ML18059A456

From kanterella
Jump to navigation Jump to search
Status & Suggested Course of Action for Nondenting-Related Primary-Side IGSCC of Westinghouse-Type Sg.
ML18059A456
Person / Time
Site: Palisades Entergy icon.png
Issue date: 05/31/1986
From:
ELECTRIC POWER RESEARCH INSTITUTE
To:
Shared Package
ML18059A455 List:
References
EPRI-NP-4594-LD, NUDOCS 9310260232
Download: ML18059A456 (287)


Text

Topi~s*: ** . EPRI NP-4594-LD EPRI Electric Power Stearyi generators ,

. Str13ss corrosion l(facking 11Aaintenance Project 8303-6 Topical Report May 1986 Research Institute Rep~ir lnconel alloy Status and Suggested Course of

  • I Prepared by Dominion Engineering, Inc.

. Mclean, Virginia

  • 9310260232 93io2o ---*

PDR ADOCK 05000255

~-. )r,

)
'

p - -- . .- ~ . -.

PDR ill;.*

ENCLOSURE 1 Consumers Power Company Palisades Plant Docket 50-255

  • "Status and Suggested Course of Action for Nondenting-Related Primary-Side IGSCC of Westinghouse- Type Steam Generators'.'

EPRI NP-4594-LD, May 1986 October 20, 1993

  • ABSTRACT The current status of non denting related primary side intergranular stress corrosion cracking (IGSCC) in Westinghouse type PWR steam generators with non thermally treated alloy 600 tubing is summarized. This includes cracks in first and second row U-bends, at tube sheet expansion transitions, and at expanded areas within the tube sheet. Details of the cracking which has occurred at a number of lead units are described.

The conditions which lead to primary side IGSCC are described. These conditions include: susceptible material, aggressive environment, and tensile stresses. A method is outlined to make rough estimates of the time to failure at each of the locations where primary side IGSCC has occurred to date. The method requires that tube material susceptibility be determined by test or experience, and is subject to large errors due to unknown levels of residual stress .

The possible consequences of primary side IGSCC are discussed. These include:

secondary side contamination, possible derating of the plant due to plugged tubes, exceeding technical specification leakage limits if affected tubes are not plugged, and increased risk of tube ruptures.

A data base is presented covering each of the Westinghouse type plants with nonthermally treated alloy 600 tubing located in the United States and abroad.

This data base includes key data relating to primary side IGSCC for these plants including: steam generator manufacturer, steam generator model number, date of commercial operation, tube supplier, tube material grain size, tube expansion method and length, hot leg coolant temperature, and where primary side IGSCC has occurred to date in the plant. A method is then outlined to assess the risk of primary side IGSCC occurring at a given plant. This assessment takes into accoun' material susceptibility and fabrication details.

  • The current status of remedial measures to minimize primary side IGSCC is outlined .
  • iii

A suggested course of action for utilities regarding primary side IGSCC is outlined. This suggested course of action takes into account material susceptibility, fabrication details, and the plant operating history.

  • iv
  • ACKNOWLEDGMENTS This report was made possible by the cooperation and assistance of the nuclear power utilities and supporting organizations in Belgium and France. The assistance of Mr. P. Hernalsteen of Tractionel and Mr. J.-R. Donati of Electricite de France was of great importance in this regard and is gratefully acknowledged.

The Swedish State Power Board (Mr. J. Engstrom) also provided much useful information .

  • v
  • CONTENTS Section Page 1 INTRODUCTION 1-1 2 CURRENT STATUS OF PRIMARY SIDE IGSCC PROBLEMS 2-1 U-Bends 2-2 Expansion Transitions - Longitudinal Cracks 2-3 Expansion Transitions - Circumferential Cracks 2-7 Expanded Areas 2-10 3 CAUSE OF PRIMARY SIDE IGSCC 3-1 Susceptible Material 3-1 Aggressive Environment 3-4 Tensile Stress 3-5 Time to Failure 3-5 3-7 Summary 4 CONSEQUENCES OF CRACKING 4-1 Sudden Tube Rupture 4-1 Technical Specification Leakage Limits 4-2 Margin of Excess Tubes 4-2 Secondary Side Contamination 4-2 Summary 4-3 5 PLANTS POTENTIALLY AT RISK OF PRIMARY SIDE IGSCC 5-1 Data Base of Key Parameters 5-1 Risk of Primary Side IGSCC 5-1 6 CURRENT STATUS OF REMEDIAL MEASURES 6-1 Primary Coolant Temperature Reduction 6-1 Hydrogen Concentration Reduction 6-2 Sleeving 6-2 Plugging 6-3 Steam Generator Rotation 6-4 Electroplating 6-4 Additional Expansion 6-4 Tubing Re-expansion 6-4 U-Bend Stress Relief 6-5 vii

Section 6 CURRENT STATUS OF REMEDIAL MEASURES (Continued)

Global Tube Sheet Heat Treatment Local Expansion Transition Stress Relief Page 6-6 6-7 Expansion Transition Shot Peening and Rotopeening 6-8 7 SUGGESTED COURSE OF ACTION 7-1 Plants with Low Material Susceptibility 7-2 Plants with High Material Susceptibility 7-3 Plants with Unknown Material Susceptibility 7-5 Required Industry Effort 7-5 8 REFERENCES 8-1 APPENDIX A Local Heat Flux and Pressure Stresses in Tube Wall A-1 APPENDIX B Stresses in Tube Wall at Expansion Transitions B-1 APPENDIX C Stresses in Tube Wall at U-Bends C-1 APPENDIX D Data Base D-1 viii

  • ILLUSTRATIONS Page Figure 2-1 U-Bend Apex Crack at Doel 2 2-14 2-2 Typical U-Bend Tangent Region Cracks 2-15 2-3 DAM Rolling 2-16 2-4 Expansion Transition Cracks at Ringhals 2 2-17 2-5 Expansion Transition Cracks and Bulge at Obrigheim 2-18 2-6 SCC Tests of Expansion Transitions With and Without DAM 2-19 2-7 Expansion Transition Cracks at Fessenheim 1 2-20 2-8 Expansion Transition Cracks at Dampierre 1 2-21 2-9 Expanded Region Profilometry at Doel 3 2-22 3-1 Carbide Morphology of Alloy 600 Tubing 3-11
  • 3-2 3-3 Time-Temperature-Sensitization Diagram for Mill-Annealed Alloy 600 Tubing Correlation Between Primary Side IGSCC and Average Grain Size 3-12 3-13 3-4 Correlation Between Temperature and Time to Failure of 3-14 Alloy 600 Tubing 3-5 Correlation Between Stress and Time to Failure of 3-15 Alloy 600 Tubing 3-6 Estimated Time to Failure of Alloy 600 Tubing 3-16 6-1 Japanese Sleeves 6-11 6-2 Babcock &Wilcox Mini-sleeve Used at Doel 2 6-12 6-3 Sleeves Installed at Ringhals 2 6-13 6-4 Westinghouse U-Bend Stress Relief Heater Arrangement 6-14 6-5 Range of Suggested Time-Temperature Target Conditions for 6-15 Stress Relief of Alloy 600 U-Bends 6-6 Equipment Arrangement for Doel 2 Expansion Transition 6-16 Stress Relief
  • 6-7 Range of Suggested Time-Temperature Target Conditions for Stress Relief of Alloy 600 Expansion Transitions ix 6-17

Figure 6-8 6-9 Equipment Used for Shot Peening of Alloy 600 Tubing Equipment Used for Rotopeening of Alloy 600 Tubing Page 6-18 6-19 A-1 Thermal Analysis Model of Typical First Row Tube A-3 B-1 Brookhaven Residual Stress Measurements at Roll B-4 Transition B-2 EdF Computed Residual Stresses at Roll Transition B-5 B-3 Finite Element Analysis Model of Tube/Tube Sheet B-6 Interface B-4 Operating Stresses in Expansion Transition Within B-7 Tube Sheet B-5 Temperature Distribution in Expansion Transition. B-8 at Top of Tube Sheet B-6 Operating Stresses in Expansion Transition at B-9 Top of Tube Sheet B-7 Temperature Distribution in Tube Wall at Sludge Pile B-10 Interface B-8 C-1 C-2 Thermal Stress in Tube Wall at Sludge Pile Interface R. L. Cloud U-Bend Finite Element Analysis Model Inside Surface Hoop Stress on Flank of U-Bend B-11 C-4 C-5 C-3 Mitsubishi Finite Element Analysis Models and Results C-6 x

  • TABLES Tables Page 1-1 Types of PWR Steam Generator Tube Cracking Problems 1-3 2-1 Westinghouse Type Plants With Reported Primary Side 2-12 IGSCC 3-1 Summary of Typical Steam Generator Tube Conditions 3-8 3-2 Correlation Between Mill Anneal Metal Temperature and 3-9 Material Susceptibility 3-3 Estimated Time to Primary Side Cracking of Susceptible 3-10 Material 5-1 Westinghouse Type Plants with Non Thermally Treated 5-7 Alloy 600 Tubes
  • xi

SUMMARY

INTRODUCTION Primary side intergranular stress corrosion cracking (IGSCC) of Ni-Cr-Fe alloy 600 steam generator tubing has been almost exclusively* limited to Westinghouse type steam generators fabricated by Westinghouse or its licensees (i.e. Cockerill, Framatome, Siemens, and Mitsubishi) from non thermally treated alloy 600 material.

Such cracking can be either related to denting or not related to denting. Denting related cracking can be minimized or eliminated by following recommendations contained in the EPRI Steam Generator Owners Group Design and Operating Guidelines, and should therefore not be a continuing problem. Non denting related primary side IGSCC, on the other hand, is a continuing problem. The purposes of this report are to:

  • Summarize the current status of non denting related primary side IGSCC in Westinghouse type steam generators 1

Outline the current thinking regarding the cause and consequences of primary side IGSCC Tabulate key data on Westinghouse type steam generators which have non thennally treated alloy 600 tubing 1 Describe the corrective and remedial action programs currently being pursued 1 Suggest a method to assess the risk of primary side IGSCC at a particular plant and a course of action for utilities relative to the primary IGSCC problems CURRENT STATUS OF PRIMARY SIDE IGSCC Primary side IGSCC is a widespread and continuing problem in Westinghouse type steam generators. For example:

1 Of the 47 plants operating at least 5 years (startup prior to 1980), over.half of the plants have experienced varying degrees of primary side IGSCC. This has ranged from cracking of a few tubes at Zorita 1 and Prairie Island 1 to extensive cracking of thousands of expansion transitions at Doel 2 and the preventive plugging of all row 1 U-bends at a number of stations.

    • -
  • There is one recent exception, where nonheat treated tubing at San Onofre 2 and/or 3 suffered primary side cracking in straight sections of tubing.

S-1

In several cases, such as Farley 1, North Anna 1, and Tihange 2, cracking occurred during the first year of operation.

Primary side IGSCC has occurred in steam generators fabricated by each of the suppliers of Westinghouse type steam generators, i.e. Westinghouse, Cockerill, Framatome, and Mitsubishi.

  • The Obrigheim steam generators (Siemens made) were replaced due to continual low level leaks resulting from primary side IGSCC.

Steam generator replacement is being considered for several other plants.

  • Even the earliest plants which are generally thought to have been fabricated using tubing processed under more optimum conditions, have shown signs of primary side IGSCC as evidenced by experience at Zorita 1 and Beznau 2. For example, the first cracking at Zorita 1 was reported after about 14 years of operation.

While many plants have exhibited primary side IGSCC problems, there are also many plants of similar vintage, and fabricated by four of the five manufacturers, which have so far been free of primary side IGSCC. While this is encouraging, the oldest of these plants have only been in operation about 15 years. Primary side IGSCC may still become a problem at some of these plants before their design life is reached.

CAUSE OF PRIMARY SIDE IGSCC As is the case with all stress corrosion cracking, primary side IGSCC requires the coincidence of three factors: susceptible material, aggressive environment, and tensile stress. Operating experience and laboratory tests have demonstrated that alloy 600 tubing in some heat treatment conditions will crack in a normal PWR primary water environment. The rate at which cracking occurs appears to be dependent primarily upon the material microstructure, temperature, and local tensile stresses (residual and applied).

Material susceptibility appears to correlate most strongly with carbide morphology {i.e., the concentration of grain boundary carbides); however, there is also some correlation with grain size and material strength and hardness. Tubes with copious grain boundary carbides (intergranular carbides) are less susceptible to primary side IGSCC than tubes with few grain boundary carbides and copious carbides within the grain {intragranular carbides). The main fabrication variable S-2

  • which controls carbide morphology is the final mill anneal heat treatment. Higher mill anneal temperatures generally result in less susceptible material.

The tensile stresses involved in primary side IGSCC are the sum of residual plus operating stresses. Residual tensile stresses are induced in the tubing during fabrication, and in the case of Combustion Engineering and Westinghouse type steam generators are not reduced by a stress relief heat treatment. Based on operating experience and laboratory tests it is believed that tensile residual stresses on the inside of the tube are much higher than the operating stresses, and can equal or exceed the material yield strength. Many of the remedial measures being developed are directed towards reducing the tensile residual stresses or applying a compressive residual stress on the surface by peening.

CONSEQUENCES OF CRACKING The potential consequences of primary side IGSCC include: secondary side contamination, possibly having to derate the plant electrical output in the event that the number of plugged tubes exceeds the available tube margin, exceeding the plant Technical Specification allowable leakage limits, and increased risk of

  • sudden tube ~upture.

To date, the general experience with U-bend cracks has been that the leakage is relatively low and increases gradually over a long period of time (i.e., months or years). The major exception to this general sequence of events has been for cases of U-bend apex cracking resulting from high ovality. In several of these cases tubes have ruptured suddenly resulting in large leakage rates. The high ovality has resulted from initial fabrication (Dael 2) and also from closing up of the flow slots as a result of denting (Surry and Turkey Point). The remedial action taken has been to plug the leaking tubes, and in many cases to plug all of the row 1 tubes on a preventive basis.

For the -case of expansion transitions and expanded areas within the tube sheet, leakage has also been relatively low and has increased gradually over long periods of time. There are no reported cases of sudden rupture of-tubes in the expansion region. In a few cases where the cause of the IGSCC has been identified and affects small numbers of tubes, the general course of action has been to inspect the tubes for the condition known to cause cracking and then plug affected tubes on a preventive basis. This is not practical, of course, where there are large numbers of cracked tubes which were fabricated within tolerance. In these cases, S-3

the approach to date has been to accept low levels of leakage while remedial measures are being developed in the laboratory and tested on a trial basis in the plant. However, this type of problem has led to steam generator replacement at one plant {Obrigheim) and is a contributing factor in planning for replacement at another (Ringhals 2).

While tubes can be plugged or sleeved when cracks or leakage reach the established acceptance criteria, the better approach would appear to be to take appropriate action to prevent a significant problem from developing in the first place.

PLANTS POTENTIALLY AT RISK A data base of key parameters pertaining to primary side IGSCC has been compiled for each of the 97 plants containing Westinghouse type steam generators fabricated from non thermally treated alloy 600 tubing. The purpose of this compilation is to assist in assessing risk of primary side IGSCC occurring at a specific plant.

Based on the extent of primary side IGSCC which has already occurred, and the current state of predictive modeling, none of the Westinghouse plants with non thermally treated alloy 600 tubing should be considered as being inmune to primary side IGSCC over its design lifetime. Rather, it is considered that primary side IGSCC will continue to be an increasing concern as plants age and that there will be a wide range of time to crack initiation and extent of cracking between different plants and within individual steam generators.

In making plans regarding inspection programs and possible remedial measures, it is desirable to be able to assess the relative risk of primary side IGSCC occurring at a particular plant. There are two major factors which should be taken into account in such an assessment. 0 ~1 n

  • Material Susceptibility Material susceptibility appears to be the most significant single factor regarding potential for primary side IGSCC. If the material is at the high end of the susceptibility range, then the evidence suggests that primary side IGSCC will most likely be a significant problem regardless of the specific fabrication processes used. On the other hand, if the material is at the low end of the susceptibility range, then the evidence indicates that primary side IGSCC will most likely not be a significant problem unless there are unique situations such as denting which produce very high and persistent tensile stresses. There are several ways of S-4

assessing the material susceptibility. In order of increasing accuracy, and

  • increasing effort required, the methods and indication of material susceptibility are as follows:

Characteristic Material Susceptibility Low High 1 Material Grain Size Large (<ASTM 6) Small (>ASTM 10) 1 Mill Annealing >1850°F (1010°C) <1750°F (955°C)

Metal Temperature 1 Carbide Morphology Copious intergranular Few intergranular carbides carbides 1 Cracking of Reverse Not determined Cracking in 2-8 wks.

U-bends in High Temperature Water The first of these checks can sometimes be performed by review of material records, although many records must be reviewed since there can be more than 200 heats of material per steam generator. The mill anneal temperature can sometimes be obtained from fabrication records, but oftentimes can only be estimated based on the typical conditions known to be in use when the tubing was manufactured .

The last two tests require archive material or material removed from the steam generator.

Fabrication Details For susceptible material, the rate at which primary side IGSCC cracking problems develop and the ultimate extent of the problem appears to be significantly affected by the fabrication details. In particular, fabrication details which produce higher levels of tensile residual stresses on the inside surface of the tube lead to more rapid and severe cracking than processes which produce lower stresses. Fabrication details known to produce more rapid and severe cracking include:

1 First and second row U-bends formed by Westinghouse ball mandrel process 1 First and second row U-bends with more than 10% oval ity 1 Out of tolerance tube expansion including: oversize holes in the tube sheet, incomplete expansion in the tube sheet (skip rolls, incomplete overlap}, over expansion in the DAM* area, etc.

1 Tube sheet expansion process which produces high residual stresses such as by roller expansion

  • A DAM or kiss roll is a partial expansion, located immediately above the tube sheet.

S-5

Even though out of tolerance conditions accelerate cracking, plant experience and sec tests have indicated that highly susceptible tubes fabricated within normal manufacturing tolerances can also develop cracks.

REMEDIAL MEASURES A number of corrective and remedial measures have been discussed, and extensive analysis and testing has been accomplished in support of many of these concepts.

For cases where cracking has already occurred, the only currently viable corrective measures are to install plugs or sleeves. The choice between the two generally depends upon the number of excess tubes, and how extensive the cracking problem is and is likely to become. In the longer term, it is hoped that some of the remedial measures, such as in-situ stress relief or peening can be shown to stop the further propagation of small cracks. However, this has not been demonstrated to date.

For tubes which have not yet cracked there are a number of possible remedial measures. The most attractive and most thoroughly explored measures at present include the following:

Local thermal stress relief of U-bends using an electric resistance heater.

Local thermal stress relief of expansion transitions using an induction heater.

  • Global heat treatment of the entire tube sheet using electric resistance heaters.
  • Rotopeening or shot peening of expansion transitions.

In each case, there are still some outstanding technical concerns. For the case of U-be~d stress relief and local thermal stress relief of expansion transitions, the major concern at present is process temperature control. For the case of global thermal heat treatment of the tube sheet the major concern is sensitization of the tubing. For the case of peening, the major concern is the level of tensile residual stress induced on the outside surface of the tube, and its effect on secondary side cracking. A complete discussion of each of the remedial measures is beyond the scope of this su11111ary and can be found in section 6 of the report.

SUGGESTED COURSE OF ACTION There are two sides to the decision as to whether or not to take remedial measures to prevent primary side IGSCC in steam generator tubing:

S-6

  • 1.

2.

It is undesirable to apply remedial measures if they are not necessary. Such work is costly and there is some level of risk that the remedial measures may produce an undesirable side effect.

On the other hand, it*is also undesirable to let primary side IGSCC initiate. It is far easier to prevent cracks from initiating in the first place than it is to arrest the propagation of existing cracks. A complicating factor in this regard is that the best current ECT inspection techniques can only reliably pick up cracks when they reach about 40% of wall thickness.

In this light, the following course of action is suggested for three categories of plants:

1 Plants with Low Material Susce tibilit - For plants with known ow mater1a suscept1 1 1ty as demonstrated by about 8-10 years operation without problems, or by materials examination and sec tests), cracking should develop slowly, if at all. In these cases, primary attention should be directed towards using the best available inservice inspection methods to detect cracks at the earliest possible stage. Remedial measures can be considered at a future date if warranted.

I Plants with Hi h Material Susce tibilit - For plants with known 1g mater1a suscept1 1 1ty as emonstrated by more than a few isolated cracks occurring in operation, or by materials evaluation), remedial action should be seriously considered for implementation in the near future. In most of these cases, the first and second row. U-bends should be either stress relieved or plugged depending primarily on available tube margin. Expansion transitions should be stress relieved, heat treated, or peened. It should further be confirmed that the sections of expanded tubing immediately below the expansion transitions which must resist tube pullout are properly expanded and free from cracks.

I Plants with Unknown Material Susce tibilit - For plants wit un nown mater1a suscept1 1 1ty 1.e. new plants, or those which have been in operation less than 8-10 years without cracks), initial priority should be placed on assessing the material susceptibility. The approach to be used in this assessment is outlined in the section titled PLANTS POTENTIALLY AT RISK. For material of questionable susceptibility after such evaluation, the decision to take remedial measures could well depend on the plant status. For new plants where the cost of applying remedial measures is relatively low and the risk of problems due to application of remedial measures is also low, it will usually be preferable to proceed with remedial measures prior to going into operation. For plants already in service, it may be preferable to proceed with a rigorous inspection program and hold off on remedial measures until it is known whether there will be a problem.

S-7

In addition to this course of action for utilities, it is suggested that EPRI and the industry pursue development and qualification testing of field hardened corrective action procedures such as in-situ stress relief, shot peening, rotopeening, and global heat treatment. This effort is required to assist utilities in evaluating the cost and risk of various alternative approaches.

Further effort is also warranted in development of ECT methods to provide early indication of this type of cracking.

S-8

  • Section 1 INTRODUCTION There have been a significant number of occurrences of cracking of Ni-Cr-Fe alloy 600 tubing in PWR steam generators (l). The types of cracking problems which have been experienced and the basic conditions under which they have occurred are indicated in Table 1-1. This report is directed towards the first of these problems: primary side intergranular stress corrosion cracking C!GSCC). Primary side IGSCc,*a1so known as Coriou or 11 pure water" cracking, is a particularly significant problem in that it can develop over a period of years under normal primary side water chemistry conditions with no identifiable contaminants.

Problems related to caustic attack and sulfur species attack, on the other hand, can be minimized or avoided by careful attention to water chemistry control.

There are two basic categories of primary side IGSCC. The first is denting

  • related and has occurred at tube support plate intersections and U-bend apexes, and could potentially occur at the top of the tube sheet. This type of primary side IGSCC can be minimized or eliminated by following recommendations in the Steam Generator Owners Group Design and Operating Guidelines (_g_) and is, therefore, not addressed in this report. The second category of primary side IGSCC is non denting related and occurs at U-bends, expansion transitions and roll expanded areas. This type of IGSCC is not prevented by following the Design and Operating Guidelines and is the subject of the remainder of this report.

With few exceptions, primary side IGSCC problems have been limited to Westinghouse type steam generators fabricated by Westinghouse or its licensees. The main reasons that primary side IGSCC has not occurred extensive.ly in Babcock and Wilcox and Combustion Engineering plants are believed to be as follows:

I Babcock and Wilcox - During fabrication, Babcock and Wilcox once through steam generators were subjected to a global stress relief heat treatment. This process reduced local residual stresses in the tubing which are a necessary factor for primary side IGSCC to occur, and also resulted in carbide precipitation at the grain boundaries, which made the material less susceptible to pure water type cracking. These improvements were achieved, however, at the expense of sensitizing the tubing which makes the tubing more susceptible to the sulfur species attack described in Table 1-1.

1-1

I Combustion En~ineering - There are two main factors believed to account for t e absence of primary side IGSCC in Combustion Engineering steam generators. First, most tubing was mill annealed at a higher temperature than the tubing used in Westinghouse type steam generators. Higher mill anneal temperatures tend to reduce susceptibility of the material to primary side IGSCC. Second, the procedures used to expand the tubing in the tube sheet and to fabricate the U-bends are believed to have resulted in lower tensile residual stresses.

The purposes of this report are to 1) summarize th~ current status of nondenting related primary side IGSCC in Westinghouse type steam generators, 2) tabulate the specific Westinghouse type plants which appear to have potential for primary side IGSCC, 3) describe the corrective action programs being pursued, and 4) suggest a course of action relative to primary side IGSCC.

It should be noted that the written text of this report was largely finalized in January 1985, but that some later primary side cracking occurrences were added to the data base and tables to make them as current as practical.

1-2

Tabl~ 1-1 TYPES OF PWR STEAM GENERATOR TUBE CRACKING PROBLEMS Time to Locations in Typical Plants Problem Develop Water Conditions Contaminants Steam Generator Experiencing Problems Primary Side Years Primary Water None Identified Points of High Stress Intergranular 316°C (600°F) - U-Bend Tangent - Trojan Stress Corrosion High pH (5.5 - 8.0) - U-Bend Apex - Surry 2 Cracking Zero Oxygen - Roll Transition - Doel 2 (Coriou Cracking) (Reducing Environment) - Dented Tube Support - Surry 1&2 Lithium Hydroxide, Plate Intersections Boric Acid, - Rolled Tubes in - Doel 3 Dissolved Hydrogen Tube Sheets Secondary Si de Weeks 288-324°C (550-615°F) Sodium, Potassium Points Where Sodium Caustic Stress 10% NaOH and Possibly Concentration can Corrosion Cracking (Reducing Environment) Carbonates Build to High Levels

- Tube Sheet Crevice - Ringhals 2

- Sludge Pile - Point Beach Sulfur Species Hours 21-93°C (70-200°F) Sulfur Oxy Anions Anyplace on Sensitized - TMI #1 (Primary)

Attack Low Levels of Sulfur - Organics Tubes Where Chemicals - Palisades (Secondary)

(few ppm Sulfur if - Resin Breakdown Concentrate (Crevices, - Ti hange 1 (Secondary)

  • Alternate Wetting - Oil Inleakage Stagnant Water/Air and Drying Occurs) - Resin Regen- Interfaces, etc.)

(Partially Oxidizing eration Environment) - Thiosulfates

r Tabl~ 1-1 TYPES OF PWR STEAM GENERATOR TUBE CRACKING PROBLEMS Time to Locations in Typical Plants Problem Develop Water Conditions Contaminants Steam Generator Experiencing Problems Primary Side Years Primary Water None Identified Points of High Stress lntergranular 316°C {600°F) - U-Bend Tangent - Trojan Stress Corrosion High pH (5.5 - 8.0) - U-Bend Apex - Surry 2 Cracking Zero Oxygen - Roll Transition - Doel 2 (Coriou Cracking) (Reducing Environment) - Dented Tube Support - Surry 1&2 Lithium Hydroxide, Plate Intersections Boric Acid, - Rolled Tubes in - Doel 3 Dissolved Hydrogen Tube Sheets Secondary Side Weeks 288-324°C (550-615°F) Sodium, Potassium Points Where Sodium Caustic Stress 10% NaOH and Possibly Concentration can Corrosion Cracking (Reducing Environment) Carbonates Build to High Levels

- Tube Sheet Crevice - Ringhals 2

...... - Sludge Pile - Point Beach I

w Sulfur Species Hours 21-93°C (70-200°F} Sulfur Oxy Anions Anyplace on Sensitized - THI #1 (Primary}

Attack Low Levels of Sulfur - Organics Tubes Where Chemicals - Palisades (Secondary}

(few ppm Sulfur if - Resin Breakdown Concentrate (Crevices, - Tihange 1 (Secondary}

Alternate Wetting - Oil lnleakage Stagnant Water/Air and Drying Occurs} - Resin Regen- Interfaces, etc.}

(Partially Oxidizing eratfon Environment} - Thiosulfates

  • The following is a summary, for each location in the steam generator, of the types of cracking which have been reported:

U-BENDS U-Bend Apex Non denting related primary side IGSCC at the U-bend apex has only been confirmed at Doel 2 and Beznau 2, and' there is an unconfirmed case at Obrigheim. The best documented of these cases is the 1979 incident at Doel 2 in which a tube ruptured suddenly at operating pressure and temperature with the plant at zero power. The leak rate was estimated to be on the order of 150 gpm. Dobbeni, et al. (~)have described this crack as longitudinal, located at the U-bend apex, and with a length of 2.75 inches (7 cm) (see Figure 2-1). The crack has been attributed to high stresses resulting from excessive ovality. Corrective action consisted of plugging all first row tubes with high ovality, and there have been no further reports of U-bend cracking at Doel 2.

In summary, non denting related primary side IGSCC .at the U-bend apex

  • region has not been a widespread problem.

U-Bend Tangent Primary side U-bend tangent cracking has been reported at a number of plants with Westinghouse manufactured tubing. The best documented of these cases are Trojan and Takahama 1 (.§_, .§_). As shown in Figure 2-2, cracks in both of these cases developed at the U-bend tangents between the tube flank and extrados. Visual examination of tubes removed .from both Trojan and Takahama 1 showed that the cracks occur at an abrupt change in geometry at the transition from the U-bend to the straight section of tube. This change in geometry has been described as an 11 irregular 11 or 11 opposite 11 transition and has been attributed to the ball mandrel process used by Westinghouse to form the bends. Based on in situ nondestructive examination, U-bend tangent leakage at other plants is believed to have a similar cause.

Mitsubishi tests, described in Appendix C to this report, confirm the detrimental effect of the 11 opposite 11 transition on time to failure in accelerated sec tests as compared to transitions produced by the plastic cylindrical mandrel procedure used by the Japanese tube supplier, Sumitomo. It should be noted, however, that the 2-2

The following is a summary, for each location in the steam generator, of the types of cracking which have been reported:

U-BENDS U-Bend Apex Non denting related primary side IGSCC at the U-bend apex has only been confirmed at Doel 2 and Beznau 2, and there is an unconfirmed case at Obrigheim. The best documented of these cases is the 1979 incident at Doel 2 in which a tube ruptured suddenly at operating pressure and temperature with the plant at zero power. The leak rate was estimated to be on the order of 150 gpm. Dobbeni, et al. (1J have described this crack as longitudinal, located at the U-bend apex, and with a length of 2.75 inches (7 cm) (see Figure 2-1). The crack has been attributed to high stresses resulting from excessive ovality. Corrective action consisted of plugging all first row tubes with high ovality. and there have been no further reports of LI-bend.cracking at Doel 2.

In summary, non denting related primary side IGSCC .at the U-bend apex region has not been a widespread problem.

U-Bend Tangent Primary side U-bend tangent cracking has been reported at a number of plants with Westinghouse manufactured tubing. The best documented of these cases are Trojan and Takahama 1 (~ * .§.). As shown in Figure 2-2, cracks in both of these cases developed at the U-bend tangents between the tube flank and extrados. Visual examination of tubes removed from both Trojan and Takahama 1 showed that the cracks occur at an abrupt change in geometry at the transition from the U-bend to the straight section of tube. This change in geometry has been described as an "irregular" or "opposite" transition .and has been attributed to the ball mandrel process used by Westinghouse to form the bends. Based on in situ nondestructive examination, U-bend tangent leakage at other plants is believed to have a similar cause.

Mitsubishi tests, described in Appendix C to this report, confirm the detrimental effect of the "opposite" transition on time to failure in accelerated sec tests as compared to transitions produced by the plastic cylindrical mandrel procedure used by the Japanese tube supplier, Sumitomo. It should be noted, however, that the 2-2

  • Section 2 CURRENT STATUS OF PRIMARY SIDE IGSCC PROBLEMS Nondenting related primary side IGSCC of alloy 600 tubing has been reported at several locations within Westinghouse type steam generators. These locations, and the plants reporting primary side IGSCC at each location are outlined in Table 2-1. This cracking represents a significant problem. For example:

1 Of the 47 plants operating at least 5 years (startup prior to 1980), over half of the plants have experienced varying degrees of primary side IGSCC. This has ranged from cracking of a few tubes at Zorita 1 and Prairie Island 1 to extensive cracking of thousands of expansion transitions at Doel 2 and the preventive plugging of all row 1 U-bends at a number of stations including Takahama 1, Trojan, Ringhals 2, North Anna 1, Zion 1, and Ohi 1.

1 In several cases, such as Farley 1, North Anna 1, and Tihange 2, cracking has occurred within the first fuel cycle

The Obrigheim steam generators were replaced due to increasing numbers of small leaks resulting from primary side IGSCC at roll transitions (~).

1 Even the earliest plants, which are operated at lower temperature, and which are generally thought to have been fabricated using tubing mill annealed under more optimum conditions, have shown signs of. primary side IGSCC as evidenced by experience at Zorita 1 and Beznau 2. For example, the first cracking at Zorita 1 was reported after about 14 years of operation.

While many plants have exhibited primary side IGSCC problems, there are also many plants of similar vintage, and fabricated by four of the five manufacturers, which have so far been free from such problems. Significant examples, with about 8 years or more of operating experience each, include: Ginna, Point Beach 1, Point Beach 2, Indian Point 2, Kewaunee, Prairie Island 2, Doel 1, Indian Point 3, Salem 1, Genkai 1, Fessenheim 2, and Takahama 2. While this is encouraging, the oldest of these plants has only been in operation 15 years. Primary side IGSCC may yet

  • become a problem at some of these plants before their design life is reached.

2-1

The following is a sununary, for each location in the steam generator, of the types of cracking which have been reported:

LI-BENDS U-Bend Apex Non denting related primary side IGSCC at the U-bend apex has only been confirmed at Doel 2 and Beznau 2, and there is an unconfirmed case at Obrigheim. The best documented of these cases is the 1979 incident at Doel 2 in which a tube ruptured suddenly at operating pressure and temperature with the plant at zero power. The leak rate was estimated to be on the order of 150 gpm. Dobbeni, et al. (i) have described this crack as longitudinal, located at the U-bend apex, and with a length of 2.75 inches (7 cm) (see Figure 2-1). The crack has been attributed to high stresses resulting from excessive ovality. Corrective action consisted of plugging all first row tubes with high ovality, and there have been no further reports of U-bend cracking at Doel 2.

In summary, non denting related prim~ry side IGSCC .at the U-bend apex I

region has not been a widespread problem.

U-Bend Tangent Primary side U-bend tangent cracking has been reported at a number of plants with Westinghouse manufactured tubing. The best documented of these cases are Trojan and Takahama 1 (~, ~). As shown in Figure 2-2, cracks in both of these cases developed at the U-bend tangents between the tube flank and extrados. Visual examination of tubes removed from both Trojan and Takahama 1 showed that the cracks occur at an abrupt change in geometry at the transition from the U-bend to the straight section of tube. This change in geometry has been described as an 11 irregular 11 or 11 opposite 11 transition and has been attributed to the ball mandrel process used by Westinghouse to form the bends. Based on in situ nondestructive examination, U-bend tangent leakage at other plants is believed to have a similar cause.

Mitsubishi tests, described in Appendix C to this report, confirm the detrimental effect of the "opposite" transition on time to failure in accelerated sec tests as compared to transitions produced by the plastic cylindrical mandrel procedure used by the Japanese tube supplier, Sumitomo. It should be noted, however, that the 2-2

  • In addition, numerous ECT indications, affecting about 5% of the tubes in one sample, occurred at roll transitions or in the fully expanded areas of the tubes.

At Tihange 2, leaks occurred in 11 to 14 tubes within the first year and a half of operation. Based on ECT examination, the leaks are believed to be due to short longitudinal through wall cracks in the transition region between the top of the main roll and the DAM roll. In addition, ECT indications have been detected in roll transitions and in the fully expanded areas of 10% of the tubes inspected in one steam generator. Most of the leaks and cracks appear to have occurred in tubes with no detectable abnormalities in rolling profile.

EdF laboratory metallurgical examination of tubes removed from Doel 3 has indicated that the material has intragranular carbides and an ASTM grain size of 10-11. Mockup tests using stainless steel tubes in boiling magnesium chloride or sensitized alloy 600 tubes in sodium tetrathionate have shown that expansion transition cracks occur in tubes meeting normal manufacturing limits which indicates that residual tensile stresses over about 10 ksi (69 MPa) are present.

The main remedial measures used to date at Doel 3 and Tihange 2 are ECT inspections and plugging of defective tubes, although other remedial measures are being considered.

EXPANSION TRANSITIONS - CIRCUMFERENTIAL CRACKS Circumferential cracks are of special concern since they increase the risk of sudden tube rupture without the warning normally provided by low level leakage from longitudinal cracks. Fortunately, circumferential cracking has not been a major problem to date, and the reported examples are limited to Fessenheim 1, Obrigheim, Zorita 1, Dampierre 1, Doel 2 and Ringhals 2. The details associated with these cases are as follows:

Fessenheim 1

~

Fessenheim 1 steam generator tubes were originally rolled over the bottom 8 cm (3.15 inches) and then explosively expanded over the full depth prior to operation using the Wextex process. Circumferential cracks were first detected on the ID of tubes in one steam generator about four years after the plant went into service, and to date, about 80 tubes in this steam generator have been plugged due to these cracks. The cracks, shown in Figure 2-7, have been isolated to one small area in the hot leg sludge pile region. The cracks range from about 0.5 inches (1.2 cm) below the top of the tube sheet to 0.75 inches (1.9 cm) above the top of 2-7

The following is a sununary, for each location in the steam generator, of the types of cracking which have been reported:

U-BENDS U-Bend Apex Non denting related primary side IGSCC at the U-bend apex has only been confirmed at Doel 2 and Beznau 2, and there is an unconfirmed case at Obrigheim. The best documented of these cases is the 1979 incident at Doel 2 in which a tube ruptured suddenly at operating pressure and temperature with the plant at zero power. The leak rate was estimated to be on the order of 150 gpm. Dobbeni, et al. (~)have described this crack as longitudinal, located at the U-bend ~pex, and with a length of 2.75 inches (7 cm) (see Figure 2-1). The crack has been attributed to high stresses resulting from excessive ovality. Corrective action consisted of plugging all first row tubes with high ovality, and there have been no further reports of U-bend cracking at Doel 2.

In summary, non denting related primary side IGSCC .at the U-bend apex region has not been a widespread problem.

U-Bend Tangent Primary side U-bend tangent cracking has been reported at a number of plants with Westinghouse manufactured tubing. The best documented of these cases are Trojan and Takahama 1 (~, ~). As shown in Figure 2-2, cracks in both of these cases developed at the U-bend tangents between the tube flank and extrados. Visual examination of tubes removed from both rrojan and Takahama 1 showed that the cracks occur at an abrupt change in geometry at the transition from the U-bend to the straight section of tube. This change in geometry has been described as an 11 irregular 11 or 11 opposite 11 transition and has been attributed to the ball mandrel process used by Westinghouse to form the bends. Based on in situ nondestructive examination, U-bend tangent leakage at other plants is believed to have a similar cause.

Mitsubishi tests, described in Appendix C to this report, confirm the detrimental effect of the 11 opposite 11 transition on time to failure in accelerated sec tests as compared to transitions produced by the plastic cylindrical mandrel procedure used by the Japanese tube supplier, Sumitomo. It should be noted, however, that the 2-2

  • Dampierre 1 Alloy 600 tubes at Dampierre 1 were rolled over the full depth of the tube sheet and then subjected to a DAM treatment above the original expansion transition.

Approximately three years after the plant went into service, ECT inspection revealed the presence of significant defects in the roll transition of a tube.

The tube was removed for examination and found to have a circumferential defect extending all around the tube and penetrating 75-90% through the tube wall thickness. As shown in Figure 2-8, the defect was located in the overlap region between the top of the original roll and the DAM roll. A similar, though smaller, circumferential defect was found in another tube. The two tubes with circumferential defects, as well as two other pulled tubes without circumferential defects, all had short longitudinal cracks in their roll transitions.

The EdF evaluation of this defect indicates that it was the combined result of the original roll transition being too high, and the DAM roll having too large an expansion [16 mils (0.4mm) vs. the design value of 4-8 mils (0.1-0.2 mm)]. Mockup tests to determine more precisely the specific combinations of rolling conditions which can lead to early circumferential cracks are still underway at EdF. The

  • remedial measures taken to date have been to preventively plug tubes which are judged to have susceptible geometric conditions based on earlier ECT results. The number of tubes plugged in Dampierre 1 steam generators for this reason range between 1 and 18.

In summary, the type of circumferential cracking observed at Dampierre 1 has not been reported elsewhere to date and thus does not yet represent a generic problem.

However, as in the case of Fessenheim 1, this experience indicates that significantly sized circumferential cracks can occur in alloy 600 tubing before large longitudinal cracks develop, if the right conditions are present.

Doel 2 As described earlier, Doel 2 has experienced numerous short primary side longitudinal cracks in the roll transition region. In addition, during metallographic examination of a tube pulled for other reasons, it was noted that there was a short circumferential crack intersecting a longer longitudinal crack in the hard rolled area just below where the roll transition meets the fully expanded area (~) .

  • 2-9

the tube sheet,' and have resulted in a leakage rate of 12 gph (48 liter/h) or less.

EdF mockup tests (!!) indicate that longitudinal residual stresses on the tube ID produced by the type of explosive expansion used at Fessenheim are on the order of 15-22 ksi (103-152 MPa) in the expansion transition region. These stresses were sufficient to cause primary side sec of explosively expanded stainless steel tubes tested in boiling magnesium chloride. Thus, the residual stresses from the explosive expansion may be a contributing factor in the cracking. It was also noted, however, that some of the tubes pulled from the plant were bowed, and that cracks, if any, occurred on the extrados of the bow. The cause and significance of the bowing have not yet been determined, although it may indicate that there was some mechanical damage which explains the localized nature of the cracking.

In summary, It is tentatively concluded that the circumferential cracking in one steam generator at Fessenheim 1 is an isolated problem without significant generic implications. However, since there are no known differences between Fessenheim 1 and other Wextex expanded steam generators, there remains the potential that this is a precursor of a more general problem.

Obrigheim As indicated in the previous section, and shown in Figure 2-5, expansion transition cracking at Obrigheim was both longitudinal and circumferential. The leakage resulting from these cracks led ultimately to the decision to replace the steam generators.

Zorita 1 Limited data is.available regarding the circumferential cracking which occurred at Zorita 1. It is understood, however, that the circumferential cracks are located at the bottom transition of an intermittent rolled area about 2-4 inches (5-10 cm) above the bottom of the tube sheet. (There apparently was a skip rolled area 1 to 2 inches (2.5 to 5 cm) above the bottom of the tube sheet.) The circumferential cracks at this location penetrate about 60% through the tube wall. There are also short longitudinal cracks in this skip roll transition as well as in the main transition at the top of the rolled area.

2-8

  • have been placed in compression and could easily have tensile stresses. sec tests on stainless steel tubes and sensitized alloy 600 tubes show that ID cracking can occur in rolled tubes meeting normal manufacturing limits [i.e., with 6 mil (0.15nm) diametral waves in the tube ID profile] {14), which indicates that tensile stresses of about 10 ksi (69 MPa) were present.

The main remedial measures applied to date at Doel 3 and Tihange 2 are ECT inspections of defective tubes, although other remedial measures are being considered *

  • 2-11

Ringhals 2 As described earlier, Ringhals 2 has experienced numerous short primary side cracks in the roll transition region. In addition, metallographic and NOE examination of pulled tubes has revealed several cases where primary side circumferential cracks exist in the fully rolled area about 0.25 inch (0.6 cm) below the bottom of the roll transition.

EXPANDED AREAS In addition to cracks in the expansion transition regions, a number of plants have reported cracks within the expanded area for tubes expanded using a multiple rolling procedure. One of the better documented examples is Dael 3. After about 10,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> of operation, leaks were discovered at three tubes. Subsequent examination showed that the tubes at these locations were installed in oversize holes and had not been fully expanded to provide proper contact with the tube sheet. Subsequent examinations have shown cracks at roll overlaps, skip rolls and non-overlap areas in tubes installed in normal size holes. Most of the cracks observed were short and longitudinal; however, some of the cracks have a circumferential component.

The cause of the improperly expanded tubing at Dael 3 has not been determined.

The roll expansion was performed using a semi-automatic tool which is supposed to roll each pass of about 1 inch (2.5 cm) length until a preset torque is reached, and is then raised to the next higher roll position. If a tube does not contact the tube sheet when expanded (see Figure 2-9), the required torque should not be reached. However, for unknown reasons, the tool was apparently raised in some oversize holes before the required torque was reached. This resulted in the tube not being expanded into contact with the tube sheet. One factor in this situation is that the rollers had a maximum range which would not provide the required tube expansion in some oversize holes; i.e., a tool change would have been necessary to complete the expansion.

Many Dael 3 and Tihange 2 tubes in holes meeting the specified dimensional tolerances have ID profile "waves 11 approaching the manufacturing limit of 6 mils (0.15mm). While the cause of the 11 waves 11 has not been explained in all cases, reference (l.~) indicates that, in some cases, the evidence suggests that the rollers were conical rather than parallel. This could possibly be due to the result of metal pickup on rollers, or some other similar phenomenon. The dimensions of the 11 waves 11 are such that the peaks of some of the 11 waves 11 may not 2-10

  • LOCA.TI0"-1 UJtJGl"TUOllJll.L Table 2-1 (Continued)

WESTINGHOUSE TYPE PLANTS WITH REPORTED PRIMARY SIDE IGSCC E>'-PA.NOE.O M.EAS.

IU<c Oe::uMs:'9i?EN'ML USCC SKETCH I""'"'- ~

)11 - I r-I I I

TYPICAL REF012TED

\ I

' \

LEAK RATE (Gs:>M)

~ J>..l="FEC.TEJ)

Almaraz 1* Doel 3 Bugey 3 Damp1erre 1&3 Doel 2&3 lkata 1 McGuire l*

Mfhama 3 Ohf 1&2 Rfnghal s 3&4*

Sumner* '

Tfhange 2*

  • LOCATION
  • ECT fndfcatfons only U - SE.t-.i DS APE'll TA.NG E,t,Ji SKETCH -

- -*-*-t-*-- - - -l - - I.

b... 0... 0.... IO..

TYPICAL REF012TED LEAK RATE (Gs:>M) 150 0.05-0.10

~ />..i:-FEC.Tel)

Beznau 2 Bugey 2&3

' Cook 1&2 Doel 2 Obrfghef111 Farley 1 Fessenhefm 1 North Anna 1 Ohf 1 Prafrfe Island 1 Rfnghals 2 Sequoyah 1 Sulllner Takahama l Trojan Zfon ll2 2-13

LOCATION FUU.OEPnl*'"'k DA.M Table 2-1 WESTINGHOUSE TYPE PLANTS WITH REPORTED PRIMARY SIDE IGSCC EXPAIJSIOtJ T~N~ITIOt-J~ - LOIJ1$1TlJOl~AL lGSC:C FUU..~*WITM DAM ~TOEPTM UJ'raR.MITTE.IJT SKETCH ,..._.,

I o~

~

r-I Ill ---, r-

}

- ID ~

)

I

. .I I

( ,. . I

) Ill I

)

\ l (

TYPICAL Refl02TEO

~I< RA"TE (&PM) 0.05 0.005

~ 111.l='FEC.Tel>

Al*raz I Bugey 5 Cook 2 Bugey 3&4 Dael 2*

Dampierre 1&3 Dael 2 Obrlgheim Ikata 1 Doel 3 Hfhama 3 Hfhama 2 Zari ta**

Gravel fnes 3 Ringhals 2 Dhf 2 Tfhange 2 Takahama I *hybrid mech.-

Trfcastfn 3 hydraul le expansion at mid height

    • top expanded area
  • 2-4" above bottom of tube sheet LOCATION E><.PANSION ~SITIONS - C 112CUM~EraENTIAL 'I~SCC FULL.DEPTH*~ e>>.~ FUU.DISP' WIT~ DH.ii p,tJrT Dl.PTM llJTERM 1TTeto..1T SKETCH 0 M ........

- '-7 r- - ---, r

)

- - r ri ,.._...,

I II I

? r1 I

I I

)

- I

(

\

TYPICAL REPORTED L..EAI< RATE (GPM)

~111.F'F'EC.TED Fessenhelm 1 Da111Pierre 1 Dael 2 Dbrlghefl1 (explosive expansion) (Improper rolling) Rfnghals 2 Zorfta (central tubes (cracks all very of one steam (bottom roll short, £ 5 mm) trans I ti ans) genera tor only) 2-12

/

~80° N

I U1

a. U-Bend Crack at Takahama 1 b. U-Bend Crack at Trojan Figure 2-2. Typical U-Bend Tangent Region Cracks Source: Based on references (.§.) and (.§_)

~.

I ,

Hot Leg Cold Leg Figure 2-1. U-Bend Crack at Doel 2 Source: Based on information in reference (1) 2-14

_J

  • Nool-5.------~------~--~--~~~--~--.

mm

"""75 ij, ~* l

~~ ...........""T"""O....,......,r-r-.-r-..-r'T'""T",-, 75........,~-r-.

M iJ \ I 70 65 II&

2 603llOL.L...i..J............3Q0..1-&....&...IL..L.a....L.J.,.J....i...i....&..1,., 0 llO 0 .2 .4 .....

0

a. Location of Cracks vs. Rolling Profile
c. Cracks vs. Carbide Morphology No of croclcs/90 dog 12 I'\)

I

-.J

b. Crack Thickness
d. Cracks vs. Transition (r/l) Ratio Figure 2-4. Expansion Transition Cracks at Ringhals 2 Source: From reference (l)

Secondary side Primary side Figure 2-3. DAM Rolling (from TRABEL) 2-16

  • 2.a. Without Dam Roll Expansion-3 to 4%

Wall thickness reduction 2.b. With Dam Roll Expansion plus DAM.dC/>>-' 0.12 to 0.16mm

.a>

3mm E l

j::

~

I ll T CJ) c

  • =ue

.5 Figure 2-6. SCC Tests of Expansion Transitions With and Without DAM

  • Source: From EdF 2-19

Typ A Typ 81 "22, 4 Figure 2- 5

  • Expan sion Trans1. ti on Cracks and Bulge at Obrigheim Source: From reference (l) 2-18

~--..i~- Dam Ro 11 - Over Expanded {0.4mm vs. Design of O.lSmm)

I Ci rcumferenti a1

~ID Crack ~ Top Main Roll 360°, 75 - 90% Extended Above Top of Thru Wall Top of Tubesheet; Tubesheet Should Stop Below Top of lubesheet Figure 2-8.- Expansion Transition Cracks at Dampierre 1 Source: From EdF 2-21


~-- - 4.3nm

--- /

9.Snm

---~.____---:.

.i.o-~ _ _ _ J - . ~

N N

I 16nm 1 0

(,;; .

...~

a. Location of Initial Cracked Tubes b. Reported Cracking in Pulled Tube Figure 2-7. Expansion Transition Cracks at Fessenheim 1 Source: From EdF
  • Section 3 CAUSE OF PRIMARY SIDE IGSCC Metallurgical examination of pulled tubes has indicated that primary side cracking in the tube sheet region, at tube support plate intersections, and in U-bends of Westinghouse type steam generators has been intergranular stress corrosion cracking (IGSCC). Except for one early case at Obrigheim, this cracking has occurred under conditions of normal Westinghouse primary water chemistry with no significant abnormalities reported. It is generally considered that this cracking is classical 11 pure water 11 IGSCC of the type first reported by Coriou in 1959 (!~).

As is the case with all stress corrosion cracking, this type of IGSCC requires the coincidence of three factors:

1. Susceptible Material
2. Aggressive environment
  • 3. Tensile stresses The following is a discussion of these three factors as they relate to the problem of primary side IGSCC of alloy 600 steam generator tubing, and a rough estimate of the time to failure for susceptible material under various conditions of stress and temperature.

SUSCEPTIBLE MATERIAL A considerable body of literature, starting with Coriou, has reported the susceptibility of alloy 600 tubing to IGSCC in pure water environments. The major question regarding primary side IGSCC of Westinghouse type steam generators is why some lots of alloy 600 tubing are m6re susceptible to IGSCC than other lots operating in essentially identical environments and with similar operating stresses and fabrication techniques.

Detailed investigations are being performed by a number of organizations to determine the factors which affect the susceptibility of alloy 600 tubing to primary side IGSCC. Results to date indicate that neither the chemistry nor the

  • mechanical properties of alloy 600 are the primary factors controlling susceptibility. Rather, susceptibility appears to be most strongly related to the 3-1

STEAM GENERATOR B - ROW 15 COLUMN 29

,-+-MAXIMUM RANGE OF Tubesheet Hole ID based on EXPANDER WITH NORMAL Manufacturing Records ROLLERS (23.60mm, 0.929 inches).

Profile of Tube N

OD based on ECT I Measured ID + Wall N

N Thickness MAXIMUM TUBESHEET Unexpanded HOLE DIAMETER PER Tube Dam Roll SPECIFICATION (22.68mm, 0.893 inches).

TUBESHEET APPROXIMATELY 535 MM (21.06 INCHES)

Figure 2-9. Expanded Region Profilometry at Doel 3 Source: From TRABEL

reduced dissolution (see Fi~ure 3-la). At a mill anneal temperature of about 1950°F{1065°C), few intragranular carbides remain after cooling, indicating improved dissolution (see Figure 3-1 b).

During cooling, carbides precipitate out at the new grain boundaries. The amount of carbide precipitation depends on the amount of carbon in solution. As carbides precipitate, they deplete the chromium concentration locally. The amount of chromium depletion is a function of the cooling rate.

Sensitization will occur if the time-temperature falls into a band as indicated in Figure 3-2. Sensitization is undesirable, since it makes the material susceptible to acid sulfur species attack, as indicated in Table 1-1.

The different heat treating conditions which have been used, and the resultant effect on key tube parameters has been reviewed by Owens (£!_). A summary of this work and some recent data are outlined in Tables 3-1 and 3-2 and are discussed below:

Prior to the early 1970's, alloy 600 tubing used in most Westinghouse type plants was processed by Huntington using a high 1800-1950°F (982-1065°C) final mill anneal temperature.

Mill anneal conditions in this range are sufficient to

\ produce recrystallization, large grain size (typical ASTM

  • No. 6), and good dissolution of carbides. Carbides are then free to reprecipitate at the new grain boundaries during cooling. While this material tends to have a low yield strength, it is resistant to primary side IGSCC. Tubing for most early {pre 1971) Westinghouse type steam generators, and.all Combustion Engineering steam generators, is believed to haye been produced using high mill anneal temperatures, and should therefore be relatively resistant to primary side IGSCC. I~

should be noted, however, that a few early Westinghouse type steam generators were fabricated used tubing processed with low mill anneal temperatures and are relatively susceptible (e.g.,

Mannesmann tubing used in Obrigheim and Dael 2).

  • Starting in the early 1970's, the mill anneal metal temperature for tubing used in most Westinghouse type plants was lowered to about 1750°F {955°C), or lower, apparently to increase the tubing yield strength. This mill anneal temperature is high enough to cause recrystallization, but is not high enough to cause much grain growth or carbide dissolution. Thus, it results in smaller size grains (typical ASTM No. 8-11), and reduced rate of carbide dissolution as CQIDP~red to the previous higher mill anneal temperatures. This leads to a higher concentration of intragranular carbides and a lower concentration of desirable intergranular carbides. This material retains good resistance to sulfur species attack, but is more susceptible to primary side IGSCC than material mill annealed at higher temperatures.

J

  • During the late 1970's, the final heat treatment of the tubing was changed primarily to increase the resistance to secondary side caustic attack. However, this change also 3-3

thermo-mechanical processing used during manufacturing which establishes the final carbide morphology. Typical carbide morphologies of susceptible and resistant tubing are shown in Figure 3-1. Tubes with increased quantities of grain boundary

  • (intergranular) carbides tend to have improved resistance to primary side IGSCC (lZ_,.!!!,~ &20). Susceptibility also appears to be related to material grain size with larger grains having lower susceptibility (~). It is believed that thermo-mechanical treatment of tubing which leads to carbide precipitation at grain boundaries also leads to larger gain size and hence leads to the correlation between grain size and susceptibility to IGSCC.

The most convincing practical example of the correlation between carbide morphology and primary side IGSCC is the recent metallurgical examination of 14 tubes pulled from Ringhals 2 (ZJ* As shown in Figure 2-4c, none of the three tubes with significant amounts of intergranular carbides evidenced primary side ,

I IGSCC, while all but one of the eleven tubes which had small amounts of intergranular carbides and significant amounts of intragranular carbides also evidenced primary side IGSCC.

There are no firm conclusions at present regarding how the grain boundary carbides improve the resistance to primary side IGSCC. Two speculative theories are that

1) the carbides act as dislocation sources and thus tend to promote plastic deformation within the grains, as opposed to at the grain boundaries, and 2) the carbides tend to mechanically strengthen the grain boundaries.

The main fabrication variable which controls the grain size and carbide morphology is the heat treatment applied to the material after cold working to final tube size. Significant aspects of the final tube forming and heat treatment process, which affect material susceptibility, are as follows:

  • Carbides exist at grain boundaries prior to the final tube forming and heat treatment as a result of previous forming and heat treating.
  • During the final tube forming the material is cold worked.
    • As the tube is mill annealed~ the cold worked material recrystallizes, leaving the old grain boundary carbides within the boundaries of the new grains (i.e.

intragranular) if the temperature is below the C solvus.

  • Dissolution of the carbides during recrystallization is strongly temperature dependent. At a mill anneal temperature of about 1800°F(980°C} and less, large amounts of intragranular carbides remain after cooling, indicating 3-2
  • Temperature variations are known to be a significant factor in the aggressiveness of the environment. There are two leading indicators of this fact. First, most of the reported primary side IGSCC in tube expansion transitions has been on the hot leg rather than the cold leg side. Second, laboratory tests in pure water using highly strained specimens show !.I strong temperature dependence (see Figure 3-4), which indicates that the IGSCC has an activation energy in the range of 30-50 kcal/mole (22 and recent discussions with van Rooyen). An activation energy of 34 kcal/mole would lead to a 30% decrease in time to failure per 10 F0 (5.6 C0 )

temperature increase at 600°F (315°C).

The main conclusion regarding the environmental aspect of primary side IGSCC is that, if the material is susceptible, and the tensile stresses are high enough, the normal primary side environment will cause it to crack.

TENSILE STRESS The first evidence of primary side IGSCC in Westinghouse type PWRs in the United States occurred in the mid 1970's at dented tube support plate intersections and in the deformed U-bends at Surry 1&2 and Turkey Point 3&4. This showed that alloy

  • 600 tubing.is susceptible to primary side cracking in the presence of yield strength level stresses. This has subsequently been confirmed by laboratory testing (22,11.,18,~, & 20), and experience at non-dented plants. The experience with denting related primary side IGSCC at Surry and Turkey Point is particularly significant in that some of this material is thought to have been processed with a high mill anneal temperature, which would tend to make it more resistant to primary side IGSCC than the material in some later plants.

Test data by Bandy and van Rooyen, shown in Figure 3-5, indicate that the time to failure in elevated temperature water varies inversely with the fourth power of the applied stress (22)

  • TIME TO FAILURE Rough estimates of the time to failure of susceptible alloy 600 tubing as a function of environment and stress, can be made taking into account t~e above factors and laboratory test data reported by Bandy and van Rooyen (_gf). The approach is as follows:
  • For susceptible heats of material in a pure water with
  • hydrogen environment at 689°F (365°C), and with stress at the yield point, failure occurs in about 8 weeks. (Note:

The actual material in a given plant may be more or less 3-5

serves to increase the resistance to primary side IGSCC. The process, called "Special Thermal Treatment," involves a high mill anneal temperature [>1950°F(1065°C)] followed by holding the tubin9 at a lower temperature [1300°F(705°C)] for a long period of time LIS hours]. This process results in the desirable condition of continuous carbides at the grain boundaries, and sufficient time for the chromium concentration at the grain boundaries to return to a level which will resist sulfur species attack (i.e. is not sensitized).

1 One variation, used by Babcock and Wilcox on once through steam generators, is to stress relieve the entire steam generator for about 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> at 1150°F(620°C) after final assembly. This.process results in a high concentration of desirable intergranular carbides and relief of the fabrication induced residual stresses. As a result, this tubing has been free from pure water type primary side IGSCC. However, the stress relief conditions result in chromium depletion at the grain boundaries and a resultant poor resistance to sulfur species attack. Sulfur species attack has proven to be a problem at several B&W plants.

Work is currently underway to develop methods to predict the susceptibility of alloy 600 tubing to primary side IGSCC based on material properties. To date, material susceptibility appears to correlate most strongly with the concentration of grain boundary carbides; however, there is some correlation to grain size and material strength and hardness. The correlation between IGSCC and grain size for those plants in Table 5-1 for which grain size has been reported, is shown in Figure 3-3.

In summary, it should be recognized that material susceptibility varies over a large and continuous range. The most susceptible material will lead to cracks within a year or less. while less susceptible material may not crack after 15 years of operation. Even the most resistant thermally treated material has soine degree of susceptibility and can be made to crack in a pure water environment in the laboratory at high enough temperatures and stresses.

AGGRESSIVE ENVIRONMENT Experience and tests have shown that primary water with normal chemistry and the normal operating temperature range [e.g., 550-615°F (288-324°C)] is 11 aggressive 11 towards some types of alloy 600 tubing. The presence of hydrogen appears to significantly aggravate pure water IGSCC, while lithium hydroxide plus boric acid appears to reduce this effect. The net result is that primary water appears to be intermediate in aggressiveness between the most aggressive case of pure water with hydrogen overpressure, and the least aggressive case of pure water without hydrogen overpressure (22).

3-4

  • These examples are in reasonable agreement with actual reported experience at some plants at which large numbers of cracks have occurred in first row U-bends and hot leg expansion transitions within the first few years of operation. The results are also consistent with the experience at Ringhals 2, where incipient cracking has been detected in the cold leg roll transitions after about 9 years of operation, while hot leg transition cracks may have initiated during the first few years of operation. Of course, there are also many plants such as Indian Point 2 and Kewaunee, with over 10 years operating experience and no reported primary side IGSCC at all.

SUMMARY

Operating experience and laboratory test data have demonstrated that alloy 600 tubing material in some heat treatment conditions will crack in a normal PWR primary water environment. The rate at which cracking occurs appears to be dependent primarily upon the material microstructure, temperature, and local tensile residual and operating stresses. Cracking will appear sooner under conditions of more susceptible material, higher temperatures, and higher stresses.

Experience at Surry 1&2 and Turkey Point 3&4 indicates that even plants with

  • material generally considered to have a low susceptibility to cracking can rapidly develop primary side cracks if exposed to high enough stresses.

In summary, no plant with non thermally treated alloy 600 tubing should be considered as immune to primary side IGSCC. Rather, plants with less susceptible material, lower temperatures, and lower stresses will take a longer time to develop primary side cracks, and the rate of crack propagation will be lower.

Strong evidence *of this fact is the recent report of primary side IGSCC in hot leg roll transitions in the Zorita plant after about 14 years of operation. The tube material at Zorita is a vintage which would be expected to have low susceptibility to primary side IGSCC, and the hot leg temperature is relatively low in comparison with newer plants .

  • 3-7

susceptible than the material used for these tests. For example, tubing from Ringhals 2 failed within 2 weeks in such a test.)

Failure in primary water occurs 1/2 as rapidly as in pure water with hydrogen overpressure.

~ ~

Temperature affects the rate of attack in accordance with the

~

normal factor for thermally controlled processes, e-Q/RT, where Q is the activation energy, R is the gas constant, and T is the absolute temperature. Tests and service experience (22,1 and recent discussions with van Rooyen) indicate a wide range of activation energies (30-50 kcal/mole). For purposes of this rough estimate, a Q of 40 kcal/mole has been assumed. For a hot leg temperature of 610°F (321°C), this results in a life increase by a factor of about 10.3 as compared to 689°F (365°C).

The failure time varies inversely as the fourth power o~

the stress. ~

For .¥-ield strength Jeyel stresses, and a temperature of 610°F (321°C), the rough I

estimate of time to failure is about 3 years. Rough estimates of times to failure for other stress levels and tube ID temperatures are shown in Figure 3-6.

Temperature distributions at several points along the length of the tube for a typical Westinghouse type plant are computed in Appendix A. Operating and residual stresses acting at expansion transitions and U-bends are reported in Appendices B and C respectively. Using these data, and the curves in Figure 3-6, it is p~ssible to make rough estimates of the time to failure for susceptible material at key locations within the steam generator. These predictions are reported in Table 3-2.

While there is considerable uncertainty in each of the above assumptions, these examples indicate that, for plants with susceptible material, initial cracking could be expected to occur within several years after startup at locations such as the first row U-bends and hot leg expansions within the tube sheet and sludge pile regions. The rate of crack propagation will depend, of course, upon the through thickness stress distribution. For example, propagation of cracks through the tube thickness would be expected to occur most rapidly for the case of U-bends where the externally applied operating stresses are the highest. These examples also indicate that cracking would be expected to occur at hot leg roll transitions well before cold leg roll transitions.

3-6

Table 3-2 CORRELATION BETWEEN MILL ANNEAL METAL TEMPERATURE AND MATERIAL SUSCEPTIBILITY Final Mill Anneal Source of Data Metal Temperature (°F) Susceptibility to Primary Side IGSCC Combustion Engineering > 1850 Excellent field performance

< 1850 Poor field performance EdF Tests 1960 Not susceptible 1870 Marginal 1800 Highly susceptible Doel 2 < 1730 Highly susceptible 1750-1800 Not susceptible Trojan 1650-1750 Susceptible w Surry 2 < 1800 Susceptible with high stress I

l.O Ringhals 2 &3 1750-1800 Susceptible Ginna 1760-1814 :J- Not susceptible Indian Point 3 1700-1760 Not susceptible

Table 3-1 SU""1ARY OF TYPICAL STEAM GENERATOR TUBE CONDITIONS Metal Temp. During Annealing Chromium Annealing Duration Yield at Grain Boundary IGSCC Sulfur Process (OF) {min) {ksi) Boundarl Carbides Resistance Resistance Mill annealed 1900 3-5 45 Some Some Good Variable**

Depletion Mi 11 annealed 1750 3-5 65 Some Few Poor Good Depletion Stress relieved* 1150 600 60 Depleted Many Excellent Poor Thermally treated* 1300 900 50 Not Many Excellent Excellent w

I Depleted CX>

  • Both the stress relieved and thennally treated material received a prior mill anneal heat treatment which is not indicated in the above tables.
    • Some heats of this type mill annealed tubing experienced enough grain boundary carbide precipitation to become sensitized and susceptible to sulfur species attack, e.g., Tihange 1, Palisades .

(,.)

I

a. Susceptible to Primary Side IGSCC b. Resistant to Primary Side IGSCC Few Grain Boundary Carbides Copious Grain Boundary Carbides Copious lntragranular Carbides Few Intragranular Carbides Small Grain Size . Large Grain Size Figure 3-1. Carbide Morphology of Alloy 600 Tubin~ (Illustrative)

Table 3-3 ESTIMATED TIME TO PRIMARY SIDE CRACKING OF SUSCEPTIBLE* MATERIAL

{Cracking due to Hoop Stresses)

ID Metal Time to Temp. Stress (ksif Cracking Location (oF} O~erating Residual -otal {Years~

  • With Heat Transfer

- Hot leg straight run - not in 592 3.9 -25.0 -21.1 NA sludge pile

- Tube sheet hot leg expansion above 592 3.9 50.0 53.9 4.2 tube sheet - not in sludge pile

- Tube sheet cold leg expansion above 552 9.2 50.0 59.2 11.3 tube sheet - not in sludge pile w

I 0 - First row U-bend 565 20.0 45.0 65.0 4.9

  • Without Heat Transfer

- Hot leg straight run - in sludge 615 11.0 -25.0 -14.0 NA pile

- Tube sheet hot leg expansion in 615 11.0 50.0 61.0 1.2 tube sheet or sludge pile Tube sheet cold leg expansion in 558 11.0 50.0 61.0 8.1 tube sheet or sludge pile

  • NOTES:
1. Susceptible material as used in this table, is material that leads to cracking of split reverse U-bend specimens in eight weeks time when tested in pure water with hdyrogen overpressure at 689°F (365°C). For purposes of these calculations, the split reverse U-bends were assumed to have a stress level of 50 ksi (345 MPa).
2. An activation energy of 40 kcal/mole has been assumed for these calculations.

e 7

  • Cr.cted

!iii Not CrlCktd 6

s 4

  • 3 2

0 s 6 7 e 9 10 11 ASTM Grain Size Figure 3-3. Correlation Between Primary Side IGSCC and Average Grain Size

  • 3-13

!IOO

.,. 1600

.. . 1500 800

. 1400 u

... II.

..,~

1300 700

... It"'

~ .,. 1200 ..,

600 1100

... ii ii 500 0.1 TIME (MINUTES)

!:. 1000

~

1000

  • Notes:
1. Range of conditions to be avoided is shaded.
2. Sensitization is defined as greater than 100 mpy or 500 mdd corrosion.

Figure 3-2. Time-Temperature-Sensitization Diagram for Mill-Annealed A11oy600 Tubing Source: Adapted from reference C!~)

3-12

As-received Alloy 600 Tubing. 365°C. Pure H20 Slope of (TF = k stressb) = -4.

-a::..

(/)

lJ...

0 1.0 w

z 0

I U1 u

<:(

a::

lJ...

FAILURE, days Figure 3-5. Correlation Between Stress and Time to Failure of Alloy 600 Tubing Source: From reference (22)

1000.---29~0 TEMPERATURE, °C

________3_1~5__3_2_5_____ 3_45 365 36~0--*_____

SCC in Pure Water. U-Bends of Conmercial Tubing.

en 4'

POINTS

~

w w

3:.

w

~

t-w 0 0::

J

...J

<( Q =33 kcal /mole u.. r2=0.94 10 PROJECTED FAILURE AT 0 § 290°C= 330 WEEKS

,.._~___...__~__..~~_.L~~---J..~~~~~-'-~~-J 1.80 1.76 I. 72 1.68 1.64 1.60 I. 56 I

INVERSE TEMPERATURE, f(oKl x 1000 Figure 3-4. Correlation Between Temperature and Time to Failure of Alloy 600 TubinQ Source: From reference (22) 3-14

  • Section 4 CONSEQUENCES OF CRACKING There are four major concerns regarding primary side IGSCC of steam generator tubing. These are sudden tube rupture, exceeding technical specification leakage limits, exceeding margin of excess tubes, and secondary contamination.

SUDDEN TUBE RUPTURE The major safety related concern with steam generator tube leakage is that the tubes will rupture suddenly. Sudden ruptures have occurred in the U-bend region of several plants (24). These ruptures *have resulted in leakage rates in the range of 80-400 gpm (320-1600 liter/h). In the two cases resulting from primary side IGSCC (Surry 2 and Doel 2) the leakage was in the range of 80-135 gpm (320-540 liter/h) *

  • The NRC has computed that a total leakage rate on the order of 1300 gpm (5200 liter/h) via the steam generators could lead to uncovering the core (24).

Therefore, failure of several tubes at one time could be a serious situation.

Such a multiple failure could be triggered by mechanical damage produced by one failed tube, or by the effect of a rapid secondary side depressurization causing near simultaneous rupture of several partly failed tubes.

The.consequences of a tube rupture are potentially significant for all of the locations where primary side IGSCC has been reported except for the case of cracks which occur at least several inches below the top of the tube sheet for tubes in the center of the steam generator. At these locations the tube will be held in the tube sheet by adjacent tubes or antivibration bars, thereby limiting the amount of flow even if the tube is completely ruptured. This may not apply for some tubes at the start and end of the center tube lane, which would not be restrained by U-bends of adjacent tubes or antivibration bars. Even at these locations, however, the tube would have to move axially through the tube support plate holes before the end of the tube would clear the tube sheet. This is considered unlikely *

  • 4-1

1000 Q = 40 kcal/mole

~

"""" ~

~

~

~~

~ ~

100 ~ a= 20 ksi

- I ll s..

- QJ QJ s..

~

~

i'-....._

I

"""" ~

I-LL.

0 QJ e

10 "-......

~

~

~ .........

~

~~ .........

"" ~

~ a= 30

......... a= 40

~"-......

r--.....

~ ~~

~ ~

........... ~~ a= 50

"-- ~ I

~ r---...... a= 70 ~ a= 60 1

550 560 570 580 590 600 610 620 Surface Temperature (°F)

Figure 3-6. Estimated Time to Failure of Alloy 600 Tubing 3-16

  • side leakage will cause radioactive contamination of the secondary systems and equipment, thus leading to undesirable complications in maintenance and waste disposal.

SUMMARY

To date, the general experience with U-bend cracks has .been that the leakage is relatively low and increases gradually over a long period of time (i.e., months or years). The major exception to this general sequence of events has been for cases of U-bend apex cracking resulting from high ovality. In several of these cases tubes have ruptured suddenly resulting in large leakage rates. The high ovality has resulted from initial fabrication (Doel 2) and also from closing up of the flow slots as a result of denting (Surry and Turkey Point). The remedial action taken has been to plug the leaking tubes, and in many cases to plug all of the row 1 tubes on a preventive basis.

For the case of expansion transitions and expanded areas within the tube sheet, leakage has also been relatively low and has increased gradually over long periods of time. There are no reported cases of sudden rupture of tubes in the expansion

  • region. In a few cases where the cause of the IGSCC has been identified and affects small numbers of tubes, the general course of action has been to inspect the tubes for the condition known to cause cracking and then plug affected tubes on a preventive basis. This is not practical, of course, where there are large numbers of cracked tubes which were fabricated within tolerance. In these cases, the approach to date has been to accept low levels of leakage while remedial measures are being developed in the laboratory and tested on a trial basis in the plant. However, this type of problem has led to steam generator replacement at one plant (Obrigheim) and is a contributing factor in planning for replacement at another (Ringhals 2).

In sunmary, while tubes can be plugged or sleeved when cracks or leakage reach the established acceptance criteria, the better approach would appear to be to take appropriate ~ction to prevent a significant problem from developing in the first place. This requires an assessment of the risk of primary side IGSCC occurring at a particular plant, and then selection of an appropriate corrective action if warranted. The remaining sections of this report address the topics of risk, corrective measures, and suggested course of action .

  • 4-3

TECHNICAL SPECIFICATION LEAKAGE LIMITS With many thousands of tubes per plant, several potential crack locations per tube, and some degree of uncertainty in eddy current inspection results, there is a possibility that some cracks will propagate through wall without being detected.

Provi_ded that these cracks propagate in a manner which will "leak-before-rupture",

the cracks can be detected at an early stage by primary to secondary side leakage measurements. The evidence to date from the Trojan plant suggests that U-bend tangent point leaks in Westinghouse tubing do in fact propagate slowly.

Similarly, the short longitudinal cracks which normally occur at expansion transitions also appear to have low and slowly increasing leakage rates.

If there are large numbers of small leaks there is the potential for having to shut the plant down between regularly scheduled outages to plug tubes. If this occurs frequently it can have an adverse effect on plant availability. A related concern with operating *a plant with cracked tubes is that laboratory tests and experience at Ringhals 2 and Doel 2 indicate that circumferential cracks can sometimes be associated with longitudinal cracks in the transition region.

MARGIN OF EXCESS TUBES Present steam generator tube plugging criteria in the United States are based on the requirements of Regulatory Guide 1.121. The approach taken is to remove tubes from service before they can develop through wall cracks. This is currently achieved by plugging tubes when defects reach some significant percentage of wall thickness, such as 40%.

In early steam generators there was generally a high margin (-25%) of excess tubes. In these plants many tubes can be plugged without concern over having to derate the plant. In many newer plants, however, the margin of excess tubes can be very low. In these cases, plugging of large numbers of tubes is not an acceptable long term option.

SECONDARY SIDE CONTAMINATION Typical leakage rates from U-bend "opposite transitions" and from longitudinal cracks in the tube sheet expansion area are well below the typical Technical Specification allowables. Thus, a case can be made for continuing to operate with the low levels of leakage. However, even small amounts of primary to secondary 4-2

  • Section 5 PLANTS POTENTIALLY AT RISK OF PRIMARY SIDE IGSCC As indicated in the preceding sections of this report, not all of the Westinghouse type steam generators are equally susceptible to primary side IGSCC. There are significant differences in design details, tube material processing, fabrication details, and operating temperature, which are believed to have significant bearing on whether primary side IGSCC is likely to occur, and, if so, how long it will take to develop, and how extensive the cracking will be. The purpose of this section to summarize available information for Westinghouse type steam generators with non thermally treated alloy 600 tubing, and to discuss how the relative risk of primary side IGSCC can be assessed for a particular plant.

DATA BASE OF KEY PARAMETERS Appendix D to this report contains a compilation of data pertaining to

  • Westinghouse type steam generators in operation through the end of 1982, as well as several additional plants which went into operation after 1982 but have already developed primary side IGSCC. This data can be used to assess the significance of reported primary side IGSCC at a particular plant, and as a source for identifying other plants which are potentially at risk.

Table 5-1 is a more limited tabulation of the parameters considered to be most relevant to primary side IGSCC for all Westinghouse type plants with non thermally treated alloy 600 tubing. This data includes the date of initial commercial operation, steam generator model number, tubing manufacturer, tubing grain size (which provides an indication of the final mill anneal conditions), location of the expansion transition, method of tubing expansion, hot leg coolant temperature, and locations of reported primary side IGSCC. The plants are separated into five groups based on the steam generator fabricator.

RISK OF PRIMARY SIDE IGSCC Based on the extent of primary side IGSCC which has already occurred, and the current state of predictive modeling, none of the Westinghouse type steam

  • generators fabricated from nonthermally treated alloy 600 tubing should be considered as being immune to primary side IGSCC over their design lifetimes.

5-1

  • (Note: Even this tubing is not immune to primary side IGSCC as indicated by -the extensive denting related cracking at Surry and Turkey Point, and the small amount of non denting related cracking at Beznau 2 and Zorita 1).

Tubing in the rest of the plants in Table 5-1 may or may not be highly susceptible. The susceptibility of tubing used at a particular plant can be evaluated in several ways as outlined below in order of increasing amounts of effort required.

ASTM Grain Size. As reported in Section 3, there is some correlation between susceptibility to primary side IGSCC and the material grain size. This is illustrated by the data in Figure 3-3, which shows that plants with smaller grain size (larger ASTM grain size numbers) tend to have a greater incidence of primary side IGSCC, than plants with larger grain size. The grain size range for a particular plant can sometimes be obtained from tube material records. (Note:

This may require considerable effort as there can be 200 or more heats of material used in a given steam generator). It would appear from the limited grain size data in Table 5-1 and Figure 3-3 that the following criteria can be applied as a fJrst step to assessing the relative material susceptibility:

ASTM Grain Size Material Susceptibility 6 and less Not generally susceptible to date 7 - 9 May be susceptible 10 and greater Should be considered highly susceptible Mill Annealing Temperature. The final mill annealing temperature has been demonstrated to have a significant effect on susceptibility to primary IGSCC (Reference£!_ and Table 3-2). In some cases, the mill annealing furnace temperature can be obtained from the tube supplier for each heat of material. In other cases, the mill anneal furnace temperature can only be estimated based on the temperatures typically used by a supplier during a given period of time. One major problem in this regard is that most of the research has been done using the actual mill anneal metal temperature which is lower than the mill anneal furnace temperature. Appropriate corrections must be made to estimate the metal temperature from the furnace temperature. It should also be noted that there are significant variables in the mill annealing process in addition to the temperature which can affect the response of the tubing material to the heat treatment process and the resultant susceptibility to primary side IGSCC. These variables include:

5-3

Rather, it is considered that primary side IGSCC will continue to be an increasing concern as plants age and that there will be wide variations in times to crack initiation and in extent of cracking between different plants and within individual steam generators. Predictive models may ultimately be improved to the point where it can be demonstrated that some specific plants should be immune from primary side IGSCC over their design lifetime. However, this does not appear likely considering 1) the wide range of variables involved, 2) there can be more than 200 heats of material and 3500 tubes per steam generator which increases the likelihood of at least some tube-fabrication combinations leading to susceptibility, and 3) primary side IGSCC has already been reported in over half of the steam generators in operation over 5 years.

In making plans regard_ing inspection programs and possible remedial measures, it is desirable to be able to assess the relative risk of primary side IGSCC occurring at a particular plant. Based on the present state of the art, there are two major factors which should be taken into account in making such an assessment.

These are: material susceptibility and fabrication processes used.

Material Susceptibility Based on information currently available, material susceptibility appears to be the most significant single factor regarding potential for primary side IGSCC. If the material is at the high end of the susceptibility range for mill annealed alloy 600 tubing, then the evidence indicates that primary side cracking will most likely be a significant problem regardless of the specific fabrication processes used. On the other hand, if the material is at the low end of the susceptibility range* for mill annealed alloy 600 tubing, then the evidence indicates that primary side cracking will most likely not be a significant problem unless there are unique situations such as denting which produce very high and persistent tensile stresses. It is important, therefore, to be able to determine the relative susceptibility of alloy 600 tubing at a particular plant as compared to material in plants which have experienced severe primary side IGSCC and those which have be.en free of significant primary side IGSCC.

The only plants for which material susceptibility should not have to be assessed on a case basis are those plants with tubing supplied by Huntington prior to about 1971. This early Huntington tubing, used in the first 10 or so plants in Table 5-1, was apparently heat treated in a higher mill anneal temperature and has therefore proven to be more resistant to primary side IGSCC than later tubing.

5-2

  • expansion transitions, and incomplete expansion within the tube sheet which results in portions of the tube having tensile rather than compressive residual stresses.

For plants with susceptible material, the following fabrication details are known to produce more significant problems than other details. In some of these cases, inspections can be performed in a steam generator to determine if particularly adverse conditions exist.

  • First and second row U-bends with ovalit~ in excess of 10% -

The actual ovality can be determined by 1n situ measurements. The most likely cracks resulting from high ovality are longitudinal and located in the apex region.

  • First and second row U-bends formed by Westinghouse using their ball mandrel process - To date, we are not aware of in situ inspection methods to assess the magnitude of the bulge or wall thinning at the 11 opposite transition 11 , nor has work been completed to determine the correlation between 11 opposite transition" geometry and likelihood of IGSCC. The most likely
  • cracks at the 11 opposite transition" are longitudinal. It may be possible to develop profilometry and wall thickness measuring methods that will allow, in conjunction with tests of U-bend geometry, a reasonable assessment of the degree of risk. However, when and whether this work will be completed is not certain at this time.

1 Expansion transitions in roll expanded tubing, with or without a DAM treatment above the transition - The most likely cracks are short longitudinal cracks in the transition between the expanded and unexpanded tubing. However, laboratory and field experience indicate that circumferential cracks can eventually occur. While expansions meeting normal fabrication tolerances have been shown to crack, the rate of crack initiation appears to be increased by oversize holes, steep transition slope (low l/r ratio), and out-of- tolerance DAM treatment. A review of fabrication inspection records, and some in situ inspections can be used to determine if these conditions exist.

1 Expanded regions in roll expanded tubing - If tubing is properly expanded into the tube sheet, the entire inner surface of the tube wall should be in compression. If there are 11 waves 11 in the rolling, skip rolls, or uneven overlaps, there is the potential for local tensile residual stresses. These conditions can be determined by profilometry measurements. It should be 11 noted, however, that cracking can even occur at normal 11 waves in the ID surface; this probably occurs in tubes which received relatively low amounts of wall thinning after contact with the tube sheet, though this has not been proven. The actual amount of wall thinning could probably be measured ultrasonically .

  • 5-5

belt load etc.

have speed (time in the furnace), tube wall thickness, amount of tubing in each (thermal mass in furnace), amount of previous cold working, carbon content, Nevertheless, the following general guidelines on mill anneal temperature been developed from Reference (~!) and the data in Table 3-2.

Final Mill Anneal*

Metal Temperature 6 (F) Material Susceptibility

>1850 Not generally susceptible to date ~

1750 - 1850 May be susceptible

<1750 Should be considered highly susceptible Carbide Morphology. As reported in Section 3, the best correlation between material properties and susceptibility to primary IGSCC appears to be carbide morphology. Using this approach, photomicrographs are prepared of archive tubing material, or tubing specimens removed from the steam generator and the observed carbide morphology is compared to reference photomicrographs. Large amounts of intergranular (grain boundary) carbides are indicative of resistance to primary side IGSCC. The suggested set of reference photomicrographs for evaluation purposes is presented in the draft EPRI specification for alloy 600 steam generator tubing (25).

Accelerated SCC Tests. A model is described in Section 3 to predict time to failure based on results of accelerated stress corrosion cracking tests in elevated temperature pure water with hydrogen overpressure. As in the previous method, archive material, or material specimens removed from the steam generator, can be tested using this approach, and the predicted time to failure compared to that for material known to be highly susceptibile (see Table 3-3).

Fabrication Details For susceptible material, the rate at which primary side cracking problems develop and the ultimate extent of the problems appear to be significantly affected by the fabrication details. That is, fabrication processes which produce higher levels of tensile residual stresses on the inside surface of the tube lead to more rapid and severe cracking than processes which produce lower levels of tensile residual stresses. A particular concern in this regard is out-of-tolerance conditions such as high ovality in the U-bend region which leads to high stresses, oversize holes in the tube sheet which result in greater geometric discontinuities at the 5-4

  • Table 5-1 Westinghouse Type PWR Plants with Non Thermally Treated Alloy 600 Tubes (Preliminary Data - July 12, 1985)

Primary Date SG Tubing Grain Ex~ansion HL Cracks or Com' l Model Mfr Size Length Method Tern~ ECT Ind.

Plant Name Manufactured bt Westinghouse Connecticut Yankee 68 27 H p R 577 -- ...........

San Onofre 1 68 27 H p R 575 -- ......- l Beznau* 1 69 33 H 6.5 p R 599 Zorita 1 69 24 H p R 596 E{

Ginna I 70 44 H 6-10 p R 601 - - i...--

Point Beach 1

  • 70 44 H 6 p R 611 Beznau 2 72 33 H p R 597 u Rob1nson 2 71 44 H 5 p R 604 Point Beach 2 72 44 H 6 p R 611 -;

72 51 H 8-12 p R 590 Dent Surry 1 p R 605 Dent Turkey Point 3 72 44 H Indian Point 2 73 44 H p R 576 Prairie Island 1 73 51 W/H p R 599 u 73 51 W/H p R 606 Dent Surry 2 p R 602 Dent Turkey Point 4 73 44 H p 594 u Zioh 1 73 51 w 8 R Kewaunee 74 51 w p R 599 Prairie Island 2 74 51 W/H 8-9 p R 599 74 51 w 8-10 F* R+HE 613 UT Takahama 1 p 594 u Zion 2 74 51 W/H R 75 51 W/H p R 599 u Coo-k 1 p R 616 UT Ringhals 2 75 51C w 8-10 Indian Point 3 76 44 w 9-10 p R 600 76 51 W/H 7.5 F R+E 609 Salem 1 R+E 615 u Trojan 76 51A w 8 F Beav-er Valley 1 77 51 W/H F R+E 610 -- v--

77 51 w F R+E 603 u Farley 1 Korea Nuclear 1 78 51 w F R 607 -- ,,........

78 51 w p R 606 UT Cooli: 2 R+E 614 u North Anna 1 78 51 W/H F 79 51A w 8-10 F R 615 UE Ohi 1 R+E Nor'th Anna 2 80 51 w F 81 D3 w F R 619 ET Almaraz 1 R 603 Farley 2 81 51 w F 81 D4 w F R 616 Krsko R 618 E McGuire 1 81 D2 w F 81 D3 w 8-9 F R+D 618 E Ringhals 3 R+E 611 Salem 2 81 51 w F Sequoyah 1 81 51 w F R+E 614 u.... E F R+E 614 --

Sequoyah 2 Ringhals 4 81 83 51 D3 W/H w

w F

F R 613 619

--v Almaraz 2 84 D3

  • 5-7

In su1TU11ary, for plants with susceptible material, primary side IGSCC will most likely occur over the life of the plant. The rate at which the problems will develop and the ultimate extent of the problems will depend on the level of susceptibility and the magnitude of tensile stresses induced by the specific fabrication processes used. To a certain extent, the potential significance of these problems can be determined in advance by review of material records, materials testing, review of fabrication data, and in situ inspections. A suggested course of action is included in Section 7.

5-6

  • Obrigheim 69 Table 5-1 (Continued)

Manufactured bX Siemens M 9-10 I 3ptR 594 l:IT Manufactured bX Mitsubishi Mihama 2 72 '44 W/SU/H 6-10 F* R+HE 607 T Genkai 1 75 51 SU F* R+HE 613 Takahama 2 75 51 SU 8-9 F* R+HE 613 Mihama 3 76 ~1 SU F R 613 ET Ikata 1 77 51 SU 9 F R 613 ET-Ohi 2 79 51A SU F R 615 ET Genkai 2 81 51M SU F R+R 613 Ikata 2 82 51M SU 9 F R+R Sendai 1 84 F Notes:

1. Tube Manufacturer H Huntington Alloys M Mannesmann SA Sandvik Sumitomo SU w Westinghouse v Vallourec
2. Grain Size ASTM grain size
3. Expansion Length F Full length expansion (no crevice)

F* Expanded to within 50 mm of top of tube sheet after startup I Intermittent rolls p Part length expansion (with crevice)

4. Expansion Method R Roll R+E Initial part length roll followed by Westex explosive expansion

. R+D Roll expansion plus DAM or 11 kiss 11 roll to improve transition .

R+HE Initial part length roll followed by combined elastomeric-hydraulic expansion after some time of service R+R Initial part length roll followed by elastomeric (rubber) expansion 3ptR Three intermittent rolls: top, bottom, &middle of tube sheet

5. Primary Cracks E Primary side IGSCC in expanded area or ECT T Primary side IGSCC in expansion transition region Indications u Primary side IGSCC in U-bend region Primary side IGSCC which is denting related Dent 5-9

Angra 1 ASCO 1 Oiablo Canyon 1 84 84 84 03 03 51 Table 5-1 (Continued) w w

w F

F F

R R

R+E 620 620 608 McGuire 2 84 03 w F R 617 Summer 84 03 w F R 619 UE Watts Bar 1 84 03 w F R 617 ASCO 2 85 03 w F R 619 Byron 1 85 04 w F R 619 Catawba 1 85 03 w F R 617 Comanche Peak 1 85 04 w F R 622 Oiablo Canyon 2 85 51 w F R+E 608 Beaver Valley 2 86 51M w F R 610 -..

Shearon Harris 86 04 w F R 619 _..

Watts Bar 2 86 03 w F R 619 South Texas 1 87 E2 w F R 626 Lemoniz 1 03 w F R 620 Manufactured by Cockerill Ooel 1 75 44 M 5-8 p R 598.

.,,_ ti Ooel 2 Tihange 1 Ooel 3 Tihange 2 Ooel 4 75 75 82 83 85 44 51 51M 51M El M

SA w

w w

6-10 7-10 7-11 7-11 7-11 p

p F

F F

R R

R+O R+O R+O 598 611 617 617 626 UE.T ET ET y

y

,l/"l.

Tihange 3 85 El w 7-11 F R+O 626 y Manufactured b~ Framatome Fessenhe\m 1 77 51A w 7-8 F R+E 611 UT Fessen~im 2 78 51A SA F R 611 Bugey *2 79 51A W/SA F R 613 u Bugey -3 79 51A v 9-10 F R 613 UT Bugey 4 79 51A w F R 613 i Bugey ;, 80 51A v 11 F R+O 613 Oampierre 1 80 51M W/V F R+O 613 fil-Gravel}nes Bl 80 51M W/V F R+O 613 -':" y Gravel i.nes B2 80 51M w F R+O 613 -- y Tricast~n 1 80 51M v F R+O 613 ---

Tricast.in 2 Blaylais 1 80 81 81 51M 51M 51M W/V W/V W/V F

F R+O R+O R+O 613 613 613

--*f

~

OampierPe 2 F Oampierre 3 81 51M W/V F R+O 613 ET Oampierre 4 81 51M w F R+O 613 --- y Graveltnes B3 81 51M v F R+O 613 T GraveHnes B4 81 51M SlM W/V F F

R+O R+O 613 613

--Y

  • r Tricastin 3 81 W/V Tricastin 4 81 51M v F R+O 613 -- '/

v San Laurent Bl 81 F R+O 613 San Laurent B2 81 W/V F R+O 613 -1.

51M F R+O --

Blaylais 2 82 SA/V 613 5-8

  • Section 6 CURRENT STATUS OF REMEDIAL MEASURES A number of remedial measures have been considered for possi6le use to alleviate primary side IGSCC problems, and can be categorized in terms of the three factors required for primary side IGSCC. The remedial measures are sunmarized in the following table and discussed in greater depth below.

Reduce Aggressive Environment Reduce primary coolant temperature Reduce hydrogen concentration Install sleeves Install plugs Rotate Steam Generators Reduce Material Susceptibility Heat treat tube sheet Electroplate tube wall Reduce Tensile Stresses Re-expand tubing Stress relieve U-bends Heat treat tube sheet Stress relieve expansion transition Shot peen expansion transition Rotopeen expansion transition PRIMARY COOLANT TEMPERATURE REDUCTION As discussed in Section 3, service experience and laboratory tests have shown that primary side IGSCC is strongly influenced by temperature. Figure 3-6 lshows the factor of improvement in time to cracking for a given stress level as a function of temperature on the tube inside surface. These factors are as follows for a range.of temperatures and an activation energy of 40 kcal/mole:

TH, F (C) Factor of Improvement 610 (321) 1.0 600 (316) 1.4 590 (310) 1.9 580 (304) 2.7 570 (299) 3.7

  • 560 (293) 5.3 6-1
  • I Doel 2 - Mini-sleeves were installed explosively over about 185 cracked expansion transitions in the Doel 2 plant as shown in Figure 6-2 (28). The mini-sleeves have caused cracking of the tubes"""'iifter service at the top and bottom of the sleeves. The cracking appears to be due to tensile residual stresses induced in the tube by the explosive welding process used during installation of the mini-sleeves. Methods were investigated to stress relieve the mini-sleeved areas after installation using an induction heating procedure so that use of mini-sleeves could remain a viable option for the case of cracks at tube expansion transition areas. Initial attempts at in situ stress relief did not result in the reduction of residual stresses below the threshold for cracking in a sodium tetrathionate environment. This was probably the result of too low a temperature being achieved in the critical areas under the ends of the sleeves.

At present, the mini-sleeve approach followed by local stress relieving has been abandoned at Doel 2; however, the supplier involved (B&W) may still be doing some further development work to make this a viable approach.

I Ringhals 2 - For the installation of conventional sleeves to be successful, stresses introduced at the joints during sleeving must not be high enough to cause primary or secondary side attack. The Swedish State Power Board recently tested a variety of sleeves for Ringhals 2. These+

tests used sensitized alloy 600 tubing in sodium tetrathionate and mill annealed tubing in 10% NaOH., The tests showed that current sleeve""Cles1gns with braze~. welded, or mechanical joints introduce relatively low residual stresses, most likely on the order of half of the yiel4 stress. Based on these tests, trial lots of brazed and welded sleeves were recently installed in Ringhals 2, which is known to have tubing that is highly susceptible to primary j

side IGSCC. The types of sleeves installed at Ringhals 2 are shown in Figure 6-3. .

A more complete discussion of current sleeve designs and experience, as well as a design review checklist for sleeving is included in reference (~).

PLUGGING Installation of tube plugs has been the standard remedial measure used to date for most leaks caused by primary side IGSCC, and is currently the only viable option for leaking U-bends. In the short term, at least until the scope of the primary side IGSCC problem is identified at a particular plant, installation of plugs is a sensible solution. However~ for.plants where it appears that large numbers of tubes may be affected by primary side IGSCC, use of plugs is not practical as a long term solution. This is particularly true for the case of plants with low margins of excess tubes. Any plugs which are installed should be of the removable type, so that the tube can be retrieved at a later date if this becomes desirable .

6-3

As can be-seen, a large measu~e of improvement would require a significant decrease in temperature, and thus is not practical as a long term solution. However, it may be worth considering in some cases for a short period of time to reduce the rate of damage while other longer term remedial measures are being prepared. As an example, a 40 F0 (22 C0 ) temperature decrease was used at Point Beach 1 to reduce the rate of secondary side attack. However, this temperature reduction resulted in about a 25% loss of power output.

While large reductions in reactor coolant temperature are economically prohibitive for long periods of time, it would be desirable for plants to reduce hot leg temperatures as much as possible while still maintaining 100% power output. For example, even a 10 F0 (5.6 C0 ) reduction in hot leg temperature would be expected to reduce the rate of primary side IGSCC attack by about 40%.

HYDROGEN CONCENTRATION REDUCTION Another possible approach for reducing the aggressiveness of the environment is to reduce the hydrogen concentration in the primary water to the lower end of the allowable range. Tests (22, 26) have shown that hydrogen accelerates

_the rate of cracking when added to pure water, and EdF tests have shown that large concentrations of hydrogen (700 cc/kg) have a similar effect in primary water.

However, the effect of small changes in hydrogen concentration in primary water has not been quantified, and it thus remains problematical. For pure water, goi~g from no hydrogen to about 20-25 cc/kg resulted in a decrease in time to initiation of sec of about a factor of 5 for material with moderate amounts of cold work (26). It is suspected, but not proven, that increasing the hydrogen concentration further, as would be allowed by normal primary water specifications, could result in a further acceleration of primary side attack.

SLEEVING One approach which has been tried for reducing the aggressiveness of the environment in contact with susceptible areas of tubing is to install sleeves.

Three examples are as follows:

  • Japanese Plants - Some primary side leakage in the tube sheet area of Japanese plants has been remedied by the installation of sleeves as shown in Figure 6-1 (27). These sleeves are welded to the tube at the bottom of the tube sheet and extend to within about 5 cm (2 inches) of the top of the tube sheet. The sleeves are expanded into place hydraulically, or by use of a compressed elastomeric cylinder which exerts a radial pressure.

6-2

  • currently has a program (S303-22) at Foster Wheeler in which tube mockups have been explosively re-expanded. These mockups are made of sensitized alloy 600 tubing and will be tested in sodium tetrathionate to determine the degree of improvement. Results are expected in 1985. One obvious concern with this approach, which must be resolved prior to application in a plant which has been in operation, is the effect of the explosive re-expansion on preexisting cracks.

U-BEND STRESS RELIEF Westinghouse has performed work sponsored by EPRI/SGOG to demonstrate the feasibility of heating first row U-bends with an inside diameter electric resistance heater to a temperature that will relieve residual stresses and therefore reduce the susceptibility of the tubing to primary side IGSCC (29).

The arrangement of the electric resistance heater in the U-bend is illustrated in Figure 6-4. The results of this work indicate that in situ stress relief of the U-bends is practical but that there are three subjects which require some additional effort (23). These are as follows:

Temeerature Control - The equipment used for in situ stress

  • relief of U-bends must be capable of controlling the tube wall temperature in the range of 675-725°C (1247-1337°F}. As shown in Figure 6-5, lower temperatures may .not produce the desired stress relief while higher temperatures may result in undesirable grain growth or recrystallization. To date, instrumentation to monitor temperatures in the U-bend during stress relief has not been demonstrated.

1 Propagation of Existing Cracks - For plants which have been in service, the U-bends may already contain cracks which have not yet propagated through wall. Since the tube wall is thin and the heat up rate is low, it is unlikely that the stress relief operation will result in propagation of any existing cracks. In fact, it is more likely that the stress relief will blunt the crack tips and therefore reduce the potential for future cracking. Nevertheless, this should be demonstrated by tests prior to application on a plant which has been in service.

1 Surface Contamination - The potential for surface contam1nat1on present during in situ stress relief leading to cracking or grain boundary attack has not yet been fully assessed. Westinghouse has performed some tests on simulated sludge and these tests did not indicate a problem. However, some additional testing is still required as outlined in the Dominion Engineering report on in situ stress relief (23).

In summary, in situ stress relief of U-bends is considered to be viable; however, the procedure has not yet been demonstrated at a plant and some development work 6-5

STEAM GENERATOR ROTATION Primary side cracking has essentially all occurred on the hot leg side, leaving the cold leg side in a relatively unattacked condition. TRABEL is in the process of evaluating whether it would be practical to rotate a steam generator so as to interchange the hot and cold legs (~_). This would be done by making a channel head cut so that the tube bundle could be rotated. The main advantages of the procedure are that it requires much less advance preparation time than steam generator replacement and would essentially double steam generator life. On the other hand, the cold leg tubing would be as susceptible as the original hot leg, and thus this approach would not provide a very large improvement (less than a factor of two).

ELECTROPLATING Electroplating has been mentioned by EdF as a possible remedial measure, and Framatome and Belgatom are doing some exploratory work on the concept. No details on their processes are currently available.

The deposited material would be one that is resistant to IGSCC as well as having good bond strength and erosion/corrosion resistance. Chromium and nickel have been mentioned as pos~ible candidates.

ADDITIONAL EXPANSION For plants with part length rolled tubes and which are experiencing cracking at roll transitions, expansion of the tube for all or part of the tube sheet depth is a possible repair approach. This method is being used by the Japanese for all of their part length rolled plants, and is being considered for Doel 2. The Japanese have used hydraulic expansion while Tractionel is exploring the possibility of explosive expansion for Doel 2. Whatever expansion method is used, it is important that the new expansion transition result in low tensile residual stresses.

TUBING RE-EXPANSION For plants with a poor initial expansion over the full depth of the tube sheet, re-expansion of the tube over the full depth of the tube sheet is an option. This has the potential to 1) correct areas improperly expanded during rolling, such as skip rolls, poor overlaps, etc. which lead to high local residual stresses, and

2) improve the local geometry and state of stress in the transition region. EPRI 6-4
  • water tests of rolled specimens are underway to better quantify the expected improvement.

One potential problem with this approach is that the tubes subjected to stress relief temperatures may become sensitized, and thus become susceptible to attack by sulfur species similar to that which has occurred in the TMI-1 primary side and in the AN0-1 secondary side. However, other Babcock and Wilcox plants with once-through steam generators and Tihange-1, have operated satisfactorily with sensitized tubing by carefully avoiding oxidizing conditions. Accordingly, for a plant which has significant primary side IGSCC, the risk associated with sensitization may be warranted. There is also a risk associated with the effect of surface contamination as indicated for in situ U-bend stress relief.

LOCAL EXPANSION TRANSITION STRESS RELIEF Brookhaven National Laboratory has performed work sponsored by EPRI/SGOG to demonstrate the feasibility of induction heating expansion transitions within the tube sheet to a temperature that will relieve residual stresses and, therefore, reduce the susceptibility of the tubing to primary side IGSCC

  • (1!_). Also, Babcock and Wilcox has performed induction heating stress relief on mini-sleeved transitions at Dael 2 (32). The equipment used by Babcock and Wilcox is shown schematically in Figure 6-6. The results of this work indicate that in situ stress relief of expansion transitions should be practical, but that there are several subjects which require some additional effort (23). These are:

1 Temperature Control - Use of fiber optics sensors has been demonstrated to be a practical method for measuring temperatures achieved by induction heating. Experience at Dael 2 indicated, however, that temperatures measured at one location may not accurately reflect temperatures developed at other locations due to variations in heat transfer properties in the gap between the tube and tube sheet. Accordingly, practical means must be developed and tested to provide accurate temperature control taking into account variations in tube roll transition geometry and crevice heat transfer properties. The desirable range of time/temperature conditions for expansion transition stress relief are shown in Figure 6-7.

1 Surface Contamination - The same question of surface contamination applies at the expansion transition as discussed for the U-bends.

  • Development of Local Buckling and/or Tensile Residual Stresses - If the tube is locked at the top of the tube sheet by denting etc. there is the potential to develop local 6-7

is still required. Draft specifications to obtain stress relief services for U-bends are included in reference (23).

GLOBAL TUBE SHEET HEAT TREATMENT Global heat treatment of the entire tube sheet is actively being considered for plants in Belgium which have been in commercial operation (30). This procedure consists of heating the tube sheet up to a temperature in the neighborhood of 1112°F (600°C) and holding the temperature for eight to ten hours. The procedure is expected to increase the resistance to primary side IGSCC by increasing the carbide precipitation at grain boundaries and possibly by reducing residual stresses somewhat.

There are several reasons why this procedure is being considered over other alternative methods such as local stress relief, shot peening, and rotopeening: 1) the plants are operational which makes application of other more time consuming remedial measures less attractive due to increased radiation exposure, 2) leaks and cracks at various elevations in the tube sheet indicate that remedial measures may have to be performed over the full tube sheet height, and 3) tests indicate that typical heats of tubing from candidate plants will experience desirable grain boundary carbide precipitation.

Considerable test and analysis work has already been performed in support of this procedure and the results indicate that it is practical {30). Two approaches to performing the heat treatment have been evaluated. These are 1) using electric strip heaters, and 2) using electric strip heaters together with circulating hot gas. Strip heaters without circulating gas has been selected as it is the simpler of the two methods. As presently envisioned: the entire lower head including divider plate will be heated to avoid harmful differential expansion; heaters will be extended along the outer walls for a length of one steam generator diameter in order to minimize temperature gradients and internal distortions; and, the secondary side will be at a vacuum to reduce convective heat losses.

Testing to confirm the factor of improvement provided by this approach has not yet been completed. High temperature caustic tests of rolled specimens indicate a factor of improvement in time to cracking of about 3 to 5, while on-going high temperature pure water tests indicate a factor of improvement of at least 5 (no cracks to date in heat treated specimens). Longer term high temperature pure 6-6

  • Tests of stainless steel mockups in boiling magnesium chloride, and sensitized alloy 600 in sodium tetrathionate indicate that the process can be controlled such that resistance to primary side IGSCC is obtained without causing secondary side attack.

One potential problem which has been identified by the testing is embedment of small ceramic particles in the tube wall, and a concern exists as to how well the particles can be removed. The stainless steel shot used to date does not appear to be a viable solution to this problem as tests indicate that it induces excessive outside surface tensile stresses (smaller stainless steel shot are currently being explored in an effort to resolve this problem). Glass beads do not appear to be suitable because of excessive fragmentation.

Concerns regarding opening up preexisting cracks, embedment of particles in the tube wall, clean up of abrasive particles, and spread of contamination need to resolved prior to field application of this procedure.

I Rotopeening - Rotopeening has beeen investi.gated by both TRABEL and EdF. In both cases, the development work has indicated that rotopeening provides a viabl~ way of inducing a thin compressive layer on the tube inside diameter *

  • The Belgian rotopeening development work has been performed by Westinghouse and has used flapper wheels with small tungsten carbide beads bonded to a plastic fabric. Details of the process and supporting tests are described in reference (30). Rotopeening has been applied to two new non-radioactlve plants, Doel 4 and Tihange 3. As discussed in reference (30), the rotopeening was successfully performed.

However, some question remains in regard to the OD stresses generated by the rotopeening, both at the roll transition and in the straight portion of the tube where the peening stresses can combine with straightening and polishing stresses.

The rotopeening equipment developed by EdF consists of a flapper wheel with small glass beads bonded to cotton fabric.

(EdF initially tried tungsten carbide beads of the same type as used by TRABEL, but found that they resulted in somewhat increased OD surface stresses.) The flapper wheel is rotated at high speeds and is offset from the tube axis such that the beads impact the tube surface. nearly perpendicularly. Mockup tests have shown that an Almen intensity of 6N eliminates SCC on the tube inside surface without increasing sec susceptibility on the tube outside surface.

The EdF procedure is to rotopeen a 2 inch (5 cm) length of tube at each roll transition. The tooling is supported by remotely controlled finger walkers and the rotopeening requires about 5 minutes per tube. EdF has experienced some problems with ineffective peening, but this appears to be controllable by regular replacement of flapper wheels. EdF has used their method on a trial basis for 19 tubes at Bugey 5.

6-9

buckling and/or tensile residual stresses. For example, the tube expands during heating, buckles or yields due to the restraint at the top, and then is put into residual tension during subsequent cooldown. The potential for this to occur, and the effect on primary and secondary side IGSCC must yet be resolved by test.

Consideration must also be given to the subject of propagation of preexisting circumferential cracks, if any exist.

1 Reduction in Pullout Force - When an expanded area is subjected to induction heating the resultant yielding and shrinkage upon cooling will result in some loss of the interference force holding the tube in the tube sheet. The effect of the loss of interference force must be evaluated on a case basis. Some guidance in this regard is included in Appendix A of Reference (23).

1 Development of Tube to Tube Sheet Crevice - In addition to reducing pullout force, the induction heating would cause a gap of a few mils to open up between the tube and tube sheet. This gap could be as long as 1/4 inch (6mm) or more, depending on the details of the induction heating. The acceptability of this gap from a secondary side corrosion standpoint needs to be verified.

EXPANSION TRANSITION SHOT PEENING AND ROTOPEENING The purpose of shot peening or rotopeening the tube inside surface is to form a thin compressive stress layer which will serve to inhibit the initiation of primary side IGSCC. Shot peening is performed by blasting the inside surface of the tube with small metal or ceramic shot as shown in Figure 6-8. Rotopeening is performed using shot bonded to fabric on a flapper wheel as shown in Figure 6-9.

Major concerns with this type of procedure are that 1) tensile stresses will be produced on the outside of the tube which may lead tq secondary side IGSCC, and

2) tensile stresses within the tube wall may lead to propagation of existing surface cracks. Both of these issues must be resolved prior to application of this procedure.

The two procedures are outlined as follows with detailed information provided in Reference (30):

  • Shot Peenin~ - Shot peening has been investigated by both TRABEL and dF. In both cases, the development work has indicated that shot peening provides a viable way of inducing a thin compressive layer on the tube inside diameter. In the TRABEL approach, small ceramic shot are blown up the tube, impinge on a conical deflector, and impact the tube wall.

The conical deflector is moved up and down the tube and rotated to provide complete and uniform coverage. Air exhaust and filtering equipment are provided* on the cold leg of the tube to remove the spent shot and to limit the spread of contamination. Following shot peening, the tubes would be cleaned by blowing cotton plugs through them.

6-8

TUBE TUBE SHEET~

SLEEVE DEFECT

  • B. After Sleeving A. Before Sleeving NOTES: 1. Expansion performed using rubber/

hydraulic method.

2. Not used for full tube sheet depth expanded tubes.

Figure 6-1. Japanese Sleeves Source: From reference (27)

  • 6-11

Rotopeening was initially selected over shot peening by both TRABEL and EdF as this process provides a similar compressive layer, generates much less abrasive debris, and does not spread contamination throughout the steam generator.

However, both TRABEL and EdF are reconsidering this situation since shot peening may be simpler to perform remotely in a radioactive plant, might provide more uniform coverage and might facilitate use of smaller beads, leading to lower OD stresses. Framatome is currently developing a shot peening process using fine stainless alloy shot.

6-10

I HYDRALUCALLY EXPANDED I E f 25.4mm(1.0) Nominal l

I\

O'I I

w TUSESHEET HYOOAUtltAll Y

[lPAllJEO

~~ltAl

a. Westinghouse Brazed Sleeve b. Combustion Engineering Welded Sleeve Figure 6-3. Sleeves Installed at Ringhals 2

------ -Eleva ti on of Origin al Roll Tran sition

-~Mini Sl eeve

.. ~Alloy 600 Tube Figure 6-2. Babcock &Wilcox Mini-sleeve Used at Doel 2 Source: From reference (32) 6-12

  • 900 4.

1600 1500

,... 800 ,.....

u ~

0

..... 1400 0

w w

~ ~

E-c 1300 E-c

< 700 3.

~

~

w w

11. 11.
e w 1200 ::e w

E-c E-c 600 1100 mmmm: mm :::: m :: :* : ::::::::::::: ::::::: :::: ::: :::

1000 500 i

i!!!!!!l!!!!!;l!I!!! Iii! Iii !Ii :lllllillllllllllllll llll lillll11 0.1 1.0 10.0 100 2. 1000 TIME (min)

Notes on Limits:

1. Effective stress relief (Modified from reference 23 per van Rooyen data in reference 44)
2. Sensitization
3. Recrystallization/grain growth
4. Practical time for in situ work Suggested Range of Time/Temperature Conditions Figure 6-5. Range of Suggested Time-Temperature Target Conditions for Stress Relief of Alloy 600 U-Bends /

Source: From reference (23)

  • 6-15

4" TO 6""

J TO ELECTRICAL TO ELECTRICAL CONNECTION CONNECTION Figure 6-4. Westinghouse U-Bend Stress Relief Heater Arrangement Source: From reference (29) 6-14

  • 900 5.

i: llllllllllll llllllllll!illl 1600 1500

,.... 800 ,....

u o_ 0

~

fil fil p:: p::

J :J E-4 E-4

< 700 <

p::

p::

fil fil ll.

~

fil 1200 ~

fil E-4 E-4 600 1100 1000

  • 500 0.1 1. 0 10.0 TIME (min) 100 2. 1000 Notes on Limits:
1. Effective stress relief (Modified from reference 23 per van Rooyen data in reference 44)
2. Sens i ti za ti on
3. Recrystallization/grain growth
4. Tube sheet transformation temperature
5. Practical time for in situ work Suggested Range of Time/Temperature Conditions Figure 6-7. Range of Suggested Time-Temperature Target Conditions for Stress Relief of Alloy 600 Expansion Transitions Source: From reference (~)

6-17

Temperature Indicating and Recording Equipment Fiberoptics Cable Tube-----.

O'l I

O'l Clad R.F. Power Supply Coaxial Power Cable Figure 6-6. Equipment Arrangement for Doel 2 Expansion Transition Stress Relief Source: From reference (32)

  • Slotted Spindle Shaft

.-----Several Thousand RPM team Generator Alloy 600 Tube Tool Tube (Spindle Cage)

,,.,...-10 to 20 RPM Two Rows Tungsten Carbide Beads at Each End

    • ** II (I (I (I (I (I T

(

  • u n 9/16" u c*

(I (I

Cl Cl l

~----11111*

Fiberglass Mesh Plastic Bearing (Top and

  • Flapper Bottom of Flapper Area)

Spindle Cage Spindle Shaft Flapper_...,t::lii:l~

  • Tungsten Carbide Beads Up and Down Oscillations and Slow Rotation Steam Generator Tube Figure 6-9. Equipment Used for Rotopeening of Alloy 600 Tubing Source: Based on information provided by EdF 6-19

AIR FLOW 1

CONICAL DEFLECTOR I

'AIRBLAST WITH SHOT OR BEADS Figure 6-8. Equipment Used for Shot Peenjng of Alloy 600 Tubing 6-18

  • Section 7 SUGGESTED COURSE OF ACTION It must be recognized that there are a number of significant uncertainties concerning primary side IGSCC which have an important bearing on any suggested course of action. These uncertainties lie primarily in the areas of 1) difficulty in accurately predicting the likelihood of primary side IGSCC occurring at any specific location in a particular steam generator, and 2) the risks associated with and effectiveness of particular remedial measures. Nevertheless, it is desirable to outline a current suggested course of action in order to stimulate discussion and to assist utilities in their planning processes. The following suggested course of action regarding primary side IGSCC is based on the current status of reported cracking, current understanding of the causes of the cracking, and current (January 1985) status of development regarding remedial measures *
  • There are two sides to the decision as to whether or not to take remedial measures to prevent primary side IGSCC in steam generator tubing. These are:
1. It is undesirable to apply remedial measures if they are not necessary. Such work is costly and there is some level of risk that the remedial measures may produce an undesirable side effect.
2. On the other hand, it is also undesirable to let primary side IGSCC initiate. It is far easier to prevent cracks from initiating in the first place than it is to arrest the propagation of existing cracks. A complicating factor in this regard is that the best current ECT inspection techniques can only pick up cracks when they reach about 40% of wall thickness; thus, crack initiation can be fairly widespread before the cracking problem is detected.

In establishing a course of action regarding primary side IGSCC there are three basic categories of plants to be considered. These are:

1. Plants which have operated for many years (e.g., 8 to 10 or more) without significant primary side IGSCC (Low Material Susceptibility)
2. Plants which have experienced significant amounts of primary side IGSCC. (High Material Susceptibility) 7-1
  • PLANTS WITH HIGH MATERIAL SUSCEPTIBILITY For those plants which have experienced more than a few isolated cases of primary side IGSCC in service, it should generally be assumed that the tubing material is highly susceptible, that the cracking is likely to get worse with time, and that some remedial measures are required. The only exception should be for cases where it can be clearly demonstrated that the problem was due to some extremely localized and limited condition; for example, where the IGSCC is known to have been caused by some abnormal rolling geometry that affects only a few tubes.

Possible remedial measures include the following:

U-bends If the material is highly susceptible, it is likely that cracking will ultimately occur in the U-bends of the first and probably also the second row tubes. The probability of cracking appears to be higher for tubing fabricated using the Westinghouse ball mandrel than for tubing fabricated using other processes, but none of the processes should be considered as immune over the plant lifetime.

This is because the residual stress levels associated with forming tight radius

  • U-bends are high even for the best bending conditions, and the stresses applied in operation are also fairly high. These residual and applied stresses result in a total stress sufficiently high to make primary side IGSCC likely to occur in susceptible material over a 40 year design life.

To date there are three main potential remedial measures for U-bend cracking.

These are 1) thermal stress relief of U-bends, 2) preventive plugging of U-bends, and 3) plugging in response to NOT indications or leaks. Each utility with susceptible tubing material will have to select between these three options taking into account the degree of material susceptibility, the margin of excess tubes, and the cost and risk associated with inspecting and plugging in response to ECT indications and/or cracks. In most cases, options 1 or 2 appear to be the prudent course of action to ensure that in-service leaks do not occur. The choice between the two options will most likely be made based on available tube margin.

Expansion Transitions If the tubing material is highly susceptible, it is likely that cracking will occur in the expansion transition region. sec tests and residual stress

  • measurements indicate that stresses in this region are such that cracking must be expected to occur in "normal" transitions, with or without a DAM treatment. It 7-3
3. New plants, and those operated less than about 8-10 years without significant amounts of primary side IGSCC. (Unknown Susceptibility)

PLANTS WITH LOW MATERIAL SUSCEPTIBILITY Those plants which have operated for long periods of time without occurrence of significant amounts of primary side IGSCC can be considered to have tubing with demonstrated low material susceptibility. An arbitrary cutoff for using operating experience to assess material susceptibility is about 8-10 years, or 20-25% of the design operating life. In such plants, primary side IGSCC is likely to be a slow process if it* occurs at all. Further, there should be adequate time to take remedial measures if primary side IGSCC is detected later in life, assuming it is detected at an early stage. Based on the data in Table 5-1, the plants in this category would include: Connecticut Yankee, San Onofre 1, Beznau 1, Ginna, Point Beach 2, Indian Point 2, Kewaunee, Prairie Island 2, Indian Point 3, Salem 1, Doel 1, Tihange 1, Genkai 1, and Takahama 2.

In cases of known low material susceptibility, the primary objective of the IGSCC program should be to monitor the steam generators carefully to make sure that cracks are not initiating. This objective can be achieved by periodically inspecting the U-bends, expansion transitions, and expanded areas using the most accurate inspection methods currently available. If any indications are found using these methods, tube specimens should be pulled in order to determine if there is incipient IGSCC. Material and fabrication records should also be obtained and reviewed, although this is a lower priority than performing accurate inspections.

If and when significant occurrence of primary side IGSCC is detected, decisions will then need to be made as to whether to merely monitor the IGSCC to ensure that it does not increase rapidly, or to take corrective measures. Because of the demonstrated low susceptibility of tubing in these plants, it is expected that monitoring for at least a few years would be reasonable prior to the need for taking any active remedial measures. If required, the remedial measures would be similar to those discussed below for plants with high material susceptibility although plugging or sleeving may also be good solutions if the problem is isolated to small numbers of tubes.

7-2

  • or explosive re-expansion, as long as the procedure is demonstrated to not result in high residual stresses. It may further be necessary to revise the Technical Specification requirements to permit cracks in the tube below the area which is required to resist pullout and to provide a seal. Cracks in these areas are not considered to be a source of technical concern since they should not lead to tube pullout or to significant leaks.

PLANTS WITH UNKNOWN MATERIAL SUSCEPTIBILITY For new plants or plants which have been in operation less than about 8-10 years the material may be of unknown susceptibility. In these cases, attention should initially be focussed on assessing the material susceptibility. This should be accomplished following the approach suggested in Section 5 under "RISK OF PRIMARY SIDE IGSCC 11

  • This approach starts with a review of the tube material and fabrication records to determine the grain size and mill anneal temperature.

Depending upon the results of this evaluation it may also be necessary to perform some metallography and sec tests of archival material or material removed from the steam generators .

  • For material found to have high or low susceptibility to primary side IGSCC, the remedial action program should follow the lines previously indicated.

For material of questionable material susceptibility after such an evaluation, the remedial measures could well depend upon the plant status. For new plants where costs of applying remedial measures are low and the risk of problems due to application of remedial measures are also low, it will usually be preferable to proceed with remedial measures prior to going into operation. On the other hand, for plants already in operation, it may be preferable to proceed with a rigorous inspection program and hold off remedial measures until it is known whether or not there will be a problem.

REQUIRED INDUSTRY EFFORT Based on the current status, the area requiring greatest effort is the development and qualification testing of field hardened corrective action procedures such as in situ stress relief, shot peening, rotopeening, and global heat treatment. This effort is required to assist utilities in evaluating the cost and risk of various alternative approaches *

  • 7-5

is suggested that in these cases, remedial measures should be taken unless it can be demonstrated that there is a convincing reason that primary side IGSCC will not occur. There are three remedial measures currently available for the expansion transition region.

1. Local Thermal Stress Relief - The area of the expansion transition can be stress-relieved using the induction heating procedure discussed in Section 6. This procedure is somewhat more difficult to apply than shot peening or rotopeening but has a significant advantage over these alternate procedures in that it can reduce the residual stresses on both the inside and outside of the tube wall. At present, this approach cannot be suggested without qualifications as there are several outstanding questions regarding temperature control and the effect of tube boundary conditions as discussed in Section 6.
2. Shot Peening and Rotopeening - Significant development work has been performed regarding shot peening and rotopeening, and the processes appear to be practical in the field. These processes may be somewhat less desirable than a proven local thermal stress relief in that they result in an increase in tensile stresses on the outside of the tubing, and could possibly lead to increased susceptibility to secondary side attack. As in the case of the local thermal stress relief, there are still several unresolved questions regarding these processes and some additional development work is required.
3. Global Thermal Heat Treatment - Global thermal heat treatment offers an advantage over local thermal stress relief of each tube in that it takes less time to perform and is less costly. These advantages are achieved at the significant disadvantage of sensitizing all of the tubing and thereby increasing its susceptibility to sulfur species attack.

Also, the factor of improvement that can be achieved is still not certain, and may not be sufficiently high to warrant its use. Finally, this method may be difficult to apply to steam generators with preheaters.

A utility must select one of the above remedial measures based on the particular circumstances at the plant and the latest results of the procedure qualification programs.

In conjunction with treating the expansion transition region, it should be confirmed that the section of tube about 2 inches (5 cm) inmediately below the*

expansion transition is properly expanded. The tube in this region must be under a high residual compressive stress in order to preclude cracking, to resist pullout, and to prevent leakage from possible cracks in the tube below this region. If the tube is not properly expanded in this region it may be necessary to re-expand before or after remedial measures are taken at the expansion transition. This re-expansion could be performed by re-rolling, or*by hydraulic 7-4

  • Section 8 REFERENCES
1. Steam Generator Reference Book. Draft report dated September 6, 1984.
2. Design and Operating Guidelines to Minimize Steam Generator Corrosion.

EPRI Report, November 1980 and most recent updates.

3. H. Schenk, E. Pickel, and A. Hummeler. The Replacement of the Steam Generators in the Nuclear Power Plant Obrigheim. ASME Paper 84-NE-18, 1984.
4. D. P. Dobbeni, J. R. Stubbe-Leroy, and C. E. van Melsen. Factors Affecting U-Bend Crackinf. Proceedings of August 1980 U-bend conference in Denver, Co orado. EPRI WS-80-136.
5. R. G. Aspden and P. J. Kuchirka. Evaluation of Steam Generator U-Bend Tubes From the Trojan Nuclear Power Plant. EPRI NP-2629-LD, September 1982.
6. S. Yashima, K. Uragami, H. Utsumi, H. Ikenaga, K. Nakamura and 0.

Takaba. Stresses of Steam Generator U-Tubes Affecting Stress Corrosion Cracking. ASME Paper 82-NE-5.

7. K. Norring. Influence of Roll Transition Shape on Primar* Side IGSCC of Steam Generator Tubes. Paper presented at October 19~ Specialist Meeting on Steam Generators in Stockholm, Sweden.
8. E. S. Hunt and J. A. Gorman. Design Review Checklist - Steam Generator Sleeving. Final report on EPRI Research Project S303-6, May 1984.
9. P. Hernalsteen and R. Houben. Preventive and Corrective Actions for Dael 2 Steam Generators. Paper presented at October 1984 Specialist Meeting on Steam Generators in Stockholm, Sweden.
10. Telephone conversation with EdF.
11. F. Ternon. Evaluation des Contraintes Residuelles dans la Zone de Transition de Dudgeonage par Explosion. EdF report HT/PV D537 MAT/T40, 23 August, 1982.
12. Meeti_ng with H. Tas of Centr_e d'Etude de l 'Energie Nucleaire.
13. F. Cattant, et.al. Examen de deux Tubes du Generateur de Vapeur B.

EdF report D.5004/CTT/R.84.37, 20 August 1984.

14. G. Frederick and P. Hernalsteen. Generic Preventive Actions for Mitigating M.

A. Inconel 600 Susceptibilit~ to Pure Water Stress Corrosion Crackin~. Paper presented at Specialist Meeting on.Steam Generators, Stockholm, Octo er 1-5, 1984.

8-1

A second area warranting industry attention is improved detection of primary side IGSCC so that remedial measures can be taken before too many cracks have become so large that prevention of further growth is very difficult. Use of the latest ECT techniques, such as developed in Belgium and France is warranted. In addition, removal and examination of tube samples (e.g., where the tube is to be plugged for other reasons) is desirable. In situ metallography using replicas also appears to have potential in the tube sheet region.

7-6

  • 28.

29.

P. Hernalsteen, R. Houben, and C. van Melsen. Induction Heating Stress Relief at Doel 2. Paper presented at November 1983 EPRI Workshop on Primary Side SCC and Secondary Side SCC and IGA of PWR Steam Generator Tubing in Clearwater Beach, Florida.

J. M. Gilkinson. In-Situ Heat Treatment and Polythionic Acid Testing of Inconel 600 Row 1 Steam Generator 0-Bends. EPRI NP-3056, April 1983.

30. J. A. Gorman and E. S. Hunt. Status of Cracking and Remedial Measures for PWR Steam Generators with Full Depth Expanded Tubing. EPRI report to be published, January 1985.
31. J. Woodward and D. van Rooyen. Stress Relief to Prevent Stress Corrosion in the Transition ReSion of Ex~anded Alloy 600 Steam Generator Tubing. EPRI NP-305 , May 198 *
32. E. S. Hunt and J. A. Gorman. Induction Stress Relief at Doel 2.

Paper presented at November 1983 EPRI Workshop on Primary Side sec and Secondary Side SCC and IGA of PWR Steam Generator Tubing in Clearwater Beach, Florida.

33. F. Kreith. Principles of Heat Transfer. International Textbook Company, 1958.
34. R. J. Roark and W. C. Young. Formulas for Stress and Strain. Fifth Edition, McGraw-Hill Book Company, 1975 *
  • 35.

36.

J. Woodward and D. van Rooyen. Stress Relief of Transition Zones.

Paper presented at November 1983 EPRI Workshop on Primary Side SCC and Secondary Side SCC and IGA of PWR Steam Generator Tubing in Clearwater Beach, Florida.

EdF report HC PVD.368 MAT/T.41 dated 16 November 1976 regarding calculated and measured residual stresses in roll transitions.

37. R. Cloud, J. Leung and H. Loey. Elastic Stress Anal~sis of Small-Radius U-Bend Steam Generator Tubes. EPRI NP- 944, March 1983.
38. C. Ruud. Unpublished February 1984 Monthly Progress Report on EPRI task S303-3.
39. W. Pearl and S. Sawochka. Steam Generator Data Base. EPRI NP-3033, June 1983.
40. World List of Nuclear Power Plants. Nuclear News, August 1984.
41. Power Reactors 1984. Nuclear Engineering International, October 1984 Supp 1ement ..
42. Worksho~ Proceedings: U-Bend Tube Cracking in Steam Generators.

Proceedings of August 1980 conference in enver, Colorado, EPRI WS-80-136.

43. K. Norring. Examination of Fifteen Tubes from Steam Generator 1 at Ringhals 2. Studsvik report No. EI-84/56 .

8-3

15.

16.

Meeting with EdF.

H. Coriou, L. Grall, Y. Le Gall, and S. Vettier. Corrosion Fissurante Sous Contrainte De L'Inconel Dans L'Eau A Haute Temperature, Third Collogue de Metallurgie Corrosion. Centre d 1 Etudes Nucleaires de Saclay, France. Amsterdam: North Holland Publishing Company., 1959.

17. G. P. Airey. The Stress Corrosion Crackin SCC Performance of Inconel Alloy 6 in Pure an Primary ater Environments. Proceedings of the International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, August 22-25, 1983, Myrtle Beach, South Carolina. NACE, 1984.
18. H. Domain, R. H. Emanuelson, L. Katz, L. W. Sarver and G. J. Theus.

Effect of Microstructure on Stress Corrosion Cracking of Alloy 600 in High Purity Water. Corrosion, 1977, Vol. 33.

19. 0 timization of Metallur ical Variables to Im rove Corrosion Resistance of lncone , EPRI Researc ProJect 1 -1, Final Report. PRI Report NP- 0 *
20. Stress Corrosion Crackin9 of Alloy 600 and Alloy 690 in All Volatile Treated Water at Elevate Temperatures, EPRI-Steam Generators Owners Group Research Project S192-2, Final Report. EPRI Report NP-3061.

-- 22!!!!Zl:s

21. c. M. Owens. A Historical View of the Im8ortance of the Final Anneal on Primary Side SCC Resistance of Allo~ 6 O Steam Generator Tubing.

Paper presented at November 1983 EPRiorkshop on Primary Side SCC and Secondary Side SCC and IGA of PWR Steam Generator Tubing in Clearwater Beach, Florida. *

22. R. Bandy and D. van Rooyen. uantitative Examination of Stress Corrosion Cracking of Alloy 6 O in iH emperature ater- or in 1983. Paper presented at November 19 3 EPRI Workshop on Primary Side SCC and Secondary Side SCC and IGA of PWR Steam Generator Tubing.
23. E. S. Hunt and J. A. Gorman. Specifications for In-Situ Stress Relief of PWR Steam Generator Tube U-Bends and Roll Transitions. EPRI NP-3639-LD, April 1984.
24. R. L. Dillon. NRC Concerns about Steam Generator U-bend Failures.

Proceedings of August 1980 U-bend conference in Denver, Colorado.

EPRI WS-80-136.

"' 25. Specifications for Alloy 600*Steam Generator Tubing. Draft report for

\ EPRI task no S303-12 *

. P. Airey. SCC of Inconel 600 in Pure and Primary Water nvironments. Paper presented at November 1983 EPRI Workshop on Primary Side SCC and Secondary Side SCC and IGA of PWR Steam Generator Tubing in Clearwater Beach, Florida.

27. Mitsubishi Heavy Industries, Ltd. Primary Side SCC in Japanese PWR Plants SG Tubing. Paper presented at November 1983 EPRI Workshop on Primary Side SCC and Secondary Side SCC and IGA of PWR Steam Generator Tubing in Clearwater Beach, Florida.

8-2

  • Appendix A LOCAL HEAT FLUX AND PRESSURE STRESSES IN TUBE WALL The purpose of this appendix is to compute the approximate local heat flux stresses and pressure stresses for straight sections of tubing along the length of a typical first row tube from the hot let inlet to the cold leg outlet. These stresses can then be combined with other applied and residual stresses at the expansion transitions and LI-bends to estimate the total stresses. The total stresses are then used to estimate time to crack initiation for various locations along the tube length.

ASSUMED DIMENSIONS AND OPERATING CONDITIONS The following typical dimensions and operating conditions were assumed for purposes of this analysis:

Primary pressure Secondary pressure HL inlet temperature Average CL outlet temperature Secondary water temperature 2250 920 .

615 .

555 '

psi psi F

F F

3 '3 . I (.)( I b

\. \~ \ ~r Coolant flow per steam generator Number of tubes ~ E lb/hr

  • Tube outside diameter 0.875 .

~n~

    • Tube wall thickness Length of first row tubes 0.050 .

60.

in ft

  • Length of outer row tubes 80 ft Hot leg heat flux 114000 . BTU/hr*'ft2 Cold leg heat flux 24000 BTU/hr*ft 2 THERMAL ANALYSIS The thermal model is shown in Figure A-1. The insfde heat transfer coefficient for forced convection with turbulent flow is taken from equation 8-10 of Kreith (33) using an average flow velocity through all of the tubes. The outside surface boiling temperature drop is taken from Figure 10-6 of Kreith, and the inside and outside surface fouling factors were selected iteratively to produce the reported hot leg and cold leg heat fluxes. The computations were performed using a step approach in which the heat flux out through each one foot long
  • segment of tubing is used to compute the coolant water temperature entering the next segment of tube.

A-1

44. D. van Rooyen. In Situ Heat Treatment of Roll Transitions. Presentation at EPRI Workshop on Primary Side SCC, March 20-22, 1985, San Diego, CA.

8-4

0.875in Rforced convection Rinside fouling

~all x T 0

~

c.. +'

0

'\. \ sec c.. 0 rtl ..... '\. Rboil ing Routside fouling Figure A-1. Thermal Analysis Model of Typical First Row Tube

  • A-3

STRESS ANALYSIS The pressure induced hoop stress is computed from the primary to secondary side pressure differential using a thick wall fonnula. For a differential pressure of 1330 psi, the inside surface hoop stress is 11,013 psi (76 MPa). The inside surface thennal stress due to heat flux (but not due to hot/cold leg tubing thennal expansion) is computed from the temperature drop across the tube wall using the classical equation for a thick wall cylinder, i.e., equation 15.6 from Roark (34).

RESULTS The pressure and heat flux stresses on the inside surface of the tube at the three locations of primary interest are as follows:

Temperature (°F) Inside Surface Hoop Stress (psi)

Location Fluid Inside Surface Pressure Heat Flux Total I

Hot Leg Inlet ..§la 592 11,013 -7,016 3,997 f I

U-Bend 577 565 11,013 -3,539 7,474 Cold Leg Outlet 558 552 11,103 -1,773 9,240 It should be noted that residual stresses and local bending stresses due to pressure and overall U-tube thennal expansion are not included in the above values, and would need to be added to the above values to determine total stresses.

A-2

  • Appendix B STRESSES IN TUBE WALL AT EXPANSION TRANSITIONS The purpose of this appendix is to sunvnarize the reported operating and residual stresses in tube expansion transitions. These results include work by Brookhaven National Laboratory, Mitsubishi Heavy Industries, EdF, and Dominion Engineering.

BROOKHAVEN NATIONAL LABORATORY Brookhaven National Laboratory has measured the inside surface residual stresses in the area of tube expansion transitions using X-ray analysis (l1_,35). The first series of stress measurements was taken at intervals of about 6mm (0.24 in) along the tube wall in the region of the expansion transition (~). The results of these measurements are shown in Figure B-la. These results show that the longitudinal and hoop stresses are compressive in areas on either side of the transition, but ~oth are tensile near the top or the expansion transjtjon. The measurements were repeated at 111111 (0.04 in) intervals in the area of the transition (35). The results of these measurements, shown in Figure B-lb, indicate tha peak . an be on the order of 125 ksi (862 ~

MPa) hoop and 35 ksi (241 MPa) longitudinal.

MITSUBISHI HEAVY INDUSTRIES Mitsubishi has determined the residual stresses in the roll expanded region and the roll transition by several different methods (27). These methods included released strain measurements, and sec tests in polythionic acid. The results of this work show residual tensile stresses at the ID surface in the roll transition region in the range of 20-28 ksi (138-193 MPa). The residual stresses measured by these methods would be expected to be less than obtained using the x-ray technique applied by Brookhaven National Laboratory. Residual stresses in the roll expanded area were determined to be compressive-when properly rolled, but to be tensile if insufficient rolling was performed.

ELECTRICITE DE FRANCE

  • Elctricite de France (EdF) performed finite element analyses to determine the inside surface residual stresses associated with roll transitions (36). The B-1

SUMMARY

In sunvnary, the above data indicates that the residual stresses are most likely controlling. Specific values assumed to estimate the time to cracking are~

reported in Section 3*

~

  • B-3

results of their analyses are shown in Figure 8-2. In summary, the analyses indicate that the following stresses should be present:

Location Stresses ksi (MPa)

Hoop Longitudinal 1 Fully expanded region -94(-650) -29(-200) 1 5-7mrn (0.2-0.3 in) above top of expanded region 4 +65(450)

DOMINION ENGINEERING To the best of our knowledge, there are no detailed finite element analyses of the tube expansion transition reported in the public literature. Accordingly, elastic stresses due to operating pressure and temperature, but excluding residual stresses, were computed for these regions as part of this study. The model used for the calculations is shown in Figure B-3 and the results of the calculations are as follows:

I Expansion Transition Within Tube Sheet - For the case of the expansion transition within the tube sheet the model in Figure B-3 was assumed with a uniform temperature of 615°F(324°C) and a differential pressure of 1330 psi (9.2 MPa). Axial load was applied to the end of the tube to simulate axial pressure stress. The geometric discontinuity was not simulated as previous calculations had indicated that the local stress concentration factor is very low. The results of this calculation are plotted in Figure B-4 and indicate low + 4 ksi (28 MPa) tensile stresses at the inside surface of the tube.

1 Expansion Transition at Top of Tube Sheet - Analyses were also performed to determine the stresses which exist in the tube at the top of the tube sheet due to internal pressure and the local axial thermal gradients at this discontinuity.

The thermal boundary conditions for this analysis and resultant thermal gradients are shown in Figure B-5. The stresses in the tube at the transition are compressive, or low tensile for this case as shown in Figure B-6.

1 Straight Run of Tube at Top of Sludge Pile - A final calculation was made of the local thermal gradients and thermal stresses at the point where a straight run of tubing leaves the sludge pile region. The thermal boundary conditions for this case and resultant thermal gradients are shown in Figure 8-7a. The stresses at this interface are on the order of -7 ksi (48 MPa) on the inside of the tube and +8 ksi (55 MPa) on the outside of the tube. These stresses are identical to the thermal stresses computed in Appendix A and indicate that the thermal bending stresses are insignificant as shown in Figure 8-8b.

8-2

IO I

I I

I I

I

/

Dbmnce le long de I'*** du tube 15 10 & 10 15 20 mm

  • ...... ___ ---- o'a Figure B-2. EdF Computed Residual Stresses at Roll Transition Source: From reference (36)
  • B-5

..* I

  • iJO....

RESIDUAL STRESS EVALUATION ON INNER SURFACE DETAILED ANALYSIS OF ROLL TRANSITION REGION tc DIRECTION I CIRCUMFERENTIAL LONGITUDINAL REGION 'C' ANALYSED IN FOUR 1 MM STEPS, L TO R, Rl - R4

~

ZONE AND LOCATION KSl(PIPA) KSI (fl>A)

DIRECTION CIRCUMFERENTIAL LONGITUDINAL ExPANDED A -36.07(-2118.75) -28.93(-199.115) LOCATION KSl(Mf>A) KSl(MJ>A)

B -35.19(-2112.66) -28.93(-199.45) c - 1.70(- 11.75) + 8.90(+ 61.37>

TRANSITION C - 1.70(- 11.75) + 8.90(+ 61.37> RI + 8.55(+ 58.93) -40.30(-277.87>

D +20.01<+138.00> + 6.74(+ 46.46) R2 + 118.11(+331.73) -21.04(-145.08' R3 ~..9(+531.23) -43.13(-297.110>

UNEXPANDED E -24.29(-167.49) - 0.73(- 5.06) R4 +125...14(+867.ll) +34.'12(+237.32)

a. Preliminary Stress Measurement b. Detailed Stress Measurement Region C-D Figure B-1. Brookhaven Residual Stress Measurements at Roll Transition Source: From reference (.ll_)

__ _ _ J

  • +1200 1..- +8300 Axial Stress AtlSYS 85/ 1/ 4 14.6072 POST1 STEP-1 ITER=1 STRESS PLOT SY I AUTO SCALIHO ZV=1 I DIST... 184 Xf1:.S55 YF1:1. 70 MX*8930 lftm-885

+4600 ltlC=800 G TUBE STRESS

  • Hoop Stress fl'ISYS 85/ 1/ 4 14.5539 POST1 STEP=1 ITER=1 STRESS PLDT sz AUTO SCALIHO ZV=1 DIST=. 184 XF=.555 YF=1. 70 MX*10330 MN--1178 INC=800 G TUBE STRESS
  • Figure B-4. Operating Stresses in Expansion Transition Within Tube Sheet B-7

ANSYS 85/ 1/ 4

/ tube 14.4181 POST1 ELEMENTS AUTO SCALING 2U=1 pi=1330 psi DIST*1.93 XF*.555 YF=1. 75 tube sheet

/

l

  • +3000-~~ u +12,000 Axial Stress AtiSYS 85/ 1/ 4 14.2783 PDST1 STEP=1 ITER=1 STRESS PLDT SY RUTD SCALING ZV=1 DIST=. 184 XF=.555 YF=1. 79 MX*23061 era =+23000 psi MN*-8134

-8000 psi INC=2000 TUBE STRESS PASS

  • +5300 +17,400 Hoop Stress RN SYS 85/ 1/ 4 14.2255 PDST1 STEP=1 ITER=1 STRESS PLDT sz AUTD SCALING ZV=1 DIST=. 184 XF=.555 YF=1. 70 MX*19538 cr0=+19,600 psi MN*-1572 INC=1250

+1400 G TUBE STRESS PASS

  • Figure B-6. Operating Stresses in Expansion Transition at Top of Tube Sheet B-9

h;=33.7 Thermal Boundary Conditions ANSVS 85/ 1/ 4 9.9417 PDST1 ELEMENTS AUTD SCALING ZU=1 DIST*. 184 h0 =59.6 XF*.555 YF=t.79 Tf =535 Tf.=615°F 0 l Insulated (Sludge)

/ / / ,,,_,,_.,,,,,./h//./, __,,,., -- ----

?G TUBE STRESS PASS Temperature Distribution Twall =548°F ANSYS 85/ 1/ 4 9.9839 PDST1 STEP=t ITER=t STRESS PLDT TEMP f ""TD SCALING ZV=t DIST=. 184 XF=.555 YF=t. 70 MX*609 MN=548 INC=4 Twan=609°F

  • SO TUBE STRESS PASS Figure B-5. Temperature Distribution in Expansion Transition at Top of Tube Sheet B-8
  • I _ I_

I,_.. I

~

I JI Axial Stress ANSYS 85/ 1/10 15.2767 PDST1 STEP=!

ITER=1 STRESS PLDT SY I AUTD SCALING ZU=1

-II*-

OIST=.108 XF=.412 I YF=1. 79

~ ..... MX:a4949 MN=-5626

..... I . I INC=800 I ....

.... I I

,_ I' - ...'

I ...

  • - I- I Il. ,1 I~ \l~

fG TUBE STRESS PASS

  • I I II

~

Hoop Stress ANSYS 85/ 1/10 15.3200 PDST1 STEP=!

ITER=I STRESS PLDT sz AUTD SCALING ZU=I DIST=. 108 XF=.412 YF=1. 79 11 ~cr 8 =+8200psi. MX=8219 a 6=-5000psi. MN=-7338

'-J II INC=lOOO I II SO TUBE STRESS PASS .

  • Figure B-8. Thermal Stresses in Tube Wall at Sludge Pile Interface B-11

Thermal Boundary Conditions ANSYS 85/ 1/10

15. 1881 POST!

ELEMENTS AUTO SCALING ZU='I h0 = 59.6 DIST=. 108 XF=.412 YF=I. 79

.. .y Tf. =615° F Tf =535°F l 0

~

~

Ins ulated

~

~

I/

SG TUBE STRESS PASS I I Temperature Distribution ANSYS 85/ 1/10 15.2206 POST!

STEP=!

ITER=1 STRESS PLOT TEMP AUTO SCALING ZU=I OIST=.108 XF=.412 YF=I. 79 MX=609 MN=548 INC=4 SG TUBE STRESS PASS Figure B-7. Temperature Distribution in Tube Wall at Sludge Pile Interface B-10

  • Appendix C STRESSES IN TUBE WALL AT U-BENDS The purpose of this appendix is to summarize the reported operating and residual stresses in the U-bend region of first row tubes. These results include work by Robert L. Cloud Associates, Inc., Mitsubishi Heavy Industries, Ltd., and Penn State University.

R. L. CLOUD ASSOCIATES Cloud, Leung, and Loey, of R. L. Cloud Associates, Inc. have computed elastic pressure and thennal stresses in U-bend region of a typical Model 51 steam generator row 1 tube (lZ_). The analyses consisted of two models as shown in Figure C-1. The first model was of an entire tube from the tube sheet to the U-bend including both the hot and cold legs. The purpose of this model was to

  • obtain the displacements of the tube at the elevation of the upper tube support plate. The second, more detailed, model was of the U-bend region and straight legs above the upper tube support plate. The purpose of this model was to obtain the stresses in the U-bend region for combined internal pressure and thennal displacements. The analyses were carried out with and without a "bump" simulating the transition region between the straight and bent portions of the tube.

The highest reported hoop tensile stresses on the inside surface of a tube without a 11 bump 11 were 31 ksi (214 MPa) on the flank of the tube. This is shown in Figure C-2. The analysis of the case with a "bump" showed that operating stresses were not significantly increased.

It should be noted that the stresses reported above do not include the effect of a through thickness temperature gradient. Based on work in Appendix A, the through thickness thermal gradient produces a compressive hoop stress on th~ order of -3.5 ksi (24 MPa) on the inside surface of the tube at the U-bend location. This lowers the computed inside surface hoop tensile stress by about 10 percent to 27.5 ksi (190 MPa) *

  • C-1
  • I Strain Ga9e Sectioning Tests - Residual stresses along the axis of the 0-ben s were measured using a strain gage sectioning technique. These results indicate inside surface tensile hoop residual stresses on the order of 15 ksi (97 Ma} for the tubes formed using the cylindrical plastic mandrel, and 50 ksi (345 MPa}

for tubes formed using the ball mandrel.

In summary, the Mitsubishi results indicate that operating tensile stresses on the inside of the tube are on the order of 17 ksi (117 MPa), and that residual tensile stresses are on the order of 15-50 ksi (103-345 MPa).

PENN STATE UNIVERSITY C. Ruud, of Penn State University, has determined outside surface hoop stresses in first row U-bends by the X-ray diffraction technique (38). The results of this work indicate stresses on the order of 50 ksi (345 MPa) compressive. It has been inferred from this data that the stresses on the inside are on the order of 50 ksi (345 MPa) tensile. These results are in reasonably good agreement with the Mitsubishi results obtained by the strain gage sectioning technique. It is noted, however, that local surface stresses can be much higher due to surface work hardening *

SUMMARY

In sunvnary, the inside surface tensile hoop stress for tubes formed by the Westinghouse ball mandrel method could be on the order of 65 ksi (448 MPa). This consists of a residual stress of about 45 ksi (310 MPa} and an operating stress of about 20 ksi (138 MPa). Higher peak surface stresses are believed to exist due to local surface work hardening. For the case of tubes formed with the plastic cylindrical mandrel, the stresses should be reduced by at least 15 ksi (103 MPa) to about 50 ksi (345 MPa) *

  • C-3

I MITSUBISHI HEAVY INDUSTRIES Kansai Electric Power Co. and Mitsubishi Heavy Industries performed finite element analyses similar to those performed by R. L. Cloud Associates, a series of polythionic acid tests, and residual stress measurements (~). This work is as follows:

  • Analyses - Mitsubishi analyses of a first row U-bend included a global model to obtain boundary conditions representative of the upper tube support plate elevation, and a local model of the U-bend above the upper support plate. While the reference does not provide complete assumptions, it is possible to infer that their boundary conditions did not include the effect of a through thickness thermal gradient. The Mitsubishi analysis results, shown in Figure C-3, indicate an inside surface hoop stress of 11.6 ksi (80 MPa) in the region two tube diameters below the tangent point, and a peak inside surface hoop stress of about 17 ksi (117 MPa) on the flank about 25 degrees above the tangent. The location of the peak stress is the same as identified by R. L. Cloud Associates, however, the magnitude of the peak stress is about half. The difference in computed peak stress may be due to differing boundary conditions in the global model but this has not been confirmed. Subtracting the 3.5 ksi (24 MPa) compresive stress produced by the through thickness thermal gradient would result in a inside surface tensile hoop stress of about 13.5 ksi (93 MPa).

1 Polythionic Acid Tests - First row U-bend specimens were fonned form sensitized alloy 600 tubing using the ball mandrel procedure used by Westinghouse, and by the plastic cylindrical procedure used by Sumitomo. The tubes were filled with polythionic a'cid, pressurized to 1422 psi (9.94 MPa), and then subjected to the boundary condition loads and moments predicted by the global finite element model. The stress level in the tube was estimated based on the results of separate load controlled tests. The results indicated that cracks typically develop 10-30 degrees above the tangent point and are indicative of stress levels on the order of 50-60 ksi (345-414 MPa).

Results of examination of failed tubes from Takahama 1 and the polythionic acid tests show that the actual failures do not occur at exactly the same location where the peak operating stresses are computed using the finite element*

programs. Rather, they occur at the tangent point where an abrupt change in ovality occurs for the case of tubes formed using the ball mandrel process. Mitsubishi infers from this that local residual stresses due to the forming process are a significant factor in explaining primary side IGSCC, and that the susceptibility increases when this high residual stress location occurs on the cold leg.

C-2

50

~

  • goo A Perfect Tube 40 o 5% Ovality a 10% OvaHty 30 Ill ?n

.. u

~

Vl 10 0

-10L-~~~~~~~~L-~~~....1-~~~--'~~~~....1-~~~__.

0 30 60 90 120 150 180 e (Degrees)

Figure C-2. Inside Surface Hoop Stress on Flank of U-Bend Source: From reference (37)

  • C-5

Centerl I ne Of U-Bend 17 R

  • 2 .19" 16 0- - 18 15 I 19 14 20 13 21 12 22 11 23 10 9

8 7

©

©

©

© 24 25 26 7

l

  • 356.87" Sy*metry Boundary Sy**etry Boundary Conditions Conditions 6

© s.

© 4

3 2

© Cold LRg

© Hot leg Figure C-1. R.L. Cloud LI-Bend Finite Element Analysis Model Source: From reference (ll)

C-4

1 .. .397 E1 2 **1 E1 3 .564 E1 I

II 4

. .148 E1 II 5

. .n1 E1 II II I

I I I

I II II 6

7 .. .114 E1

.1!!18 E1

~

n I

en ~I OI I I I II I

I .. .!1111 E1

.106 E2 II I I I II 10 .115 E2 II I II I I I II II I I I II

~

II I I I II I

I I II

~

II I I I II

~'

~ ~ J !.!:!

HOOi' STRESS INNER SURFACE IHacl

~*

b. Local Model
a. Global Model Figure C-3. Mitsubishi Finite Element Models and Results Source: From reference (£.)
  • Appendix D DATA BASE The purpose of this appendix is to tabulate key design and operating data for Westinghouse type steam generators with non-thermally treated alloy 600 tubing, and which were in operation prior to the start of 1983. In addition, several plants which went into commercial operation subsequent to the start of 1983, but which have already reported primary side IGSCC, are included.

Information for the data base was obtained from a number of different sources including: the EPRI Steam Generator Data Base (39); published lists of power plants (40,41); NRC Public Documents Room; other EPRI publications (!,42) and discussions with EPRI, utility, and NSSS personnel, etc.

Where data is provided for tube material properties, it should be noted that the

  • i~formation is from tests on limited samples. In fact, there can be as many as 200 heats of material in a single steam generator, and each of the heats can differ somewhat in properties.

The data base is* not complete since the work scope for this project was limited to compiling the data which could be obtained within the scope of this project.

The following abbreviations are used in the data base:

AVT AVT water treatment cs Carbon steel CYL PLAST MNDRL Cylindrical plastic mandrel DAM Dudgeonnage Ameliore Mecaniquement treatment F.D.ROLL Full depth roll H BALL MANDREL Huntington ball mandrel PHOS Phosphate water treatment MHI Mitsubishi Heavy Industries RWE Recirculating type S.G. with economizer RWOE Recirculating type S.G. without economizer

  • WH BALL MANDREL Westinghouse ball mandrel D-1

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKI~G SURVEY ALMARAZ 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO *...***.***.......**. ALMARAZ 1 1.2 UTILITY ............*...............*....*.. HIDROELECTRICA SA 1.3 NSSS SUPPLIER ......*....**...*..*....*.**** WESTINGHOUSE 1.4 ELECTRIC POWER RATING IMWEI *..*.......***.. 930 1.5 THERMAL POWER RATING <MWTJ *....**.***.***** 2686 1.6 DATE OF COMMERCIAL OPERATION ..***.********* 10/15/81
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *..*..*..*......* 3
2. 2 STEAM GENERATOR TYPE. . * * * * . . * . * * . * * * * . . . * . . RWE

2.5 DATE OF STEAM GENERATOR COMPLETION *...***.. //

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches> **...*...*...** 21.0 3.2 TUBE OUTSIDE DIAMETER <inches> ..*.....*.**** 750 3.3 TUBE WALL THICKNESS <inches> ....*...*..*.*** 043 3.4 NUMBER OF TUBES PER STEAM GENERATOR ***.*.** 4674 3.5 TUBE PITCH <inches> .....**.*...*...*.****.* 1.063 3.6 TUBESHEET RADIAL CREVICE <inches> *...*.*.*.. 0000 3.7 DEPTH OF TUBESHEET CRE*VICE <inches) ..*.***. 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ****...**.*.....******.** SA 508 4.2 TUBE SUPPORT PLATE MATERIAL .....*.****..*.. CS 4.3 TUBE MATERIAL .*.**.*...**....**.**...*.**.. ALLOY 600 4.4 TUBE SUPPLIER *.*.*.*..******.*****.***.*.** WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE *******.*****.*.*** //
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ..***..*******..**...*

5.2 CARBON CONTENT RANGE (percent> ...****....**

5.3 YIELD STRESS RANGE <ksi> ****...*.*.**.****.

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl .****....*

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ....*...***.*....* FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches> *..... 2.250,3.312 6.3 PROCESS USED TO FORM BENDS ......*...*...... W. BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl .** NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 _PRIMARY COOLANT PRESSURE Cpsil *...**.*.*.** 2235 7.2 HOT LEG INLET TEMPERATURE <deg Fl ...*.*.... 619 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl **...*.* 556 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ......**...*

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .**..*.....

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl *****

7.7 STEAM GENERATOR OPERATING PRESS. <psil ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ...**....

7.9 WATER CHEMISTRY ........*..**..*.**.*..*..** AVT ONLY

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY ALMARAZ 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC

8. 1 . 1 EX PANS ION TRANS IT ION. . * * . . * . * . . * * * *
  • YES ,-
8. 1. 2 EXPANDED REGION ...**.**..*..*.*..*** YES 8.1.3 LI-BEND TRANSITION ....*...****.*.***.

8.1.4 LI-BEND APEX-DENTING RELATED **......*

8.1.5 LI-BEND APEX-NOT DENTING RELATED .**.*

8.1.6 TSP INTERSECTION-DENTING RELATED .*..

8. 1. 7 PLUGS ..................*...**...****

8.2 OTHER PRIMARY PROBLEMSle.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .*.****.*****.**

9.1.2 TUBESHEET CREVICE *..*..*.**.*..*.*.*

9.1.3 SLUDGE PILE REGION .***.**.**.*******

9.1.4 TSP INTERSECTION **..*.**..*********.

9.2 INTERGRANULAR ATTACK CIGA>

9.2.1 EXPANSION TRANSITION ***.*.*.*.*.****

9.2.2 TUBESHEET CREVICE *..*******.*.******

9.2.3 SLUDGE PILE REGION ...*...*...*******

9.2.4 TSP INTERSECTION **..*.*....****.*..*

9.3 DENTING **.......****.**..***.************** YES-MINOR 9.4 CORROSION FATIGUE **.*...*.**..*.****.******

9.5 EROSION-CORROSION *.*.*..*..***..******.****

9. 6 PI TT I NG **.*.***.....***********..*.*..****.
9. 7 WASTAGE *....*..*.*.*...........*.*..***** *.

9 . 8 WEAR. . * . * . . . * * * . * * * . . . . . * . * * * * * * . * . * * . * * * *

  • YES 9.9 OTHER SECONDARY SIDE PROBLEMS *...**.****.**
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *.**..***..*.*..*...*.**

10.2 TOTAL TUBES SLEEVED *.*..*.**..*.**..*******

10.3 OTHER <tube expn.,stress relief,peening> ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-3

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BEAVER VALLEY 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO **.**..************** BEAVER VALLEY 1 1.2 UTILITY ...***...*...**.*.**************.*** DUQUENSE LIGHT 1.3 NSSS SUPPLIER ******.******.*****.********** WESTINGHOUSE 1.4 ELECTRIC POWER RATING CMWEl *****.***..***** 852 1.5 THERMAL POWER RATING CMWTl ***************** 2652 1.6 DATE OF COMMERCIAL OPERATION ..*.**.***.**** 4/15/77
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .*.*********.**** 3 2.2 STEAM GENERATOR TYPE **.******************** RWOE **

2.3 STEAM GENERATOR MODEL NO *************.***** 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** WESTINGHOUSE 2.S DATE OF STEAM GENERATOR COMPLETION ********* //

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> *************** 21.0 3.2 TUBE OUTSIDE DIAMETER Cinches> ************** 875 3.3 TUBE WALL THICKNESS Cinches> **************** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR **.***** 3388 3.S TUBE PITCH Cinches> *********.************** 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches) *********.. 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> ******** 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ********************.**** SA 508 4.2 TUBE SUPPORT PLATE MATERIAL *.************** CS 4.3 TUBE MATERIAL *******.********************** ALLOY 600 4.4 TUBE SUPPLIER ************.****.************ WEST/HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE *************.***** II
5. TUBE MATERIAL PROPERTIES S.1 ASTM GRAIN SIZE RANGE ***.***.**************

S.2 CARBON CONTENT RANGE (percent> *************

S.3 YIELD STRESS RANGE Cksil *******************

S.4 MILL ANNEAL TIME/TEMP <min/deg F>******~***

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS **..************** ROLL/EXPLOSIVE 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> *.**** 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ***************** WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl *.* NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ************* 2235 7.2 HOT LEG INLET TEMPERATURE (deg Fl ****..***. 610 7.3 COLD LEG OUTLET TEMPERATURE <deg Fl *.***..* 543 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ******...***

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ******.**.*

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg Fl ***** 517 7.7 STEAM GENERATOR OPERATING PRESS. Cpsil *.**** 825 7.8 TYPICAL SLUDGE PILE DEPTH <inches) *.*.*****

7.9 WATER CHEMISTRY *****.***********.*.**.***** AVT ONLY

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BEAVER VALLEY 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION **.**.*.***.*...

8.1.2 EXPANDED REGION .......**..* ~ *****.**

8.1.3 LI-BEND TRANSITION .........**...**.**

8.1.4 LI-BEND APEX-DENTING RELATED ***..***.

8.1.5 LI-BEND APEX-NOT DENTING RELATED .****

8.1.6 TSP INTERSECTION-DENTING RELATED **..

8. 1
  • 7 PLUGS .*.***....***.*******.*********

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION **.*.*********.*

9.1.2 TUBESHEET CREVICE **.*.......*.**.**.

9.1.3 SLUDGE PILE REGION *.**.*.******.****

9.1.4 TSP INTERSECTION *.****.*..*********.

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION ***.*.*********.

9.2.2 TUBESHEET CREVICE **..*****.*.******.

9.2.3 SLUDGE PILE REGION ..*..*.*********.*

9.2.A TSP INTERSECTION **.**....*.******..*

9.3 DENTING *****..**.*.****..***...*******..***

9.4 CORROSION FATIGUE .....*.*******.****..***..

9.5 EROSION-CORROSION ...***.****...******.****.

9.6 PI TT I NG .****..***.....**..*.**.*****..****.

9.7 WASTAGE **.**..*.*.*.*..*.*..*.*******. , * , ..

9.8 WEAR * **************************************

9.9 OTHER SECONDARY SIDE PROBLEMS ...**.***..... YESCLOOSE PARTS>

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *...*.........**....*.*. 9 10.2 TOTAL TUBES SLEEVED ...**..****..*.....*.*..

10.3 OTHER <tube expn.,stress relief,peening> **.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-5

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BEZNAU 1 *

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO..................... BEZNAU 1 1 . 2 UTILITY. * * . . . . * * * . * . * . . . . . . . . . . . * * . . . . * . . . . NOK 1.3 NSSS SUPPLIER ****...****.*....**.**..*.**.. WESTINGHOUSE 1.4 ELECTRIC POWER RATING <MWE> ..*..*...**...*. 350 1.5 THERMAL POWER RATING <MWT> *..***..*..*..*** 1130 1.6 DATE OF COMMERCIAL OPERATION *.*.*..****.*** 12/15/69
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *..*****.**.**.** 2 2.2 STEAM GENERATOR TYPE .***.**..*****.* ~****** RWOE 2.3 STEAM GENE~ATOR MODEL NO ****.*.****..****** 33 2.4 STEAM GENERATOR FABRICATOR/LOCATION *.***.**

2.5 DATE OF STEAM GENERATOR COMPLETION ......... //

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS <inches> .*.*.****. ; **** 20.0 3.2 TUBE OUTSIDE DIAMETER <inches> ************.. 875 3.3 TUBE WALL THICKNESS (inches) .*****..***.**** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *..**.** 2604 3.5 TUBE PITCH (inches) *.*.**.**.**.***.*******

3.6 TUBESHEET RADIAL CREVICE (inches> ****.****** 0060 4.

3.7 DEPTH OF TUBESHEET CREVICE <inches> ******** 18.00 STEAM GENERATOR MATERIALS

4. 1 TUBESHEET MATERIAL *******.****.*..*********

4.2 TUBE SUPPORT PLATE MATERIAL *********.*****.

4.3 TUBE MATERIAL *.**.***...***.******.**.*****

4.4 TUBE SUPPLIER .*******..*******.*****...****

4.5 DATE OF TUBE MANUFACTURE **********.*.******

FORG. STL.

CS ALLOY 600 HUNTINGTON

//

TUBE MATERIAL PROPERTIES

5. 1 ASTM GRAIN SIZE RANGE *..***********.******* 6.5 5.2 CARBON CONTENT RANGE <percent> *.**.*...***.

5.3 YIELD STRESS RANGE (ksi> .****..******.*****

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl ..*******.

6. TUBE EXPANSION PARAMETERS
6. 1 TYPE OF EXPANSION PROCESS **.*****...******* PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches> *.**..

6.3 PROCESS USED TO FORM BENDS .*****.*.*******. H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl *** NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi> **.****.***.* 2235 7.2 HOT LEG INLET TEMPERATURE (deg F> ..*.*.**** 599 7.3 COLD LEG OUTLET TEMPERATURE (deg F> ...*...* 544 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) **..*..*****

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2> ..*.*****..

7.6 STEAM GENERATOR OPERATING TEMP. (deg F> .**** 506 7.7 STEAM GENERATOR OPERATING PRESS. (psi> *...*. 730 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) *********

7.9 WATER CHEMISTRY .**...*....*.*.......**...... AVT,PHOS,AVT D-6

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY EtEZNAU 1

8. REPORTED PRIMARY SIDE PROBLEMS (Yes/No, Date or EFPD to 1st ob$ervationl 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION ****************
8. 1. 2 EXPANDED REGION **************.******
8. 1. 3 U-BEND TRANSITION .*.****************
8. 1. 4 U-BEND APEX-DENTING RELATED ******.**

8.1.5 U-BEND APEX-NOT DENTING RELATED *****

8. 1. 6 TSP INTERSECTION-DENTING RELATED ****
8. 1. 7 PLUGS * ******************************

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC

9. 1. 1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .

9.1.2 TUBESHEET CREVICE *********.***..**** YES-2 yrs 9.1.3 SLUDGE PILE REGION ***.************** YES

9. 1
  • 4 TSP INTERSECT ION *****.**************

9.2 INTERGRANULAR ATTACK CIGA>

9.2.1 EXPANSION TRANSITION ****************

9.2.2 TUBESHEET CREVICE ******************* YES-2 yrs 9.2.3 SLUDGE PILE REGION ****************** YES 9.2.4 TSP INTERSECTION ********************

9. 3 DENT I NG * ********.***.**************** * ** * *
  • 9.4 CORROSION FATIGUE ***.**..******************

9.5 EROSION-CORROSION ***********.*******.******

9.6 P I TT I NG * * * * * * * * * * * * * * * . *****.**************

9. 7 WASTAGE. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • YES
9. 8 WEAR. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • YES 9.9 OTHER SECONDARY SIDE PROBLEMS **********.***
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED **.**.******.*********** 1117 10.2 TOTAL TUBES SLEEVED *************.**********

10.3 OTHER Ctube expn.,stress relief,peening) ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-7

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BEZNAU 2 *

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ******.********.*.* ~. BEZNAU 2 1
  • 2 UTILITY. * * * . . . * * . * * . . * * . . . . * . . * * . * * * * * * * * . . NOi<

1.3 NSSS SUPPLIER **..****.***.***.************* WESTINGHOUSE 1.4 ELECTRIC POWER RATING <MWE> *********...**** 350 1.5 THERMAL POWER RATING <MWT> ***.*****.******* 1130 1.6 DATE OF COMMERCIAL OPERATION *************** 12/15172

2. ST~AM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ******.********** 2 2.2 STEAM GENERATOR TYPE *********************** RWOE 2.3 STEAM GENERATOR MODEL NO ***.*************** 33 2.4 STEAM GENERATOR FABRICATOR/LOCATION ********

2.5 DATE OF STEAM GENERATOR COMPLETION *****.*** //

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> ********* w * * * *
  • 20.0 3.2 TUBE OUTSIDE DIAMETER Cinches) ************** 875 3.3 TUBE WALL THICKNESS Cinches> ******** ~ ******* 050
3. 4 NUMBER OF TUBES PER STEAM GENERATOR **** ***** 2604 3.5 TUBE PITCH <inches> *.**..******************

3.6 TUBESHEET RADIAL CREVICE (inches> *********** 0060 3.7 DEPTH OF TUBESHEET CREVICE (inches> *****.** 18.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *********.*************** FORG.STL.

4.2 TUBE SUPPORT PLATE MATERIAL *******.******** CS 4.3 TUBE MATERIAL *******.*******.************** ALLOY 600 4.4 TUBE SUPPLIER .***************.*******.***** HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE *..**************** II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE **********************

5.2 CARBON CONTENT RANGE (percent> ********.****

5.3 YIELD STRESS RANGE <ksi> *******************

5.4 MILL ANNEAL TIME/TEMP <min/deg F> **********

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ****************** PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2,U-BENDS <inches> ******

6.3 PROCESS USED TO FORM BENDS ****.*.****..**** H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ..* NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi) ..**********. 2235 7.2 HOT LEG INLET TEMPERATURE Cdeg F> ********** 597 7.3 COLD LEG OUTLET TEMPERATURE <deg F> ******** 542 7.4 HOT LEG HEAT FLUX CBTU/hrlftA2) ******.*****

7.5 COLD LEG HEAT FLUX CBTU/hrlftA2) ***********

7.6 STEAM GENERATOR OPERATING TEMP. (deg F> ***** 512 7.7 STEAM GENERATOR OPERATING PRESS. <psi> ****** 773 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) **.***.*.

7.9 WATER CHEMISTRY *********.**.**.************ EARLY PHOS, AVT 0-8

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BEZNAU 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation)

~.1 PRIMARY SIDE IGSCC

8. 1. 1 EXPANSION TRANSITION *.**..*..**.**..

8.1.2 EXPANDED REGION ..*..*.*....****.****

8.1.3 LI-BEND TRANSITION *...*....******..**

8.1.4 U-BEND APEX-DENTING RELATED ****..***

8.1.5 LI-BEND APEX-NOT DENTING RELATED ***** YES 8.1.6 TSP INTERSECTION-DENTING RELATED *.**

8.1.7 PLUGS *.*...*.*....*****.*.*.**..****

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/Nc,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *******.********

9.1.2 TUBESHEET CREVICE ***.*.*.***...***.* YES

9. 1. 3 SLUDGE PILE REGION *.***....*********

9.1.4 TSP INTERSECTION *..****.*.***.*.****

9.2 INTERGRANULAR ATTACK CIGA>

9.2.1 EXPANSION TRAN~ITION *..***....***.**

9.2.2 TUBESHEET CREVICE **.**.*.....*.*.*.* YES 9.2.3 SLUDGE PILE REGION *.***.*****..**.**

9.2.4 TSP INTERSECTION **************..****

9.3 DENTING *..*.***.*.**.****.*.*****.*********

  • 9.4 CORROSION FATIGUE ****.**..***...******.***.

9.5 EROSION-CORROSION .*.............**....****.

9.6 PI TT I NG *..*.**...*.*****.*.*.**.*.******..*

9.7 WASTAGE ***..*...****....*.**.****.*****.*** YES 9.8. WEAR * ************************************** YES 9.9 OTHER SECONDARY SIDE PROBLEMS .*.***********

10. INSERVICE REMEDIAL MEASURES
10. 1 TOTAL TUBES PLUGGED *...**.**.*...***..***.* 282 10.2 TOTAL TUBES SLEEVED ..**.**.*.*...***.*****.

10.3 OTHER <tube expn.,stress relief,peening> .**

11. NOTES
11. 1
11. 2
11. 3 11.4
11. 5
11. 6
  • D-9

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BLAYLAIS 1 *

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ..............**..... BLAYLAIS 1
1. 2 UTILITY ..................*...............** EDF 1.3 NSSS SUPPLIER .............*.......*..*...*. FRAMATOME 1.4 ELECTRIC POWER RATING <MWE) ......*...*..... 925
1. 5 THERMAL POWER RATING <MWT> **..*...**.**..*.

1.6 DATE OF COMMERCIAL OPERATION *.*.*........*. 12/15/81

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ...*.*.***.*.**.* 3 2.2 STEAM GENERATOR TYPE *....*****..***..****** RWOE 2.3 STEAM GENERATOR MODEL NO .****..*.****.***** 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** FRAMATOME 2.5 DATE OF STEAM GENERATOR COMPLETION *.*..**.. //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches) ........*.****.

3.2 TUBE OUTSIDE DIAMETER <inches> ***..*****.*** 875 3.3 TUBE WALL THICKNESS (inches> ......**..**.**. 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR .*.****. 3381 3.5 TUBE PITCH (inches> *...*.***..**.********** 1.281 3.6 TUBESHEET RADIAL CREVICE <inches> ***.*.*.*.* 0000 3.7 DEPTH OF TUBESHEET CREVICE (inches) ....*.** 00.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .*...*..**.*.*.......*.** SA 508 4.2 TUBE SUPPORT PLATE MATERIAL ..**..*.*..**.** CS 4.3 TUBE MATERIAL *..*..*....*...*****.....*..*. ALLOY 600 4.4 TUBE SUPPLIER .....**.......**.....*.**..*.* WEST/VALLOUREC
4. 5 DATE OF TUBE MANUFACTURE .*......**....***.* II
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ...*.**.........***...

5.2 CARBON CONTENT RANGE (percent> ....**.*.*..*

5.3 YIELD STRESS RANGE <ksi> ......***..*.*...**

5.4 MILL ANNEAL TIME/TEMP <min/deg F> ..*.......

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *.*..**.*.*..*.*.. F.D. ROLL/DAri 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches> ....*. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ...*.....*...*.*.

6.4 STRESS RELIEF AFTER TUBING <hours/deg F> ... NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi> ****......**. 2248 7.2 HOT LEG INLET TEMPERATURE (deg F> *...*.*... 613 7.3 COLD LEG OUTLET TEMPERATURE <deg F) *.*..*.* 546 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) .......*....

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) ....*......

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl .....

7.7 STEAM GENERATOR OPERATING PRESS. <psi) ...**. 840 7.8 TYPICAL SLUDGE PILE DEPTH !inches) .***.*.*.

7.9 WATER CHEMISTRY ....**...................... AVT ONLY 0-10

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BLAYLAIS 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .....*...***.***

8.1.2 EXPANDED REGION ..*.**.*.**.**..****.

8.1.3 LI-BEND TRANSITION *... !**************

8.1.4 LI-BEND APEX-DENTING RELATED *...*****

8.1.5 LI-BEND APEX-NOT DENTING RELATED .****

8.1.6 TSP INTERSECTION-DENTING RELATED *.**

8. 1 . 7 PLUGS ..*.*.**.*.***.*****..**.******

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>
9. 1 SECONDARY SIDE IGSCC
9. 1. 1 EX PANS I ON TRANS IT ION ******.*********

9.1.2 TUBESHEET CREVICE .*...**...*********

9. 1 . 3 SLUDGE PI LE REG I ON **....***.********

9.1.4 TSP INTERSECTION .**.*.*...****.*****

9.2 INTERGRANULAR ATTACK <IGAl 9.2.1 EXPANSION TRANSITION ************.***

9.2.2 TUBESHEET CREVICE *.*.***********.***

9. 2. 3 SLUDGE PI LE REG I ON *.**.*..**********

9.2.4 TSP INTERSECTION ****.****.*.********

9. 3 DENT I NG . .**..*..**...*****..***********.***

9.4 CORROSION FATIGUE **..**.**.*.**************

9.5 EROSION-CORROSION ***.***.*.******.*********

9.6 PI TT I NG **.***.*.*.**..*****.*********.** * * *

9. 7 WASTAGE ..*..*.*...**..**.*.*..***.**.**.***
9. 8 WEAR * ***** ~ ********* I **********************

9.9 OTHER SECONDARY SIDE PROBLEMS **.*.*****.***

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED .....***..*****.*******.

10.2 TOTAL TUBES SLEEVED ..**..*******.*.**.*****

10.3 OTHER <tube expn.,stress relief,peening) ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • 0-11

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BUGEY 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO *..**** ~ *.*******.*.* BUGEY 2 1 . 2 UTILITY. * * . * . . . * * . . * * * * * . * * * . * * * * * * * . * . * * *
  • EDF
  • 1.3 NSSS SUPPLIER *******************.**.******* FRAMATOME 1.4 ELECTRIC POWER RATING CMWE> *..************* 920 1.5 THERMAL POWER RATING CMWT> .*.**************

1.6 DATE OF COMMERCIAL OPERATION ****..********* 2/15/79

2. STEAM GENERATOR GENERAL INFORMATION 2.t NUMBER OF STEAM GENERATORS ***.***.** ; *.**.* 3 2.2 STEAM GENERATOR TYPE **************.******** RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 51A 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** FRAMATOME 2.5 DATE OF STEAM GENERATOR COMPLETION ********* //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> ***************

3.2 TUBE OUTSIDE DIAMETER Cinches> ************** 875 3.3 TUBE WALL THICKNESS Cinches> **************** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ******** 3388 3.5 TUBE PITCH Cinches> ************************ 1.281 4.

3.6 TUBESHEET RADIAL CREVICE Cinches> *********** 0000 3.7 DEPTH OF TUBESHEET CREVICE (inches> ******** 00.00 STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ************.************

4.2 TUBE SUPPORT PLATE MATERIAL ***********.****

4.3 TUBE MATERIAL *******.******.***************

4.4 TUBE SUPPLIER *.**************.****.****.***

FORG. STL.

CS ALLOY 600 WEST/SANDVIK 4.5 DATE OF TUBE MANUFACTURE ******************* II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE **********************

5.2 CARBON CONTENT RANGE (percent) ******.******

5.3 YIELD STRESS RANGE <ksi> *******************

5.4 MILL ANNEAL TIME/TEMP Cmin/deg F> **********

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ****..************ FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> .***** 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS **.**.*.*.*******

6.4 STRESS RELIEF AFTER TUBING Chours/deg Fl *** NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ********.**** 2248 7.2 HOT LEG INLET TEMPERATURE (deg F> ********** 613 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ..**.*** 546 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) *****.*****.

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ****..**. ~.

7.6 STEAM GENERATOR OPERATING TEMP. (deg F> *****

7.7 STEAM GENERATOR OPERATING PRESS. Cpsi) ..*..* 840 7.8 TYPiCAL SLUDGE PILE DEPTH Cinches> *******.*

7.9 WATER CHEMISTRY *****..*.****.*******.****** AVT ONLY D-12

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BUGEY 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION *.**************

8. 1.2 EXPANDED REGION *********.***.******* YES
8. 1. 3 LI-BEND TRANSITION **.*.****.*********
8. 1. 4 LI-BEND APEX-DENTING RELATED .**.*****
8. 1. 5 LI-BEND APEX-NOT DENTING RELATED *****

8.1.6 TSP INTERSECTION-DENTING RELATED ****

8.1.7 PLUGS * ******************************

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ****************

9.1.2 TUBESHEET CREVICE *******************

9.1.3 SLUDGE PILE REGION ******************

9.1.4 TSP INTERSECTION ********************

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION *.****.*********

9.2.2 TUBESHEET CREVICE *******************

9.2.3 SLUDGE PILE REGION ******.***********

9.2.4 TSP INTERSECTION ********************

9. 3 DENT I NG * ************.******** * *******.* * * *
  • 9.4 CORROSION FATIGUE **************************
9. 5 EROSION-CORROSION **************************

9.6 PITTING .**..*.**.***..*.***.*.*.****.******

9. 7 WASTAGE * ********************************* * *
9. 8 WEAR * ******************************** * * * * *
  • 9.9 OTHER SECONDARY SIDE PROBLEMS **************
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *****************.****** 91 10.2 TOTAL TUBES SLEEVED *******.********.*******

10.3 OTHER <tube expn.,stress relief,peening) ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-13

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BUGEY 3 .

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ....*.*.****..******* BUGEY 3 1
  • 2 UTILITY. ; . * . . * . . . . . . . * . . * * * . * . * . * . . . . . * * * . . EDF 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . FRAMATOME 1.4 ELECTRIC POWER RATING CMWEI *.**....**.***.* 920 1.5 THERMAL POWER RATING CMWTI ..*.*****.*******

1.6 DATE OF COMMERCIAL OPERATION *.******.****** 2/13/79

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .....********.*** 3 2.2 STEAM GENERATOR TYPE ***..*..*.************* RWOE 2.3 STEAM GENERATOR MODEL NO *****************.* 51A 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** FRAMATOME 2.5 DATE OF STEAM GENERATOR COMPLETION *.******* II
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches) **.***.********

3.2 TUBE OUTSIDE DIAMETER <inches> ***.**.******* 875 3.3 TUBE WALL THICKNESS (inches> ******.*..****** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ******** 3388 3.5 TUBE PITCH <inches) ***.*.****.***.***..**** 1.281 3.6 TUBESHEET RADIAL CREVICE <inches> .********.* 0000 3.7 DEPTH OF TUBESHEET CREVICE <inches> *.****.* 00.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ***.**..***.*****.****.** FORG.STL.

4? TUBE SUPPORT PLATE MATERIAL **..******.*.*** CS 4.3 TUBE M~TERIAL ****. ~ .****.****.************. ALLOY 600 4.4 TUBE SUPPLIER **.***..***.******.***..****** VALLOUREC 4.5 DATE OF TUBE MANUFACTURE ********.**.*.****. II TUBE MATERIAL PROPERTIES

5. 1 ASTM GRAIN SIZE RANGE ********************** 9-10 5.2 CARBON CONTENT RANGE (percent> *.*******..** .02

- 5.3 YIELD STRESS RANGE <ksi> *******************

5.4 MILL ANNEAL TIME/TEMP <min/deg F> *****.****

6. TUBE EXPANSION PARAMETERS
6. 1 TYPE OF EXPANSION PROCESS ****.************. FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 U-BENDS Cinches> **..** 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS **.**.......**..*

6.4 STRESS RELIEF AFTER TUBING Chours/deg Fl *.*

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsi) ***..**.***** 2248 7.2 HOT LEG INLET TEMPERATURE Cdeg F> ***.*****. 613 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl .**.**.. 546 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) .**.*..*...*

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) *******..**

7.6 STEAM GENERATOR OPERATING TEMP. <deg Fl *****

7.7 STEAM GENERATOR OPERATING PRESS. Cpsi> ***..* 840 7.8 TYPICAL SLUDGE PILE DEPTH (inches) .****..**

7.9 WATER CHEMISTRY .**..*.**.***...*****.*....* AVT ONLY D-14

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BUGEY 3

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ******.**.****** YES 8.1.2 EXPANDED REGION *****.****.**********

8.1.3 LI-BEND TRANSITION **.**************** YES 8.1.4 LI-BEND APEX-DENTING RELATED *********

8.1.5 LI-BEND APEX-NOT DENTING RELATED *****

8.1.6 TSP INTERSECTION-DENTING RELATED ****

8. 1
  • 7 PLUGS . .**.*******.******************

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ****************

9.1.2 TUBESHEET CREVICE *******************

9.1.3 SLUDGE PILE REGION ******************

9.1.4 TSP INTERSECTION ********************

9.2 INTERGRANULAR ATTACK CIGA) 9.2.1 EXPANSION TRANSITION ****************

9.2.2 TUBESHEET CREVICE *******************

9.2.3 SLUDGE PILE REGION ******************

9.2.4 TSP INTERSECTION **.******.**********

-9. 3 DENT I NG * ******.***.***.********************

9.4 CORROSION FATIGUE *.************************

9.5 EROSION-CORROSION .****.*****.***.*..*******

9.6 PI TT I NG * ***********************************

9. 7 WASTAGE * ***********************************
9. 8 WEAR * ****************************** * ***** *
  • 9.9 OTHER SECONDARY SIDE PROBLEMS ************** FOREIGN OBJECTS
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *.***********.*****.**** 6 10.2 TOTAL TUBES SLEEVED *.**********************

10.3 OTHER <tube expn.,stress relief,peening) ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-15

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BUGEY 4

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT ND **.*....****.*...**.. BUGEY 4 1*2 UT IL* I TY. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • EDF 1.3 NSSS SUPPLIER **.*****...***.**.*.******.*** FRAMATOME 1.4 ELECTRIC POWER RATING CMWE> ****.*********** 900 1.5 THERMAL POWER RATING <MWT> **********..*****

1.6 DATE OF COMMERCIAL OPERATION *************** 6/15/79

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *****.****.****** 3 2.2 STEAM GENERATOR TYPE *********************** RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 51A 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** FRAMATOME 2.5 DATE OF STEAM GENERATOR COMPLETION ********* //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches) ***************

3.2 TUBE OUTSIDE DIAMETER <inches> *************

  • 875 3.3 TUBE WALL THICKNESS <inches> ***************
  • 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ******.* 3388 3.5 TUBE PITCH Cinches> *.*****************.**** 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches> **********
  • 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> ******** oo.oo
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL **********.**************

4.2 TUBE SUPPORT PLATE MATERIAL *.**************

4.3 TUBE MATERIAL ***************.************** ALLOY 600 4.4 TUBE SUP~LIER *********.*** i * * * * * * * * * * * * * * *

  • WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE *********.*********
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE **********************

5.2 CARBON CONTENT RANGE <percent> *************

5.3 YIELD STRESS RANGE <ksil **************.***.

5.4 MILL ANNEAL TIME/TEMP <min/deg F> **********

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ***********.****** FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ****** 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS *************.*** W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg F> .** NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7,1 PRIMARY COOLANT PRESSURE Cpsi> ********.*.** 2248 7.2 HOT LEG INLET TEMPERATURE (deg Fl **.*.***** 613 7.3 COLD LEG OUTLET TEMPERATURE (deg F> *.****** 546 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2> ************

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ****.******

7.6 STEAM GENERATOR OPERATING TEMP. <deg F> *****

7.7 STEAM GENERATOR OPERATING PRESS. <psi> ***... 840 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ***.*****

7.9 WATER CHEMISTRY *.******.*****..*.***.****** AVT ONLY D-16

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BUGEY 4

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXF'ANSIDN TRANSITION .*.**..**....**. YES 8.1.2 EXPANDED REGION ****....**.***...****

8.1.3 LI-BEND TRANSITION .*......*.....*****

8.1.4 LI-BEND APEX-DENTING RELATED ....*.*.*

8.1.5 LI-BEND APEX-NOT DENTING RELATED *****

8.1.6 TSP INTERSECTION-DENTING RELATED .**.

8. 1 . 7 PLUGS **.**......**.******.*******.**

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack>.

9, REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ***********.**.*

9. 1
  • 2 TUBESHEET CREVICE ***.****.***..*.*.*

9.1.3 SLUDGE PILE REGION *****.*..*.******.

9.1.4 TSP INTERSECTION **..*..*..***.******

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION *.**.********.**

9.2.2 TUBESHEET CREVICE ****..********.****

9.2.3 SLUDGE PILE REGION ...**.****.*.*..**

9.2.4 TSP INTERSECTION ****.*.*************

9. 3 DENT I NG * ...***..*.***.****************.***.

9.4 CORROSION FATIGUE *.*.******.***************

9.5 EROSION-CORROSION ******.**...******.**.****

9. 6 PI TT I NG * .**********************************
9. 7 WASTAGE * *.******************************** II
9. 8 WEAR * . . . . . . . . . . . . . . . . . . . . . . * ***** * * * * * * * * * *
  • 9.9 OTHER SECONDARY SIDE PROBLEMS ***.**********
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ...**.....*..**..**..***

10.2 TOTAL TUBES SLEEVED *.****.*.***..*.***.****

10.3 OTHER <tube expn.,stress relief,peeningl ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-17

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BUGEY 5* *

1. PLANT DESCRIPTION 1 . 1 PLANT NAME AND UN IT NO. * . * . . . . * . * . * * * . . * * * . BU GEY 5 1 . 2 UTILITY. . . . . . . . . * * * . * . * . . * * . * . * . * * * * . . * . . .
  • EDF 1.3 NSSS SUPPLIER *.*****....**.......**.****..* FRAMATOME 1.4 ELECTRIC POWER RATING CMWE> *.****..*..***** 900 1.5 THERMAL POWER RATING <MWT> ****.***..*.*..**

1.6 DATE OF COMMERCIAL OPERATION ...*.********** 1/15/80

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .***..*.**.****** 3 2.2 STEAM GENERATOR TYPE ***..*.**.*******.**.*. RWOE 2.3 STEAM GENERATOR MODEL NO **************.**** 51A 2.4 STEAM GENERATOR FABRICATOR/LOCATION *..***** FRAMATOME 2.5 DATE OF STEAM GENERATOR COMPLETION ****..*** //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THIOKNESS Cinches> .*.**.*********

3.2 TUBE OUTSIDE DIAMETER <inches) ..*......*.*.

  • 875 3.3 TUBE WALL THICKNESS Cinches> ****....*******
  • 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ******** 3388 3.5 TUBE PITCH Cinches> *.*.*******.************ 1.281 3.6 TUBESHEET RADIAL CREVICE (inches) *.*.******
  • 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> *.***..* oo.oo
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ******.****..**.*******..
  • . 4.2 TUBE SUPPORT PLATE MATERIAL *...**..********

4.3 TUBE MATERIAL .**.*.********.***.****...*... ALLOY 600 4.4 TUBE SUPPLIER **..*....***...**.****.******* VALLOUREC 4.5 DATE OF TUBE MANUFACTURE ..**.**...********* II

5. TUBE MATERIAL PROPERTIES .

5.1 ASTM GRAIN SIZE RANGE *..**..*.*.**.*****.** 11 5.2 CARBON CONTENT RANGE <percent> *****.*.****** 04 5.3 YIELD STRESS RANGE Cksi> .****...******.**.*

5.4 MILL ANNEAL TIME/TEMP <min/deg F> *******.**

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS **********.******* FULL ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> .****. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ***...**..***.***

6.4 STRESS RELIEF AFTER TUBING <hours/deg F> *.* NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) ...*.*.***.** 2248 7.2 HOT LEG INLET TEMPERATURE <deg F) .********. 613 7.3 COLD LEG OUTLET TEMPERATURE <deg F> *****..* 546 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) .**.*.******

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .*****.**.*

7.6 STEAM GENERATOR OPERATING TEMP. (deg F) *****

7.7 STEAM GENERATOR OPERATING PRESS. <psi> ***... 840 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> *******..

7.9 WATER CHEMISTRY *.**.......**********....*** AVT ONLY D-18

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY BUGEY 5

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION *..*.**.******** YES

8. 1. 2 EXPANDED REG I ON. . . * * * . * . . * . . * * * * * * *
  • YES 8.1.3 LI-BEND TRANSITION ***..**************

8.1.4 U-BEND APEX-DENTING RELATED **.******

8.1.5 LI-BEND APEX-NOT DENTING RELATED *****

8.1.6 TSP INTERSECTION-DENTING RELATED ****

8. 1 . 7 F'LUGS . *.******.************.********

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ****************

9.1.2 TUBESHEET CREVICE *.*..******.*******

9. 1 . 3 SLUDGE PI LE REG I ON **********.*******

9.1.4 TSP INTERSECTION **********.*********

9.2 INTERGRANULAR ATTACK <IBA>

9.2.1 EXPANSION TRANSITION ****************

9.2.2 TUBESHEET CREVICE .................. .

9.2.3 SLUDGE PILE REGION **..**************

9.2.4 TSP INTERSECTION ********************

9. 3 DENT I NG * ..*.**.***.*****************.******

9.4 CORROSION FATIGUE ***.*****.****.***********

9.5 EROSION-CORROSION *****..*********.*********

9. 6 PITTING *.*****..************.*****.********
9. 7 WASTAGE * ***********************************
9. 8 WEAR * *************************************
  • 9.9 OTHER SECONDARY SIDE PROBLEMS **.***********
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ****.*..***.*****.****** 12 10.2 TOTAL TUBES SLEEVED ****.*******************

10.3 OTHER <tube expn.,stress relief,peening) ***

11. NOTES
11. 1
11. 2
11. 3 11.4
11. 5
11. 6
  • D-19

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY CONNECTICUT YANKEE 1* PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO *.****.*****.******** CONNECTICUT YANKEE

1. 2 UTILITY . *..*...*....**...*.******.***..**** CYAP 1.3 NSSS SUPPLIER **.....*.**.*.*********.****** WESTINGHOUSE 1.4 ELECTRIC POWER RATING <MWE> *****.*.******** 575 1.5 THERMAL POWER RATING CMWT> **...************ 1825 1.6 DATE OF COMMERCIAL OPERATION ********.***.** 1/15/68
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *************..** 4 2.2 STEAM GENERATOR TYPE *******.*************** RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 27 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION *****..** II
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> *************** 22.6 3.2 TUBE OUTSIDE DIAMETER Cinches) *************
  • 750 3.3 TUBE WALL THICKNESS Cinches) ***************
  • 055 3.4 NUMBER OF TUBES PER STEAM GENERATOR ....*... 3794 3.5 TUBE PITCH Cinches> ***.*...******.********* 1,031 4.

3.6 TUBESHEET RADIAL CREVICE (inches> *********** 0060 3.7 DEPTH OF TUBESHEET CREVICE <inches) *....*.. 18.00 STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL **.*******.**************

4.2 TUBE SUPPORT PLATE MATERIAL *******.**.*****

4.3 TUBE MATERIAL *************.***..******.* ,,,

4.4 TUBE SUPPLIER ***.*******.******************

FORG. STL.

CS ALLOY 600 HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE *.*********.******* II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ***************.******
5. 2 . CARBON CONTENT RANGE <percent> '! * * * ~ ********

5.3 YIELD STRESS RANGE (ksi) . . . . . . . . . . . . . . . . . ..

5.4 MILL ANNEAL TIME/TEMP Cmin/deg F> **********

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ***.***.*.******** PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ****.*

6.3 PROCESS USED TO FORM BENDS ..*.************* H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl *.* NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsi> ******.****** 2000 7.2 HOT LEG INLET TEMPERATURE Cdeg F> *******..* 577
7. 3 COLD LEG OUTLET TEMPERATURE (deg F> .*.*****
  • 533 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ****.*.*****

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) *****.*****

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg F> ***** 506 7.7 STEAM GENERATOR OPERATING PRESS, Cpsi) *..*** 700 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> *********

7.9 WATER CHEMISTRY *****.***. ~***************** 5 CY PHOS, AVT D-20

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY CONNECTICUT YANKEE

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ...*............

8.1.2 EXPANDED REGION ....................*

8.1.3 LI-BEND TRANSITION ..........**..*...*

8.1.4 LI-BEND APEX-DENT!NG RELATED ....*.*..

8.1.5 U-BEND APEX-NOT DENTING RELATED *.***

8.1.6 TSP INTERSECTION-DENTING RELATED *...

8. 1. 7 PLUGS ..*...**.****.*.**...*...****..

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *.****.**.**.***
9. 1 . 2 TUBESHEET CREVICE. . * * . * . . . . . . * * . . . *
  • YES 9.1.3 SLUDGE PILE REGION *...***.*.*.*.****

9.1.4 TSP INTERSECTION ..*..**.*..***.*..**

9.2 INTERGRANULAR ATTACK CIGA>

9.2.1 EXPANSION TRANSITION *****.***.*****.

9.2.2 TUBESHEET CREVICE .*...***.*...*****. YES 9.2.3 SLUDGE PILE REGION .........*..*...*.

9.2.4 TSP INTERSECTION .**.*.***.**..**..**

9 . 3 DENT I NG. . . . * * . * * . . . * . . . . . . * . . * * * . . * . * * . * . *

  • YES 9.4 CORROSION FATIGUE **..*...***..***..*..*..**

9.5 EROSION-CORROSION **.......*.*....*..*....**

9. 6 PI TT I NG. . * * * * . * * . . . . . . . . . * . . . . . . . . . . * * * . * .
  • YES 9.7 WASTAGE ..**........*........*....*.**.*.*.* YES
9. 8 WEAR. . * . * * . . . . * . . . . * . . . . . . . . . * . . * * . . * . * * * *
  • YES 9.9 OTHER SECONDARY SIDE PROBLEMS *.....*....*..
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ......*.......*......... 69 10.2 TOTAL TUBES SLEEVED *...*......**.*.........

10.3 OTHER <tube expn.,stress relief,peening) **.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-21

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY COOK 1

1. PLANT DESCRIPTION 1 . 1 PLANT NAME AND UN IT NO. * * * * . * * * * . . * * * . * * * * . COOK 1 1.2 UTILITY ..*.*....***.*.*..***.**.....*.*.**. INDIANA MICHIGAN ELE 1.3 NSSS SUPPLIER ****.*.*.*..**..***.*.*..****. WESTINGHOUSE
1. 4 ELECTRIC POWER RATING CMWE>................ 1054 1.5 THERMAL POWER RATING CMWT> .**.*********.*** 3250 1.6 DATE OF COMMERCIAL OPERATION .**.***.*****.* 8/iS/75
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *....*.********** 4 2.2 STEAM GENERATOR TYPE .******.*****.********* RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION **.*.*** WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION **.*.**** //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS <inches)............... 21 3.2 TUBE OUTSIDE DIAMETER Cinches> *******.****** 875 3.3 TUBE WALL THICKNESS Cinches> **.*******.***** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ******** 3388 3.5 TUBE PITCH Cinches> .****.***.***.****.***** 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches) .*********. 0080 3.7 DEPTH OF TUBESHEET CREVICE Cinches> *.*****. 18.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL **.*********.**.**.****** SA 508.

4.2 TUBE SUPPORT PLATE MATERIAL ***.******...**. CS 4~3 TUBE MATERIAL *.*******.*.****************** ALLOY 600 4.4 TUBE SUPPLIER .*************.****.********** WEST/HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE **..*************** //

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *********.**.***.**.**

5.2 CARBON CONTENT RANGE <percent> *.***.*******

5.3 YIELD STRESS RANGE <ksi) .*....***.**.*..*.*

5.4 MILL ANNEAL TIME/TEMP Cmin/deg Fl ****..****

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ******.****.****.* PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> *..*** 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS **...**...*..*.** WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg F> *.* NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsi> ******..***** 2235 7.2 HOT LEG INLET TEMPERATURE (deg Fl ***.****** 599 7.3 COLD LEG OUTLET TEMPERATURE Cdeg F> **.***.* 536 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ************

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ***..*****.

7.6 STEAM GENERATOR OPERATING TEMP. <deg F> *.*.* 512 7.7 STEAM GENERATOR OPERATING PRESS. (psi) *.*.** 758 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> *...*..**

7.9 WATER CHEMISTRY ..**.***.*..**.*.*****.***** AVT ONLY D-22

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY COOK 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .*..*.***.*.*.*.

8.1.2 EXPANDED REGION *..*...**.**..***..*.

8.1.3 LI-BEND TRANSITION *.**..***.*.*.***** YES 8.1.4 LI-BEND APEX-DENTING RELATED **.*.***.

8.1.5 LI-BEND APEX-NOT DENTING RELATED *.*** YES 8.1.6 TSP INTERSECTION-DENTING RELATED ****

8. 1 . 7 PLUGS ........**.*.***..***.*******.*

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No~Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *.*************.

9.1.2 TUBESHEET CREVICE *.****.***.*.*.***.

9.1.3 SLUDGE PILE REGION **.**..******.***.

9.1.4 TSP INTERSECTION *.*..*.*************

9.2 INTERGRANULAR ATTACK <IGAl

9. 2. 1 EXPANSION TRANSITION .********.*.*.*.

9.2.2 TUBESHEET CREVICE **.***************.

9.2.3 SLUDGE PILE REGION *.*.**.*...*..*... YES 9.2.4 TSP INTERSECTION ...*.***.*..******** YES

9. 3 DENT ING **.***....*.*...*.**..**..***...**..

9.4 CORROSION FATIGUE **....*....********.*****.

9.5 EROSION-CORROSION .**...*.....*..**.*****.**

9. 6 PI TT I NG ...........**.***.*.*.****...****.**

9.7 WASTAGE .*..*......*.*..*...**..*.*****.****

9. 8 WEAR .....**..*...*...*.*.*..****.***..*****

9.9 OTHER SECONDARY SIDE PROBLEMS ****.*.*.*.***

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ...*.....*.*****...**..* 39 10.2 TOTAL TUBES SLEEVED ...*.**.**.***.*.*******

10.3 OTHER <tube expn.,stress relief,peeningl .**

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-23

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING .SURVEY COOK 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO *******.****..**.**** COOK 2 1.2 UTILITY ***....**********.**....**.***.***** INDIANA MICHIGAN E~E 1.3 NSSS SUPPLIER *******.*****.**.**********.*. WESTINGHOUSE 1.4 ELECTRIC POWER RATING CMWE> *****.*..*.**.*. 1100 1.5 THERMAL POWER RATING CMWT> ***************** 3391 1.6 DATE OF COMMERCIAL OPERATION *****.********* 7/15/78
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ***************** 4 2.2 STEAM GENERATOR TYPE *********************** RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ********* II
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS <inches> ***********.*** 21 3.2 TUBE OUTSIDE DIAMETER (inches> .......*.*...
  • 875
3. 3 TUBE WALL TH I Cl<NESS (inches) .********. ; ****
  • 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ...**.*. 3388 3.5 TUBE PITCH (inches> ************************ 1.281 3.6 TUBESHEET RADIAL CREVICE <inches> *..******** 0080 3.7 DEPTH OF TUBESHEET CREVICE (inches> ***.**** 18.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ***.** ; *****************. SA 508 4.2 TUBE SUPPORT PLATE MATERIAL **************** CS 4.3 TUBE MATERIAL ***************.******.******* ALLOY 600 4.4 TUBE SUPPLIER *********.******.************* WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE ******************* //
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE **********************

5.2 CARBON CONTENT RANGE <percent> *******.*****

5.3 YIELD STRESS RANGE <ksi) **.****************

5.4 MILL ANNEAL TIME/TEMP <min/deg F> **********

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS **.*.***.********* PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> .****. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS *.******..******* W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hoL1rs/deg F> **. NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi> ****.*.***.** 2235 7.2 HOT LEG INLET TEMPERATURE <deg F) **..****** 606 7.3 COLD LEG OUTLET TEMPERATURE (deg F> *******. 540 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ***..*******

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) **.*.******

7.6 STEAM GENERATOR OPERATING TEMP. (deg F> ***** 521 7.7 STEAM GENERATOR OPERATING PRESS. <psi> *.**** 803 7.8 TYPICAL SLUDGE PILE DEPTH <inches> *********

7.9 WATER CHEMISTRY ** ~ **********.*..*.**...**** AVT ONLY D-24

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY COOK 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION ..............*. YES 8.1.2 EXPANDED REGION .*.*..*....**.....*..

8.1.3 LI-BEND TRANSITION *.*..**..........*. YES 8.1.4 LI-BEND APEX-DENTING RELATED ......*..

8.1.5 U-BEND APEX-NOT DENTING RELATED *.*.*

8.1.6 TSP INTERSECTION-DENTING RELATED .***

8.1.7 PLUGS *.**.......*..**.**..***..**.**

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .******.*..*****

9.1.2 TUBESHEET CREVICE .**.*.*..***.....**

9.1.3 SLUDGE PILE REGION .*...**.**..***.**

9.1.4 TSP INTERSECTION **.*..**..****..***.

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION *...*.*....****.

9.2.2 TUBESHEET CREVICE *.**.**.*.*.******.

9.2.3 SLUDGE PILE REGION .....*****........

9.2.4 TSP INTERSECTION **..***.*.**.*****.*

9. 3 DENTING *...*..**..**..*.**.*.*****..*******

- 9.4 CORROSION FATIGUE ..**...**.**.*.***....*..*

9.5 EROSION-CORROSION ....**..*.*..*..***.*.....

9. 6 PI TT I NG ***..**.*.......****...*.**....***..
9. 7 WASTAGE **...**..***......*....*..**......**
9. 8 WEAR .*****...****.*.*..***...*.....*..*.***

9.9 OTHER SECONDARY SIDE PROBLEMS .....*....***.

10. INSERVICE REMEDIAL MEASURES
10. 1. TOTAL TUBES PLUGGED *....*..*.......*....*.* 79 10.2 TOTAL TUBES SLEEVED *.**..*..*....*...***.**

10.3 OTHER <tube expn.,stress relief,peening) *.*

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-25

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DAMPIERRE 1 .

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO * ******************** DAMPIERRE 1
1. 2 UTILITY *............*...*.****..*......*... EDF
1. 3 NSSS SUPPL I ER *..*.*.**.**...*....**.*.*.*** FRAMATOME
1. 4 ELECTRIC POWER RATING <MWE > *..*.****..*.*** 890 1.5 THERMAL POWER RATING ( MWT) **..******.*.****
1. 6 DATE OF COMMERCIAL OPERATION .*******.*.*.** 6/20/80
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS ***.******..*..** 3 2.2 STEAM GENERATOR TYPE * ********************** RWOE 2.3 STEAM GENERATOR MODEL NO * ****************** 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION *.******

2.5 DATE OF STEAM GENERATOR COMPLETION ****..** ~ II

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS <inches> ******.********

3.2 TUBE OUTSIDE DIAMETER <inches> *******.***** .875 3.3 TUBE WALL THICKNESS <inches> ********.****.*

  • 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *.*.***. 3388 3.5 TUBE PITCH <inches> ******..**..****.***.*** 1. 281 3.6 TUBESHEET RADIAL CREVICE <inches> ....** ~ .** .0000 3.7 DEPTH OF TUBESHEET CREVICE <inches> .*.***** 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *****..***************.**

4.2 TUBE SUPPORT PLATE MATERIAL .****.*.******.*

4.3 TUBE MATERIAL ..*******..******.***********. ALLOY 600 4.4 TUBE SUPPLIER .**.**.***.******************* WEST/VALLOUREC 4.5 DATE OF TUBE MANUFACTURE .*.*...****.*..**** //

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *...***.*.**..****.*.*

5.2 CARBON CONTENT RANGE <percent> *************

5.3 YIELD STRESS RANGE <ksi> ..**..*.*.*.*...*..

5.4 MILL ANNEAL TIME/TEMP <min/deg F> ***.*.****

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *.**********.***.* FULL ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches> **...* 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS .*.**.*..**.*****

6.4 STRESS RELIEF AFTER TUBING <hours/deg F> ..*

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi) .***..**..*** 2248 7? HOT LEG INLET TEMPERATURE <deg F> ....**.*** 613 7.3 COLD LEG OUTLET TEMPERATURE (deg F> *....**. 546 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2> .*.*.*.*****

7.5 COLD LEG HEAT FLUX (BTU/hr/ftA2> ***....*.**

7.6 STEAM GENERATOR OPERATING TEMP. <deg F> *.**.

7.7 STEAM GENERATOR OPERATING PRESS. (psi> *..*** 840 7.8 TYPICAL SLUDGE PILE DEPTH (inches} *..****.*

7.9 WATER CHEMISTRY ...*****..**.*..**.*..****** AVT ONLY D-26

  • DOMINION ENGINEERING, INC.

EPRI/SGOG I I CRAC~~ING SURVEY DAMPIERRE 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No., Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION *.****...**.**** YES 8.1.2 EXPANDED REGION ******..*.***.******* YES 8.1.3 LI-BEND TRANSITION ****.*..*.***.*****

8.1.4 LI-BEND APEX-DENTING RELATED *********

8.1.5 U7BEND APEX-NOT DENTING RELATED *****

8.1.6 TSP INTERSECTION-DENTING RELATED ****

8. 1
  • 7 PLUGS * ..*.*.*.**********************

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC

9. 1. 1 EXPANSION TRANSITION *******.***** * **

9.1.2 TUBESHEET CREVICE *******.***********

9.1.3 SLUDGE PILE REGION ******************

9.1.4 TSP INTERSECTION *********.**********

9.2 INTERGRANULAR ATTACK <IBA>

9.2.1 EXPANSION TRANSITION ****************

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ******************

9.2.4 TSP INTERSECTION ********************

9. 3 DENT I NG . *...**.**.*.*********.*************

9.4 CORROSION FATIGUE **************************

9.5 EROSION-CORROSION ***.***************.**.***

9. 6 PI TT I NG * ****.********.***.******************
9. 7 WASTAGE * ***********************************
9. 8 WEAR * **************************************

9.9 OTHER SECONDARY SIDE PROBLEMS **************

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED **.********************* 9 10.2 TOTAL TUBES SLEEVED **************.*********

10.3 OTHER <tube expn.,stress relief,peening) ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-27

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DAMPIERRE 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO **.*******.********** DAMPIERRE 2 1.2 UTILITY .******.......****.*****.*****.****** EDF 1.3 NSSS SUPPLIER ******..***.******.*********** FRAMATOME 1.4 ELECTRIC POWER RATING CMWE> *.** ~*********** 890 1.5 THERMAL POWER RATING CMWT> ***....***.******

1.6 DATE OF COMMERCIAL OPERATION *************** 2/16/81

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS **.**.*********** 3 2.2 STEAM GENERATOR TYPE *************.********* RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ********

2.5 DATE OF STEAM GENERATOR COMPLETION *********

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> ***************

3.2 TUBE OUTSIDE DIAMETER Cinches> ************** 875 3.3 TUBE WALL THICKNESS Cinches) **************** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ******** 3388 3.5 TUBE PITCH Cinches> *.********************** 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches> *********** 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> ******** 00.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *.***.***.***************

4.2 TUBE SUPPORT PLATE MATERIAL ****************

4.3 TUBE MATERIAL **.*************.************* ALLOY 600 4.4 TUBE SUPPLIER *******.*********************. WEST/VALLOUREC 4.5 DATE OF TUBE MANUFACTURE *******************

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE **********************

5.2 CARBON CONTENT RANGE <percent> *************

5.3 YIELD STRESS RANGE Cksi> ************..*****

5.4 MILL ANNEAL TIME/TEMP Cmin/deg F> **********

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ****************** FULL ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ****** 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ...............*.

6.4 STRESS RELIEF AFTER TUBING Chours/deg F> ***

7. STEAM GENERATOR OPERATING PARAMETERS 7,1 PRIMARY COOLANT PRESSURE Cpsi) *. , **.******* 2248 7.2 HOT LEG INLET TEMPERATURE Cdeg F> ********** 613 7.3 COLD LEG OUTLET TEMPERATURE Cdeg F> ***..*** 546

. 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ************

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ****.******

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg F> *****

7.7 STEAM GENERATOR OPERATING PRESS. <psi> ****** 840 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ****.**.*

7.9 WATER CHEMISTRY ********.****.***..*.**. ~ *** AVT ONLY D-28

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DAMPIERRE 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .********.******

8.1.2 EXPANDED REGION *.*.***.********.****

8. 1. 3 LI-BEND TRANSITION *******************
0. i. 4 LI-BEND APEX-DENTING RELATED *********

8.1.5 LI-BEND APEX-NOT DENTING RELATED *****

8.1.6 TSP INTERSECTION-DENTING RELATED ****

8.1.7 PLUGS * ******************************

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ****************

9.1.2 TUBESHEET CREVICE ****.**************

9.1.3 SLUDGE PILE REGION *.****************

9.1.4 TSP INTERSECTION ****.***************

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION ****************

9.2.2 TUBESHEET CREVICE ************.******

9.2.3 SLUDGE PILE REGION ******.****.******

9.2.4 TSP INTERSECTION *****.**************

9. 3 DENT I NG * *******************.*.**.**********

9.4 CORROSION FATIGUE .**.******.*********.*****

9.5 EROSION-CORROSION *********.*****.**********

9.6 P I TT I NG .*.**....*.**.**.*....*.**..*..*****

9. 7 WASTAGE * ****************** a * * * * * * * * * * * * * * * *
9. 8 WEAR * **************************************

9.9 OTHER SECONDARY SIDE PROBLEMS **************

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *********.***.**********

10.2 TOTAL TUBES SLEEVED ********.***************

10.3 OTHER <tube expn.,stress relief,peeningl ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-29

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DAMPIERRE 3

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT ND ..............*...... DAMPIERRE 3
1. 2 UTILITY .........................*..*..*...* EDF 1.3 NSSS SUPPLIER ..............*..*.*.*....*.*. FRAMATOME 1.4 ELECTRIC POWER RATING CMWEI ..........*..*** 890 1.5 THERMAL POWER RATING <MWTl *...**..*......**

1.6 DATE OF COMMERCIAL OPERATION .....****...... 4/10/81

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .**..*....*....*. 3 2.2 STEAM GEN~RATOR TYPE .*..**...*.*.**.**.*.*. RWOE 2.3 STEAM GENERATOR MODEL NO ****.********.***** 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION *.*.*.**

2.5 DATE OF STEAM GENERATOR COMPLETION .*.******

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches) ....***.**.****

3.2 TUBE OUTSIDE DIAMETER Cinches) *.****.***.**. 875 3.3 TUBE WALL THICKNESS Cinches) .**.***.**...*** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR **.*...* 3388 3.5 TUBE PITCH Cinches) .*.*..*........**..*.*.. 1.281 3.6 !UBESHEET RADIAL CREVICE Cinches) **.....**.* 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> *....... 00.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ***...*..*.*...**..*****.

4.2 TUBE SUPPORT PLATE MATERIAL *.**.*.*..**.*.*

4.3 TUBE MATERIAL *....**.*........*.*.**..*..*. ALLOY 600 4.4 TUBE SUPPLIER .*..*.......**...*******.*.*** WEST/VALLOUREC 4.5 DATE OF TUBE MANUFACTURE .*.*..*.*...**.*..*

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *.*..**....**..*...**.

5.2 CARBON CONTENT RANGE <percent> .********..*.

5.3 YIELD STRESS RANGE Cksil ..*...*..**.*...*.*

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl **.*.*.**.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *.....*.* ~ *.*...*. FULL ROLL/DAM 6 ~ RADII OF ROW 1 AND 2 Li-BENDS Cinches> ...*.* 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS *.....*.*....*...

6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl *..

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ...*.*....*.. 2248 7.2 HOT LEG INLET TEMPERATURE (deg Fl ....*.*... 613 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ...*.*... 546 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2J ...*..*..*..

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ...*......*

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl .*..*

7.7 STEAM GENERATOR OPERATING PRESS. CpsiJ *....* 840 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ......*..

7.9 WATER CHEMISTRY ............*...**......*..* AVT ONLY D-30

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DAMPIERRE 3

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC

8. 1. 1 EX PANS ION TRANS I TI ON. * * * * * * * * * * * * . *
  • YES 8.1.2 EXPANDED REGION ..**..*.************* YES 8.1.3 LI-BEND TRANSITION ***.*.**.**********

8.1.4 LI-BEND APEX-DENTING RELATED *********

8.1.5 LI-BEND APEX-NOT DENTING RELATED *****

8.1.6 TSP INTERSECTION-DENTING RELATED ****

8. 1 . 7 F'LUGS * **..***..******.**************

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ****************

9.1.2 TUBESHEET CREVICE *******************

9.1.3 SLUDGE PILE REGION ******************

9.1.4 TSP INTERSECTION *.*****.************

9.2 INTERGRANULAR ATTACK CIGA>

9.2.1 EXPANSION TRANSITION ****************

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ******************

9.2.4 TSP INTERSECTION ********.***********

  • 9. 3 DENTING .****.******************************

9.4 CORROSION FATIGUE **************************

9.5 EROSION-CORROSION **************************

9. 6 PI TT I NG . *....*..*..**..*.***...*.*.********
9. 7 WAST AGE * ********************************* * *
9. 8 WEAR **************.************************
  • 9.9 OTHER SECONDARY SIDE PROBLEMS .*************
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ******.****.******.*****

10.2 TOTAL TUBES SLEEVED .********.**************

10.3 OTHER Ctube expn.,stress relief,peening) ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
    • 11. 6 D-31

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DAMPIERRE 4 *

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ...***..*****.******* DAMPIERRE 4 1*2 UTILITY . *.****.**.**.*..*.*********.**.**** EDF 1.3 NSSS SUPPLIER *.****..**.*****.******.****** FRAMATOME 1.4 ELECTRIC POWER RATING <MWE> ***.****.****..* 890 1.5 THERMAL POWER RATING <MWT> ***.*****.*******

1.6 DATE OF COMMERCIAL OPERATION ..***.**.****** 11/ 5/81

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ***.*****.******* 3 2.2 STEAM GENERATOR TYPE ****.****.***..*******. RWOE 2.3 STEAM GENERATOR MODEL NO *..*.*.*.*****.***. 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ..******

2.5 . DATE OF STEAM GENERATOR COMPLETION ........ .

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS <inches) **..*****..****

3.2 TUBE OUTSIDE DIAMETER (inches> **.**********. 875 3.3 TUBE WALL THICKNESS (inches> *.*****.******** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ******** 3388 3.5 TUBE PITCH <inches> *************.********** 1.281 3.6 TUBESHEET RADIAL CREVICE <inches> *.********. 0000 4.

3.7 DEPTH OF TUBESHEET CREVICE <inches> .***.*** 00.00 STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL **.**.*******************

4.2 TUBE SUPPORT PLATE MATERIAL *******.********

4.3 TUBE MATERIAL .*******..******..************ ALLOY 600 4.4 TUBE SUPPLIER ***.************.****..******. WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE .****.*************

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ******.******.********

5.2 CARBON CONTENT RANGE <percent> *************

5.3 YIELD STRESS RANGE <ksi) ******.************

5.4 MILL ANNEAL TIME/TEMP <min/deg F) **********

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ***.****.**.****** FULL ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches> ****** 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ***************** W BALL MANDREL
6. 4 STRESS RELIEF AFTER TUBING <hours/deg F> ..*
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi) *.*********** 2248 7.2 HOT LEG INLET TEMPERATURE (deg F> *.******** 613 7.3 COLD LEG OUTLET TEMPERATURE <deg Fl .....*** 546 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) **...*******

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .***.******

7.6 STEAM GENERATOR OPERATING TEMP. <deg Fl **.**

7.7 STEAM GENERATOR OPERATING PRESS. <psi> ..*.*. 840 7.8 TYPICAL SLUDGE PILE DEPTH (inches) ********.

7.9 WATER CHEMISTRY ******.*.****.**.********.** AVT ONLY D-32

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DAMPIERRE 4

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No. Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC -*
8. 1. 1 EXPANSION TRANSITION .****.**.*******

8.1.2 EXPANDED REGION ***..*********.*.****

8. 1. 3 LI-BEND TRANSITION *******************
8. 1. 4 LI-BEND APEX-DENTING RELATED **.******
0. 1. 5 LI-BEND APEX-NOT DENTING RELATED *****
8. 1. 6 TSP INTERSECTION-DENTING RELATED ****
0. 1. 7 PLUGS * ******************************

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ****************

9.1.2 TUBESHEET CREVICE **********.********

9.1.3 SLUDGE PILE REGION ******************

9.1.4 TSP INTERSECTION ********************

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION *********.******

9.2.2 TUBESHEET CREVICE .................. .

9.2.3 SLUDGE PILE REGION ******************

9.2.4 TSP INTERSECTION *****.**************

9 *.3 DENTING ******..*****..*.*********.*********

9.4 CORROSION FATIGUE ************.*************

9.5 EROSION-CORROSION ******.*************.*****

9. 6 P I TT I NG. * * * * . . . . * * . * . . . * * . * . . . * * * * * . . * . . *.*
9. 7 WASTAGE * ***********************************
9. 8 WEAR * **************************************

9.9 OTHER SECONDARY SIDE PROBLEMS ***.*****.****

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *.*.*******.************

10.2 TOTAL TUBES SLEEVED *******.****************

10.3 OTHER <tube expn.,stress relief,peening),,,

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-33

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING. SURVEY DOEL 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO .*..*...*.*......*.** DOEL 1 1.2 UTILITY *..*...........*.........***..**.*.. INDIVISION DOEL 1.3 NSSS SUPPLIER ..*.*...*.........**.*.*.**..* ACECOWEN 1.4 ELECTRIC POWER RATING CMWE> .***...*.*....*. 390 1.5 THERMAL POWER RATING CMWT> ..*............** 1192 1.6 DATE OF COMMERCIAL OPERATION *.....*..*.*.** 2/15/75
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .***.*******....* 2 2.2 STEAM GENERATOR TYPE ***.**.*.************** RWOE 2.3 STEAM GENERATOR MODEL NO *****.************* 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION *.****.* COCKERILL 2.5 DATE OF STEAM GENERATOR COMPLETION .*....*.. //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> **.************ 22.0 3.2 TUBE OUTSIDE DIAMETER Cinches) ************** 875 3.3 TUBE WALL THICKNESS <inches> .*..** , ********* 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ***.**** 3260 3.5 TUBE PITCH Cinches) *..*********...*.*.*.*** 1.200 3.6 TUBESHEET RADIAL CREVICE (inches) **.******** 0060 3.7 DEPTH OF TUBESHEET CREVICE <inches) **..**** 19.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *.***.*****.**.********** FORG.STL.

4.2 TUBE SUPPORT PLATE MATERIAL *.*******...**** CS

4. 3 TUBE MATER.I AL. . * * * * * * * * * * * * * . * . * * * * * * * * * . *
  • ALLOY 600 4.4 TUBE SUPPLIER .*.*******.*************..**** MANNESMAN 4.5 DATE OF TUBE MANUFACTURE .****.************. //
5. TUBE MATERIAL PROPERTIES
5. 1 ASTM GRAIN SIZE RANGE .*..******.*.**..*.*** 5-8 5.2 CARBON CONTENT RANGE <percent) .*.*.****.**** 015-.05 5.3 YIELD STRESS RANGE Cksi) .*.**.**.*******.** 35.8-46.6 5.4 MILL ANNEAL TIME/TEMP (min/deg Fl **.*******
6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *****.***.*.***.** PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> .**..* 2.188,3.47 6.3 PROCESS USED TO FORM BENDS .*..*.**.******.* NO MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg F> **. NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 P~IMARY COOLANT PRESSURE <psi> ***.**...**** 2240 7.2 HOT LEG INLET TEMPERATURE (deg F> ****.***** 598 7.3 COLD LEG OUTLET TEMPERATURE (deg F> ..*..**. 544 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) *** ~ .*.*****

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) ***..*.****

7.6 STEAM GENERATOR OPERATING TEMP. <deg F> .*..* 526 7.7 STEAM GENERATOR OPERATING PRESS. (psil ..*.*. 839 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) *.*.**..* H6,C1

7. 9 WATER CHEMISTRY. . * * . * . . . . . * . . * . . * . * . . * . . * * . EARLY PHOS, AVT D-34
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DOEL 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION .................... .

8.1.3 LI-BEND TRANSITION ...............*...

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NO~ DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS ......*......................*.

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC

9. 1. 1 EXPANSION TRANSITION .....*.*........

9.1.2 TUBESHEET CREVICE .................. .

9.1.3 SLUDGE PILE REGION *.....*.......*...

9.1.4 TSP INTERSECTION ................... .

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION .............*..

9.2.2 TUBESHEET CREVICE ..........*......*.

9.2.3 SLUDGE PILE REGION ....*.....**....*.

9.2.4 TSP INTERSECTION ...............**...

  • 9.3 DENTING ...........*......................** YESCMILD>

9.4 CORROSION FATIGUE *..........*....*.........

9.5 EROSION-CORROSION .*...................*....

9.6 PITTING ..........................*...*...*.

9. 7 WASTAGE ...........*........................
9. 8 WEAR .....................................*
  • 9.9 OTHER SECONDARY SIDE PROBLEMS .............. FOREIGN OBJECT
10. INSERVICE REMEDIAL MEASURES
10. 1 TOTAL TUBES PLUGGED .*...*.................. 14 10.2 TOTAL TUBES SLEEVED ...........*..*.........

10.3 OTHER <tube expn.,stress relief,peeningl ..*

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-35

DOMINION ENGINEERING, INC.

EPRiiSGOG II CRACKING ~URVEY DOEL 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ********...*.****.*** DOEL 2 1.2 UTILITY ...*.......*...*..*** *************** INDIVISION DOEL 1.3 NSSS SUPPLIER .***********..*..**.*********. ACECOWEN 1.4 ELECTRIC POWER RATING <MWE) ..*.*****..*.**. 0390 1.5 THERMAL POWER RATING <MWT> **.******....**** 1192 1.6 DATE OF COMMERCIAL OPERATION .*.*******.**.. 11/15/75
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS **.*****.*******. 2 2.2 STEAM GENERATOR TYPE *********************.* RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION ***.**** COCKERILL 2.5 DATE OF STEAM GENERATOR COMPLETION ****..***

3, STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches> ..***********.. 22.0 3.2 TUBE OUTSIDE DIAMETER <inches) ************** 875 3.3 TUBE WALL THICKNESS (inches> *********.****.* 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *******. 3260 3.5 TUBE PITCH <inches> *..********.************ 1.200 3.6 TUBESHEET RADIAL CREVICE <inches> .**.*..***. 0060 3.7 DEPTH OF TUBESHEET CREVICE (inches> ***..*** 19.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ******.***.****.*.**.*.** SA-336 4.2 TUBE SUPPORT PLATE MATERIAL ***********..**. CS 4.3 TUBE MATERIAL ..****.****.**..**..****.* ~ .** ALLOY 600 4.4 TUBE SUPPLIER **.*..*.....***.*******..****. MANNESMAN 4.5 DATE OF TUBE MANUFACTURE ****..*..**.*.***.*
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ***.*****..****.****.* SCC-9-10,0K-6-7 5.2 CARBON CONTENT RANGE <percent> *******.***.*

5.3 YIELD STRESS RANGE Cksi> ****...*****.*****.

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl *******.*. SCC1730,0K-1750-1800

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *.*******.******.* PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ...*** 2.188,3.47 6.3 PROCESS USED TO FORM BENDS .*.**.* ~ .*.***..* NO MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg F> .*. NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi> .*.***..*.*.* 2240 7.2 HOT LEG INLET TEMPERATURE Cdeg F> ****.**.*. 598 7.3 COLD LEG OUTLET TEMPERATURE <deg F> **...... 544 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ..***.......

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .....*.....

7.6 STEAM GENERATOR OPERATING TEMP. <deg Fl .... . 526 7.7 STEAM GENERATOR OPERATING PRESS. CpsiJ ..... . 839 7.8 TYPICAL SLUDGE PILE DEPTH (inches! .......*. HL-3 7.9 WATER CHEMISTRY .*................*......... AVT ONLY

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DOEL 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC

8. 1. 1 EXPANSION TRANSITION . . . . . . . . . . . . . . . . YES 8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . . YES 8.1.3 U~BEND TRANSITION ...............*...

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED ..... YES 8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ....*.**...*....

9.1.2 TUBESHEET CREVICE ........*.......... YES 9.1.3 SLUDGE PILE REGION .......**.........

9.1.4 TSP INTERSECTION ..........*.........

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ....*...........

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ........*.........

9.2.4 TSP INTERSECTION ...................*

9.3 DENTING ...........*..............*......... YES,MILD-TS-TSP 9.4 CORROSION FATIGUE ........*.......*.........

9.5 EROSION-CORROSION .......................*..

9.6 PITTING *..........*...........*............

9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS ....*.........

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED .....................*.. 147 10.2 TOTAL TUBES SLEEVED ....*........*.......... 185/1983 10.3 OTHER Ctube expn.,stress relief,peeningl ..* SR MINI SLEEVES
11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-37

DOMINION El\IGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DOEL :3 1.. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO . . . . . . . . . . . . . . . . . . . . . DOEL 3

1. 2 UTILITY . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . EBES
1. 3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . , ........ . FRAMACECO 1.4 ELECTRIC POWER RATING CMWEl . . . . . . . . . . . . . . . . 897 1.5 THERMAL POWER RATING CMWTJ . . . . . . . . . . . . . . . . .

1.6 DATE OF COMMERCIAL OPERATION ..**........... 10/15/82

2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS. * * * . * * . * * * . * * * .
2. 3 STEAM GENERA TOR MODEL NO. . * . . . . * * . . * . . . * . * . 51 M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ...**..* COCKERILL 2.5 DATE OF STEAM GENERATOR COMPLETION ......... //
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBE SHEET TH I CKNESS (inch es) ....**......*.* 21. 1 3.2 TUBE OUTSIDE DIAMETER Cinches) .*..*..**....
  • 875 3.3 TUBE WALL THICKNESS Cinches> ..****.......*. . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ....... . 3361 TUBE PITCH Cinches) ... ********************* 1.281 3.5

.::.i.o TUBESHEET RADIAL CREVICE Cinches) *......... . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ....... . 00.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *......**................ SA 508 4.2 TUBE SUPPORT PLATE MATERIAL ....*.**........ CS 4.3 TUBE MATERIAL ....*..*.*........*........... ALLOY 600 4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . WESTINGHOUSE
4. 5 DATE OF TUBE MANUFACTURE. . . * . . . . . . . . . . . . . . . I I
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . . 7-11 5.2 CARBON CONTENT RANGE <percent) . . . . . . . . . . * . . . 051-.056 5.3 YIELD STRESS RANGE Cksi) . . . . . . . . . . . . . . . . . . . 44-55 5.4 MILL ANNEAL TIME/TEMP Cmin/deg Fl .....*...* Furn.-1875
6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .*......*......*.. FULL ROLL/DAM 6.2 RADII OF ROW 1 AND 2 U-BENDS Cinches> ...... 2.1875,3.4685 6.3 PROCESS USED TD FORM BENDS . . . . . . . . . . . . . . . . . W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ............ .

7.2 HOT LEG INLET TEMPERATURE (deg Fl .......... 617 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ....... .

7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2J ..*....*... ,

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .*.........

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . * . . . . . . . . . . . . . . . . . AVT ONLY D-38

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY DOEL 3

8. REPORTED PRIMARY SIDE PROBLEMS (Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION . . . . . . . . . . . . . . . . YES 8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . . YES 8.1.3 LI-BEND TRANSITION .........*.........

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED *...*

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8. 1 . 7 . PLUGS ...........*.........*.....*..*

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ......*.....*.*.

9.1.2 TUBESHEET CREVICE ..... ~*************

9.1.3 SLUDGE PILE REGION ............*.*...

9.1.4 TSP INTERSECTION .........*.*........

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ..*....*..*.*.*.

9.2.2 TUBESHEET CREVICE .*....*............

9.2.3 SLUDGE PILE REGION .*.*....*.........

9.2.4 TSP INTERSECTION .....*.....*..*.....

9. 3 DENTING .....................*..............

9.4 CORROSION FATIGUE *...............*.........

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 6 PITTING ..................................*.
9. 7 WASTAGE ..............*...................*.
9. 8 WEAR ...............................*..**...

9.9 OTHER SECONDARY SIDE PROBLEMS .....*........

10. INSERVICE REMEDIAL MEASURES
10. 1 TOTAL TUBES PLUGGED ..........*..**.........

10.2 TOTAL TUBES SLEEVED ....................... .

10.3 OTHER <tube expn.,stress relief,peeningl .. .

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-39

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING.SURVEY FARLEY 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO *..**.*.*...*.**....* FARLEY 1.

1.2 UTILITY .......**......**...*.....*...*..... ALABAMA POWER 1.3 NSSS SUPPLIER ....**.....*.........**.**.... WESTINGHOUSE 1.4 ELECTRIC POWER RATtNG CMWEJ ....*.**...*.*.. 860 1.5 THERMAL POWER RATING CMWTJ **...*....*.*.**. 2252 1.6 DATE OF COMMERCIAL OPERATION ..*...*.*****.. 12/15/77

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *****.**.**.*.*** 3 2.2 STEAM GENERATOR TYPE ****.**.******.**.****. RWOE 2.3 STEAM GENERATOR MODEL NO *******.**.....***. 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ...***** WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ****.*.** //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> *..***........* 21.0 3.2 TUBE OUTSIDE DIAMETER Cinches) ***.*.*..*.*** 875 3.3 TUBE WALL THICKNESS Cinches> *.*.********..*. 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR .*..*.*. 3388 3.5 TUBE PITCH <inches> .***...***.******....... 1.281 3.6 TUBESHEET RADIAL CREVICE <inches) *.*.*.***.. 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> *.*.***. 00.00
4. STEAM GENERATOR MATERIALS 4~1 TUBESHEET MATERIAL *****..*********..*..**.. SA 508 4.2 TUBE SUPPORT PLATE MATERIAL ******.**.....** CS 4.3 TUBE MATERIAL ******.**.****...*..***.**.*** ALLOY 600 4.4 TUBE SUPPLIER ...***.......***..*...*...*... WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE *.*...*.......**... II
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE .*.**....*.*........ ~.

5.2 CARBON CONTENT RANGE <percent> .....*....**.

5.3 YIELD STRESS RANGE Cksi) .......***...*** ~ ..

5.4 MILL ANNEAL TIME/TEMP Cmin/deg Fl *****.*.*.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS **..********.*...* ROLL/EXPLOSIVE 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) *...*. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS **....*......*.*. W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg F> .*. NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) ............. 2235 7.2 HOT LEG INLET TEMPERATURE (deg F> .......... 603 7.3 COLD LEG OUTLET TEMPERATURE (deg F> ...**..* 543 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) .**.*.**..*.

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) *.**...*...

7.6 STEAM GENERATOR OPERATING TEMP. <deg F> **... 522 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ...... 811 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ...*.*...

7.9 WATER CHEMISTRY *.......*....*............** AVT ONLY D-40

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY FARLEY 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ..*.............

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . * .

8.1.3 LI-BEND TRANSITION .........*........* YES 8.1.4 LI-BEND APEX-DENTING RELATED ........*

8.1.5 U-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1 . 7 PLUGS .*.*..*....................*...

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ....*.........*.

9.1.2 TUBESHEET CREVICE .........*.......*.

9.1.3 SLUDGE PILE REGION *......*.*...**...

9.1.4 TSP INTERSECTION .............*..***.

9.2 INTERGRANULAR ATTACK CIGA>

9. 2. 1 EXPANSION TRANSITION ...*..**......*.

9.2.2 TUBESHEET CREVICE *.*..*...*.***..*..

9.2.3 SLUDGE PILE REGION ....*...*......**.

9.2.4 TSP INTERSECTION *....*.**.*..*.*..**

9. 3 DENTING ...........**...........*..*........

9.4 CORROSION FATIGUE ............**...........*

9.5 EROSION-CORROSION ....*..*.........**....***

9.6 PITTING .*................*....*.*..........

9. 7 WASTAGE ........**........*...............**
9. 8 WEAR ..*..*..*........*.*.....*...*.....**.*

9.9 OTHER SECONDARY SIDE PROBLEMS *.............

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 282 10.2 TOTAL TUBES SLEEVED .................*..**..

10.3 OTHER <tube expn.,stress relief,peening) ... ALL ROW 1 LI-BENDS PLUGGED

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-41

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING.SURVEY FARLEY 2

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UN IT NO **..........* , . . . * . .
  • FARLEY 2 1.2 UTILITY ...........*.......................* ALABAMA POWER 1.3 NSSS SUPPLIER ......*...*................... WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWE),............... 860
1. 5 THERMAL POWER RATING <MWTl . . . . . . . . . . . . . . . . . 2252 1.6 DATE OF COMMERCIAL OPERATION ..........*.*.. 7/15/81
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *...*....**...**. 3
2. 2 STEAM GENERATOR TYPE ****.**.******..***...* RWOE 2.3 STEAM GENERATOR MODEL NO *************.***** 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION .**..*** WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION *...**..* //
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS (inches) .***.****.****. 21. 0 3.2 TUBE OUTSIDE DIAMETER (inches) **...*.****... 875 3.3 TUBE WALL THICKNESS Cinches) ***.....***...*. 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR .*.**.** 3388 3.5 TUBE PITCH <inches) ....****...******....*.* 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . . * . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE <inches) *..*.... 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *..***................... SA 508 4.2 TUBE SUPPORT PLATE MATERIAL .......*.......* CS 4.3 TUBE MATERIAL ...**..*.*...*............*... ALLOY 600 4.4 TUBE SUPPLIER ...........................*.. WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE .......*....*...... II
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *.....................

5.2 CARBON CONTENT RANGE <percent> ............ .

5.3 YIELD STRESS RANGE Cksi) ...........*.......

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl ......*...

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ..........*.**...* FULL OEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ..............*.* W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) ............. 2235 7? HOT LEG INLET TEMPERATURE (deg Fl .......... 603 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 543 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..... 516 7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... 800 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) .......*. 0.4 7.9 WATER CHEMISTRY ...........................* AVT ONLY D-42

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY FARLEY 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/Na, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............**..

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . . YES 8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .*..*

8.1.6 TSP INTERSECTION-DENTING RELATED ..*.

8. 1. 7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * .

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ...........****.

9.1.2 TUBESHEET CREVICE .........*........*

9.1.3 SLUDGE PILE REGION .....**..**.*...*.

9.1.4 TSP INTERSECTION . . . . . * . . . . . . . . . . . . . .

9.2 INTERGRANULAR ATTACK CIGAl

9. 2. 1 EX PANS ION TRANSIT ION *..*...**...*.*.

9.2.2 TUBESHEET CREVICE *..................

9.2.3 SLUDGE PILE REGION ............**...*

9.2.4 TSP INTERSECTION ..........*.......*.

9.3 DENTING .................*.....*..**......**

9.4 CORROSION FATIGUE ....*.*....*.........**..*

9.5 EROSION-CORROSION ......*.........*...*.....

9. 6 PI TT I NG ........*..**.*.*.....*.......*.....
9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * * . * .**
9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . * . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS ....*.....*..* FOREIGN OBJECT DENTS

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . * . . .

10.2 TOTAL TUBES SLEEVED ....*..............*....

10.3 OTHER !tube expn.,stress relief,peening) *.. ALL ROW 1 TUBES PLUGGED

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-43

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING.SURVEY FESSENHEIM 1

1. PLANT DESCRIPTION
1. 1 . PLANT NAME AND UNIT NO .*.....*.......*..... FESSENHEIM 1 1 ? UTILITY .........*................*...*..... EDF
1. 3 NSSS SUPPLIER .*........***....*.*.*...***.. FRAMATOME
1. 4 ELECTRIC POWER RATING <MWE> . . . . . . . . . . . . . . . . 890
1. 5 THERMAL POWER RATING <MWT> ....*............
1. 6 DATE OF COMMERCIAL OPERATION .***..**...*.*. 12/15/77
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS ****..****..*.... 3 2.2 STEAM GENERATOR TYPE ..****.*...****.******. RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 51A 2.4 STEAM GENERATOR FABRICATOR/LOCATION .*******

2.5 DATE OF STEAM GENERATOR COMPLETION *...***.* II

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS <inches) .*.*.***..**...

3.2 TUBE OUTSIDE DIAMETER Cinches) .******* ~ * . . .

  • 875 3.3 TUBE WALL THICKNESS Cinches> ******.*....*.** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR **..*..* 3350 3.5 TUBE PITCH Cinches) *.*.*.*.*..******....*.* 1.?81 4.

3i6 TUBESHEET RADIAL CREVICE Cinches> **.*...*.*. 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> *.....*. 00.00 STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL **.*..**...*.*****....*.*

4.2 TUBE SUPPORT PLATE MATERIAL ...*..***....***

4.3 TUBE MATERIAL ...***..***.****.**.*.***.*.** ALLOY 600 4.4 TUBE SUPPLIER .....*......****.**** ~******** WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE **...*.*.**.....*.. II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE .**......**.... ~ .*.**. 7-8 5.2 CARBON CONTENT RANGE <percent> ***.*.****.*.. 007-.060 5.3 YIELD STRESS RANGE Cksil ...**..**.**....*.. 44-59 5.4 MILL .ANNEAL TIME/TEMP <min/deg Fl **.*....**
6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ***.****..*..**.*. ROLL/EXPLOSI~E 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ....** 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ****.*.**...**... W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil **...*....... 2248 7.2 HOT LEG INLET TEMPERATURE (deg Fl .*........ 611 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl .**...*. 543 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2l **..........

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ***........

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl *....

7.7 STEAM GENERATOR OPERATING PRESS. <psi) ....** 789 7.8 TYPICAL SLUDGE PILE DEPTH Cinche~) .*..**...

7.9 WATER ~HEMISTRY .**......**.. a************** AVT ONLY D-44

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY FESSENHEIM 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION ..*...*......... YES 8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION ................*.. YES 8.1.4 LI-BEND APEX-DENTING RELATED ....*...*

8.1.5 LI-BEND APEX-NOT DENTING RELATED ..*..

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8.1.7 PLUGS ...*.*.......*..............*..

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC
9. 1. 1 EXPANSION TRANSITION **.****.....***. YES 9.1.2 TUBESHEET CREVICE ....**....**......*

9.1.3 SLUDGE PILE REGION .....*.........**. YES 9.1.4 TSP INTERSECTION ...**.*...***..**.*.

9.2 INTERGRANULAR ATTACK CIGAJ

9. 2. 1 EXPANSION TRANSITION *...........***.

9.2.2 TUBESHEET CREVICE .*.*.***.....*..*..

9.2.3 SLUDGE PILE REGION .......*........*.

9.2.4 TSP INTERSECTION ....*..*..*.*...*...

9. 3 DENTING .*...............*.............. ** ...

9.4 CORROSION FATIGUE ........**................

9.5 EROSION-CORROSION ..........*...............

9. 6 PI TT I NG .*.................*.............*..
9. 7 WASTAGE *....*..............*..*............
9. 8 WEAR ....*......................... *********

9.9 OTHER SECONDARY SIDE PROBLEMS ....*.......*.

10. INSERVICE REMEDIAL MEASURES
10. 1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 84 10.2 TOTAL TUBES SLEEVED ....................*...

10.3 OTHER <tube expn.,stress relief,peeningl ..*

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-45

DOMINION ENGINEERING, INC.

EPRIISGOG II CRACKING*SURVEY FESSENHEIM 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ....................* FESSENHEIM 2 1 -::> UTILITY ..................................** EDF 1.3 NSSS SUPPLIER ............*......*...*...... FRAMATOME
1. 4 ELECTRIC POWER RATING <MWE)................ 890
1. 5 THERMAL POWER RATING <MWT> ............*..*.

1.6 DATE OF COMMERCIAL OPERATION .....*...*..*.. 3115178

2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS ........*.......* 3 2.2 STEAM GENERATOR TYPE ..*.**....***..**...... RWOE 2.3 STEAM GENERATOR MODEL NO *.**....*..*..*.**. 51A 2.4 STEAM GENERATOR FABRICATOR/LOCATION ...**.*.

2.5 DATE OF STEAM GENERATOR COMPLETION ......... II

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS <inches) .............*.

3.2 TUBE OUTSIDE DIAMETER <inches> *..*.....*.*** 875 3.3 TUBE WALL THICKNESS (inches) . . . . . . . . . . . . . * * . 050 3.4 NUMBER-OF TUBES PER STEAM GENERATOR *..**... 3388 3.5 TUBE PITCH <inches) ...........**..*...*.*.. 1.281 4.

3.6 TUBESHEET RADIAL CREVICE (inches) ....**.*... 0000 3.7 DEPTH OF TUBESHEET CREVICE (inches) *..*...* 00.00 STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .................*....**.

4.2 TUBE SUPPORT PLATE MATERIAL ......*.........

4.3 TUBE MATERIAL .*****.... ~ ..........*.*...... ALLOY 600 4.4 TUBE SUPPLIER ....*..*..........*.........*. SANDVIK 4.5 DATE OF TUBE MANUFACTURE .*.......**........ I I

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ...*.............**...
5. 2 CARBON CONTENT RANGE (percent) . . . * . * . . . . * * .

5.3 YIELD STRESS RANGE (ksi) **......*.....**.**

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl *.**......

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ......*.....*..... FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 U-BENDS (inches> ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS .....*.....*.....

6.4 STRESS RELIEF AFTER TUBING (hours/deg F> ... NONE

7. STEAM GENERATOR OPERATING PARAMETERS
7. 1 f'RIMARY COOLANT PRESSURE <psi l ............. 2248 7.2 HOT LEG INLET TEMPERATURE (deg F> .......... 611 7.3 COLD LEG OUTLET TEMPERATURE <deg F) ........ 543 7.4 HOT LEG HEAT FLUX <BTUlhrlftA2J ....*..**...

7.5 COLD LEG HEAT FLUX <BTU/hrlftA2) .........*.

7.6 STEAM GENERATOR OPERATING TEMP. <deg F> .... .

7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... 789 7.8 TYPICAL SLUDGE PILE DEPTH (inches) .....*.**

7.9 WATER CHEMISTRY ...........*..*...........*. AVT ONLY D-46

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY FESSENHEIM 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION ...............**..

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED ....*

8.1.6 TSP INTERSECTION-DENTING RELATED ..**

8. 1 . 7 PLUGS .....*...**.*..*............*..

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .**..**....*****

9.1.2 TUBESHEET CREVICE ..*.....**..*......

9.1.3 SLUDGE PILE REGION ....**..*...******

9.1.4 TSP INTERSECTION .**.....******.*.*..

9 ? INTERGRANULAR ATTACK CIGA>

9. 2. 1 EXPANSION TRANSITION ..*..**.......*.
9. 2. 2 TUBESHEET CREVICE ...**...*.*.**.***.

9.2.3 SLUDGE PILE REGION ..*.....*......***

9.2.4 TSP INTERSECTION ..*.*.**...*.*.....*

9.3 DENTING . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . .

9.4 CORROSION FATIGUE .....*..........*.......*.

9.5 EROSION-CORROSION ...........*...*...*......

9. 6 PITTING .........*........*.*....**.....**.*
9. 7 WASTAGE .*.....*.*...........*.....**...*..*
9. 8 WEAR .............*....*.**......*....**.*.*

9.9 OTHER SECONDARY SIDE PROBLEMS .*.*.****...**

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ..........*.............

10.2 TOTAL TUBES SLEEVED ......**..............**

10.3 OTHER (tube expn.,stress relief,peening) *.*

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-47

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING $URVEY GENKAI 1

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO . . . . . . . . . . . . . . . . . . . .
  • GENKAI 1
1. 2 UTILITY ..*......*............ ,, ... ,,,, .. ,., KYUSHU ELECTRIC
1. 3 NSSS SUPPLIER .........*.......**........... MHI
1. 4 ELECTRIC POWER RATING <MWE> ......*......... 559
1. 5 THERMAL POWER RATING <MWT>.~*************** 1650
1. 6 DATE OF COMMERCIAL OPERATION ...*.*.......*. 10/15/75

..:... STEAM GENERATOR GENERAL INFORMATION

2. 1 NUMBER OF STEAM GENERATORS ...*.**..**...*** 2 2.2 STEAM GENERATOR TYPE ....**.......**........ RWOE 2.3 STEAM GENERATOR MODEL NO * ***.** ~ .********** 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION .***.**. MHI 2.5 DATE OF STEAM GENERATOR COMPLETION *..*..... II
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS <inches) *...*.......*..

3.2 TUBE OUTSIDE DIAMETER (inches) ....*.*..*...* 875 3.3 TUBE WALL THICKNESS (inches> *.....***...*.*. 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *...*... 3388 3.5 TUBE PITCH (inches) .*......*............... 1.214 3.6 TUBESHEET RADIAL CREVICE (inches) * . . . . . . . . . . 0080 3.7 DEPTH OF TUBESHEET CREVICE (inches) ......*. 19.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ...........*..*....*..*.. FORG.STL.

4.2 TUBE SUPPORT PLATE MATERIAL .....*..**...*.. SA 533 4.3 TUBE MATERIAL ....*.*..........***.*...**.*. ALLOY 600 4.4 TUBE SUPPLIER .*...*..*.*.........**........ SUMITOMO 4.5 DATE OF TUBE MANUFACTURE .*....*............ II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ....*..*.*..........*.

5.2 CARBON CONTENT RANGE (percent> ...**........

5.3 YIELD STRESS RANGE (ksi> ........*..........

5.4 MILL ANNEAL TIME/TEMP <min/deg F> .......*.*

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *.....***......... ROLL/HYDRAULIC 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ...........*.* : .. CYL.PLAST.MNDRL 6.4 STRESS RELIEF AFTER TUBING (hours/deg F> ..* NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi), . * . * . . . . . * . . 2235 7? HOT LEG INLET TEMPERATURE Cdeg F) ......*.*. 613 7.3 COLD LEG OUTLET TEMPERATURE (deg F) ........ 551 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ......*.....

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .*.......*.

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. Cpsi> ...... 835 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY .................*****...... AVT D-48

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GENKAI 1

8. REPORTED PRIMARY SIDE PROBLEMS !Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC

8. 1. 1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION ...............*...

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS ............*.......*..........

8.2 OTHER PRIMARY PROBLEMS!e.g. sulfur attackl.

9. REPORTED SECONDARY SIDE PROBLEMS!Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .*.*..*......*..

9.1.2 TUBESHEET CREVICE .*.................

9.1.3 SLUDGE PILE REGION *...........*.****

9.1.4 TSP INTERSECTION . . . . . . . . . . . . . . . . . . . . YES 9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .

9.2.2 TUBESHEET CREVICE .*..............**.

9.2.3 SLUDGE PILE REGION ...............*..

9.2.4 TSP INTERSECTION ......*....*...*.**. YES

9. 3 DENT I NG ...........*........*.............*.

9.4 CORROSION FATIGUE .........*................

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 6 PITTING .....*...........................**.
9. 7 WASTAGE .... ~ .................*........*....

9.8 WEAR ......*...........*.................*.. YES-FOREIGN MTL 9.9 OTHER SECONDARY SIDE PROBLEMS ............. .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL 1UBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 536 10.2 TOTAL TUBES SLEEVED ............*........*..

10.3 OTHER (tube expn.,stress relief,peeningl .*. CREVICE HYO. EXPANDED

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-49

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GENKAI 2 *

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ............*....*... GENl<AI 2 1 . 2 UTILITY ........*.*.......*.........*....... KYUSHU ELECTRIC 1.3 NSSS SUPPLIER ....................**........ MHI
1. 4 ELECTRIC POWER RATING <MWE) .............*.. 559
1. 5 THERMAL POWER RATING <MWT) ....*............ 1650 1.6 DATE OF COMMERCIAL OPERATION ............*.* 3/15/81
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .*...**.......**. 2
2. 2 STEAM GENERA TOR TYPE. * * * . * . . * * * . * * . * . * . * * . . RWOE 2.3 STEAM GENERATOR MODEL NO *.****.*..**..***.* 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ...**.*. MHI 2.5 DATE OF STEAM GENERATOR COMPLETION ....**..* II
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches) ...**..*.*.*..*

3.2 TUBE OUTSIDE DIAMETER <inches) .*.*..**.**.*. 875 3.3 TUBE WALL THICKNESS Cinches> . . . . . . * . . . * . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *..**.*. 3382 3.5 TUBE PITCH Cinches) ........**...**.....**.. 1.214 3.6 TUBESHEET RADIAL CREVICE (inches) ....*..*..* 0000 4.

3.7 DEPTH OF TUBESHEET CREVICE (inches) ........ 00.00 STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ................*...*..**

4.2 TUBE SUPPORT PLATE MATERIAL .*..........**..

4.3 TUBE MATERIAL *..*..*.**...*.*....**........

4.4 TUBE SUPPLIER .......*.*.....*.*.*...*..*...

4.5 DATE OF TUBE MANUFACTURE *.......*.....**...

FORG. STL.

CS ALLOY 600 SUMITOMO

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE .................**.*.

5.2 CARBON CONTENT RANGE <percent> .......*...*.

5.3 YIELD STRESS RANGE Cksi) .*......*****..***.

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl **....*.*.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *..*............*. FD ROLL/RUBBER 6? RADII OF ROW 1 AND 2 LI-BENDS (inches) ....*. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ...............*. CYL.PLAST.MNDRL 6.4 STRESS RELIEF AFTER TUBING !hours/deg F)- ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psil .*........... 2235 7.2 HOT LEG INLET TEMPERATURE <deg Fl ..*....... 613 7.3 COLD LEG OUTLET TEMPERATURE (deg F> ........ 551 7.4 HOT LEG HEAT FLUX (BTU/hr/ftA2l .*......*.. ~

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2J .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg FJ ...*.

7.7 STEAM GENERATOR OPERATING PRESS. (psil ..... .

7.8 TYPICAL SLUDGE PILE DEPTH (inches) ........ .

7.9 WATER CHEMISTRY ..*.......*...*....*....*... AVT ONLY 0-50

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GENl<AI 2

8. REPORTED PRIMARY SIDE PROBLEMS !Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION .....*..........

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION ................*..

8. 1.4 U-BEND APEX-DENTING RELATED *......*.

8.1.5 U-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1 . 7 PLUGS ....................**.**......

8.2 OTHER PRIMARY PROBLEMSle.g. sulfur attack) .

. 9. REPORTED SECONDARY SIDE PROBLEMSIYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION **.....*.......*

9.1.2 TUBESHEET CREVICE *....*..........*.*

9.1.3 SLUDGE PILE REGION .........**...**..

9.1.4 TSP INTERSECTION ........***........*

9.2 INTERGRANULAR ATTACK IIGAJ

9. 2. 1 EXF'ANS ION TRANS IT ION ..*..*****..*.*.

9.2.2 TUBESHEET CREVICE *...*..*.........*.

9.2.3 SLUDGE PILE REGION .***...........**.

9.2.4 TSP INTERSECTION ..*......... ~ .*.*...

9. 3 DENTING ................*..........*........

9.4 CORROSION FATIGUE .......*.....*..*......*.*

9.5 EROSION-CORROSION ...........*......**....*.

9.6 PITTING ...........*....**...*..............

9. 7 l>JASTAGE .................*................**
9. 8 WEAR .........*...*............*.....*......

9.9 OTHER SECONDARY SIDE PROBLEMS ...*.......*..

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 0 10.2 TOTAL TUBES SLEEVED .........*...*.*........

10.3 OTHER <tube expn.,stress relief,peeningJ *..

11. NOTES
11. 1
11. 2
11. .3
11. 4
11. 5
11. 6
  • D-51

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GINNA

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ******* ~ **...****.*** GINNA 1 . 2 UTILITY. * * * * * . * * * * * * * * . . * * . . . * . * * . * * . . * * * * . ROCHESTER *ELECTRIC 1.3 NSSS SUPPLIER **...*.*.*****.******..*..*.** WESTINGHOUSE 1.4 ELECTRIC POWER RATING <MWE> *...*.*..*.....* 490 1.5 THERMAL POWER RATING <MWf> ***.****** ;,,,,,, 1520 1.6 DATE OF COMMERCIAL OPERATION **.*..*****..** 3/15/70
2. STEAM GENERATOR GENERAL INFORM.ATION 2.1 NUMBER OF STEAM GENERATORS ***********.***** 2 2.2 STEAM GENERATOR TYPE ***.****************.*. RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION **.***** WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ***.*.*** //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS <inches> *********.***** 22.0 3.2 TUBE OUTSIDE DIAMETER <inches> *************. 875 3.3 TUBE WALL THICKNESS (inches> **************** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *****.*. 3260 3.5 TUBE PITCH <inches) **.*..** ~*************** 1.234 3.6 TUBESHEET RADIAL CREVICE <inches) *****...... 0080 3.7 DEPTH OF TUBESHEET CREVICE (inches) *.*.**** 20.ool
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *****.************ ~****** FORG. STL.

4.2 TUBE SUPPORT PLATE MATERIAL **************** CS 4.3 TUBE MATERIAL .****************************. ALLOY 600 4.4 TUBE SUPPLIER **.***************.***.*..***. HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE ******.****.*..*.** //

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE **.***..*.*.**..****** 6 5.2 CARBON CONTENT RANGE (percent> *******..****. 037 5.3 YIELD STRESS RANGE Cksi> ******..***.*******

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl ******.*** 1760-1814

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ******** ~ **.***.** PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches> ****..

6.3 PROCESS USED TO FORM BENDS *.*.**.*..*.**..* H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl *.. NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi> *******....** 2235 7.2 HOT LEG INLET TEMPERATURE (deg F> *..*..**** 601 7.3 COLD LEG OUTLET TEMPERATURE (deg F> ..****.. 552 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2),,,,,,,,,,,, 94000 7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) **.*.*..*..

7.6 STEAM GENERATOR OPERATING TEMP. <deg F> ***.. 514 7.7 STEAM GENERATOR OPERATING PRESS. <psi> ..**.* 755 7.8 TYPICAL SLUDGE PILE DEPTH <inches> ....*.... 2.00 7.9 WATER CHEMISTRY .****..**.*.*.**...**.****** EARLY PHOS,AVT 11/74 D-52

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GINNA

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/N~, Date or EFPD to 1st ob~ervationl 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .***....*.*.....

8.1.2 EXPANDED REGION .*..*..............**

8.1.3 LI-BEND TRANSITION ...*..........*....

8.1.4 U-BEND APEX-DENTING RELATED *....*...

8.1.5 U-BEND APEX-NOT DENTING RELATED .....

8.1.6 TSP INTERSECTION-DENTING RELATED .*.*

8. 1. 7 PLUGS............................... YES 8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.
9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC

9. 1. 1 EXPANSION TRANSITION **.*.***..**.***

- 9. 1. 2 TUBESHEET CREVICE *..*....*.*...***** YES 9.1.3 SLUDGE PILE REGION *...***..*.****...

9.1.4 TSP INTERSECTION ****..*....**....***

9.2 INTERGRANULAR ATTACK <IGAJ 9.2.1 EXPANSION TRANSITION ***..*.**.*..*.*

  • 9.2.2 TUBESHEET CREVICE .*..*****.*..*.*.** YES

~- 9.2.3 SLUDGE PILE REGION **..*....*..*.**** YES 9.2.4 TSP INTERSECTION **.**...**....**.***

9.3 DENTING ***.**..*.*.*.*.*.*.*.*.*........*** YES 9.4 CORROSION FATIGUE ....*.*.....**..*...*..**.

9.5 EROSION-CORROSION ***.....**...*......*.**..

9. 6 PI TT I NG .*.......*.***..*...*..*..*..*....*...

9.7 WASTAGE .**..***.****............*..*....*.* YES 9 . 8 WEAR. . * . . . . * * * . * * . . . * . * * * . . . . . * . * . . * * * . * * * . YES 9.9 OTHER SECONDARY SIDE PROBLEMS .*....*....*** FOREIGN MATL/WEAR

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ****..*...***.*.*....... 289 10.2 TOTAL TUBES SLEEVED .***...*.*.*.*......*... 99-1980/83 10.3 OTHER <tube expn.,stress relief,peening) ...
11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-53

DOMINION ENGINEERING, INC.

EPRI/SGDG II CRACKING SURVEY GRAVELINES Bl

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO .*.......***.*.**..** GRAVELINES Bl
1. 2 UTILITY ......*...**....*..*........**.**.. , EDF 1.3 NSSS SUPPLIER ......*...........**.......*** FRAMATOME
1. 4 ELECTRIC PO.WER RATING <MWE>................ 910 1.5 THERMAL POWER RATING <MWT> *...*****...**.*.

1.6 DATE OF COMMERCIAL OPERATION *...****.*..*** S/ 1/80

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ************.**** 3 2.2 STEAM GENERATOR TYPE **.******************** RWOE 2.3 STEAM GENERATOR MODEL No ** : *.*********.**** 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** FRAMATOME 2.5 DATE OF STEAM GENERATOR COMPLETION ******.** //

STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches> ******.**.**.**

3.2 TUBE OUTSIDE DIAMETER <inches) *.****..**.** . 875 3.3 TUBE WALL THICKNESS (inches> **.*********.**

  • 005 3.4 NUMBER OF TUBES PER STEAM GENERATOR .******* 3388 3.5 TUBE PITCH <inches) *.**..***.**..********.* 1. 281 3.6 TUBESHEET RADIAL CREVICE <inches> ********.. . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> **..*.*. 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *......****.**.*.**.****.

4.2 TUBE SUPPORT PLATE MATERIAL ********..****.*

4. 3 TUBE MAT.ER I AL. * . . * * * * * * * * * * * * . * * * * . . * . * . * *
  • ALLOY 600
4. 4 TUBE SUPPLIER. . * * * . * * . . * * . . . * * . * * * * * * * * * * *
  • WEST /VALLOUREC 4.5 DATE OF TUBE MANUFACTURE ****.*********.*.*. //
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *.**.**.....***...****

5.2 CARBON CONTENT RANGE <percent> *..**.******.

5.3 YIELD STRESS RANGE Cksil ********.....*.****

5.4 MILL ANNEAL TIME/TEMP <min/deg F> ****.*****

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .*.*.*.***.*.****. FULLROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> *.**.* 2.1875,3.4.685 6.3 PROCESS USED TO FORM BENDS **...*.**...*.*.*

6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl *** NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi> .**..**.***.* 2248 7.2 HOT LEG INLET TEMPERATURE <deg Fl ***..****. 613 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ..*.**** 546 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) .*..*.**.*.*

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) **...*...**

7.6 STEAM GENERATOR OPERATING TEMP. (deg F> *****

7.7 STEAM GENERATOR OPERATING PRESS. <psi) **..** 840 7.8 TYPICAL SLUDGE PILE DEPTH <inches> ..*..*.*.

7. 9 WATER CHEMISTRY .....*.**.***.*..**********... AVT ONLY D-54
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GRAVELINES Bl

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/Na, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ..............*.

8.1.2 EXPANDED REGION ....................*

8.1.3 LI-BEND TRANSITION .*..............*..

8.1.4 LI-BEND APEX-DENTING RELATED ...*...*.

8.1.5 LI-BEND APEX-NOT DENTING RELATED .....

8.1.6 TSP INTERSECTION-DENTING RELATED ..*.

8. 1 . 7 PLUGS ..............* , ......*...*..* *.

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .*..*.*.**....*.

9.1.2 TUBESHEET CREVICE ..*............*.**

9.1.3 SLUDGE PILE REGION ...*.**...**......

9.1.4 TSP INTERSECTION .*..*.*..**.......*.

9.2 INTERGRANULAR ATTACK CIGA>

9. 2. 1 EXPANSION TRANSITION *...........*.**

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ..*.....*.....*.*.

9.2.4 TSP INTERSECTION ..*...**..*.......**

9. 3 DENT I NG ..............................*...*.

9.4. CORROSION FATIGUE ........*...*....*........

9.5 EROSION-CORROSION ....*.....*............*..

9. 6 PITTING .*........*............*............

9.7 WASTAGE ................*..........*........

9. 8 WEAR .................*.**..*.....*..*....*.

9.9 OTHER SECONDARY SIDE PROBLEMS ......*...*.*.

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED .....*...*.....*......*.

10.2 TOTAL TUBES SLEEVED ....*......*..*.........

10.3 OTHER <tube expn.,stress relief,peeningJ ..*

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-55

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GRAVELINES B2 .

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO . . . . . . . . . . . . . . . . . * . . . GRAVEL INES B2
1. 2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EDF 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . , . . . . . . . . . . . , .. FRAMATOME
1. 4 ELECTF:IC POWER RATING CMWE> .... , . . . . . . . . . . . 910
1. 5 THERMAL POWER RATING <MWT> ....*............
1. 6 DATE OF COMMERCIAL OPERATION ..*............ 11/ 1/80
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS **.....**...*.**. 3 2.2 STEAM GENERATOR TYPE * *********************. RWOE 2.3 STEAM GENERATOR MODEL NO . ** " ********.****** 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ...*...* FRAMATOME

? ..,... DATE OF STEAM GENERATOR COMPLETION ......... II

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches) ...........*...

3.2 TUBE OUTSIDE DIAMETER Cinches) ...**.*....*.. 875 3.3 TUBE WALL THICKNESS (inches) . . . . . . . . . . . * . * . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ..*..... 3388 3.5 TUBE PITCH Cinches) .....*..***.*....***..*. 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches) .....*.***. 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> .***.... 00.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .........*..........*....

4.2 TUBE SUPPORT PLATE MATERIAL .**.**..........

4.3 TUBE MATERIAL .....**.....*......*.........* ALLOY 600 4.4 TUBE SUPPLIER *...............*.*...*....*.. WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE *...*.**...*....... II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . * . . . . . . . . . . . . . . .

5.2 CARBON CONTENT RANGE (pe~cent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE <ksi> .......***......*..

5.4 MILL ANNEAL TIME/TEMP (min/deg F> ..*...**..

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .*............*.*. FULL ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS .....**.......... W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) . . . . . . . . . . . . . 2248 7? HOT LEG INLET TEMPERATURE (deg Fl .......... 613 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 546 7.4 HOT LEG HEAT FLUX (8TU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. <psi) ...... 840 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . * . . . . . . . . . . . . . . . . AVT ONLY D-56

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GRAVELINES B2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation!

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS* ........*...............*.....

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation!

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *.*...**...*.**.

9.1.2 TUBESHEET CREVICE ...*....*..*.......

9.1.3 SLUDGE PILE REGION *...*.*...........

9.1.4 TSP INTERSECTION .........***..*.....

9.2 INTERGRANULAR ATTACK (!GA>

9.2.1 EXPANSION TRANSITION .****.**.....*.*

9.2.2 TUBESHEET CREVICE ..*..........*.....

9.2.~ SLUDGE PILE REGION *......**...**...*

9.2.4 TSP INTERSECTION ***...***..*...*....

9. 3 DENTING ...*......*...*.....................

9.4 CORROSION FATIGUE ...*..........*...........

9.5 EROSION-CORROSION .......*.........*..*.....

9 . 6 PI TT I NG ..*...*......*.**......*............

9.7 WASTAGE ....*.............*.......**......*.

9. 8 WEAR ....*....**........*..*......**........

9.9 OTHER SECONDARY SIDE PROBLEMS ...*.*......*.

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED .............*.*........

10.2 TOTAL TUBES SLEEVED ......*.......*.........

10.3 OTHER <tube expn.,stress relief,peening) ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-57

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GRAVELINES B3

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO **..*.*.***.*.*.**..* GRAVELINES 83 1 . 2 UTILITY. . . * * . * * . . * * . * * . . . . * . . * . * * * * * . . . * * *
  • EDF 1.3 NSSS SUPPLIER *.*...****..****.*....*..*.**. FRAMATOME 1.4 ELECTRIC POWER RATING CMWEJ .***..****.....* 910
1. 5 THERMAL POWER RATING CMWTJ ***.**.*.* , ..**.*

1.6 DATE OF COMMERCIAL OPERATION .*..*.....*..** 2/18/81

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *.**..********..* 3 2.2 STEAM GENERATOR TYPE .*.********.**..****.*** RWOE 2.~ STEAM GENERATOR MODEL NO ..***..**..******** 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** FRAMATOME 2.5 DATE OF STEAM GENERATOR COMPLETION *.*****.*

.,,. STEAM GENERATOR DIMENSIONS

  • -** 3.1 TUBESHEET THICKNESS Cinches) .*.***.**....***

3.2 TUBE OUTSIDE DIAMETER Cinches) *.*****.*****

  • 875 3.3 TUBE WALL THICKNESS Cinches) ..******.*..***
  • 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *. ;,,, .* 3388 3.5 TUBE PITCH Cinches> *.**...**.*..**.**....*** 1. 281 3.6 TUBESHEET RADIAL CREVICE Cinches> .***.***** . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) *..***.. 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *.**.**..***.**.**.*.*.*.

4.2 TUBE SUPPORT PLATE MATERIAL *.*.***.********

4.3 TUBE MATERIAL .**..****.**..*..**.*****..*** ALLOY 600 4.4 TUBE SUPPLIER **.**.***..****.*****.******** VALLOUREC 4.5 DATE OF TUBE MANUFACTURE ****.**.****..***.*

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *......*..***.*.*.*.*.

5? CARBON CONTENT RANGE (percent> ........***..

5.3 YIELD STRESS RANGE CksiJ *******.*****.***..

5.4 MILL ANNEAL TIME/TEMP (min/deg FJ **.*******

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ****.***...**.**.* FULL ROLL/DAM 6? RADII OF ROW 1 AND 2 LI-BENDS (inches) .***.*

6.3 PROCESS USED TO FORM BENDS *...***.....*.**.

6.4 STRESS RELIEF AFTER TUBING Chours/deg FJ ..* NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psiJ ****.....**.* 2248 7.2 HOT LEG INLET TEMPERATURE (deg FJ *.*..*...* 613 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl *..****. 546 7.4 HOT LEG HEAT FLUX (BTU/hr/ftA2J .*...*.....*

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .***..**..*

7.6 STEAM GENERATOR OPERATING TEMP. <deg Fl *..*.

7.7 STEAM GENERATOR OPERATING PRESS. CpsiJ .***.* 840 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ..**.****

7.9 WATER CHEMISTRY *..***.*.*.*..**...**.** ~ .** AVT ONLY D-58

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GRAVELINES B3

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION . . . . . . . . . . . . . . . . YES 8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . .

8? OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *...*.......*.*.

9.1.2 TUBESHEET CREVICE ........*..*.....*.

9.1.3 SLUDGE PILE REGION .............**.**

9. 1. 4, TSP INTERSECT I ON ...........**.......

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ..*..**.*......*

9.2.2 TUBESHEET CREVICE *......*...*......*

9.2.3 SLUDGE PILE REGION .......*..........

9.2.4 TSP INTERSECTION ........*......*..*.

  • 9. 3 DENTING .*.........................*.....**.

9.4 CORROSION FATIGUE ..................*.......

9.5 EROSION-CORROSION ........................*.

9.6 PITTING ..........................*....*.. ,.

9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
9. 8 WEAR ............*..............*.*....**...

9.9 OTHER SECONDARY SIDE PROBLEMS ............*.

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . .

10.2 TOTAL TUBES SLEEVED ...........*............

10.3 OTHER <tube expn.,stress relief,peening) .*.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-59

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GRAVELINES B4

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO . . . . . . . . . . . * . . . . . . . . . GRAVELINES B4
1. 2 UTILITY . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . EDF 1.3 NSSS SUPPLIER ......*.*................*.... FRAMATOME
1. 4 ELECTRIC POWER RATING <MWE)................ 910
1. 5 THERMAL POWER RATING <MWT) . . . . . . . . . . . . . . . . .

1.6 DATE OF COMMERCIAL OPERATION ...*........*.. 9/11/81

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS **.............*. 3
2. 2 STEAM GENERATOR TYPE ........*...**......... RWOE 2.3 STEAM GENERATOR MODEL NO .***.....***..***.. 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION *.**.... FRAMATOME 2.5 DATE OF STEAM GENERATOR COMPLETION ........ .
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS <inches) ***...*........

3.2 TUBE OUTSIDE DIAMETER <inches) *.*.*..*.***.. 875 3.3 TUBE WALL THICKNESS <inches) *....****....... 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 3388 3.5 TUBE PITCH (inches) ......*......**.....*... 1.281 3.6 TUBESHEET RADIAL CREVICE <inches) . . . . * . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE (inches) ........ 00.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .....*...*.........*.....

4.2 TUBE SUPPORT PLATE MATERIAL ....... &********

4.3 TUBE MATERIAL ......*.....*....*.........*.. ALLOY 600 4.4 TUBE SUPPLIER ......**...*.......*...*...... WEST/VALLOUREC 4.5 DATE OF TUBE MANUFACTURE ..........*........

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . .

5.2 CARBON CONTENT RANGE <percent) ........**...

5.3 YIELD STRESS RANGE Cksi) .........*.........

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl ***.......

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ***......*..*..... FULL ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches> ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ...*.............

6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) ....**.*..... 2248 7.2 HOT LEG INLET TEMPERATURE <deg Fl .......... 613 7.3 COLD LEG OUTLET TEMPERATURE ldeg Fl ........ 546 7.4 HOT LEG HEAT FLUX (BTU/hr/ftA2) .......... ,;

7.5 COLD LEG HEAT FLUX (BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. lpsiJ ...... 840 7.8 TYPICAL SLUDGE PILE DEPTH (inches> ........ .

7.9 WATER CHEMISTRY . . * . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-60

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY GRAVELINES B4

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ..........**..*.
8. 1. 2 EXPANDED *REGION ...*...**........; ....

8.1.3 LI-BEND TRANSITION .........*....*.*..

8.1.4 LI-BEND APEX-DENTING RELATED ....*...*

8.1.5 LI-BEND APEX-NOT DENTING RELATED ...*.

8.1.6 TSP INTERSECTION-DENTING RELATED ..*.

8. 1. 7 PLUGS ......**......*...****..**..**.

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION **.***********.*

9.1.2 TUBESHEET CREVICE .**.*...**....*.***

9.1.3 SLUDGE PILE REGION ...*****.***.****.

9.1.4 TSP INTERSECTION **..**..**...**.****

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION **..***.**...***

9.2.2 TUBESHEET CREVICE ***.**.......*.****

9.2.3 SLUDGE PILE REGION *.*.*...*******.**

9.2.4 TSP INTERSECTION ***.*..***...****...

9. 3 DENT I NG *.........***..********.****....**..*

9.4 CORROSION FATIGUE .*......*.*******..*..*...

9.5 EROSION-CORROSION *.**..*.**.*.*.****.*...**

9*. 6 PITTING *..*.*..***...*...****.****.*...*.*.

9. 7 WASTAGE .......*.**....*..**.*...*.**.*.***.
9. 8 WEAR ..*..**.****..***.**..***.****.**..*.**

9.9 OTHER SECONDARY SIDE PROBLEMS .**.*.***...*.

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED **.*.....**..*.**...*.*.

10.2 TOTAL TUBES SLEEVED *..*...*.*.....*...*****

10.3 OTHER <tube expn.,stress relief,peening) .*.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-61

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY IKATA 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO *.............*...... IKATA 1 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . SHIKOKU ELECTRIC 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . MHI 1.4 ELECTRIC POWER RATING IMWE> . . . . . . . . . . . . . . . . 566
1. 5 THERMAL POWER RATING IMWT>................. 1650 1.6 DATE OF COMMERCIAL OPERATION .*....*........ 9/15/77
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS *................ 2 2.2 STEAM GENERATOR TYPE *...*.........*........ RWOE 2.3 STEAM GENERATOR MODEL NO ...*...*......*.*.. 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION .....*.. MHI 2.5 DATE OF STEAM GENERATOR COMPLETION ......... 11/15/75
3. STEAM GENERATOR DIMENSIONS 3.1 TIJBESHEET THIC~::NESS !inches> .....*......... 21.6 3.2 TUBE OUTSIDE DIAMETER (inches) * . . * . . . . . . . . . . 875 3.3 TUBE WALL THICKNESS !inches) . . . . . . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *....*.. 3388 3.5 TUBE PITCH Cinches) .........*......*........ 1.281 3.6 TUBESHEET RADIAL CREVICE (inches> . . . . . . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE linchesl ........ 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . FORG.STL.

4.2 TUBE SUPPORT PLATE MATERIAL . . . . . . . . . . . . . . . . CS 4.3 TUBE MATERIAL ..............*............*.. ALLOY 600 4.4 TUBE SUPPLIER ...*..........*............... SUMITOMO 4.5 DATE OF TUBE MANUFACTURE .........*....*.*** 1/15/75

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . . 9 5.2 CARBON CONTENT RANGE (percent> ............. 0.03%

5.3 YIELD STRESS RANGE lksil ........*..*....... 42.7 5.4 MILL ANNEAL TIME/TEMP (min/deg Fl; ......... 1780

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ............*..... FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inche~> ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ........*........ CYL.PLAST.MNDRL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE !psi) ...*......... 2242 7.2 HOT LEG INLET TEMPERATURE !deg F) .......... 613 7.3 COLD LEG OUTLET TEMPERATURE !deg Fl ........ 550 7.4 HOT LEG HEAT FLUX IBTU/hr/ftA2) ..*.........

7.5 COLD LEG HEAT FLUX IBTU/hr/ftA2) .*.........

7.6 STEAM GENERATOR OPERATING TEMP. ldeg Fl ..... 524 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ...... 839 7.8 TYPICAL SLUDGE PILE DEPTH (inches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-62

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY IKATA 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/Np, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ................ YES 8.1.2 EXPANDED REGION ..................... YES 8.1.3 U-BEND TRANSITION ................*..

8.1.4 U-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS ...................... *.*******

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *............*..

9.1.2 TUBESHEET CREVICE ..*..*...*...*...*.

9.1.3 SLUDGE PILE REGION ....*...*.........

9.1.4 TSP INTERSECTION .................*.*

9 ? INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ..............*.

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ........*.........

9.2.4 TSP INTERSECTION ......*.....*.**....

9. 3 DENTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *.

9.4 CORROSION FATIGUE .*.....*..........*.....*.

9.5 EROSION-CORROSION ........................**

9.6 PI TT I NG ...................*........*.......

9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAR .............*....*.......... ." . . . . . . . . . YES ( AVB l 9.9 OTHER SECONDARY SIDE PROBLEMS ............. .
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ........................ 173 10.2 TOTAL TUBES SLEEVED ........................ 14 10.3 OTHER (tube expn.,stress relief,peening) .*.
11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-63

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY

!KATA 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO . . . . . . . . . . . . . . . . . . . . . !KATA 2 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SHIKOKU ELECTRIC 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MHI
1. 4 ELECTRIC POWER RATING <MWEl................ 566
1. 5 THERl'1AL POWER RATING <MWTl .....*...........

1.6 DATE OF COMMERCIAL OPERATION . . . . . . . . . . . . . . . 3/15/82

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .*...............
2. 2 STEAM GENERATOR TYPE .......*..***.......... RWOE 2.3 STEAM GENERATOR MODEL NO .*................. 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ........ MHI 2.5 DATE OF STEAM GENERATOR COMPLETION ......... 8/15/80
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I C~'.NESS ( i nc:hes >. . . . . . . . . . . . . . .

3.2 TUBE OUTSIDE DIAMETER (inches) ............ . . 875

3. 3 TUBE WALL TH I CKNESS (inches> .*******.. ****** .050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ..*..... 3382 3.5 TUBE PITCH (inc:hesl . . . . . . . . . . . . * . . . . . . . . . . . 1. 281 3.6 TUBESHEET RADIAL CREVICE <inc:hes) ........*. . (1000 3.7 DEPTH OF TUBESHEET CREVICE <inc:hesl ....... . 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . * . . . . . . . . . . . SA 508 4.2 TUBE SUPPORT PLATE MATERIAL *............... cs 4.3 TUBE MATERIAL .***.......**................. ALLOY 600 4.4 TUBE SUPPLIER . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . SUMITOMO
4. 5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . .. 11/15/78
5. TUBE MATERIAL PROPERTIES
5. 1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . . 9 5.2 CARBON CONTENT RANGE <perc:ent> ....*........ 0.016 5.3 YIELD STRESS RANGE (ksil **................. 42.7 5.4 MILL ANNEAL TIME/TEMP (min/deg Fl ....*..... 1760
6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS . . . . . . . . . . . . . . . . . . F.D.ROLL-RUBBER 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inc:hes> ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ............*.... CYL.PLSTC.MNDRL 6.4 STRESS RELIEF AFTER TUBING Chours/deg Fl ...
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsi> . . . . . . . . . . . . .

7.2 HOT LEG INLET TEMPERATURE (deg Fl ......... .

7.3 COLD LEG OUTLET TEMPERATURE <deg Fl ....... .

7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2> ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. (psi) ..... .

7.8 TYPICAL SLUDGE PILE DEPTH (inc:hesl ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-64

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY IKATA 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .

8.1.2 EXPANDED REGION ...................*.

8.1.3 U-BEND TRANSITION *.............*....

8.1.4 U-BEND APEX-DENTING RELATED ..*......

8.1.5 U-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8.1.7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .......*..******

9.1.2 TUBESHEET CREVICE ..*....*........***

9.1.3 SLUDGE PILE REGION .........*......*.

9.1.4 TSP INTERSECTION .*.....*...*........

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION *...*.*.....****

9.2.2 TUBESH~ET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ....*...........*.

9.2.4 TSP INTERSECTION ..*.....*....*...*..

9. 3 DENT I NG ..........***..*.......*.*....*...*.

9.4 CORROSION FATIGUE ......................*.**

9.5 EROSION-CORROSION ..................*.......

9 . 6 PI TT I NG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . .

9. 7 WASTAGE ..........................*.*.*.....
9. 8 WEAR ...................**....*.*......*....

9.9 OTHER SECONDARY SIDE PROBLEMS ..........*...

1 O. I NSERV I CE REMEDIAL MEAS,URES 10.1 TOTAL TUBES PLUGGED .............*....... , ..

10.2 TOTAL TUBES SLEEVED .....................*.*

10.3 OTHER (tube expn.,stress relief,peening) ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
    • D-65

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY INDIAN POINT 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ..*.................. INDIAN POINT 2
1. 2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CON. EDISON 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . WESTINGHOUSE 1.4 ELECTRIC POWER RATING CMWEl ............... . 873
1. 5 THERMAL POWER RATING <MWTl . . . . . . . . . . . . . . . . . 2758 1.6 DATE OF COMMERCIAL OPERATION ..*............ 8/15/73
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS .......*......... 4 2.2 STEAM GENERATOR TYPE .*.............*...*.** RWOE
2. 3 STEAM GENERATOR MODEL NO .*....*..**.*.*.... 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION ....... . WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ........* II
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICl<NESS Cinches) .**.******..**. 22.0 3.2 TUBE OUTSIDE DIAMETER Cinches> . . . . . . . . . . . . . . 875 3.3 TUBE WALL THICKNESS Cinches> . . . . . . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ....*... 3260 3.5 TUBE PITCH Cinches) . . . . . . . . . . . . . . . . . . . . . . . . 1.234 3.6 TUBESHEET RADIAL CREVICE Cinches> . . . . . . . . . . . 0060 3.7 DEPTH OF TUBESHEET CREVICE Cinches) .....*.. 18.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ......*.................. FORG. STL.

4.2 TUBE SUPPORT PLATE MATERIAL .....*.......... CS 4.3 TUBE MATERIAL ..*.*.*..*............*......* ALLOY 600 4.4 TUBE SUPPLIER ............*................. WESTINGHOUSE

4. 5 DATE OF TUBE MANUFACTURE .**................ 11
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *.....................

5.2 CARBON CONTENT RANGE <percent> ..***.******.

5.3 YIELD STRESS RANGE Cksi> .......*.*.........

5.4 MILL ANNEAL TIME/TEMP Cmin/deg F> ......*...

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ....*...........*. PART DEPTH RdLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ...... 2.1875,3.4685 6.3 PROCESS USED TD FORM BENDS *................ W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING !hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ....*........ 2235 7.2 HOT LEG INLET TEMPERATURE Cdeg Fl .......... 576 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl ........ 523 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ............ 115000 7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ....* 506 7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ...... 704 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> .....*...

7. 9 WATER CHEMISTRY. . . . . . . . . . * * . . . . . . . . . . . . . . . . EARLY PHOS, AVT, BORON D-66
    • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY INDIAN POINT 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.l EXPANSION TRANSITION ....*...........

8.1.2 EXPANDED REGION .................... .

8. 1. 3 U-BEND TRANSITION ............. .' .... .

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .......*...**.**

9.1.2 TUBESHEET CREVICE ......*..**.......*

9.1.3 SLUDGE PILE REGION .............*..**

9.1.4 TSP INTERSECTION ......*..*..........

9.2 INTERGRANULAR ATTACK <IGAJ 9.2.1 EXPANSION TRANSITION *.*........*..*.

9.2.2 TUBESHEET CREVICE *.*..**............

9.2.3 SLUDGE PILE REGION .................*

9.2.4 TSP INTERSECTION ......**..*..*.*.*..

9.3 DENTING ........*..................*.*...... YES <SEVERE>

9.4 CORROSION FATIGUE *.........................

9.5 EROSION-CORROSION .................**.......

9. 6 PITTING .........................*.....*...* YES
9. 7 WASTAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . .
  • YES
9. 8 WEAR ...........*..*...*........*..*...*...*

9.9 OTHER SECONDARY SIDE PROBLEMS *..*.......*..

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ......................*. 492 10.2 TOTAL TUBES SLEEVED .............*.....*....

10.3 OTHER <tube expn.,stress relief,peening) .*.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-67

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY INDIAN POINT 3

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO..................... INDIAN F'OINT 3
1. 2 .UTILITY .*................*..*......*...*... PASNY 1.3 NSSS SUPPLIER ..................*.**...**... WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWE>................ 965
1. 5 THERMAL POWER RATING <MWTl .*.***....*.*..**

1.6 DATE OF COMMERCIAL OPERATION *....***..*.... 8/15/76

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .*.**....*.**.*** 4 2.2 STEAM GENERATOR TYPE *..**.**.**...*....**.. RWOE 2;3 STEAM GENERATOR MODEL NO **...*...*..******* 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION **.**** ~ WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION *..*...*. //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches) *....***..**... 22.0 3.2 TUBE OUTSIDE DIAMETER (inches) .*..*.*..**... 875 3.3 TUBE WALL THICKNESS Cinches> **...*.....**.*. 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ....**** 3260 3.5 TUBE PITCH (inches> . * . . . . . . * * . . . . . . . . . . . . . . 1.234 3.6 TUBESHEET RADIAL CREVICE Cinches> **.*....**. 0080 3.7 DEPTH OF TUBESHEET CREVICE Cinches> **.*.... 19.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL **..****.......*..*..**** SA 508 4.2 TUBE SUPPORT PLATE MATERIAL **..**..**..*... CS 4.3 TUBE MATERIAL *****..*********.*...**..*.*.. ALLOY 600 4.4 TUBE SUPPLIER .**.*.*.***...*.*...***..***.* WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE .****.*****..****.. II
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *.......**.**...*.**** 9~10 5.2 CARBON CONTENT RANGE Cpercentl ....*......**

5.3 YIELD STRESS RANGE Cksil .***..*****..*...**

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl .**.*.*.** 1700-1760

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ****.*****..****.* PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> .*...* 2.188,3.47 6.3 PROCESS USED TO FORM BENDS *....*****.****.. W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil *.****...*.*. 2235 7.2 HOT LEG INLET TEMPERATURE Cdeg Fl .......... 600 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl .......* 543 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ..**...*....

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ****.....**

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg Fl **... 512 7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ..... .

7.8 TYPICAL SL~DGE PILE DEPTH Cinches> .*....... 10-12 7.9 WATER CHEMISTRY .............*.*.*..*....... AVT ONLY D-68

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY INDIAN POINT 3

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ...............*

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION .*.................

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . .

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC
9. 1. 1 EXPANSION TRANSITION .........*.****.

9.1.2 TUBESHEET CREVICE **...............*.

9.1.3 SLUDGE PILE REGION ...............*.. YES 9.1.4 TSP INTERSECTION . . . . . . . . . . . . . . . . . . . .

9 ? INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ...*.***........

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION . . . . . . . . . . . . . . . . . .

9.2.4 TSP INTERSECTION . . . . . . . . . . . . . . . . . . . .

9. 3 DENTING . . . . . . * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES 9.4 CORROSION FATIGUE ..*....................* ~.

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 6 PITTING . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES 9.7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * .
9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * .*.

9.9 OTHER SECONDARY SIDE PROBLEMS . . . . . . . . . . . . . .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 2053 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . * . . . . . . . . . . . . 2970-12/83 10.3 OTHER <tube expn.,stress relief,peeningl ...
11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-69

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY KEWAUNEE

1. PLANT DESCRIPTION 1* 1 PLANT NAME AND UN IT NO. . . . . . . . . . . . . . . . . . . . . KEWAUNEE 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . WI. PUBLIC SERVICE 1.3 NSSS SUPPLIER ...................**......... WESTINGHOUSE
1. 4 ELECTRIC F'OWER RATING <MWE>................ 535
1. 5 THEF:MAL POWER RATING <MWT>................. 1650 1.6 DATE OF COMMERCIAL OPERATION ...*........... 6/15/74

,., STEAM GENERATOR GENERAL INFORMATION

2. 1 NUMBER OF STEAM GENERATORS *************.*** 2
2. 2 STEAM GENERATOR TYPE ..........*** ; ..***..*. RWOE 2.3 STEAM GENERATOR MODEL NO .*.....***.*****.** 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION .***..*. WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION .....*..* //
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS (inches) . . . . . . . . . . . . . . . 21. 0 3.2 TUBE OUTSIDE DIAMETER (inches) .*..*...*.*... 875 3.3 TUBE WALL THICKNESS Cinches) * . . . * . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 3388 3.5 TUBE PITCH Cinches> .....*.........*...*.... 1.281 3.6 TUBESHEET RADIAL CREVICE (inches) . . . . . . * . . . . 0060 3.7 DEPTH OF TUBESHEET CREVICE (inches) ........ 18.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ........*....*...*..**... SA 508 4.2 TUBE SUPPORT PLATE MATERIAL . . . . . . . . . . . . . . . . CS 4.3 TUBE MATERIAL .............*.*.****....*.... ALLOY 600 4.4 TUBE SUPPLIER .......*.*.*........**........ WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE ..*..*.*........... II
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ........*.........*...

5.2 CARBON CONTENT RANGE <percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE (ksil .*.*...............

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl ......... .

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .......*.......... PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches) .*.... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE

?. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi> .*........... 2235 7.2 HOT LEG INLET TEMPERATURE <deg Fl ......... . 599 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ....... . 536

7. 4 HOT LEG HEAT FLUX <BTU/hr /ft*****2> .......*...*.

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2J .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg FJ .... . 511 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ..... . 775 7.8 TYPICAL SLUDGE PILE DEPTH (inches) ........ . 1. 0 7.9 WATER CHEMISTRY ............*............*.. EARLY F'HOS, AVT D-70

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY KEWAUNEE

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION .....*.............

8.1.4 LI-BEND APEX-DENTING RELATED .....*...

8.1.5 LI-BEND APEX-NOT DENTING RELATED *....

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8. 1. 7 PLUGS ...................*.......*...

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ....*..*.*.*....

9. 1.2 TUBESHEET CREVICE .*...*...........*.

9.1.3 SLUDGE PILE REGION *.....*..*......**

9. 1.4 TSP INTERSECTION ......*...........*.

9 ? INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION *.............*.

9. 2. 2 TUBESHEET CREVICE. * . . . * . . . . * . . . . . . .
  • YES 9.2.3 SLUDGE PILE REGION ................*.

9.2.4 TSP INTERSECTION *.*...*......*......

9. 3 DENTING . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . YES i I

9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 6 PITTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAi::: ..............**.....*...........**....

9.9 OTHER SECONDARY SIDE PROBLEMS *........*....

10. INSERVICE REMEDIAL MEASURES
10. 1 TOTAL TUBES PLUGGED. . . . . . . . . . . . . . . . . . . . . . . . 72 10.2 TOTAL TUBES SLEEVED ...............*...*..*.

10.3 OTHER <tube expn.,stress relief,peeningl .*.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-71

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY KOREA NUCLEAR 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ...*......*..*....... KOREA NUCLEAR 1 1.2 UTILITY ...........*...*.**.*............... KOREA ELECTRIC POWER 1.3 NSSS SUPPLIER ..........*.......*........... WESTINGHOUSE 1.4 ELECTRIC POWER RATING <MWEJ ...*..*......... 587
1. 5 THERMAL POWER RATING <MWT>................. 1729 1.6 DATE OF COMMERCIAL OPERATION .........*..... 6/15/78
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *..*....*... *..... 2
2. 2 STEAM GENERATOR TYPE .**.*****.*..**....*... RWOE 2.3 STEAM GENERATOR MODEL NO *.*..*...***.**..*. 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION *..**...

2.5 DATE OF STEAM GENERATOR COMPLETION *...***.* II

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches) ....*.......*.* 21.0 3.2 TUBE OUTSIDE DIAMETER Cinches) *.*******.*... 875 3.3 TUBE WALL THICKNESS Cinches) ..*.*****....... 050.

3.4 NUMBER OF TUBES PER STEAM GENERATOR *.*..*.. 3388 3.5 TUBE PITCH (inches> . . . . . * . . . * * * * * * * . . . * . . *

  • 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches)~ . . . . * * . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) .....*.. 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL **.***..*.****.**......*. FORG.STL.

4.2 TUBE SUPPORT PLATE MATERIAL .*.......*....*. CS

4. 3 TUBE M.ATER I AL. * . . * . .. . * * * . * * * . . * * * * * * . * * * . . . ALLOY* 600 4.4 TUBE SUPPLIER ....**.*.....**...**.*...*.*..

4.5 DATE OF TUBE MANUFACTURE *....*.*........... II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ....*...*...**........

5.2 CARBON CONTENT RANGE (percent> .*.*......*.*

5.3 YIELD STRESS RANGE Cksil ...*..****.........

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl *......**.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS **.**...*..***..*. FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ... ; .. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS .......*......... BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING !hours/deg Fl .*. NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <Psi> ..***........ 2235 7.2 HOT LEG INLET TEMPERATURE (deg Fl .......... 607 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl ........ 541 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ...*......*.

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ..*...... ;.

7.6 STEAM GENERATOR OPERATING TEMP. Cd~g Fl ..... 519 7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ...... 805 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY .*.*............*.........*. AVT ONLY D-72

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY KOREA NUCLEAR 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC .

8. 1. 1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .
8. 1. 2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .
8. 1. 3 U-BEND TRANSITION . . . . . . . . . . . . . . . . . . .
8. 1. 4 U-BEND APEX-DENTING RELATED ........ .
8. 1. 5 U-BEND APEX-NOT DENTING RELATED .... .
8. 1. 6 TSP INTERSECTION-DENTING RELATED ...*
8. 1. 7 PLUGS . . . . . . . . . . . . . . . . . . . . * . . . . . ~ ....

8 ? OTHER PRIMARY PROBLEMS<e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS(Yes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .

9.1.2 TUBESHEET CREVICE .*...............*.

9.1.3 SLUDGE PILE REGION ...***............

9.1.4 TSP INTERSECTION ...*........*.*...*.

9 ? INTERGRANULAR ATTACK <IGA>

9. 2. 1 EXPANSION TRANSITION *.***.....*...*.

9.2.2 TUBESHEET CREVICE **....*.......**.*.

9.2.3 SLUDGE PILE REGION .*....*..*......*.

9.2.4 TSP INTERSECTION *..........*.....*..

9. 3 DENTING . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . .

9.4 CORROSION FATIGUE .*...................*....

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9.6 PITTING *......................*........*...

9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . . * * . . . . . . . . . . . . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS . . . . . . . . . . . . . .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *.....................*.

10.2 TOTAL TUBES SLEEVED ...*..*.................

10.3 OTHER <tube expn.,stress relief,peeningl .*.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-73

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY KRS~::o *

1. PLANT DESCRIPTION 1 . 1 F'LANT NAME AND UN IT NO. . . . . . . . . . . . . . . . . . . . . KRSl<O 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAVSKE ELEC 1.3 NSSS SUPPLIER .................*............ WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWE>................ 615
1. 5 THERMAL POWER RATING (MWT) ...........*.....

1.6 DATE OF COMMERCIAL OPERATION ............... 2/15/81

2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS. . . . . . . . . . . . . . . . . 2
2. 2 STEAM GENERATOR TYPE. . . . . . . . . . . . . . * * . . . . . . . RWE 2.3 STEAM GENERATOR MODEL NO ....*....**...*.*** D4 2.4 STEAM GENERATOR FABRICATOR/LOCATION .......*

2.5 DATE OF STEAM GENERATOR COMPLETION ..*..*... II

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS <inches) .............*. 21.0 3.2 TUBE OUTSIDE DIAMETER Cinches) . . . . . . * . . . . . .
  • 750 3.3 TUBE WALL THICKNESS Cinches) ...*.........**. 043 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 4674 3.5 TUBE PITCH <inches) .................*...... 1.060 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . * . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE (inches) .....*.. 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .*.......................

4.2 TUBE SUPPORT PLATE MATERIAL ............... .

4.3 TUBE MATERIAL ....*.....................*... ALLOY 600 4.4 TUBE SUPPLIER .........................*..**

4. 5 DATE OF TUBE MANUFACTURE ............*....*.
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ....................*.

5.2 CARBON CONTENT RANGE <percent) . . * . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksi> .................*.

5.4 MILL ANNEAL TIME/TEMP Cmin/deg F) ......... .

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .....*.*.......... FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.250,3.312 6.3 PROCESS USED TO FORM BENDS ...........*..... W. BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE J. STEAM GENERATOR OPERATING PARAMETERS
7. 1 PRIMARY. COOLANT PRESSURE <psi> ............ .

7.2 HOT LEG INLET TEMPERATURE Cdeg Fl ......... .

7.3 COLD LEG OUTLET TEMPERATURE Cdeg F> ....... .

7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2> ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. lpsi) ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-74

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY KRSKO

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .......*....*...

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 U-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED ....*

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8.1.7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . .

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *............**.
9. 1.2 TUBESHEET CREVICE .........*......*..

9.1.3 SLUDGE PILE REGION *. ~***************

9.1.4 TSP INTERSECTION ...............*..*.

9.2 INTERGRANULAR ATTACK IIGAl 9.2.1 EXPANSION TRANSITION ....*.....*...**

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION .....*.........*..

9.2.4 TSP INTERSECTION .*...............*..

9. 3 DENTING . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . .

9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION ........*.................

9. 6 PITTING .................................**.
9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . .
9. 8 WEAR. . . . . . . . . . . . . . * . . . . . . . . . . . . . . . * . . . . . * . . YES 9.9 OTHER SECONDARY SIDE PROBLEMS .....*.......*
10. INSERVICE REMEDIAL MEASURES
10. 1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . .

10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . . . .

10.3 OTHER <tube expn.,stress relief,peening) .. .

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-75

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY MCGUIRE 1 *

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO . . . . . . . . . . . . . . . . . . . . . MCGUIRE 1 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . DUKE POWER 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWEl................ 1180
1. 5 THERMAL POWER RATING <MWT) ......* .......... .

1.6 DATE OF COMMERCIAL OPERATION ............... 8/15/81

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .*.....*.....*... 4
2. 2 STEAM GENERATOR TYPE .*....*.*.....**....*.. RWE 2.3 STEAM GENERATOR MODEL ND ******************* D2 2.4 STEAM GENERATOR FABRICATOR/LOCATION .*...... WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION *.*.*.... //

STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches) .............. . 21. 0

3. 2 TUBE OUTS I DE DIAMETER <inches> .****.*...*** .750 3.3 TUBE WALL THICKNESS <inches) .....**........ . 043 3.4 NUMBER OF TUBES PER STEAM GENERATOR ..*..... 4674 3.5 TUBE PITCH <inches) . . . . . . . . . . . . . . . . . . . . . . . . 1.060 3.6 TUBESHEET RADIAL CREVICE (inches) . . . . . . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE <inches> .......* 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .....*..............*.... SA 508

. 4.2 TUBE SUPPORT PLATE MATERIAL ................ CS 4.3 TUBE MATERIAL *........................*.... ALLOY 600 4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WEST/HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE ..........*........ II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *.....................

5.2 CARBON CONTENT RANGE <percent> ............ .

5.3 YIELD STRESS RANGE <ksiJ .................. .

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl .*........

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .*...*............ FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches) ...... 2.250,3.312 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING !hours/deg F> ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ............. 2250 7.2 HOT LEG INLET TEMPERATURE !deg Fl .......... 618 7.3 COLD LEG OUTLET TEMPERATURE !deg F> ........ 559 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2l .......... .

7.6 STEAM GENERATOR OPERATING TEMP. !deg Fl ..... 545 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-76

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY MCGUIF:E 1

8. REPORTED PRIMARY SIDE PROBLEMS CYes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .............**.

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . . YES 8.1.3 LI-BEND TRANSITION *................*.

8.1.4 LI-BEND APEX-DENTING RELATED .*.....*.

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1
  • 7 PLUGS ........ *....*........*....*....

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation!

9.1 SECONDARY SIDE IGSCC

9. 1. 1 EXPANSION TRANSITION .......*........

9.1.2 TUBESHEET CREVICE .................. .

9.1.3 SLUDGE PILE REGION .....*............

9.1.4 TSP INTERSECTION . . . . . . . . . . . . . . . . . . . .

9.2 INTERGRANULAR ATTACK CIGA) 9.2.1 EXPANSION TRANSITION ........*.......

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION *.................

9.2.4 TSP INTERSECTION ...*......*....*....

9 . 3 DENT I NG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.4 CORROSION FATIGUE *.......*..............*..

9.5 EROSION-CORROSION ..........*...............

9 .6 PI TT I NG . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . .

9.7 WASTAGE . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 8 WEAR ...................*.....*............. YES 9.9 OTHER SECONDARY SIDE PROBLEMS ............. .
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 87 10.2 TOTAL TUBES SLEEVED ..............*.....*...

10.3 OTHER <tube expn.,stress relief,peeningl ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-77

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY MIHAMA 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO .........*......*..** MIHAMA 2
1. 2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KANSAI ELECTRIC 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . MHI 1.4 ELECTRIC POWER RATING <MWEl . . . . . . . . . . . . . . . . 500
1. 5 THERl"IAL POWER RATING <MWT> . . . . . . . . . . . . . . . . . 1456 1.6 DATE OF COMMERCIAL OPERATION .............*. 4/ 15172
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ................. 2
2. 2 STEAM GENERATOR TYPE. . . . . . . . . . . * . . . . * * . . . . . RWOE 2.3 STEAM GENERATOR MODEL NO .*..***.****.....*. 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION .*....** WEST/MITSUBISHI 2.5 DATE OF STEAM GENERATOR COMPLETION ........* 11/15/70
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS <inches) .....*.......** 22.0 3.2 TUBE OUTSIDE DIAMETER (inches) . . . . . . . . . . . . . . 870 3.3 TUBE WALL THICKNESS (inches> .............. . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ....... . 3260 3.5 TUBE PITCH <inches> ......................** 1. 230 3.6 TUBESHEET RADIAL CREVICE (inches) ..*......* . 0080 4.

3.7 DEPTH OF TUBESHEET CREVICE (inches) ....... . 19.30 STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 TUBE SUPPORT PLATE MATERIAL. .............. .

4.3 TUBE MATERIAL .......................*......

4.4 TUBE SUPPLIER ....**.*....................*.

4. 5 DATE OF TUBE MANUFACTURE .......*....*......

FORG.STL.

cs ALLOY 600 WEST/SUMIT/INCO 11115/69

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ...............*...... 6-10 5.2 CARBON CONTENT RANGE (percent) ............ .

5.3 YIELD STRESS RANGE (ksil ......**........**.

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl .......*..

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ......*..........* ROLL/HYO. EXP.

6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches) ...... 2.188;3.47 6.3 PROCESS USED TO FORM BENDS ................* W.BALL/CYL PLST 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psil ............. 2236 7.2 HOT LEG INLET TEMPERATURE (deg Fl .......... 607 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 553 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) *...........

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ...*. 521 7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... 8??

7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ........ .

7.9 WATER CHEMISTRY ...*........................ EARLY PHOS, AVT D-78

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY MIHAMA 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION ...*......*.*..* YES 8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION ...........*......*

8.1.4 LI-BEND APEX-DENTING RELATED ....*....

8.1.5 LI-BEND APEX-NOT DENTING RELATED .****

8.1.6 TSP INTERSECTION-DENTING RELATED ..*.

8. 1 . 7 PLUGS ......*.....**..**....*.*..*..*

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .....*****..****

9.1.2 TUBESHEET CREVICE .*...*......*...**. YES 9.1.3 SLUDGE PILE REGION .*.....**.**.****.

9.1.4 TSP INTERSECTION ..*...*...*...*.**** YES 9 ? INTERGRANULAR ATTACK CIGA>

9. 2. 1 EXPANSION TRANSITION **...****.****..

9.2.2 TUBESHEET CREVICE **..*..*.**...*...* YES 9.2.3 SLUDGE PILE REGION **..**.*.**.*..***

9.2.4 TSP INTERSECTION *.........**.******* YES

9. 3 DENTING **.....*..*......*.......***..*....*

9.4 CORROSION FATIGUE ......**......*..*....****

9.5 EROSION-CORROSION *....*...**...*.**.*..*..*

9. 6 PITTING .......*...*..*.*......**....*.**...
9. 7 WASTAGE. . . . . . . * * . . * * . * . * * . . . . . . . . . . . * . . * * * . YES
9. 8 WEAR ..........*..*...*.*.....*.*.*.*... * *..

9.9 OTHER SECONDARY SIDE PROBLEMS ...*.*.*..****

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *.....*...*...*.***....* 377 10.2 TOTAL TUBES SLEEVED ...*..**..*.*..*.....**.

10.3 OTHER <tube expn.,stress relief,peening) *** CREVICE HYD. EXPANSION

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-79

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY MIHAMA 3

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO............. . * . . . * . . MIHAMA 3 1.2 UTILITY .*............*.....*.*.***..*.*..** KANSAI ELECTRIC 1.3 NSSS SUPPLIER .**..........*...*............ MHI 1.4 ELECTRIC POWER RATING CMWEl .........*...*.. 826
1. 5 THERMAL POWER RATING CMWTl........ . . . . * . . . . 2240 1.6 DATE OF COMMERCIAL OPERATION .*...*........* 12/ 1/76
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS *********..*.**** 3 2.2 STEAM GENERATOR TYPE ..***.***.*.**....**.** RWOE 2.3 STEAM GENERATOR MODEL NO ..........*........ 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION *.*.***. MITSUBISHI 2.5 DATE OF STEAM GENERATOR COMPLETION *...***.. //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> ...*****.*...** 21.7 3.2 TUBE OUTSIDE DIAMETER Cinches) ******..*.*... 880 3.3 TUBE WALL THICKNESS Cinches) ...*.***..*.*.** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR **...**. 3388 3.5 TUBE PITCH Cinches) .*....*.**.*..*.....**** 1.280 3.6 TUBESHEET RADIAL CREVICE Cinches) .**.**.***. 0000 4.

3.7 DEPTH OF TUBESHEET CREVICE Cinches) ..*..... 00.00 STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .....*.*.*....**....*.*..

4.2 TUBE SUPPORT PLATE MATERIAL *...**..........

4.3 TUBE MATERIAL .*....**..*.....*..*..........

4.4 TUBE SUPPLIER ...*.*..*............**....*..

4.5 DATE OF TUBE MANUFACTURE ..*.....**....*..*.

FORG.STL.

CS ALLOY 600 SUMITOMO II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *.**......*...........

5.2 CARBON CONTENT RANGE Cpercent>a************

5.3 YIELD STRESS RANGE (ksi) .................. .

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl .....**.*.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .......*...*...*.. FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) *...*. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS *....**.......*.. CYL.PLSTC.MNDRL 6.4 STRESS RELIEF AFTER TUBING Chours/deg Fl ..* NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ******....*.. 2236 7.2 HOT LEG INLET TEMPERATURE Cdeg Fl .......... 613 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 551 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2J *.**....... ~

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg Fl ..... 531 7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ..*... 889 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) *......*.

7.9 WATER CHEMISTRY .........*.................. AVT ONLY D-80

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY MIHAMA 3

8. REPORTED PRIMARY SIDE PROBLEMS CYes/Na, Date or EFPD ta 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION ................ YES 8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . . YES 8.1.3 LI-BEND TRANSITION ........*......*.*.

8.1.4 LI-BEND APEX-DENTING RELATED .*....**.

8.1.5 LI-BEND APEX-NOT DENTING RELATED .....

8.1.6 TSP INTERSECTION-DENTING RELATED .***

8. 1 . 7 PLUGS .....*.......*...*..*....**....

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/Na,Date or EFPD ta 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ..*..****..****.

9.1.2 TUBESHEET CREVICE *.**..*.**.*.**..**

9. 1. 3 SLUDGE PILE REGION *.***.*..*********

9.1.4 TSP INTERSECTION *.***...***.*.*.*.*.

9.2 INTERGRANULAR ATTACK <IGA>

9. 2. 1 EXPANSION TRANSITION *****.**..******

9.2.2 TUBESHEET CREVICE ***...******.***.*.

9.2.3 SLUDGE PILE REGION ***...*.*.*....**.

9.2.4 TSP INTERSECTION *.**.*..**..*...**.*

9. 3 DENTING .*.***..*...*.....**...*..***.***.*.

9.4 CORROSION FATIGUE **.*.****.**..**..**......

9.5 EROSION-CORROSION ..*.*..*......***.*.*...*.

9. 6 PITTING **.*......*..*.***.*.*..**..*..*.*..
9. 7 WASTAGE .**...* , .*.**..*..**....**.*........
9. 8 WEAR ...**.*.....**......**....*.***.** , *..*

9.9 OTHER SECONDARY SIDE PROBLEMS .*.**.*..*..**

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *...*.***.*.*..*...**... 113 10.2 TOTAL TUBES SLEEVED *.**.*.*.**..**......**.

10.3 OTHER <tube expn.,stress relief,peening> ***

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-81

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY NORTH ANNA 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT Nd ********************* NORTH ANNA 1 1.2 UTILITY *.**.**.*******...****..*.*********. VIRGINIA ELEC.PWR.CO
1. 3 NSSS SUPPLIER .*.*********..***.*****..*.***. WESTINGHOUSE 1.4 ELECTRIC POWER RATING CMWE> *.*******.****** 934
1. 5 THERMAL POWER RATING CMWT> ****************.

1.6 DATE OF COMMERCIAL OPERATION *************** 6/15/7~

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ************.**** 3 2.2 STEAM GENERATOR TYPE ***************.******* RWOE 2.3 STEAM GENERATOR MODEL NO ******************* 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******** WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ********* //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches) ***************

3.2 TUBE OUTSIDE DIAMETER <inches> ************** 875 3.3 TUBE WALL THICKNESS Cinches) **************** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ******** 3388 3.5 TUBE PITCH Cinches> **********..***.*.****** 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches) **.******** 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> ..***.** 00.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *********..*..**.**.***** SA 508 4.2 TUBE SUPPORT PLATE MATERIAL *.*.**.*****.*** CS 4.3 TUBE MATERIAL *********************.*.***.** ALLOY 600 4.4 TUBE SUPPLIER *****..****************.****** WEST/HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE ***.*.************ , II
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *****.***..***.***.***

5.2 CARBON CONTENT RANGE <percent> *.******...**

5.3 YIELD STRESS RANGE Cksi) . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP Cmin/deg F> *********.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS **********.******* ROLL/EXPLOSIVE 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> *.***. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS **.***.*...****** WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING Chours/deg F> ..* NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi> .****.**.**.*

7? HOT LEG INLET TEMPERATURE (deg F> ..*.**..** 614 7.3 COLD LEG OUTLET TEMPERATURE (deg F> ...*..*. 547 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ****..****.*

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) **.**.*.**.

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg F) ..**. 525 7.7 STEAM GENERATOR OPERATING PRESS. Cpsi> *.***.

7.8 TYPICAL SLUDGE PILE DEPTH <inches) **.***..*

7.9 WATER CHEMISTRY .*******.***.*.. ~ **...***..*

D-82 AVT ONLY

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY NORTH ANNA 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC ..

8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION .................... .

8.1.3 LI-BEND TRANSITION ................... YES 8.1.4 LI-BEND APEX-DENTING RELATED .*....*..

8.1.5 U-8END APEX-NOT DENTING RELATED .....

8.1.6 TSP INTERSECTION-DENTING RELATED ..*.

8. 1. 7 PLUGS ...*...................*....... YES 8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack>.
9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .......**...*..*

9.1.2 TUBESHEET CREVICE ..*................

9.1.3 SLUDGE PILE REGION ....*.........*..*

9.1.4 TSP INTERSECTION ......*.....*......* YES 9.2 INTERGRANULAR ATTACK <IGAJ

9. 2. 1 EXF'ANSION TRANSITION **..*...*..**.*.

9.2.2 TUBESHEET CREVICE *..........*.......

9.2.3 SLUDGE PILE REGION ................*.

9.2.4 TSP INTERSECTION ............*..**... YES 9.3 DENTING ...........*.......*................ YES<MILD>

9.4 CORROSION FATIGUE ............*.....*.**....

9.5 EROSION-CORROSION ........................*.

9*6 PI TT I NG. , .................................*

9. 7 WASTAGE ...................................*
9. 8 WEAR ......*....................**..........

9.9 OTHER SECONDARY SIDE PROBLEMS .**...*....*..

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ........................ 284 10.2 TOTAL TUBES SLEEVED ...*.*.......*.*...**..*

10.3 OTHER <tube expn.,stress relief,peeningJ ... ALL ROW 1 U BENDS PLUGGED

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-83

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY NORTH ANNA 2 *

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO . . . . . . . . . . . . . . . . . . . . . NORTH ANNA 2
1. 2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIRGINIA ELEC.PWR.CO 1.3 NSSS SUPPLIER . . * . . . * . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWE) . . . . . . . . . . . . . . . . 890 1.5 THERMAL POWER RATING <MWTl ..*.*..**....***.

1.6 DATE OF COMMERCIAL OPERATION ..*.***..*..... 8/15/80

2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS .*.....*.........

2.2 STEAM GENERATOR TYPE ** ***.** I ************** RWOE 2.3 STEAM GENERATOR MODEL NO * ******.*********** 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION **..**** WEST I NC3HOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION .....***. II

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I CKNESS ( i nc:hes) *.*........*...
3. 2 TUBE OUTS IDE DIAMETER ( i nc:hes) . . . . * * . . . * . * . . 875
3. 3 TUBE WALL TH I CK NESS ( i nc:hes) . . . . * * * * . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *.**.... 3388 3.5 TUBE PITCH <inc:hesl ......*....*...*........ 1.281 3.6 TUBESHEET RADIAL CREVICE <inc:hesl . . . . . . . . . . . 0000 4.

3.7 DEPTH OF TUBESHEET CREVICE <inc:hesl . . . . . . . . 00.00 STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *............*..*........

4.2 TUBE SUPPORT PLATE MATERIAL ...*...*........

4.3 TUBE MATERIAL . . * . . . . . . . . . . . . . * . . * . . . . . . . . . .

4.4 TUBE SUPPLIER . . . . . . . . . . . . . . * . . . . . . . . . . . . . . .

4.5 DATE OF TUBE MANUFACTURE ......*.*..........

SA 508 CS ALLOY 600 WESTINGHOUSE II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . * . . . . . . . . . . . .

5.2 CARBON CONTENT RANGE <percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE <ksi) .............. m****

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl .**.......

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ..*...*..*........ ROLL/EXPLOSIVE 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inc:hesl ....** 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS . * . . . . . . . . . . . . . . . W. BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS
7. 1 PRIMARY COOLANT PRESSURE (psi) . . . . . . . . . . . . .

7? HOT LEG INLET TEMPERATURE (deg Fl ........*.

7.3 COLD LEG OUTLET TEMPERATURE <deg Fl ....... .

7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) . . . . . . . . . . . .

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) . . . . . . . . . . .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..*..

7.7 STEAM GENERATOR OPERATING PRESS. (psi) ..... .

7.8 TYPICAL SLUDGE PILE DEPTH (inches) . . . . . . . . .

7.9 WATER CHEMISTRY . . . . . . . . . . . . * . . . . . . . . . . . . . . . AVT ONLY D-84

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY NORTH ANNA 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/Na, Date or EFPD ta 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ...*

8.1.7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . .

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/Na,Date or EFPD ta 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.l EXPANSION TRANSITION ....*...*..*....

9.1.2 TUBESHEET CREVICE *................*.

9.1.3 SLUDGE PILE REGION ..*...*..*.......*

9.1.4 TSP INTERSECTION .***..............**

9.2 INTERGRANULAR ATTACK CIGA>

9.2.1 EXPANSION TRANSITION ..............*.

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ............*.....

9.2.4 TSP INTERSECTION ..*.*...*...........

9. 3 DENTING ............................*.......* YES CMINORl 9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9 . 6 PI TT I NG . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . .

9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAR ................................*..*...

9.9 OTHER SECONDARY SIDE PROBLEMS ............. .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 284 10.2 TOTAL TUBES SLEEVED ......*.................

10.3 OTHER (tube expn.,stress relief,peeningl ... ALL ROW 1 U BENDS PLUGGED

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-85

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY OBRIGHEIM<ORIG SG>

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO .**.**.*..*..*.***... OBRIGHEIMCORIG SG>

1.2 UTILITY ......*. 1!1********************-******* KWO 1.3 NSSS SUPPLIER ..**.**..*.*.....*...*.***.*.. SIEMENS

1. 4 ELECTRIC POWER RATING <MWE> ......... ; ..... . 345
1. 5 THERMAL POWER RATING <MWT> . . . . . . . . . . . . . . . . . 1050 1.6 DATE OF COMMERCIAL OPERATION ...*.**....*... 3/15/69
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ...........  !***** 2 2.2 STEAM GENERATOR TYPE **********.********** ~.

2.3 STEAM GENERATOR MODEL NO *****************..

2.4 STEAM GENERATOR FABRICATOR/LOCATION ********

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I C~:NESS * . . * * . * * * . . * * .
  • 27. 0 3.2 TUBE OUTSIDE DIAMETER (inc:hes),, **.********* 866 3.3 TUBE WALL THICKNESS (inc:hes> ******...******* 047 3.4 NUMBER OF TUBES PER STEAM GENERATOR *.***..* 2605 3.5 TUBE PITCH Cinc:hes) **..**.*.**.**.****.**..

3.6 TUBESHEET RADIAL CREVICE <inc:hesl .*.****..*

3.7 DEPTH OF TUBESHEET CREVICE <inc:hesl .**....*

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *...**..*.*.***...*.*..*.

4? TUBE SUPPORT PLATE MATERIAL ..*..*...****.*. SS 4.3 TUBE MATERIAL ....*....*.**.***.*.***.***..* ALLOY 600 4.4 TUBE SUPPLIER ******....**.**.*****.*.**.**. MANNESMANN 4.5 DATE OF TUBE MANUFACTURE ......*.****....*.* II

5. TUBE MATERIAL PROPERTIES
5. 1 . ASTM GRAIN SIZE RANGE *......*.****.***..*.. 9-10 5.2 CARBON CONTENT RANGE <percent> .*........ ~ ..

5.3 YIELD STRESS RANGE (ksil ***..*.*.**...*...*

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl **.***....

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .**.******..****** 3 PART.ROLLS 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ..... .

6.3 PROCESS USED TO FORM BENDS ..*..*.*....**.**

6.4 STRESS RELIEF AFTE~ TUBING (hours/deg Fl ...

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ..**.......*. 2146 7.2 HOT LEG INLET TEMPERATURE (deg F> *......... 594 7.3 COLD LEG OUTLET TEMPERATURE <deg Fl .......* 541 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) **.........* 80808 7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2J .*......... 40404 7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl .... . 516 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ..... . 798 7.8 TYPICAL SLUDGE PILE DEPTH (inc:hesl ........ . TO 10 7.9 WATER CHEMISTRY ......*...*.......*......... AVT ONLY <?>

D-86

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY OBRIGHEIMCORIG SGl

8. REPORTED PRIMARY SIDE PROBLEMS *eves/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXF'ANSION TRANSITION ..............*. YES 8.1.2 EXPANDED REGION ....*............*...

8.1.3 LI-BEND TRANSITION ..............*...* YES 8.1.4 LI-BEND APEX-DENTING RELATED ........*

8.1.5 LI-BEND APEX-NOT DENTING RELATED ..... YES 8.1.6 TSP INTERSECTION-DENTING RELATED ..**

8. 1. 7 PLUGS ...*.......................... *.

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ...*..**......*.

9.1.2 TUBESHEET CREVICE *......*.......**.*

9.1.3 SLUDGE PILE REGION ..............**.* YES 9.1.4 TSP INTERSECTION ...........*....**.*

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ...*..**........

9.2.2 TUBESHEET CREVICE ........**..*..**.*

9.2.3 SLUDGE PILE REGION ........*.*..*.***

9.2.4 TSP INTERSECTION .**.......*.........

  • 9. 3 DENTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.4 CORROSION FATIGUE ......*...................

9.5 EROSION-CORROSION ................*.....*...

9.6 PI TT I NG ..*.....................*......*..**

9. 7 WASTAGE ..................*.......*.....*..*
9. 8 WEAR ...*..........*......*......**.*.***.**

9.9 OTHER SECONDARY SIDE PROBLEMS ..........*.**

10. INSERVICE REMEDIAL MEASURES

. 10.1 TOTAL TUBES PLUGGED ...............**....... 273 10.2 TOTAL TUBES SLEEVED .....*..*......*........

10.3 OTHER <tube expn.,stress relief,peeningl *..

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-87

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY OHI 1 *

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO *.................... OH! 1 1.2 UTILITY ............*...................*... KANSAI ELECTRIC 1.3 NSSS SUPPLIER . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWEl................ 1175
1. 5 THERMAL POWER RATING <MWTl . . . . . . . . . . . . . . . . . 3423 1.6 DATE OF COMMERCIAL OPERATION ............... 3/27/79
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *.............*.. 4 2.2 STEAM GENERATOR TYPE **..*.*.*****..*.****.. RWOE 2.3 STEAM GENERATOR MODEL NO ....*.***.*..*...*. 51A 2.4 STEAM GENERATOR FABRICATOR/LOCATION ******.. WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......... II
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THIC~:NESS <inches) ....... ,, .....* 21. 0 3.2 TUBE OUTSIDE DIAMETER <inches) .......*.*..*. 870 3.3 TUBE WALL THICKNESS Cinches) . . . . * . * . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR .*..*... 3388 3.5 TUBE PITCH (inches) *............***........ 1.280 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . * . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> ........ 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .......*.....*........... FORG.STL.

4.2 TUBE SUPPORT PLATE MATERIAL ................ CS 4.3 TUBE MATERIAL ..*...*....**.*...........*... ALLOY 600 4.4 TUBE SUPPLIER ........................*...*. WEST/HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . . . //

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE~ ..*...........*...... 8-10 5.2 CARBON CONTENT RANGE (percent) . . . . . . . . . . . . . . 01-.04 5.3 YIELD STRESS RANGE Cksil ....*..**......*...

5.4 MILL ANNEAL TIME/TEMP Cmin/deg Fl ........*.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .....*.*...**..*.. FULL DEPTH ROLL 6.2 RADII OF ROW l AND 2 LI-BENDS Cinches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS .**.....*........ WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) . . . . . . . * . . . . . 2236 7.2 HOT LEG INLET TEMPERATURE Cdeg Fl .......... 615 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl *....... 550 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2l .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..... 533 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-88

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY OH! 1

8. REPORTED PRIMARY SIDE PROBLEMS CYes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .......*........ YES 8.1.2 EXPANDED REGION ............*........ YES 8.1.3 LI-BEND TRANSITION ................... YES 8.1.4 U-BEND APEX-DENTING RELATED *.....*..

8.1.5 U-BEND APEX-NOT DENTING RELATED *....

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8. 1. 7 PLUGS .....*.....***........*...****.

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION **.****..*.*** ~.

9.1.2 TUBESHEET CREVICE **..*...****.....**

9.1.3 SLUDGE PILE REGION **..***..*.....***

9.1.4 TSP INTERSECTION **...*...****...**.* YES 9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION .*..*.**...****.

9.2.2 TUBESHEET CREVICE *.*..***..*.*. ~ ****

9.2.3 SLUDGE PILE REGION *..**.**.*.**..**.

9.2.4 TSP INTERSECTION .**.**.***.*..*****. YES

9. 3 DENTING ..............*...*...*....*...*.*.*

9.4 CORROSION FATIGUE *.*.*.**....**.*.**.......

9.5 EROSION-CORROSION .*.***..**.***...*......*.

9 *6 PI TT I NG .***.....**.....*...*...*..... ** **...

9. 7 WASTAGE *.*.*....*.*....**.*.......**....**.
9. 8 WEAR * *************.*******.*********.******

9.9 OTHER SECONDARY SIDE PROBLEMS ***.....*.****

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED .....*......*......*...* 1216 10.2 TOTAL TUBES .SLEEVED ..**.**.......***..*...*

10.3 OTHER (tube expn.,stress relief,peeningl .*. ALL ROW 1&2 UB PLUGGED

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-89

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY OH! 2

1. PLANT DESCRIPTION
1. 1 P*LANT NAME AND UNIT NO *...............*.... OHI 2 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KANSAI ELECTRIC 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWE)................ 1175
1. 5 THERMAL POWER RAT I NG ( MWT) . . . . . . . . . . . . * . . . . 3436 1.6 DATE OF COMMERCIAL OPERATION . . . . . . . . . . . . . . . 12/ 5/79
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .............*... 4 2.2 STEAM GENERATOR TYPE ..*....*...*...*.*..*** RWOE 2.3 STEAM GENERATOR MODEL NO *..***...***....*.. 51A 2.4 STEAM GENERATOR FABRICATOR/LOCATION *.*.*.** MITSUBISHI 2.5 DATE OF STEAM GENERATOR COMPLETION ......... II
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THIC~'.NESS (inches> ............... 21. 7 3.2 TUBE OUTSIDE DIAMETER (inches) . . . . . * . . * . * . . . 880 3.3 TUBE WALL THICKNESS <inches) . . . . . . * . . . * . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *....... 3388 3.5 TUBE PITCH <inches) .......*...**.*....*.*.* 1.280 3.6 TUBESHEET RADIAL CREVICE (inches) . . . . . . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ......*. 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ...*......***.....*...... FORG.STL.

4.2 TUBE SUPPORT PLATE MATERIAL *.....*.......*. CS 4.3 TUBE MATERIAL ......**....**.....***.*...... ALLOY 600 4.4 TUBE SUPPLIER ............*............*..*. SUMITOMO 4.5 DATE OF TUBE MANUFACTURE .**................ II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE .*.........*..........

5.2 CARBON CONTENT RANGE (percent) . . * . . . . . . * . . .

5.3 YIELD STRESS RANGE (ksi) . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP (min/deg F> ......*...

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *...*..*.......... FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches> ..*... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS *.......*........ CYL.PLSTC.MNDRL 6.4 STRESS RELIEF AFTER TUBING !hours/deg F) ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) ............. 2236 7? HOT LEG INLET TEMPERATURE (deg F> .......... 615 7.3 COLD LEG OUTLET TEMPERATURE !deg F> ........ 550 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ..*.........

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ........*..

7.6 STEAM GENERATOR OPERATING TEMP. !deg Fl ..... 533 7.7 STEAM GENERATOR OPERATING PRESS. !psi) ..... .

7.8 TYPICAL SLUDGE PILE DEPTH <inches) ........ .

7.9 WATER CHEMISTRY ...**....................... AVT ONLY D-90

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY OHI 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION ....*........... YES 8.1.2 EXPANDED REGION ........... ~ ......... YES 8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1 . 7 PLUGS .....*............*........*...

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ........*.*.....

9.1.2 TUBESHEET CREVICE ................*..

9.1.3 SLUDGE PILE REGION . . . . . . . . . . . . . . . . . .

9.1.4 TSP INTERSECTION *.................*.

9.2 INTERGRANULAR ATTACK CIGAJ 9.2.1 EXPANSION TRANSITION ..............*.

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION . . . . . . . . . . . . . . . . . .

9.2.4 TSP INTERSECTION ..*.............*..*

9.3 DENTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * * .

9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION ........................*.

9. 6 PITTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAR .............***.....................*.

9.9 OTHER SECONDARY SIDE PROBLEMS ............**

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 84 10.2 TOTAL TUBES SLEEVED ....................*...

10.3 OTHER <tube expn.,stress relief,pe~ningJ ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-91

DOMINION ENGINEERING, INC.

EPRI/SGDG II CRACKING SURVEY POINT BEACH 1 CORIG.SGl

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO **...............*.*. POINT BEACH 1 CORIG.SGl
1. 2 UTILITY . . . . . . . . . . . . . . . . . . * . . * . . . . . . . . . . . . . . WISCONSIN ELECTRIC 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING CMWEl .....*.......... 497
1. 5 THERMAL POWER RATING CMWTl .............*... 1519 1.6 DATE OF COMMERCIAL OPERATION *......*....... 12/15/70
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS ************.**** 2
2. 2 STEAM GENERATOR TYPE *.**.*......**.*......* RWOE
2. 3 STEAM GENERATOR MODEL NO . . . . . . . . . . . . . . . . . . . 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION ..**.... WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION *........ //
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I C~:NESS (inches l .*.*..*....*... 22.0 3.2 TUBE OUTSIDE DIAMETER (inches) . . . . . . . . . . . . . . 875 3.3 TUBE WALL THICKNESS Cinches) . . . . . . . . . . . . . . . .050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ....... . 3260 3.5 TUBE PITCH Cinches) .*.....*....*...*.....*. 1.234 3.6 TUBESHEET RADIAL CREVICE Cinches) ......... . . 0070 3.7 DEPTH

,, OF TUBESHEET CREVICE (inches) ....... . 20.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . * . . . . . . . . . . . . . . . . . . . . . . . MN,MO 4.2 TUBE SUPPORT PLATE MATERIAL . . . . . . . . . . . . . . . . cs 4.3 TUBE MATERIAL ...*..*......................* ALLOY 600 4.4 TUBE SUPPLIER .....**.........*............. HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE *.................. II
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . * . . . . . . . . . . . . . . . 6 5.2 CARBON CONTENT RANGE (percent> . . . . * . . . * . . . .

5.3 YIELD STRESS RANGE Cksi> ..*....*...*.......

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl ....**.*..

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .....*.**......... PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.188,3.47 6.3 PROCESS USED TD FORM BENDS . . . . . . . . . . . . . . . . . H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi> . . . . . . . . . . . . . 2235 7.2 HOT LEG INLET TEMPERATURE (deg Fl ..*....... 611 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl ........ 555
7. 4 HOT LEG HEAT FLUX <BTU/hr /ft*'.. 2)............ 102000 7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2J .......... .

7.6 STEAM GENERATOR OPERATING TEMP. <deg Fl ..... 500 7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... 720 7.8 TYPICAL SLUDGE PILE DEPTH <inches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . TO CY 3 PHOS, AVT D-92

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY POINT BEACH 1 (ORIG.SG)

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation!

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .....*..........

8.1.2 EXPANDED REGION ..*.......*..........

8.1.3 U-BEND TRANSITION *................*.

8.1.4 U-BEND APEX-DENTING RELATED ........ .

8.1.5 U-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS............................... YES 8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack>.
9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation!

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *.....*.......*.

9.1.2 TUBESHEET CREVICE ..........*...*..*. YES

9. 1. 3 SLUDGE PI LE REG ION. . . . . . . . . * . . . . . . . . YES 9.1.4 TSP INTERSECTION .*..................

9.2 INTERGRANULAR ATTACK <IGAI 9.2.1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .

9. 2. 2 TUBESHEET CREVICE. * * . . . . . * . . . . . . . . . . YES
9. 2. 3 SLUDGE PILE REGION.................. YES 9.2.4 TSP INTERSECTION . . . . . . . . . . . . . . . . . . . .
9. 3 DENTING . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . .

9.4 CORROSION FATIGUE . . . . . . . . * . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 6 PI TT I NG . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . .
9. 7 WASTAGE. . . . . . . . * . . . * . . . . . . . . . . . . . . . . . . . . . . . YES
9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . **********

9.9 OTHER SECONDARY SIDE PROBLEMS .............. FOREIGN OBJECTS

10. INSERVItE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 895 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . . . . 12-12/83 10.3 OTHER <tube expn.,stress relief,peeningl .. .
11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-93

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY POINT BEACH 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO .*........*.......... POINT BEACH 2
1. 2 UTILITY ...........*.............*.......... WISCONSIN ELECTRIC 1.3 NSSS SUPPLIER .............*..............*. WESTINGHOUSE
1. 4 ELECTRIC POWER RATING CMWE) .....*..*....... 497
1. 5 THERMAL POWER RATING CMWT> ......*....*..... 1519 1.6 DATE OF COMMERCIAL OPERATION ......*........ 10/15/72
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS ......***.*.****. 2 2.2 STEAM GENERATOR TYPE ..*..*...*...**.**..*.* RWOE 2.3 STEAM GENERATOR MODEL NO *.**..*...**..*.... 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION ..*..*.. WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ..*....** II
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS <inc:hes) ..........*.**. 22.0 3.2 TUBE OUTSIDE DIAMETER (inc:hes> .*.*....*..... 875 3.3 TUBE WALL THICKNESS Cinc:hes> . . . . . . . * . . . . . * * . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR **..**** 3260 3.5 TUBE PITCH Cinc:hes) ..*....*....*.*.....*... 1.234 3.6 TUBESHEET RADIAL CREVICE Cinc:hes) . * . . . * . . . . . 0070 3.7 DEPTH OF TUBESHEET CREVICE Cinc:hes> ........ 20.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *...............*.*.....* MN,MO 4.2 TUBE SUPPORT PLATE MATER[AL .....*..**...... CS 4.3 TUBE MATERIAL .....**...*...*......*........ ALLOY 600 4.4 TUBE SUPPLIER .....*..................*..... HUNTINGTON
4. 5 DATE OF TUBE MANUFACTURE. . . . . . . . . . . . . . . . * . . 11
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ..............*....... 6
5. 2 CARBON CONTENT RANGE (per-cent) . . . . . . . . * . . * .

5.3 YIELD STRESS RANGE Cksi) ...*...............

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl .*..**..*.

6. TUBE EXPA~SION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .....*..........*. PART DEPTH RO(L 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inc:hes) ...... 2.188,3.47 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsi) ....**....... 2235 7.2 HOT LEG INLET TEMPERATURE (deg Fl .......... 611 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 555
7. 4 HOT LEG HEAT FLUX <BTU/hr /ft*2)............ 102000 7.5 COLD LEG HEAT FLUX CBTU/hr7ftA2l .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg F) ..... 516 7.7 STEAM GENERATOR OPERATING PRESS. Cpsi) ...... 790 7.8 TYPICAL SLUDGE PILE DEPTH Cinc:hes)......... 2.00 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . CY1 PHOS, AVT D-94 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY POINT BEACH 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION *...............
8. 1. 2 EXPANDED REGION ...............*...*.
8. 1. 3 LI-BEND TRANSITION *........*....*.*..
8. 1. 4 LI-BEND APEX-DENTING RELATED .......*.
8. 1. 5 U-BEND APEX-NOT DENTING RELATED .....
8. 1. 6 TSP INTERSECTION-DENTING RELATED ..*.

B. 1. 7 PLUGS ...*..*..**......*....* * * ... * *

  • 8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.
9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ...*...*..*.**.*

9.1.2 TUBESHEET CREVICE .*..**.*........... YES 9 . 1 . 3 SLUDGE PI LE REG I ON. * * . . . * . . * . . . . * * *

  • YES 9.1.4 TSP INTERSECTION *...*......*........

9 ? INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION **.*.**..*******

9.2.2 TUBESHEET CREVICE *.............*.... YES 9.2.3 SLUDGE PILE REGION .......*.......... YES 9.2.4 TSP INTERSECTION **.*...**.*......**.

9. 3 DENT I NG ................*..*....*.*...*.....

9.4 CORROSION FATIGUE **..*....*....*......*....

9.5 EROSION-CORROSION ............*.**..........

9. 6 PI TT I NG .......**..*.......*...*..*.* ....... .

9.7 WASTAGE ...........*.....*.....*...*..*..... YES

9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . * * * . . . . . . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS ..*.*.........

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 133
10. 2 TOTAL TUBES SLEEVED ...*.*......*.....*..... 4150-12/83 10.3 OTHER <tube expn.,stress relief,peeningl *..
11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-95

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY PRAIRE ISLAND 1

1. PLANT DESCRIPTION .

1 . 1 PLANT NAME AND UN IT NO. . . . . . * . . . . . * . . . . . . . . PRA I RE I BLAND 1 1.2 UTILITY ..........***....... , ............... NORTHERN STATES PWR 1.3 NSSS SUPPLIER ............*..............*.. WESTINGHOUSE

1. 4 ELECTF:IC POWER RATING <MWE)................ 530 1.5 THERMAL POWER RATING <MWT> ........*......*. 1650 1.6 DATE OF COMMERCIAL OPERATION ............... 12/15/73
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS ********.* a *** a ** 2 2.2 STEAM GENERATOR TYPE ....*.....*.*****..*... RWOE 2.3 STEAM GENERATOR MODEL NO .**.*.***.*........ 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ...****. WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION .*....*** //
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I CKNESS (inches) . . . * . . . * . . . . . .
  • 21. 0 3.2 TUBE OUTSIDE DIAMETER Cinches) .****.......*. 875 3.3 TUBE WALL THICKNESS Cinches) ....**........** 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ..*..... 3388 3.5 TUBE PITCH Cinches> .....*.......*.......... 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches> . . . . . . . . . . . 0060 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ........ 18.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .*..*.....*.***...*......

4.2 TUBE SUPPORT PLATE MATERIAL ...**...........

4.3 TUBE MATERIAL ...........*...............**.

4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . * .

4. 5 DATE OF TUBE MANUFACTURE *...*.......*......

SA 508 CS ALLOY 600 WEST/HUNTINGTON 11

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE .........****.........

5.2 CARBON CONTENT RANGE (percent> ............ .

5.3 YIELD STRESS RANGE (ksi)m**a***************

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl ..*.......

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .......*.*........ ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ...*......... 2240 7.2 HOT LEG INLET TEMPERATURE (deg F> *......... 599 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ....... .

7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. <deg F> ..... 530 7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... 710 7.8 TYPICAL SLUDGE PILE DEPTH (inches> ......... .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . EARLY PHOS, AVT D-96

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY PRAIRE ISLAND 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION ................... YES 8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ..**

8. 1. 7 PLUGS ..*.........*.......*.*........

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REF'ORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *...*.*.........

9.1.2 TUBESHEET CREVICE ....*...*...*......

9.1.3 SLUDGE PILE REGION *.*...*...........

9.1.4 TSP INTERSECTION ..*.*..*........*.**

9.2 INTERGRANULAR ATTACK CIGAJ 9.2.1 EXPANSION TRANSITION .*.**.**......*.

9.2.2 TUBESHEET CREVICE **...**.*..*...**.. YES 9.2.3 SLUDGE PILE REGION *.....**.*.....*..

9.2.4 TSP INTERSECTION **...*..**......*...

9. 3 DENTING ....*..*..*.......................*.

9.4 CORROSION FATIGUE .........*....**.*.*......

9.5 EROSION-CORROSION ...*................*.....

9. 6 PITTING *....*..........*.*.....**.....**...

9.7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES CTSPI

9. 8 WEAR. . . * . . . . . * . . * . . . . . . * . . * . . . . . . . . . . . . . . . . YES ( TSF')

9.9 OTHER SECONDARY SIDE PROBLEMS .............. FOREIGN OBJECT

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 34 10.2 TOTAL TUBES SLEEVED ....*.................*.

10.3 OTHER <tube expn.,stress relief,peeningl .*.

11. NOTES 11
  • 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-97

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY PRARIE ISLAND 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO *.**..*..***...***.** PRARIE ISLAND 2 1.2 UTILITY *......***.*****.*.*.*.***.***.***.* NORTHERN STATES PWR 1.3 NSSS SUPPLIER ...*..*.***..****..*.*..*.**.* WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWE>................ 5_30 1.5 THERMAL POWER RATING CMWT> *.**...**.*...*.* 1650 1.6 DATE OF COMMERCIAL OPERATION ***..******. ~** 12/15/74
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ......* r * * * * * * * *
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> .******.*.****. 21.0 3.2 TUBE OUTSIDE DIAMETER <inches) **.*********** 875 3.3 TUBE WALL THICKNESS Cinches) .**..***..**.*.* 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR .*****.. 3388 3.5 TUBE PITCH (inches> ..*******. L************* 1.281 3,6 TUBESHEET RADIAL CREVICE <inches) ****.****.. 0060 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ...*.*.. 18.00 4.

5.

STEAM GENERATOR MATERIALS 4 . 1 TUBESHEET MATER I AL. *..***.*. ~ . . * . . . * . * . * . *

  • 4.2 TUBE SUPPORT PLATE MATERIAL .*.*****..*.*..*

4.3 TUBE MATERIAL *.***......**...**.***.....*..

4.4 TUBE SUPPLIER ********..*..**....**.*....*..

4.5 DATE OF TUBE MANUFACTURE **..****.**.***..*.

TUBE MATERIAL PROPERTIES SA 508 CS ALLOY 600

~EST/HUNTINGTON

//

5. 1 ASTM GRAIN SIZE RANGE ..*.......**....*.*... 8-9 C" ,..,

-1 * ..::. CARBON CONTENT RANGE Cpercentl ............*

5.3 YIELD STRESS RANGE Cksil ****....**.*...* ~ .*

5.4 MILL ANNEAL TIME/TEMP Cmin/deg Fl .**....*..

6. TUBE EXPANSION PARAMETERS
6. 1 TYPE OF EXPANSION PROCESS *...**...**....*** PART DEPTH ROLL 6 ,., RADII OF ROW 1 AND 2 LI-BENDS (inches) ...*.. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS .*.**.***.....*** WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg F> ..* NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi> ...........** 2240 7.2 HOT LEG INLET TEMPERATURE (deg Fl .......... 599 7.3 COLD LEG OUTLET TEMPERATURE <deg Fl ....... .

7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2J ...........*

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .........*.

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl *.... 511 7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ...... 710 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> .......*.

7.9 WATER CHEMISTRY .*.*.*...................... AVT ONLY D-98 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY PRARIE ISLAND 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .............*..

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 U-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8.1.7 PLUGS ...........................**..

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation!

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *...*......*.**.

9.1.2 TUBESHEET CREVICE .....*..*.......**.

9.1.3 SLUDGE PILE REGION *.....*.**..*....*

9.1.4 TSP INTERSECTION ....*...*.*....*.*..

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION *...............

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION . . . . . . . . . . . . . . . . . .

9.2.4 TSP INTERSECTION ................*...

9. 3 DENTING . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . .

9.4 CORROSION FATIGUE .....*........*...........

9.5 EROSION-CORROSION ...............**.........

9. 6 PITTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . .

9.7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES CTSPI

9. 8 WEAi=<: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES <TSP) 9.9 OTHER SECONDARY SIDE PROBLEMS ............. .
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 84 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . . . .

10.3 OTHER <tube expn.,stress relief,peeningl .*.

11. NOTES
11. 1 11.2 11.3 11.4 11.5 11.6
  • D-99

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY F:INGHALS 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ..**...**...........* RINGHALS 2 1.2 UTILITY ..............*...*................. SWED. STATE POWER BO 1.3 NSSS SUPPLIER ..*..*.....**.........*....... WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWEl................ 820 1.5 THERMAL POWER RATING <MWTl *... ~ *........... 2432 1.6 DATE OF COMMERCIAL OPERATION .....*...*..... 5/1517~
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ....*............ 2  !

2.2 STEAM GENERATOR TYPE **...*......**....***.. RWOE 2.3 STEAM GENERATOR MODEL NO ......**.**.......* 51C 2.4 STEAM GENERATOR FABRICATOR/LOCATION ....*.**

2.5 DATE OF STEAM GENERATOR COMPLETION ......... II

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBE SHEET TH I CKNESS (inc: hes) **.........*... 21. 0 3.2 TUBE OUTSIDE DIAMETER (inches> ............ . . 875 3.3 TUBE WALL THICKNESS Cinches) . * * . . * . * * . . . * . * . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ....... . 3388 3.5 TUBE PITCH (inches) . . . . . . . . . . . . . . . . . . . . . . . . 1. 281 3.6 TUBESHEET RADIAL CREVICE (inches) ......... . . 0060 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ....... . 18.75
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 TUBE SUPPORT PLATE MATERIAL ................

4.3 TUBE MATERIAL ................*.............

4.4 TUBE SUPPLIER ............................*.

4. 5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . . .

FORG.STL.

SA 508 ALLOY 600 WESTINGHOUSE 11

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . . 8-10 5.2 CARBON CONTENT RANGE <percent) . . . . . . . . . . . . . . 03-.05 5.3 YIELD STRESS RANGE <ksi) .......**..........

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl .......... 1875Furn,1775 Tube

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS . . . . . . . . . . . . . . . . . . PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches) ...... 2.1875,3.4685 6.3 PROCESS USED TD FORM BENDS ................. W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) ............. 2235 7.2 HOT LEG INLET TEMPERATURE <deg Fl .......... 616 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 558
7. 4 HOT LEG HEAT FLUX <BTU/hr /ft**'*2) ........... .

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. <deg Fl ..... 528 7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... 855 7.8 TYPICAL SLUDGE PILE DEPTH (inches) ......... 1.1 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 MO PHOS LO PWR,AVT D-100

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY RINGHALS 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ................ YES 8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . . YES 8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED *....

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8. 1. 7 PLUGS ...*.......*...*.....*.......*.

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ....*.......*...

9. 1 . 2 TUBESHEET CREVICE. . . * . . . . . . * * . . . . . . . YES 9.1.3 SLUDGE PILE REGION ..*.........*.....

9.1.4 TSP INTERSECTION ..*.....*..*.*......

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION ..**.**.......*.

9. 2. 2 TUBESHEET CREVICE. . . . . * . . . . . . . . * * . * . YES 9.2.3 SLUDGE PILE REGION **..*.............

9.2.4 TSP INTERSECTION .........***........

9. 3 DENTING ................................**..

9.4 CORROSION FATIGUE .................*.*......

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9.6 PITTING .*.......................**.........

9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAR ..**........**.....*.......*..*........

9.9 OTHER SECONDARY SIDE PROBLEMS .......*......

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 300 10.2 TOTAL TUBES SLEEVED ..................*.....

10.3 OTHER (tube expn.,stress relief,peening) ... ALL ROW 1 U BENDS PLUGGED

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-101

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY RINGHALS 3

1. PLANT DESCRIPTION 1 . 1 PLANT NAME AND UN IT NO. . . . . . . . . * * . . * . . * . . . . RI NGHALS 3
1. 2 UTILITY ...................*................ SSPB 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWE> ...... ,......... 900
1. 5 THERl"IAL POWER RATING <MWT> ................ .

1.6 DATE OF COMMERCIAL OPERATION ............... 4/15/81

2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS ***.************* 3 2.2 STEAM GENERATOR TYPE ..............*..*****. RWE 2.3 STEAM GENERATOR MODEL NO *....*.*****.....** D3 2.4 STEAM GENERATOR FABRICATOR/LOCATION ........ WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......... II
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I Cl<NESS (inches> * . . . . . * . . . . . . . . 21. 0 3.2 TUBE OUTSIDE DIAMETER (inches> . * . . . . . . . . . . * . 750 3.3 TUBE WALL THICKNESS (inches) . * . . . . . . . . . . . . . . 043 3.4 NUMBER OF TUBES PER STEAM GENERATOR ......*. 4674 3.5 TUBE PITCH Cinches) ............*..........* 1.060 3.6 TUBESHEET RADIAL CREVICE <inches) . . . . . * . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE (inches) ........ 00.00 4.

5.

STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ................*..*.....

4.2 TUBE SUPPORT PLATE MATERIAL ...............*

4.3 TUBE MATERIAL .....*.................*...... ALLOY 600 4.4 TUBE SUPPLIER ...................*...*.*.... WESTINGHOUSE

4. 5 DATE OF 'TUBE MANUFACTURE ..*................ 11 TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . . 8-9 5.2 CARBON CONTENT RANGE (percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE <ksi) .......*.......*...

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl .*........ 1875 Furn.,1775 Tube

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS . . . . . . . . . . . . . . . . . . F.D.ROLL/DAM 6? RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.250J3.312 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . W. BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) ............. 2250 7? HOT LEG INLET TEMPERATURE (deg F> .......... 618 7.3 COLD LEG OUTLET TEMPERATURE <deg Fl ........ 553 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2l .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg F> ..... 547 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ..... .

7.8 TYPICAL SLUDGE PILE DEPTH (inches) ......... 0.25 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-102 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY RINGHALS 3

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8. 1. 2 EXPANDED REGION.......... . * . . . . . . . . . YES-BY ECT 8.1.3 LI-BEND TRANSITION ..................*

8.1.4 LI-BEND APEX-DENTING RELATED *.....**.

8.1.5 LI-BEND APEX-NOT DENTING RELATED *....

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8. 1 . 7 PLUGS ...............*...*..*...*....

8? OTHER PRIMARY PROBLEMS<e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ....***....***..

9.1.2 TUBESHEET CREVICE *......****.....*.*

9.1.3 SLUDGE PILE REGION .....*.......****.

9.1.4 TSP INTERSECTION .*.*...*.**....*..**

9 ? INTERGRANULAR ATTACK CIGAJ 9.2.1 EXPANSION TRANSITION ....*.**...*...*

9.2.2 TUBESHEET CREVICE .........*.....**.*

9.2.3 SLUDGE PILE REGION .......*......*..*

9.2.4 TSP INTERSECTION .......*....*.******

  • 9. 3 DENT I NG . . . . . . . . . . . . . . . . . . . . . . . . . . . * . , ..**..

9.4 CORROSION FATIGUE ......*..*...*....*.*..**.

9.5 EROSION-CORROSION .*.......................*

9. 6 PITTING .................*.*....*... , .*.....

9.7 WASTAGE ............*....***.*..............

9.8 WEAR . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . YESCPREHEATERl 9.9 OTHER SECONDARY SIDE PROBLEMS ............. .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ........*...............

10.2 TOTAL TUBES SLEEVED ..........*.****........

10.3 OTHER <tube expn.,stress relief,peeningJ ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-103

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY ROBINSON 2 <ORIG SG)

1. P~ANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO .......*............. ROBINSON 2 <ORIG SG>

1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . CAROLINA P&L 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE

1. 4 ELECTRIC POWER RATING CMWE)................ 770 1.5 THERMAL POWER RATING CMWTJ .......*......... 2300 1.6 DATE OF COMMERCIAL OPERATION *.............. 3/15/71
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .... a * * * * * * * * * * *
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches) .*.......*..... 22.0 3.2 TUBE OUTSIDE DIAMETER Cinches> .......*.* ; * . . 875 3.3 TUBE WALL THICKNESS Cinches> **.*.*.........* 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *....... 3260 3.5 TUBE PITCH Cinches) ............*......*.... 1.234 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . . . . . . 0070 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ........ 18.00 4.

5.

STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ...*.....................

4.2 TUBE SUPPORT PLATE MATERIAL ..........**..*.

4.3 TUBE MATERIAL ....*...........*.**..*.......

4.4 TUBE SUPPLIER ...*....*...*....**.........*.

4.5 DATE OF TUBE MANUFACTURE .....*..*..........

TUBE MATERIAL PROPERTIES MN,MO CS ALLOY 600 HUNTINGTON II 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . . 5 5.2 CARBON CONTENT RANGE <percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksi) ..........*........ 48 5.4 MILL ANNEAL TIME/TEMP (min/deg Fl .....*..*.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS **......*.......** PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.188,3.47 6.3 PROCESS USED TD FORM BENDS . . . . . . . . . . . . . . . . . H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg F) ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi) *******.*.**. 2235 7.2 HOT LEG INLET TEMPERATURE Cdeg F> .......... 604 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 546 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2J ............ 104000 7.5 COLD LEG HEAT FLUX CBTU/hr)ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..... 518 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ...... 786 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) *........ 11-22 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . * . . . . . . . . PHOSPHATE D-104 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY ROBINSON 2 <ORIG SG)

8. REPORTED PRIMARY SIDE.PROBLEMS !Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION ......*....*....
8. 1. 2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .
8. 1. 3 LI-BEND TRANSITION ................*..
8. 1. 4 LI-BEND APEX-DENTING RELATED ........ .
8. 1. 5 LI-BEND APEX-NOT DENTING RELATED *..*.
8. 1. 6 TSP INTERSECTION-DENTING RELATED ....
8. 1. 7 PLUGS ............*........*....*....

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation!

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *......*........

9. 1 . 2 TUBESHEET CREVICE. * . . . . . . . . . . . . . . . .
  • YES 9.1.3 SLUDGE PILE REGION .......*.....*....

9.1.4 TSP INTERSECTION ..*.......*.....*.*.

9.2 INTERGRANULAR ATTACK IIGA) 9.2.1 EXPANSION TRANSITION .........***..*.

9. 2. 2 TUBESHEET CREVICE. * * . * . . . * * * . . . * * . . . YES 9.2.3 SLUDGE PILE REGION .....*........*... YES 9.2.4 TSP INTERSECTION .......**....*......
9. 3 DENTING .........*.*.*...............*......

9.4 CORROSION FATIGUE **.*.***...*..............

9.5 EROSION-CORROSION ....*....*......*.........

9. 6 PITTING . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . .

9.7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES

9. 8 WEAR. . . . . . * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES 9.9 OTHER SECONDARY SIDE PROBLEMS . . . . . . . . . . . . . .
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 360 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . * . . . . . . . . . . .

10.3 OTHER (tube expn.,stress relief,peening) ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-105

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SALEM 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO .**....*..*.......... SALEM 1 1.2 UTILITY .................................... PUBLIC SERVICE E&G 1.3 NSSS SUPPLIER ..........................*... WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWE)................ 1090
1. 5 THERMAL POWER RATING (MWT) *...........*.*..

1.6 DATE OF COMMERCIAL OPERATION ............... 12/15/76

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .....*........... 4
2. 2 STEAM GENERATOR TYPE ..*..*.*...***....***.* RWOE 2.3 STEAM GENERATOR MODEL NO ..*..**.*.**....*.* 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ......** WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......*** //
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS (inches) ....*.......... 21. 0 3.2 TUBE OUTSIDE DIAMETER Cinches> ***** II *******
  • 875 3.3 TUBE WALL THICKNESS (inches) . . . . . . . . . . . . * * . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR .....*.. 3388 3.5 TUBE PITCH (inches) .............*......*... 1.281 3.6 TUBESHEET RADIAL CREVICE (inches) .....*.*.*. 0000 3.7 DEPTH OF TUBESHEET CREVICE (inches) ....*..* 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .*.....*.......*......... SA 508 4.2 TUBE SUPPORT PLATE MATERIAL .......*.*...... CS 4.3 TUBE MATERIAL .......*.**.....*...........** ALLOY 600 4.4 TUBE SUPP~IER .........*...*...*.....*...*.. WEST/HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE ..............*.... II
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ................*..... 7.5 5.2 CARBON CONTENT RANGE (percent) . * . . . . . . . . . . .

5.3 YIELD STRESS RANGE (ksi) ..........*........

5.4 MILL ANNEAL TIME/TEMP (min/deg F) *.........

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *.....*........*.. ROLL/EXPLOSIVE 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS *......*......... WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg F) ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi) ............. 2235 7.2 HOT LEG INLET TEMPERATURE (deg F) .......... 609 7.3 COLD LEG OUTLET TEMPERATURE (deg F) ........ 544 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) ...*.......

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg F> ..... 576 7.7 STEAM GENERATOR OPERATING PRESS. Cpsi) ...... 790 7.8 TYPICAL SLUDGE PILE DEPTH (inches) ......... 0.25 7.9 WATER CHEMISTRY ............................ AVT ONLY D-106 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SALEM 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .....**........*

8.1.2 EXPANDED REGION ..........*..........

8.1.3 LI-BEND TRANSITION ...............*...

8.1.4 LI-BEND APEX-DENTING RELATED .......*.

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1 . 7 PLUGS ....................**...*..*..

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .*...**.....*.*.

9.1.2 TUBESHEET CREVICE ....*....**......*.

9.1.3 SLUDGE PILE REGION ........**...**...

9.1.4 TSP INTERSECTION ..*.......*.....*...

9.2 INTERGRANULAR ATTACK CIGA>

9. 2. 1 EXPANSION TRANSITION **.**.*..*.*.*.*

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION *..............*..

9.2.4 TSP INTERSECTION .....*....**........

9.3 DENTING ...........**....................... YES<MILD>

9.4 CORROSION FATIGUE ...........*.....*..**.*.*

9.5 EROSION-CORROSION ......................... .

9.6 PITTING ...*............*...................

9. 7 WASTAGE .........................*.......... YES
9. 8 WEAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES 9.9 OTHER SECONDARY SIDE PROBLEMS ....*......... TLBD DAMAGE
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ........................ 101 10.2 TOTAL TUBES SLEEVED .............*..........

10.3 OTHER <tube expn.,stress relief,peening) ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-107

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SALEM 2

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT ND .**.................. SALEM 2 1.2 UTILITY . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . * . PUBLIC SERVICE E&G 1.3 NSSS SUPPLIER *...............*.....*.*..... WESTI~GHDUSE 1.4 ELECTRIC POWER RATING CMWEl . . . . . . . . . . . . . . . . 1090
1. 5 THERMAL POWER RATING CMWTl . . . . . . . . . . . . . . . . .
1. 6 DATE OF COMMERCIAL OPERATION.... . . * . . . . . . . . 10/ 15/81
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .........*....... 4
2. 2 STEAM GENERATOR TYPE. . * . * * . . . * * . * * * . . . . * . . . RWDE 2.3 STEAM GENERATOR MODEL NO *..****....***....* 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ...**... WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......... //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches) ...*..*.*.....* 21.0 3.2 TUBE OUTSIDE DIAMETER Cinches) ..**.*......*. 875 3.3 TUBE WALL THICKNESS Cinches) . . . * * . . * . . . . . . . . 005 3.4 NUMBER OF TUBES PER STEAM GENERATOR ..*..... 3388 3.5 TUBE PITCH Cinches) .........**...*.*....... 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches) * . . . . . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches> .....*.. 00.00 4.

5.

STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *............*...........

4.2 TUBE SUPPORT PLATE MATERIAL .......*........

4.3 TUBE MATERIAL ....*......*.......*.....*..*.

4.4 TUBE SUPPLIER ...**...*...*.*........**.....

4.5 DATE OF TUBE MANUFACTURE . . . . . . . * . . . . . . . . . . .

TUBE MATERIAL PROPERTIES SA 508 CS ALLOY 600 WEST/HUNTINGTON II 5.1 ASTM GRAIN SIZE RANGE **..*.................

5.2 CARBON CONTENT RANGE (percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksil **.................

5.4 MILL ANNEAL TIME/TEMP Cmin/deg Fl ......... .

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *.....*........*.. ROLL/EXPLOSIVE 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING Chours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil . . . . . . . . . . . . .

7.2 HOT LEG INLET TEMPERATURE (deg Fl ......*... 611 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 545

7. 4 HOT LEG HEAT FLUX <BTU/hr /ft***'2l . . . . . . . . . . . .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) . . . . . . . . . . .

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg Fl ..... 519 7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ......... Q.25 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-108 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SALEM 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/Na, Date or EFPD ta 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION .................... .

8.1.3 LI-BEND TRANSITION .................. .

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED ..*..

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8. 1. 7 PLUGS ......*.........*.*...**.......

8.2 OTHER PRIMARY PROBLEMSle.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/Na,Date or EFPD ta 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .......**..**.*.

9.1.2 TUBESHEET CREVICE ...........*...***.

9.1.3 SLUDGE PILE REGION .........*.....*..

9.1.4 TSP INTERSECTION ......*.........*.*.

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION .............*..

9.2.2 TUBESHEET CREVICE *.........*....*.*.

9.2.3 SLUDGE PILE REGION . . . . . . . . . . . . . . . . . .

9.2.4 TSP INTERSECTION ...*..**..*.........

9. 3 DENT I NG ....*....*.....*....................

9.4 CORROSION FATIGUE *...........*....*........

9.5 EROSION-CORROSION ......................... .

9. 6 PITTING ...................*......*.......*.
9. 7 WASTAGE ..........................***.....*.
9. 8 WEAR. . . . . . . * . . . . . . . . . . . * . * . . . . . . * . . . . . . . . . . YES 9.9 OTHER SECONDARY SIDE PROBLEMS ............. .
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ....................... .

10.2 TOiAL TUBES SLEEVED ...........*............

10.3 OTHER <tube expn.,stress relief,peeningl .*.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-109

DOMINION ENGINEERING, INC.

EPR1/SGOG II CRACKING SURVEY SAN ONOFRE 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO *....*....**.......*. SAN ONOFRE 1 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SOUTH CAL EDISON 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWE) . . . . . . . . . . . . . . . . 436
1. 5 THERMAL POWER RATING <MWT) ...*.*........*.. 1347 1.6 DATE OF COMMERCIAL OPERATION ............*.. 1/15/68
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS *************.*** 3
2. 2 STEAM GENERATOR TYPE. . . . . . * . . . . . . . . . . * . * . .
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches) ...*.**.......* 22.6 3.2 TUBE OUTSIDE DIAMETER (inches) * . . * . . . . . . . . . . 750 3.3 TUBE WALL THICKNESS (inches) * . . . . . . . . . . . . . . . 055 3.4 NUMBER OF TUBES PER STEAM GENERATOR ...*.*.. 3794 3.5 TUBE PITCH <inches) ..*....*.....*...*...*.* 1.026 3.6 TUBESHEET RADIAL CREVICE (inches> . . . . . . . . . .
  • 0115 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ......*. 18.00 4.

5.

STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ...............**........

4.2 TUBE SUPPORT PLATE MATERIAL .......*........

4.3 TUBE MATERIAL ...*..*...*.....*...*.........

4.4 TUBE SUPPLIER ..............**...........*..

4. 5 DATE OF TUBE MANUFACTURE. . . . .. . . . * . . . . * . . . .

TUBE MATERIAL PROPERTIES FORG. STL.

CS ALLOY 600 HUNTINGTON II 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . * . . .

5.2 CARBON CONTENT RANGE (percent> ............ .

5.3 YIELD STRESS RANGE <ksil . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP <min/deg F> ......... .

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .....*............ PART DEPTH RQLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches) ..... .

6.3 PROCESS USED TO FORM BENDS ........*........ H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg F> ... NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psil ............. 2050 7.2 HOT LEG INLET TEMPERATURE (deg Fl .......... 575 7.3 COLD LEG OUTLET TEMPERATURE (deg F> ........ 528 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2J ............ 108000 7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2J .......... .

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg F) ..... 505 7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...*.. 600 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> .......... 18 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . PHOSPHATE <BRIEF AVT D-110 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SAN ONOFRE 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ......*.*.*..*..

8.1.2 EXPANDED REGION ......*....***....*..

B.1.3 LI-BEND TRANSITION ......**......*..*.

8.1.4 LI-BEND APEX-DENTING RELATED **....**.

8.1.5 LI-BEND APEX-NOT DENTING RELATED .*...

8.1.6 TSP INTERSECTION-DENTING RELATED .***

8, 1. 7 PLUG~3 ...*.......*.***........***...*

8.2 OTHER PRIMARY PROBLEMSle.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *.******..***.*.

9.1.2 TUBESHEET CREVICE *..*.*.....**..**** YES 9.1.3 SLUDGE PILE REGION *.**.*.....**.*.*. YES 9.1.4 TSP INTERSECTION ..*.*.**.***..*.****

9 ? INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION **..**.*..*.*.*.

9. 2. 2 TUBESHEET CREVICE. . * . . . * * * * * * . . * * * *
  • YES 9.2.3 SLUDGE PILE REGION .*....*.**.*..**.* YES 9.2.4 TSP INTERSECTION ..*.*......*.*.**.*.
9. 3 DENTING .........*......*...............*.** YES 9.4 CORROSION FATIGUE ......*.....*...***....*..

9.5 EROSION-CORROSION ....*....*....*.*.*...**..

9. 6 PITTING ......*.*..*.......**......*........
9. 7 WASTAGE ....*....*..*.*...*................. YES
9. 8 l;JEAR. . * . . . * . . . . . . . . * . . . . . * . . * . * . * * . . . * . . . . . YES 9.9 OTHER SECONDARY SIDE PROBLEMS ....*....*.*..

1 O. I NSERV I CE F:EMED I AL MEASURES 10.1 TOTAL TUBES PLUGGED .*...........*.*..*...*. 954

10. 2 TOTAL TUBES SLEEVED *..*.*......*.*.****...* 7000-12/83 10.3 OTHER <tube expn.,stress relief,peeningl ...
11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-111

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SEQUOYAH 1

1. PLANT DESCRIPTION 1 . 1 PLANT NAME AND UN IT NO. . . . . . . . . . . . . . . * * . * . . SEQUOYAH 1
1. 2 UTILITY . . . . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . TVA 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWEl................ 1148
1. 5 THERMAL POWER RA TI NG ( MWT l . . . . . . . . . . . . . * . . . 3411 1.6 DATE OF COMMERCIAL OPERATION . . . . . . . . . . . . . . . 5/15/81
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS . . . . . . . . . . . . . . . . . 4 2.2 STEAM GENERATOR TYPE .....**......*.*.*..*.* RWOE 2.3 STEAM GENERATOR MODEL NO .......*****.....*. 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION *..*.**. WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION .......*. II
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I C~'.NESS ( i nc:hes l . * . * * * . * . . . . . . . 21. 0 3.2 TUBE OUTSIDE DIAMETER (inc:hesl ..*.**.*..*... 852 3.3 TUBE WALL THICKNESS Cinches> . . . * . . * . . . . * . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *....... 3388 3.5 TUBE PITCH <inches) . . . . . . . . . . . . . . . . . . . . . . . . 1.233 3.6 TUBESHEET RADIAL CREVICE <inches) . . . . . . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE (inc:hesl ........ 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . * . . . . . . . . . . . . . . . . . . FORG.STL.

4.2 TUBE SUPPORT PLATE MATERIAL . . . . . . . . . . . . . . . . CS 4.3 TUBE MATERIAL ..*..............******.*..... ALLOY 600 4.4 TUBE SUPPLIER ..........*.*.......*.*....... WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . . . II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . * . . . . . . . . . . . . . . . . . .

5.2 CARBON CONTENT RANGE (percent> . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE (ksil . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl .....*....

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .*...**.*...*..... ROLL/EXPLOSIVE 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil . . . . . . . . . . . . . 2235 7? HOT LEG INLET TEMPERATURE Cdeg Fl . . . . . . . . . . 614 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 546 7.4 HOT LEG HEAT FLUX (BTU/hr/ftA2) . . . . . . . . . . . .

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2l . . . . . . . . . . . 39762 7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..... 526 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ...... 857 7.8 TYPICAL SLUDGE PILE DEPTH (inches)......... 2.0 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-112 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SEQUOYAH 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .*..............

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . . YES 8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS ..........................*....

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .....*.....*....

9.1.2 TUBESHEET CREVICE ...*.....*......*..

9.1.3 SLUDGE PILE REGION ...............*..

9.1.4 TSP INTERSECTION ....*......*......*.

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION *...........*.*.

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ................. .

9.2.4 TSP INTERSECTION ..*..**....*......*.

9. 3 DENTING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES 9.4 CORROSION FATIGUE ....*..*....*.......... ~ ..

9.5 EROSION-CORROSION ................*.......*.

9. 6 PITTING .....*.....*............*...........
9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAR ....................................**.

9.9 OTHER SECONDARY SIDE PROBLEMS ...*..........

1 0. I NSERV I CE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . .

10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . . . .

10.3 OTHER <tube expn.,stress relief,peeningl .. .

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-113

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SEQUOYAH 2

1. PLANT DESCRIPTION 1 . 1 PLANT NAME AND UN IT NO. * . . . . . * * * . . . * . * * . . . . SEQUOYAH 2
1. 2 UTILITY . . * . . . . . . . . * * . . . . . . . . . . . . . . . . . . . . . . . TVA 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING CMWE)................ 1148 1.5 THERMAL POWER RATING CMWTl . . . . . . . . . . . . . . . * . 3411 1.6 DATE OF COMMERCIAL OPERATION . . . . * . . . . . . . . . . 6/ 1/82
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS. . . . . . . . . . . * . . . .
2. 3 STEAM GENERA TOR MODEL ND. . . . . * . * * * * * * * . * . .
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS Cinches) *.............. 21. 0 3.2 TUBE OUTSIDE DIAMETER <inc:hes) *.***********
  • 875
3. 3 TUBE WALL THICKNESS Cinches) ***.*********** .050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ..***..* 3388 3.5 TUBE PITCH Cinches) ..*.*........*..**....*. 1.233 3.6 TUBESHEET RADIAL CREVICE Cinches) * . . * . . . . . * . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) .*...... 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . . . . . . . * . * . . . FORG.STL.
4. 2 TUBE SUPPORT PLATE MATERIAL . . . . . . . . . . . . . . . . CS 4.3 TUBE MATERIAL .........*........**.....*...* ALLOY 600 4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . * * . . . . . . . . . . . WEST/HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE . . . . . . * . . . . . . . . . . . . //
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . .
5. 2 CARBON CONTENT RANGE (percent> . . * . . . . * * * * *
  • 5.3 YIELD STRESS RANGE Cksi) . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP Cmin/deg Fl . . . . . . . . . .

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS * . . . . . . . . . . . . . . . . . ROLL/EXPLOSIVE 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.1875,3.4685 6.3 PROCESS USED TD FORM BENDS . . . . . . . . . . . . . . . . . WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsi> . . . . . . . . . . . . . 2235 7.2 HOT LEG INLET TEMPERATURE Cdeg Fl . . . . . . . . . . 614 7.3 COLD LEG OUTLET TEMPERATURE (deg F> ........ 546
7. 4 HOT LEG HEAT FLUX <BTU/hr If t *****2) . . . . . . . . . . . .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) . . . . . . . . . . . 39762 7.6 STEAM GENERATOR OPERATING fEMP. (deg Fl ..... 526 7.7 STEAM GENERATOR OPERATING PRESS. Cpsi) ...... 857 7.8 TYPICAL SLUDGE PILE DEPTH Cinches> ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-114

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SEQUOYAH 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE -IGSCC
8. 1. 1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION .................... .

8.1.3 U-BEND TRANSITION .................. .

8. 1.4 U-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS ................*..............

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ..............*.

9.1.2 TUBESHEET CREVICE .........*.........

9.1.3 SLUDGE PILE REGION .....*.*..........

9.1.4 TSP INTERSECTION .........**........*

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ............... .

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ................. .

9.2.4 TSP INTERSECTION ..*..........*......

9. 3 DENTING ..................................*.

9.4 CORROSION FATIGUE ......................... .

9.5 EROSION-CORROSION ......................... .

9. 6 PITTING ................................*...
9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAi~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS ............. .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ....................... .

10.2 TOTAL TUBES SLEEVED ....................... .

10.3 OTHER <tube expn.,stress relief,peening) .. .

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-115

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SUMMER

1. PLANT DESCRIPTION 1 . 1 PLANT NAME AND UN IT ND. . . . . . . * . . . . . . . . . . . . . SUMMER 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.C. PUBLIC SERVICE 1.3 NSSS SUPPLIER ............*................. WESTINGHOUSE
1. 4 ELECTRIC F'OWER RATING <MWE)................ 900
1. 5 THERMAL POWER RATING <MWTl ................ .

1.6 DATE OF COMMERCIAL OPERATION ............... 1/15/84

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .....*.**........ 3 2.2 STEAM GENERATOR TYPE ...................... . RWE 2.3 STEAM GENERATOR MODEL ND .................. . D*-*

2.4 STEAM GENERATOR FABRICATOR/LOCATION .*.....* WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION .......*.

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS Cinches) .............. . 21.0 3.2 TUBE OUTSIDE DIAMETER (inches) ............ . . 750
3. 3 TUBE WALL THICKNESS <inches> *..****..**.... . 043 3.4 NUMBER OF TUBES PER STEAM GENERATOR ...*.... 4674
3. 5 TUBE PITCH Cinches) . . * * * . . . * . . * * . * * * . . . . . *
  • 1.060 3.6 TUBESHEET RADIAL CREVICE Cinches) ......... . . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ....... . oo.oo
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ....*.....*.............. SA 508 4.2 TUBE SUPPORT PLATE MATERIAL ......*......... CS 4.3 TUBE MATERIAL ..............*.....*.*....... ALLOY 600 4.4 TUBE SUPPLIER .....*........................ WESTINGHOUSE
4. 5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . ..

..J. TUBE MATERIAL PROPERTIES

..J, 1

"" ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . .

"" * .L.., CARBON CONTENT RANGE <percent) ............ .

..J 5.3 YIELD STRESS RANGE Cksi) .*.....*..........*

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl ......... .

6. TUBE EXPANSION PARAMETERS
6. 1 TYPE OF EXPANSION PROCESS ........*......... FULL DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.25,3.312 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . W. BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) ............. 2250 7.2 HOT LEG INLET TEMPERATURE Cdeg F) .......... 619 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 556 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..... 547 7.7 STEAM GENERATOR OPERATING PRESS. Cpsi> ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-116

  • _J
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SUMMER

8. ~EPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observatianl 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

B.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . . YES ~

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . . YES -

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

B.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

B. 1. 7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attackl.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *...*......*....

9.1.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.1.3 SLUDGE PILE REGION ................. .

9.1.4 TSP INTERSECTION ...........*..*...*.

9.2 INTERGRANULAR ATTACK <IGAl 9.2.1 EXPANSION TRANSITION ....*...........

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION .............**...

9.2.4 TSP INTERSECTION ..........*....*....

9. 3 DENT I NG . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9.6 PITTING . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 7 WASTAGE * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS ............. .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ................. , ..... .

10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . . . .

10.3 OTHER <tube expn.,stress relief,peening) .. .

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-117

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SURRY 1 <ORIG SG)

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ...............*..*.. SURRY 1 <ORIG SG>

1 ? UTILITY ....................*............... VIRGINIA ELEC.PWR.CO 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE 1.4 ELECTRIC POWER RATING <MWEl ..............*. 816

1. 5 THERMAL POWER RATING (MWTl ........*........ 2441 1.6 DATE OF COMMERCIAL OPERATION .............. . 12/15/72
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS . . . . . . . . . . . . . . . . . 3 2.2 STEAM GENERATOR TYPE ...........*........*.* RWE 2.3 STEAM GENERATOR MODEL NO *.*.*...*.*....*.*. 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ..**..** WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION *......** II
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches> ...........*.*. 21.0 3.2 TUBE OUTSIDE DIAMETER (inches) *...****...... 875 3.3 TUBE WALL THICKNESS (inches) . . . . . * * . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 3388 3.5 TUBE PITCH Cinches) *...................*... 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . * . . . . 0060 3.7 DEPTH OF TUBESHEET CREVICE <inches) ........ 18.00 4.

5.

STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .............*.........*.

4? TUBE SUPPORT PLATE MATERIAL ................

4.3 TUBE MATERIAL ..........*..*....*..***......

4.4 TUBE SUPPLIER ...*..........*...............

4. 5 DATE OF TUBE MANUFACTURE. . . . . * . . . . * . . . . . . . .

TUBE MATERIAL PROPERTIES SA 508 CS ALLOY 600 HUNTINGTON 11 5.1 ASTM GRAIN SIZE RANGE ....*................. 8-12 5.2 CARBON CONTENT RANGE (percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksil . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl **........

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .....*......*..... PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS
7. 1 PRIMARY COOLANT PRESSURE (psi l ............ . 2235 7.2 HOT LEG INLET TEMPERATURE (deg Fl .....*.... 590 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ....... . 536 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2J ........... . 115000 7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2l .......... .

7.6 STEAM GENERATOR OPERATING TEMP. <deg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY ................*........... EARLY PHOS, AVT D-118 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SURRY 2 (ORIG SGJ

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO *.................... SUF:RY 2 <ORIG SG) 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIRGINIA ELEC PWR CO 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE 1.4 ELECTRIC POWER RATING <MWE) ................ 816 1 . 5 THERMAL POWER RA TI NG ( MWT> . . . . . . . . . . . . . . . . . 2441 1.6 DATE OF COMMERCIAL OPERATION ............... 5/15/73
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ................. 3
2. 2 STEAM GENERATOR TYPE. . . . . . * . . * * . . . . . . . . . . .
2. 3 STEAM GENERATOR MODEL NO. . . . . * . * . . . . . . . . . . . 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ........ WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......... II
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I CKNESS Cinches) . . . . . . . . . . . . . . . 21. 0 3.2 TUBE OUTSIDE DIAMETER Cinches) . . . . . . . . . * . . . . 875 3.3 TUBE WALL THICKNESS Cinches) . . . . . . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 3388 3.5 TUBE PITCH Cinches) ........................ 1.281 3.6 TUBESHEET RADIAL CREVICE (inches) . . . . . . . . . . . 0060 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ........ 18.00
  • 4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 TUBE SUPPORT PLATE MATERIAL *...............

4.3 TUBE MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. 5 DATE OF TUBE MANUFACTURE ...................

FORG. STL.

CS ALLOY 600 WEST/HUNTINGTON 11

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . .

5.2 CARBON CONTENT RANGE (percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksil .................. .

5.4 MILL ANNEAL TIME/TEMP Cmin/deg Fl .......... 1750-1800Ctubes)

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS . . . . . . . . . . . . . . . . . . PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS (inches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ................. WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg F) ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ............. 2485 7? HOT LEG INLET TEMPERATURE (deg F) .......... 606 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 543 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2J ........... .

7.5 COLD LEG HEAT FLUX (BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..... 565 7.7 STEAM GENERATOR OPERATING PRESS. Cpsi) ...... 770 7.8 TYPICAL SLUDGE PILE DEPTH (inches> ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . EARLY PHOS, AVT

  • D-120

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SURRY 1 <ORIG SG)

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION ....***.........

8.1.2 EXPANDED REGION .................*...

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED .. , ...... YES 8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED .... YES

8. 1. 7 PLUGS ..............*.......**...*...

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack).

9. REPORtED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ..*..*.**..*.*.*

9.1.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.1.3 SLUDGE PILE REGION .*......*.........

9.1.4 TSP INTERSECTION .**.....*.*........**

9.2 INTERGRANULAR ATTACK (!GA) 9.2.1 EXPANSION TRANSITION ......*.........

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ......**.*.....*..

9.2.4 TSP INTERSECTION **......*.......*...

9. 3 DENTING ......................**..*......... YES 9.4 CORROSION FATIGUE *............***....*.....

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 6 PITTING .........................*.**.......
9. 7 WASTAGE. . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . YES
9. 8 WEAR .....*...............*.*...***.*.......

9.9 OTHER SECONDARY SIDE PROBLEMS ...*....*..*..

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ...........*............ 1834 10.2 TOTAL TUBES SLEEVED ............*...........

10.3 OTHER <tube expn.,stress relief,peening) ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-119 *
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TAf<AHAMA 1

1. PLANT DESCRIPTION
1. 1 F'LANT NAME AND UNIT NO ..................... TAKAHAMA 1 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KANSAI ELECTRIC 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE 1.4 ELECTRIC POWER RATING CMWEI ................ 826 1.5 THERMAL POWER RATING CMWTI ................. 2440 1.6 DATE OF COMMERCIAL OPERATION ............... 3/15/74
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ................. 3
2. 2 STEAM GENERATOR TYPE ............*.......... RWOE
2. 3 STEAM GENERATOR MODEL NO ....**............. 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ...*...* WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......... //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches> ............... 21.0 3.2 TUBE OUTSIDE DIAMETER Cinches) *....*..*..... 870 3.3 TUBE WALL THICKNESS <inches> ......**....*... 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ...**... 3388 3.5 TUBE PITCH Cinches) ..........*............. 1.280 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . * . . . . 0080 3.7 DEPTH OF TUBESHEET CREVICE Cinches> ........ 18.70
  • 4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .............*.....**...*

4.2 TUBE SUPPORT PLATE MATERIAL ................

4.3 TUBE MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. 5 DATE OF TUBE MANUFACTURE ...................

FORG.STL.

CS ALLOY 600 WEST/HUNTINGTON 11

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ...................... 8-10 5.2 CARBON CONTENT RANGE Cpercentl . . . . . . . . . . . . . . 03 5.3 YIELD STRESS RANGE (ksi) . . . . . . . . . . . . . . . . a **

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl ......... .

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *................. ROLL,HYD.EXP.

6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.1875,3.4685 6.3 PROCESS USED TD FORM BENDS ................. WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ............. 2236 7? HOT LEG INLET TEMPERATURE Cdeg Fl .......... 613 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl ........ 551 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. <deg Fl ..... 531 7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ...... 889 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . EARLY PHDS, AVT

  • D-122

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY SURRY 2 <ORIG SG>

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION . . . . . . . . . . . . . . . .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . * . . . . . .

8.1.3 LI-BEND TRANSITION .......*........... YES 8.1.4 LI-BEND APEX-DENTING RELATED ......... YES 8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED .... YES

8. 1. 7 PLUGS .............*.......*.........

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ...........*....

9.1.2 TUBESHEET CREVICE ***................

9.1.3 SLUDGE PILE REGION ..*.....*.*..*...*

9.1.4 TSP INTERSECTION ...***....***.*.....

9.2 INTERGRANULAR ATTACK <IGA>

9. 2. 1 EX PANS ION TRANS I TI ON .*...***...*....

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ........*.........

9.2.4 TSP INTERSECTION .*..............*...

9.3 DENTING . . . . . . . . . . . . . . . . . . . . . . . . . * . * . . . . . . . . YES <SEVERE>

9.4 CORROSION FATIGUE ......*.*.....*..*........

9.5 EROSION-CORROSION ..........*.....*.........

9. 6 PI TT I NG . . . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . .
9. 7 WASTAGE. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES
9. 8 WEAR . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS . . . . . . . . . . . . . .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . * . . . . . . . . . . . . . . 1924 10.2 TOTAL TUBES SLEEVED . . . . . . . * . . . . . . . . . . . . . . . .

10.3 OTHER Ctube expn.,stress relief,peeningl ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-121 *
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TAKAHAMA 2

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO........... . . . . . . . . . . TA~::AHAMA 2 1.2 UTILITY ..........*......................... KANSAI ELECTRIC 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MHI 1.4 ELECTRIC POWER RATING <MWEI ................ 826
1. 5 THERMAL POWER RATING CMWT) ................. 2440 1.6 DATE OF COMMERCIAL OPERATION ........ ~ ...... 11/15/75
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS . . . . . . . . . . . . . . . . . 3 2.2 STEAM GENERATOR TYPE .........*..*...*...... RWOE 2.3 STEAM GENERATOR MODEL NO ..........*.....*.. 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ........ MITSUBISHI 2.5 DATE OF STEAM GENERATOR COMPLETION .......*. II
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I CKNESS (inches> . . . . . . . . . . . . . . . 21. 7 3.2 TUBE OUTSIDE DIAMETER Cinches) . . . . . . . . . . . . . . 880
3. 3 TUBE WALL TH I CKNESS <inches) . * . . . . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ......*. 3388 3.5 TUBE PITCH Cinches) ....................*... 1.280 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . . . * . . 0080 3.7 DEPTH OF TUBESHEET CREVICE Cinches> ........ 18.70
  • 4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .....................*...

4.2 TUBE SUPPORT PLATE MATERIAL ................

4.3 TUBE MATERIAL .........*.......*............

4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. 5 DATE OF TUBE MANUFACTURE. . . . . . . . . . . . . . . . . . .

FORG.STL.

CS ALLOY 600 SUMITOMO I I

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ...................... 8-9 5.2 CARBON CONTENT RANGE (percent> .***.....*..*

5.3 YIELD STRESS RANGE (ksi) .................. .

5.4 MILL ANNEAL TIME/TEMP <min/deg F> ........*.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .................. ~OLL/HYD.EXP.

6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS .............*... CYL.PLSTC.MNDRL 6.4 STRESS RELIEF AFTER TUBING <hours/deg F) ... NONE

...,, . STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsi) ............. 2236 7.2 HOT LEG INLET TEMPERATURE (deg F) .......... 613 7.3 COLD LEG OUTLET TEMPERATURE <deg F> ........ 551 7.4 HOT LEG HEAT FLUX <BTU/hr/ft~2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg F> ..... 530 7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... 889 7.8 TYPICAL SLUDGE PILE DEPTH <inches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY

  • D-124

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TAf<AHAMA 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXF'ANS ION TRANS IT ION. . . . . . * . . . . . . . . . YES 8.1.2 EXPANDED REGION ....*.......*........

8.1.3 LI-BEND TRANSITION ...............**.. YES 8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ..*.

8. 1. 7 PLUGS ..............**...*..*...*....

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARV SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION **.****....**.**

9.1.2 TUBESHEET CREVICE ..*...*.*...*....*. YES 9.1.3 SLUDGE PILE REGION ........*.*.......

9.1.4 TSP INTERSECTION ........*........... YES-1 TUBE 9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION .......*...*.*..

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . . YES 9.2.3 SLUDGE PILE REGION .................*

9.2.4 TSP INTERSECTION ....*........*...... YES-1 TUBE 9.3 DENTING . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . * . . . . .

9.4 CORROSION FATIGUE .....*...............***..

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . * . . . . . . . . .

9. 6 PITTING ..*................*...*...*........
9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES
9. 8 WEAR ..............*..*...***...............

9.9 OTHER SECONDARY SIDE PROBLEMS ........*.....

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 502 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . * . .

10.3 OTHER <tube expn.,stress relief,peeningl ... ROW1 LIB PLUG,CREV HYD EXP

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-123 *
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TIHANGE 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO . . . . . . . . . . . . . . . . . . . . . TIHANGE 1 . 2 UTILITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SEMO 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACLF 1.4 ELECTRIC POWE~ RATING CMWEl ................ 880 1.5 THERMAL POWER RATING <MWTl ................ .

1.6 DATE OF COMMERCIAL OPERATION ............... 9/15/75

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS . . . . . . . . . . . . . . . . . 3 2.2 STEAM GENERATOR TYPE .................*..... RWOE 2.3 STEAM GENERATOR MODEL NO *.*...*.........*.. 51 2.4 STEAM GENERATOR FABRJCATOR/LOCATION ........ COCKERILL 2.5 DATE OF STEAM GENERATOR COMPLETION ......... //
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> .............. .

3.2 TUBE OUTSIDE DIAMETER Cinches) . . . . . . . . . . . . . . 875 3.3 TUBE WALL THICKNESS Cinches) . . . . . . . . . . . . * . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *....... 3388 3.5 TUBE PITCH Cinches) . . . . . . . . . . . . . . . . . . . . . . . . 1.281 3.6 TUBESHEET RADIAL CREVICE (inches) ......... .

3.7 DEPTH OF TUBESHEET CREVICE Cinches) ....... .

  • 4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 TUBE SUPPORT PLATE MATERIAL . . . . . . . . . . . . . . . .

4.3 TUBE MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . . .

CS ALLOY 600 SANDVIK II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . . 7-10 5.2 CARBON CONTENT RANGE <percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksil . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP Cmin/deg Fl ......... .

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS . . . . . . . . . . . . . . . . . . PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . NO MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ............ .

7.2 HOT LEG INLET TEMPERATURE Cdeg Fl .......... 611 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl ....... .

7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl .... .

7. 7 STEAM GENERATOR OPERATING PRESS. <psi l ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY

  • D-126

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TA~::AHAMA 2

8. REPORTED PRIMARY SIDE PROBLEMS CYes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ....**.*.......*

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION ...*...............

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8.1.7 PLUGS ..*.......*..*......*..........

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION .*..***.*....*..

9.1.2 TUBESHEET CREVICE *.*.*..*.*.........

9.1.3 SLUDGE PILE REGION *.........*.......

9.1.4 TSP INTERSECTION ...........**....... YES 9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ..**.*.*........

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION *........*........

9.2.4 TSP INTERSECTION ..*................. YES

9. 3 DENTING .................***.....*..........

9.4 CORROSION FATIGUE .*...*..**...*.......**...

9.5 EROSION-CORROSION .............*............

9 . 6 PI TT I NG ...........*...............*........

9.7 WASTAGE ...........*.*.*..**.......*...**...

9. 8 WEAR .*......*..***.........*..*............

9.9 OTHER SECONDARY SIDE PROBLEMS ..*.........*.

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 599 10.2 TOTAL TUBES SLEEVED ...................*....

10.3 OTHER Ctube expn.,stress relief,peeningl ... CREVICE HYDRAULIC EXPAN.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-125
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TIHANGE 2

1. PLANT DESCRIPTION 1 . 1 F'LANT NAME AND UN IT NO. . . . . . . . . * . . . . . . . . . . . TI HANGE 2
1. 2 UTILITY . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . EBES 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FRAMACECO
1. 4 ELECTRIC POWER RATING <MWE>................ 900 1.5 THERMAL POWER RATING CMWT) . . . . . . . . . . . . . . . . .

1.6 DATE OF COMMERCIAL OPERATION .....*......... 2/15/83

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ................. 3
2. 2 STEAM GENERATOR TYPE .*..*.....****.*...*.** RWOE 2.3 STEAM GENERATOR MODEL NO *......***......*** 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ........ COCKERILL 2.5 DATE OF STEAM GENERATOR COMPLETION .*....*.* II
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches> .....*.........

3.2 TUBE OUTSIDE DIAMETER (inches) . . . * . . . . . . . . . . 875

3. 3 TUBE WALL THICKNESS Cinches) . . . . . . . * * . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 3388 3.5 TUBE PITCH (inches> . . . . . . . . . * . * * * * . . . . * * * .
  • 1.281 3.6 TUBESHEET RADIAL CREVICE (inches) . . . . . . . . . * . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ........ 00.00
  • 4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ...............*.........

4.2 TUBE SUPPORT PLATE MATERIAL ............**..

4.3 TUBE MATERIAL . . . . . . . . . . . . . . . * . . . . . . . . . . . . . .

4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . * . . . . . . . . . .

4.5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . . .

CS ALLOY 600 WESTINGHOUSE II

5. TUBE MATERIAL PROPERTIES
5. 1 ASTl'1 GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . . 7-11 5.2 CARBON CONTENT RANGE <percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE <ksi) . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl .......... SG1~1.2-1925,SG3-1875F

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS . . . . . . . . . . . . . . . . . . F.D. ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . NO MANDREL 6.4 STRESS RELIEF AFTER TUBING Chours/deg F> ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi> ............ .

7.2 HOT LEG INLET TEMPERATURE Cdeg F> .......... 617 7.3 COLD LEG OUTLET TEMPERATURE (deg F> ....... .

7. 4 HOT LEG HEAT FLUX CBTU/hr /ft***"2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg F> .... .

7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY

  • 0-128

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TIHANGE 1

8. REPORTED PRIMARY SIDE PROBLEMS CYes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION *...............

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED .....*...

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1 . 7 PLUGS ...*...........*.....*..*......

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack)~

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *...****....****

9.1.2 TUBESHEET CREVICE .....*..*.*..*.***.

9. 1. 3 SLUDGE PI LE REG ION. . . . . . . . . * . . . . . . . . YES, SULFUR 9.1.4 TSP INTERSECTION ........**..*..*....

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION *.......*....*..

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION .......**.......*.

9.2.4 TSP INTERSECTION *.*.......**.....*..

9. 3 DENTING ...........................*...**...

9.4 CORROSION FATIGUE ......*..............**...

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . * . . . . . .

9.6 PITTING ...............*...*....**......*...

9. 7 WASTAGE ...........*....*........*.*........
9. 8 WEAR. . . . . . . . . . . * . . . . . . . . . . * * . * . * . . . * . . . . . . . YES 9.9 OTHER SECONDARY SIDE PROBLEMS .....*....*... OD SUL ATT, FOR OBJS
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . * . . . . . . . . 120 10.2 TOTAL TUBES SLEEVED . . . . * . . . . . . . . . . . . . . . . . . .

10.3 OTHER <tube expn.,stress relief,peeningl ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-127 *
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TRICASTIN 1

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO *...*..*.***.*..*** *. TRICASTIN 1
1. 2 UTILITY ..*....*.....*.**...*.***........... EDF
1. 3 NSSS SUF'PLIER ...........*.....*****. ~ ***... FRAMATOME
1. 4 ELECTRIC POWER RATING CMWEl .......*....***. 900
1. 5 THERMAL POWER RATING CMWTl ..**.......*.....
1. 6 DATE OF COMMERCIAL OPERATION ....**.*****... 8/14/80
2. STEAM GENERATOR GENERAL INFORMATION
2. 1 NUMBER OF STEAM GENERATORS **..*.........**.

2.2 STEAM GENERATOR TYPE *...********.**...***.

'"' C"

..:.:. * ....J DATE OF STEAM GENERATOR COMPLETION ****.**** II

3. 1 TUBESHEET THICKNESS (inches) ..**..*.*.**.**

3.2 TUBE OUTSIDE DIAMETER (inches) **..**..**.*. .875 3.3 TUBE WALL THIC~:NESS <inches) .**.*******.... . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR .*..**** 3388

._; .. C"

....; TUBE F'ITCH (inches) **.***.....*..******.*** 1. 281 3.6 TUBESHEET RADIAL CREVICE (inches) *...***.** . 0000 3.7 DEPTH OF TUBESHEET CREVICE <inches) *....... 00.00

4. STEAM GENERATOR MATERIALS
4. 1 TUBE SHEET MATERIAL ..*...*.*.....*..**.*..**

4.2 TUBE SUPPORT PLATE MATERIAL ..*.*.*.*...**..

4.3 TUBE MATERIAL ....................****.*.... ALLOY 600 4.4 TUBE SUPPLIER .*..*.....*.***...**.*....*... VALLOUREC 4.5 DATE OF TUBE MANUFACTURE ........*..*.**..**

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE *................*....

5.2 CARBON CONTENT RANGE (percent) . * . . . . . . * . . . .

5.3 YIELD STRESS RANGE <ksil ....*.*..........*.

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl *.*......*

6. TUBE EXPANSION PARAMETERS
6. 1 TYPE OF EXPANSION PROCESS ....***.*.****.... F. D. ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches) ..***. 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS .......*.*.....*.

6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ...

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil .*........*.. 2248 7.2 HOT LEG INLET TEMPERATURE <deg Fl ..**...*.. 613 7.3 COLD LEG OUTLET TEMPERATURE <deg Fl ...*.... 546 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ........*...

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .*.......*.

7.6 STEAM GENERATOR OPERATING TEMP. <deg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. (psil ...... 840 7.8 TYPICAL SLUDGE PILE DEPTH (inches) ........ .

7.9 WATER CHEMISTRY ................*...*....... AVT ONLY

  • D-130

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TIHANGE 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION . . . . . . . . . . . . . . . . YES 8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . . YES 8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED .......*.

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8.1.7 PLUGS . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . .

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION **.**....*......

9.1.2 TUBESHEET CREVICE ...*.*........*....

9.1.3 SLUDGE PILE REGION ....***.*......*.*

9.1.4 TSP INTERSECTION .*..*......*......*.

9.2 INTERGRANULAR ATTACK CIGA>

9. 2. 1 EXPANSION TRANSITION ***.............

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ..**............*.

9.2.4 TSP INTERSECTION ..........*.........

9. 3 DENTING . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . .

9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION .......*.................*

9 . 6 PI TT I NG ............*......*.....**......*.*.

9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . .
9. 8 WEAR ...............*...*.*.. , ............. .

9.9 OTHER SECONDARY SIDE PROBLEMS *..*..*.......

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . * . . . . . . . . . . . . . . .

10.2 TOTAL TUBES SLEEVED ............**..........

10.3 OTHER Ctube expn.,stress relief,peening) ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 0-129 *
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TRICASTIN 2

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO .*...*............... TRICASTIN 2
1. 2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EDF
1. 3 NSSS SUPPLIER . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . FRAMATOME
1. 4 ELECTRIC POWER RATING (MWE> . . . . . . . . . . . . . . . . 915
1. 5 THERMAL POWER RATING <MWT> ........... *......
1. 6 DATE OF COMMERCIAL OPERATION . . . . . . . . . . . . . . . 11/ 4/80

,.,..:... STEAM GENERATOR GENERAL INFORMATION

2. 1 NUMBER OF STEAM GENERATORS ......*.......... 3 2.2 STEAM GENERATOR TYPE *...**......**..*..*.** RWOE

,., ""::"' STEAM GENERATOR MODEL NO * *********.********

..:.. * ._i 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION .....*..

2.5 DATE OF STEAM GENERATOR COMPLETION ......... II

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I CKNESS <inches> .............. .

3.2 TUBE OUTSIDE DIAMETER (inches> ......*...... . 875

3. 3 TUBE WALL TH I Cl<NESS (inches) **..********..* .050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ......*. 3388 3.5 TUBE PITCH (inches) . . . . . . . . . . . . . . . . . . . . . . . . 1. 281 3.6 TUBESHEET RADIAL CREVICE (inches) ......... . . 0000 3.7 DEPTH OF TUBESHEET CREVICE <inches> ....... . 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL *........................
4. 2 TUBE SUPPORT PLATE MATER I AL ....*...........

4.3 TUBE MATERIAL . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . ALLOY 600 4.4 TUBE SUPPLIER .........*.........*.......... VALLOUREC/WEST 4.5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . . .

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ...*..................

5.2 CARBON CONTENT RANGE (percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksi) . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl ......... .

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .....*............ F.D. ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS <inches) ...... 2.1875,3.4685 6.3 PROCESS USED TD FORM BENDS . . . . . . . . . . . . . . . . .

6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl .. .

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil . . . . . . . . . . . . . 2248 7.2 HOT LEG INLET TEMPERATURE (deg Fl .......... 613 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 546 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX <BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... 840 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY

  • D-132

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TRICASTIN 1

8. REPORTED PRIMARY SIDE PROBLEMS (Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............*...

8.1.2 EXPANDED REGION ..........*......*...

8.1.3 LI-BEND TRANSITION ...............*..*

8.1.4 LI-BEND APEX-DENTING RELATED *..*....*

8.1.5 LI-BEND APEX-NOT DENTING RELATED .**..

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8. 1. 7 PLUGS ..............**....*....*....*

8? OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS(Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC

9. 1. 1 EXPANSION TRANSITION *.*.***.*.*.***.

9.1.2 TUBESHEET CREVICE .......***......***

9. 1 . 3 SLUDGE PI LE REG I ON .**..**.**..**...*

9.1.4 TSP INTERSECTION ....*..*.****.**...*

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION *....***......**

9.2.2 TUBESHEET CREVICE .**..***.....***..*

9.2.3 SLUDGE PILE REGION . . . . . . . . . . . . . . . . . .

9.2.4 TSP INTERSECTION ....*.....***.....*.

9. 3 DENT I NG .......................*..**..*...*.

9.4 CORROSION FATIGUE .*.....*..**..****..***...

10.

9.5 EROSION-CORROSION . . . . . . . . . . * . . . . . . . . . . . . . . .

9.6 PI TT I NG ...................*..*.*.*........*

9. 7 WASTAGE ................*...**.*..*.........
9. 8 WEAR ............*........**.*.........*....

9.9 OTHER SECONDARY SIDE PROBLEMS . . . . . . . . . . . . . .

INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . * . . . . . . . . 49 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . * . . . . . . . . . . .

10.3 OTHER (tube expn.,stress relief,peeningl ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-131 *
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TRICASTIN 3

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO . . . . . . . . . . . . . . . . . . . . . TRICASTIN 3 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EDF 1.3 NSSS SUPPLIER ...................*.......... FRAMATOME 1.4 ELECTRIC POWER RATING !MWEl ................ 915
1. 5 THERMAL POWER RATING !MWTl ...........**....

1.6 DATE OF COMMERCIAL OPERATION .....*......... 4/21/81

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS .*............... 3 2.2 STEAM GENERATOR TYPE ...........*........... RWOE
2. 3 STEAM GENERATOR MODEL NO .........*......... 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION **.**...

2.5 DATE OF STEAM GENERATOR COMPLETION ......... II

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS Cinches) .....*...*...*.

3.2 TUBE OUTSIDE DIAMETER Cinches) . . . . . . . . . . . . .

  • 875 3.3 TUBE WALL THICKNESS (inches) . . . . . . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 3388 3.5 TUBE PITCH Cinches> ......*................. 1.281 3.6 TUBESHEET RADIAL CREVICE (in~hes) . . . . . . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ........ 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 TUBE SUPPORT PLATE MATERIAL ............... .

4.3 TUBE MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALLOY 600 4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . VALLOUREC/WEST 4.5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . . . I I

...J. TUBE MATERIAL PROPERTIES

<=

~**

1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . .

5.2 CARBON CONTENT RANGE (percent> ............ .

5.3 YIELD STRESS RANGE lksil . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl ......... .

6. TUBE EXPANSION PARAMETERS
6. 1 TYPE OF EXPANSION PROCESS . . . . . . . . . . . . . . . . . . F. D. ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches> ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ................ .

6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl .. .

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ............. 2248 7.2 HOT LEG INLET TEMPERATURE ldeg Fl .......... 613 7.3 COLD LEG OUTLET TEMPERATURE.ldeg Fl ........ 546 7.4 HOT LEG HEAT FLUX IBTU/hr/ftA2l ........... .

7.5 COLD LEG HEAT FLUX !BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. (psi) . . . . . . . 840 7.8 TYPICAL SLUDGE PILE DEPTH !inches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY

  • D-134

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TRICASTIN 2

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 U-BEND TRANSITION .*.................

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED ..*..

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8.1.7 PLUGS ...........*.......*.......*...

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION **.****.*...*...

9.1.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.1.3 SLUDGE PILE REGION .*.*....**...*..*.

9.1.4 TSP INTERSECTION ...***.*...**..**.*.

9.2 INTERGRANULAR ATTACK CIGA) 9.2.1 EXPANSION TRANSITION *.*.*****.....*.

9.2.2 TUBESHEET CREVICE *..*...*........*..

9.2.3 SLUDGE PILE REGION ..*....*.*..*...*.

9.2.4 TSP INTERSECTION *.***..*.*..........

9. 3 DENTING ....*....**......*..*.*..*.*......*.

9.4 CORROSION FATIGUE .*......**................

9.5 EROSION-CORROSION ........................*.

9. 6 PI TT I NG ...........*............**..........
9. 7 WASTAGE ............*..............**.......
9. 8 WEAR ..................**...***....*...*....

9.9 OTHER SECONDARY SIDE PROBLEMS ............. .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED .............*.....*....

10.2 TOTAL TUBES SLEEVED ..**................*...

10.3 OTHER <tube expn.,stress relief,peeningl ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-133
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TRICASTIN 4

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO . . . . . . . . . . . . . . . . . . . . . TRICASTIN 4
1. 2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EDF 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FRAMATOME 1.4 ELECTRIC POWER RATING CMWEI ................ 915 1.5 THERMAL POWER RATING CMWTI . . . . . . . . . . . . . . . . .

1.6 DATE OF COMMERCIAL OPERATION . . . . . . . . . . . . . . . 10/ 2/81

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ................. 3
2. 2 STEAM GENERATOR TYPE **.........*........... RWOE 2.3 STEAM GENERATOR MODEL NO *.*.....**......... 51M 2.4 STEAM GENERATOR FABRICATOR/LOCATION ....... .

2.5 DATE OF STEAM GENERATOR COMPLETION ......... II

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS Cinches) .............. .
3. 2 TUBE OUTSIDE DIAMETER Cinches) . . . . . . . . . . . . * . 875 3.3 TUBE WALL THICKNESS Cinches) . . . . . . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 3388 3.5 TUBE PITCH Cinches) * . . . . . . . * * * . . * . . * . . * . . . . 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ........ 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . .

4? TUBE SUPPORT PLATE MATERIAL . . . . . . . . . . . . . . . .

4.3 TUBE MATERIAL . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . ALLOY 600 4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VALLOUREC 4.5 DATE OF TUBE MANUFACTURE . . . . . . . . . . . . . . . . . . . II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . . . . . . . . . . . . . . . . . . .

5.2 CARBON CONTENT RANGE (percent) . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksil . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl *.........

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS ..............*... F.D. ROLL/DAM 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.1875,3.4685 6.3 PROCESS USED TD FORM BENDS . . . . . . . . . . . . . . . . .

6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl .. .

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) . . . . . . . . . . . . . 2248 7? HOT LEG INLET TEMPERATURE Cdeg Fl .......... 613 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl ........ 546 7.4 HOT LEG HEAT FLUX <BTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. !deg Fl .... .

7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ...... *840 7.8 TYPICAL SLUDGE PILE DEPTH Cinches) ........ .

7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT ONLY D-136

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TRICASTIN 3

8. REPORTED PRIMARY SIDE.PROBLEMS CYes/Na, Date or EFPD ta 1st observation) 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION . . . . . . . . . . . . . . . . YES B.1.2 EXPANDED REGION .....*...............

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ..*.

8. 1. 7 PLUGS . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . .

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMSCYes/Na,Date or EFPD ta 1st observation) 9~1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION *.....*.*.....*.

9.1.2 TUBESHEET CREVICE ..*.......**.......

9.1.3 SLUDGE PILE REGION .**...*......**...

9.1.4 TSP INTERSECTION ..*.................

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ........*.....*.

9.2.2 TUBESHEET CREVICE .*.*.......*......*

9.2.3 SLUDGE PILE REGION ...*..........*...

9.2.4 TSP INTERSECTION ............*.......

9 . 3 DENT I NG . . . . . . . . . . . . . . . . . . . . . . . . . . * . * . . . . . . .

9.4 CORROSION FATIGUE . . . . * . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . * . . . . . . . .

9. 6 PITTING ....................**.*............
9. 7 WASTAGE .....................*....***...*.*.
9. 8 WEAR ................*.....*.................

9.9 OTHER SECONDARY SIDE PROBLEMS . . . . . . . . . . . . . .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . .

10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . * . . . . . . . . . . .

10.3 OTHER <tube expn.,stress relief,peeningl ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-135 *
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TROJAN

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO ..................... TROJAN 1? UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PORTLAND GENERAL ELE 1.3 NSSS SUPPLIER .............................. WESTINGHOUSE 1.4 ELECTRIC POWER RATING IMWEJ ................ 1130 1.5 THERMAL POWER RATING CMWTI ................. 3411 1.6 DATE OF COMMERCIAL OPERATION ............... 5/15/76
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ................. 4
2. 2 STEAM GENERATOR TYPE ....................... RWOE 2.3 STEAM GENERATOR MODEL NO .........*........* 51A 2.4 STEAM GENERATOR FABRICATOR/LOCATION .. ~ ..*.* WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......... II
3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICl<NESS Cinches) ............... 22.0 3.2 TUBE OUTSIDE DIAMETER (inches) . . . . . . . . . . . . . . 875 3.3 TUBE WALL THICKNESS Cinches) . . . . . . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 3388 3.5 TUBE PITCH Cinches! ........................ 1.281 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . . . . . . 0000 3.7 DEPTH OF TUBESHEET CREVICE Cinches) .*...... 00.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .......*................. FORG. STL.
4. 2 TUBE SUPPORT PLATE MATERIAL ................ CS
4. 3 TUBE MATERIAL ....................*......... AL1-DY 600 4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE 4.5 DATE OF TUBE MANUFACTURE .................*. II
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ...................... 8 5.2 CARBON CONTENT RANGE lpercentl . . . . . . . . . . . . . . 037
5. 3 YIELD STRESS RANGE (ksi > ******************* 56-59 (AVG 58. 6) 5.4 MILL ANNEAL TIME/TEMP lmin/deg Fl .......... 1750-1800Ctubesl
6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .................. ROLL/EXPLOSIVE 6.2 RADII DF ROW 1 AND 2 LI-BENDS Cinches! ...... 2.1875,3.4685 6.3 PROCESS USED TD FORM BENDS ................. W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ............. 2235 7.2 HOT LEG INLET TEMPERATURE Cdeg Fl .......... 615 7.3 COLD LEG OUTLET TEMPERATURE ldeg Fl ........ 555 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2J ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2J .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..... 533 7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... *910 7.8 TYPICAL SLUDGE PILE DEPTH Cinches)......... 0.30 7.9 WATER CHEMISTRY ............................ AVT ONLY D-138

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TRICASTIN 4

8. REPORTED PRIMARY SIDE PROBLEMS (Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .*..............

8.1.2 EXPANDED REGION ......*..*...........

8.1.3 LI-BEND TRANSITION . . . . . . . . . . . . . . . . . . .

8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED ... .

8. 1. 7 PLUGS ...........*............*......

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION **..*..*.*...**.

9.1.2 TUBESHEET CREVICE .**..**............

9.1.3 SLUDGE PILE REGION ...*.....*.......*

9.1.4 TSP INTERSECTION ***.....*..**..*...*

9 ? INTERGRANULAR ATTACK CIGA>

9.2.1 EXPANSION TRANSITION .........*....*.

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION ................. .

9.2.4 TSP INTERSECTION ............*...*...

9. 3 DENT I NG .................*..................

9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION ...........*.....*......*.

9.6 PI TT I NG ...............*....................

9. 7 WASTAGE ....................... * ....*.*.....
9. 8 WEAR ....................*........*.......*.

9.9 OTHER SECONDARY SIDE PROBLEMS *....*........

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED ......................*.

10.2 TOTAL TUBES SLEEVED .........*..............

10.3 OTHER <tube expn.,stress relief,peening) ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-137
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TROJAN

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 U-BEND TRANSITION ..*............*... YES 8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .... .

8. 1.6 TSP IN1ERSECTION-DENTING RELATED ... .
8. 1. 7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * .

8.2 OTHER PRIMARY PROBLEMSCe.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation>

9.1 SECONDARY.SIDE IGSCC 9.1.1 EXPANSION TRANSITION ............*...

9.1.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.1.3 SLUDGE PILE REGION ......*........*..

9.1.4 TSP INTERSECTION ...........*........

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ........*....*..

9.2.2 TUBESHEET CREVICE .........*.........

9.2.3 SLUDGE PILE REGION .........*........

9.2.4 TSP INTERSECTION ...*..............*.

  • 9. 3 DENTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . .

9.4 CORROSION FATIGUE ................*.........

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9.6 PITTING ...........................*...*....

9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS ............. .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 405 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . . . .

10.3 OTHER Ctube expn.,stress relief,peeningl ... ALL ROW 1 LIB PLUGGED

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-139

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TURKEY POINT 3 CORIG SGI

1. PLANT DESCRIPTION 1 . 1 PLANT NAME AND UN IT NO. * . . . * * . . . . . . . . . . . . . . TURKEY PO Ii'JT 3 <DR IG 8!3 l 1.2 UTILITY . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . FLORIDA POWER&LIGHT 1.3 NSSS SUPPLIER ..........*........*.....*.**. WESTINGHOUSE 1.4 ELECTRIC POWER RATING CMWEl *....**......... 676
1. 5 THERMAL POWER RATING CMWTl . . . . . . . . . . . . . . . . . 2200
1. 6 DATE OF COMMERCIAL OPERATION............... 12/ 15/72
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ................. 3
2. 2 STEAM GENERATOR TYPE. . . * * * . * . . . . * . * . . . . . . . . RWOE 2.3 STEAM GENERATOR MODEL NO *........*.*...*.*. 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION ....*... WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......... //
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET THICKNESS Cinches I ............... 22. 0
3. 2 TUBE OUTSIDE DIAMETER Ci nchesl............. . 875 3.3 TUBE WALL THICKNESS Cinches) . . . . . . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ........ 3214 3.5 TUBE PITCH Cinches! ..........*............. 1.234 3.6 TUBESHEET RADIAL CREVICE Cinches> . . . . . . * . * . . 0060 3.7 DEPTH OF TUBESHEET CREVICE Cinches) ........ 18.00 4.

5.

STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .*...........*...........

4.2 TUBE SUPPORT PLATE MATERIAL .......**.......

4.3 TUBE MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 TUBE SUPPLIER ...*....*.....................

4.5 DATE OF TUBE MANUFACTURE .*.................

TUBE MATERIAL PROPERTIES FORG. STL.

CS ALLOY 609 HUNTINGTON II 5.1 ASTM GRAIN SIZE RANGE ...*...*..**..........

5.2 CARBON CONTENT RANGE Cpercentl ..........*..

5.3 YIELD STRESS RANGE Cksil .......****........

5.4 MILL ANNEAL TIME/TEMP <min/deg Fl .*........

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS .............*.... PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.188,3.47 6.3 PROCESS USED TO FORM BENDS *................ H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ............. 2235 7.2 HOT LEG INLET TEMPERATURE (deg Fl .......... 605 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl ........ 556 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2J .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..... 516 7.7 STEAM GENERATOR OPERATING PRESS. Cpsi) ..... .

7.8 TYPICAL SLUDGE PILE DEPTH Cinches)......... 2.00 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . EARLY PHOS, AVT D-140 *

  • DOMINION.ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TURKEY POINT 3 <ORIG SGl

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observationl 8.1 PRIMARY SIDE IGSCC
8. 1. 1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION . . . . . . . . . . . . . . . . . . . . .

8.1.3 LI-BEND TRANSITION .................. .

8.1.4 LI-BEND APEX-DENTING RELATED ......... YES 8.1.5 U-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED .... YES

8. 1. 7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . , ..... .

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ..........*.....

9.1.2 TUBESHEET CREVICE .................. .

9.1.3 SLUDGE PILE REGION ...............*..

9.1.4 TSP INTERSECTION . . . . . . . . . . . . . . . . . . . .

9.2 INTERGRANULAR ATTACK <IGAl 9.2.1 EXPANSION TRANSITION *...............

9.2.2 TUBESHEET CREVICE . . . . . . . . . . . . . . . . . . .

9.2.3 SLUDGE PILE REGION . . . . . . . . . . . . . . . . . .

9.2.4 TSP INTERSECTION ...............*....

9.3 DENTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES <SEVERE>

9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 6 PITTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 7 WASTAGE ....... _. . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES
9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS ............. .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 2119 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . . . .

10.3 OTHER (tube expn.,stress relief,peeningl .. .

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-141 J

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY TURKEY POINT 4 <ORIG SGl L PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO . . . . . . . . . * . . . . . . . . . . . TURKEY POINT 4 <ORIG SGl

1. 2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . FLORIDA POWER&LIGHT 1.3 NSSS SUPPLIER .........*..*................. WESTINGHOUSE
1. 4 ELECTRIC POWER RATING <MWEl . . . . . . . . . . . . . . . . 676 1 . 5 THEF!MAL POWER RA TI NG ( MWT l *..*............. 2200 1.6 DATE OF COMMERCIAL OPERATION . . . . . . . . . . . . . . . 9/15/73
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS *................ 3
2. 2 STEAM GENERATOR TYPE ..............**..*.... RWOE 2.3 STEAM GENERATOR MODEL NO ..*..............*. 44 2.4 STEAM GENERATOR FABRICATOR/LOCATION ....*...

2.5 DATE OF STEAM GENERATOR COMPLETION ........ ~ //

3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I CKNESS <inches) . . . . . * . . . . . . . . . 22. 0 3.2 TUBE OUTSIDE DIAMETER Cinches) . * . . . * . . . . . . . . 875 3.3 TUBE WALL THICKNESS Cinches) . . . . . . . . . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ......*. 3260 3.5 TUBE PITCH Cinches) ...*.*.................. 1.234 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . * . . . . 0060 3.7 DEPTH OF TUBESHEET CREVICE <inches) ........ 18.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . MN,MO 4.2 TUBE SUPPORT PLATE MATERIAL . . . . . . . . . . . . . . . . CS 4.3 TUBE MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALLOY 600 4.4 TUBE SUPPLIER ..........*.**...*............ HUNTINGTON
4. 5 DATE OF TUBE MANUFACTURE ...*............... 11
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE . . . . * . . . . . . . . . . . . . . . . .

5.2 CARBON CONTENT RANGE Cpercentl . . . . . . . . . . . . .

5.3 YIELD STRESS RANGE (ksil . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl ......... .

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS . . . . . . . . . . . . . . . . . . PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ..... .

6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . H BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING Chours/deg F) ... NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE (psi) . . . . . . . . . . . . . 2235 7.2 HOT LEG INLET TEMPERATURE Cdeg Fl .......... 602 7.3 COLD LEG OUTLET TEMPERATURE (deg Fl ........ 546
7. 4 HOT LEG HEAT FLUX <BTU/hr /ft**""2l............ 104000 7.5 COLD LEG HEAT FLUX (BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..... 510 7.7 STEAM GENERATOR OPERATING PRESS. <psi) ...... 770 7.8 TYPICAL SLUDGE PILE DEPTH (inc~esl......... 1.50 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . EARLY PHOS, AVT D-142 *

  • DOMINION ENGINEEF:ING, INC.

EPRI/SGOG II CRACKING SURVEY TURKEY POINT 4 <ORIG SGl

8. REPORTED PRIMARY SIDE PROBLEMS !Yes/No, Date or EFPD to 1st observation>

8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION .................... .

8.1.3 LI-BEND TRANSITION .................. .

8.1.4 Li-BEND APEX-DENTING RELATED ......... YES B.1.5 Li-BEND APEX-NOT DENTING RELATED .... .

8.1.6 TSP INTERSECTION-DENTING RELATED .... YES 8.1.7 PLUGS~ .....................*........

8.2 OTHER PRIMARY PROBLEMSle.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMSCYes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC
9. 1. 1 EXPANSION TRANSITION ......*.........

9.1.2 TUBESHEET CREVICE .................*.

9.1.3 SLUDGE PILE REGION ................. .

9.1.4 TSP INTERSECTION . . . . . . . . . . . . . . . . . . . .

9.2 INTERGRANULAR ATTACK CIGAl 9.2.1 EXPANSION TRANSITION ..............*.

9.2.2 TUBESHEET CREVICE ..................*

9.2.3 SLUDGE PILE REGION . . . . . . . . . . . . . . . . . .

9.2.4 TSP INTERSECTION ................**..

  • 9. 3 DENTING ..........*.............*........... YES CSEVEREl 9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION . . . . . . . . . . . . . . . . . . . . . . . . . .

9. 6 PITTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES
9. 8 WEAi:;; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.9 OTHER SECONDARY SIDE PROBLEMS ............. .

10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 2498 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . . . .

10.3 OTHER <tube expn.,stress relief,peeningl .. .

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-143

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY ZION 1

1. PLANT DESCRIPTION 1.1 PLANT NAME AND UNIT NO .........*.........*. ZION 1 1.2 UTILITY ..................*................. COMMONWEALTH EDISON 1.3 NSSS SUPPLIER ..........*................... WESTINGHOUSE
1. 4 ELECTRIC POWER RATING (MWE>................ 1085 1.5 THERMAL POWER RATING <MWT) .............*..* 3250 1.6 DATE OF COMMERCIAL OPERATION ............... 10/15/73
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ....***..*....... 4 2.2 STEAM GENERATOR TYPE ...***...*......*..***. RWOE 2.3 STEAM GENERATOR MODEL NO .**..***........... 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION .....*.* WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......... //
  • -*. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS (inches> ...........*... 21.0 3.2 TUBE OUTSIDE DIAMETER <inches> ............ ~ .875 3.3 TUBE WALL THICKNESS (inches> .*..**.......... 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR *...*... 3388 3.5 TUBE PITCH (inches) ......*.*.......*....*.. 1.281 3.6 TUBESHEET RADIAL CREVICE <inches> * . . . . . . . . . . 0060 3.7 DEPTH OF TUBESHEET CREVICE Cinches> ........ 18.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .........*...*...........

4.2 TUBE SUPPORT PLATE MATERIAL ...........**....

4.3 TUBE MATERIAL ..*........**.*...............

4.4 TUBE SUPPLIER .....**.....***..*.*..........

4.5 DATE OF TUBE MANUFACTURE .*.................

SA 508 CS ALLOY 600 WESTINGHOUSE II

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE ..........*........... 8 5.2 CARBON CONTENT RANGE (percent) . . * . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksi) . . . . . . . . . . . . . . . . . . .

5.4 MILL ANNEAL TIME/TEMP (min/deg F> .....*....

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS . . . . . . . . . . . . . . . . . . PART DEPTH ROLL 6? RADII OF ROW 1 AND 2 LI-BENDS (inches> ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS . . . . . . . . . . . . . . . . . W BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING <hours/deg Fl ... NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE <psi) ............. 2250 7.2 HOT LEG INLET TEMPERATURE (deg F> .......... 594 7.3 COLD LEG OUTLET TEMPERATURE ldeg F> ........ 530 7.4 HOT LEG HEAT FLUX CBTU/hr/ffA2J ........... .

7.5 COLD LEG HEAT FLUX (BTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg Fl ..... 506 7.7 STEAM GENERATOR OPERATING PRESS. (psi) ...... 720 7.8 TYPICAL SLUDGE PILE DEPTH (inches) ........ .

7.9 WATER CHEMISTRY ..........................*. EARLY PHOS, AVT D-144 *

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY ZION 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION ............... .

8.1.2 EXPANDED REGION .................... .

8.1.3 LI-BEND TRANSITION ................... YES 8.1.4 LI-BEND APEX-DENTING RELATED .......*.

8.1.5 LI-BEND APEX-NOT DENTING RELATED .....

8.1.6 TSP INTERSECTION-DENTING RELATED ..*.

8. 1. 7 PLUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . .

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation) 9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ...........*..*.

9.1.2 TUBESHEET CREVICE ..............*....

9.1.3 SLUDGE PILE REGION ......*.*.........

9.1.4 TSP INTERSECTION ................... .

9.2 INTERGRANULAR ATTACK CIGAJ 9.2.1 EXPANSION TRANSITION ........*.......

9. 2. 2 TUBESHEET CREVICE. . . . . . . . . . . . . . * . . . . YES 9.2.3 SLUDGE PILE REGION .................. YES 9.2.4 TSP INTERSECTION . . . . . . . . . . . . . . . . . . . .
9. 3 DENT I NG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES 9.4 CORROSION FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5 EROSION-CORROSION ........................*.

9.6 PITTING . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . .

9. 7 WASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES
9. 8 WEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . YES 9.9 OTHER SECONDARY SIDE PROBLEMS ............. .
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED . . . . . . . . . . . . . . . . . . . . . . . . 498 10.2 TOTAL TUBES SLEEVED . . . . . . . . . . . . . . . . . . . . . . . .

10.3 OTHER (tube expn.,stress relief,peeningl ... ALL ROW 1 LIB PLUGGED

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • 0-145

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY ZION 2

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND *uNIT NO .*................... ZION 2 1.2 UTILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . COMMONWEALTH EDISON 1.3 NSSS SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WESTINGHOUSE
1. 4 ELECTRIC POWER RATING (MWE>................ 1085
1. 5 THERMAL POWER RATING <MWT> ................. 2760 1.6 DATE OF COMMERCIAL OPERATION ............... 11/15174
2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENERATORS ................. 4 2.2 STEAM GENERATOR TYPE ...*.*................. RWOE
2. 3 STEAM GENERATOR MODEL NO. . . . . . . . . . . . * . . . . . . 51 2.4 STEAM GENERATOR FABRICATOR/LOCATION ......*. WESTINGHOUSE 2.5 DATE OF STEAM GENERATOR COMPLETION ......*.. //
3. STEAM GENERATOR DIMENSIONS
3. 1 TUBESHEET TH I CKNESS (inches> . . . . . . * . * . . . . . . 21. 0 3.2 TUBE OUTSIDE DIAMETER (inches) . . . . . . . . * . . * . . 875 3.3 TUBE WALL THICKNESS <inches> . . . . . . * * . . . . . . . . 050 3.4 NUMBER OF TUBES PER STEAM GENERATOR ....*... 3388 3.5 TUBE PITCH <inches) . . . . . . . . . . . . . . . . . . . . . . . . 1.280 3.6 TUBESHEET RADIAL CREVICE Cinches) . . . . . . . . . . . 0060 3.7 DEPTH OF TUBESHEET CREVICE (inches) ........ 18.00
4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL ............**....*..*.*. SA 508 4? TUBE SUPPORT PLATE MATERIAL ................ CS 4.3 TUBE MATERIAL ...*..................*....... ALLOY 600 4.4 TUBE SUPPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WEST/HUNTINGTON
4. 5 DATE OF TUBE MANUFACTURE. . . . . . . * . . . . . . * . . .
  • I I
5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE .....................*

5.2 CARBON CONTENT RANGE (percent> . * . . . . . . . . . . .

5.3 YIELD STRESS RANGE Cksil ..............*..*.

5.4 MILL ANNEAL TIME/TEMP (min/deg Fl ........*.

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *................. PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ...... 2.1875,3.4685 6.3 PROCESS USED TO FORM BENDS ................. WH BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING Chours/deg Fl.A* NONE
7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil ............. 2250 7.2 HOT LEG INLET TEMPERATURE (deg F> .......... 594 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl ........ 530 7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2) ........... .

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .......... .

7.6 STEAM GENERATOR OPERATING TEMP. Cdeg F) ..... 506 7.7 STEAM GENERATOR OPERATING PRESS. Cpsil ...... 720 7.8 TYPICAL SLUDGE PILE DEPTH Cinches)......... 0.50 7.9 WATER CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . EARLY PHOSPHATE,AVT D-146

  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY ZION 2

8. REPORTED PRIMARY SIDE PROBLEMS (Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION .............*.*

8.1.2 EXPANDED REGION .....*....**.........

8.1.3 LI-BEND TRANSITION ..*.*....*..**.**.. YES 8.1.4 LI-BEND APEX-DENTING RELATED ........ .

8.1.5 LI-BEND APEX-NOT DENTING RELATED .*.*.

8.1.6 TSP INTERSECTION-DENTING RELATED ....

8.1.7 PLUGS .**.....*...*........*.....**..

8.2 OTHER PRIMARY PROBLEMS(e.g. sulfur attack>.

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC 9.1.1 EXPANSION TRANSITION ............... .

9.1.2 TUBESHEET CREVICE ..............*....

9.1.3 SLUDGE PILE REGION *......*.....**...

9.1.4 TSP INTERSECTION ..*.*...............

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION ............... .

9. 2. 2 TUBESHEET CREVICE .........*..... , . . . YES 9.2.3 SLUDGE PILE REGION ......*........... YES 9.2.4 TSP INTERSECTION .......*............
9. 3 DENTING ..........................*......... YES 9.4 CORROSION FATIGUE .....................*....

9.5 EROSION-CORROSION ......................... .

9.6 PITTING ...............................*....

9. 7 ~JASTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *. YES
9. 8 WEAR. . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . YES 9.9 OTHER SECONDARY SIDE PROBLEMS ............. .
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED .......*................ 14 10.2 TOTAL TUBES SLEEVED ...*.......*...........*

10.3 OTHER (tube expn.,stress relief,peeningl ...

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6
  • D-147

DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY ZORITA 1

8. REPORTED PRIMARY SIDE PROBLEMS <Yes/No, Date or EFPD to 1st observation) 8.1 PRIMARY SIDE IGSCC 8.1.1 EXPANSION TRANSITION **************** YES 8.1.2 EXPANDED REGION .*********..**.***.*.

8.1.3 LI-BEND TRANSITION **********...******

8.1.4 LI-BEND APEX-DENTING RELATED ***.**.**

8.1.5 LI-BEND APEX-NOT DENTING RELATED *.***

8.1.6 TSP INTERSECTION-DENTING RELATED ****

8. 1 . 7 PLUGS * **********.*****.************.

8.2 OTHER PRIMARY PROBLEMS<e.g. sulfur attack).

9. REPORTED SECONDARY SIDE PROBLEMS<Yes/No,Date or EFPD to 1st observation>

9.1 SECONDARY SIDE IGSCC

9. 1. 1 EXPANSION TRANSITION ****************

9.1.2 TUBESHEET CREVICE ******************* YES<MINORl 9.1.3 SLUDGE PILE REGION ******************

9.1.4 TSP INTERSECTION ********************

9.2 INTERGRANULAR ATTACK <IGA>

9.2.1 EXPANSION TRANSITION ****************

9.2.2 TUBESHEET CREVICE ******************* YES 9.2.3 SLUDGE PILE REGION **********.*******

9. 2. 4 TSP INTERSECT I ON. * * * * * * * * * * * . * * * * . *
  • YES
9. 3 DENT I NG . ..***********.*********.****..*****

9.4 CORROSION FATIGUE *.*.*.*.************...*.*

9.5 EROSION-CORROSION **.......******.*.***..*.*

9.6 PITTING *..*..*****.*********.******.**.****

9.7 WASTAGE ..*.*.*...******.*****..************ YES

9. 8 WEAR. * . * * * * * * * * * * * . * . . * * * * . * . * * * * * . * . * * * . .
  • AT AVB <MI NOR) 9.9 OTHER SECONDARY SIDE PROBLEMS *.*******.****
10. INSERVICE REMEDIAL MEASURES 10.1 TOTAL TUBES PLUGGED *...***.****..*.***.....

10.2 TOTAL TUBES SLEEVED *.******...**.**.**.*...

10.3 OTHER <tube expn.,stress relief,peeningl **.

11. NOTES
11. 1
11. 2
11. 3
11. 4
11. 5
11. 6 D-148
  • DOMINION ENGINEERING, INC.

EPRI/SGOG II CRACKING SURVEY ZORITA 1

1. PLANT DESCRIPTION
1. 1 PLANT NAME AND UNIT NO..................... ZORITA 1 1? UTILITY *..........*....*..***..**.**..***.* UNION ELEC.-FENOSA 1.3 NSSS SUPPLIER *..****.****.**.***.*.* ~ .***** WESTINGHOUSE 1.4 ELECTRIC POWER RATING CMWE> .**.**..**.***** 153 1.5 THERMAL POWER RATING CMWT> ****.**.*********

1.6 DATE OF COMMERCIAL OPERATION ***.**.*...**** 8/15/69

2. STEAM GENERATOR GENERAL INFORMATION 2.1 NUMBER OF STEAM GENER~TORS *..**.*.***.***** 1 2.2 STEAM GENERATOR TYPE ..............*....*...

2.3 STEAM GENERATOR MODEL NO ************.****** 24 2.4 STEAM GENERATOR FABRICATOR/LOCATION ********

2.5 DATE OF STEAM GENERATOR COMPLETION .*..***** //

3. STEAM GENERATOR DIMENSIONS 3.1 TUBESHEET THICKNESS Cinches) .*..*.*****.***

3.2 TUBE OUTSIDE DIAMETER Cinches) *************

3.3 TUBE WALL THICKNESS Cinches> ****..***.*****

3.4 NUMBER OF TUBES PER STEAM GENERATOR ********

3.5 TUBE PITCH Cinches) ***.****.**..****.******

3.6 TUBESHEET RADIAL CREVICE Cinches> **...*****

3.7 DEPTH OF TUBESHEET CREVICE Cinches> .***.*.* 18.00

4. STEAM GENERATOR MATERIALS 4.1 TUBESHEET MATERIAL .......*.*.*..****.******

4.2 TUBE SUPPORT PLATE MATERIAL **..***...*****.

4.3 TUBE MATERIAL ***.**..*...***.******..*.**** ALLOY 600 4.4 TUBE SUPPLIER *..*.*..*.*.*.*.*..*..*.***.** HUNTINGTON 4.5 DATE OF TUBE MANUFACTURE .*....*..**.*.***** //

5. TUBE MATERIAL PROPERTIES 5.1 ASTM GRAIN SIZE RANGE .****...*..****.******

5.2 CARBON CONTENT RANGE <percent> *..***.******

5.3 YIELD STRESS RANGE Cksi> **..***..**..*.****

5.4 MILL ANNEAL TIME/TEMP Cmin/deg F> ********..

6. TUBE EXPANSION PARAMETERS 6.1 TYPE OF EXPANSION PROCESS *..**.**...***..** PART DEPTH ROLL 6.2 RADII OF ROW 1 AND 2 LI-BENDS Cinches) ....*.

6.3 PROCESS USED TO FORM BENDS ..*.*****....**** H. BALL MANDREL 6.4 STRESS RELIEF AFTER TUBING (hours/deg Fl .*. NONE

7. STEAM GENERATOR OPERATING PARAMETERS 7.1 PRIMARY COOLANT PRESSURE Cpsil **...*.*...**

7.2 HOT LEG INLET TEMPERATURE (deg Fl *....**... 596 7.3 COLD LEG OUTLET TEMPERATURE Cdeg Fl *....*..

7.4 HOT LEG HEAT FLUX CBTU/hr/ftA2J ****.....**.

7.5 COLD LEG HEAT FLUX CBTU/hr/ftA2) .**.....***

7.6 STEAM GENERATOR OPERATING TEMP. (deg Fl ..*..

7.7 STEAM GENERATOR OPERATING PRESS. Cpsi> .*.**.

7.8 TYPICAL SLUDGE PILE DEPTH Cinches> .......**

  • 7.9 WATER CHEMISTRY .........**..*...***..*.**** COORD.PHOS. ONLY D-149
  • ENCLOSURE 2 Consumers Power Company Palisades Plant Docket 50-255 CPCo RESPONSE TO INFORMATION REQUEST 6 (Letter from PCI Energy Services)
  • October 20, 1993

l0-!8-93 02:59PM FROM PCI LAKE BLUFF TO !6!67641428 P002/003 FIELD MACHINING, WELDING, TOOL DESIGN & ENGINEERING October 11, 1993 Mr. Robert Van Wagner Consumers Power company Palisades Generating Plant 27780 Blue Star Memorial Hwy covert, MI 49043

Subject:

Independent Film Review of Pressurizer PORV and PSS Line

Dear Mr. Van Wagner:

The film and results of the welds I reviewed are listed below. The review was of final radiographs as well as root radiographs of the welding on the PORV line.

WELD UTILI'l'Y INDEPENDENT LINE NO. NUMBER R.T DATE EVALUA'l'ION REVIEW l'DG)

PCS-4-PSS-IPI XR20 9/19/93 Acceptable Agree with Interpretation PCS-4-PRS-IPI XR2 9/93 Acceptable Agree with Interpretation PCS-4-PRS-IPI XR3 9/93 Acceptable Agree with Interpretation PCS-4-PRS-IPI XR5 9/21/93 Acceptable Agree with Interpretation

  • PCS-4-PRS-IPI XR6 9/22/93 Acceptable Agree with Interpretation PCS-4-PRS-IPI XR21 9/23/93 Acceptable Agree with Interpretation PCS-6-PRS-IBI XRl 9/93 Acceptable Agree with Interpretation (RV1040)

PCS-6-PRS-IAI XRl 9/93 Acceptable Agree with Interpretation (RV1039)

PCS-6-PRS-ICI XRl 9/93 Acceptable Agree with Interpretation (RVl041)

PCS-4-PRS-IPI XR4 9/93 Acceptable Agree with Interpretation PCS-4-PRS-IPI XRl 9/93 Acceptable Agree with Interpretation PCS-4-PRS-IPI XRlA 10/2/93 Acceptable Agree with Interpretation PCS-4-PRS-IPI XR1

  • 10/93 Acceptabl~ Agree with Interpretation Acceptab1~

PCS-4-PRS-IPI XR2 * *10/93 Agree with Interpretation

  • NOTE: These welds were previously identified as XR2 and XR3, but renumbered after cut out.

One Energy Drive* P.O. Box 3000 *Lake Bluff, Illinois 60044 * (708) 680-8100 Branch Offices: Atlanta, GA* Ashland, VA* Banning, CA

10-18-93 02:59PM FROM PC! LAKE BLUFF TO 16167641428 P003/003 In addition to the above radiographs I reviewed the film for the failed weld PCS-4-PRS-IPI Weld 1A, dated June and September, 1993. The film in June clearly showed a linear (crack) like indication from station marker 9~-12. The September, 1993 radiograph shows the crack running across the weld into the stainless pipe. I was asked if that indication could be "slag". I said no due to the fact that it is adjacent within <~"

from the root, it did not have the normal slag-like appearance rough jagged and irregular appearance. The indication appears to me to be a base metal crack at the ID. I received the construction radiographs dated 10/31/69 and the film does not meet code requirements for density etc. Interpretation with this radiograph in the area of concern was not feasible.

It appears that radiographs are in the as-welded condition for the Gas Tungsten Arc Welding interpretation would be adequate, but for the Shielded Metal Arc Welding process the stringers could mask indications.

The Ultrasonic ISI inspection appears to be performed with no or very little surface preparation. I suqqest that a review of the surface preparation details be performed to enhance the ultrasonic examination results.

If I can be of any further assistance in this matter, please feel free to contact me at (708) 680-8100.

Sin:~r~~*L) u Ti~tb'Y'b. ~rubhs V.P. Quality Assurance TDG/kls

/

)

101193.L1

  • ENCLOSURE 3 Consumers Power Company Palisades Plant Docket 50-255 CPCo RESPONSE TO INFORMATION REQUEST 7 (Sketches and Drawings)
  • October 20, 1993

- - . - --- - * - - - -- - * - - - - * .. - - r--- .,.-- . - ~

- !.... . _ *r---~t---7-:-

__ .,.. _ _ - r - _......._.._

I SECT/ ON'. OF: . . .

4'.' Sch 12D "Git-tr---- s. s .

THE" Po RV 24 PIPE"

  • N.OZZLE: DN- INCONEL WELD PRESSURIZ.E'R I "

T-72 ~

/.035 II 1*.'.(4S INC.ONE L

0. 8+66 II SAFE-END 15 II 11

/\'b I~" o.s1b INCONEL r i II W~LD

.3'A.

I Yz."

II

~

z 4~

5 0

< }j J/

..J u

. 4 .

<n .. .

(J')

~ u

  • * ' ~
  • I  :  : - ;

ORl~IAJAL 'PoRv JJOZ?.-LE-Di; TA IL SHOW IA.J ~

  • 1.-.DCA-t!ON OP CUT AAFD WEL"D PREP FOR REPAIR.

co1 LI.NE.

INCONEL

  • W~LD

~

z cs0

'( ~ II

_J u

. 4 .

(/)

r.J) l.Jl u

"'POR\/ ;JOZZLE REPAIR.

E;Ub }>RE:.Y bETAlLS (rJEcJ W E-L-l>J Ml~MATCH_]

.... ~ _J UTA \L A WA z

0

_J u UI

~5

  • s*J NOTES:
1. 1/16" max internal mismatch at one point; 1/32- max internal mismatch if spread uniformly around circumference.

fOR\J ;\JOZZLE. DETAIL 51-+ow11J~ Ali:: .. , REPA1 R..

-V'-o'

  • C,/\

V" ID OF lVELb AREA IOBE... ~

Ci R. 0 Ll /\JI.> FLO S H A.Al 'D F"L..A PPE: i)

GRIND FLAT W1-rH WE.L.7) CAP INCONEL

. W~LD (1'

z cs:

Q

.J t/

(j

. 4 .

(/) CJ)

  • V) 0
  • ENCLOSURE 4 Consumers Power Company Pa 1i sades Pl ant Docket 50-255 MICROHARDNESS TEST RESULTS FOR THE BASE METAL AND FRACTURE AREA
  • October 20, 1993

PaHsades PORV Nozzle Mtcrohardness 440 420 38.6 Re 400 36.8 Re 380 - 34.8 Re 0

0 Bui.

J'} 360 32.8 Re

~

l:

340

\

30.4 Re

  • c 320

~

v

/ 27.8 Re

~ ~ -~ ~ ......

11

~

0 \

.c 300 24.9 Re

~ "

0

~

v 280

/' \ /

/ ~~/

0

~

260 I \ ~............ ;.., ......

I V"

~

0 c

  • \ I 240 220 I\/. \ ~-

I

~

~

200

/

~

180 82.3 Rb 0 200 600 Dlstunc* from ID (mna)

  • ENCLOSURE 5 Consumers Power Company Palisades Plant Docket 50-255 CPCo RESPONSE TO INFORMATION REQUEST 15 (1987 PORV Examination Results)
  • October 20, 1993
  • OLTlASOHIC ULTRASONIC INSTRUMENT LINEARITY RECORD INSTRUME~T Mf1/Mocle l No. KA ) l<dS12 -14 VERTICAL LINEARITY Serial Mo. 318?5'-/f-#6 Filter Setting #hf Actual (Calculate) Actual

.~------ No. Higher 1/2 of Acceptance Low*r Calibration !lock Signal Higher Limit a* Signal Type L&~ 4~ ~-/

1 /~~ ( S"'CJ ) ( ~,51-(5..51 £d Serial No. M4/411t 2 9d' ( ~..5') (~)-(S'dJ) ~~

Transducer 3 8~ ( -¥ttJ ) (3,S")-(~5) -¢G)

Mfg. 54-tf 4 7ttJ ( .3.5 ) (3~)-(~) '3:59 Size Kc &yp Frequency ,,<,~;& 5 ~tt) ( (30 ) c~-<J.JJ 3a Serial No. 4f46/1f&!. 6 ~ ( -25) (~)-~) ..2.:$'

Straiahc Anal*

7 ( ,Ztt) ) (/_51-~)

Beam ( ~ Beam ~) #?J ..2~

8 3tJ ( /~ ) ( h:::>)-(..,2'&') /.5"'-

( .5' >-< /$")

9 ( /t::} ) /CJ

.2~

HORIZONTAL LINEARITY 10 ,/,?; <5 ) C CJ >-Vo > ~

Back Grid Acceptance *Acceptance Limit* are 1/2 of th*

Reflect.

1 Loe.

1 Limits 1

Hiaher Si1nal

  • 5% FSB.

Sianal amplitudes are in % FSH.

2 .:z. 1. 90-2 .10 3 .3 2.85-3.15 4 ~ 3.80-4.20 AMPLITUDE CONTROL LINEARITY 5 5' 4. 75-5.25 Initial di Accepcanc1 beulc Liaiu 6 ~ 5.70-6.30 Amplitude Chana*

7 7 6.65-7.35 80% FIR Down 6 ~~ 32% - 48%

8 7.60-1.40 80% FSB Down 12 /4' 16% - 24%

9 1.55-9.45 40% Fill u, 6 AG? 64% - 96%

10 10 10 20X FSR Up 12 .,#~ 64% - 96%

Thia inacrum*nc ia coa1id1red: .'/'

//(~) llot Accepcabl*

  • T*1C perfaned by: ,~~!:;g t**c *nr**** bJ:*

~

,....,.,a 4

Ln*l.Zf- Dace /~//~/f....3 Lnel ...v4t Dae*_.../~

  • Lnel 11 n 111 a,,rnal. OlllJ n..Um vlln LeYel 1 perfo~ ch* lin*ariCJ ..-rificacioa.

Plant/Unit &?J<Af?4'S' CompiSyst1m '*4i,1(Utc<<

UT No. TtlJ -G/

ULTRASONIC Procedure No *.sm-ya. 417 Rev.~

Zone t°CS* a:-ns-1111 CALIBRATION DATA SHEET Contract No. 411457 ST Na. <<M Rev. ~

Cl~ Black No. 14~-~.#L,

~

Surface (10/00) OLl SEARCH UNIT Block/Comp. Temp 61:.. OF/ &rJ oF/

Scan Angle: / ' ( / ) &J Mode: S..v.£~~

Fixturing (if 1ny): /,..,,,..,,,._,- u./__ _ , o0 or"Dro WELD II TO 'NELO  !

IOENT SWEEP POS AMPL ATTEN d8 SWEEP AMPL ATTEN I Size & Sh1p1: .3'/"" I/ 4. _, '/'!

'11' T ,2, cJ l~'CJ " ~~

POS  % d~ I I

Frequency: _p, .:7,,,-_.,,,f/.z SCAN AREA 34-r G,C) 3C) 6cP I ~

Serial No/Brand: -~~,u,,.,,.3 //fi-A 0° WAV ~

Measured Angle:

Cable Type 8a 9.:i I

Length:,.f"-,';"';-'.,:'~ ~I 0° Mat'l 1 To Weld

~

~

IO

  • - ~9 t--

38

,.~-

66 i----

~

" ['..._

~;

Coupl1nt Brand: .~ .. *- --~ - II To Weld ~ 100%

2 J 4 5 Coupl1nt Buch: (j9.:?~/4' 90 80 "'

INSTRUMENT SETTINGS CAL, CHECKS TIME 70

'I'..

r-.....

Sari1I No.: ~/A'""/-,.

. ..-/.-("4 Mfg/Modal No,: K-A b/.t~n-.1A

/-

lnitiaJ Cal.

lnt1rm1di1t1

/;fJ,:,ZtJ 60 50 ' .....

"/~ 4D "

6'/) .-'! u_,.,. J D1mpin9 lnt1rmedi1t1 ~~ 30 2: ""'-

Mode Select: <J * -

  • IRtiect:~~ Intar1n1di1t1 ~14 Freq,: JI ~r- J.L Rep. R*1t1~~ Fin1I Cal. ~~*G?.1"'

10 ""- '

1111 11111 11111 1111 11111 II 11 1111 1111 'M II 1111 D I Filter:#/~ Vidt0:,VpJ1cJc: ~ * ' 1 ~ 10 Scrnn Divisions, 10 * ,&,5' in, Sw11p Lenath C:~~ F:1,1~~

Recordablt Sclll Swetp Del1y C:.,¥'4' F:~1?,64' EXAMINATION Indications Limit1tii11 WELD/AREA G1in o0 orl1 C: ~4~ F: Al/~ ..

Yn Na Yn Na COMMENTS G1in II C:'AI F:,41/~

"" ¥.., r ,sl),11 41r ,,., M ..\ ,~ w 1Jk1,.. _ , .N~

>< #,4. >< ~MU'$~MO Sein Sensitivity 4~"4 ,,.,

....... J"I 11111-_p N'-19 *:x ~ :x <'*-;.f A'~/'J z:; ..t:'~d*1.J INSTR, LINEARITY CAL.

I"--.

High Low Hlllt Law ----.

'-'-.r **

I ~#!) ~.1~

1 9~ H I .MA ~/J loo.-

2 At) t/ltJ 1 _,_,,, ~~

l ~A .14""' I ,,/J

/~

4 ~A 'tA I //j r EXAMINER __;7./,- - - LI:: - - - _...... ~

LEVEL ..zG DATE /.o//o/f..3 AMPL. CONTROL LINEARITY EXAMINER ~ I* LEVEL ,vb DATE 4'/4

.... A_.. /../ ;7 initill ~

..1z RIVIEWIR LEVEL DATE

  • IQ 8IJ 40 +I Authorized Inspection AQlncy ADDITIONAL SHEETS? lClltck lox)

. Continutti111 BamPllt 3

~ I DATE of I za +1Z Suppllm1n11 Otll*

Plant/Unit 8p4;ycyf,~ UT No. l t (i -07 Comp/System ffe4<,fVUt<64' ULTRASONIC Procedure No. sm-M()-M Z Rev . .1--

Zone PCS-?8-PLS-1111 CALIBRATION DATA SHEET ST No. ao;1 Rev. ::f,d£_ .

Contract No. <!l/{2.57 Ca~ Block No. /U-h.L Surflc* (ID/O DJ _......,a""L2~------  ;

SEARCH UNIT Block/Comp. Temp a?'A' °F/ 8 0 °F/

Scan Angle: ~~

0 WELD II TO WELD Fixturing (if any): ,,i.

IDENT AMPL ATIEN SWEEP AMPL

% dB POS Y.

Frequency: SCAN AREA Serial No/Brand: 0° WRV Measured Angle: 0° Mat'I 1 To Weld Coupl1nt Brand: II To Weld 100%,--...,....--,.~.,.--:-~..-------~~~~

Couplilnt Batch:~ 90 5

- - --CM~ ScMI - ~

80 CAL, CHECKS TIME ~

INSTRUMENT SETTINGS 70 Mfg/Model Na,: K~ bhU>-,J/J c?Jt#?.r..-/.5'4~

Initial Cal.

Intermediate J<<'/7-<

/l/"'9 60 50 "' r-...." ' "-

J Serial No,:

Damping 5'/J_..MAf Interm1di1t1 ~~

40 30 2:

~

I" I\

Mode Select: StN$'U Reject:k~ Int1rinediat1 ~/A Freq,: /-. ,,l/z- Rep. R*at1~/~ Final Cal, 1'7-'5J 10 I Ill 1111 1111 1111 1111 111 I 1111 "Ill I 1111 1111 0

Filter: A'/~ Vid10:#/~J1ck: .R I ' .I I &;,, J/ I 0 Scrnn OivisioM, 10 * ~in.

Sweep Lenqth C:.N~ F:1?<!..~

R1cord1bl1 Scan Sweep Delay C:l'l'/A F:...1 AIL'*~ EXAMINATION lndic1tion1 Limitation WELD/AREA COMMENTS Gain o0 ortf} C:~~; F:.N/~

Yn Na Yn No II C:?~*' F: ;'ti/~

>< """4 ><

Gain

  • .v~r $PAI .!llr ~r ""?.'~ WI~"' #I ~ .J. - - '"' .z: c:>,.-~ r_.._,

Scan Sensitivity d"t:i& .______

WP~,,;~ ~ >< ~ I>< ~,.,,__. ~LA h ,r,, ~ - L ~

INSTR, LINEARITY CAL.

i--..

High Low HWI Low 2

1 3 '7/J 9~

,M H

"'~

3 (""

I I

7

.<'d l-'5'

.MA

-~~

~A

~~

hi-'/~

4 /,,A ~A I

9

~A

/ ./'1

/~-

£ EXAMINE~ -7'/ Ji> ~I LEVEL LEVEL.....,µ DATE

~ DATE /~//.,/1'3

  1. 4 AMPL. CONTROL LINEARITY EXAMINER ~

/ i Initial ~di Remit REVIEWER *:' I LEVEL DATE

  • 80 80 40 20

.a

-1Z

+I

+1Z Authorized Inspection Aiency ADDITIONAL SHEETS? IChtck Box)

Cantinu1tian Suppltm1nt1 Bnm Plot Other

~

h11 I DATE of I

~ '! ~~*~*~'.! *" .*.,.....,,,,

Plant/Unit f?e1.J.£A/U{,'5' UT No. TEfRlf -03 Comp/System ffe4'ffl/U/ ?lif~ ULTRASONIC Procedur1 No. sm-,y1a. 4/2 z Rev. _.L- ,

Zone ecs-14-!?L 3 - I#/ CALIBRATION DATA SHEET ST No. cl4f Rev. ~ :

Contract Na. 4114.57 C!L Block Na. /f/,,f'-c°A'L Sumc* (10/001 a.a Scan Angle:

SEARCH UNIT

~/)

Fixturing (if any):/,,,,.,,

0 Mode:/-~.

~,e-4 IOENT POS SWEEP Block/Comp. Temp ~ °F/ 8t"1 °F/ I o0 ort:?fO WELD AMPL A TIEN SWEEP II TO 1NELD AMPL ATTEN I

dB POS Size & Shape: ;Pf'?J'-- x~-m )

~r ,,Z,2 "  % dl3 1!

I Frequency: ~_.,§.z SCAN AREA

~ f L)

-¥-1'T ~, -9' s~

8C)

~9 69

"" "" .,.1 I

Serial No/Brand:.P.7,,#'/,.R..d 0° WRV

//77' 8.2 ~ ~9 '11~ :I Measured Angle: .5'8c 0° Mat'I ~ "" "'-... I Cable Type & Length:A'~-.,::-;' h .4, 1 To Weld D< ~- t--__ ~I Couplant Brand: S,adt"2.Z'~t::L II To Weld ~ 100%

1 2 3 4 5 Couplant Batch: ~9.?C)/4' 90 80 ..

INSTRUMENT SETTINGS CAL.CHECKS TIME 70 "

Mfg/Mod1I No.: K~, b/"9rJ-M'J Serial No.: :t/A'?-r.../-!"44 Initial Cal.

lnterm1diat1

/4~

/I/~

60 50 40 Damping Irrterm1diat1 ~~ ~

S/J"" u.NI 30

  • Modi Select: OvAL Reject:AL~ Int1rinediat1 ##} 2: """' ....

10 Freq.:~ ~~- iL Rep. R"at1~.H Final Cal. I/A,~/ 1111 11111 111 I 1111 1111 1111 1111 Ill I 1111 1111 0 l0 VidH:,A/pJack:/M I * , I 1 l~D Fil!er:h'/A Scrnn Divisions, 10

  • 6 .S: in.

Sweep Lenath C:,v~ F: JI :u ",,_,_

R1cardabl1 Scan Sweep Delay C:;¥'/A F: .D4:J~/~ EXAMINATION lndic1tian1 Limitation WELD/AREA COMMENTS Gain o0 of'D C: 7~lf'°F: .ff//~

Vn No Vn No Gain 11 C:...V~ F: #/~

  • ' ~~1' .$/)I/ $ I r # 4"...\J"~' u/L,,1rt l/f#/ ""'4 "'X' ~ >< l.ve1111~ ;:'$ ..s;,,.,. A..a
  1. /A >< ~ D< ..~r.r*. ,.,:f41D

~

Scan Sensitivity u/~.n;;~ ~ ~4dlV INSTR. LINEARITY CAL High Low Hillt Low -...._ ..

1 2

3 '?/J 91? 11.f AL)

"'~

.J <"

I 4'~

I MA 7 .!A I ~A Jltf"

~A

,1.r-

/0 4 ~A 'tA 9 //j _.('

EXAMINE? - -Y- ~ - - - -"* ~

LEVEL ?r DATE /~//-='11'3 AMPL CONTROL LINEARITY EXAMINER <1M _,

LEVEL ,vb DATE <<A' R_.t  :  :// LEVEL DATE Initial Adi REVIEWER BO -8 Authorized Inspection A9encv DATE 80 *1Z ADDITIONAL SHEETS? (Check lox) 40 20

+I

+12

.Continu1tion Supplcm1nu Bam Plot Om* ~

~

,... I of I

,. * " " * .. *111114

  • 1*-* *1eM

@)

  • CONSUMERS POWERCOMPANV
  • Level Level Date I 0-/0-tf 3 NDTCompany ____
  • Sheet No.

c.___A_ro_________

fAH{JI NONDESTRUCTIVE TESTING SERVICES ULTRASONIC SYSTEM CALIBRATION REPORT Requesting Dept ___._/~$_._/____

Total Hours Worked __.A.J__.Z.....t} ____

Search Unit Verification Block Serial No. 7'1755/

Brand Name 10

. Cali!!_~ll:tnJWfrence Standard Serial No.

I Material Type~ SS Serial No. /jA-Pltl

.... l/"'"J.. 11 Size I -

\~

Diameter 11 Thickness /, 115 Frequency (MHz) 1 A~gle

\ '

Measured Angle 5 \..

Wave Propagation .. ......

I\.

~~

Instrument Settings J r~

2 Sweep Range Number of Connectors ..VJ(t Sweep Delay. 1 Couplant SoNJttgcr 4'() Batch No. D'I 3'.l ~

, Reference Gain (dB) 0 ,I z J I I 1 I I

I 10

" Reject .. 5 ' SCREEN HEIGHT UNEAfllTY CHECK Damping 100% FSH 501 50 *% FSH 50% FSH l5125 *"' FSH lf5/ ~~ 20120

= l.S *Metal 9

Rep Rate 1. Angle 0 0 Full Screen

  • "'fSH 40%FSH  % FSH 9

f 5fl 5 9

2. Angle l\5 *

% FSH 30% FSH  % FSH Filter Full Screen = 5 *Metal 9

% FSH lo. ! IQ

3. Angle Y&m
  • Full Screen = i 20% FSH * " FSH Initial Calibration/Hr *Metal 60% FSH * " FSH The second reflector sh*ll be Verification Time 4. Angle 1~
  • Full Screen = 2. *Metal *verlfic.tlon 50" of the first ( 1 5% FSH) to meet amplitude linearity.

Verification Time 5. Angle AJJA

  • Full Screen = Pltf* Metal AMPLITUDE CONTROL LINEARITY CHECK Final Calibration/Hr 80% FSH -6 db il I Y( * (32-48)'6 THERMOMETER 80% FSH-12 db 1't I 'i * (16-24)%

A) /Y} 37 Y~ -~ D~

Remarks Serial No.

Temperature: Cal Block Cal Due / - /

Co?>"£ Item B-1 </

~~

0 40% FSH +6db 20% FSH + 12 db ft I f(J I 32

  • (64-96)%
  • (64-96)%
  • verification tbff Level Date Rev 12192
  • . Rir hord

@ CONSUMERS POWER COMPANY Examiner Examiner >>111 I I Level Level AJltr.

Date NOT Company Sheet No.

G [f.!J

../11JtQ/

NONDESTRUCTIVE TESTING SERVICES ULTRASONIC EXAMINATION REPORT Project No.

Job Location 2, '.I ?i; j~aJ:"If, oq ti Requesting Dept Total Hours Worked I S*l

--<) Lrl-Percentage Scan Scan NOT Procedure NOI- lJI-aL Rev LD. BEAM DIRECTION PERFORMED YES NO of Volume Scanned Start Hour End Hour System C11libn1tion Sheet No.

Tic 4-'ll v Interpretation Requirements:

Axial Downstream Axial Upstream v qs%

/

f) J l\t>!=,

/'

17ff{)

r Remarks wJJ.

To:1; l~t~

.A.JLA NIA Section =<)Id CWDS L/" ( I I

~~

Code Year PartPll/:

cw us \ ( \

fal lSl ~11-er. (g,4.

t/

Other Reference I CCWDS I/ \ \

ccwus (./ J \ I

  • .T.om1o:tl */~s Ll.J I Material Type Joint Design Burt Tot Weld Tot Weld C..l.l.J t./

(./ J, J, ' I.I Nominal Diameter l'l" Nominal Thickness l.lZS" Weld Crown: A. Height I 'I Surface G-routd, Scanning Voo

~

Condition N[J.410

~"f.t Surface Weld Type f!lJ l(l Clbo~ B. Width eLs

+ qy +

Thickness at: T-1 ..Ulfl PCS-/2.- PSL-JHJ Lo Rule No.

~ ~

System Name Line No. T-2 T-3

--7 /:f,,J} WO/MO &.2trr w, w, w Item ID Indication "

DACat Max L1 50% L L2 50% 50" 50% w M1111 W2 50%

W2 50% Search Unit Evaluation Number Na. DAC Max DAC DAC MP Max MP DAC MP Location Angle Beem Direction NRI RO RPI

2. JJIA A)JA JJ/11 ~ JJJ4 AJJA A}/Jl A.)JJf ,U/Jf A}JiJ .AJ/A-. ..V!JJ ,,1)/H- -<}/14 ..A)/J4- v ..

11._J _ .

Nme *a rJ, WI -tl'I ~~ ll ~~~

I 1~ IH>I {) ... -t~i" I 1:' I ~ 'ft\tt> ,, ~ <:~1 tt-1~ /\ft T{)

J Wr.r t- {y Pfl M.Pi tv I .. ~\fl');,:., i.J.tt 1\fff'l tOt h'i" ' ~,,,'"t..,.> I 1.... or!-

W-1 l fl.." all\ I~ Ml>J1 I\ .,ln n* ~% tJ- f., I er....,,, .... LI-:

I

  • 7 Examiner /!,}~} 1-hnd ,,,.. Page J_of _J_ Reviewed By Level Date I /

Rev 12192

  • Examiner

~" hatJ Jiiwipht!":(. Level 11I Date ltrlfJ*~3.

  • Sheet No. !iJJtsJ...

CONSUMERS POWER COMPANY Examiner A.Jill Level .A) l(t. NOT Company GP{o NONDESTRUCTIVE TESTING SERVICES ULTRASONIC EXAMINATION REPORT Project No. 2 ~ ~315 zi M~f.i Requesting Dept l~l Job Location &liSaJf s Total Hours Worked A)LIJ-PERFORMED Percentage Scan Scan NOT Procedure NQ1- llI -01 Rev lO BEAM DIRECTION of Volume Se11nned Start Hour End Hour System Calibration SheetNo. RA>>- ~I YES NO Tic ~~3 Axial Downstream v lflt1% I '\fl') 1700 Remarks ~ltl:.

Interpretation Requirements: Axial Upstream ./ /' / /

CWDS ,/ ( {

Code .A.Jlr\ Year ..<ltd Section &lll+ Part .lJJl]:. v cw us \ \

Other Reference Pol tSI s~,.

I A.pp bit CCWDS c./ l 1 \

ccwus v J I J **-

(.uJ ./ I Material Type * (_ S /livcwl Joint Design Br.nt TofWeld T of Weld (.C LJ ./ ~ ' '

l, I

I I/

Nominal Diameter 12 11 Nominal Thickness i. lZ5 Weld Crown: A. Height J' In(~ Surface Condition SMontn Scanning Surface V OD -VL t+1D Weld Type IVoz1 J.r to Solt 'f,.J Thickness at: T-1

8. Width c.

')~

System Name Pee, Line No. PlS* /2. P.Sl *WI T-2 1. ~o ~

J

'i' ~ .,.

I

~

Lo Rule No. AJlf!J T-3 I11. c:., Ffo1&1 __, WO/MO >>Ld w, w Item ID Indication "

DACat MH L1 50% L L2 50% 50%

W1 50% w MH W2 50%

W2 50% Search Unit Evaluation Number Nt>>- DAC Max DAC OAC MP Max MP DAC MP Location Angle Beam Direction NRI RO RPI

~I .AJJA .dU4 .JJJ~ A.1114 A)JJIJ A)J/1 "J/IA A.J/A ~/fl A}Jfl AJJA Al/A A.JJH- .U!JA.- I~

Examiner £/7/~"dA~ r Page_Lof-L Reviewed By Level Date t7 Rev 12192