-(S)-P (CT0P-D)
Errata pages I
%\\c MC%C'S ecsgsoc t\\%
o.mw. h wi A
pol
F g
sodas (cw)->60(S)DP).
R PORmRL S u S R1r 77A L.
W Z L.L N O L L O.'c).
h a b'.
."1
= q' j - (h -h ) w'
+ (h -h*)w (1.5) 3x,
j j
j jj Ccnsidering all adjacent flow channels, the energy equation becomes:
5 oh.
q ' '.
N w'.
- H w'..
I (h -h ) m;'I + r
(
~
3 5 j (h -h*)
=
I j
(1.6) ex m;
j=j y,j m;
c 1.2.1.3 Axial Icmentum Equation Referring to Figure 1.3b, the axial momentum equation for channel i, considering only one adjacent channel j, has the form:
-f dx + p dAj - gAj p; dx + p; A; - (p; Aj+
p;A dx) =
j j
j 8
-m u; 4 (m ujj+
-m u dx) -w'jj ju dx + w'jj ju dx + w u*dx j
7 jj jj (1,7) where u* = 1/2 (u +u.).
g.J By using the assumption w'..=w'.., one has:
13 J1 a p'.
= h m u; + (u -u )w'jj + uiw (1.8)
-f - gA ojj-Ag 3x j
j j jj Substituting the following definitions:
2 (A v f c5 m vp; A Kcjv; ) (E~ )
j j
m; j jj u; r.
j
- Fj 1
1.
(l*0) 20e.
2a i
and Eq. (1.2) into Eq. (1.8), one obtains:
ap A; 3
= -A (g1m!- )2 [-gg,1 v f ? '.
Kg;v
'~
jj j
g; i i A; 3 - (hv p )] - gA o; (1.10) 8 4
j
)
0
- (u -o,) w s, + (au -o.)w,
s s
s 1-4 t
- -. -.. ~. - - -
- - ~ - - - - - -
~ ~ ~ ~ -
~'~ ~ ~ '~~
1
,. P ^ i 4j Pi^i'IX i
l._
L i
i e
g l
I i
8 1
j
,lwj;u'dx
'l-
' CONTROL' I
I g.
g VOLUf.1E I
g I
l Y
Cil A N N E L il i
I CHANNELj F;dx I Y
1 l
dx Oi Pi dx A
I I
I I
iPl; 1
l Wjij U dx
+
l l
l I
w;;u dx P dA; p i
g m;u.
i
_4 i
T
)
._ 3.
_. j DOUNDARY SU3 CHANNELS
. 4, A
Pi i (A) CONTROL VOLUt.iE FOR LUT.iPED CHANNEL mju; + 0 m;uj x d
px
. _.A. __ __.4 _ _
(
_q J
I p ;A; + 1 p;A;dx CONTROL i
VOLUT.iE l
->- w;ju'dx F8dx
[
l CHANNELi CHANNELj y
j l
U^i # i x I
dx d
~
I w' uj x f
d d-j
,I
->- wf.ui x d
Al 1
y p ;dA; I
I m;u; i
p;A; I
I q.g l
m __ _ -
(B) CONTROL VOLUt.1E F03 AVER.iGED ClfANNEL Figure 1.3 CONTROL Vol. tit.1ES Foit A:(1/sl. f.lCf.iENTut.' EOUATIOfJ 1-14 20:~~ -
--.._ ~.
e p
b.
1 2.0 EMPIRICAL CORREL.ATIC'IS CETOP-D retains the empirical correlations which fit current C-E reactors and li the ASME steam table routines which are included in the TORC ccde.-
S
~
f.
- 3 In CETOP-0, the following correlations are used:
o 2.1 Fluid Procerties
~
Flu.id properties are determined with a series of subroutines that use a o
l set of curve-fitted equations developed in References 7 and 8 for describing
-the fluid properties in the ASME steam tables.
In CETOP-0, these equations
~
cover the subcooled and saturated regimes.
l 2.2 Heat Transfer Ceefficient Correlations p
The film temperature drop across the thermal boundary layer adjacent to the surface of the fuel cladding is dependent on the local-heati flux, the temperature 9f the local coolant,, and the effective surface heat transfer coefficient:
(2.1) l-DTF = Tg)) - Tcool
=
h
.For the forced convection, non-boiling regime, the surface heat transfer coeffi-c'ient h is given by the Dittus-Soelter correlation, Reference 9:
0.8
- 0. 4 -
h=
23k(Re)
(Pr)
(2.2)
For the nucleate boiling regime, the film temperature drop is deten:iined frca the Jens-Lottes correlation, Reference 10:
cool) + 60W/10%
(2.3)
DTJL = (T
-I sat p/900 e
h The initiation of nucleate boiling is determined by calculating the film temperature drcp on the bases of forced convection and nucleate boiling.
2-1 3-
~ -
Q x
Fyle (Reference 13) to account f,or mass-velocity and pressure level dependencies.
d L
2.5 Void fraction Correlations.
. The modified Martinelli-lielson correlation is used for calculating void,
~ fr, action in the following ways:
1)
For pressures below 1850 psia, the void fraction is given by the
~
Martinelli-!!elson model from Reference 12:
3 a=B
+B X+BX +BX (2.6 )
o 2
3 where the coefficients B are defined in Reference 10 as folloys:
n For the quality range 0 1 X.<0.01:
Oh the homogeneous model is.used for
'B
= B) = B
=B g
3 calculating void fraction:
l l
a=0 For X < 0 Xv (2.7)
For X > 0
" * '(1-x)v7 + xvg For the quality range 0.01 1 X <0.10:
r
-3
-7 2
-10 3 B = 0.5973-1.275x10 p + 9.010x10 p -2.065x10 p
-2
-5 2 + 9.867x10' p3 B = 4.746 4 4.156x10 p -4.0lix10 p
1
-4 2
-7 3 (2.8)
B = -31.27 -0.5599p +5.580x10 p
-1. 378x10 p 2
-3 2 + 5.694x10' p3 B = 89.07 + 2.408p - 2.367x10 p
3 For the quality range 0.10 -1 X <0.90:
h r
-7 2
-li3 B = 0.7847 -3.900x10 'p + 1.14Sx10 p
- 2.711x10 p
-4
-72 2.012x10'II 3 B = 0.7707 4 9.619x10 p - 2.010x10 p 1
p (p,9) 2 = -1.060 - 1.194 x 10-3 p + 2.618 x 10-7 2 -6.893 x 10-12 3 B
p p
2-3
= - + - - - - - - - - - * * - ' ' ~ ~ " ~ ~
~, -. _ _.
~
..,,. n..
i
~.~
+/
2-p.
where:
q CIIF critical heat flux, BTU /hr-f t
=
- g
,p pressure, psia
=
5 d.
heated equivalent diameter of the subchannel, inches
=
~
d heated equivalent diameter of a matrix subchannel with the same
=
m rod diameter and pitch, inches I
G
, local mass velocity at CilF location, lb/hr-ft
=
local coolant quality at CIII location, decimal fraction X
=
f?
},
h fg latent heat of vaporization, BTU /lb
=
-3 and b
2.8922x10
=
j
-0.50749 -
b
=
2 b
405.32
=
3
-2 b
-9.9290 x 10
=
4 b
-0.67757
=
S
~4 a
b 6.8235x10
=
6 3.1240x10'4
. ~
l b
=
7
~2 b
-8.3245x10 l
=
8 The ebove. parameters were defined from source data obtained under following conditions:
pressure (psia) 1785 to 2415 local coo'lant quality
-0.16 to 0.20 2
6 6
l local mass velocity (1b/hr-ft )
0.87x10 to 3.2x10 inlet temperature ( F) 382 to 644 l
subchannel wetted equivalent 0.3588 to 0.5447 i
diameter (inches) subchannel heated equivalent 0.4713 to 0.7837 diameter (inches)
'heatedlength(inches) 84,150.
To account for a non-uniform axial heat flux distribution, a correction factor FS is used.
The f5 factor is defined as:'
9,8filF. Eauivalent Uni form 73 O
S CilF, lion-unifom t
y(g).
FS(J)=
C(J)
!q"(x)e-C(J) (X(J)a) dx (J) (1-c'
)
~
_ g, '. a.--; M.
w. - -
~
k ble 2.2 Fu'nctional Relationship in the Two-Phase friction L
Factor 14!tiplier (Referentcs 11,12,13)
~
e 7-.
P For local boiling:
i*
I f) = C) (1 + 0.76 ( -
) (I
)
w)
~
where C) = (1.05) (1-0.00250*)
~
o* = The smaller of OTJL and DTF w = 1 - 0*/0TF For bulk boiling:
7x.75 o
FtJ4 = 1 + (of jo6)l+x x(0.9326 - (0.2263x10_3)P) 3
~
1.65x10-3 + (2.988x10-5) P-(2.528x10 9) P2 + (1.14x10-II)p X(1.0205 - ('0.2053x10-3) p),
H'42 =
3 7.876x10~4 + (3.177x10-5) P-(8.728x10-9) P2 + (1.073x10 II)P 2
fliN3 =
1 + (-0.0103166X + 0.005333X ) (P-3206) 2 = 1.26 - 0.0004P + 0.119 (I
) + 0.00028P (
-)
f 3 = 1.36 + 0.0005P + 0.1 ( '6) - 0.000714P ( 0 )
f 1 + 0.93 (0.7 -,)-
f
=
6 4
10
~
O i
2-9
~
A_
7,
,/
3-
~
s p
-(u - u )n 2u wj g. (. g + u) j j
g 2
8
)"ij (3.3)
+
U j
J
?
(4) Lateral f4er.entum Equation j
jj(J) wjj(J) p (J - 1) - p (J - 1) w 2
h 13 p
2gs p,
'u*(J)wjj(J) - u*(J - 1)wjj(b - 1)
(3.4) 5 g
+
s ax Where J is the axial elevation indicator and Ax is the axial nodal length.
. 3.2 Prediction - Correction 14ethod In CETOP-D a non-iterative numerical scheme is used to solve the conservation-equations.
This prediction-correction method provides a fa'st yet accurate j
j jj and p; at each axial level.
The steps scheme for the solution of m, h, w used in the CETOP-D solution are as follows:
and fluid properties The channel flous, m, enthalpics h, pressures pg j
j are c>.i;ulated at the node interfaces.
The linear heat rates gj, cross-flows, u.., and turbulent mixing, w.., 'are calculated at mid-node.
The 1J IJ Q
solution nethod starts at the bottom of the core and. marches upward using the core inlat flows as one boundary condition and equal core exit pressures as another.
~
3-2
> ~. - - - _
_ _. _ =
- -,s _..
cach flo.< channel, thus, for a channel containing n rods, the idea of
\\
f j'
ef fective radial po'.lcr factor is used:
L t
n J f"(1,j)
I c
ci.n)
O f ciL >=1 a
.n g
g j=1 j
p where c} is the fraction of the rod j enclosed in channel i.
r 4.3.2 A,xial Po.ter Distributions
~
The fuel rod axial power distribution is characterized by the axial shape index(ASI),definedas:
t /2 t
/
F()
-/
F()dZ Z
Z o
t /2 (4.12)
ASI
=
t F(k)dZ o
Z where the axial power factor at elevation k, F (h), satisfies the normalization Z
, condition:
L
/
F(k)dZ=1
~
(4.13) 7 o
and L dZ are total f'uel length ard axial length increment resptctively.
The total heat flux supplied to channel i at elevation k is:
4,=(core average heat flux) (f (i)) (F (k))
O.W g
7 1
4.3.3 Effective Cod Diameter
~
For a flow channel containing n rods of identical diameter d, the effective rod dia..:eter defined by:
n d
(4.15) g g(i)=E r,j is used to give effective heated perimeter in channel i.
The follwing expression, derived. fro;a Eq's. (4.5) and (4.9), ir. plies that equivalent energy is being received by channel i:
-