ML17326B288

From kanterella
Jump to navigation Jump to search
Crane Seismic Rept,Cask Handling Crane,150 Ton Capacity, Existing Bridge,New Trolley,Preliminary
ML17326B288
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 03/09/1987
From: Mcmahon M
WHITING CORP.
To:
Shared Package
ML17326B289 List:
References
NUDOCS 8704160154
Download: ML17326B288 (60)


Text

EPOhM Ne2493 WHITING CORPORATION PROOUCTIQN ENGINEERING OEPT.

HARVEY. ILLjNOIS BO42B U.S.A.

AREA COOE 312 331&000 CUSTOMER AMERXCAN ELECTRIC POWER R EON 79 183 DATE By MJM PAGE i

OF CRANE SEISMIC REPORT CASK HANDLING CRAVE 150 TON CAPACITY EXISTIVG BRIDGE, NEW TROLLEY PRELIMINARY CUSTOMER:

AMERICAV ELECTRIC POWER CORP.

COLUMBUS, OHIO FOR:

DONALD C COOK FACILITY BRIDGMAN, MICHIGAN M. McMahon Staff Engineer 8704160154 870410 PDR PDR ADDCK 05000315

WHITING RE 79183 'ATE 3-9-'87 BY iRJiaf PAGE 2

OF ABSTRACT The equipment reviewed in this report is an 'Electric Overhead Crane.'he crane is designed and rated for a capacity load of 150 tons on the main hook.

The crane was analyzed for the resistance to the specified Operational Base Earthquake (OBE) and the specified Safe Shutdown Eqrthquake(SSE).

This was done with loads of 50 and 55 tons on the main hook and the trol1ey at mid-span.

The crane was mathematically modeled as a multi-degree of freedom system of node points, interconnected by various finite elements.

"ANSYS",

a large scale general purpose computer program was used to perform a static and a reduced modal analysis.

It was found that excitations parallel the runway (Y direction) would produce slip.

This excitation was then proportioned to produce a maximum Y reaction that would not produce slip.

It was found that the stresses in the principal. structural components did not exceed the allowable stresses with a 50 ton load on the main hook.

f t

g

'4

~W l

~

8 ~

WHITING REQ 77~B DATE BY M~

PAGE 3

OF ANALYSIS DESCRIPTION The crane was analyzed to determine the effect of seismic excitations.

For this analysis, the matrix displacement method was used based upon finite element techniques.

The crane was mathematically modeled as a system of node points interconnected by various finite elements representing straight beams.

All masses and inertias were distributed among the nodes whose degrees of freedom characterize the response of the structure.

The interconnecting finite 'elements were assigned stiffnesses equivalent to that of the actual structure.

The mathematical model represents as accurately as possible the flexibilityof the bridge girders, hoist rope, and girder end connection.

The trolley, the drive units and the bridge trucks were represented as rigid bodies.

The crane was analyzed with the trolley positioned at mid-span.

This was done with loads of 50 and >5 tons in the down position.

Preliminary calculations showed that this condition would produce the maximum girder stress for a given load.

The dynamic analysis was of the mode frequency (MODAL) type, solving for the resonant frequencies and the mode shapes that characterize the crane.

The modes with meaningful participation in a given direction are directly expanded by the computer program to yield the expanded mode shapes, the element stresses and the reaction values.

This type of analysis-is linear and plastic deformation, sliding, friction, and slack rope are not taken into account.

The amplified response spectra used in the analysis are shown in Appendix 'A'.

These include the three orthogonal excitations for the specified earthquakes.

Also included in this Appendix are the mode coefficients and natural frequencies for mode shapes considered.

g

+I

~ S

%c kq r-e tp, U

I

WHJT[NQ RPQ 79 183 PgTE 3-9-87 BY PAGE OF The normal mode approach was employed for the analysis of the components.

All significant eigen-values and eigen-vectors were extracted, and these modes were combined by the method specified by the U. S. Nuclear Regulatory Commission, Regulatory Guide 1.92, Rev.

1, Section 1.2.2 (Combination of Modal Responses with Closely Spaced Modes by the 10% Method).

Those modes with mode coefficient ratios less than 1% in the x direct'on or 0.5% in the y and z

directions weie dropped because their contribution is proportionally small when compared to the largest mode coefficient of the related directional excitation.

The results of the three orthogonal dynamic

.excitations were combined by the square root of the sum of the squares method '(SRSS) and then absolutely added to the results of the static condition.

Because the y reaction exceeds the frictional resistance of. those bridge wheels that are braked, slip will occur.

The maximum acceleration in the y direction will be reduced from that predicted by th'e modal analysis.

The primary y mode was therefore reduced by a scale factor such that the resulting y reaction approaches the maximum that could be sustained before slip.

The results were then resummed as previously described.

In order to assure structural integri'ty, the job specification requires that the maximum stresses not exceed the minimum yield strength of the material divided by 1.5 for the OBE and 1.1 for the SSE.

The crane is constructed of ASTM A36 structural steel except for components which are specifically noted in the report.

A36 material has a specified mini~urn yield strength of 36 ksi.

The combined bending and axial stresses are limited to 24 ksi for the OBE and 32.7 kis for the SSE.

The actual properties of the specified materials show a great deal of variation and are generally considerably higher than the minimum required by the material specification.

Also the maximum stresses occur only at.a point on a section and cannot of themselves be indicative of the tendency of the section to permanently

deform, especial'ly when the nominal stresses on the extreme fibers of the adjoining faces are significantly lower. It is therefore conservative to compare the combined bending and axial stresses at the corners with the specified allowables to assure structural integrity.

t

~Jf I*

0 WHITINGREQ>> '83 DATE 3-9-87 BY Nj..

pAGE OF Impact factors for wheel flange to rail contact, etc.,

have been considered negligible.

The state of the art today is such that these impacts cannot rigorously be studied; however, 'independent time history analyses have been run in many cases, all indicating slow relative motion between the rail and the wheel.

This is because of the time dependency of the forcing function comming from the building into the crane.

Note that the only coupling through which these forces can be transmitted is dynamic friction.

Upon reaching the rail the wheel will first rise through the corner radius and then contact the rail.

During this period, the structure is starting to deflect as the end of the crane in this direction is flexible.

The computer analysis was performed using ANSYS, a large scale finite element program.

WHITING RE BY MJH 79183 PATE 3-9-R7 PAGE PF SUGARY OF RESULTS The crane was mathematically modeled using finite elements.

On the basis of preliminary runs, the number of degrees of freedom and the significance criteria for modal expansion were adjusted.

Static and three load step reduced modal runs were made and the results summed.

Because slip occurs, the y excitation was proportioned and these results resummed.

The crane was analyzed with the new trolley at mid-span.

For this position the analysis was done with 50 and 55 ton loads on the main hook in the low position.

From preliminary studies, the load case considered should yield the maximum stresses in the girders.

Tables 1 through 4 summarize the maximum stresses in the members from the finite element model.

All stres'ses are within the allowables required by the job specification with a 50 ton load.

Table 5 summarizes the rope load from the finite element model.

Because of the seismic acceleration a slack rope condition was found to exist under certain conditions.

This cannot be truly simulated with a linear modal analysis.

However our experience with time history analyses shows that a modal analysis tends to produce conservative results.

The rope load predicated by the modal analysis is well below the allo~able rope load.

Table 15 summarizes the maximum crane bridge wheel loads.

When the excess dynamic rope load (that'which produces a slack rope) is

deducted, a small upkick is produced by the loading conditions examined.

When the wheel loads parallel to the runway are compared with the vertical wheel load times the coefficient of friction, it is found that the crane bridge will tend to slide under certain loading conditions examined.

This sliding is oscillatory in nature and the loadings predicted by a modal analysis are conservative.

The reported wheel loads have been adjusted to account for frictional effects.

Although some non-linearities are produced by the specified excitations the specified linear analysis will conservatively predict the behavior of the crane during a seismic excitation.

I f

WHITING RE BY HJiaf 79183 DgTE 'I-9-87 PAGE QF Additional information on the response af the crane may be found in Appendix 'A'.

The crane was found to meet the job specification requirements for a seismic excitation with a 50 ton load on the main hook arith a 55 ton

load, the stress on girder A exceeds the allowable by less than 1X for the SSE.

~ *~

1 ~

wr

ZO To~

WHlTlvr.."<SGP >>l>3 OATa Gy M J M PAGE 8

OF

~2.

TAO'

~AXIMUM csTHESSES.

FROM.XFDAMDQ.

ODE MID 50 D

s ll-.!!T~!lJN 1

l;IRDER A

30 311 712.

6137.

10502.

12184.

10191.

223 GIRD -R 8

47 359 686.

6239.

10255, 120c.3.

9681.

21704.

ONE coNNOGT-aH = ~~i..~ss Geo wowie ~oo..w iiso woe...i xese..

END COtWECT-LHE 67 2"3 831.

1 1805.

147.

1 1835.

390.

12225.

Q ap AcLt O~AQl E 81'Rgg 2,'t Hhl 2.2.3 7 'g L X.900 P TAOLE 7

XIMUNMTRESSES +ROM.PFiANDS SSE HID 50 D

.~O""?O;<I:lST S~H&los:.

C~IRD R

A 30 31 1 '382.

8699.

1971 6.

21 594.

10191.

31785 GIRDER B

47 359 13 3.

8844.

19 45.

212 l.

9681.

30902.

1 l"'71 l.57.,9 194,~5S38

~04 l6342 -.

EblD CCiVNE "T-LHE 67 253 1523.

16736.

277.

16807.

390.

17197.

~S EA'ctowAB.LESTR'KS5 32.7 <>i 8 l785 g 2.700 972

)

'I VF*

I C

s'4

'll '

4

t ~

L ='i-1 6.. QR JAa.-a~1-4 3

)

~S Toe 0

TABLE I!HI TING REGN ~V'PI8 DATE BY IvlJM PAGE~

OF ~Z

~XIMUMMTRESSES.&310M.WF~MDQ.

QBE HID 55 D

COVPgiVENT ~EIIiIODE'~

RSS ~ATIC~UPt GIRDER A

30 31 1 687.

6302.

1 0859.

1 2575.

1 04'97.

2307 i.

GIRDER 8

47

359, 663. '407.

1 0627.

1 2427.

9987.

224 1 4.

'ND CONNECT.-EH~~5 B6~1416..

BG-~144'I~D4 ~1753 FIQD CQl'lN=CT-LldE 67 253.

831.

12124.

138.

121 53.

390.

12543.

0 g E +l mW+0t-a~E~

Z.'t V~l 2807 I 94 I I

I

~

~

TABLE 5

~X IMU-MBTJIEBBESBROMMFIBMDB SSE HID 55 D

.....COMFIT!ENT ELK'1 JIOD.

G INDE'! 4 'O 511 GIRDER 0

47 359 EiVD CONNECT=.RHE~..155 Et'D CQl'lNECT-LHE 67 253 SS ~TALC

~UM 1339.

8940.

20387.

22301.

10497.

32798.

1282.

9089.

19944.

21954.

9987.

31942.

i57~ 61G 5-175~ 627~04 1 6776.

1524.

17199.

260.

1 7268.

390.

17657.

+~WAOl.E STRESS 32 '7 IJ I '

FORM N 210 WHITING RE 7 ~ Ia~

OATE BY

+ ~ +

PAGE

~~

OF TAeI E R owe L<a 0~

lt lPS Pos SmTIe sv +Ops SSE S~-DyN Sr-&1 gy~DyN Mia OM M)g Om l 2.8.

I2.7 57 7t

)32. ~

Co I 6o

-Jg li

-3(AC@

Z,- t'AqT SIZE Wg R~<<G C~meInf~ SVSa~C TH l2.5 T

~ ~AMATI<

L I&IT

~ C X'PIK~fl4C S mzrlgyy D8F At mw~LE

=CO

=

i~so r

I<

~

~

ScA.LE'RgT'Q Q WH TING REQN

~

DATE BY

+ J PAGE OF 6K'c+vsE Sue wJ J a oncoct.

ar rHE RAIL.

WHE'Z'l ZNT'K'gF~G IP=

THE'RATION THK Y

0 JP~PIQN PxQf Q ~

~I=

lv1PPJHlt!Q QHEhl LQAQ I H

~ H E 2.

O'JRE~7ICig TIM2 4 T%L Co8F'F'IC(KN T' F

WIC 7'>a N V HE Acc 8'LJ= Q PejtdH, I N TH' Y 0 J Q +Q, P(Q h/

Be LJ=M THATS F'RzoJ<TE'0 OY A Ko OA.L-J YSIS

~

eZ ee ~~~y Y m<QI=

MhY Q E PRg F'5 pjtd N E'Q Q 'y A 4cAL,EArid/

w HAT'CQdU~YS Fog 5J I OINK-4 < G 7++7 OZRIVVCJ

+S FO~J YAWS:

W JJERK Rz RyR~i~v&

A~TlotV FpoM PJ e>TE K~~ T' Ao~ <N4<<Ya ~5 AH&

F~ ~a,x JS

~Ax z.

R~T'JdM Pl oz<ve wHFE t P'~ Q'Vf+X

> ~>c,TJod 6Y pR t<77d hl Sc,F

]g $cAt e I=m7dR R2 Nx'

+

2 CO Pz ~

gy ggZEVV IN&

T'H~T K X Ig O uZ

~o Y

Fx<J~A Tlo Ng

(~)

CO

FORM N 2404 TAQl g SCAPI I~

8 2

)c>o Xin w Icw SCP 2c K4 fg,Q 3 M7.9 AZ Rip Ry K(<

IR If>P SCF ter.,9 3'f.7 M88 2.

2.8'2. 7 377.O

&735i

~ l804

~IL g ~=\\

I-

7918 )

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 07/03/06.

TABLE ¹ 7

~

BY ~J~

PAGE~I OF 2,7

<lE6756/MJM/AEP>

DCCp EXISTED TPOLLEY MID'0T LD DN /

OBE '

REACTION

SUMMARY

LOAD STEP I

NODE LABEL 3

SRSS ST ATIC SUM DIFFE 101 101 101 102 0

102 123 123 123 123 FY FZ MX FZ MX FY FZ MX MY 861 6363 761 57 bi 34 39147 0

0.

0.

0.

O.

O.

0.

0.

0.

0.

O.

O.

O.

0.

0.

0.

0.

0.

~

0.

182118.

131.

182120.

-0.

I821 20.

-I821 2264 5.

86788.

899 I9.

I02 692.

I'9261 1.

I27 1238 391.

58556.

12386263.

"30557.

12416820. -123557 22230.

84202.

87380.

9*898.

I34278.

95 365501.

6315.

367655.

97029.

464684.

-2706; O.

0.

O.

O.

0.

124 FX 124 FY 124 FZ 343 50.

0.

0.

I 555.

O.

0.

I 5074.

0.

0.

37544.

O.

O.

0.

O.

O.

37544.

-375 0.

O.

124 MX 124 MY 124 MZ 0.

0.

0.

0.

O.

O.

0.

0.

0.

0.

0.

O.

O.

0.

0.

O.

O.

0. "

202 FZ 202 MX 5608.

24203.

22796.

335544.

85659.

888 I8.

10095.

336567.

201 FY 825.

I8261 1.

294.

I826 1 3.

201 FZ 5866.

22803.

88075.

91168.

201 MX, 62142.

12287309.

48300.

12287561.

O.

182613.

-1826 102714.

193882.

1 1 5 29639.

12317250. -122578 96877.

105694.

80 gblbl.

432728.

-2404

7

,~ ~

477J 7 11

SRSS-4.

3 WHITING CORPORATION ANSYS SRSS PROGRAM TABLE ¹ 8

LS 2 MODE I SCALE FACTOR =

. 1852 79I 8 0 87/03/06.

QY NJN PAGE I f OF 27 JE6756/MJM/AEP>

DCC.'XISTED TROLLEY MID.

50T LD DN / OBE

'X'EACTION

SUMMARY

LOAD STEP C

NODE LABEL

-0.

33739.

-337 102692.

189814.

155 30557.

2326435.

-22653 9689S.

181503.

I22 97029.

175522.

185 0.

0.

101 FY 86 4

101 FZ 6363 101 MX 761 57 102 FZ 6134 4

102 MX 391 47 123 FY 0

123 FZ 0.

(

123 MX 0.

123 MY 0.

124 FX 124 FY 0.

124 FZ 0.

K 124 MY 0.

124 MZ 0.

201 FZ 5S66.

201 MX 621 42.

oamz ba 202 MX 24203.

4117 67691 0

0.

O.

0.

0.

0.

O.

0.

0.

0.

0.

0.

0.

0.

0.

0.

288.

0.

0.

-375 I5074.

0.

0.

37513.'.

0.

0.

0.

0.

3751 3.

0.

0.

0.

O.

0.

0.

0.

0.

O.

0.

0.

0.

O.

0.

0 0.

-338 143

-22472 109 287 33831.

191085.

2306659.

182823.

16361 0.

33820.

294.

33831.

0.

4223.

88075.

88371.

102714.

2275610.

48300.

2276970.

29689.

B 42'+2'.

5565~5946~6877.

62143.

10095.

67449.

96161.

I 2

3 SRSS STATIC SUM DIFFE I.

33728.

131.

33739.

4194.

86788.

87122.

2293867.

58556.

2295878.

84282.

84b05.

6815.

78492.

0.

0.

e

I 4

~ i 1

4 P;

I gJ Wt ~

e r

~

I

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM TABLE ¹ 79't 8' 87/03/06.

OV ~J ~

PAGE L5 OF Z7 JE6756/MJM/AEP>

DCCB EXISTED TROLLEY MID'0T LD DN / SSE

'X'.

0.

Q.

0.

0.

0.

!698.

11413.

126012.

REACTION

SUMMARY

LOAD STEP NODE LABEL 1 776.

101 FZ 1227!.

10),MX 149223.

102 FZ 11732.

~

!02 MX 70998.

123 FY 0.

123 FZ 123 MX 123 MY 124 FX 124 FY 124 FZ 124 MX 124 MY 124 MZ 201 FY 201 FZ 20)

MX 202 FZ 10799.

202 MX 45924.

SUM DIFFK 377981.

46999.

25706 557.

46137.

758587.

0.

0.

O.

0.

3227.

0.

0.

310.

377985.

162950.

170036.

115418.

25707249, 158168.

165176.

16276.

762076.

0.

0.

0.

0.

0.

29060.

0.

0.

0.

0.

0.

71 010.

O.

0.

-0.

377985.

-3779 02692.

272728.

-b73 30557, 25737806. -256766 9b898.

262075.

-682 97029.

859106.

-6650 0.

0.

0. '.

0.

0.

0.

0.

0.

71010.

-710 0.

0.

0.

0.

O.

0.

0.

0.

0.

0.

0.

0.

0.

0.

O.

0.

O.

O.

O.

379004.

47327.

25501954.

47312.

696411.

593.

379008.

165396.

172412.

96598.

25502448.

0.

1 027)4.

2968'V.

1 60774.

1 67938.

96 877.

22901.

698300.

96161.

379008.,

-3790 275126.

-696 25532137. -254727 26481 5.

-71 C 794460.

-6021 2

3 SRSS STATIC

I

'l~

'IIC 4 ml e

C 4'

~

'I

\\

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM TABLE ¹ lO LS 2 MODE 1 SCALE'ACTOR =

. 1265

'79t8'3 87/03/06.

aY NJM PACE IC OF 2 7 JE6756/NJM/AEP 4

D CC8 EXIST>

TROLLEY MID5 50T LD DN / SSE X

0.

0.

I 0.

0.

R EACTION

SUMMARY

LOAD STEP 3

SRSS STAT IC NODE LABEL 101 FY f778 47815.

010.

47848.

=O.

47848

=4781 101 FZ 1 271.

594 5.

1 62950.

1 63520.

102692.

266 1 2.

-608 101 MX 149 23.

3 51879.

115418.

3 57347.

30557.

3287904.

-3 267~

102 F Z 11 732.

5836.

1 58168.

1 58710.

96898.

255608.

-6181 102 MX 70998.

95961.

16276.

120475.

'97029.

217505.

-234'23 FY 0.

0.

0.

0.

0.

0.

l8~

0.

I 123 MX

.0.

0.

0.

0.

0.

123 MY 0.

0.

0.

0.

O.

1'24F'08.

29060.

70937.

0.

70937.

-709 k'24 FY 0.

0.

0.

0.

0.

124 FZ 0.

0.

0.

0.

0.

124 M

O.

O.

O.

O.

124 MY O.

0.

O.'.

0.'.

2I 124 MZ 0.

O.

0.

O.

O.

=.~0~

l888.

87%I45'FS.

47978.

0.

47978...

-479i

+2 201 FZ 11413.

5987.

165396.

165897.

102714.

268611.

-631K 201 MX 1260 12.

3225997.

96598.

3229902.

2'9689.

3259591.

-320021 08 F~'074~485.

17i0772l.

)8T847.

887~58184.

-8487 202 MX 45924.

88096.

22901.

101953.

96161.

1'98114.

-575

r

~

~

r'l co+

k\\

tag

7V J.e>

SRSS-4.

3 WIRITINC CORPORATION ANGYS SRSS PROORAM 07/03/09.

'lADLE 4l ll DY +"+

PAGE l7 OF L7 JED756/MJM/AEP6 DCCB EXIST>

TROLLEY MID7 55T LD DN /

ODE X

861 61 74 761 58 5957 391 73 0

0.

0.

0.

124 FX 124 FY 124 FZ 124 MX 124 MY 124 MZ 34348.

0.

0..

O.

O.

0.

REACTION

SUMMARY

LOAD STEP NODE LABEL JOI FY 101 101 l'IX 102 FZ

~

~

102 MX 123 FY 123 FZ

~ 1 123 I'lX 1 ~ e 123 MY SRSS STATIC SUM

. DIFFER 0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

O.

O.

I 554.

I4 519.

37323.

0.

37323.

-3736 0.

0.

0.

0.

0.

0.

O.

0.

0.

O.

0.

O.

O.

0.

0.

0.

0.

0.

0.

0.

O.

O.

0.

0.

O.

1821 I B.

J 32.

102120.

-0.

1821 20.

-18216

-264g 89672 92694.

105194.

197888.

I25(

1 38 8'71.

55613.

1 386 50, 30557,12416808.

-123556'26.

87288.

90 '70.

'7'7600.

1 876 I0.

2 1:

365501.

6393.

367659.

97026.

464685.

-2706:

0.

0.

0.

0.

0.

201 FY 201 FZ 201 MX 202 FZ 202 MX 825.

18261 1.

56 51.

22807.

621 30.

12287310.

540 2

24210.

335544.

2Sg.

182613.

0.

182613.

-1826 90909.

93896.

105216.

199111.

II31'5965.

12287553.

29692.

12317245.

-122578'8606.

91649.

99379.

191028.

~

77~

I004 5.

336566.

96 160.

432726., -2404 I

~W'I 3

~ l I

1'

~

~8 7

C 1

61'

J%

ls 0

r

~

~

'4i tV-er I

t.

g sl

(g

~

REACTION SUMNARY LOAD STEP NODE LAPEL 101 FY 101 FZ 101 NX 102 FZ 102 NX 123 FY 123,FZ 123 NX 123 NY 124 FX 124 FY 124 FZ 34650.

-346'.

195102.

I52<

2388241.

-23271:

186994.

IISi I?7119.

Ibv:

j 0.

-0 105194.

30 557.

132.

34650.

89b72.

899'88.

55613.

2357683.

87288.

87FP3.

6893.

80093.

0.

0.

34639.

4308.

2355797.

Sb1.

61 74.

761 58.

99400.

97026.

0.

I 77 6951 S.

O.

5957.

391 73.

0.

0.

0.

0.

37292.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

O.

0.

0.

0.

14519.

0.

0.

296.'.

0.

0.

0.

0.

34348.

0.

0.

-372~

j 37292.

0.

0.

79 I83 SRSS-4.

3 WHITING CORPORATION ANSYS SRSS PROGRAN 8?/03/09.

TABLE 4 l2-LS 2 NODE I SCALE FACTOR =

. 1902 DY MJ +

PAGE

)8 OF g.7 JE6756/NJN/AEPi DCCi EXISTs TROLLEY NIDi 55T LD DN /

ODE 'X' 3

SRSS STATIC SUN DIFFEJ 124 NX 124 NY 124 MZ 0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

O.

O.

0.

0.

0.

0.

201 FY 201 FZ 201 NX 825.

34733.

56 51.

4338.

621 30.

2337046.

2S9.

90909.

4596 5.

34744.

91 I87.

2338324.

0.

105216.

29692.

34744.

-347~I I 96403.

1401, 236 801 6.

-230S6:

202 FZ 202 NX 54 02.

242 10.

4335.

63820.

88606.

10045.

BBS76.

99379.

188255.

105(

68993.

96160.

1651 54.

271 <

~

~

a,

~

4 fig

%e

~

c

~,i 7V iSS GRSS-4. 3 WHITING CO~RATION ANSYS SRSS PROGRAI'1 ~

87/03/09'.

TADLE 4~1 DY M"~

PACE

)9 OF 2.7 JE6756/MJM/AEP

DCC, EXIST TROLLEY MID 55T LD DN / SSE

'X'EACTION

SUMMARY

C, LOAD STEP NODE LAyEL 101 FY Ce '-

101 FZ 101 MX 102 FZ 102 MX 123 FY

!23 FZ 123 MX 123 MY 124 FX I

124 FY 124 FZ P

SRSS STATIC SUM

DIFFEl, 377985.

-3779'80402. 700 i

25737785.;256766'69962.

-71 I s

'5

-6650 0.

1775.

11939.

I4'9220.

11416 71044 0

0.

0.

0.

0.

~

0.

7061 3.

-706.

0.

0.

0.

0.

0.

0.

0.

a.

0.

0.

0.

0.

0.

0.

O.

0.

O.

0.

0.

O.

3226.

0.

0.

28081.

0.

0.

7061 3.

O.

0.

64709.

0.

0.

0.

O.

0.

0.

0.

O.

584.

379008.

170713.

17749'7.

92647.

25502434.

166302.

173214.

22878.

698299.

0.

0 0.

0.

0.

124 MX 124 MY 124 MZ 0.

0.

0.

201 FY 201 FZ 201 MX 202 FZ 202 MX 0.

I05216.

29'692.

169'7.

379004.

11039.

47335.

1259'87.

25501954.

379008.

-3790(

2827 I3.

-722(

255321 c~b.

-254727'7259'3.

-738:

79'4459.

-6021:

9'9379.

96160.

47305.

69641 1.

I0436.

45928.

377980.

31 2.

377985.

-0 47pp7.

168361.

175208.

25706558.

110326.

5707228.

30557.

46130.

163807.

170561.

99400.

758587.

16451.

762084.

9'7026.

0.

0.

0.

0.

7t

' )

.32

g

~

I

~ 'l

'll

%)4

t y SRSS-4.

3 WHITING CORPORATION ANSYS SRSS PROGRAN TABLE 8 l l LS 2 NODE 1

SCALE FACTOR =

. 1300

'79) 8 3 87/03/09.

OY

~~M PACE ZO OF 2 7 JE6756/NJN/AEPF DCC>

EXIST>

TROLLEY NIDF 55T LD DN / SSE

'X'7+

1 1939 149220 102 FZ 102 NX 123 FY 123 FZ 123 NX 123 NY 124 FX 124 FY 124 FZ 124 NX 124 NY 124 NZ 11416.

71044.

0.

0.

0.

0.

64709.

0.

0.

0.

0.

REACTION SUNNARY LOAD STEP

~

1 NODE LA"EL IOl FV 101 FZ 101 NX SRSS STATIC SUN DIFFEF 0.

0.

0.

0.

0.

O.

0.

0 419.

0.

O.

O.

O.

0.

28081.

0.

0.

0.

0.

0.

70540.

0.

0.

0.

0.

0.

O.

0.

0.

0.

~

0.

0.

0.

0.

0.

0.

0.

0.

70540.

0.

0.

0.

0.

O.

-705<

491 37.

312.

49171.

-0.

49171.

-491 i I6836 1.

1 68895.

105 l94.

274089.

-637C 3341853 110326 3347001 30 )57 3377559

-33164'997.

163807.

164314.

99400.

263715.

-6491 98616.

16451.

122650.

97026.

219676.

-256'.

0.

0.

0.

0.

201 FY 201 FZ 201 NX 02 FZ 202 NX 1697.

1 1039.

125987.

10436.

45928.

49271.

61 53.

331 5254.

61 50.

90533.

584.

170713.

92647.

166302.

22878.

49303.

0 49303

-493C'71180.

105216.

276396.

-6598 3318940.

29692.

3348632.

-328921 166743.

. 99379. i 266121.

-6734, 1 04063.

96 160.

200223.

-79C,

~

I

~

)

~

.SA' 42

FORINT N 14$

WHIT1NG RE

~ +

OATE BY MJ M PAGE OF CRANE W EKE L l2. f IQ /IV'IJeJ Qy f Z +

+tt+

Wheels On

+~

hald gt Je and

~u/hPIICJ Qy X(+

Pot

+r'etta ti ~<tsta~t-

~t ~M unrezkrat~j

% bee lS.

1 he.

win otic vvhcel IooJ Is Ac.

It~apts H v4e-maxiinvg eonstJCVI~y

~~pter revessol t=>> Z (Rk)

Rk

'I IJ

+ <

Ry as provtJQ py zo<Pu&r

+rograg hatt'let

)he eppltw*@9 o 6'<0~AD

'Actotr a 5 pr~v'tot/z(y J~~pzJ y p~

m trt t Ittu Wl

~bee l ioo J tg phd rtCggyi VC makl~skl, asrtSlbengp

~pl~~

~vers<(

Fy =

Ry F )<

+ t<~(

/ne J al" W>>

rrtcsve.

4e vt IooJ+ J H/++ t On

~

+I, pivs

+<

~g JiviJef 6

+"~ vi"'<l hase.

~here bo>,re Pa5t pr aced t n y d.O~pg g~V-a Ffe w

+he-apphaa*~

of +tta ~ Ic. ~ac go W

~s previously cIe=cr iheJ.

~6= CO R ~

~

roe OiiiVt. VtttICey

+

iX'ar 'bid WO

~q rat.~ TeC5S 7 l~

pntni~y~

H/Sect IoaJ g $

+g~

(

j I

R

+s M<ff t5 gge.

~Z(state -Jym rg)

"Y 2-t<sS

~he Kx d yiJ<J 6y p >"

~ "e- <<pc pkick (F kyoto Value ~ <~6< - dynasptie in I

+F'<<05 o N rico ugly EOvAL S tCS I'og 7Roi t.~ A7

) s

~

J RGK%

~ g 0

J s

t f

r

~

WHITING REQ OATE gy Motif PAGP 23 PF 27..

GEOMETRY SECTION The equipment analyzed in this report is an 'Electric Overhead Crane'hich is designed and rated for a capacity load of 150 tons on the main hook. 'his is based on using a new SRP design trolley on" the existing bridge (SfN 10038).

The mathematical model of the crane with node numbering and global coordinates is illustrated on page 26.

The boundary conditions are selected to provide the most realistic linear approximation to actual conditions in a seismic event as follows:.

NODES - 101,

102, 201, 202 UZ:

Simulates wheel to rail contact in the vertical direction.

NODES 101, 201 UY Simulates the drive brake which is automatically set and which provides stability parallel the runway.

NODES - 101,

102, 201, 202 MX:

Simulates the differential wheel loads of a fixed bogie truck subject to overturning.

NODE 124 UX:

Simulates wheel to rail contact perpendicular to the runway.

ar

~

e

WHITING REQ OATE By 'JM PAGE 24 OF The other restraints of nodes 123 and 124 were selected to simplify the analysis.

Those nodes which are coupled have the same displacement in the indicated directions only.

Their displacements in all other directions are independent (released).

This c<<pling is used to simulate load transfer between various components.

BRIDGE TRUCK NODES - 101-121, 102-122 UX Simulates the load transfer from the bridge wheels to the runway rail perpendicula'r the runway.

TROLLEY NODES - 371-401, 372-402, 373-403, 374-404 UZ:

Simulates wheel to rail contact in the vertical direction.

NODES 371-401, 372-402 UX:

Simulates the driv brake which is automatically set and which provides stability parallel the girders.

NODES - 372-402, 373-403 UY:

Simulates wheel to rail contact perpendicular to the girders.

4' 0

1

(

~

r Ql 4 II tr hU*

FORM S ZSG

]

WHITING REOt1.

GATE ev H~

FAGG

+~

OF The master dynamic degrees of freedom for a reduced modal analysis are selected to obtain those modal shapes which characterize the principal vibrations of the structure.

Placement is such as to include coupled modal shapes due to eccentricities.

Higher degrees, of freedom were not included because they will not contribute significantly to the system response.

This can be justified by the responses obtained.

The girders, and the girder end connections a'e modeled as uniform beans.

The rope is modeled as a spar element which is capable of supporting axial loads only.

These elements have. the properties of the corresponding parts of the actual crane.

The trolley, the drive, the bridge trucks and certain short connections are modeled as rigid members capable of transmitting loads only.

Lumped masses, were assigned to represent the masses of the trolley, the bridge

trucks, the drive and the wheels.

Additionally the beam members were assigned distributed masses.

The trolley, trucks, etc.

were modeled as rigid members because past experience shows that components of this type are very stiff structures with high natural frequencies in excess of 40 Hz.

The simulation of the restraint of the crane perpendicular the runway is modeled on only one side consisting of a linear spring and two rigid beams capable of transmitting, the load to the bridge wheels.

The spring stiffness is selected so that the resulting freque'ncy of the x mode yields an acceleration value from the high frequency region of the response spectrum curve.

The resulting loads are distributed to the two runway rails by the 2/3, 1/3 method.

The reason for the 2/3, 1/3 distribution is to account for manufacturing tolerances in which case one end of the crane would tend to contact the runway rail before the other end.

The other end would however carry a portion of the reaction due to frictional resistance to sliding before flanging of the wheels.

Although certain simplifications are employed in making the linear mathematical

model, these simplifications are in accordance with accepted practice.

Such simplifications are employed to provide a model solveable with available resources while predicting the seismic response with reasonable accuracy.

g.S I 1

ye%

3I8 ala 2o\\ > I'I LgE So3

+o I

I I

I I

(

4gf 4C3

~

QC I i 3C I

r

~

I 1

I r

I I

l r

I I

l I

I I

I 4/g I

ry.

II r

(

~

1 I

~

~

I qoS I

I

~

r r

ffort I

I I

I i~

I l

I

~

I l

1 I

I

~

I i QQ7 372 I

I I

I l

I I

I m x z

$'OZ.

PlIIVK

~

~

II II I

I I

~

M+THE H AT)CAL

.M00cL oF CiAHa Talii.aj AT MIg Ex>/TlN6-BRIQG 8 g KW:

THOL,gg'f

qoc, UP I

I I

os I

SOI',

I:

I.L.e

CbWQ

~ r I

i/i '

,i j

4 lot l&t I

I I

~

I a

l ~

I I

~

I i

,'RHF-I I

gjq I

I I

I'I,'O?

I jan+

I

(

I

~

I 4tg y

+7 O

g2

~m Cu-t ra g

L

~,i I

TRZCAL BOX GIRDER PROPERT PROGRAM l07 PROGRAM IO I-A'-I-O oi WHITING REON 7'IIG >..: GATE GT

~"

I PAGE

<7 OF 27]

0 nigiN.AI&Rd< N,

~

~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

101

~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1 '500 21 '00u 93 '1030 0 '125 17 '300g 1

2 B

3 C

ENTER

t. R5 5

E t7i 4

D

.3l 2$

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

58I490 ~ 6250

$ 31~ ~ 1753

~>>>>>>>>

$)Q(

6I2V5 ~ 1928 596 '897 110 '250 16,680

~ 3619

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

TORSIONAL'ONSTA lT (K)

,t 1

WH!7!iuG RE DATE BY MJH PAGE Al pF 7

APPENDIX A This appendix summarizes the amplified response spectra and the modal response of the crane.

Page 2

3 4

5 6

7 Table Al A2 A3 A4 A5 A6 Title

Response

Spectrum,

Response

Spectrum, Frequencies

& Mode Frequencies

& Mode Frequencies

& Mode Frequencies

& Mode OBE SSE Coefficients, 50T OBE Coefficients, 50T SSE Coefficients, !55T OBE Coefficients,

!55T SSE

7 I

1 4

-a

~ '

fta 4+ 4 c'

pf yl I*

I O I

e btIt C

I i

atIti I

I 4

z

~

re ~ ~

~ e

~

~

I le jI'

~

I:'!I

I ~

! ! L:.r':)

e ep

'~e',.L1 I I 1 e

e

~

"e

~

~

ii::)

!y:li

~1

)I:1

~ ~

~

r:~.u F:!

ll f I ~ e:)

~

e

~

~

z:

I

~\\'

~

~

2.

q I

)

7 8

l,(.I,'

)i%

r =if t-6-87 WHITING R EON OATE M

7

~ e ~

ee Ilei

i;';I ili el!i

~ ~

1 Il! }tell i!I li:lil I

I

!i!: !.

I;"

< 'e llr.

L<

> HefftCmth I.;! ij'4'fOW ,",:Pgf+I; ee ~ ~ e I le III e I.'F~I'I e le! e e ~lj ~ ~ Ij leee. e riil e ~ ,'I I ee I-i ~.'fM ~ e ee Le ~ ~' ~ ~, LI:: age .:!.: ~ 1:;: i)lj ej i

!
!i)i i

~

e I'Jo e

le I I ~

!I! ret I!!:::

) I I !el: O'.I' I ~ ij[jIIII!:; ll)i eljlj<<l! 4e.i jlleio! ill! it!i,') II I.'..' e e elf'e j~ti i.;! Il ~ ) I

ti, ill!

ee, !i!I I)jr Iiii If.:el'!!'" ~ elf lilt jie'. e Le "e' .,I:

I

!I I: Ije I ~ I I'i eJ le He ~ ~.il e I ~ jz lice!g. iji:!I ',fit ~ ~ e el Ie! i:}i)i I ~ I ylI I 'll. e'e 'e <<ee ~ ~ :I ~ ~ el ,jI !L'lr i"iiitj L "::LLt; i!Itil IIJ'ei Itre tf e ~ ~ It:I I.li e e !I rI I ~ 11 r e ill.'IL L; Ie e ~'e ~ il 'll: litj tele! Ill! III.Le.e ii:Iljir: Iiiti!: rl:.";!I!i ~ Ill!L)) !',I L'J II;. Ijil e I j)il:. ~l!Ii: I lji !q.'e!j IeI ll!:;r >It! !:! eel'i! I}t) ill 'ij,': r':I: Il e 1 i lit e" !:II ~'..'-'il I ~ ie

!i)

.I I: Ty I e!.Ili" e je!I .I.': I'r.l:; e

I >It)

II el;; e Ie cfog I ~ ee e ~$ eC ~7.8.'I 'I "" 2. 3 rt 5 yr y IO g.O Oo wo Wr FREQvevCy H z. 7A@L8 A) OSE. X og, 4Q in/m" G. (s In /~~ G'i fn /~~ G's = 1f I2. lg ) ]5 t4 lF )7 20 384 't 2.~e g !7a 9 I!9.~ eSg gfrO q25 ~.9 3a.V ~ 'f l9,$ ~.2. g8. ('80 Pl. I I 1.7 5 l93 1 c l 8 2. ( I8 2. ,00 I tr5 l.O l.0 ri'7 .v5 .x3 F79. C est;. f act.S' IS/ C. l I Iv) 'f 2.7. 0 ~s.8 SB,O I BS 7 I Qe3eC !9grZ 2.et.8 -07 ,gg I .IS f re I ~~ rOC I .)o! ,I5 ~ 48 ,'f7 "l ,50

.s r

z.V: i 85 0 t:S.7 50r 2. Rr. 9 ~ Lf .33 r50 I 4 .2.2 .l7 r}3 ,Og .08 ,oB 927.V V2-7 g ~ 4r ~l2 ~ 0 ~ ~ ~ h E4 I 't 1 0 C - ~ 'I 5 e~ WHIT!NG RE ~Y MJ I ~ a e)jl Ip .'I;e ij !Ill '.Ei 'f'Iiei I tilt .I[)ejjt ji!}'$'. ,::'::l]i!,'bi" ',I ...;Ii.: .. '.I -: t'":r !I ttj) trlj ft ijjtjiii ~ ~ lie! )l"!'e ijlj 'ia.l I~jl ~ ~ a ~ ~ el!i, I) I Ill) i)li t ~ I ~ ili .i.i. I :I i.'!i i)"; ell

~ el

~ ~ ~ ta>> L) e I ~ il ~ I -:.p i I

I,'! lj),

a)ll il,i I:: I:))' ~ ~ i!! iii 0 IC

4) J Ii ")Ij fit

)Il rr::,:":-: 'll Ill) l!I) I ~ I ~t ~ ~ ~ ~ >> 'a.tf )!)a ~ I) ~:I ~ ~ ~ ~ =: "..) I i!it -:S': i Hj I! I! "i': - ll ~ ~ ) ', I ~ ++ i)e) 'll,' I I'" Ie>>'T alit I>>' I f ii f I!fj( ))i. I ! I I) ).)i r): I::It:;::i:;I ti i!'.ii!ir!j'; let ei:t I!jlli',!:i ii: fi I )!'I! Nj I!I ijii ~ ew I~t ~ ~ ~ ~ It ~ >>lit ~ II ~ it ) ~ ~ .'il

I

~ ~ ..-: I.' I i I:i,!i:i elt ~ pffft tii,.I)) ~ I ~4 < 7 Seato Lo lt0 JO FAKQUENCy H z. Tee} E Az. BS f= X < 's In /Sa-

g. is tq /see~

G's >n /m < I 2 3 7 8 7'0 lt Iz. 13 l't 15 l f. t 1 l 3'b O,OI ~60't aO7 ,o8 r f't II+ .80 r>0 r55 ,3C ~L'f ,!5 rig 2.9 l-9

l. 2.

I.05 .83 .59 .3G ~ 23 I X3 3.$7 3.85 R7.0 3oi9 5+,t 88.) I 39, I Z7O 5 502,.j I i 57, Ii 5'jj'~ tl2.5 VC.'t Sl. ( f3/.y xo 8.7 0 08.7 772,g l'739. l737i 73'f.2. So2. 3 Zo9 t 2.70 5 $27 5f 0 5'8'0 ss;a ~ 00f

llZI, 73'6 Z.

&3.7 qoS.y GL0~7 2.08.7 laV, I ~ ft .47 J.O IQ I %2. I.C7 j.e 1 2.io 3.33 o l2. .2.t .39 . 5'0 f,o5 X.O 'f.Q 9'5 .l,l7 tt. tip 0 ,3G ,70 I 3 3,5 3,0 C,r.7 loi 2.0. 33; v~0, 8'8'. 7 R8 9 88 9 ) 7 OATE - -8T PAGE ~ + OF E h ~ fa ~*

  • I

~ ~ L4fllTINi- 'Gl'C 79I83 DA'lE 3"Cn-87" ~ 0'4 f*a: 8+ 0-. ~i T.DLE Aj <<70 T- 08K AUNllARY.QF NATURAL FREQUENCIES AND NODE COEFFICIENTS - PAEPAllDO: NODE FREQUENCY NODE COEFFICIENT FOR SPECIFIED D!RECTION Hz X ~ Y z 1 1 ~ 94 P 4447

2. 77
3. 0250

.3- -- 4. 08.-...0..6157 4

5. 90 O. 2720 5
7. 50 O. 0420

~ O..SV.... 0..0100 7

9. 25
0. 013b 8
11. 20
0. 0144 a.

~~ 40,0-0104 1a

10. 77
0. 1401 4

11

17. 55
0. 0070 25~

000&. 13

27. 84
0. Ooob 14
29. 89
0. 0042

~~4 08~ 0004. ib

42. 43
0. 0001 17
52. 70
0. 0004 QQ02 19
59. 49
0. 0002 20 bi. 70
0. 0000

~~)B ~.. OOOO. 22

80. 51
0. 0001 23
82. 47
0. 0001 00.

~0001 25

93. 2b
0. 0000 Zb
93. 30 O. 0000

~7 ~9~0 0 OOOO 28 193. 30

0. 0000 SIGNIFICANCE FACTOR
1. OOX INDIGATES EXPANDED I'JOD.

AX 104. 3000

0. 059b

O. 0205

0. Oib4 0.

1 132

Q..Q2bi

0. 0003 0.

0279'..0063

0. 0008
0. 0099 Q 0075
0. Ooob O. OOO2

.&002

o. oooo
0. 0002 0.QQOQ
0. OOOO
0. 0000
0. QOQO
0. 0001
0. 0000 O.. 0000
0. 0000 O. 0000 0.0000
0. 0000
0. 50/

+ MAX

0. 080b
48. 28OO
0. 0255
0. 9012

~

0. 0251

.0. 0005

0. 0087
0. 0004
0. 0011.
0. 0123
0. 0017 Q. 0005 --

0002

0. 0001

~I 0002

0. 0002
0. 0001 QMOOO
0. 0001
0. 0006 Q. OOQO
0. 0000
0. 0002

.0001 O. 0001

0. 0002

..0000.

0. 0000
0. 50K'

el

~

~ ~

Pi IC I

WHITING~ON T'PI8~

DATE 8

G 87I OY IR&h PAGE A 5 OF V

TABLE A%

$0 T-asE

SUMMARY

OF NATURAl FREQUENCIES AND MODE COEFFICIENTS PAEPAMDB

.'ODE FREQUENCY MODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X

Y z

1. 94
2. 77 O.

9229'.,6730

4. OS.. 1,,109O
5. 90
7. 50 O. 6661 O. 0988 7

8 9

O. 0308

0. 0297
0. 0296
8. 69
9. 25
11. 20
12. 48 O. 0248 10 11 12 13 14 15 19 20 21
15. 77
17. 55
21. 75
27. 84
29. 89
34. 08
42. 43
52. 70
53. 12
59. 49 hi. 70
72. 68 SO. 51 SZ. 47
84. 00 O. 2637
0. 0128 O. 0011
0. 0011 O. 0078
0. 0007 O. OOO
o. oooa
0. 0004
0. 0004
0. 0001
0. 0001 O. 0002 O. 0002 O. 0002 25
93. 26 26
93. 30 27 i 19. 10
0. 0000 O. 0000 O. 0000 28 193. 30
0. OOOO, SIGNIFICANCE FACTOR
1. OOX INDICATES EXPANDED MODE

~

MAX 216. 5000

0. 1118

...,.,. 0. '0369 O. 0402

0. 2662 O. 0583
0. 0006
0. 0574
0. 0126..
0. 001'5
0. 0181
0. 0135
0. 0012
0. 0003
0. 0003
0. 0001
0. 0003
0. 0001
0. OOOO O. 0001
0. OOOO
0. 0001
0. 0001
0. OOOO O. OOOO O. OOOO O. OOOO O. OOOO O. 5OX

+ MAX

0. 1661
90. 5100

+ MAX

0. 0464
2. 15SO

~

0. 0586 O. 0012
0. 0193
0. 0008 0..0023
0. 0226
0. 0030 0, 0008
0. 0004
0. 0002 O. OOO4
0. 0003
0. 0002 O. OOO1
0. 0001
0. 0011
0. 0000
0. 0000 O. OO03
0. 0002
0. 0002 O. 0003
0. 0000
0. 0000
0. 50/

Q P

1+ '

IIHITIN+l8;"N T i I 8~

OAT2 av NJM pAc2 Aa ov zi TABLE

+S SST - ooE

.SUNDRY,MF PfhTUHALWREGUENCLES AND.PODE,COEFFICIENTS = PAEPQM)Q

VODE, FREGuENCY NODE CO'FF ICIENT FOR SPECIFIt:-D DIRECTION HZ X

Y, Z

1. 94
0. 4446
2. hh
3. 0710 08 OMlbl
5. 89 O. 27hL 5
7. 50
0. 0419 8..69..

0 0138 7

9. 25 O. OL3h 8
11. 20 O. 0144

~2

yl8, 0 0.124 LD
15. 77 O. 1401 LL
17. 55, O. 0070 0 0006 13
27. 84 Q. QQQ6 14
29. 89 O. 0042 MO

~AM8~ QaayI Lh

42. 43 O. 0001 17
52. 70 O. 0004 L3~~~ 0002 L9
59. 49 Q. 0002 20 aL. 7O O. OOOO 21

~2. *G.

- 0.0000 22

80. 51 Q. 0001 23
82. 47 Q. 0001 24 8400 0, OOOL 25
93. 26 Q. 0000 26
93. 30
0. 0000

~~ 7 M 1 9 J0..~. 0000 23 193. 30 Q. 0000 SI QNIFICANCL= FACTOR

1. 00%

IbfD.I+53.ES EXPJLlDED /tGDK MAX 104. 3000

0. 0630

.0.0205 O. Oih4 O. 1132

0. 0261 O. 0003 O. 0279 0.. 0063 O. 0008 O. 0099 9075.
0. 0006 O. 0002 X).0002 O. OOOO O. 0002 QGOQ.

O. OOOO O. OOOO 0,,9000 O. QOQ1 O. OOOO 0

OOOQ

0. OOOO
o. oooo 0 0000.

O. OOOO

0. 50%

MAX

0. 0833.:j
52. '9200 e 5j
0. 0285 Q. 9211 O. 0250 0 0005 O. 0087 O. 0004 0 Q611.
0. 0123
0. 0017

. 0008

o. 0002
0. 0001 000~
0. 0002
0. 0001 OOOO

.0. 0001 O. OOOO 0000

0. 0000
0. 000~~

0001.

0. 0001
0. 0002

.0 QQOQ

0. OOQO O. 50%

6 Q

~

tf g s

k

l3

~'

IIHJ;"iIIO 2a~N 7 flff3 DATE 3

9 5 7 DY MJhl PAG-AT OP TABLE

>~

5S 7-SSE

~VMNARY..OF..NATURALFREQUENCIESAND MODE..COEFFICIENTS...PAEPBMDB.

MODE FREQUENCY NODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X

Y z

I

i. V4 O. '7228
2. hb
5. 7580 4MB 3.~00.

4

5. 8'll
0. 6761 5
7. 50 O. 0986 8,6P 0,0308 7

P. 25

0. 0297 8
11. 20
0. 029'6 P~EM8 ~MEII8 io I 5. ? 7 O. 2637 11
17. 55

)

0. 0128 1.2 21 75
0. Ooi.l 13
27. 84 0.,0011 i4 2'P. 89
0. 0078 l.:

35, 03,~~007 ih

42. 43
0. 0002 17
52. 70
0. 0008 53 l+

0 Ogpu lP 5P. 4P

0. 0004 20
61. 70
0. 0001 21

~.P.,68 O. 0001 22

80. 51 O. 0002 23
82. 47 O. 0002 94 o9 9.A.OZ 25

'V3. 26 O. 0000 26 V3. 30 O. 0000 87

~lP lQ QMQQQ 28 i%3, 30 O. 0000 ICNIFIC*NCE FACTOR

l. 00/

INDICATt:-S EXPANDED QQD 216. 5000 MAX '. 1131

.0..0369 O. 0402

0. 2662

~..0583

0. 0006
0. 0574

~ 0126 O. 0015

0. 0181 0..0135 O. 0012 O. 0003

~ 0003 O. 0001

0. 0003 QM.Q9
0. OOOO
0. 0001 0..0000
0. 0001
0. 0001 0,%000 O. OOOO
0. OOOO 0.%000 O. 0000 O. 50/

MAX

.0. 1715 9S'. 2100 4'AX 0 0520

2. 2060
0. 0583

...0012

0. 0193
o. oaos

-0023 O. 022h

0. 0030 0 0008
o. aoo4
0. OOO2

~~004

0. 0003
a. ooo Ol

.. a.oooi

0. 0011 MOOD.
a. oooo
0. 0003 F002
0. 0002
0. 0003 0000.
0. 0000
0. 50/

'G

<(..g

~ ~ ~

R~efeee 1.

NU.":G-0612, Control of Heavy Loads at Nuclear Power Plants, July 1980.

2.

NUl ".G-0554, Single-Failure-Proof Cranes For Nuclear Power Plants, May 19>

~.

3.

Enc.osure 3 of letter from NRC dated December 22, 1980 on Control of Heary Loads.

~

~

1

~,4