ML17326B288

From kanterella
Jump to navigation Jump to search
Crane Seismic Rept,Cask Handling Crane,150 Ton Capacity, Existing Bridge,New Trolley,Preliminary.
ML17326B288
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 03/09/1987
From: Mcmahon M
WHITING CORP.
To:
Shared Package
ML17326B289 List:
References
NUDOCS 8704160154
Download: ML17326B288 (60)


Text

EPOhM Ne2493 AMERXCAN ELECTRIC POWER CUSTOMER R EON 79 183 WHITING CORPORATION ENGINEERING By MJM PROOUCTIQN OEPT. DATE HARVEY. ILLjNOIS BO42B U.S.A. i AREA COOE 312 331&000 PAGE OF CRANE SEISMIC REPORT CASK HANDLING CRAVE 150 TON CAPACITY EXISTIVG BRIDGE, NEW TROLLEY PRELIMINARY CUSTOMER: AMERICAV ELECTRIC POWER CORP.

COLUMBUS, OHIO FOR: DONALD C COOK FACILITY BRIDGMAN, MICHIGAN M. McMahon Staff Engineer 8704160154 870410 PDR ADDCK 05000315 PDR

WHITING RE 79183 'ATE 3-9-'87 BY iRJiaf PAGE 2 OF ABSTRACT The equipment reviewed in this report is an 'Electric Overhead Crane.'he crane is designed and rated for a capacity load of 150 tons on the main hook.

The crane was analyzed for the resistance to the specified Operational Base Earthquake (OBE) and the specified Safe Shutdown Eqrthquake(SSE).

This was done with loads of 50 and 55 tons on the main hook and the trol1ey at mid-span.

The crane was mathematically modeled as a multi-degree of freedom system of node points, interconnected by various finite elements. "ANSYS",

a large scale general purpose computer program was used to perform a static and a reduced modal analysis. It was found that excitations parallel the runway (Y direction) would produce slip. This excitation was then proportioned to produce a maximum Y reaction that would not produce slip.

It was found that the stresses in the principal. structural components did not exceed the allowable stresses with a 50 ton load on the main hook.

f t g

'4

~W l ~

8 ~

WHITING REQ 77~B DATE BY M~ PAGE 3 OF ANALYSIS DESCRIPTION The crane was analyzed to determine the effect of seismic excitations.

For this analysis, the matrix displacement method was used based upon finite element techniques. The crane was mathematically modeled as a system of node points interconnected by various finite elements representing straight beams. All masses and inertias were distributed among the nodes whose degrees of freedom characterize the response of the structure. The interconnecting finite 'elements were assigned stiffnesses equivalent to that of the actual structure.

The mathematical model represents as accurately as possible the flexibility of the bridge girders, hoist rope, and girder end connection. The trolley, the drive units and the bridge trucks were represented as rigid bodies.

The crane was analyzed with the trolley positioned at mid-span.

This was done with loads of 50 and >5 tons in the down position.

Preliminary calculations showed that this condition would produce the maximum girder stress for a given load.

The dynamic analysis was of the mode frequency (MODAL) type, solving for the resonant frequencies and the mode shapes that characterize the crane. The modes with meaningful participation in a given direction are directly expanded by the computer program to yield the expanded mode shapes, the element stresses and the reaction values. This type of analysis-is linear and plastic deformation, sliding, friction, and slack rope are not taken into account.

The amplified response spectra used in the analysis are shown in Appendix 'A'. These include the three orthogonal excitations for the specified earthquakes. Also included in this Appendix are the mode coefficients and natural frequencies for mode shapes considered.

g

+I

~ S

%c kq r-e tp, U

I

WHJT[NQ RPQ 79 183 PgTE 3-9-87 BY PAGE OF The normal mode approach was employed for the analysis of the components. All significant eigen-values and eigen-vectors were extracted, and these modes were combined by the method specified by the U. S. Nuclear Regulatory Commission, Regulatory Guide 1.92, Rev. 1, Section 1.2.2 (Combination of Modal Responses with Closely Spaced Modes by the 10% Method). Those modes with mode coefficient ratios less than 1% in the x direct'on or 0.5% in the y and z directions weie dropped because their contribution is proportionally small when compared to the largest mode coefficient of the related directional excitation. The results of the three orthogonal dynamic

.excitations were combined by the square root of the sum of the squares method '(SRSS) and then absolutely added to the results of the static condition.

Because the y reaction exceeds the frictional resistance of. those bridge wheels that are braked, slip will occur. The maximum acceleration in the y direction will be reduced from that predicted by th'e modal analysis. The primary y mode was therefore reduced by a scale factor such that the resulting y reaction approaches the maximum that could be sustained before slip. The results were then resummed as previously described.

In order to assure structural integri'ty, the job specification requires that the maximum stresses not exceed the minimum yield strength of the material divided by 1.5 for the OBE and 1.1 for the SSE.

The crane is constructed of ASTM A36 structural steel except for components which are specifically noted in the report. A36 material has a specified mini~urn yield strength of 36 ksi. The combined bending and axial stresses are limited to 24 ksi for the OBE and 32.7 kis for the SSE.

The actual properties of the specified materials show a great deal of variation and are generally considerably higher than the minimum required by the material specification . Also the maximum stresses occur only at.a point on a section and cannot of themselves be indicative of the tendency of the section to permanently deform, especial'ly when the nominal stresses on the extreme fibers of the adjoining faces are significantly lower. It is therefore conservative to compare the combined bending and axial stresses at the corners with the specified allowables to assure structural integrity.

t

~ Jf I*

0 WHITING BY REQ>> '83 Nj..

pAGE DATE 3-9-87 OF Impact factors for wheel flange to rail contact, etc., have been considered negligible. The state of the art today is such that these impacts cannot rigorously be studied; however, 'independent time history analyses have been run in many cases, all indicating slow relative motion between the rail and the wheel. This is because of the time dependency of the forcing function comming from the building into the crane. Note that the only coupling through which these forces can be transmitted is dynamic friction. Upon reaching the rail the wheel will first rise through the corner radius and then contact the rail. During this period, the structure is starting to deflect as the end of the crane in this direction is flexible.

The computer analysis was performed using ANSYS, a large scale finite element program.

WHITING RE 79183 PATE 3-9-R7 BY MJH PAGE PF SUGARY OF RESULTS The crane was mathematically modeled using finite elements. On the basis of preliminary runs, the number of degrees of freedom and the significance criteria for modal expansion were adjusted. Static and three load step reduced modal runs were made and the results summed. Because slip occurs, the y excitation was proportioned and these results resummed.

The crane was analyzed with the new trolley at mid-span. For this position the analysis was done with 50 and 55 ton loads on the main hook in the low position. From preliminary studies, the load case considered should yield the maximum stresses in the girders.

Tables 1 through 4 summarize the maximum stresses in the members from the finite element model. All stres'ses are within the allowables required by the job specification with a 50 ton load.

Table 5 summarizes the rope load from the finite element model.

Because of the seismic acceleration a slack rope condition was found to exist under certain conditions. This cannot be truly simulated with a linear modal analysis. However our experience with time history analyses shows that a modal analysis tends to produce conservative results. The rope load predicated by the modal analysis is well below the allo~able rope load.

Table 15 summarizes the maximum crane bridge wheel loads. When the excess dynamic rope load (that'which produces a slack rope) is deducted, a small upkick is produced by the loading conditions examined. When the wheel loads parallel to the runway are compared with the vertical wheel load times the coefficient of friction, it is found that the crane bridge will tend to slide under certain loading conditions examined. This sliding is oscillatory in nature and the loadings predicted by a modal analysis are conservative.

The reported wheel loads have been adjusted to account for frictional effects.

Although some non-linearities are produced by the specified excitations the specified linear analysis will conservatively predict the behavior of the crane during a seismic excitation.

I f '

WHITING RE 79183 DgTE 'I-9-87 BY HJiaf PAGE QF Additional information on the response af the crane may be found in Appendix 'A'.

The crane was found to meet the job specification requirements for a seismic excitation with a 50 ton load on the main hook arith a 55 ton load, the stress on girder A exceeds the allowable by less than 1X for the SSE.

~ *~

1 ~

wr

WHlTlvr.."<SGP >>l>3 OATa Gy MJ M PAGE 8 OF ~2.

ZO To~

TAO'

~AXIMUM csTHESSES. FROM.XFDAMDQ .

ODE MID 50 D s l;IRDER A ll-.!!T~! 30

lJN 311 712.

1 6137. 10502. 12184. 10191. 223 9681. 21704.

GIRD -R 8 ONE coNNOGT-aH =

47

~~i..~ss 359 2"

686.

Geo 6239.

wowie 1805.

~oo..w 10255, 147.

120c.3.

ii so 1 1835.

woe 390.

...i12225.

xese..

END COtWECT-LHE 67 3 831. 1 Q ap AcLt 2.2.3 7 X.900 P

'g O~AQl E 81'Rgg L

2,'t Hhl TAO LE 7 X IMUNMTRESSES +ROM .PFiANDS SSE HID 50 D

.~O""?O;<I:lST S~H&los:.

30 '382. 8699. 10191.

l253"'71 C~IRD R A 31 1 1971 6. 21 594. 31785 GIRDER B 47 359 13 3. 8844. 19 45. 212 l. 9681. 30902.

EblD CCiVNE "T-LHE 67 1

1523.

l.57.,9 16736.

1 94,~5S38 277. 16807.

~04390.

l 6342 -.

17197.

~S EA'ctowAB.LESTR'KS5 32.7 <>i 8 l785 972 g 2.700

)

'I VF*

I C

s'4

'll '

4

0

)

t ~

L ='i-1 6.. QR JAa.-a~1-4

~S Toe 3

TABLE I!HI TING BY REGN ~V'PI8 Ivl JM PAGE ~

DATE OF ~Z

~X IMUMMTRESSES.&310M.WF~MDQ.

QBE HID 55 D

~EIIiIODE'~ ~ATIC~UPt B6~1416..

COVPgiVENT RSS GIRDER A 30 31 1 687. 6302.

'407. 1 0859. 1 2575. 1 04'97. 2307 i.

GIRDER 8 47 359, 663. 1 0627. 1 2427. 9987. 224 4.

~D4 ~1753 1

CONNECT.-EH~~5 BG- ~144'I .

'ND FIQD CQl'lN=CT-LldE 67 253. 831. 12124. 138. 121 53. 390. 12543.

0 g E +l mW+0t- a~E~ Z.'t V~l 2807 I 94 I I

I ~ ~

~X TABLE 5 IMU-MBTJIEBBESBROMMFIBMDB

'O HID 55 SSE D

.....COMFIT!ENT . ELK'1 JIOD . SS ~TALC ~UM G INDE'! 4 GIRDER 0 EiVD CONNECT=.RHE~

Et'D CQl'lNECT-LHE 47 67

..155 511 359 253 1339.

i57~

1282.

1524.

8940.

9089.

61G 5-17199.

5~ 627~04 20387.

19944.

17 260.

22301.

21954.

1 7268.

10497.

9987.

390.

32798.

31942.

1 6776.

17657.

+~WAOl.E STRESS 32 '7 IJ I '

FORM N 210 WHITING RE .

7~ Ia~ OATE BY +~+ PAGE ~~ OF TAeI E R owe L<a 0~

lt lPS SmTIe SSE Pos sv +Ops Sr-&1 gy~DyN S~-DyN Mia OM I 2.7 57 7t -Jg li l 2.8. )32. ~ Co I 6o -3(AC@

M)g Om Z,- t'AqT SIZE Wg R~<<G C~meInf~ SVSa~C TH l2.5 T

~ ~AMATI< L I & I T ~ C X'PIK~fl4C S mzrlgyy D8F At mw~LE

=CO = i~so r I<

~ ~

WH TING REQN ~ DATE BY +J PAGE OF ScA.LE'RgT'Q Q 6K'c+vsE Sue wJ a oncoct.

J ar rHE RAIL. W HE'Z'l Z N T'K'g F~G IP= THE'RATION THK Y 0 JP~PIQN QHEhl LQAQ I H ~ H E 2. O'JRE~7ICig PxQf Q ~ ~I= lv1PPJHlt!Q TIM 2 4 T%L Co8F'F'IC(KN T' F WIC 7'>a N V HE Acc 8'L J= Q Pe LJ=M jt d H, IN TH' Y 0 Q +Q, J P(Q h/

Be THATS F'RzoJ<TE'0 OY A Ko OA.L-J YSIS ~

eZ ee ~~~y Y m<QI= MhY QE PRg F'5 p jtd N E'Q Q 'y A 4cAL,EArid/

w HAT'CQdU~YS Fog 5J I OINK- 4 < G 7++7 OZRIVV CJ +S FO~J YAWS:

W JJERK Rz Ry R~i~v&

A~TlotV F poM PJ e>TE K~~

Ao~ <N4<<Ya T'

~5 AH&

F~ ~a,x JS ~Ax

z. R~T'JdM Pl oz<ve wHFE t P'~ Q'Vf+ X

> ~>c,TJod 6Y pR t<77d hl R2 2

+ Nx' Sc,F ]g $ cAt e I=m7dR Pz ~

CO gy ggZEVV IN &

(~) KX T'H~T Ig O uZ

~o Y Fx<J~A Tlo Ng CO

FORM N 2404 TAQl g SCAPI I~

82 )c>o 2c K4 Xin fg,Q w Icw 3 M7.9 SCP AZ Rip ter.,9 2.8'2. 7 Ry K(< 3'f.7 377.O IR If>P M88 2. &73 5i SCF ~ l804

~ IL g=\~ I-

7918 )

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 07/03/06.

TABLE ¹ 7 ~

EXISTED BY ~J~ PAGE~I OF 2,7

<lE6756/MJM/AEP> DCCp TPOLLEY MID'0T LD DN / OBE '

REACTION

SUMMARY

LOAD STEP I 3 SRSS ST AT I C SUM D I FFE NODE LABEL 101 FY 861 182118. 131. 182120. -0. I 821 20. -I 821 101 FZ 6363 2264 5. 86788. 899 I 9. I 02 692. I '9261 1. I 27 101 MX 761 57 1238 391. 58556. 12386263. "30557. 12416820. -123557 102 FZ bi 34 22230. 84202. 87380. 9*898. I34278. 95 0 102 MX 39147 365501. 6315. 367655. 97029. 464684. -2706; 123 FY 0 O. 0. O. O. 0.

123 FZ 0. O. 0. O. 0. 0.

123 MX 0. O. 0. O. 0. 0.

123 MY 0. 0. 0. O. 0. ~ 0.

124 FX 343 50. I 555. I 5074. 37544. 0. 37544. -375 124 FY 0. O. 0. O. O. 0.

124 FZ 0. 0. 0. O. O. O.

124 MX 0. 0. 0. 0. 0. 0.

124 MY 0. O. 0. - O. O. 0. "

124 MZ 0. O. 0. O. O. 0.

201 FY 825. I 8261 1. 294. I 826 1 3. O. 182613. -1826 201 FZ 5866. 22803. 88075. 91168. 102714. 193882. 1 15 201 MX, 62142. 12287309. 48300. 12287561. 29639. 12317250. -122578 202 FZ 5608. 22796. 85659. 888 I 8. 96877. 105694. 80 202 MX 24203. 335544. 10095. 336567. gblbl. 432728. -2404

7

,~ ~

477 J 7 11

79I 8 0 SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 87/03/06.

TABLE ¹ 8 LS 2 MODE I SCALE FACTOR = . 1852 QY NJN PAGE I f OF 27 JE6756/MJM/AEP> DCC.'XISTED TROLLEY MID. 50T LD DN / OBE

'X'EACTION

SUMMARY

LOAD STEP I 2 3 SRSS STATIC SUM DIFFE C

NODE LABEL 101 FY 86 I. 33728. 131. 33739. -0. - 33739. -337 4 101 FZ 6363 4194. 86788. 87122. 102692. 189814. 155 101 MX 761 57 2293867. 58556. 2295878. 30557. 2326435. -22653 102 FZ 6134 4117 84282. 84b05. 9689S. 181503. I22 4 102 MX 391 47 67691 6815. 78492. 97029. 175522. 185 123 FY 0 0 0. 0. 0. 0.

123 FZ . 0. 0. 0. 0. 0. 0.

( 123 MX 0. 0. 0. 0. 0. O.

123 MY 0. 0. 0. 0. O. 0.

124 124 124 FX FY FZ 0.

0.

288.

0.

0.

I 5074.

0.

0.

37513.

0.

0.

0.

0.

3751 3.

0.

0.

-375 K 0. 0. 0. 0.

124 MY 0. O. 0. O. 0. 0 124 MZ 0. 0. 0. 0. O. 0.

33820. , 294. 33831. 0. 33831. -338 201 FZ 5S66. 4223. 88075. 88371. 102714. 191085. 143 201 MX 621 42. 2275610. 48300. 2276970. 29689. 2306659. -22472 oamz 202 ba B 24203.

. 42'+2'.

62143.

5565~5946~6877.

10095.

182823. 109 MX .

67449. 96161. 16361 0. 287 e

I 4

~ i 1

4 P;

I gJ Wt ~

e r

~ I

79't 8' SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 87/03/06.

TABLE ¹ OV ~J ~ PAGE L5 OF Z7 JE6756/MJM/AEP> DCCB EXISTED TROLLEY MID'0T LD DN / SSE REACTION

SUMMARY

LOAD STEP 2 3 SRSS STATIC 'X'.

SUM DIFFK NODE LABEL 776. 377981. 310. 377985. -0. 377985. -3779 1

101 FZ 1227! . 46999. 162950. 170036. 02692. 272728. -b73 10),MX 149223. 25706 557. 115418. 25707249, 30557, 25737806. -256766 102 FZ 11732. 46137. 158168. 165176. 9b898. 262075. -682

!02 MX 70998. 758587. 16276. 762076. 97029. 859106. -6650

~

123 FY 0. 0. 0. 0. 0. 0.

123 FZ 0. 0. 0. 0.

123 MX 0. O. 0. 0. 0. 0.

123 MY Q. 0. 0. 0. 0. 0.

124 FX 3227. 29060. 71 010. 0. 71010. -710 124 FY 0. 0. O. 0. 0.

124 FZ 0. 0. 0. 0. 0.

124 MX 0. O. 0. 0. 0. O.

124 MY 0. 0. 0. 0. O. O.

124 MZ 0. 0. 0. 0. 0. O.

201 FY  ! 698. 379004. 593. 379008. 0. 379008., -3790 201 FZ 11413. 47327. 165396. 172412. 1 027)4. 275126. -696

20) MX 126012. 25501954. 96598. 25502448. 2968'V. 25532137. -254727 202 FZ 10799. 47312. 1 60774. 1 67938. 96 877. 26481 5. -71 C 202 MX 45924. 696411. 22901. 698300. 96161. 794460. -6021

I

'l~ 'IIC 4 ml e

C 4'

'I

\

'79t8'3

~

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 87/03/06.

TABLE ¹ lO LS 2 MODE 1 SCALE'ACTOR = . 1265 aY NJM PACE IC OF 2 7 JE6756/NJM/AEP 4 D CC8 EX I ST> TROLLEY MID5 50T LD DN / SSE X I

SUMMARY

R E ACT ON LOAD STEP 3 SRSS STAT IC NODE LABEL 101 FY f778 47815. 010. 47848. =O. 47848 =4781 101 FZ 1 271. 594 5. 1 62950. 1 63520. 102692. 266 1 2. -608 101 MX 149 23. 3 51879. 115418. 3 57347. 30557. 3287904. -3 267~

102 F Z 11 732. 5836. 1 58168. 1 58710. 96898. 255608. -6181 102 MX 70998. 95961. 16276. 120475. '97029. 217505.

k'24 F'08.

-234'23 FY 0. 0. 0. 0. 0. 0.

l8~

0.

I 123 MX 0. .0. 0. 0. 0. 0.

123 MY 0. 0. 0. 0. 0. O.

1'24 I 29060. 70937. 0. 70937. -709 FY 0. 0. 0. 0. 0. 0.

124 FZ 0. 0. 0. 0. 0. 0.

+2 2I

=. ~0 ~

124 124 124 M

MY MZ 201 FZ l 888.

11413.

O.

0.

0.

O.

87%I45'FS.

5987. 165396.

O.

O.

0.

47978.

165897.

O.

O.

102714.

O.

0.

O.

0.

'.O.

47978...

268611.

-479i

-631K 08 202 F~'074~485.

201 MX MX 1260 12.

45924.

3225997.

88096.

96598.

17i0772l.

22901.

3229902.

)8T847.

101953.

2'9689.

887~58184.

96161.

3259591.

1'98114.

-320021

-8487

-575

r . ~

~

r'l co+

k\

tag

7V J.e>

SRSS-4. 3 WIRITINC CORPORATION ANGYS SRSS PROORAM 07/03/09.

'lADLE 4l ll DY +" + PAGE l7 OF L7 JED756/MJM/AEP6 DCCB EXIST> TROLLEY MID7 55T LD DN / ODE X REACTION

SUMMARY

LOAD STEP SRSS STATIC SUM . DIFFER NODE L ABEL JOI FY 861 1821 I B. J 32. 102120. -0. 1821 20.

-18216 101 61 74 -264g 89672 92694. 105194. 197888. I25(

101 l'IX 761 58 1 38 8'71. 55613. 1 386 50, 90 '70.

30557,12416808.

'7'7600. 1 876 I 0.

-123556'26.

102 FZ 5957 87288. 2 1:

~ ~

102 MX 391 73 365501. 6393. 367659. 97026. 464685. -2706:

123 FY 0 0. 0. 0. 0. 0.

123 FZ 0. 0. 0. 0. 0. 0.

~ 1 123 I'lX 0. 0. O. 0. 0. 0.

1

~ e 123 MY 0. 0. O. 0. 0. 0.

124 FX 34348. I 554. I 4 519. 37323. 0. 37323. -3736 124 FY 0. 0. 0. 0. 0. 0.

124 FZ 0.. 0. O. 0. 0. O.

124 MX O. 0. 0. 0. 0. 0.

124 MY O. O. 0. 0. O. 0.

124 MZ 0. O. 0. 0. O. O.

201 FY 825. 18261 1. 2Sg. 182613. 0. 182613. -1826 201 FZ 56 51. 22807. 90909. 93896. 105216. 199111.

201 MX 202 FZ 202 MX 621 30.

540 .

24210.

12287310.

2 335544. I 004 5.

12287553.

91649.

336566.

29692.

99379.

96 160.

12317245.

191028.

-122578'8606.

432726., -2404

~

II31'5965.

77~

I

~ W'I 3 ~ l I

1' ~

~ 8 7

C 1

61'

J%

ls 0 r ~ ~

'4 i t

V-er I t.

g sl

(g ~

79 I8 3 SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAN 8?/03/09.

TABLE 4 l2- LS 2 NODE I SCALE FACTOR = . 1902 DY MJ + PAGE )8 OF g.7 JE6756/NJN/AEPi DCCi EXISTs TROLLEY NIDi 55T LD DN / ODE 'X' REACTION SUMNARY LOAD STEP 3 SRSS STAT I C SUN D I FFEJ NODE LAPEL 101 FY Sb1. 34639. 132. 34650. -0 34650. -346'.

101 FZ 61 74. 4308. 89b72. 899'88. 105194. 195102. I 52<

101 NX 761 58. 2355797. 55613. 2357683. 30 557. 2388241. -23271:

102 FZ 5957. I 77 87288. 87FP3. 99400. 186994. IISi 102 NX 391 73. 6951 S. 6893. 80093. 97026. I?7119. I bv: j 123 FY 0. O. 0. 0. 0. 0.

123,FZ 0. 0. 0. 0. 0. 0.

123 NX 0. 0. 0. 0. 0. 0.

123 NY 0. O. 0. 0. 0. 0.

124 FX 34348. 296. 14519. 37292. 37292. -372~

124 FY 0.

j

0. 0. 0. 0. 0.

124 FZ 0. 0. 0. 0. 0. 0.

124 NX 0. 0. 0. 0. O. 0.

124 NY 0. 0. 0. 0. O. 0.

124 MZ 0. 0. 0. 0. 0. 0.

201 FY 825. 34733. 2S9. 34744. 0. 34744. -347~I 201 FZ 56 51. 4338. 90909. 91 I 87. 105216. I 96403. 1401, 201 NX 621 30. 2337046. 4596 5. 2338324. 29692. 236 801 6. -230S6:

202 FZ 54 02. 4335. 88606. BBS76. 99379. 188255. 105(

202 NX 242 10. 63820. 10045. 68993. 96160. 1651 54. 271 <

~ ~

a,

~ 4 fig

%e

~ c

~,i GRSS-4. 3 WHITING CO~RATION ANSYS SRSS PROGRAI'1 TADLE 4~1

~ DY M" ~

7V iSS 87/03/09'.

PACE )9 OF 2.7 JE6756/MJM/AEP DCC, EXIST TROLLEY MID 55T LD DN / SSE

'X'EACTION

SUMMARY

P C, LOAD STEP SRSS STATIC SUM DIFFEl, NODE LAyEL 101 FY 1775. 377980. 31 2. 377985. -0 377985.

Ce

'- 101 FZ 11939. 47pp7. 168361. 175208.

-3779'80402.

700 i 101 MX I 4'9220. 25706558. 110326. 5707228. 30557. 25737785.;256766'69962.

102 FZ 11416 46130. 163807. 170561. 99400. -71 I s 102 MX 71044 758587. 16451. 762084. 9'7026. -6650 '5 123 FY 0 0. 0. 0. 0. 0.

!23 FZ O. 0. 0. 0. 0. 0. ~

123 MX 0. 0. 0. 0. 0.

123 MY O. 0. a. 0. 0. 0.

124 FX 64709. 3226. 28081. 7061 3. 0. 7061 3. -706.

I 124 FY 0. 0. 0. O. 0. 0.

124 FZ 0. 0. 0. 0. O. 0.

124 MX 0. 0. 0. O. 0. '.

0.

124 MY 0. 0. 0. 0. 0.

124 MZ 0. 0. 0. O. 0 0.

201 FY 169'7. 379004. 584. 379008. 0. 379008. -3790(

201 FZ 11039. 47335. 170713. 17749'7. I 05216. 2827 I 3. -722(

201 MX 1259'87. 25501954. 92647. 25502434. 29'692. 255321 c~b.

202 FZ I 0436. 47305. 166302. 173214. 9'9379. -254727'7259'3.

-738:

202 MX 45928. 69641 1. 22878. 698299. 96160. 79'4459. -6021:

7t

)

.32

g ~

I ~

'l

'll

%)4

t y

'79) 8 3 SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAN 87/03/09.

TABLE 8 l l LS 2 NODE 1 SCALE FACTOR = . 1300 OY ~~M PACE ZO OF 2 7 JE6756/NJN/AEPF DCC> EXIST> TROLLEY NIDF 55T LD DN / SSE REACTION SUNNARY 'X'7+

LOAD STEP ~ 1 SRSS STATIC SUN DI FFEF NODE LA"EL IOl FV 491 37. 312. 49171. -0. 49171. -491 i 101 FZ 1 1939 I 6836 1. 1 68895. 105 l 94. 274089. -637C 101 NX 149220 3341853 110326 3347001 30 )57 3377559 '.

102 FZ 11416. 163807. 164314. 99400. 263715. -6491

-33164'997.

102 NX 71044. 98616. 16451. 122650. 97026. 219676. -256'.

123 FY 0. 0. 0. 0. 0.

123 FZ 0. 0. 0. O. 0.

123 NX . 0. 0. 0. 0. 0. 0.

123 NY 0. O. 0. 0 0. 0.

124 FX 64709. 419. 28081. 70540. 0. ~ 70540. -705<

124 FY 0. 0. 0. 0. 0. 0.

124 FZ O. 0. 0. 0. 0.

124 NX 0. O. 0. 0. 0. 0.

124 NY 0. O. 0. 0. 0. 0.

124 NZ 0. 0. 0. 0. 0. O.

201 FY 1697. 49271. 584. 49303. 0 49303 "

201 FZ 1 1039. 61 53. 170713. 105216. 276396. -6598

-493C'71180.

201 NX 125987. 331 5254. 92647. 3318940. 29692. 3348632. -328921 02 FZ 10436. 61 50. 166302. 166743. . 99379. i 266121. -6734, 202 NX 45928. 90533. 22878. 1 04063.

96 160. 200223. -79C,

~ I

~

) ~

.SA' 42

FORINT N 14$

WHIT1NG RE .

~ + OATE BY MJ M PAGE OF CRANE W EKE L Wheels On +~

l2. f IQ hald gt Je

/IV'IJeJ and Qy f~u/hPIIC Z + +tt+

J Qy X(+

Pot +r'etta ti ~<tsta~t- ~t ~M unrezkrat~j

% bee lS. 1 he. win otic vvhcel Ioo J Is Ac. It v4e- maxiinvg eonstJCVI~y ~~pter revessol ~apts H t=>> Z (Rk) Rk

'I IJ

+ < Ry as provt JQ py zo<Pu&r +rograg hatt'let )he eppltw*@9 o 6'<0~AD 'Actotr a5 pr~v'tot/z(y J~~pzJ y p~

m trt t Itt u Wl ~bee l ioo J tg phd rt Cggyi VC makl~skl, asrtSlbengp ~pl~~ ~vers<(

Fy = Ry F )< + t<~( /ne J al" W>> rrtcsve. 4e vt Ioo J+ J H/++ t On ~ +I, pivs +< ~g JiviJef 6

+"~ vi"'<l hase. ~here bo>,re Pa5t pr aced t n y d.O~pg g~V-a Ffe w +he- apphaa*~

~s previously cIe=cr iheJ.

o f +tta ~ Ic. ~ac go W R ~ + ~

WO i X'ar ~6= CO roe OiiiVt. VtttICey

'bid

~q rat.~ TeC5S 7 l ~ pntni~y~ H/Sect I oa J g $ +g~ ( j I R +s M< ff t5 gge. ~Z(state -Jym rg)

"Y 2- t<sS ~he Kx d yiJ<J 6y p >" ~ "e- <<pc pkick (F kyoto Value ~ <~6< - dynasptie in I

+ F'<<05 o N rico ugly EOvAL S tCS I'og 7Roi t.~ A7

)s

~ J RGK%

~ g 0

J s t f r ~

WHITING REQ .

OATE gy Motif PAGP 23 PF 27 ..

GEOMETRY SECTION The equipment analyzed in this report is an 'Electric Overhead is designed and rated for a capacity load of 150 tons on" on the Crane'hich main hook. 'his is based on using a new SRP design trolley the existing bridge (SfN 10038).

The mathematical model of the crane with node numbering and global coordinates is illustrated on page 26.

The boundary conditions are selected to provide the most realistic linear approximation to actual conditions in a seismic event as follows:.

NODES - 101, 102, 201, 202 UZ: Simulates wheel to rail contact in the vertical direction.

NODES 101, 201 UY Simulates the drive brake which is automatically set and which provides stability parallel the runway.

NODES - 101, 102, 201, 202 MX: Simulates the differential wheel loads of a fixed bogie truck subject to overturning.

NODE 124 UX: Simulates wheel to rail contact perpendicular to the runway.

ar ~ e WHITING REQ OATE By 'JM PAGE 24 OF The other restraints of nodes 123 and 124 were selected to simplify the analysis.

Those nodes which are coupled have the same displacement in the indicated directions only. Their displacements in all other directions are independent (released). This c<<pling is used to simulate load transfer between various components.

BRIDGE TRUCK NODES - 101-121, 102-122 UX Simulates the load transfer from the bridge wheels to the runway rail perpendicula'r the runway.

TROLLEY NODES - 371-401, 372-402, 373-403, 374-404 UZ: Simulates wheel to rail contact in the vertical direction.

NODES 371-401, 372-402 UX: Simulates the driv brake which is automatically set and which provides stability parallel the girders.

NODES - 372-402, 373-403 UY: Simulates wheel to rail contact perpendicular to the girders.

4' 0 1 ( ~

r Ql 4 II tr hU*

FORM S ZSG

]

WHITING REOt1. GATE ev H~ FAGG

+~ OF The master dynamic degrees of freedom for a reduced modal analysis are selected to obtain those modal shapes which characterize the principal vibrations of the structure. Placement is such as to include coupled modal shapes due to eccentricities. Higher degrees, of freedom were not included because they will not contribute significantly to the system response. This can be justified by the responses obtained.

The girders, and the girder end connections a'e modeled as uniform beans. The rope is modeled as a spar element which is capable of supporting axial loads only. These elements have. the properties of the corresponding parts of the actual crane. The trolley, the drive, the bridge trucks and certain short connections are modeled as rigid members capable of transmitting loads only. Lumped masses, were assigned to represent the masses of the trolley, the bridge trucks, the drive and the wheels. Additionally the beam members were assigned distributed masses.

The trolley, trucks, etc. were modeled as rigid members because past experience shows that components of this type are very stiff structures with high natural frequencies in excess of 40 Hz.

The simulation of the restraint of the crane perpendicular the runway is modeled on only one side consisting of a linear spring and two rigid beams capable of transmitting, the load to the bridge wheels. The spring stiffness is selected so that the resulting freque'ncy of the x mode yields an acceleration value from the high frequency region of the response spectrum curve. The resulting loads are distributed to the two runway rails by the 2/3, 1/3 method.

The reason for the 2/3, 1/3 distribution is to account for manufacturing tolerances in which case one end of the crane would tend to contact the runway rail before the other end. The other end would however carry a portion of the reaction due to frictional resistance to sliding before flanging of the wheels.

Although certain simplifications are employed in making the linear mathematical model, these simplifications are in accordance with accepted practice. Such simplifications are employed to provide a model solveable with available resources while predicting the seismic response with reasonable accuracy.

I I I I

I I

QC I i I I I I LgE I

(

l I 4gf I I

~ r 4C3 ~ r 3C I I

r ~ ry.

I I I 1

r qoS I l I g.S I I I I I r ffort 1 I l I ye%

3I8 I ala r I

2o\ > I'I i QQ7 I

372 i~

I m

l I ~

x

( ~ I So3 I I I I

~

1

~

I l 1 I

~ I z 4/g

+o UP 4tg y +7

$ 'OZ.

PlIIVK I I I

I I ~

I I

os a I l ~ I

~ ~

I jan+ I I I SOI', O g2

~

(

M +THE H AT) CAL .M00cL oF Ci AHa i/i ' I

~m T alii.aj AT M I g I g jq ~ I Cu-Ex>/Tl N6- BRI QG 8 I I I: ~ r 4

,i j I

I i

~

'I,'O?

I I

t ra g KW: THOL,gg'f I I

,'RHF- I g I qoc,

> I.L.e lot I L

I  : CbWQ l&t I

~,i I TRZCAL BOX GIRDER PROPERT PROGRAM l07 PROGRAM IO I-A'-I-O oi WHITING REON 7'IIG >..: GATE GT ~" I PAGE <7 OF 27]

0 nigiN.A I&Rd< N,

~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

101 ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ENTER 1 '500 1 t. R5 21 '00u 2 B 93 '1030 3 C 0 '125 4 D .3l 2$

17 '300g 5 E t7i

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

58I490 ~ 6250

$ 31~ ~ 1753 ~ >>>>>>>> $ )Q(

6I2V5 ~ 1928 596 '897 110 '250 16,680 ~ 3619 TORSIONAL'ONSTA lT (K)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

,t 1

WH!7!iuG RE DATE BY MJH PAGE Al pF 7 APPENDIX A This appendix summarizes the amplified response spectra and the modal response of the crane.

Page Table Title 2 Al Response Spectrum, OBE 3 A2 Response Spectrum, SSE 4 A3 Frequencies & Mode Coefficients, 50T OBE 5 A4 Frequencies & Mode Coefficients, 50T SSE 6 A5 Frequencies & Mode Coefficients, !55T OBE 7 A6 Frequencies & Mode Coefficients, !55T SSE

7 I 1 4 -a ~ '

fta 4

+4 c'

pf yl I*

WHITING R EON OATE t-6-87 >

4 z ~

M 7 re ~ ~ ~e ~ ee i'll.'ei!'!

~e Ilei

!i!: I;" Il! }tell ~ ~

1

~ ~ :i;';I  !. i!I li:

ili el!i < 'e llr.

lil L<

> e ee HefftCmth . y )I! I I ee I le j el ~ 'fl I .;! ij'4'fOW I' ~ ~e ,",:Pgf+I; ~ I:'! I I III le .'F~I'I I e ~ ~ le! e Ij e ~ lj L:.r':) ::I e e ~ e ~ riil leee. ,'I I ~ .'f M ee ~ e ee 'i! I-i ~ Le ~ ~' ~, LI:: age ~

e .:!.: ~ 1:;:
!
!i)i i '!

le I'Jo O'.I'

!I! ret I!!::: !el: I i)lj ej i I~ ) I~

IlI ill! e I O ij[j IIII!:;4e.i ~ I it!i,') I.'..' e ep ll)i eljlj<<l! jlleio! ill!

) ti, I I

e e ~ elf ee, elf'e '~e', .L 1 I I 1 If.:el'!!'" e e Le I j~ti i.;! I I bt "e' e He ~ ~ .il !i!I eel 'i :I!I It I ~ eJ I: lilt jie'. jz . ',fit I ~ I lice!g Ije C yl I I)jr ~~e le I ~ e e .,I: e'e 'e 'll.I <<ee ~ ~ :I~ Iiii iji:!I el Ie! el ! I I ~ "e ~ ~ "::LLt; IIJ'ei e ~ ~ ~ i i!Itil Itre tf e It:I i:}i)i ,jI ill .'IL r e I.li !I !L'lr L; ~ 'e ~ e e i"iiitj Ie ii::) III.Le.e il e I ll!:;r rI '..'-'il at I Iti ~1 ~ Ill!L)) ':!! j)il:. !q.'e!j >It!  !:! Ie I~ L ! y: li)I:1 ii:Iljir: 'ij,':r':I: ~ ~ ~ 11 I 'll: ~l! Ii: i lit I}t) I e"

r:~.u Iiiti!:  !',I L'J litj I:

F:! ll f tele! Ty .I e!.I li" I ~ e:) rl:.";!I!i II;. Ijil Ill! !:II I lji Il e z: ~ ~ I ~ e ~ e I ~ ie I 1 ill ~ \' je!I  ; II .I.': I'r.l:;

!i) Ie e I >It)

~ ~ e ~ ee el;; I cfog ~ $ eC ~7.8.'I 'I "" 2. 3 rt 5 yr y IO g.O Oo wo Wr e FREQvevCy H z. 7A@L8 A) OSE. X og, 4Q G'i fn /~~ G's = in/m" G. (s In /~~ ,00 I ~ 'f 1f tr5 F79. C l.0 384 't

2. -07 2.7. 0 ~ ~ l9,$ I2. l.O est;. f ri'7 2.~e g

,gg I ~s.8 rOC I ~.2. lg ~ 48 act.S' .v5 !7a 9 q I l,(.I,' .IS f SB,O I .)o! g8. ) ,'f7 IS/ C. l I!9 .~ re BS 7 ('80 Iv) 'f I 7 ) )i% "l ,50 I I Qe3eC !9grZ 2.et.8 ~ ,I5 .33 Lf Pl. I I 1.7 5 ]5 t4 .2.2 .l7 85 0 t:S.7 .x3 eSg gfrO q25 8 r =if :.s r r50 l93 1 lF r}3 50r 2. ,Og z.V: i 927.V c l 8 2. ~.9 )7 ~ 4r .08 V2-7 g I 4 ( I8 2. Rr. 9 3a.V 20 ~ l2 ,oB ~ 0 ~ ~ ~ h E4 I 't 1 0 C - ~ 'I 5 !'e e~ ' 7 OATE - -8T WHIT!NG RE a I ~ ~Y MJ PAGE ~+ OF e)jl Ip ij !Ill I tilt ~ ~ ttj) t rlj ft ijjt jiii t'":r !I  : .'I;e '.Ei .I[)ejjt lie! )l" I jl ~ ',I ijlj

'f'Iiei ji!}'$'.

ili .i.i. I :I ~ ~ t I a I) I Ill) i)li ~ ~ i.'!i i)"; ~ ~ ,::'::l]i!,'bi" 'ia.l ...;Ii.: el ~ ~ ~ ell .. '.I -:  : ~ el !i, ta>> L) -:.p i I e ilI ~ I~ I:: I:))'

I,'! lj),

~ ~ a)ll il,i i!! iii 0 ~ >> I~ rr::,:":-: ~~~ I Ii ")Ij I ~ t C 'll Ill) l!I)

4) J 'a. tf )!)a fit )Il

~ I) ~:I =: "..) i!itI ~ ~ ~ ~ -:S': i Hj ~ ~ I! I! ++ I'" !!! I 'l l,' i)e) ) I ~ "i': - ll Ie>> 'T ei:t ti i!'.ii!ir! j'; let alit I>> I f ii ~ ew fi I 'I! )! I! jlli ',!:i ii: f I!fj( ))i. ~ ~ It ~ I~t Nj I!I ijii ~~ >>lit ~ II I) ).)i r): I ! I ~ it ) ~ ~ .'il  : I ~ ~

It:;::i:;I I: i,!i:i elt

..-: I .' Ii ~ ~ I pffft tii, .I)) ~ 4 < 7 Seato Lo JO lt0 FAKQUENCy H z. Tee} E Az. BS f= X < 's In /Sa- g. is tq /see~ G's >n /m < I O,OI 60't lt ~ 00f ~ 3.$ 7 2.9 llZI, 73'f.2. 2 ft tl2.5 aO7 R7.0 3.85 l-9 73'6 Z. ~ I z. II+ So2. 3 3 .47 o l2. VC.'t ,o8 3oi9 .l,l7 l. 2. &3. 7 .80 Zo9 t 13 Sl. ( r f't 5+,t qoS.y 2.70 5 J.O .2.t 88.) l't tt. tip I.05 r>0 IQ .39 f3/.y 15 0 .83 GL0~7 r55 . 5'0 xo 8.7 ,3G I 39, I 2.08.7 I %2. l f. C,r.7 .59 ,3C f,o5 0 08.7 ,70 Z7O 5 laV, I L'f $ 27 7 8 I. C7 j.e X.O 1 772,g I 3,5 3 502,. I i 57, j t l 1 loi 2.0. .3G ~ 23 8'8'. 7 ~ ,!5 5f 0 2.io 'f. Q l'739. 3'b I X3 R8 9 rig 5'8'0 7'0 3,0 I i 5'jj'~ 33; ss;a 3.33 9'5 l737i v~0, 88 9 ) E h ~ fa ~ *

  • I

~ ~ 3" Cn-87" ~ L4fll TINi-0'4 'Gl'C 79I83 DA'lE f*a: 8+ 0-. ~i T.DLE Aj <<70 T- 08K AUNllARY.QF NATURAL FREQUENCIES AND NODE COEFFICIENTS - PAEPAllDO: NODE FREQUENCY NODE COEFFICIENT FOR SPECIFIED D!RECTION Hz X ~ Y z 1 1 94 ~ P 4447 104. 3000 + MAX 0. 080b

2. 77 3. 0250 AX 0. 059b 48. 28OO

.3- -- 4. 08 .-...0..6157 2720


O. 0205

0. Oib4

- 0. 0255

0. 9012 ~

4 7

5

5. 90
7. 50 O..SV....
9. 25 O.

O. 0420 0..0100

0. 013b

~

0. 1 132 Q..Q2bi
0. 0003 0.

.0.

0.

0251 0005 0087

11. 20 0. 0144 0. 0279'..0063 0. 0004 8
a. ~~ 40, 0-0104 0. 0011.

1a 10. 77 0. 1401 4 0. 0008 0. 0123

~ ~411 13 14 ib 17 19 25~

17. 55
27. 84 08~
29. 89
42. 43
52. 70
59. 49
0. 0070 000&.
0. Ooob
0. 0042 0004.
0. 0001
0. 0004 QQ02
0. 0002
0. 0099 Q 0075
0. Ooob O. OOO2

.&002

o. oooo
0. 0002 0 .QQOQ
0. OOOO
0. 0017 Q. 0005 --

0002

0. 0001 0002
0. 0002
0. 0001 QMOOO
0. 0001

~I 20 bi. 70 0. 0000 0. 0000 0. 0006

~~)B ~.. OOOO. 0. QOQO Q. OOQO

0. 0000 22 80. 51 0. 0001 0. 0001
82. 47 0. 0001 0. 0000 0. 0002 23 25 00.
93. 2b

~ 0001

0. 0000 O.. 0000
0. 0000 O.

.0001 0001 Zb 93. 30 O. 0000 O. 0000 0. 0002

~7 ~9~0 0 OOOO 0 .0000 ..0000.

28 193. 30 0. 0000 0. 0000 0. 0000 SIGNIFICANCE FACTOR 1. OOX 0. 50/ 0. 50K' INDIGATES EXPANDED I'JOD .

el

~ ~~

Pi IC I

WHITING~ON T'PI8~ DATE 8 G 87I OY IR&h PAGE A5 OF V TABLE A% $ 0 T- asE

SUMMARY

OF NATURAl FREQUENCIES AND MODE COEFFICIENTS PAEPAMDB FREQUENCY MODE COEFFICIENT FOR SPECIFIED DIRECTION

.'ODE HZ X Y z

1. 94 O. 216. 5000 + MAX 0. 1661
90. 5100 +

9229'.,

2. 77 6730 ~ MAX 0. 1118 MAX
4. OS
5. 90

.. 1,,109O O. 6661

...,., . 0.

O.

'0369 0402

0. 0464
2. 15SO ~
7. 50 O. 0988 0. 2662 0. 0586
8. 69 O. 0308 O. 0583 O. 0012 7 9. 25 0. 0297 0. 0006 0. 0193 8 11. 20 0. 0296 0. 0574 0. 0008 9 12. 48 O. 0248 0. 0126.. 0..0023 10 15. 77 O. 2637 0. 001'5 0. 0226 11 17. 55 0. 0128 0. 0181 0. 0030 12 21. 75 O. 0011 0. 0135 0, 0008 13 27. 84 0. 0011 0. 0012 0. 0004 14 29. 89 O. 0078 0. 0003 0. 0002 15 34. 08 0. 0007 0. 0003 O. OOO4
42. 43 O. OOO 0. 0001 0. 0003
52. 70 o. oooa 0. 0003 0. 0002
53. 12 0. 0004 0. 0001 O. OOO1 19 59. 49 0. 0004 0. OOOO 0. 0001 20 hi. 70 0. 0001 O. 0001 0. 0011 21 72. 68 0. 0001 0. OOOO 0. 0000 SO. 51 O. 0002 0. 0001 0. 0000 SZ. 47 O. 0002 0. 0001 O. OO03
84. 00 O. 0002 0. OOOO 0. 0002 25 93. 26 0. 0000 O. OOOO 0. 0002 26 93. 30 O. 0000 O. OOOO O. 0003 27 i 19. 10 O. 0000 O. OOOO 0. 0000 28 193. 30 0. OOOO, O. OOOO 0. 0000 SIGNIFICANCE FACTOR 1. OOX O. 5OX 0. 50/

INDICATES EXPANDED MODE

Q P

1+ '

IIHITIN+l8;"N Ti I 8~ OAT2 av NJM pAc2 Aa ov zi TABLE +S SST - ooE

.SUNDRY,MF PfhTUHALWREGUENCLES AND .PODE,COEFFICIENTS = PAEPQM)Q VODE, FREGuENCY HZ

1. 94 X
0. 4446 >>

Y, NODE CO'FF ICIENT FOR SPECIFIt:-D DIRECTION 104. 3000 >> MAX Z

0. 0833 .:j
2. hh 3. 0710 MAX 0. 0630 52. '9200 e 5j 08 OMlbl .0 .0205 0. 0285
5. 89 O. 27hL O. Oih4 Q. 9211 5 7. 50 0. 0419 O. 1132 O. 0250 8..69.. 0 0138 0. 0261 0 0005 LD LL

~2 55, 7

8

9. 25
11. 20 17.

yl8,

15. 77 O. OL3h O. 0144 0 0.124 O. 1401 O. 0070 O.

O.

0003 0279 0.. 0063 O. 0008 O. 0099 O.

O.

0087 0004 0 Q611.

0. 0123
0. 0017 0 0006 9075. . 0008 13 27. 84 Q. QQQ6 0. 0006 o. 0002
29. 89 O. 0042 O. 0002 MO 14

~AM8~

42. 43 QaayI X) .0002
0. 0001 000~
0. 0002 L3~~~

Lh O. 0001 O. OOOO 17 52. 70 O. 0004 O. 0002 0. 0001 0002 QGOQ. OOOO L9 59. 49 .

Q. 0002 O. OOOO .0. 0001 20 aL. 7O O. OOOO O. OOOO O. OOOO 21 ~2. *G. -

0 .0000 0,,9000 0000 22 80. 51 Q. 0001 O. QOQ1 0. 0000 23 82. 47 Q. 0001 O. OOOO 0. 000~~

24 8400 0, OOOL 0 OOOQ 0001.

25 93. 26 Q. 0000 0. OOOO 0. 0001 26 93. 30 0. 0000 o. oooo 0. 0002

~~ 7 23 M1 9 193.

J 0..~. 0000 30 Q. 0000 0 0000.

O. OOOO

.0 QQOQ

0. OOQO SI QNIFICANCL= FACTOR 1. 00% 0. 50% O. 50%

Ibf D.I+53.ES EXPJLlDED /tGDK

6 Q ~

tf g s k

l3

~ '

IIHJ;"iIIO 2a~N 7 flff3 DATE 3 9 5 7 DY MJhl PAG- AT OP TABLE >~ 5S 7- SSE

~VMNARY..OF..NATURALFREQUENCIESAND MODE..COEFFICIENTS ...PAEPBMDB.

MODE FREQUENCY NODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X Y z I i. V4

2. hb 4MB O. '7228
5. 7580 3.~00.

MAX '.

216. 5000 1131

.0..0369 MAX .0. 1715 9S'. 2100 0 0520 4'AX 4 5. 8'll 0. 6761 O. 0402 2. 2060 5 7. 50 O. 0986 0. 2662 0. 0583

  • 8,6P 0,0308 ~..0583 ...0012 7 P. 25 0. 0297 0. 0006 0. 0193 io 8

P~EM8 11. 20 I 5. ? 7

~MEII8

0. 029'6 O. 2637

~ 0. 0574 O.

0126 0015

o. oaos O.

-0023 022h 11 17. 55 0. 0128 0. 0181 0. 0030

)

~

1.2 21 75 0. Ooi.l 0..0135 .. 0 0008 13 27. 84 0.,0011 O. 0012 o. aoo4 i4 2'P. 89 0. 0078 O. 0003 0.

l.:

ih 35,

42. 43 03,~~007 0. 0002 0003 O. 0001

~~004 OOO2

0. 0003 17 52. 70 0. 0008 0. 0003 a. ooo 53 l+ 0 Ogpu QM.Q9 Ol lP 5P. 4P 0. 0004 0. OOOO .. a.oooi 20 61. 70 0. 0001 0. 0001 0. 0011 21 ~.P.,68 O. 0001 0..0000 MOOD.

22 80. 51 O. 0002 0. 0001 a. oooo 23 82. 47 O. 0002 0. 0001 0. 0003 94 o9 '

9.A.OZ 0,%000 F002 25 'V3. 26 O. 0000 O. OOOO 0. 0002 26 V3. 30 O. 0000 0. OOOO 0. 0003 87 28

~lP i%3, 30 lQ QMQQQ O. 0000 0.%000 O. 0000 0000.

0. 0000 ICNIFIC*NCE FACTOR l. 00/ O. 50/ 0. 50/

INDICATt:-S EXPANDED QQD

'G

<(..g ~ ~ ~

R~ef eee

1. NU.":G-0612, Control of Heavy Loads at Nuclear Power Plants, July 1980.
2. NUl ".G-0554, Single-Failure-Proof Cranes For Nuclear Power Plants, May 19> ~.
3. Enc.osure 3 of letter from NRC dated December 22, 1980 on Control of Heary Loads.

~ ~

1

~,4