ML20099D451
ML20099D451 | |
Person / Time | |
---|---|
Site: | Palisades |
Issue date: | 09/30/1984 |
From: | Cheney C, Kunka M, Meyer T WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML18051B118 | List: |
References | |
WCAP-10637, NUDOCS 8411200379 | |
Download: ML20099D451 (119) | |
Text
_ _ .
WCAP-10637 WESTINGHOUSE CLASS 3 CUSTOMER DESIGNATED DISTRIBUTION -
ANALYSIS OF CAPSULES T-330 AND W-290 FROM THE ..
CONSUMERS POWER COMPANY PALISADES REACTOR VESSEL RADIATION SURVEILLANCE PROGRAM M. K. Kunka C.A. Cheney September 1984 Work performed under Shop Order Nos. ENVJ-106 and ENVJ-450 APPROVED: [ . Nr M T. A. Meyer, Manager .
Structural Materials and Reliability Technology Prepared by Westinghouse for che Consumers Power Com:any Although information contained in this report is nonprocrietary, no distributien shall be made outside Westinghouse or its licensees without the ,
customer's approve' WESTINGHOUSE ELECTRIC CORPORATION Nuclear Energy Systems P.O. Box 355 Pittsburgh, Pennsylvania 15230 8411200379 841031 -
PREFACE This report his been technically reviewed and verified.
Reviewer Sections 1 through 5 and 7 S. E. Yanichko / ka , u, d .' u.
Section 6 S. L. Anderson 4' J (l' r _[ ' O ,y , _
M cy_'- *
,I
.l.
'i Ia
.:,g 4; *
" T,.;;;
~E]:l
.n i.
R '-
<:3 t, d'
'?
A
- Y Nr.b M.s.
y,; te;;,
7216 QI 80928:1b-102984 lii I
i
=
ll a
TABLE OF CONTENTS
[
[ Section Title Page
?.
1
SUMMARY
OF RESULTS 1-1
]
l 4 i 2 INTRODUCTION 2-1 p t
[
k 3 BACKGROUND 3-1 e l %
} 4 DESCRIPTION OF PROGRAM 4-1 y
$ h i 5 TESTING 0F SPECIMENS FRCM CAPSULES T-330 and W-290 5-1 L A e
! D 5-1. Overview 5-1 h 5-2. Thermal Monitor Melting 5-3 Ii _
[ 5-3. Chemical Analysis 5-4 [
5-4. Charpy V-Notch Impact Test Results 5-4 y 5-5. Tension Test Results 5-6 -f 6 RADIATION ANALYSIS AND NEUTRON 00SIMETRY 6-1 $_
=
6-1. Introduction 6-1 t 3;
. 6-2. Discrete Ordinates Analysis 6-1 i.
[ 6-3. Neutron 00simetry 5-8 a 6-4. Transport Analysis Results 6-11 'I 6-5. Dosimetry Results 6-21 ?
- - 7-1 7 REFERENCES =
~' ._'=
i _r- '
E
~
4 a
c--
h l _
80928:1b-092084 v m
LIST OF TABLES Table Title Page 4-1 Chemical Composition of the Palisades Reactor 4-4 Vessel Surveillance Materials i,k1
,o--_
,v %
-0 5-1 Results of Chemical Analyses Performed on 5-7 J 4,f^
Palisades Charpy V-Notch Specimens (WT-%) kWL%(, ?
Mh7) w ,a 5-2 Capsule T-330, Theraml Capsule: Charpy V-Notch 5-8 eg'ic l Impact Data for the Palisades Intermediate Shell .
Plate D-3803-1 (Transverse Orientation) # :
.4:. N .
a; 5-3 Capsule T-330, Thermal Capsule: Charpy V-Notch 5-9 %mt, .
Impact Data for the Palisades Intermediate Shell %yc.g .
Plate D-3803-1 (Longitudinal Orientation) j% ihz 5-4 Capsule T-330, Thermal Capsule: Charpy V-Notch ki, fE 5-10 "/ , s /
Impact Data for the Palisades Pressure Vessel t.%. %
W.)
Weld Metal h
@$hi 5-5 Capsule T-330, Thermal Capsule: Charpy V-Notch 5-11 :
Impact Data for the Palisades Pressure Vessel Weld Heat-Affected Zone Metal 5-6 Capsule T-330, Thermal Capsule: Instrumented 5-12 r Charpy Impact Test Results for Palisades Intermediate Shell Plate D-3803-1 (Transverse Orientatien) 8092B:1b-092084 vii
' LIST OF . TABLES (cont.)
Table Title Page
- 5-7 Cc sule T-330, Thermal Capsule: Instrumentated 5-13 Charpy' Impact Test Results for Palisades Inter-mediate Shell Plate D-3803-1 (Longitudinal Orientation) 5-8 Capsule T-330, Thermal Capsule: Instrumented 5-14 Charpy Impact Test Results for Palisades Weld Metal 5-9 Capsule T-330, Thermal Capsule: Instrumented 5-15 Charpy Impact Test Results for Palisades Weld Heat Affected Zone Metal l
5-10 Capsule W-290, Irradiated Capsule: Charpy V-Notch 5-16 Impact Data for the Palisades Intermediate Shell Plate D-3803-1 (Transverse Orientation) 5-11 Capsule W-290, Irradiated Capsule: Charpy V-Notch 5-17 Impact Data for the Palisades Intermediate Shell Plate D-3803-1 (Longitudinal Orientation) 5-12 Capsule W-290, Irradiated Capsule: Charpy V-Notch 5-18 Impact Data for the Palisades Pressure Vessel Weld Metal 5-13 Capsule W-290, Irradiated Capsule: Charpy V-Notch 5-19 Impact Data for the Palisades Pressure Vessel Weld Heat-Affected Zone Metal 8092B:1b-092084 ix
,7 ,,
LIST OF TABLES (cont.) g 1.
Lh,[ ' . ~ .
.s .. .
Table Title Page ;'.j i
> ;;:3 e y ,,; .
5-14 Capsule W-290, Irradiated Capsule: Instrumented 5-20 ;,,.4 Charpy Impact Test Results for Palisades Inter-mediate Shell Plate D-3803-1 (Transverse Orientation)
(}
j:yJ.:
v::B.:, +_
5-15 Capsule W-290, Irradiated Capsule: Instrumented 5-21 $.M Charpy Impact Test Results for Palisades Inter- h mediate Shell Plate D-3803-1 (Longitudinal ld R Orientation) I'b
- w ,,
hi/qE 5-16 Capsule W-290, Irradiated Capsule: Instrumented 5-22 J}p TM yy Charpy Impact Test Results for Palisades Weld Metal : Agi l': hN 5-17 Capsule W-290, Irradiated Capsule: Instrumented 5-23 Charpy Impact Test Results for Palisades Weld , f Heat Affected Zone Metal 5-18 Effect of Irradiation at 1.09 x 1019 (E> 1 MeV) 5-24 y on the Notch Toughness Prcperties of the Palisades f
Surveillance Vessel Materials l i
nouse l 5-19 Thermal Capsule Tensile Proporties for Palisades 5-25 -
ri Surveillance Material
, l 1 1 5-20 Irradiated Capsule Tensile Properties for Palisades 5-26 j Surveillance Material, Irradiated to 1.09 x 10 19 n/cm 2 f
\ (\ \
- i 6-1 26 Group Energy Structure 6-5 j IE 8092B
- lb-092684 xi IB
'^-- =
E Ell$1 i
T E
LIST OF TABLES (cont.)
E ~ Table Title. Page E
F 6-2 Nuclear Constants for Neutron Flux Monitors Contained 6-8 i in the Palisades Surveillance Capsule
?
[ 6-3 Calculated Neutron Energy Spectra Above 0.1 MeV at 6-13 h the Center of Palisades Capsule L
6-4 Spectrum-Averaged Reaction Cross Sections at the 6-14 Center of Palisades Surveillance Capsules L
F 6-5 Irradiation History of Palisades Surveillance 6-15 Capsule W-290 i
p_
L 6-6 Comparison of Measured and Calculated Fast Neutron 6-22
, i; Flux Monitor Saturated Activites for Capsule W-290 l ';
I 6-7 Results of Fast Neutron Dosimetry for Capsule W-290 6-24 1
6-8 Summary of Neutron Dosimetry Results for Capsule W-290 6-25 E
3 5 ;
c s
k,.
5 L
l E 80928:1b-092084 xiii r -
y
LIST OF ILLUSTRATIONS Figure Title Page 4-1 Arrangement of Surveillance Capsules in the Palisades 4-5 Reactor Vessel 4-2 Diagram Showing Location of Test Specimens, Thermal 4-6 Monitors, and Dosimetry. Monitors in the Palisades Surveillance Capsule Assemblies 4-3 Palisades Weld Metal Surveillance Test Material 4-7 Fabrication (From C-E Drawing No. C-245-321-1) 5-1 Thermal Capsule Charpy V-Notch Impact Properties 5-27 for Palisades Intermediate Shell Plate 0-3803-1 (Transverse Orientation) ,
5-2 Thermal Capsule Charpy V-Notch Impact Properties 5-28 for Palisades Intormediate Shell Plate D-3803-1 (Longitudinal Orientation) 5-3 Thermal Capsule Charpy V-Notch Impact Properties 5-29 for Palisades Weld Metal 5-4 Thermal Capsule Charpy V-Notch Impact Properties 5-30 for Palisades Weld Heat Affected Zone Metal 3-5 Thermal Capsule (T-330) Charpy Impact Specimen 5-31 Fracture Surfaces for Palisades Intermediate Shell Plate D-3803-1 (Transverse Orientation) 80928:1b-102984 av
/
~.
_/
j f
LIST OF ILLUSTRATIONS (cont.) a Figure Title.- / 'Page 4 e
5-6 Thermal Capsule (T-330) Charpy Impact Specimen 5-32 Fracture Surfaces for Palisades Intermediate Shell Plate D-3803-1 (Longitudinal Orientation) _
5-7 Thermal Capsule-(T-330) Charpy Impa:t Specimen 5.-33 Fracture Surfaces for Palisades Weld Metal 5-8 Thermal Capsule (T-330) Charpy Impact Specimen 5-34 Fracture Surfa:es for Palisades Weld Heat Affected>,
Ze'ne Metal l-
,5-9 Typical Curve for Instrumented Charpy Specin;eas 5-35 m 5-10 Irradiated Capsule Charpy V-Notch Impact Properties -
5-36 for Palisades Intermediate Shell Plate D-3803-1 (Transverse Orientation) 5-11 Irradiated Capsule Charpy V-Notch impact Froperties 5-37 for Palisades Intermediate Shell Plate D-3803-1 (Longitudinal Orientation) 5-12 Irradiated Capsule Charpy V-Notch Impact Properties 5-38 for Palisade. Weld Metal 5-13 Irradiated Capsule V-Notch Impact Properties for 5-39 Palisades Weld Heat Affected Zone Metal 80928:1b-102984 xvii
LIST OF ILLUSTRATIONS (cont.)
.g Figure ; Title Page
(. .-
5-14 y Irradiated Capsule (W-290) Charpy' Impact Specimen 5-40 Fracture Surfaces for Palisades Intermediate Shell Plate 0-3803-1 (Transverse Orientation)
.l " '
5-15 Irradiated Capsule (W-290) Charpy Impact Specimen 5-41 Fracture Surfaces for Palisades Intermediate Shell ,
Plate D-3803-1 (Longitudinal Orientation) 5-16 Irradiated Capsule (W-290) Charpy Impact Specimen 5-42 Fracture Surfaces for Palisades Weld Metal 5-17 Irradiated Capsule ~(W-290) Charpy Impact Specimen 5-43 Frp.cture Surfaces for Palisades Weld Metal Heat Affected Zone Metal 5-18 _ Comparison of Actual Versus Predicted 30 ft-lb 5-44 Transition Temperature Increases for the Palisades Surveillance Weld Material, Based on the Prediction Methods of Regulatory Guide 1.99 Revision 1 5-19 Thermal Capsule Tensile Properties for Palisades 5-45 Intermediate Shell Plate 0-3803-1 (Longitudinal Orientation) 5-20 Thermal Capsule Tensile Properties for Palisades 5-46 Weld Metal 5-21 Thermal Capsule Tensile Properties for Palisades 5-47
, Weld Heat Affected Zone Metal
~~
80928:1b-102984 ,
xix
7 ,, zg ; ' q.=
- . ,g ,
-w
&mr ?; - Q ; ,
~
j;j .
, m 7 c '
p g; ,
, s '
- . .w -
.. 3 3: ec .7 .
r% , - '
1 '.y '
c 4.+
. ir .
mg "', LIST.0F(ILLUSTRATIONS:(cont.)! .
.e _ ,
- ^ '
lFigure: ,
l Title. -
iPage' .
p.. .
5-22; Fractured'ThermalCapsule; Tensile.Specimensif) .-5-481 ;
&; Palisades Intermediate:Shell? Plate'D-3803-1
- ~(Longitudinal Orientation) , -
.' M 5-231 Fractured Thermal' Capsule Tensile Specimens-'of '
- 5-49
-Pal'isades Weld Metal
'5-24. Fractured .. Thermal LCapsule .. Tensile . Specimens ~ of L .i-50 '
. : Palisades' Weld Heat'Affected Zone Metal'
- 5-25 .Typcial Stress-Strain Curve for-l Tension Specimens 5-51 2 - 5-26 Irradiated Capsule Tensile Properties for Palisades ,5-52
~
, 'Intermedir.te Shell Plate D-3803-1-(Longitudinal Orientation)-
n
~ 5-27 . Irradiated Capsule Tensile. Properties for Palisades 5-53 Weld-Metal i
5-28 Irradiated Capsule Tensile Properties.for.P'alisades 5-54.
Weld Heat'Affected Zone Metal.
k b 5-2'9 - . Fractured Irradiated. Capsule-Tensile Specimens of 5-55
~
Palisades Intermediate'Shell Plate D-3803-1 .
_(Longitudinal Orientation) .
5-30' Fractured Irradiated Capsule Tensile Specimens of- 5-56.
. -Palisades Weld Metal' t
A. ,
t-J~
+ _ .
~
'~s. h092B':1b-102984r "
' xxi
.-s 4 %-- = W +- 5 +d v 64 w +e r-- t w w e- y eH+m -vvve -%'.
LIST OF ILLUSTRATIONS (cont.)
Figure Title Page
'5-31 Fractured Irradiated Capsule Tensile Specimens of 5-57 Palisades Weld Heat Affected Zone Metal 6-1 Palisades Reactor Geometry 6-2 6-2A Plan View of Palisades Wal1 Capsules ,
6-3 6-28 Plan View of a Reactor Vessel Surveillance Capsule 6-4 6 Calculated Azimuthal Distribution of Maximum 6-26 Fast Neutron Flux (E>1.0 MEV) within the Pressure Vessel Surveillance Capsule 6-4 Calculated Radial Distribution of Maximum Fast 6-27 Neutron Flux (E>1.0 MEV) within the Pressure Vessel 6-5 Calculated Radial Distribution of Maximum Fast 6-28 Neutron Flux (E>1.0 MEV) within the Surveillance Capsule 6-6 Calculated Uranium Saturated Acitivity within 6-29 Capsule W-290 6-7 Calculated Titanium Saturated Activity within 6-30 Capsule W-290 6-8 Calculated Iron Saturated Activity within Capsule W-290 6-31 6-9 Calculated Nickel Soturated Activity within Capsule W-290 6-32 6-10 Calculated Copper Saturated Activity within Capsule W-290 6-33 60928:1b-102984 xxiii
_ - { .' . ; , . ,, . * .* g.- } ,. , m
,a -a g .y j , ,. - ; - . g f ,' , ,,'l * ^
- ; , 4
\{
- . . ~
c -
.m SECTION 1 -
r
SUMMARY
OF RESULTS .l 4 -
s y The analysis of the material contained in Capsule T-330, the first thermal l surveillance capsule removed from the Consumers Power Company's Palisades .(
$ reactor pressure vessel, led to the following conclusions: ,
+
i o The weld and heat-affected zone matal has experienced a 60-70 F shift 1 _;
q in the ductile to brittle transition temperatures due to exposure to -
.. . elevated temperature. ,
s
{ The analysis of the material contained in Capsule W-290, the second irradiated "
surveillance capsule to te removed from the Consumers Power Company Palisades reactor pressure vessel, led to the following conclusions:
~
E The capsule receised an average fast neutron fluenc (E>1.0Mev) of a
r 1.09 x 10 19 n/cm 2, ;
1 o Irradiation of the reactor vessel intermediate shell course plate .-
19 '
hr 0-3803-1, to 1.09 x 10 n/cm, resulted in 30 and 50 ft-lb - =
c transition temperature increases of 155 and 160 F, respectively, for specimens oriented perpendicular to the principal rolling direction '(
s (transverse orientation), and 175 F and 180 F, respectively, for L ' _, .
- j[ specimens oriented parallel to the principal rolling direction
> (longitudinal orientation). .
l
=3 m 0 Weld metal irradiated to 1.09 x 10 19 n/cm2 resulted in 30 and ' Id
?
50 ft-lb transition temperature inc ease of 290 and 300 F,
-t respectively. _
l +
l[
2 G c The average upper shelf energy of all the surveillance materials i{
remained above 50 ft-lbs, therebj providing adequate toughness for "
continued safe plant operation.
t I 80928:1b-092684 1-1 -
=_
I- . __ _ _ _ _ . . - --
~
o Comparison of the 30 ft-lb transition temperature increases for the Palisades surveillance material with predicted increases using the methods of NRC Regulatory Guide 1.99, Revision 1, shows that the weld metal transition temperature increase was greater than predicted, It ;
is suspected that the relatively high nickel content cf the weld metal contributed to the greater than predicted transition cemperature increase experienced by the weld metal.
i 5
1 2
r
.z it 80928:1b-092684 1-2 g
~
SECTION 2 INTRODUCTION This report presents the results of the examinations of Capsule T-330, a thermal surveillance capsule, and Capsule W-290, an irradiated surveillance capsule, removed from the Palisades reactor vessel during a Fall of 1983 outage. Throughout the operating life of the Palisades Nuclear Plant the thermal capsule, Capsule T-330, was located above the reactor core and was exposed only to the elevated temperature of reactor operation. Capsule W-290, the second irradiated surveillance capsule to be removed from the Palisades reactor vessel, is part of the continuing program which monitors the effects of neutron irradiation, on the encapsuiated materials, under actual operation conditions.
The Palisades nuclear reactor is a pressurized water reactor built by -
Combustion Engineering Inc. The surveillance program for the reactor pressure vessel was designed by Combustion Engineering Inc. to the requirements of ASTM E185-66. A complete description of the surveillance program has been reported by Combustion Engineering Inc.[1] This report summarizes the testing of and postirradiation data obtained from Capsules T-330 and W-290 removed from the Palisades reacter vessel, and discusses the analysis of these data. The data are compared to the results of tests performed on unirradiated material as reported by Battelle Columbus Laboratories E .
r' 8092B:1b-102984 2-1
=
w f SECTION 3 BACKGROUND m
n I
g The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in
{ ensuring safety in the nuclear industry. The beltline region of the reactor
- pressure vessel is the most critical region of the vessel because it is -
$ subjected to significant fast neutron bombardment. The overall effects of
, fast neutron irradiation on the mechanical properties of low alloy ferritic pressure vessel steels such as SA-302 (Modified) Grade B (base mate-ial of the Palisades reactor pressure vessel beltline) are well documented in the -:
f literature. Generally, low alloy ferritic materials show an increase in
. hardness and ten;ile properties and a decrease in ductility and teughness .-
under certain conditions of irradiation.
E-
- A method for performing analyses to guard against fast fracture in reactor . . .
7 pressure vessels has been presented in " Protection Again e Non-ductile
{ Failure," Appendix G to Section III of the ASME Boiler and Pressure Vessel
[ Code. The method utilizes fracture mechanics concepts and is based on the reference nil-ductility temperature, RT NDT* I The initial RT NDT is defined as the greater of either the drop weight E ni,-ductility transition temperature (NDTT per ASTM E-208) or the temperature I 60 F less than the 50 ft lb (and 35-mil lateral expansion) temperature as ]
l determined from Charpy specimens oriented normal (transverse) to the major - '
working direction of the material. The RT f a given material is used to NDT ,
f index that material to a reference stress intensity factor curve (K7p curve) f which appears in Appendix G of the ASME Code. The K curve is a lower
^ IR i bound of dynamic, crack arrest, and static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed '
l to the K yp curve, allowable stress intensity factors can be obtained for p -- 'j this material as a function of temperature. Allowable operating limits car y
then be determined utilizing these allowable stress intensity factors, L
k-4
{ 80928:1b-102984 3-1
~
RTNDT and, in turn, the operating limits.of nuclear power plants can be
' ~
- adjusted;to~ account for the' effects.of radiation on the reactor vessel
.' material properties. 'Ths radiation
- embrittlement or changes in mechanical-properties of.'a given reactor pressure vessel steel can be monitored by a .
reactor surveillance: program, in which a surveillance capsule is periodically removed from'the~ operating nuclear reactor and the encapsulated-specimens are-
- tested. . The increase in the average Charpy V-notch 30 ft-lb temperature-
-(ARTNDT) due to irradiation is added,to the original RTNDT to adjust;the-
'RT initial +-
NDT for. radiation embrittlement. -This-adjusted RTNDT (RTNDT ARTNDT) is used~to indek the material to the KIR curve and, in turn, to l set operating limits for the nuclear power plant which take into account the l effects of irradiation on the reactor vesse' materials. _ RTNDT can also be adjusted by using radiation damage trend curves such as those identified in'- -
NRC Regulatory Guide 1.99 Revision 1.
L8092B:1b-102984 3-2
SECTION 4 DESCRIPTION OF PROGRAM Eight surveillance capsules for monitoring the effects of neutron exposure on the Palisades reactor pressure vessel core region material were inserted in the reactor vessel prior to initial plant startup. Six of these capsules were .--
positioned on the inner wall of the reactor vessel (" wall" capsules), while the other two capsules were positioned closer to the core, on the outer wall of the core support barrel (" accelerated" capsules). Figure 4-1 shows the location of the various irradiation surveillance capsule assemblies within the Palisades pressure vessel.
Two surveillance capsules for monitoring the effects of operating temperature on the Palisades reactor pressure vessel material were also inserted prior to plant startup. In Figure 4-1, note their location in relation to the reactor core.
Capsules T-330 and W-290 were removed af ter 4.975 effective full power years of plant operation. Per reference (1), the Combustion Engineering description of the Palisades surveillance program, each of these capsules contained Charpy V-notch impact and tensile test specimens (Figure 4-2) from the intermediate shell course plate, from submerged arc weld metal representative of the core region of the reactor vessel, and from the weld heat affected zone (HAZ) material.
The chemistry of the surveillance materials, as reported by Combustion Engineering II) , are presen tec in Table 4-1. The chemical analyses reported in Table 4-1 were obtained from unirradiated material used in the surveillarce program. The surveillance plate material was cut directly from the inter-mediate shell course plate, and thus received the same heat treatment. The surveillance material received 1 3/4 hours interstage and 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> final heat, at 1150 + 25 F(1) .
The base metal test materiai was fabricated from plate no. D-3803-1. The weld metal test material was fabricated by welding together '
intermediate shell plate nos. D-3803-1 and D-3803-2. The heat affected zone 00928:1b-102984 4-1
,- mmmm--mmmmme--mi mm m i p i i i i . .
- g. . ,; 7 ,
g ,
n -
v '<
- .t
~
m .
A -
,S'* ,
^
s .
~
- Itss'timatefidifwasfabricatedby).weldingitogetherinteriediateLshell.pla'tenos.
K0-3803-2 t and D'-38'03-3.'; EIn:their! summary 1 report on Lthe1 Palisades surve'illance
[prograEII)$ Combustion Engineering exp1dinsMat,the: root Velds,Mf both the:
l ~
weld and HAZis'u'rveillancetmaterial,i. vere manually' welded with' an 8018-E Class
, . 13 }6d .(sotelthe~backgroove: area Lhighlidht'ed in Figure M3)M andt then chipped f .
'b1:k?after a givenjamount< of!faceLweld was established.1:The face welds /were.
~
(made' by;a'submergsd'are: process, Luiing' alMIL-84felectrode andja simultaneous-
' ~
' ~
1/16"'diameterfNickfl-200 wire fee'd.
' Alllthe plate test specimens ' represent _ma'terial_ takent at-lea'st one plateJ (thickne'ss from any water quenched edge.' cCharpy. specimens'weres machined from: -
~
~ the plate!in both" the longitudinal _-.'(major axis' ofL specimen' is p'arallel t'o it'h'e -
- principalJrolling' direction),and transverse-(major. axis offthe specimen is-
~
- perpendicular to)the principal rolling. direction)L orientations. Tensile .
specimens iere machined from the plate with the major _ axis o'f the~ specimen. -
parallel to the principalfrolling direction. Charpy V-notch and tensile .
~
specimen's from the hea 6affected zone ware. oriented with the-major axis of the- .
. specimens transverse to.the welding direction. ' The root of the Charpy.
specimen notches were centered'on the fusion line between the ' base metal:and weld metal. For the weld metal ~ specimens, the Charpy V-no'tch specimen's were oriented with the major axis of the' specimen transverse to the welding direction, while the tensile specimens were oriented ~with the major axis of the specimen parallel to the welding direction.
The flux monitors were fabricated using six materials as neutron threshold-detectors -- uranium, sulfur, iron, nickel, copper and titanium. Two sets of -
flux monitors were~ installed in each tensile-monitor compartment. One set of '
flux. monitors, consisting of the.six different materials, are used to
-determine the neutron spectrum. Each detector was placed inside a grooved' '
1/8-inch. sheath of 304 stainless steel (plain quartz in the case of sulfur)-
which-is used to identify the material and'to facilitate handling. Cadmium covers were used for those materials which have competing thermal activities (i.e'.,_ uranium, nickel and copper). The second set of monitors is composed of
' iron wires placed inside a grooved 1/16-inch sheath of 304 stainless steel,
~and-they. serve to evaluate the flux attenuation through the thickness of the
~
Charpy specimen.
80928:1b-102984 4-2
7 4.; - nw -
+ .
=:: q L ,
, , - ;c ,~ c.
, ., av
~
. n', .
.i '7 x , j I,ll
+
.g .
- n. i ' - . j'- ,
..sc -
(Thitemperatiire monitor asseinblies' consist'of' four separate m'onito'rs, each of:.
-laidifferent .compo s ition an'd thu's~ having"a;different) melting point ' ,The four : -
alloys andlthAirJmel'tingjpointscare:
s d , , - , .
- 92.5% Pb,SS.0% Snp2.5% Ag'
- _
1 Melting Pointiof 536*F' ,
f -90.0% Pb, 5.0% Sn, 5.0% Ag.
Ekelting Point of.558'Fi 4 97.5%-Pb,2.5%Ag(- -
Melting' Point'of.580'F' 97.5%Pbf0.75%.~Sn,[1.75%-Ag- Melting ' Point fof. 590'F.: _
c 4 ,
e-i 4
0 4
p .
1 .. .
- 80928:1b-091284 -- '4-3 < .
,- .u yy 9 - - _ . ~ 4 g , . - - , , ~. , e
i . .
TABLE 4-1 CHEMICAL COMPOSITION OF THE .
PALISADES REACTOR VESSEL SURVEILLANCE MATERTALS ~
Chemical Composition (WT-%)
(Combustion Engineering Analyses (I))
Base HAZ Weld Weld Material,(8) Material (b) Metal I6)
Plate Plate Plate Element 0-3803-1 0-3803-2 0-3803-3 Root Face Root Face -
Si .23 .32 .24 .24 .25 .25 .22 5 .019 .021 .020 .009 .010 .010 .010 P .011 .012 .010 .011 .012 .011 .011
~
Mn 1.55 1.43 1.56 1.08 1.03 1.01 1.02 C .22 .23 .21 .098 .080 .088 .086 Cr .13 .42 .13 .05 .04 .05 .03 Ni .53 .55 .53 .43 1.28 .63 1.27 Mo .58 .58 .59 .54 .53 .55 .52 Al .037 .022 .037 Nil Nil Nil Nil V .003 .003 .003 Nil Nil Nil Nil
~
Cu .25 .25 .25 .25 .20 .26 .22 (a) Used to fabricate base metal test specimens.
(b) Fabricated by welding plate D-3803-2 to plate D-3803-3.
(c) Fabricated by welding plate D-3803-1 to plate D-3803-2.
^
8092B:1b-092684 4-4
%g Wall g W-94
=
Reactor Vessel Well Core Support Serrel M \\kk Com Shroud qA w.110 a i t j g
\ -
u es\ ,.
l l -lmIzz N
Wall x
no W.,
\ _ _
- 'ko M \\\\\\\\ W Ebo Plan View Com ,
Accelerated Support Capsule gecret Assembly Thermal Capsule
, Assembly xxxxs s # s. sxxxxxxss' neactor vessel Elevation Wall Capsule Assembly Figure 4-1 Arrangement of Surveillance Capsules in the Palisades Reactor Vessel 8092B:1b-091284 4-5
i
- Capsule W-290- Capsule T-330 ro 6 i Ccmpartreat 1: HAZ Comparteent 1: HA2 E y Tensile Tensile
- I.D. #1A14 I.D. 81C14
- Wedge Coupling Assembly ,
2 J
- Extension AsserblY Irpact Impact i.D. elA24 I.D. #1C24 Tensile-Monitor C:xartment 3: Base (T) 3: Base (T) s Impact Impact =
sI I.D. #1A32 1.0. #1C32 s 4: Base (L) 4: Base (L)
Tensile Tensile
' > Charpy Impact Compa.trarts g g ,gg4l g g ,gg4l a
b '
5: Base (L) 5: Base (L)
Tensile-Monitor {3 N . Impa::t Impact Compartment N !.D. #1A51 .I.D. #1C51 s
s l l
6: Weld 6: Weld Imp 4Ct jmpact I.D. #1A63 I.D. #1C63 s,
s;
- Charpy impac! Ccacarteents
' 7: Weld 7: Weld Tensilo' Tensile l.D. eiA73 I.D. #1C73 s
Ten sile-Hon'. tcr Compartment D
si l
figure 4-2 Diagram Showing Lccation of Test Specimens, Thermal Monitors, and Dosimetry Monitors in the Palisades Surveillance Capsule Assemblies E
gl
n .
s, d
G s~ 8d E =
$ = p Mih_3'*ek- -
m /v 5
sd b Face weld root Face weld -%Q6 },Q v i \ u e e p wiAIL WELD Proc, -
0-W B -2966 A-112-o "
sil! \ u iBACRGRo0VE 23 16 R\ ToSOUNP MEM.
E TYP. 4 WELD.
SECTlO\'A-A'/8;7 SCALE 3 #a l'-O' Figure 4-3 Palisades Weld Metal Surveillance Test Material Fabrication (From C-E ,
f)rawing No. C-245-321-1)
~
-i rm E
-2_
W 1_
SECTION 5 J TESTING OF SPECIMENS FROM CAPSULES T-330 AND W-290 i 1
w.
5-1. OVERVIEW
- r The postirradiation mechanical testing of the thermal and irradiated capsules' 4 Charpy V-notch and tensile specimens was performed at the Westinghouse $
Research and Development Laboratory, with consultation by Westinghouse Nuclear 1
=
Energy Systems personnel. Testing was performed in accordance with 10CFR50, h2 Appendices G and H, ASTM Specification E185-82 and Westinghouse Procedures RMFs 8402-0, 8102-0, and 8103-0.
Y Upon receipt of the capsules at the laboratory, they were opened in accordance lg with Westinghouse Procedure RMF 8404-0. The specimens and spacer blocks were y' carefully removed, inspected for identification number, and checked against s the master list in C-E's summary report.[1] No discrepancies were found. ^*
S"
=
Examination of the four types of low-melting (536, 558, 580 and 590 F) alloys indicated no melting of any of the thermal monitors. [
f a
Samples of both the surveillance capsule plate and weld metal materials were ;
chemically analyzed for the elemental content of Cr, Cu, Mn, Mo, and Ni (by an
emission spectroscopy inductively coupled plasma method), and for P and Si e T
(through wet analysis techniques). i f
The Charpy impact tests were performed per ASTM Specification E23-82 and RMF _r Procedure 8103 on a Tinius-Olsen Model 74, 359J machine. The tup (striker) of
_l([
the Charpy machine is instrumented with an Effects Technology Model 500 }
instrumentation system. With this system, load-time and energy-time signals I can be recorded in addition to the standard measurement of Charpy energy [
(ED ). From the load-time curve, the load of general yielding (Pgy), the h time to general yielding (tGY), the maximum load (P M ). and the time to f maximum load y(t ) can be determined. Under some test conditions, a sharp drop in load inoicative of fast fracture was observed. The load at which fast
{
A_
r E
80928:1b-102984 5-1 T
' fracture was initiated is identified as the fast fracture load (Pp), and the load at which fast fracture terminated is identified as the arrest load (PA )*
The energy at maximum Iced (E M
) was determined by comparing the energy-time record and the load-time record. The energy at maximum load is roughly equivalent to the energy required to initiate a crack in the specimen.
.Therefore, the propagation energy for the crack (E p
) is the difference between the total energy to fracture (E )D and the energy at maximum load. -
The yield stress (cy) is calculated from the three point bend formula. The flow stress is calculated from the average of the yield and maximum loads, also using the three point bend formula.
Percentage shear was ' determined from postfracture photographs using the ratio-of-areas m thods in compliance with ASTM Specification A370-77. The lateral expansion was measured using a dial gage rig similar to that shown in the same specification.
Tension tests were performed on a 20,000 pound Instron, split-console test machine (Model 1115) per ASTM Specifications E8-83 and E21-79, and RMF Procedure 8102. All pull rods, grips, and pins were made of Inconel 718 hardened to Rc45. The upper pull rod was connected through a universal joint to improve axiality of loading. The tests were conducted at a constant :
crosshead speed of 0.05 inch per minute throughout the test.
Deflection measurements were made with a linear variable displacement transducer (LVDT) extensometer. The extensometer knife edges were spring-loaded to the specimen and operated through specimen failure. The extensometer guge length is 1.00 inch. The extensometer is rated as Class B-2 per ASTM E83-67.
Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 9-inch hot zone. All tests were conducted in air.
Because of the difficulty in remotely attaching a thermocouple directly to the specimen, the following procedure was used to monitor specimen temperature.
8092B:1b-102984 5-2
r- '
R '
Chromel-alumel thermocouples were inserted in shallow holes in the center an'd -
each end of the gage section of a dummy specimen and in each grip. In test.
. configuration, with a slight load on the specimen, a plot of specimen temperature versus upper and lower grip and controller temperatures was developed over the range room temperature to 550'F (288'C). The upper grip was used to control the furnace temperature. During.the actual testing the grip temperatures were used to obtain desired specimen temperatures.
Experiments indicated that this method is accurate to plus or minus 2*F.
The yield load, ultimate load, fracture load, total elongation, and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength, and fracture strength were calculated using the original cross-sectional area.- The final diameter and final gage length were determined from postfracture photographs. The fracture area used to calculate t'e h fracture stress (true stress at fracture) and percent reduction in area was computed using the final diameter measurement.
5-2. THERMAL MONITOR MELTING Due to the lack of thermal monitor melting, questions arose as to whether the Palisades reactor was operating at a lower than design temperature, or whether the thermal monitor melting points were other than had been specified. To answer thie, a system, consisting of a troughed brass block resting on a hot plate, was rigged for melting the capsule thermal monitors. A thermocouple was placed in the trough with the monitor wire, and upon gradual heating the ,
temperature of visually observable melting was noted. To prevent oxide formation from visually concealing the point of monitor melting, the monitors were coated with flux.
Prior to testing the Palisades thermal monitors, controls were run of calibrated Westinghouse thermal monitors. Two Palisades thermal monitors (536 ard 590*F) (from capsule T-330) were then tested. The 590 F monitor melted at its rated temperature. The 536*F monitor melted only upon reaching 572*F, which indicates that the 536*F monitor has a much higher melting point and therefore is not truly a 536*F monitor. A 558'F monitor from capsult W-290 was then tested and resulted in a melting temperature of 590*F. Based on 80928:1b-102984 5-3
^= - -
7 r;m n> , n. m sy. .,
d
'f Q)..
- ij i
-1 E these- test results' it 'cppearsEth'at a mixup' int monitors occurred during thel l
1
? finitialloadingofthe.capsu'les~andTthereforea'reliableestimateof.thei-
]
~
{ capsule. temperature canno't be determined' from1the . thermal 1 monitors.1 1
5-3.:! CHEMICAL' ANALYSIS- . _ .
Chemicalanalyses.wereperformedonfracturedCharpyiV-notchspecimensin T -
c order to. confirm the chemical _ composition-of'the surveillance plate and weld: j materials.~' The chemical . analysis results are summarized in Table:5-1. The. i
~
~
most notable 1 feature of-'these analyses. is the great' variance measured in the:
1 nickel; content, specifically from .95 to 1.60 wt. %. -From the high' nickel content, it1is evident that a Nickel-200' addition was'ma'de to the surveillance
rate' f. Nickel-200' addition was varied during welding.
5-4. CHARPY V-NOTCH IMPACT TEST RESULTS Capsule T-330:
The results of the Charpy V-notch-impact tests performed on the various materials contained in Capsule T-330, the thermal capsule,' are presented in
~
Tables 5-2 through 5-9 and Figures 5-1 th' rough 5-4. From the Charpy V-notch
. plots based on'best engineering judgement it appears that the weld and heat-affected zone metals have experienced a 60 to 70*F shif t in the ductile:
to brittle transition temperatures due to exposure to elevated temperature,-
but no decrease in upper shelf energy.
The fracture appearance of each Charpy specimen from the varicus materials is
~
shown in Figures 5-5 through 5-8, and show an increasing ductile or tougher
. appearance with increasing test temperature.
A typical instrumented Charpy curve, representing the curves of both Capsule T-330 and Capsule W-290, is presented in Figure 5-9.
T:
~8092B;1b-102984- 5-4
l Capsule W-290:
The results of the Charpy V-notch impact tests performed on the various -
materials contained in Capsule W-290, irradiated at 1.09 x 10 19 n/cm2 , are presented in Tables 5-10 through 5-17 and Figures 5-10 through 5-13. A summary of the transition temperature increases and upper shelf energy decreases for the Capsule W-290 material is shown in Table 5-18.
Irradiation of the vessel ~ intermediate shell course plate D-3803-1 (transverse 19 orientation) to 1.09 x 10 n/cm2 (Figure 5-10) resulted in 30 and 50 ft-lb transition temperature increases of 155 and 160*F, respectively, and an upper shelf energy decrease of 18 ft-lb. Irradiation of the vessel intermediate shell plate material (longitudinal orientation) to 1.09 x 10 19 n/cm 2 (Figure 5-11) resulted in 30 and 50 ft-lb transition temperature increases of . .
175 and 180*F, respectively, and an' upper shelf energy decrease of 43 ft-lb.
Weld metal irradiated to 1.09 x 10 19 n/cm2 (Figure 5-12) resulted in 30 and 50 ft-lb transition temperature increases of 290 and 300*F, respectively, and an upper shelf energy decrease of 54 ft-lb.
Weld HAZ metal irradiated to 1.09 x 10 19 n/cm2 (Figure 5-13) resulted in 30 and 50 ft-lb transition temperature increases of 235 and 245 F, respectively, and an upper shelf energy decrease of 44 ft-lb.
The fracture appearance of each irradiated Charpy specimen from the various materials is shown in Figures 5-14 through 5-17 and show an increasing ductile or tougher appearance with increasing test temperature.
Figure 5-18 shows a comparison of the 30 ft-lb transition temperature increases for the various Palisades surveillance materials with predicted increases using the methods of NRC Regulatory Guide 1.99, Revision 1.[3]
80928:1b-102984 5-5
E r
1
(
A- The regulatory curves used for comparison were developed from the average copper and phosphorus contents (averages of the analyses presented in Tables F- 4-1 and 5-1) of plate 0-3803-1 and the weld metal. This comparison shows that the plate transition temperature increases resulting from irradiation to 1.09 19 n/cm 2 are less than predicted by the Guide for plate D-3803-1. The x 10 I 19 7 weld metal transition temperature increase resulting from 1.09 x 10 i n/cm is greater than predicted by the Guide. This can be explained by the high nickel content of the weld metal. It is widely recognized today that j nickel has a profound effect upon the irradiation damage of reactor vessel materials, whereas the current revision of Regulatory Guide 1 99 does not i incorporate this iniportant variable.
G 5-5. TENSION TEST RESULTS S
Capsule T-330:
I The results of the thermal capsule tension tests performed on plate D-3803-1
=
(longitudinal orientation) and weld metal are shown in Table 5-19 and Figures
- 5-19 and 5-20, respectively. These results show that the thermal environment
? produced little change in the 0.2 percent yield strength of the plate and welo 7 material. Fractured tension specimens for each of the materials are shown in
] Figures 5-22 through 5-24. A typical stress-strain curve for the tension c_ specimens, representing the curves of both Capsule T-330 and Capsule W-290, is E shown in Figure 5-25.
Capsule W-290.
y_
'F f
The results of the irradiated capsule tension tests performed on plate Io D-3803-1 (longitudinal orientation) and weld metal irradiated to 1.09 x 10 -
f n/cm are show in Table 5-20 and Figures 5-25 and 5-27, resoectively. These -
results show that irradiation produced an increase in the 0.2 percent yield strength of approximately 20 ksi for plate D-3803-1 and of approximately 30 ksi f or the weid metal . Fractured tension specimens for each of the materials l
are shown in Figures 5-29 through 5-31.
1
g -
t I
TA8L'E 5-l' Results'of Chemical Analyses Performed on-Palisades
-Charpy V notch Specimens:(WT-%)-
!Charpy Specimen Cr :Cu- Mn. No Ni 'P- Si 37C (Weld Metal. .050' .25U 1.28= .51- -1.60- . 0'13 . i20-341 (Weld Metal): .056. .30 1.20- .52 1.38- .014 .25-
- 460 (Weld Metal Portion of HAZ-Specimen). .050 .26 1.22 .47 1.19 .015: .24 46E (Weld Metal Portion of HAZ Specimen)- .050 .25 1.09 ,45 0.95 .014 - .19-
-22J (Plate D-3803-1) .11 .24 1.66- . 4 5. 0.53 .005. .20 25J (Plate D-3803'1).
.11 . 24 1.61 -.45 0.52 .004 . 24 ~
4 l
l 80928:1b-091984 5 ,
bf ;_;' '
.YI
' i , ,
y_ ,
er a.
~
-TABLE 5-2;
. CAPSULE T-330,1THERNAL' CAPSULE-
~
CHARPY-V-NOTCH IMPACT DATA FOR THE PALISADES :
- INTERMEDIATESHELLPLATE.D-3803-1l-(TRANSVERSEORIENTATION) .
. Sample - Temperature' Impact Energy- Later 1 Expansion Shear-No. -
(*F) _(ft-lb) (mils); -(%) j l
'22M ~- 75 5 '6.5 -5 22L~- -25 13 18 10: - '
-22J' 25 28 20 -: 26'
-22E- 50 47- 42.5 47:
21L 60 148- 47.5 .45-22B- .77 79 58 50-22C 100 71 60- 56 21J 150' 82 64.5 78 21K, 200 112 -78 '100
-220 250 92 74 100 22K 300 117 80 100-21M 400 110 78 100
'8092B:1b-091984: 5-8 e ,, ,.- ee - -
= -m,*-- .,
_=
TABLE 5-3 CAPSULE T-330, THERMAL CAPSULE CHARPY V-NOTCH IMPACT DATA FOR THE PALISADES INTERMEDIATE SHELL PLATE D-3803-1 (LONGITUDINAL ORIENTATION)
Sample Temperature Impact Energy lateral Expansion Shear No. ( F) (ft-lb) (mils) (%)
13M -50 7 9 2 13P 0 13 13.5 14 13C 25 39 32.5 20 138 35 50 47.2 27 13E 50 65 53 40 13J 77 112 74.5 66 _.
13K 150 131 91.5 83 13Y 200 156 87.0 100 130 300 158 77.5 100 13L 350 158 85.5 100 13T 400 215 67.5 100
- Specimen 13U was inieroperly centered on anvil .
'1 80928:1b-091984 5-9
TABLE 5-4 CAPSULE T-330, THERMAL CAPSULE CHARPY V-NOTCH IMPACT DATA FOR THE PALISADES PRESSURE VESSEL WELD METAL Sample Temperature Impact Energy Lateral Expansion Shear No. (*F) (ft-lb) (mils) (%) .
33M -100 12 17 18 33K - 75 45 39 30 ..
343 - 60 22 26 29 341 - 50 31 32 37 33L - 50 23 26 42 33P - 25 32 28.5 40 342 0 82 65.5 60 33Y 25 93 75.5 84 -
344 77 79 88.5 94 ..
33T 150 120 94.5 100 33J 300 122 74.5 100 33U 350 155 79 100 80928:1b-091984 5-10 .
g _
4 w '. ,
j
- TABLE 52
=
CAPSULE T-330,eTHERNAL CAPSULE'
~
CHARPY.V-NOTCH: IMPACT DATA FOR:THE PALISADES ~
PRESSURE VESSEL WELDLHEAT-AFFECTED ZONE METAL ~~
~
_ Sample cTemperature- _ Impact Energy. ' Lateral Expansion' ' Shear No. (*F) (ft-lb):-
z(mils)- ~(%).
430 45. 39 13 420- -25 27 , 27.5 14 42E -10 43 41.5- 34 44D 0, -
55 -47.5 ~44 43E 25 52 47 43 ..,
41E 40 88 57- '62 46E 50 130 84' 88 44E 60 115' 81 :. 84 460 77 70 55: .85~
45E 150 125- 80.5 .100 41D 225 -110 67 '100 450 300 121 77 100 80928S1b-091984- 5-11
l 2ca i R l
8 TABLE 5-6' l
CAPSULE.T-330, THERMAL CAPSULE INSTRUMENTED CilARPY IMPACT TEST RESULTS FOR l PALISADES INTERMEDIATE SHELL PLATE D-3803-1 (IRANSVERSE ORIENTATION)~
i l
l Normalised Energies .
Test Charpy Charpy Maximum . Prop Yield Time Maximum.~ Time to . Fracture . . Arrest - Yield ' Flow l Sample Temp Energy Ed/A Ea/A Ep/A- Load to Yield.. Load. Maximus -Load Load - Stress :. Strese Number ( F) .(ft Ibe) (ft-Ibe/in*2) (kipe) (uSec) (kipe)" (uSec) . (kipe) . (kipe) (kei) .'(kei) 22M -75 5.0 40 17- 23 2.60 85 2.60-i- 22L -25 ui 13.0 105 70 34 3.30- 90 3.55- 195 3.55 . 25 ' 108 til 1 22J 25 28.0 225 139' 87 3.10 85 -3.75 350 3.75 .70 ~102 113 N 22E 50 47.0 i
378 198 180' 2.95 160 3.952 560 3.95 ' I '. 9 5 97 114 21L 60 48.0 387 254 133 2.95 85 3.95 605 '3.90 -1.55 '98 .115 225 77 79.0 636 .307 329- 2.85 80 4.00 725 -3.85 1.95 94 113 22C 100 71.0 572 262 309 2.60 90 3.85 655 3.60 1.95 86 107 2tJ 150 82.0 660 193 467 12.70 80 3.60 500 2.50' 89 21K 200 112.0 902 258 644 2.60 ^3.00- 104 85 3.75 ~ 655 86 105 ,
22D 250 92.0 741 226 515 2.25 50' 3.50- 610 74 -
22K 95 300 117.0 942 294 648 2.10' 50 3.55 775 69 93 21M 400 !!0.0 886 249 637- 2.20 85 :3.45 675 73- 94
cn 5'
3 TABLE S-7 y CAPSULE T-330, THERMAL CAPSULE INSTRUMENTED CilARPY IMPACT TEST RESULTS FOR PALISADES INTERMEDIATE SliELL PLATE D-3803-1 (LONGITUDINAL ORIENTATION)
Ho w lized Energies Test Charpy Charpy Maximum Prop Yield Time Haslam Time to Fracture Arrest Yield Flow Sample Temp Energy Ed/A Ea/A Ep/A Load to Yield Load Maximum Load Load Stress Streso Number ( F) (ft lbs) (ft-lbs/in*2) (kips) (uSec) (kipe) (uSec) (kipe) (kips) (ksi) (ksi) 13M -50 7.0 56 24 32 3.35 85 3.75 .lG m 13P O 13.0 105 38 66 3.15 90 3.20 125 3.10 .35 104 105 1 13C 25 39.0 314 201 113 3.00 85 4.05 485 4.05 .70 99 117 13B 35 50.0 403 162 241 2.85 80 3.80 410 3.75 2.15 95 110 13E 50 65.0 523 314 209 2.90 90 4.00 740 3.95 .90 97 115 13J 77 112.0 902 350 552 2.80 80 4.10 815 3.25 1.60 93 114 13K 150 131.0 1055 332 723 2.45 70 3.90 815 2.30 1.70 81 105 13Y 200 156.0 1256 323 933 2.55 90 3.75 825 85 104 13D 300 158.0 1272 290 982 2.40 100 3.55 775 80 99 13L 35 0 158.0 1272 294 978 2.10 45 3.45 805 68 91 137 400 215.0 1731 285 1446 2.10 60 3.50 770 69 92
~
..g
- - ,.J.
,? . . , ,
4 _ , , , , , .. , ,.
'e
-e'- .- ,.-; * .g , .,/I# ,. ,. '. [. .. se,,,,,
.(
e'+.,
..,:y*r , , . -. . ,' y [- [' ,'f M, ,, - ,,e $ ;
, . - nw ....c.: .. .
,,'m...
V -
.^]%
-A 3 .
,,._,* '.s_ 7.,,
, K.
., r
.._,p..
. L.
.i
, , S
.e m
o :: .
D fu m
' Q_
a E
E O TABLE 5-8 D .-
- CAPSULE T-330, TilERMAL CAPSULE .A D
$ INSTRUNENTED CHARPY IMPACT TEST RESULTS FOR 1 e
PALISADES WELD NETAL :<.
y 7>
Normalized Energies
~
Charpy Charpy Maximus Prop Yield Time Maximus Time to Fracture Arrest Yield Flow I Test Load I,oad Strees Stress 1 Energy Ed/A Em/A Ep/A Load to Yield Load Maximus Sample Tem p (ksi) (ksi)
Numbe r ( F) (ft lbs) (ft-lbs/in*2) - (kips) (uSec) (kips) (usee) (kips) (kips)
.Y 68 29 3.65 125 3.85 200 3.80 .30 121 124 33M -100 12.0 97 45.0 362 218 144 3.35 90 4.15 500 4.05 .15 110 123 ?
33K -75 '
-60 22.0 177 139 38 3.3) 95 3.85 345 3.85 45 110 119 .
343 425 3.95 .50 107 !!9 31.0 250 176 74 3.25 95 3.95
';" -50 '
341 .55 23.0 185 104 82 3.25 91 3.70 270 3.55 108 115 g 33L -50 32.0 258 181 77 3.15 95 3.85 445 3.80 .75 105 116 Da 33P -25 3.45 1.15 102 119 .i 0 82.0 660 290 371 3.10 90 4.10 670 342 3.40 2.2 98 114 /
33Y 25 93.0 749 274 474 2.95 95 3.90 665 l
79.0 636 335 301 2.70 85 3.80 825 2.95 2.2 90 108 -
7 344 77 83 102 i 966 300 666 2.50 75 3.65 770 337 150 120.0 73 93 33J 300 122.0 982 283 699 2.20 75 3.40 780 968 2.10 65 3.30 775 70 90 33U 350 155.0 1248 280 ,
P.
~
l r
}
l:
I
!?
h
[ 5
?
'O 2, _. ;
- u. - ;. _. . ; p
. . (, c. ,.p n. .. -' g _ .j_ ; .,5 a .. t 4. ', :. ; n._-
a n. . , 9 , , .~ __%. ,,y-. -n.-s.v.q ; , .., ... ; ; . n, :: . . y:
.S,, y. .. s ;c ?. ..y. . :. +.. . ~ : 9,, ,<, .v. :. ni e o.
n '.. :.-l..r ,, .,"p,'
e.h. . ,,
' n .. -'
O' ? . , .~i'...;;. .1 : . u.; s ,~%'e- u." .1- . Ty., ' . .g ~r ,' :.
- 1s, i.: E -\.F.' ?- .
. p: 84,^>:_*.
Y .'. '<ll :W; % ". ';;' i.ll -, " .,-
- ~
n , ... . T. .- .v,v ......
- .y . . >. .;tm+
i -- .
1:&.e,. .. .. ,- f. -
.y. , ; y
?.- > .
- n. . '.. , , . ;
s.
..~....~.
.- . s.
r
....: . ; w ,, .y., ,, ,
~- .. .. .. . . .-
.. y y _
.,_,'._ n 7. ? . . r :
y ' ; . ,; _ 9 3 ' ;q ;
.' p . , J .. .. .. f. . ,g'.- ,.
.,x
.. : ; ;. ..y s ._ .
,( . .. . . . . .
r_k'_
4
' - co .
_. Q -;s e:
~ O!
.Q TABLE 5-9
} . CAPSULE T-330, THERNAL CAPSULE 4
I '
INSTRUMENTED CilARPY IMPACT TEST RESULTS FOR PALISADES WELD IiEAT AFFECTED ZONE NETAL t.
- ' Norme11 ed Energies . .. .
,Teet Charpy Charpy Maximum - Prop . Yield , Time . Maximum Time' to . Fracture ' Arrest Yield . Flow.
Compte Temp Energy Ed/A .Ea/A Ep/A Load to Yield _ Load Maximum Load . Load : .Strese Strese, Number ( F) (ft Ibe) (ft-lbs/in*2) (kipe) (usee)- (kipe) (uSec)~ (kipe)' (kipe)--(ksi) (kot)-
4.05'
- 43D 17.0 '137 114 13 3.55' 95. 4.05 275 -117 ; 175 42D -25 27.0 217 174' 44 3.40 105. - 4.05 . 410 4.05 .35 112~ : 123'-
- T 42E -10 43.0 346 222 125 3.3a .90 4.15- 505, 4.15 1.15- 110 '124a g . 44D 0 55.0 443 179 :264 3.50- 105 '4.15 415: 4.15 .25 116 127- _
, 43E 25 52.0 419 211 207 3.20 90 = 3.90- 500 3.80 -
1.35- .106'- 118' 41E -40 88.0 709 347 362 3.15 90 4.30- 770 3.75 1.75 105. 124 46E 50 130.0 1047 326 721 3.10 95 4.10 750 2.15- 1.40. 103-- 119-44E 60 115.0 926 282 644 3.15' 100= .4.00 665 2.70 :1.60 '103 114
- 46D 77 70.0 564 209 354 3.05 85 4.00 495 3.85 -2.25 '101 - -117 45E 150 125.0 1007 313 693 2.80 85 3.75' 770 92 - 108 41D 225 110.0 -686 246 640 2.45 65 ~3.80 610 80 - 103 45D 300 121.0 974 312 662 2.25 75 '3.55 820 ~74- 96 -
o r
~
t
g i
2 S
m 9
9 m
TABLE 5-10 g CAPSULE W-290, IRRADIATED CAPSULE g 4
CHARPY V-NOTCH IMPACT DATA FOR THE PALISADES I e l INTERMEDIATE SHELL PLATE D-3803-1 (iRANSVERSE ORIENTATION) 7J k '
1 Sample Temperature impact Energy Lateral Expansion Shear
.]
No. (*F) (ft-lb) (mils) (%)
1
, i 25K 79 17 16 15 l 25P 150 23 25 27 2<M 175 30 26.5 34 j) 25J 200 33 30 41 M 25L 225 67 62.5 76 24E 225 72 61.5 79 '$
25Y 250 84 60.5 89 24J 250 76 63.5 92 g 25M 275 78 71 100 g 24K 300 84 66.5 100 l a
25T 350 88 71 100 -g 25U 450 85 68.5 100 $
a J
2 S
E b
e 5
l 8092B:1b-051984 5-16
d-d i
m TABLE 5-11 i
CAPSULE W-290, IRRADIATED CAPSULE "j M
CHARPY V-NOTCH IMPACT DATA FOR THE PALISADES 7 INTERMEDIATE SHELL PLATE D-3803-1 (LONGITUDINAL ORIENTATION) $
3
-Y il Sa:nple No.
Temperature
(*F)
Impact Energy (ft-lb)
Lateral Expansion (mils)
Shear
(%)
lg
-7 164 79 11 12 5 g ISD 150 20 21.5 23 i 1 81.1 150 25 24.5 27 j 162 175 22 23 29 $
163 175 34 31 34 3 1AT 200 47 36 39 1AP 200 49 33 36 1AY 225 71 59.5 67 -
e 165 250 110 75.5 89 j 166 300 116 80.5 100 5 161 3b0 109 84 100 j 16E d50 112 78.5 100 s k
l
=
2 A
3 s
a h
80928:lb-091984 5-17
'm T
TABLE 5-12 CAPSULE W-290, IRRADIATED CAPSULE t
CHARPY V-NOTCH IMPACT DATA FOR THE PALISADES
- - PRESSURE VESSEL WELD METAL l
h Sample Temperature Impact Energy Lateral Expansion Shear 4
I No. (*F) (ft-lb) (mils) (%)
34A 79 8 8 5
[ 34E 125 10 10.5 15 5 340 150 18 14 25 I 37L 175 18 16 24
- 37C 200 28 22 33 5 37J 225 45 35.5 71
! 348 250 36 38 67
[ 37D 275 64 49 89
- f. t 37B 300 61 49 95 52.5 100
( 37K 350 72 3- 37A 450 67 67.5 100 It 34C 500 52 51.5 100 7
4 d=
7 i
Er n,
?
7 i
i T:
} 80928:1b-091984 5-18 i -
TABLE 5-13 CAPSULE W-290, IRRADIATED CAPSULE CHARPY V-NOTCH IMPACT DATA FOR THE PALISADES PRESSURE VESSEL WELD HEAT-AFFECTED ZONE METAL Sample Temper ature Impact Energy lateral Expansion Shear No. (*F) (ft-lb) (mils) (%)
426 50 16 12.5 16 457 79 51 36.5 45 427 100 21 20.5 32 453 100 36 27.5 28 425 125 27 10.5 34 456 150 28 25.5 41 4AZ 150 35 32.5 49 M
451 175 35 35 59 4AA 200 62 47 74 IPn.'t.f?.
.- cg.
K y- 455 250 79 53 91 f..'l:'Ij 454 350 73 60.5 100
. :.. s. r
- g p:7
, 452 40 71 60.5 100 Y ?.i.
hhY
'.1; ,%
lh Y; e . I?;
e h;.;- 3.y:;i
[.
6i
- s . - "
yL.;.* 73 y . ..l '- i'i
} :1):; .
1.%. . .l,[.-
L._ V.
Ls'.l
~, , . -
9._ %;- 80928:1b-091984 5-19 CL.
E.
2 w
R TABLE S-14 b CAPSULE W-290, IRRADIATED CAPSULE
$ INSTRUNENTED CilARPY INPACT TEST RESULTS FOR PALISADES INTERNEDIATE SHELL PLATE D-3803-1 (TRANSVERSE ORIENTATION)
Normalized Energies Test Charpy Charpy Maximus Prop Yield Time Maximus Time to Fracture Arrest Yield Flow Temp Energy Ed/A Em/A Ep/A Load to Yield Load Maximum Load Load Stress Stress Sample Number ( F) (f t Ibs) -- (f t-lbs/in*2) -- (kips) (uSec) (kips) (uSec) (kips) (kipe) (kei) (ksi) 25K 79 17.0 137 69 68 3.10 85 3.40 200 2.90 102 107 25P 150 23.0 185 117 68 3.25 95 3.80 295 3.80 .55 107 117 m 24H 175 30.0 242 134 107 3.15 90 3.90 335 3.85 1.00 104 !!7 33.0 266 144 121 3.05 90 3.85 360 3.85 1.60 101 114 L 25J 200 320 3.15 90 4.20 495 3.90 3.10 104 121 0 25L 225 67.0 540 219 72.0 580 220 360 3.15 85 4.15 500 104 120 24E 225 84.0 676 212 465 2.70 70 4.00 495 90 111 25Y 250 76.0 612 214 398 2.95 85 4.05 505 98 116 24J 250 25H 275 78.0 628 189 439 3.05 95 4.00 450 101 !!7 24K 300 84.0 676 214 463 2.85 80 4.10 500 95 115 350 88.0 709 260 449 2.55 65 3.95 605 84 108 25T 450 85.0 684 195 490 2.45 75 3.70 500 82 102 25U l
._w_ _m - ----
8 n '
G A TABLE S-15
$ CAPSULE W-290, IRRADIATED CAPSULE E INSIRUMENIED CilARPY IMPACT TEST RESULTS FOR ,
PALISADES INTERMEDIATE SilELL PLATE D-3803-1 (LONGITUDINAL ORIENTATION)
Normalized Energies Test Charpy Charpy Maximum Prop Yield Time Maximum Time to Fracture Arrest Yield Flow Sample Temp Enargy Ed/A .Em/A Ep/A Load to Yield Load Maximue Load Load Stress Stress Numbe r ( F) (ft Ibs) (ft-lbs/in*2) (kips) (uSec) (kips) (usee) (kips) (kips) (kai) (kei) 164 79 11.0 89 60 28 3.30 95 3.60 175 3.55 .15 110 !!4 y' 16D 150 20.0 161 101 60 3.25 90 3.85 260 3.85 .65 107 !!7 N 25.0 1 Atl 150 201 147 54 3.20 95 4.00 360 3.95 .25 106 120 162 175 22.0 177 103 74 3.15 90 3.80 270 3.70 .85 104 114 163 175 34.0 274 204 70 3.00 95 3.90 495 3.90 .75 99 114 1AT 200 47.0 378 258 120 3.15 95 4.20 585 4.20 1.50 104 122 l AP 200 49.0 395 277 118 2.95 85 4.10 640 4.05 1.35 98 117 1AY 225 71.0 572 282 290 2.80 80 4.05 650 3.80 2.20 93 114 165 250 110.0 886 292 593 2.60 65 4.25 650 3.50 2.95 86 !!3 166 300 146.0 934 276 658 2.75 80 4.00 650 91 112 161 350 109.0 878 258 619 2.65 75 4.05 605 87 Ill 16E 450 112.0 902 251 651 2.50 70 3.85 605 82 105
Wh15 l
O a
TABLE 5-16
{
y CAPSULE W-290. IRRADIATED CAPSULE
.E . INSTRUMENTED CilARPY IMPACT TEST RESULTS FOR PALISADES WELD NETAL Normalized Energies Prop Time Maximus ~ Time to Fracture Arrest Yield Flow Test Charpy Charpy Maxistne Yield Load Strees Sample Temp Energy Ed/A Ea/A Ep/A Load to Yield Load' Maximm . Load Stress (It-lbe/in"2) (kips) (usee) (kips) (usee) ;(kipe) (kipe)' (ksi) (ksi)
Number ( F) (ft 1bs) 3.50 90 3.75 125 3.75 116 121:
34A 79 8.0 64 42 22 60 20 3.40 95 3.75. 170 3.75 113 119' 34E 125 10.0 81 4.20- '117 128' 18.0 145 109 36 3.55 95 4.20 260 34D 150 3.95 230- 3.95 .25 119- !125 37L 175 18.0 145 94 51 3.60 95 f 157 68 3.45 95 4.20 360- .4.15 .65 115 127' ro 37C 200 28.0 225 4.35 3.00 116- 130
" 225 45.0 362 189 17 3 3.50 85 4.40 405 37J 85 4.15 330 4.00 -2.25 113 -125-34B 250 36.0 290 145 145 3.45 3.40 85 '4.25 445' 112 126 37D 275 64.0 515 203 313 3.40 85 4.15 405' 112 124-378 300 61.0 491 179 312
'105 4.05 430 109 121 37K 350 72.0 580 182 398 3.30.
- 85 3.95. -400 1104 118 37A 450 67.0 540 ~1 70 370 3.15 3.75 445 -99_ L111 34C 500 52.0 419 183 236 3.00 85. .
.- . . . .. .. _ _ _ _ _ _ _ _ _ _ g
h g-l T
~
P 5*
'c3 TABLE 5-17
- u>
G' CAPSULE W-290, IRRADIATED CAPSULE E INSTRUMENTED CilARPY IMPACT TEST RESULTS FOR' ,
PALISADES WELD HEAT AFFECTED ZONE METAL
. y Normalised Energies Teet -Charpy Charpy Maximum Prop Yield Time Maximus -' Time to l Fracture . ' Arrest Yield, Flow Sample Temp Energy Ed/A Em/A Ep/A . Load. to Yield Load Maximum' ' Load Load .. S trees Strees Number (.F) (ft Ibe) (ft-lhe/in*2) (ktpe) (uSec) (kips) ;(uSec)' (kipe)' (kipe) ;(kat): (kat) .
426 50 16.0 129 104 25 3.25 85- 3.95 260 3.95 '108 : '120 .
[' 457 79 51.0 411 222 .188 -3.20 85 A.30 495 4.20 . 90 _ 106- ~124 y 427 100 21.0 169 108 61 3.30 90 3.95 270 ~3.95 . 80 :109 170 '
453 100 36.0 290 237 53 3.65 90 4.45 500 4.35' 120'.. z134 425 125 27.0 217 134 84 3.lc 90 3.85 335; 3.80 :.85 '103 115 456 150 28.0 225 138 88 ' 3.25. 95 4.00 335' '4.00. 1.35 :108- 120 4A2 150 35.0 282 136 146 3.30 95 3.95 330. 3.85 1.30! 110 121 451 175 35.0 282 133 149 3.15 95 3.90 -335 3.85 1.65L '104 116:
4AA 200 62.0 499 252 247 2.85 85 3.95 605 ,3.80 2.15 ~ '94 113 - ,
455 250 79.0 -636 218 418 3.15 85 4.10 495 3.95 3.15' 105. 120',
454 350 73.0 588 164 424. 2.65 75 3.85 405- 87 '107.
i 452 450 71.0 572 170 401 -2.30 -50 3.55' 445 76 96 i
+
. .-, s-_. .- .
- 'i..
.j , _,
. v
- g .
$I
- .9; a.
- y v
,R-h :. TABLE 5-18 ,;q
_ I8 '
.S EFFECT OF IRRADIATION AT 1.09 a.10 (E >.1 HeV) ,
. ON THE NOICH TOUGHNESS PROPERTIES OF THE' j PALISADES SURVEILLANCE VESSEL MATERIALS
[ ,
..p Average Average 35 mil . Average , Average, Energy Absorption-30 ft-lb Temp (*F) Lateral Espansion Temp ~(*F) 50 ft-Ib Temp.(*F). 'atFullShear(ft-Ib)
Unirradiated Irradiated AT Unirradiated l
-Material Irradiated AT Untrradiated - . Irradiated' aT ':. Unirradiated~~ Irradiated f a,(fteib) .
ei Plate 25 180 155 25 1% ' 170 55
'215- 160- 102? 84 . - 18 .
- - 0-3803-1 m -(Transverse)
'2 .. .. .. .
Plate 0 175 175 5 190 185' 20 - 200' .180- '155-
' 112.: : 43 '
D-3803-1 (Longitudinal)
' Meld Metal -85' 205 - 290 -75 240 315 -50 250 300 '118' ' 64 -: : 54 '
^
HAZ Metal -90 145 235 -55 150 215 -65' 180s "245- 116 : 72: l44 N
y k
\ <
e 4 -_-..--._ -_- -_-. .-.-.-_-
E 8 e
E
= co .
? . b'
[L De TABLE 5 ,
[1 y Thermal Capsule Tensile Properties for Palisades-Surveillance Material y
E TEST .2% TIELD ULTIMATE FRACTURE FRACTURE FRACTURE UNIFORM IT)TAL. REDUCTION SAMPLE TEMPERATURE STRENGTH STRENGTH LOAD STRESS STRENGTH ELONGATION ELONGATION in AREA.
Fi NUMBER MATERIAL. F kai kai kip kai kai %. I %
Fl IDK PLATE 65 64.2 86.6 2.65 179.8 54.0 12.0 27.3 :70
! IDL PLATE 120 62.1 82.5 2.45 179.0 49.9 11.4 ' 26.2 - 72 '
. IDJ PLATE 550 57.0 83.5 2.80 156.4 57.0 9.9 21.31 54 T 3DK WELD -10 75.9 94.2 3.10' 198.5 63.2 13.5 27.1- .8
@- 3DJ WELD 74 74.4 91.7 3.25 186.4 66.2 12.0 .25.5 6 4 --
T 3DL WELD 550 63.2 85.1 3.25 159.6 66.2 10.0 19.2 59.
1 - 4DK HAZ 25 66.7 -88.6 2.85 180.0 58.1. 9.9 :22.7 68
- 1hese specimens fractured outside the gage length. ~",
b_
I E
W f
I
\
41 1 co 8 -
. .M R
H g TABLE 5-20
' *$ Irradiated Capsule Tensile Properties for Palisades I9 2 Surveillance Material. Irradiated to 1.12 x 10 n/cm h.
.2% TIELD ULTIMATE FRACTURE FRACTURE FRACTURE UNIFORM -TOTAL' REDUCTION TEST STRENGTH LOAD ' STRESS STRENGTH ELONGATION ELONGATION in AREA E SAMPLE TEMPERATURE STRENGTH kat kip kai kai %' % Z-NtTMBER MATERIAL F koi 210 81.9 97.8' 3.30 202.6 67.2 10.1 21.2 67 IEL PLATE 21.0-245 79.5 97.8 3.30 223.9 67.2- 9.9 70
- } T IEM PLATE 550 73.9 96.4 3.45 224.1 70.3 .9.0 19.2 69 IEK PLATE
[ $ 376 WELD 210 95.7 109.4 4.00 235.7 81.5 '11.1- 20.8 65 WELD 300 -92.7 105.9 4.00 198.9 '81.5 10.2 19.8: 59 3J1
^
WELD 550 87.6 104.9 4.10 187.2 83.5 8.7 17.1 55 3J7 19.5 - 65 HAZ 165 82.0 98.8 3.25 191.5 66.2 8.1 4E1.
4EM HAZ 225 78.9 96.8 -3.35 237.5 68.2. 7.1 17.5 .71 1 73.3 6.3 ' 14.7. 57 4EK HAZ 550 73.9 94.7 3.60 -172.5 ,
la I
h m
y
-100 -J e-o-e - O de a
. L G
w as e
. g 50 -
g .
E :. /
/
' O " ?g.
0 '''''''''''a'
100 7 -
~ e c , $ - .- o -- .
3 ;
. f .
20 o
g -
gpr_ o .e-+?..........................
$iS$
[j .:
y ,
..N O UNIRRADIATED BASELINE *
' O e d e THERMAL CAPSULE -
a.. dp= 100 - -
L5dlhi ; .
- O O l n ~ . s
., _ p.{ 1 ,
UNIRRADIATED f { O ,
BASELINE 50 - THERMAL CAPSULE E -
0 ' ^' M'''''''''''''''''''''
-200 -100 -
0 100 200 300 400 TIIPERATURE ( F)
Figure 5-1. Thermal Capsule Charpy V-Notch Irpact Properties ~
for Palisades Intermediate Shell Plate 0-3803-1 (Transverse Orientation) 80928:1b-091384 5-27
100 I e P 4 - o --e n , e.
se
- e as 4
.. = -
e .
0 'O'*- " ''''''''''''''''
5 IN
, s eo e s - ,
w . ,
- a. 60 - l i: y . i 1
. . e
=
e
/ .
M **'''''''"'"'
U
.3 0 '9 0 UNIRR ADI ATED BASELINE ,
200 - e THERMAL CAPSULE O
- ,O ,_.,_
O 150 -
O a .
7 -
O 9 ehe o . e
> 100 -
o .
E . UNIRRADIATED sa -
BASELINE se -2 (OPEN) 50
. g iHERMAL CAPSULE
. e i a @_1 a a ia a a a ia a a a ia a a a ia a a e I a a
-200 -100 0 100 200 300 400 TEEPERATURE ( F) )
! Figure 5-2. Inermal Capsule Charpy V-Notch Impact Properties for Palisades Intermediate Shell Plate D-3803-1
)
(Longitudinal Orientatier.) i
~
80923:1b-091384 5-28
100 -
A >-- S O 9-C N >
w E m O
+ gM -
sge . .
N
. ,}$
=
0 ..- -
m I % _n Q
]
=
/
f e
=_
M 50 -
C " '
.J
/
.h..
2 5
- O A 0 e
i_ 150 -
0 UNIRRADI ATED BASELINE 3 -
e THERMAL CAPSULE o
- K n
- e O 4
e e
= . O o
=
7 100 a s .
UNIRRADIATED
- O O C
C * -
BASELINE e i s=
o
-s as M
5 N
~
Q THERMAL CAPSULE 4
w - O n . ee
=-
/
w -
'Q''''''''''''''''''''''
0
-200 -100 0 100 200 300 400
(
2+ TRIPIIATURE ( F)
_A 7 Figure 5-3. Thermal Capsule Charpy V-Notch Impact Properties ~
~__
for Palisades Weld Metal
^
1 80923:1b-091384 5-29
100 - 0 0 3 0 m
E 50 -
E -
O.
m .
O d -'~' ' ''''''''''''''''''"
100 m' .
o o
. % e ,,
9 .
O . '.7
=u g
. O, .
.J l t . O J
0 O
OUNIRRADI ATED BASELINE
. THERMAL CAPSULE . n ,
~
v O 7
A 100 -
UNIRRADI ATED BASELINE 7
. O o .
> . O
= .
= 50 -
g -
THERMAL CAPSULE
. 8 n a n1naen1nnaatnnan1annn1nann1an
-200 -100 0 100 200 . 300 400 TIEPERATUtt ( F)
Figure 5-4. Thermal Capsule Charpy V-Notch Impact Properties for Palisades Weld Heat Affected Zone Metal 8092B:1b-092684 5-30
10644-7 k + - c 4;J';%,b [ 1hy .* !;b[chhf~$-
s
/%hihy Ph.fsp. q%%(f Q}j q ~m ;;{ g;r fil'"f;%<.g.
?;Ug;q:
H 'fg;;-
6Cg M.M.4 Qf f. ,. $$ )g
-:%;u ,,
s; .m fg.i w > .;g:n f' O, )' [
hj-- ,,
h b w wm et- i/;g , 2
+-
22M 22L 22J 22E rn . u r#v. - s- ,
c.
h hii$$$i bli Ijk h w?gLigy reyhk iN g
., lA;&[
g
_f.
.P ., .nc : k
$$gsi M31 d>j!4 J rk et w ,
4; Y
- yf$%dy;;<-
3l j;I ft t,;w h
k,.
if
.q p
, x, ' g 21L 22B 22C 21J v
7 ,g ~y ,
3 7 , 7. L Thi
$..' SN 'diId .
-<0 o il a .s ((') Od F w y m p ?] '10{' $ , '.?
,g 7
+, .
3 .
t '
h l$
- 9 -$
i .
i 21K 22D 22K 21M Figure 5-5. Thermal Capsule (T-330) Charpy Impact Specimen Fracture Surfaces for Palisades Intermediate Shell Plate D-3803-1 (Transverse Orientation) 5-31
10644-8
~
r new m
.# t a;ta d r a.
msgg yoq ,,,i c,
$t" t4 W"7"Ml) y vs t.%;: 1. s,t.
?-
y.9l%a. v ..a .yx.%
&tr ,-.gi
,t.- ,.,.,s. u ..,.g-
.~ m W rr 3,cu.
D a .b <.y i:. 7.%y,;.
p' ,;.\y 1
e 7, yh,
+ -- +
x;:r.
v 53 Q.:: 9 - -v L a_ .
. am 's ; Y A 7!;. k, i f 4
/w:w;g &a; wh. x my myw,,V ,
a%ycW.e
~
dWe ;,g :++ M~
Ot$htW. ' l NN+ . g w~$;;&; ' %. - %>
,;GQpi%,' y -
,,w scf f-.
f,qt .
n; H DJ,)
gf ,,0 3 p 4 33L 33P 342 33Y
, : i I; ., ;
tM m u i
4db ha . m.
(); %9 e MTd > p,,h)i 1 p7 i .
344 33T 33J 33U Figure 5-7. Thermal Capsule (T-330) Charpy Imnact Specimen Fracture Surfaces for Palisades Weld Metal I
5-33
10644-10
,e n :
y :;~ 733 .I
[
l %k) ; ' abg N ;; y)p;' . l lll, ;li%en;*,f r
,: +,
- .m4qy r,y- u w, =
8 ,.;j mmL .Lm.;
- % n; y :m g rn- %g.n sv
- ,p g5vH w;. ;- gi Ggi y n-<d.y ,,;g:$'- g (y .g ig; 3..f+Q(
I keyyg 3.am;g . - '
n .c-q.. p..
qwg;y i
-e g
VTsh s R
M. M. .r.r>
.!Jf e 71 "p'g fg3st 4 -
- ggp#je!i t
- r~
}J, a
.,ll ;n
- QRif z +
'5 o pq%QsdppL j Q? %{. N ig 430 420 42E 440 h %.y7ht. cb m t[f kl a i t 9
h 1p q
1W
, ,- 9 y ,# q%
%; .n-; n> -
4 M.m;,\l .
V ty g ' + ~
+t- -
gy, nf A M we
'V>fga p9 5 s
r~.
t gi)';Jf9, ..Sg: [-
ve w.
o _
e,
- y *
%:a evf t 3jQ$ W :,ff
[ .y, ;'
.~
?[
R$ij dil ,N/ Td US$s, vg)y p,n qat% um 9
".j Ar;7 Y.
"" g
{.,.
g >s =
,g 43E 41E 46E 44E
- cn g g . s '. q f f ff h
,N;?4/IcA Aq&;kmll s
t i s ti*4 f* w*hi-
,. jj ' . ._
,4,
,. .r_ 3 .
p{
- RQ
- :pj.{ . J' <
i 6. .
L RE% ani u b.
p.
7: 1 -. n s,.
w'
- .,q . .v e' isgt ,
460 45E 41D 450 Figure 5-8. Thermal Capsule (T-330) Charpy Impact Specimen Fracture Surfaces for Palisades Weld Heat Affected Zone Metal 5-34
M 8
G s
k Figure 5-9
$ Typical Curve for Instrumented Charpy Specimens E+03 P
3.7500 -
E+03
/ r m .F b ph ,
E=112.0.ft-lbs 'i 2.5000 . .
3 E+03 ,' .
J
. :e, .
s 1.2500 .- i E+01 .'
'Ns
/%
bNN 0.0000 l ..___ _
E+00 '0.0000E+00 3.0000E+02 1.6000E+03 2.4000E+03 HICROSECONDS SAMPLE NO. 13J TESTED AT 77 F, DIAL ENERGY.=112.0 ft-lbs General Yielding **nHaximum Load *** *** Fast Fracture ***
P=2.82kib t= 80uS P=4.09klb E= 45.4ft-lbs t= 815uS Pf=3.24kib Pa=1.62klbl-
100 -: o O_ ,e e - C
,f
~
M =
w N
g 50 -
O O g/
.J 0
'O' ' 6 ' ' -
'100 n .
A O m
w Q O' .
l n' ~ 0 0 4 p \
2sg g 9 l
. O
- n. 50 -
M O
/, ,yoo
~
d' eJ -
.- >*e 0
O UNIRRADIATED O 100 -
e IRR ADIATED O O -
O .O
- .
- O t
O !
g 50 -
- 1800 g -
O E
- 155 0
'^' '''''''''''''''''''''
-200 -100 0 100' 200 300 400 TINPERATURI ( F)
Figure 5-10. Irradiated Capsule Charpy V-Notch Inipact Properties for Palisades Intermediate Shell Plate D-3803-1 (TransverseOrientation) 80928:1b-091984 5-36 5
100 -
'J pC>--o o m .
e [
N O
E n S g 4 ....n....i >>
7.A. ,
i.. i .
^" 100 0.- N* ._v o
w -
/
e f 60
/
l pS: 185 0 j . Se*
- - . ed 0 0 C ' '''''''''''''''''''''
~
O UNIRRADI ATED 0
. IRRADIATED 0 160 -
. O O
q -
O a .
T -
. . o t 100
=
m m .
60 -
+ 1800
. '/
t 175
. 34
. .J 0 'e^* '''''''''''''""
-200 -100 0 100 200 300 400 TIIPIRATURI ( F)
Figure 5-11. Irradiated Capsule Charpy V-Notch Impact Properties for Palisades Intertnediate Shell Plate D-3303-1 (Longitudinal Orientation) 80928:1b-C92684 5-37
100 -
O aC U --e n
O w .
,e w
m O
J g 60 -
= .
- . e i . e O
/
9i....t nmm_ ,....i.. ....n....i .
100
~ .
n n 0
- o -
o a
~
o
- (>
d 50 -
,/f e e m -
o /
^*
315 0 a
5 -
O
' ' ' . - ' i...
,_eF*p t ..
0 .i....i....i..
~
O UNIRR ADI ATED O o
e IRRADIATED
- O O
^* 100 -
^ - OO O
T.
O - e e _
E 50 - [,3coo e
[ 7e
/c : 2900 pe
8 eo 0 -
- 8
-200 -100 0 100 100 300 400 TIEPttATVII ( F)
Figure 5-12. Irradiated Capsale Charpy V-Notch Impact Properties for Palisades Weld Metal 8092B:1b-091984 5-38
$N ""
O g
./.
,. O 7
~
/
~
j80 -
o , l 5 : ef*
0 .-_ __O...'s....
....s............
,100 2
_n .O O-
~
a .
O U
-w
' .- o O
si as so -
, o
. t:
g# 2150
.a l O
.'*/ ,
~
O UNIRRADIATED 0
=
[ e IRRADIATED 0 0 S 100 -
7 - 0 0 O
- O , ,
n O ef a
g 50 - e f 2450
= -
- / . .4: : 2350
- l *
, .o.#. . o...........................
-200 -100 0 100 200 300 400 TEMPERATURE ( F)
Figure 5-13. Irradiated Capsule V-Notch Impact Properties for Palisades Weld Heat Affected Zone Metal 2
80928:1b-091984 5-39
--,--i'-.--,'.-
10644-11
.u . p' id '% l A$$th '
Q-- .
&jp _ .d f.$ _
, g sw.. . -
- -} }g r . .
. j. .. .,
p{yg} +s
$- R:#., jf
~
<} .~ ,
g P mq
~ ip . .
~o t;i w .. . ..
25K 25P 24M 25J s we . ,
,j. f. vm*j$7 mlp[. ; ;~R y ]t
.h %(p
%,$'y$\']
p W 'y. r}Y
-,j74 Nd y(!j y
pg ;ps e- .Jp 4 Rsi s'
.y+ .
.:9 ..
?lif ,
- ~
j .
Y-
'\ .. s 25L 24E 25Y 24J ym,- 3 7 e a- ~
c ..
%Q4 pgl .
e -
- w. f;, 4 3' ist + t
,a qy;
-. M f -
- w. :
. m t
-- ?;
,3[,)i 3
ga .
.'Tl *l a
{
Q 4 s, I!
)
Tb,.
3- #
/r) 2-
.r 3 ! g.. .,
25M 24K 25T 25U Figure 5-14. Irradiated Causule Charpy (W-290) Impact Specimen Fracture Surfaces for Palisades Intermediate Shell Plate D-3803-1 (Transverse Orientation) 5-40
& 49 0 k f) h IMAGE EVALUATION
,[/,g%
f p$ ,
gyy7s.4/
r TEST TARGET (MT-3) 4 NTY
- N 'ig?y#
+g/// /q's 1.0 583 En 5
mm m in l'l $M *
!!$0!
11- 1.8 11 1.25 1.4 1.6 4 -
150mm >
} 4 6" =
4% - / '4 pv ,9 7 ,y ,,, L ; -
spg,>////
a,, lp ep N' .. = , . -
"Il
10644-12 g __ , -
i .. p f-
.; @,; .;; 4 , .,j
+t', g j;j Y M u i:- .
4 j)hf N , I'I .. -]
+
- g~ g , p
-i
-6 & )9 lp:g:%.e$l, vy ~p i
- , vy;p , , s; 1 l / ,iAL .
R: .=,
a 2
'64
. ISD 1AU 162 i
- a 7" ,
f;) gj i:' .b ,
. 4p h ?)hf, Q id u Nh, d 4 Qf j
' v h5fi;; ) >
gg g v. - .O y:!..
e . .; ,
e tw av
., +
N,... ) s. .t
.rft
<;)
491.p":ni TJOft :
- .q, nj h
a eggg: c y-s;::Vw#~
x gy a
b/ ? .f ? [ .,; ;{
~.3 5 A 1
.d i u
, 163 1AT 1AP 1AY 3
I r-.
n f *
~
p, '..
f '3 *{
\
n:s
[i] 3 9
, ffh b
- v. -j . }j a <
.p A
)l; + j 9;g;i ..e 1 e
7 y1 et :
.. a 7j
]r 9
[ ^4 k
j l;$* -i.
.l 2.1.. 1 a c n ,
3 tj .( ),
_m 2 CN 'l 165 166 161 16E I i
l Figure 5-15. Irradiated Capsule (W-290) Charpy Impact Specimen Fracture Surfaces for Palisades Intermediate Shell Plate e D-3803-1 (Longitudinal Orientation) 5-41
10644-13
- f4NuMP
. .x MpQ! W;c '..XM
~
a y i '"Myg dl. $\Ib 5 1:4p y ,pt.
3 4
' 1 4
y e v ,
j i i
4 34A 34E 34D 37L-
~~ rec q '"" ^ ; pgK [ 'fy;QT 4 3d!,)0k l 75%' , {f?M'ii I;)
- JTy,Q ,
.R{,yiii. f =t : L " ?j ,". m,..A,AT%
'4ij:fi c ...
tC, ~gb ~s;7 y((ffj te 3
;1y - 22a iL yy t%9 ., <; ty, ~.p. <a .+ x, - y p y, t ;a<, ' -> .M hg "; y.T w j< ;p,pp+ s - p)i;is ;;j I $ " g' Q_
gr. y ;; 1 4 37C 37J 348 37D
=q .q q - 9 ";
e
-; y4
- s it a
) $$ -- ei .}.
l 4
- j. .
ir j! - N 4a ;
%ai'j n '1 ) / -:f.Ma i.4 i {? -( 'ld ~l . i 2-5 zm. :n .;-f < e -9; y 3 7 ;); hj /:3 1 .. n u
r, t 3_-n, alj
?
I7 l dg;} ,
;i . . .'a} s
- 37B 37K 37A 34C i
I Figure 5-16. Irradiated Capsule (W-290) Charpy Impact Specimen Fracture Surfaces for Palisades Weld Metal 5-42 _A
10644-14 I' w; s I
., ym ,
y ,, ' v ;.:q I:L, Mi d::;g
. ig .41 h .: . :3g a
426 457 427 453 l l , - . , . . ayes sa q# , p I i A y\m
,4 -4 >; 7n ' .,xt w . ; :s ,1 ' -Q ;Q y%:x .y * ~ ,
q ?;l [ T } ~",3% ..,,
. .s ~; ;g ;A l ;
l * ' i j ;., l $?;Q i,y7:f
";s O.f ij(;d e
a
- S. &, ga. - 3 lll4 #}>9'f i,7k
%:j - ;.Q j 3
M T. a, 425 456 4AZ 451 mop _ . . ,
,4.., . .m ff '# tj;t E- : ~- N U; y
a
,-y; ,s 3
us 3::)j ]a jg3 nJ 4Gl$ .f ^A-i '
!r N - N w
- A
.;; f3 4 ,;i 1
2
.i .'j .;
V n il '[j '} ;j,. VI 9 : :.a 4AA 455 454 452 i Figure 5-17. Irradiated Capsule (W-290) Charpy Impact Specimen l Fracture Surfaces for Palisades Weld Metal Heat Affected Zone Metal 5-43
~ ~
(- - . . ' q4 :
~s , %3 500 400 -
g 300. - O 19 WELD METAL-- w . PREDICTION
- g 200 -
- (CU=.25,P=.013)
- y i a: 100 - l 2 --
3 70 PLATE D-30031 - Z
- o- - PREDICTION (CU=.34,P=.007)
' E -
i;5 '.
~
6 PLATE D-30031
'E (TRAN8 VERSE) 9 O PLATE D 30031 2 E (LONGITUDINAL)
O WELD METAL : dl - 20 - fil 4 10 l- 1 I I l lll l l- 1 I Illi 1018 2 5 7 1018 2 5 -7 1020 I FLUENCE (n/cm2) 4 4 i Figure 5-18. Comparison of Actual versus Predicted 30 ft-lb Transition Temperature Increases for the Palisades Surveillance Weld Material, Based on the Prediction
-Methods of Regulatory Guide 1.99 Revision 1 8092B:1b-091984 5-44 f
l 100 - l l ULTIMATE
- n. . -
g- TENSILE me STRENGTH
. bS %_ 0.2% YlELD
_- STRENGTH E,, s0 - g . 0 ''''''''''''''''''''''''''''' O UNIRRADIATED 4 IRRADIATED 80 A a
- e = m;0 REoucTiOu . g IN AREA 60 -
E
~ ~ >= . =sJ 40 -
U A ED N Qm_- TOTAL Cr,j ELONGATION 30 - k UNIFORM 9- e g ELONGATION 0 ''''''''''''''''''''''''t ' O 100 200 300 400 500 000 TERPERATURE ( F) , Figure 5-19. Thermal Capsule Tensile Properties for l Palisades Intermediate Shell Plate D-3803-1 (longitudinal Orientation) 80928:1b-091984 5-45
C ( l .
-100 -
4- m ULTIMATE [ ^ g q y TENSILE
= , STRENGTH ==,
e a i
-? .as -
n - $ = 0.2% YlE LD
'N STRENGTH .m.
as 50 - as 0 1 O UNIRRADIATED ; e IRRADIATED l l 80 -
"% q O
REDUCTION 60 - - r'
. IN AREA w
OO w . o
~1 40 -
me .
~
i t; . g I b _G-j g ,
"y Q TOTAL. , ELONGATION < r 8 n UNIFORM i
N g_ MS i
- ELONGATION 0 ''''''''''''''''''''''''''''''
O 100 200 300 400 500 000 i TEllPERATURE ( F) Figure 5-20. Thermal Capsule Tensile Properties for l Palisades Weld Metal i (- 80928:1b-091984 5-46
4 100 -
*9. % ULTIMATE .m * - M TENSILE "~' =e -STRENGTH e
- nM w G--
W 0.2% YlELD ) STRENGTH
- gQ m E -
l 0 O UNIRRADIATED i- # IRRADIATED I 4 g
- Q a nEoucTioN
! . O . O g IN AREA n .
1 M w . ' >= .
.a 40 ~ -
- = -
,9 NGATION " 8_
W, y - UNIFORM
- . ELONGATION A ' ' A A A A A $ 1 A 1 i$ R R A A $ 1 1 A A $ 1 1 1 A $ 1 a 1 1 i 0 100 800 300 400 600 000 TEMPERATWEE ( F)
Figure 5-21. Thermal Capsule Tensile Properties for if Palisades Wald Heat Affected Zone Metal i. 80928:1b-0919El 5-47
10644 1 Te t t6* Te t at 0 Te te t50 1234 6789 0 10THS 1 INCHES Figure 5-22. Fractured Thermal Capsule Tensile Specimens of Palisades Intermediate Shell Plate D-3803-1 (Longitudinal Orientation) 5-48
10644-2 Te t t 0 Te t t l 1 Te t t 0 i i ,
- [
! 1234 6789 i 5 0 10THS 1 ; lNCHES l l l Figure 5-23. Fractured Thermal Capsule Tensile Specimens of Palisades Weld Metal 5-49 i
tosua Te te t2* Te t at 4' 1 i l Te t t50 ! i. i j i ! ! 1234 6789 l 5 I O 10THS 1 INCHES l
+
P l Figure 5-24. Fractured Thermal Capsule Tensile Specimens of Palisades Weld Heat Affected Zone Metal j 5-50
o
- g. : g ;
M FIGURE 5-25 h Typcial Stress-Strain Curve for Tension Specimens b* : s 8 a 129008 ru.xs usi.o M 195888 - so-Jun.-se Test Tsw=-se*F GA E IR Em >1sn DI. m 25an g.. X6 IW'EEDsMan/asa 75388
- m m -
E s L esses - m 45898 - . ~ 3SSSW 15888 g : : - 8 .825 .35 . 875 .1 .125 .15 .175 .2 .225 .25 .275 .3 in/in STRAIN
m
~
0 ? ULTIMATE
, TENSILE & STRENGTH e = ?
d g
. 0 O y .2%STRENGTH YlELD B05 E -
p 1 1 A 1 $ f R A A l 9 9 3 A l t A A 1 $ A A A E ! e A A 1 $ i R A A _ O UNIRRADIATED e IRRADIATED 80 4
% .- 4 REDUCTION IN AREA M
I b= . De
; 40 -
i' e =
@ g TOTAL g , g __ ;__ - ELONGATION , a
- UNIFORM 9 ELONGATION l 0 " ' ' ''**a * * * ' - - - - 8 >> s -
0 100 200 300 400 800 800
- TEMPERATURE (F)
\ Figure 5-26. Irradiated Capsule Tensile Properties for Palisades Intermediate Shell Plate D-3803-1 (Longitudinal Orientation) 928:1b-091984 5-52 l .
* % e __ _
iM , ULTIMATE TENSILE g' N S- STRENGTH a Q
. = O- <
l e 0.2% YlELD Je - w STRENGTH sk l g 50 - g; 1 - i . 0 O UNIRRADIATED G IRRADIATED 80 a
- No N j
y
* =
- %, = ~
>= .
0 9* ! = en 40 -
- m .
- lip 1
A " TOTAL l 20
- - *- -_- e _ ELONGATION
* # A A" UNIFORM 1 -w- "g ELONGATION . l' I ' I ' ' I I I ! I iii! R i i i l 1 i i A l 1 A R A l 1 A A A O 100 200 300 400 500 800 TEMPERATUIR ( F) l Figure 5-27 Irradiated Capsule Tensile Properties for Palisades Weld Metal l .
80928:1b-091984 5-53
_. -. ~ . . k g-
, -e% ULTIMATE g TENSILE m =
en ~@- STRENGTH e .. = d
- thr 0.2% YlELD STRENGTH E00 _
h . t 0 ''''''''''''''''''''''''''''' O UNIRRADIATED G 1RRADIATED i 80
. R 80 O .#e X Q a REOucTiON D U IN AREA ;
SE w . i >= . I N 1 ~ 40 en i en . l 3 = TOTAL M " N ELONGATION
, UNIFORM l
0 _g_ , ELONGATION ! O "'''''''''''''''''*'*''' j 0 100 800 300 400 600 300 TEMPREATURE ( F)
- Figure.5-28. Irradiated Capsule Tensile Properties for
- Palisades Weld Heat Affected Zone Metal
- 80928
- 1b-091984 5-54 l
- 10644-4 Te t at 2 0 et at 5 i
I Te t at 5 0 I i 1234 6789 0 10THS 1 ! i INCHES j i i i l i f Figure 5-29. Fractured Irradiated Capsule Tensile Specimens of Palisades Intormediate Shell Plate D-3803-1 (LongitudinalOrientation} 5-55 i
1064S 5 ( hh!t at20h fe!t!at30 1 e!t! at 5!0 1234 6789 0 10THS 1 ! INCHES i l I l i Figure 5-30. Fractured Irradiated Capsule Tensile Specimens of Palisades Weld Metal l i i 5-56 l l
10644-6 i Te!tEkt!!5k Te!tEkt255h j Te!tEkt5!0I i 1234 6789 l 0 10THS 1 INCHES i i i I 1 l i ! h Figure 5-31. Fractured Irradiated Capsule Tensile Specimens of Palisades Weld Heat Affected Zone Metal 1 5-57 l . l--_ _ ____ _ __ . __ _- _ __ _ _ _ _ _ _
7- y '- g
~
( , 4 , m
-SECTION 61 RA0!ATION ANALYSIS AND NEUTRON 00SIMETRY: ~6-1h INTR 000CTION. .
IKnowledge of the neutron environment within the pressure vessel / surveillance, capsule' geometry is required'as an integral part of LWR pressure vessel-- surveillance programs.for two reasons. First, in-the interpretation of radiation-indu::ed properties changes observed in materials - test. specimens the neutron environment.(fluence, flux).to which the. test specimens were exposed-must be known. Second in relating the changes observed in the test specimens to the present and future condition of-the reactor pressure ' tssel, a , relationship must be established between the environment at various positions
~within the reactor vessel and that-experienced by the test specimens. The former requirement is normally met by employing a combinattu..of rigorous analytical techniques and measurements obtained with passive neutron flux monitors contained in the surveillance capsule. The latter information is derived solely from bench-marked analyses.
{ 1his section describes a discrete ordinates.S, transport analysis performed for the Palisades reactor to determine the fast neutron (E > 1.0 MeV)' flux and fluence as well.as the neutron energy spectra within the reactor vessel and
. surveillance capsule. The analytical data were then used to develop a lead factor for use in relating neutron exposure of the pressure vessel to that of the surveillance capsule. Based on spectrum-averaged reaction cross sections derived from this calculation, the analysis of the neutron dosimetry contained in Capsule W-290 is discussed and comparisons with analytical predictions are presented.
1 6.2. DISCRETE ORDINATES ANALYSIS A plan view of Palisades reactor geometry at core midplane is shown in Figure 6-1. Since the reactor exhibits 1/8 th core symmetry, only a zero to 45 degree sector is depicted. Six wall capsules attached to the reactor vessel are included in the design to constitute the reactor vessel surveillance $ l 81488:1b/092684 6-1 ,
,~~- , , ,. , ,n.- - , . . . , - , . , , - , ~ . . . , . , , , - + , - - . - , - - - . , . - - . , - , -
E 48/44/10555 2 00 20 0
///
CAPSULES W-290 PRESSURE VESSEL ,
/_ / / /
WATER
,. 450 7, .
HARREL WATER
/ / / /
I I I I I -- j Figure 6-1. Palisades Reactor Geomatry 81408:lb/091884 6-2 - l l__ -,.___ _ _ _
4 Y , l Acceleceed Wall g W-40 Reactor Vessel Wall Core Support Barree \\\\ Core SM ,h - W-110 l lim l r ' g 180* l s {
'm; i i
! b,: $ Well W-290 i ( Amentereted A 340 i w o \\'\\_\\\ W o j l ? l i I Figure 6-2A. Plan View of Palisades Wall Capsules 81488:1b/092684 6-3
~'
a
's.;
48/44/10555 1 NNNNNNN PRESSURE VESSEL Ny XNNxNNN
-'N N a
U Ti Fe UCd CuCd 1.503
~
GGG GGG - INCHES NiCd V l 200 i 2.178 > ! INCHES 1
\\\\\\'CO,RE BANRELN\\\\\\\}
Figure 6-28. Plan View of a Reactor Vessel Surveillance Capsule 81488:1b/092684 6-4 c
. . _ . . _ , , __._,.__.._-.._.m.___ . _ - - , , , , _ , - . , , , _ _ . , , . _ , . , , , _ _ _ _ , _ . . _ , , . _ .,,_,_..__.-____,,_y_,..._._ m.,.-~ . , . . , . ,
g -
.j i
A- 'T'^ d
~
m 1 - TABLE;6-1
~
26 GROUP' ENERGY STRUCTURE-Lower Energy.
.i . Lower Energy.
tGroup (MeV)- Group ~ _ -(MeV)
' 1 :- 14.19(a)' 25 0.183
. 2: 12.21- -26 = 0.'111 - 3 10.00: 4- .8.61'
-'S 7.41= ~i 6- 6.07 7 4.97
- 8. .3.68 9 3.01
- 10 2.73 11 2.47 12 2.37 13 2.35 I 14 2.23 4
15 1.92 . j 16 1.65 17 1.35' 18 1.00 19 0.821 20 0.743 a 21 0,608 22 '0.498 l- 23 '0.369 24 0.298 i J l a. 'The upper energy of group 1 is 17.33 MeV. 1 81488:1b/091884 6-5 j
program. A plan view of the surveillance capsules attached to the reactor ' vessel is shown in Figure 6-2A. As seen in Figure 6-28, the stainless steel capsule holder is basically a 1.503-inch by 2.178-inch rectangular tube with'a 0.12 inch wall. The monitors are' embedded in carbon steel.
.From a neutronic standpoint, the surteillance capsule structures are significant. In fact, as is shown later, they have a marked effect on the distributions of neutron flux and energy spectra in the water annulus between the core barrel and the reactor vessel. Thus, in order to properly ascertain the neutron environment at the test specimen locations, the capsules themselves must be included in the analytical model. Use of at least a two-dimensional computation is therefore mandatory.
In the analysis of the neutron environment within the Palisades reactor geometry, predictions of neutron flux magnitude and energy spectra were made with the 00T two-dimensional discrete ordinates code. The radial and azimuthal distributions were obtained from an R,0 computation wherein the geometry shown in Figure 6-1 was described in the analytical model. The R,0 analyses employed 26 neutron energy groups and a P 3 expansion of the scattering cross sections. lhe cross sections used in the analyses were obtained from the_SAll.0R cross section library which was developed specifically for light water reactor applications. The neutron energy group structure used in the analysis is listed in Table 6-1. A key input parameter in the analysis of the integrated fast neutron exposure of the reactor vessel is the core power distribution. For this analysis, Palisades Cycle 5 power distributions were employed. These input distributions include rod-by-rod spatial variations for all peripheral fuel assemblies. Having the results of the 4,0 calculation and an axial peaking factor, three-dimensional variations of neutron flux may be approximated by assuming that the following relation holds for the applicable regions of the reactor. 4 81488:lb/092684 - 6-6
r -
~ ' ~
('q. .2- .yy; pc. 4 -
- v.
r 7$(R,Z,9,E ) --$(R,9,E ) x-1.20 (6-1); g g. _
+ ., . v. . where _ $(R',Z,0,E g ). - neutron flux at' point'R,Z,0'within energy group g.
t ', .'$(R,0,E )-' = neutron-flux'at point'R,0 within. energy group.g g obtained from'the R,9' calculation 1.2 - axial peaking' factor for the midplane of..the core
-81488:lb/092084 6-7
6-3. NEUTRON 00SIMETRY The passive neutron flux monitors included in Capsule W-290 of Palisades are listed in lable 6-2. The ffrst five reactions in Table 6-2 are used as fast neutron monitors to relate neutron fluence (E > 1.0 MeV) to measured material property changes. TABLE 6-2 NUCLEAR CONSTANTS FOR NEUTRON FLUX MONITORS CONTAINED IN THE PALISADES SURVEILLANCE CAPSULE Target Fission Weight Product Yield Monitor Material Reaction of Interest Fraction Half-life (%) Copper (a) Cu 63 (n,a) Co 60 0.6917 5.27 years" Iron fe (n.p) Mn 0.0585 314 days Nicke1 I#I NiS8 (n.p) CoS8 0.6777 71.4 days Uranium-238 I#I U238 (n.f) Csl37 1.0 30.2 years 6.3 Titanium T146 (n.p) Sc46 0.0825 83.8 days Uranium U (n.f) Cs 1.0 30.2 years 6.3
- a. Denotes that monitor is cadmium-shielded The relative locations of the various monitors within the surveillance capsule are shown in Figure 6-2.
1 81488:1b/092084 6-8
g The use of passive monitors such as those listed in Table 6-2 does not yield a direct measure of the energy-dependent flux level at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time- and energy-dependent neutron flux has on the tirget material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest, o The operating history of the reactor o The energy response of the monitor o The neutron energy spectrum at the monitor location l ,
- o. The physical characteristics of the monitor The analysis of the passive monitors and subsequent derivation of the average neutron flux requires completion of two operations. First, the disintegration rate of product isotope per unit mass of monitor must be determined. Second, in order to define a suitable spectrum-ave. aged reaction cross section, the neutron energy spectrum at the monitor location must be calculated.
The specific activity of each of the monitors is determined using established ASTM procedures. ,8,9, M , H ) Following sample preparation, the activity of each monitor is determined by means of a lithium-drifted germanium, Ge(Li), gamma spectrometer. The overall standard deviation of the measured data is a l function of the precision of sample weighing, the uncertainty in counting, and the acceptable error in detector calibration. For the samples removed from Palisades, the overall 2a deviation in the measured data is determined to be plus or minus 10 percent. The neutron energy spectra are determined analytically using the method described in paragraph 6-1. Having the measured activity of the monitors and the neutron energy spectra at the locations of interest, the calculation of the neutron flux proceeds as follows. The reaction product activity in the monitor 1:, expressed as N { n P R=[f g Y.JE a(E)+(E)dE I j.1 [ max (1-e-U j) e ~Md (6-2)
. 81488:lb/092084 6-9 . 2- ,. ; ' ;-. _ sg : _ ; .. .4 ': '_'";+' ,e ' *i ' f; I ,,hi ^. e ~ *;* ^
h l.f
h where ' R = induced product activity N = Avogadro's number A = atomic weight of the target isotope fg - weight fraction of the target isotope in the target material Y = number of product atoms produced per reaction a(E) - energy dependent reaction cross section 4(E) - energy dependent neutron flux at the monitor location with the reactor at full power
= average core power level during irradiation period j P)
P = maximum or reference core power level A = decay constant of the product isotope
= length of irradiation period j t) t = decay 'tirr.e following irradiation period j d
Because neutron flux distributions-are calculated using multigroup transport methods and, further, because the prime interest is in the fast neutron flux above 1.0 MeV, spectrum-averaged reaction cross sections are defined such that . the integral term in equation (6-2) is replaced by the following relation. E tr(E)+(E)dE - & 4 (E > 1.0 MeV) where N
" " a(E)+(E)dE I a499 o , a=1 g ,,I " 0(E)dE N
J .0 1 MeV I
- 9"91.g0 MeV Thus, equation (6-2) is rewritten R= f gY a 4 (E > 1.0 MeV) I (1-e-Alj ) e-Ald j1 max or, solving for the neutron flux, 81488:1b/092084 6-10
$(E > 1.0 MeV) N n j (6-3)
[f Yi'I'[Pj-1 3 -(l-e-At max
) e-Atd The total fluence above 1.0 MeV is then given by n P I l j #(E) 1.0 MeV) = $(E> 1.0 MeV) I p p j=1 max where g- b P , , total effective full power seconds of reactor ~j operation up to the time of capsule removal ),j 6-4. TRANSPORT ANALYSIS RESULTS Results of the Sn transport calculations for the Palisades reactor are summarized in Figures 6-3 the ough 6-10 and 1:. Tr <es 6-3 and 6-4. In Figure 6-3, the calculated maximum neutron flux levels at the surveillance capsule centerline, pressure vessel inner radius, 1/4 thickness location, and 3/4 thickness location are presented as a function of azimuthal angle. The influence of the surveillance capsules on the fast neutron flux distribution is clearly evident. In Figure 6-4, the radial distribution of maximum fast neutron flux (E > 1.0 MeV) through the thickness of the reactor pressure vessel is shown.
8148C:lb/092084 6-11
,. :: .. q :.3~ ,q_'.- .;. ..r. ,,,:,.,. . m .... -.~. , ~
- q. :;-'*
e, . c , pg > r .~; .,, , r . :.y . ..
. w . .c .,.y .. , a r ; ; .8. s i . r. cc. ,_...c.
y .-l , , ,,.i.. ],/, A. n.<.>. s.
., . hf .
ya 2 3
. .n %g >y
- a..j y .; 9 L.:;;J. .
.,a- ld >. tl' , i y figure 6-5, presents the radial variations of fast neutron flux within PK'
.d. ; ":a, surveillance capsule W-290. .This data, in conjunction with the maximum vessel k.k.:P ,.E flux, are used to develop a lead factor for capsule W-290. Here the lead .; .T y < . .? - 'qp %@g factor is defined as the ratio of the fast neutron flux (E > 1.0 MeV) at the .e 4 capsule center to the maximum fast. neutron flux at the pressure vessel inner 4. :l;; s Ma h c[a.n radius, lhe lead factor for Capsule W-290 is 1.28. 3%.n. ; =:%s..l ...- -
g:A,j. , si g. Figures 6-6 through 6-10 present the calculated variation of fast neutron flux gj , '.' fl, monitor.sa'urated activity within capsule W-290. Iy(df.
' ;g i .
t . . g,
->y,. } . -y uf.,7 -: ' '/.h/ ' 4.'x{)[.J i.x',
f..jg L-
&{J
'w .[fd. 4 a i t ,a
.yMy,:,
1 ,E . Yr .
,: c . - . .A [ . . , -' .b.1,f. ' ,
- q '
4
'~j.' e ' gylg* -fj.' {Aj. :" ..
e pf' h .n
. y- .: 4.v.'., . .r.": .Au .. : 3: . V. , ,G,y:0~ .y , ._ ,
- Q> .:
.r ,_ ea '..k f , .
i,'f1 g .a. .p.
'p. < : ; e g , ..
+ is q 4 4 ',P! .
;K..ef '- s ,. + .8 af s' ii
- i .i ,
t? , G (,'..p ;_
- W.-
'.D -; .x ' 3, Uw ',,9 ;g}_ >.f
.: . . .h ,.7. - Q ,
.s e 1 f.4 1
- 9a.a. ;. ..,
h$. ,.
- ( ',
1 ~,>? f ' *
- 9 ,.
f, n .;.x I g ,8)l , .'
.s._, d', r ! %.:- .
y e r:. .. .,.
.a .r;. . ?..s,.
I ), s d e .
- W. , . ~,m : r3 8 v e.: ' 'f * '
l$ f .,..& 5 _"
@:; . ~
- c9:
I *.j 1 : 4
,.> u t. ' # 'A
.i (.i,, 5 81488:1b/092684 6-12 .
;y = w -
sq .: . . .: a; \, 4
-9 .
r n.. % .
.Q ' ,,. + t t iA - " M'. . . . c ; :u s ' ;;% ; :( ._- _ a. . ;. p ,p . _ . : .; . -, ff Mf-z- %; f -=n~.F . '~, - f q .i . - : , . - ...._y . . . , . , . [: ;./ yyz yu .; '>yy 3 ~:.c-. -
_.3
. . g.g ; .-e. . . 1 . -( -- ,.:_ _a ; . y,._._n..
g'. _
,, _ , _. Q.,_7 ;. y. . u ~ sy; . _ ,
f_. TABLE 6-3 -h CALCULATED NEUTRON ENERGY SPECTRA AB0VE 0.1 MeV AT.
~'-
[ THE CENTER OF PALISADES CAPSULE p
=.
2 2 Group + (n/cm -sec) GROUP ~ $ (n/cm -sec) No. '- No -- b 9 1 3.71x10 14 3.11x10 [ 8 9 2' 1.35x10 15 7.70x10 ( 3 4.55x10 0
.16 8.24x10 9
h 4 8.26x10 8 17 1.13x10 10 y 9 10 5 1.3ex10 9 18 1.67x10 { 10 {; 6 3.24x10 19 1.04x10 , 9 7 4.47x10 20 5.21x10 1 8 7.83x10 21 1.48x10 10 P 9 5.67x10 9 22 1.04x10 10 C 9 10 10 4.26x10 23 1.31x10 } 9 10 11 4.79x10 24 1.16x10 { 10 =. 12 2.38x10 25 1.45x10 8 10 13 6.40x10 26 1.41x10 2 C 7-E_ 9 Ti
^
E_
.m 5
m 81488:lb/092584 6-13
.=
It 5. i; TABLE 6-4 SPECTRUM-AVERAGED REACTION CROSS SECTIONS AT THE CENTER Of PALISADES SURVEILLANCE CAPSULES a :: o (barns) Reaction fe!(n.p)Mn54 0.12700 Cu63 (n,ca) Co60. 0.00129 NiS8 (n.p) CoS8 0.16130' T140 (n.p) Sc46- 0.02300 U238(n.f) Cs137 0.43700 re a(E)+(E)dE
- a. a='* ,
I 4(E)dE
/1 MeV 8148B:1b/092584 6-14
3 TABLE 6-5 IRRADIATION HISTORY OF PALISADES SURVEILLANCE CAPSULE W-290 P g Irradiation Time Decay lime (a) P) P)/P max Month Year (MW) (MW) (Days) (Days) 12 1971 26 2530 .010 1 4561 1 1972 209 2530 .083 31 4530 2 1972 24 2530 .009 29 4501 - 3 1972 332 2530 .131 31 4470 4 1972 722 2530 .285 30 4440 5 1972 0 2530 .000 31 4409 6 1972 951 2530 .376 30 4379 7 1972 900 2530 .356 31 4348 8 1972 1065 2530 .421 31 43)7 9 1972 681 2530 .269 30 4287 10 1972 983 2530 .388 31 4256 11 1972 767 2530 .303 30 4226 12 1972 1440 2530 .569 31 4195 . 1 1973 897 2530 .355 31 4164 2 1973 0 2530 .000 28 4136 3 1973 1424 2530 .563 31 4105 1973 2152 2530 .851 4 30 4075 5 1973 1321 2530 .522 31 4044 6 1973 2192 2530 .866 30 4014 1973 2530 .815
~
7 2062 31 3983 8 1973 640 2530 .253 31 3952 9 1973 0 2530 .000 30 3922 10 1973 0 2530 .000 31 3891 11 1973 0 2530 .000 30 3861 12 1973 0 2530 .000 31 3830
- a. Decay time is referenced to 6/27/84. ,
81488:1b/092684 6-15 I
i TABLE 6-5 (Cont) IRRADIATION HISTORY OF PALISADES SURVEILLANCE CAPSULE W-290 P Irradiation Time Decay Time (a) P) P)/Pg Month Year (MW) (MW) (Days) (Days) 1 1974 0 2530 .000 31 3799 2 1974 0 2530 .000 28 3771 . 3 1974 0 2530 .000 31 3740 4 1974 0 2530 .000 30 3710 5 1974 0 2530 .000 31 3679 6 1974 0 2530 .000 30 3649 7 1974 0 2530 .000 31 3618 8 1974 0 2530 .000 31 3587 9 1974 0 2530 .000 30 3557 .. 10 1974 384 2530 .152 31 3526 , 11 1974 8 2530 .003 30 3496 .. 12 1974 0 2530 .000 31 3465 1 1975 0 2530 .000 31 3434 2 1975 0 2530 .000 28 3406 3 1975 0 2530 .000 31 3375 4 1975 1263 2530 .499 30 3345 5 1975 1699 2530 .672 31 3314 6 1975 1115 2530 .441 30 3284 7 1975 1338 2530 .529 31 3253 8 1975 874 2530 .346 31 3222 9 1975 1277 2530 .505 30 3132 10 1975 1450 2530 .573 31 3161 . . . 11 1975 1597 2530 .631 30 3131 12 1975 598 2530 .236 31 3100 1 1976 0 2530 .000 31 3069 2 1976 0 2530 .000 29 3040 3 1976 0 2530 .000 31 3009 w.
- a. Decay time is referenced to 6/27/84.
81488:1b/092684 6-16
- 4 4=
3 TABLE 6-5.(Cont) j IRRA0iATION HISTORY OF PALISADES- ( SURVEILLANCE CAPSULE W-290 [ P) P max Irradiation Time Decay. lime (a) P)/Pmax Month Year. (MW) (MW)- (Days) (Days) 4.
==
4- 1976 0 2530 .000. 30 2979 h 5 1976 707- 2530 .279 31 2948 [ 6 1976 2086 2530 .825 30 2918 Y a 7 1976 'll 2530 .005 31 2887 - 8 -1976 1636 2530 .647 31 2856 h 9 1976 1961 2530 .775 30 2826 i 10 1976 1605 2530 .634 31 2795 $ 11 1976 1507 2530 .595 30 2765 h 12 1976 2063 2530 .816 31 2734 3 1 1977 1870 2530 .739 31 2703 [_ 2 1977 2133 2530 .843 28 2675 2 3 1977 1983 2530 .784 31 2644 j 4 1977 2008 1530 .794 30 2614 ( 5 1977 1360 2530 .538 31 2583 [ 6 1977 2173 2530 .859 30 2553 J 7 1977 1975 2530 .780 31 2522 ? 8 1977 1438 2530 .567 31 2491 1 9 1977 1880 2530 .743 30 2461 3 10 1977 2153 2530 .851 31 2430 -) 11 1977 1954 2530 .772 30 2400 h 12 1977 2176 2530 .860 31 2369 1 1978 343 2530 .135 31 2338 2 1978 0 2530 .000 28 2310 I 3 1978 0 2530 .000 31 2279 f 4 1978 482 2530 .191 30 2249 k 5 1978 1206 2530 .477 # 31 2218 - 6 1978 1574 2530 .622 30 2188 [ m
- a. Decay time is referenced to 6/27/84.
?
l 81488:lb/092684 6-17 m
y.s : : g. L. ~ s .1. +7 ' s. . . ; y '.:.= .3
, 7.e ;.. OL .c +-o _a; .. y : ., : i - ..s . .t x ,e ;. ; ; j. . ';l } &. - .?. \ A ?. ,. ?: *l - { f '.' .- ;.' TABLE 6-5 (Cont)
IRRADIATION HISTORY OF PALISADES i 3.
."e t ..:.; /.~
l ' <_.
.3..
- 1. . .
.I SURVEILLANCE CAPSULE W-290 YI $ Y V [hly i' Decay Time (a) U> 1 M P j P max Pj /P max Irradiation Time .i .- - f. Month Year (Days) (Days)
" .((
(MW) (MW) M.~.[.
!: .,.h s.
W <: ' .L -
- d. 7 1978 1603 2530 .633 31 2157 g. p.v. k l.;).g 8 1978 1254 2530 .496 31 2126 %. h
.; 9 1978 680 2530 .269 30 2096 - - - -4r-M gf .[ 10 1978 1454 2530 .575 31 2065 "' . >: 'k m.
O hc b 11 1978 2249 2530 .889 30 2035 $ !..>A..] qeo 12 1978 1092 2530 .432 31 2004 ? p.,y ^ D . n-1 1979 2275 2530 .899 31 1973 M.i . .- 4 2 1979 2229 2530 .881 28 1945 ffA et . j.e 3 1979 2277 2530 .900 31 1914 M 5l ",.# ,-
# 4 1979 1835 2530 .725 30 1884 l' t1 . .[ j -
AF 5 1979 764 2530 .302 31 1853 ~- s.c .:, c 3 8 6 1979 1695 2530 .670 30 1823 ::;cf:3
; . . y-7 1979 2163 2530 .855 31 1792 i., r.--'.. ~1 ;f- ..m ;y 8 1979 1979 2530 .782 31 1761 fp.% r-;
- w-W '-
3.
.gp 9 1979 410 2530 .162 30 1731 - ;Jt 10 1979 0 2530 .000 31 1700 f:<. '2+
v .t .':O. 11 1979 0 2530 .000 30 1670 .. g
-W' , ) 12 1979 0 2530 .000 31 1639 3 fl:
1 1980 0 2530 .000 31 1608 k;l.[. ? . <, 2 1980 0 2530 .000 29 1579 4-1 M" 3 1080 0 2530 .000 31 1548 e MY. . ..( go
$p. 4 1980 0 2530 .084 30 1518 gg.i $ $, 5 1980 213 2530 .084 31 1487 t". . '! ! .Q ' - 6 1980 2164 2530 .855 30 1457 - %Te .- - h- 7 1980 1516 2530 .599 31 1426 .* . N ,. ~ .- s-e .. .
W 8 1980 1706 2530 .674 31 1395 '##@
.o , .f
- n _
)- .^ - ' 9 1980 1763 2530 .697 30 1365 b._ . , ... .
g y __ ".s.,.,. ;-;i . .
.y.1
[.+.,. 5.-
- a. Oecay time is referenced to 6/27/84. ]g p . ;; y Q_
c .
?.;,.* f,5: . "2 3 l ,.' q e WF 81488:1b/092684 6-18 - . - ... ; y u, . ;;~ .,. n r .y... _
- p ' :
p .,_ -l .. a,-l} . _- l .,y, j-y f,f'?,' .[ }' . . [. Q.;. ; i .; *
' _ {i ;}-l' _.g [ .R ' .;f. .4 .. f .%.! *} ~ N ) [*,*. ,V'_~. _ ., ';. .: .l . }_, ,
. . . . . . . . . . . . . . . . . . . _ . . ~ . . .. . . . . . . . . . . . .
3 3 e TABLE 6-5 (Cont) . IRRADIATION HISTORY OF PALISADES - SURVEILLANCE CAPSULE W-290
?
P) P max P)/Pmax Irradiation Time Decay Time (a) Month Year (MW) (MW) (Days) (Days) - 10 1980 -2201 2530 .870 31 1334 = 11 1980 0 2530 .000 30 1304 [ 12 1980 1194 2530 .472 - 31 1273 5 1 1981 2336 2530 .923 31 1242 2 1981 2426 2530 .959 28 1214 i-3 1981 2449 2530 .968 31 1183 1 4 1981 2390 2530 .945 30 1152 - 5 1981 2200 2530 .870 31 1122 6 1981 2089 2530 .826 30 1092 7 1981 799 2539 .316 31 1061 8 1981 1084 2530 .4?8 31 1030 9 1981 0 2530 .000 30 1000 10 1981 0 2530 .000 31 969 E 11 1981 0 2530 .000 30 939 12 1981 0 2530 .000 31 908 1 1982 1217 2530 .481 31 877 2 1982 246 2530 .097 28 849 3 1982 907 2530 .359 31 818 4 1982 0 2530. .000 30 788 5 1982 481 2530 .190 31 757 , 6 1982 2203 2530 .871 30 727 $ 7 1982 753 2530 .298 31 696 5 8 1982 0 2530 .000 31 665 I 9 1982 2129 2530 .841 30 635 h 10 1982 2222 2530 .878 31 604 h 11 1982 2484 2530 .982 30 574 7 12 1982 2471 2530 .977 31 543
- a. Decay time is referenced to 6/27/84. -
81488:lb/092684 6-19 -
TABLE 6-5'(Cont) IRRADIATION HISTORY OF PALISADES SURVEILLANCE CAPSULE W-290 - Decay Time (a) p p, p /p max Irradiation Time Month Year (MW) (MW) (Days) (Days) 1 1983 2324 2530 .918 31 512 2 1983 2468 2530 .975 28 484 3 1983 2470 2530 .976 31 453 4 1983 2345 2530 .927 30 423 5 1983 2222 2530 .878 31 392 6 1983 2367 2530 .936 30 362 7 1983 2222 2530 .878 31 331 8 1983 684 2530 .270 31 300 9 1983 0 2530 .000 16 284 8 EFPS = 1.57 x 10 sec , EFPY = 4.975
- a. Decay time is referenced to 6/27/84.
'6 81488:1b/092684 6-20
in order to_ derive neutron flux and fluence levels from the measured disintegration rates, suitable spectum-averaged reaction cross sections are required. The neutron energy spectrum calculated to exist at the center of Palisades capsule is listed in Table 6-3. The associated spectrum-averaged cross sections for each of the fast neutron reactions are given in Table 6-4, 6-5. 00SIMETRY RESULTS lhe irradiation history of the Palisades reactor up to the time of removal of Capsule W-290 is listed in lable 6-5. Comparisons of measured and calculated . saturated activity of the flux monitors contained in Capsule W-290 based on the irradiation history shown in Table 6-5 are given in Table 6-6. The fast neutron (E > 1.0 MeV) flux and fluence levels derived for-Capsule W-290 are presented in Table 6-7. - An examination of Table 6-7 shows that the fast neutron flux (E > 1.0 MeV) derived from the five threshold reactions ranges from 6.48 x 10 10 to 7.84 x 10 10 n/cm2 -sec, a total span of 30 percent. It may also be noted that the calculated flux value of 8.32 x 10 10 n/cm2 -sec exceeds all of the - measured values, with calculation to experimental ratios ranging from 1.06 to 1.28. Comparisons of measured and calculated current fast neutron exposures for Capsule W-290 as well as for the inner radius of the pressure vessel are presented in Table 6-8. Measured values are given based on the Fe (n,p) Mn reaction alone as well as for the average of all five threshold reactions. Based on the average data given in Table 6-8, the best estimate exposure of Capsule W-290 is I9 4T = 1.09 x 10 n/cm2 (E > 1 MeV) In addition, a fast neutron flux check was made of a fractured Charpy V-notch specimen from the thermal capsule, Capsule T-330. This analysis showed that Capsule T-330 was exposed to only a very minimal level of fast neutron flux, six orders of magnitude less than the exposure of Capsule W-290. 81488:lb/092584 6-21
= TABLE 6-6 COMPARISON OF MEASURED AND CALCULATD FAST NEUTRON FLUX
- MONITOR SATURATED ACTIVITIES FOR CAPSULE W-290
[ Reaction and Z R Location Activity Saturated Activity Location Cu63(n.d)Co60 (CM) I I q I ( I t Capsule W-290 Calculated r c Top 84-1751 215.42 2.32E+05 6.87E+05 Middle 84-1762 215.42 2.39E+05 7.08E+05 [ I Bot'.om 84-1773 215.42 2.07E+05 6.13E+05 Average 6.69E+05 7.11E+05 Fe (n,p)Mn tv - 84-1748 215.42 1.88E+06 5.76E+06 g 84-1754 215.42 1.77E+06 5.43E+06 C,-1753 215.42 1.85E+06 5.67E+06 - Top 84 17.4 215.42 1.89E+06 5.80E+06 84-1755 215.42 1.75E+06 5.37E+06 84-1756 215.42 1.95E+06 5.98E+06 E l 84-1759 215.42 1.88E+06 5.76E+06
- v. n s p 84-1763 215.42 1.86E+06 5.70E+06 g )-
84-1764A 215.42 1.86E+96 5.70E+06 k [ Middle 84-1765 215.42 1.75E+06 5.37E+06 .S$[( E 84-1766 215.42 1.31E+06 5.86E+06 h.)$% E 84-1767 215.42 1.66E+06 5.09E+06 i((.M
- yf'6
' p; 4 84-1770 215.42 1.39E*06 4.26E+06 'TN' 84-1774 215.42 1.67E+(? 5.12E+06 84-17648 215.42 1.66E+06 5.09E+06 D i Bottom 84-1776 215.42 1.57E+06 4.81E+06 @^
i 84-1777 215.42 1.74E+06 5 34E+06 84-1778 215.42 1.47E+06 4.51E+06 Average 5.37E+06 6.89E+06 ^ 8148B:1b/092684 6-22 I .
TA8LE 6-6 (Cont) COMPARISON OF MEASURED AND CALCULATD FAST NEUTRON FLUX MONITOR SATURATED ACTIVITIES FOR CAPSULE W-290 4 . .,
?s ;, .
hk ). Y '- Reaction and Z R Location Artivity Saturated Activity C '*!.T" Location ,' : - ..
~
Ni 58(n,p)Co58 (CM) (disa /s) (disa /s) (diso /s) ki"'
,-s. _-- -
Capsule W-290 Calculated h . ;gh Q' . 'f Top 84-1750 215.42 3.06E+06 7.72E+07 *O.B Middle 84-1761 215.42 3.05E+06 7.70E+07 6U.II'h,.l
-. 5;- ..
Bottom 84-1772 215.42 2.90E+06 7.32E+07 ;, : Average 7.58E+07 9.43E+07 :/
.;; x '. h 7
U 238(n,f)Cs137 -ce: /),
- f?j~. '
. y, Top 84-1749 215.42 5.56E+05 5.52E+06 h3; ;
80ttom 84-1771 215.42 5.36E+05 5.32E+06 If..' ',. Average 5.42E+06 5.79E+06 F) IG .' Ti 46 In,p)Sn 46 y'? '$,p
.? - *, f" ] : .,
Top 84-1747 215.42 1.10E+05 1.78E+06 .-:.w .t &? :,-~ Middle 84-1758 215.42 1.06E+05 1.71E+06 .f.. l 80ttom 84-1769 215.42 1.01E+05 1.63E+06 :i:3.y: J- .d
- Average 1.71E+06 2.07E+06 Y;.I ~,
; . ~..n
- ?., gt . -
Jj .f. -
~,5 .- ;;p,y i' e._ Lg g ; ,,
81488:1b/092684 6-23
~
~
TABLE 6-7 ~ RESULTS OF FAST NEUTRON 00SIMETRY FOR CAPSULE W-29Q gdis/s) + (E > 1.0 Mev) 4 (E > 1.0 Mev) o (n/cm2 -sec) '(n/cm2 ) Reaction Measured Calculated Measured Calculated Measured- Calculated 6 6 10 10 fe54(n.p)Mn 5.37x10 6.89x10 6.48x10 8.32x10 1.02x10 1.31x10 60 b 10 10 I9 1.31x10 6.69x10 7.11x10 7.84x10 8.32x10 1.23x10 Cu63(n.a)Co I 10 N) (n.p)Co 7.58x10 9.43x10 6.68x10 8.32x10 1.05x10 l'.31x10 4 6 6 10 10 11 6(n.p)Sc 6 1.71x10 2.07x10 6.68x10 8.32x10 1.08x10!9' 1.31x10 (a) 6 6 .l.0lx10 1.31x10 U2 1 4.77x10 5.79x10 6.85x10 8.32x10 0(n.f)Cs Average 1.09x10 0 235
- a. U adjusted saturated activity has been multiplied by 0.18 to correct for 350 ppm U impurity.
81488:Ib/092684
r P TABLt 6-8
SUMMARY
OF NEUTRON 00SIMETRY RESULTS FOR-CAPSULE W-290 Current 4 (E > 1.0 mev) E0L 4 (E > 1.0 mev) (n/cm ) (n/cm ) Location Measured Calculated Measured Calculated Capsule'W-290 I9 I 1.09x10 1.31x10 8 I I 9 Vessel IR 8.52x10 1.02x10 5.48x10 6.56x10 18 18 I9 l9 Vessel 1/4T 5.37x10 6.45x10 3.45x10 4.15x10 I 18 8 18 Vessel 3/4T 9.93x10 1.19x10 6.39x10 7.65x10 Note: E0L fluences are based on operation at 2530 MWt for 32 effective 1 full-power years. 81488:lb/092684 6-25
i g
. E 5 5" R ,
a t g-8R "
.j..: .
oco gg u If a nwz - i5$ , y_y
=
a 000'04 __ j S$<" l _ =xw {
=
ho$i! d 000*GE o g AJ _
<WC z -
gx$ 4 000*06 8 o L
~
z. N 33 m= - y ...
<z a " d 000*S2 E o
ggE d. < ~
<w a $ " w> , "SMw<<=
d 000*02 =E - uw= 3 - N msw ze < e_
~a xg , < 000 si wqw -
Ez@
"$ 4 000'01 . < ocoo g :-
m
^ ^ ^ ^ ^ ^ ^
0*0
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ '
WOO OO OSS SS S** ** * - s aa a a saa a a c as a a = (33S tH3/N) X0li N0E03N _ 6-26 r E"
s 00=192 ; 00 lassaA > d 00*042 zy , S ! OS'lE2 Ho a :.
=
o .w mm
-Am .gaw w 00*SE2 Esw m a aw=> < m ~
gg= < oS 2E2
<m=
m 3s n. oww w=z
's<Mz >H d
00*0E2 x^ -
.J u o<E S' e jE5 <
OS*l22 " 5 <
= -
7x _ e<
< Z 4 00 S22 w .
E o 2
< OS*222 .
00*022
. . . .t . . GI lassaA . . . . . . ^ ^
00*812
= o o o o o e e m e m -
T V ,Y T W+ W+ W+ o W W o o w s n m m w s n m m w (33S y N3/N) XAl.1 N0H103N 6-27 -
.. . .._-. t GE i
E 4 - m
=_-
q m w w w w y w w w w = w - y w
=
f g d 00*812 xZm a o o e : H . a. 2 j > m< a u r-
- m. w v
.$ ~U = < 00*912 mx= -
osw3 m <a '--
=-
s
<=w> .
a = a: :,
<r= . a: m m <
00*ti2 - w .. a=w = r w sss
<m I
o a<= - o o w z-. e ~' a g 6- D
~<=5 uI 4
00*212 e A
- Y w<
D g a-w -
. . =o 4 00 012 ;
o e=e . _A _ MI
< 00*802 .. ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
00*202 I
- a. - - -
o o o o o
& + 6 & ~
8 $+ . $. 88 8 8 . i = w s n m as -s n m as w - (33S yM3/N) XnB NOU103N - 6-28 x
e T
' ~ )8 Y
- < - < - < - <,4 - < - -
oo.e.N '? .[".?:
~*:
j+L' . - oo.e.N - .
,y. ]Gy:m N
e a
=
s .p. I H a' ."p;.Q T I
*,c af -
W .:; . (
- oo.m.N *,
Y . - T I V }.m e r. < D I -
.) -
ET TC j:' . ;e. p
)
AA R ,F L 0 - U D9 y : p-C E2 L A C R T - AW UE N
- oo.*.N
)
M C
'I '%:c. -R.
TL ( '1:" Y.. ,L ., AU S SS P U ' fn'-
?S y
I 4. n-MA
- oo.~.N D I".
UC A :. I N R '- - :u :.- 6 A l R 9 6 U * :' , , E
~ * %n. ,
R 'e p. a U oo.o N G I "hm. 2 . F xi '.
*y a .n u ' ,);sA ').Xp I *.?a '-
i ~;9
^
- 8. won -
k v 1%v
);
I' _- . r oo.noN 'Q;;;,.q
<ys,k 8 7 7 7 7 7 6 6 6 6 6 s 0 0 0 0 0 0 0 0 li:
40 E+ 0 .
+ 4 4 + + ', #
E 0 0 E 0 0 E+ 0 0 E 0 0 E+ 0 0 E+ 0 0 E 0 0 0 0 E 0 0 E 0 0 E+ 0 0 k'%w
*h1 ,>l %1 1 7 5 3 2 1 7 5 3 2 1 ~osoao >sm>ws$ y<xmH<* -
Pv.*
#-g41 mLe "\; .
j g,
\l $m-=
e E m6 E It- - = i ;; t:= .
; :.F* . ,L E ' g: t:F- r 1; ae N'r E r E e u-k
{rw_ --:
& ,=
i E = . ' ' " ' y7 4 . y k+ m, ' s
- w. s.:
, c. % . z ::
a. y ny.' ; , c
.*. ' Y*i ,
5.' 'l 00*612 C P /.. ;_.
= = ,w *
= ...:,.
- 4 00*812 - . . J:: :..;
- :.v
, : c.
a a .
.ze 3 c&. c.
_i 3 z ,c,
.s ,<
_ y m m ; . .* , 00*ST2 - ~ .6. .,. r y : .g b Q s M <j .'.; : g > :.,.',....
.y.
7* aeI . . . . . w -- 5--
' i. .f f,"J #
h<o r- %-
< t r .: 00*%I2 oa. 4 il *..2'*
g uWI J& m
'7'." kL ., , ' '. f ' l~ .
r <I I ' [r c$-; p- OM u w;- ** + p p3 F
+. ^. . '_ h *..
w m
- a. o _'v',; .
- .17 7< <
00 212 o & #,i mu < - p s= k-e<r i wH
= <
00'012 o r- 6-4 = SA. b N b r D = ,- 4 00 802 5W F 00*l02 7
. . . . ^ ^
= 7 N (A (O (A (D (O I k- @ T wT $ w w T a C O O h C C O e e e e e e b ~ F (S/SdO) A11 AI13Y 031YH01YS F 6-30 E
oo.
~
- oo . W ~
N I H T I
= =
W
- oo . M ~
Y
- T I
V
- D IT E - T C - A A 0 L -
- U E2 D9 oo . w ~ C
- L T - - A AW )
H C UE R C
- TL ( - A U S S PS U . I ,. N A OC ^
eQ. ~D
~ A R R I
8 6 E R
- U G ^
oO. ~ I F
- ^
8 ~
- l r * - , - - ;. - - -
8 ~
- 8 0
7 0 7 0 7 0
+
7 0
+
7 0 6 0 6 0
+
6 0 6 0 6 0 4
- E+
0 E+ 0 E+ 0 E 0 E 0 E+ 0 E+ 0 E 0 E+ 0 E+ 0 E 0 0 0 0 0 0 0 0 0 0 0 0 - 1 7 5 3 2 1 7 5 3 2 L _ asea.Ow >Fw> H$ 8s<:aos<" Tw~
4
-1.00E+09 : - . J FIGURE 6-9 . C ALCULATE0 7.00E+08 -
NICKEL SATURATED ACTIVITY WITHIN l, C APSULE W-290 < 5.00E+08 , t.S '" , N e a: Q 3.00E+08 - , w
>- 2.00E+08 - , .s s
[
~ $ 1.00E+08 -:
S 7.00E+07 % s . ' ae 5.00E+07
- s s - ,
" 3.00E+07 - ,
2.00E+07 - , ,
* * . . .,=,=
1.00E+07 - . . . 8 8 8 8 g g g g a a a _a a a a . s - N N N N N N RADIUS (CM) h":.
, ! . kkh ! '- .. 4 ..
f> j k:{ - l 2l 4.,$'. '! '
8&m
- 8iu N
I T H
=
_ I W 8d~ m Y T I _ D I V E T T C A L A 0
- U C D9 - 8im L T- E2 A A W- )
C _ R UE H C ( TL AU S SS U P I RA
- 8imD EC P A 0 P R 1
- O 6 C E
R
- U G
I
^
8d= F 8 i= 8 d= 7 6 6 6 6 6 5 5 5 5 0 0 0 0 0 5 4 4 4 0 0 0 0 0 0 4 4 E 0 E 0 E 0 E 0 E 4 E E+ E+ E+ 4 E 4 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 5 3 2 1 7 5
. 4 3 2 1
_oNea9 >!';> 5M 0+< a:mI< T0 illl1l
's, .SECTION 7 REFERENCES
- 1. Groeschel, R. C., Summary Report on Manufacture of Test Specimens and Assembly of Capsules for Irradiation Surveillance of Palisades Reactor Vessel Materials, CE Report No. P-NLM-019, April 1, 1971.
- 2. Perrin, J. S., Farmelo, D. R. Jung, R. G., and Fromm, E. 0. , " Palisades -
Pressure Vessel Irradiation Capsule Program: Unirradiated Mechanical Properties", August 25, 1977.
- 3. Regulatory Guide 1.99, Revision 1, " Effects of Residual Elements on Predic.ted Radiation Damage to Reactor Vessel Materials," U.S. Nuclear Regulatory Commission, April 1977.
- 4. Soltesz, R. G., Disney, R. K., Jedruch, J., and Zeigler, S. L., " Nuclear Recket Shielding Methods, Modification,-Updating and Input Data Preparation. Vol. 5 - Vol. 5, August 1970. '
- 5. SAILOR RSIC Data Library Collection "DLC-76," Coupled, Self-shielded, 47 Neutron, 20 Gamma-ray, P3, Cross Section Library for Light Water Reactors."
- 6. Benchmark Testing of Westinghouse Neutron Transport Analysis Methodology -
to be published.
- 7. ASTM Designation E261-77, Standard Practice for Measuring Neutron Flux, Fluence, and Spectra by Radioactivation Techniques," in ASTM Standards (1981), Part 45, Nuclear Standards, pp. 915-926, American Society for testing and Materials, Philadelphia, Pa., 1981.
- 8. ASTM Designation E262-77, " Standard Method for Measuring Thermal Neutron Flux by Radioactivation Techniques," in ASTM Standards (1981), Part 45, Nuclear Standards, pp. 927-935, American Society for Testing and Materials, Philadelphia,'Pa., 1981.
80928:1b-092084 7-1
=
m
- 9. ASTM Designation E263-77, " Standard Method for Measur~ag . Fast-Neutron -
Flux by Radioactivation of Iron," in ASTM Standards (1981), Part 45, Nuclear Standards, pp. 936-941, American Society for testing and - - Materials, Philadelphia, PA., 1981. , l 10. ASTM Designation E481-78, " Standard Method of Measuring Neutron-Flux , Density by Radioactivation of Cobalt and Silver," in ASTM Standards (1981), Part 45, Nuclear Standards, pp. 1063-1070, American Society for Testing and Materials, Philadelphia, Pa.,1981.
- 11. ASTM Designation E264-77, " Standard Method for Measuring Fast-Neutron Flux by Radioactivation of Nickel," in ASTM Standards (1981), Part 45, Nuclear Standards, pp. 942-945, American Society for Testing and :
Materials, Philadephia, Pa., 1981. ,
?
5 80928:1b-092084 7-2
-- - - n- ,. .
1-P , i l ATTACidENT II PALISADES REACTOR PRESSURE VESSEL WELDS 1 PAGES IC1084-00235-NLD1 h_ _ _
T~ g 3 3r e ' Y Palisades RPV Welds
- l l
WELD SEAM LOCATION _W ELD DEPOSIT l-112 A/C Upper Shell Long. Seams RACO 3 fW5214 Linde 1092 #3617 Ni-200 #N-7753A E8018 Electrodes CBBF,- JBFG
. (repair) 2-112 A/C Intemediate Shell RACO 3 fW5214 Linde 1092 #3617 -
Long. Seams Ni-200 #N-7753A
, E8018 Electrodes (none) 3-112 A/C Intermediate Shell RACO 3 fW5214 Linde 1092 #3692 -
Long. Seams . RACO 3 #34B009 Linde 1092 #3692 N1-200 #N-7753A
- E8018 Electrode CBBF (repair) 7-112 Upper Shell to Flange RACO 3 #W5214 Linde 1092 f3692 98#'
Girth Seam RACO 3 J340004-Linde 1092 #3692 # 310009 Ni-200 #N-7753A and #N-98674
' E8018 Electrode COGG (backweld)
E8018 Electrode DAGG (weld grindout) 8-112 Upper to Intermediate RACO 3 #34B009 Linde 1092 #3692 Shell Girth Seam Ni-200 #N-98674
- E8018 Electrode 78-478, C0FC (backweld)
' 9-112 Intermediate to Lower MIL-84 Mod. #27204 Linde 1092 - Shell Girth Seam f3714 E8018 Electrode JBFG (back weld) MIL-84 Mod. #27204 Linde 124 #3687 (weldrepair)' E8018 Electrode LODG (first layer l and back weld) (weld repair) , 10-112 Lower Shell to Bottom MIL-84 Mod. #27204 Linde 1092 Head Girth Seam f3714 E8018 Electrode HAEG (first layer and back weld) 1 ! 12-112 Seal Ledge to Flange RACO 3 fh5214 Linde 1092 #3617 Seam E7018 Electrode H0HF (back weld ' andfillet) E7018 Electrode ABCG (ledge ring repair) t ; i D
~
j;% ..; , 3 Palisades RPV Wel'ds
.w ,
WELD. SEAM ' LOCATION : . WELD DEPOSIT-- .. 1-113'. A/F - . Bottom: Head Torus Long. - E8018 Electrode 6M108 . . , Seams E8018 Electrode 7048 (weld repair) i 4-113 Sottom Head Dome to- MIL-B4 Mod. #12420 Linde 1092: . Torus Girth Seam . ~#370S'- . . E8018 Electrode C884 (back weld) 1-118 A/F Closure Head Torus Long.-- - RACO. 3 fW5214 Linde 1092 ' #3617: Seams Ni-200 #N-7753A~ .
~
6-118 A/B Closu're Head Girth Seams MIL-84 Mod. #12420 Linde 1092 f3708
, E8018 Electrode CSBF.(back-weld) ' Surveillance Program Weld RACO 3 #3277 Linde 1092 #3833-N1-200 #N-0591A (face weld only).
E8018 Electrode HADH (back weldi l base metal repair) i I i
~
e f 41
-}}