ML17262A449

From kanterella
Jump to navigation Jump to search
Rev 0 to EWR-3341, Design Analysis Ginna Station Station Blackout Temp Effects on Vital Batteries.
ML17262A449
Person / Time
Site: Ginna Constellation icon.png
Issue date: 01/18/1991
From: Daniels G
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17262A448 List:
References
EWR-3341, NUDOCS 9104300400
Download: ML17262A449 (42)


Text

Design Analysis Ginna Station Station Blackout Temperature Effects on Vital Batteries Rochester Gas and, Electric Corporation 89 East Avenue Rochester, New York 14649 EWR-3341 Revision 0 November 30, 1990 Prepared by: /~i Electri l Engineer Date Reviewed by: (~- ~l- Po lectrical Engineer Date Approved by:

Manager, Electrical Engin ing Date Safety Review Changed or New Equipment/System Information Class by NS&L Re ires Co to Ginna. (Check A licable Box) (1) (Y/N)

) Setpoints (2)

(Instrument, Relief Valve, Time Delay, other) 'Y (2)

Operating Parameters NKR (Flow, Pressure, Temperature, Volume, other)

) ) Operational Restrictions NS&L review by:

Nuclear Engineer date (1) If box is checked, mark "NSR" if Nuclear Safety Related, "SS" if Safety Significant, or "NNS" if Non Nuclear Safety.

(2)

(3)

If box If Safety Class is "NSR" or "SS", review by NS&L is required.

is checked, review by NS&L is required.

Page i 9i043004000 9i0422 0 ~000244 pDR ADQCK P

Revision Status Sheet Latest Latest Latest Rev. Page Rev. Page Rev.

0 Table A5A 0 0 Table B5A 0 0 Appendix 1 0 Appendix 2 0 0

0 0

0 0

0 0

Table 1 0 Table 2 0 Table 3 0 Table 4 0 Table 5 0 Table 6 0 Table 7 Table 8 0 Table 9 0 Design Review 3341 Page ii Revision Date 0

11/30/90 42 91

Desi n Anal sis 1.0 Ob'ective The objective of this analysis is to establish the dynamic temperature response and resulting temperature extremes of the battery rooms at Ginna Station, to a Station Blackout (SBO) event, and. to evaluate the effect of the temperature changes during the assumed four hours of that event, on vital battery capacity.

2.0 Desi n In uts None 3.0 Referenced Documents 3.1 Design Analysis, Ginna Station, Sizing of Vital Batteries, EWR 3341, Rev. 0 3-12-90.

3.2 Guidelines and Technical Bases for NUMARC Initiatives, NUMARC 87-00, 7.2.2 Assessing Class IE Battery Capacity.

3.3 IEEE Recommend Practice for Maintenance Testing, of Large Lead Storage Batteries for Generating Stations, ANSI/IEEE Std. 450-1987, Table 1, Temperature Correction. Factors.

~.4 Updated Final Safety Analysis Report (UFSAR), Ginna Station, Figure 1.2-16, Control, Battery, and Relay Rooms.

3.5 Gould, Stationary Power Cells (Antimony), Type: NAX (Specifications), GB-3326C 5-74 5M.

3.6 Solidstate Controls Inc., Series SV Single and. Three Phase Static Inverters, General Specifications,81-234 9/84/IM.

3.7 Solidstate Controls Inc., SCI Series BCS Thyri-Power Battery Charger Systems, General Specifications,81-423 9/84/IM.

3.8 R. E. Ginna, Control Building Environmental Study, August 1990, Devonrue Inc.

3.9 Storage Batteries, George Wood Vinal, John Wiley & Sons,

p. 420.

3.10 Heat and Mass Transfer, Frank M. White, Addison-Wesley Publishing Co.

esign Analysis Revision 0 Page 1 WR 3341 Date 11/30/90

Assum tions 4,1 High temperatures may develop in. the battery rooms if'a SBO event occurs during hot weather. The loss of HVAC due to SBO can result in a temperature rise in the battery rooms to 107'F according to Ref. 3.8. This temperature increase will not degrade the. battery capacity (see Ref.

3.3) or result in any anomalaus battery performance in either the charge or discharge mode of operation. Certain authors (Ref. 3.9) recommend. maintaining operating battery temperatures below 110 F. Xt is therefore assumed that no battery capacity degradation occurs at the high temperature limit of this event.

4.2 The battery chargers and inverters are designed to operate in the temperature range -10'C to 40 C (14 F TO 104'F)

(see Refs. 3.6 and 3.7). The peak temperature of 107'F is above this design range hut is acceptable under the requirements of Ref. 3.2. Zt is shown in this analysis however that the heat capacity of the batteries, which was not accounted for in Ref. 3.8, significantly moderates battery room temperature transients. The lower extreme of the ambient temperature design range for the chargers and inverters is well belaw the lawest temperature that would occur in the battery room in an SBO according to this analysis. Xt is therefore assumed that ambient temperature will not prevent or degrade battery charger function as designed at the end, of the four hour SBO, or inverter function during the entire period of the event.

4.3 The vital battery load during the SBG is specified in Ref.

3.1. See Sections 1.4 and 7.2 for SBO details.

4.4 Heating for the battery rooms was installed in 1987.

Prior to this time the heat sources in the rooms were the battery chazgers, inverters, and. lights. The battery rooms, with the air handling zoom, make up the lowest level of the Control. Building. This'.space has exterior walls on. three sides and. the floor which are below grade.

The Turbine Building is on the fourth side. The Relay Room is on the floor above. Ref. 3.4 shows this arrangement. A thermal madel for this space is developed which consists of the battery room air, the batteries, and the exterior walls and floor. Heat transfer from the air to the hattezies, walls, and flaor is by natural convection. Heat transfer through the walls and floor to exterior soil is hy conduction.

4.5 The battery room temperature control system is designed. to maintain temperature at 75'F + 2 F. For the low sign Analysis Revision 0 Page 2 re 3341 Date 11/30/90

temperature SBO transients the initial temperature is assumed to be 73 F.

4. 6' search of surveillance records showed that the lowest battery room temperature documented prior to the installation of heating was 60'F. Using this steady state temperature and the heat sources available (no external heat) it is'ossible to estimate the effective exterior ambient soil temperature (34 F). This calculation is shown in Section 6. Material thermal properties for air, water, and concrete were obtained from Ref. 3.10.

4.7 Battery charger efficiency is assumed to be 90 percent (Ref. 3.7). Under normal operating conditions with the chargers supplying 100 amps (normal) this will result in approximately 1200 watts of heat dissipated into the room.

The chargers do not function during SBO.

4.8 Inverter efficiency is assumed to be 80 per cent (Ref.

3.6). The inverters operate close to their rating (7.5 KVA) normally. This results in approximately ts of dissipated heat. The inverters function de ng O.

4.9 There are 6, 40 watt fluorescent light units in A battery room and 8, 40-watt units in B battery room. Xt will be assumed. that about 300 watts of heat is due to lighting.

This lighting is lost during SBO.

5.0 Com uter Codes 5.1 Battery Room thermal transient analysis (BATRMTRS.FOR)

(SEE Appendix 1).

This is a FORTRAN program which simulates the time dependent behavior of the battery room air, battery, exterior wall temperature, under initial conditions developed in Section 6.0 of this analysis.

5.2 Load Change Report Spreadsheet (See Appendix. 2)

This is a spreadsheet program written in. the Symphony environment. Xt is documented and maintained in the Electrical Engineering Central Technical File.

6.0 ~Anal sis 6.1 Heat Transfer Model 6.1.1 The physical configuration of the battery rooms is described in Section 4.0 of this analysis. Based on this esign Analysis Revision 0 Page 3 EMR 3341 Date 11/30/90

configuration, in the absence of the battery room heater, the significant heat sources are the lights and. electxical equipment in the rooms. The principal. sources and. sinks are shown in the following sketch.

Hw Air Exterior Soil, 9 Cp~ Walls, T~

Lights & T~r C~

Equipment Battery, TBi CPA H = h A (ext. walls & floor), H = h A (Batteries)

H = A (ext. walls & floor) K (thermal conductivit of concrete) d (thickness of concrete) h and h are estimated natural convection heat transfer coefficients C , C , C are heat capacities of air, walls & floor, and batteries respectively T , T , T are temperatures of air, wall and. batteries 6.1.2 The state equations for the configuration described in 6.1.1 are,

d. T~ 1 [Q H~(T~-T ) - H~(T~-T~)]

dt CPA d T~ (T-T )

dt CPB d T (Hm(Tm Tw) Hw(Tw Tm)]

dt CPW esign Analysis Revision 0 Page 4 EWR 3341 Date 11/30/90

l 6 '.3 Heat capacity calculations.

Battery room air V ~ (Volume of (each) battery room) = 18

= 9000 ftft~

x 12.5 ft x 40f.

C [air 9 300'K (80.6'F)] = 100.5 J/Kg-K = 0.24 BTU/lb 'F p [ .

" ] = 1.177 Kg/m = .073478 lb /ft M ~ (mass of air) = V ~ p = 9000

= 661.302 ft lh ~ 073478 lh /ft, Cz ~ = M ~ C~ = 661 3 lbf4 0 24 Btu/ lh F = 158 7 Btu/4F Battery water 5 gals H 0 per cell. x, 60 cells = 300 gals Cp [H~O 9 300 K (80.6'F)] = 4177 J/Kg K = 0.9976 Btu/lb F p [ ] = 997 Kg/m = 62.24 ibm/ft 300 gal = 1.1356m~ = 40.1 ft~

(1 gal = 0.13368 ft )

C~~ = M~~62 -

C~f,~~ = 40.1 ft -

= 2489.9 .Btu/4F.

62.24 lh /ft~ 0.9976Btu/lb 'F Concrete in exterior walls and floor "B" battery room All walls and floor 1.5'hick concrete volume.

east wall 1.5 ft ft 18 ft.

ft. 40 ftft = 1080.0 south wall floor 1.5 1.5 ft.

- 18 12.5 ft.

12.5 40 'ft

= 337.5

= 750.0 ft ft*

Total = 2167.6 ft~

"A" battery room (doesn't have, east exterior wall)

Total = 1087 ft p = 2300 Kg/m~ = 143.58 lb /ft~

Cp = 880 J/Kg K = 0.2109 Btu/lb F C ( "B" battery room) = 2168 ft~ -

144 lb /ft~

0.2109 Btu/lh 'F = 65841 Btu/ F C~ ("A" battery, room) = 1087 ft - 144 lb /ft 0.2109 Btu/lb 'F = 33012 Btu/ F esign Analysis Revision 0 Page 5 EWR 3341 Date 11/30/90

6.1.4 Heat transfer coefficient estimates "B" battery room A (exterior wall area) = 18' 12.5'south wall) +

18' 40'east wall) = 945 ft~

A (floor area) = 12.5 z 40 = 500 ft~

Total = 1445 ft~

"A" battery room (doesn't have east ezt. wall)

Total = 725 ft estimate h wall = SW/m~ K = 0.8805 Btu/hr F ft~

H ("B" battery room = hA = 1272 Btu/hr'F H~ ("A" battery room = hA = 638 Btu/hr F "

Batteries (60 cells in each battery) cell vertical surface area (neglect horizontal area)

Cell Area = (22.125" 14 5" + 22.125" 7.375") = 6.72 ft~

Battery Area = 60 - 6.72 = 403 ft~

H = hA (battery) = .881 Btu/hrft~'F - 403 ft~ ~note: assume

= 335 Btu/hr F same h walls)

Conductive heat transfer through walls Qi H = A (ext wall) K (thermal conductivit of concrete) d (thickness of concrete)

H ("B" battery room) = 1445 ft 0.5778 Btu/hr ft F 1.5 ft

-- 557 Btu/hr'F Hw ("A" battery room) = 279 Btu/hr F 6.1.5 initial conditions for the SBO cooldown are calculated

'he as follows:

Assuming all heat is dissipated. to exterior walls and floor, total heat entering room to maintain 73 F (T )

air temperature is given by, Q = H~ . Hw (T~ Tm)

H~+ H~

W To find T consider the. steady state conditions before heating was installed, (Q = 10236 Btu/hr) esign Analysis Revision 0 Page 6 EWR 3341 Date 11/30/90

(T - T) air-wall hA HA 10236 Btu/hr = 8.045'F 1272 Btu/hr'F This would yield a wall temperature Tw = T~ - & 045 = 60 p 8 p =

~ 52 p The external temperature can then be estimated from, 10236 Btu/hr = 7.0837 Btu/hr ft~

ex@ ox'Am 1445 ft 4'

= 7. 0837 x 1. 5

.5778 1& 39oP The =ketch below shows the steady state temperature distribution for the."unheated" battery room.

<<exterior 60op ~

battery air temp.

room ,wall ie 1.5 ft. I 52'F T T external soil temp Tm = Tw 18 '9oF = 52 F 18 39+ = 33 61 F Since accuracy is no better than two significant figures:

T~ = 34'F The total heat required to maintain the battery room at 73'F and the initial wall temperature can now be estimated.

esign Analysis Revision 0 Page 7 EWR 3341 Date 11/30/90

0 Q = 1272 x 557 (73 F 34 F) =- 15108 Btu/hr 1272 + 557 Note that this is 4872 Btu/hr larger than the internal heat sources. The battery room heater provides the additional heat.

The initial steady state wall temperature can now be calculated T~ = T~ - +

HA

= 73 15108 = 73 1272

- 11.9 = 61 14F 6.1. 6 Computer Code Development A FORTRAN program was written, using the state equations from Section 6.1.2. The difference equations were developed using the modified Euler-Gauss method. which provides reasonable ((10~) accuracy for this type of calculation. The source code for this program is given in Appendix 1.

6.2 Battery Capacity Evaluation 6.2.1 The effect of battery room caoldown during SBO on battery capacity is evaluated using the methads developed for battery sizing analyses (Ref.. 3.1) and. electrolyte temperature correction factars (Ref. 3.3). The temperature correction factors are used to madify (increase) the actual battery load ta create a temperature corrected, load.. These connected loads are then used. in the battery sizing analysis.

6.2.2 s.n order to simplify battery capacity calculations, cooling is modeled as a step function. Xt is assumed. that temperature daes not change during the first hour of the SBO, and then drops to a lower, constant value, for the last three hours. The value of the final temperature is lowered until the battery capacity is exceeded. This is then considered. to be the limiting temperature for operation. The conservatism of this approach is evaluated by comparing the "step" temperature model with the continuous temperature drop data from the thermal analysis.

6.2.3 The battery capacity calculation is performed. using the Load Change Report Spreadsheet. This program is written in the Symphony environment and is maintained: in the Electrical Engineering Central File. The primary use of esign Analysis Revision 0 Page 8 ERR 3341 Date 11/30/90

this program is in evaluation of prapased and actual d,.c.

load. changes on. battery capacity margin. In this analysis it is used as descrihecL in 6.2.1 and. 6.2.2 to evaluate temperature effects on vital battery capacity margin. Use of the program is described.. in. Appendix 2.

7.0 Results 7.1 Tables 1, 2, and, 3 show the temperature of battery room air, battery cells, and exterior walls. during one minute, ten minute, and five hour periads after initiation af Station Blackout. The battery temperature after four hours is about 71.&'F.

7.2 The temperature correction factar fram Ref. 3.3 for 71.8 is ahaut 1.034. The battery sizing analyses yield maximum cell "B" size correction factars of 1.64 and. 1.10 for the "A" and. batteries respectively (see Ref. 3.'1). Since bath of these results exceed the required temperature correction of 1.034, it is concluded. that the battery capacity meets the SBO 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> caping requirement. The cell sizing calculations are shawn in. Tables A5A and BSA.

7.3 The transient thermal respanse of the battery room environment predicted hy this analysis is significantly slower than the predicted in. Ref. 3.8. Since Ref. 3.8 acMresses loss of HVAC and resulting heating ia. hat weather, the results do not directly conflict with those presented here. Hawever applicatian. of the heat transfer model used. in this analysis, to the heatup problem results in a much slower, response.

7.4 Although outside the formal. scope of this analysis, the model developed. here is applied. to battery room heat up for the case in which external soil temperature is. 75 F and the initial steady state battery raom temperature is 75'F. Both SBO and loss of offsite power are considered.

Although refinements to the model would increase the accuracy, the physical processes which cantrol the temperature transient aze made cleaz. The battery raom temperature remains below 90'F in either case (Tables 4-9).

sign Analysis Revision 0 Page 9 EWR 3341 Date 11/30/90

Batte. y Roam tLermai t.. andri ent anal ysi s PRINT ~ 'ENTEP. T.i'!E iHTERVAL IN HINUTEH

~

(-::, 0> DELT

'EAD PRINT +, 'NTEP. PP INT INTERVAL ihl i IIhlUTEB

'EAD

(:-: ) 20> P FORNAT ( FB. ~

PRINT '4, 'EhlTEP. TOTAL TINE I  ! HIhlUTES

(;;, ~0 > TOT

'EAD F(3RNAT FS. ~

!'!= I hlT ( P / DE LT:

TB=TA DO 60 K=0.! l

Hi= (: /CPL'J>+ (HA~ (TA-TvJ) -Ht>J+ (Ttv'-TE> )

TA1=TA+DELT'~FI tJ i =T4J-DELT::HI rai=rB+t>ELT~.ar

!" i 1= < 1/CPA> " (Qi>TBQ- <HA+HB> +TAi+HB+TBi+HA+Tt'Ji >

~ '-i I-- <

/CPB> ~ (TAI-'TBi >

tiJ/q tHA~4 <tat I!!Ja) ~ Jill+ < I. ~,1 7f- i ~

I l~J=- TJ>J+ (OE'. ". ) ": < H I +HI ) i n" p  %~GELT>

~ ".0> JT I l IlJE i'~PEtl <  ! 'NIT:=10  !=ILE---'BAT tJTt1P GUT' T I I I Nq 'g ltV

'-'. Rt'!AT '. ': F.. - . < ~ Fi -.

t QNTItiUE Ei Jt>

Type 4: Ccapcrcer Software Pacha'ummary or ~@san S~~ BIOd~~E~S Vi&,(

Taenia aa Reparc

~~f'l~ Q On

~uth r G.K,i)an(e,tS

<<rifkcncian a8 program (s)

((( Saaa aa pzaazzz ~Wg~((( (F(a(~ ~~~

zz~aa ((ac'((aber aaazaa aaaa laaazzaa( Qf+ac4d)

(3) @learnt~ Bane>

IK ~annn in tax@. pnme g. 6, )(

ence HGHQ/l3 g SQT~QQQ(

4)

Ce AQiQon -lges eq NumerxcaL Meehan tJsect

~

(

((.( aazazzzzcaa= S'econd Order'~)

Reference +'AC ~ Nurnero C0- H <fhoJ+ I lAJ<+del t=. &mme~ grpn%icg - Ha.I{ zeal(-.

(~) orner

'AD CRAH6E REPQRT 1 of 4

'4!<AL PATirRy 3 IPggT SJ41 lg A ~

02/09!90'ASE PRlMT DATEl 07/06/90 PREADSH ET !NSTRUCT!<<<~!S gave che users '.he procedure and oocuaentation regutresents fo. using the Load Change

.eport :preadsheet. .'.is spreadsneet calculates '.he re;uired cel! si:e of Sinna Sta'.ion gita! aacterv 8 based on oresens loads. Syaphony vers:on 2.0 was used to perfors the

!cu!=ta:ns. ,e Synphony !i!e is LCR 3!B.RRl.

~ l<<Pf 0<< il\ ~

.. .;ad Svaononv, :.;en reer'.eve LCR 8!S. Enter each load aodation or deletion as a separate

<;so on a<<e 2. sing the referenced Elec:r:ca! Load Chanoe (ELC) fore as !he source

ccuaenc, ~"'.ach ai! referenced KLC foras to this resort.

". .> obtain t;e hara copxes of Load Change Reoort paqes 1,

" and 3, hold down the ALT key

'<ile scrawling the P xey, The upoated report wall be autoeatically saved. Next, t;<e screen

~c)1 :how the forI an the Allways Application. Hit F10, select P for print, and 6 for go.

. '.o exit Al!ways. hst F10, select Q to quit. After it has returned to Syephony, exit Syaphony. 'he Syaphony Access System aenu should appear on the screen.

>. To obtain :he hard copy of Load Chanqe Report page 4, select 'PRKHT6RAPH'roa the Svaphony Access menu. Use 1oage-Select to retrieve F151!.P!C. Select Settir<gs, iaage, 2 Full ult Quit Quit and 6o.

J. ..-.'; '""R<'N<GRAPH'. .;e Syophony Access Systea nenu should reaopear on the screen.

~ aase caco Ln 5'nd, ALT ." can oniv be used once. lf '.he user washes to get another

rintcu . 2 Ruse use <<LT-'A instead of ALT-?< because the Ai!ways Application need oniv e act ad once. 'LT-N wil! function the saoe as A<LT-? except at won't attach Al'.ways

-gain.

O~CU<1EHTAT!ON REQUIRE< ENTS!

'<. .he current revue!on of this reoort dated 02/09/90 pages 1 through 4 and a-.ac<led ELC -:oras s<<ail be filed in the E!actri al Engineer:nq Central Technxcal Fi'.e.

J enc rav:sion Gt this report::- referenced bv the fol!owing documents:n '.he

=!=ocr:cai Engineering Centra! Technicai .'i!e.'.

DS-!61 ':ndex -:.=ctrical Engineer.nq Central Technical Fi!e'.

EDS-i.P "Design v'erif'.cation <iodel'

7iem >> (V1P/t) tmDls I F) 70 502 -6

~ 7Z. 00000 60.997aZ 69.00722. 7Z. 00000 60.99089 68.1022K 7~.00000 60. 98219 20 67: 55907 7Z. 00000 60.97?14

~ >> 5 67.2>011 7~.00000 60. 96130

.ZO 67.02943 . 3. 00000 b0.94999

>> 35 66.90551 73.00000 60.93840

.40 66.82753 7~'.00000 60.9266K

. 45 66.77712 73.00000 60.91481 I

0 66. 74 ~16 7Z. 00009 60.90298 66.71911 7a 00000 60.89116

.60 66.70100 7~.00000 60.87933

~ &5 66.6864~ 73;00000 60.86750

~ 70 66.67400 7~.00000 60.85568

.75 66 66286 7Ã.00000 60.84>85

.GO 66.6524< 7~.00000 *O.=.:20~

,$ 5 66.64251 7Z 00000 60.82020 7 .00000 60.80838

  • 6. 623.~9 73.00000 60 79655

(o 66 '1121 72 99786 60.78171 42575 72 99S54 0 60.54597

66. 24506 72 9,9281

~ 60.71615

4. 00 66.06881 r 989?2 '60. 09~1~
5. 00 65.$ 9697 72 s 98664 59.$ 7272
6. 00 65.7294> 7 .) +8~56 59 '6082
7. 00 65.S6610 72 98048 59.4572$
8. 00 *5.40685 74 977~9

~

c + ~L 094

9. 00 65. "5159 7 97471

~ 9.05=-70

10. 00 65.1002K 72 97123

~ 5$ .$ 6142

lime Ger'n j Tai ('<) ~wall f "6

10. 00 1 65 ~ 1 455 72.97150 58.87875
20. 00 62.79964 72.92719 57 '1142

~0. 00 62.77537 72. 8'?900 55 9i5i

40. 00 bi.97540 72.85620 54.90628
50. 00 61.34925 72.8103$ 54 '2008 60 00

~ 60.85844 72.76456 SMa50659

70. 00 60.4726'? 72.7187~ SZ.02711
80. 00 60. 167~2 72.66805 52.6515~
90. 00 59. ?2418 72.61459 52.25611 100 00F 59 7 "o76 72. Sb 1 l.~ c2 ing9a iiO 00 59. 57317 72 a 5070 I 51. 9>798 i "0. 00 59.44592 72. 45421 51.79042 vZO. 00 59. ~4149 72.40075 5i.67204 140. 00 59. 25470 72.24729 51.5761i 150. 00 59. 18159 72. 29 ~BZ 51.49770 j.60. 00 59.11912'9.06509
72. 240 i7 5/ 1 ~ 4i328 170.00 72 '8691 Si. ~7872 1$ 0.00 59.01731 72..1a745 5 1 QMZcl~~

a 1?0. 00 5$ . 97448 07999 5i.29280

00. 00 SB. 9 <<545 . =.. 02654 51. 25780

"..1 0 00 58 $ 9965 r 1. o7:0$

22000 58. Bbo:8 71 o iob'" 51.19926 0th 58.$ 2~85 i.$ 6616 51. 1727

.'"40. 00 58.$ 042$ 71.$ 1270 51.14984

.50 00F 5$ .7r470 71.75924 5i. 1269 ~

.60. 00 58. 7454K 71. 70578 51. 1044 ~

70. 00 58. r i 882 71. 65232 51.08574
0. 00 58.6922~ 71. 59886 51.06625 "90. <30 58.6o564 71.54540 5i.047ib

..;00. 0.3 8 'M9'JS 71. 49194 51.02806

T'~Gin) (air.

10. 00 78 '7565 7l 01507 76.0667~
20. 00 7n.6-.584 75 0~034

~ 76>>9048$ '8<t+g room I e~W

.=<<0. 00 80. 15108 75 05125

~ /7 '564/

40 .00 8<3 55m / U a 75 074 1'6

~ '78.06>$ $ Rp U,Her GHO cad<hwg 0 .00 80.86861 75. 09707 78.45927 6<3 ~ <.kO 81.11547 7c 11998 78.76781 IRPATr X.FaR T

<3 .00 81. '09~~ /5>> 1428? 79.00887 C'

$ 0 ~ OO 81.462~1 7 W 16580

~ 79.1'?768

.00 8 1 . 8344 75 18871

~ 79.~4587

'00 00 81. 68002 75. 21162 79.46278 110 .00 8 1 . 75716 75. n.454 79.55487 120 .00 81.$ 1980 75 25745 a 79.62840 1.~0 . 00 81. 87025 75. 28026 79.68658 140 .00 81.91272 75 20~27 a 79.7~428 1 0 (3<3 81.947S5 7'>> >2618 79./7272 160 00 81.97692 75. 24909 79.80743

'. 70 >>00 $ 2. 00185 77200 R BnHn+

180 OO hO 82.02476 /5 w9491

~ /9. $ 5181 e

Q4 <<57 75 41782 869~n

'.lO ) i(3 >

=2.06051 e t "40 7'?.$ 8467

.'! A ~f 077--5 /5e 46~65 Snn94 On 4 n 48656 79.91521 I<< ~ vnv J /<<h>> VV'/ >>sr aha'\ a >>ah

.'"=40 . 0<3 82. 1179.e /5 ~ MM~&8 79. 9 .24

"'50 00 82. 1288? 75. cgn I <

79.94006

.00 82. 1 ~986 75. 57820 79.94770

.00 82 e 1 tJOH<<k /5>> 60111 79.95534

. OO $ 2.16180 /5 ~ 7nen629/

- 00 82. 172/8 75. 64697 7n.'?7061

.'""00 . 00 82a 18M/ /5 66985

~ 7'9. 97825

~a4 Ie

i

~ lYAC (g1Q] Tour

'. 00 /~ 001~4 I 5e 1 O'F72

"'. 00 78.~158= 75 ~ 00288 J ~ 2825

.=.. 00 75. 00.%42 / I IJ 34.~80

<. 00 78. O'P5.>b 75 005~v'b /3 45b45

5. Oo 78.=31/b 75 007 0 75. 5bb27 Ia ~ 00 /S.bb 00904 /5s b/4 I IJL 7' ~<>i( 7~ 01058 75. 777b7 IJ( 78.8281+ /5 87940

~

J. 00 78.'70b22 /5 01Zbb /2 ~7857

~

10. 00 78.982w5 7I 0 01521 7b. 07@'gt

Projccti Ginna Station Vital Battery A Date 02l09l90 Pago 3 of 4 Lowest Expected Minimum Cdl Cdl Elcctrolytc Temp (F): 73 Cdl Voltage: 1.75 Mfg: GNB Typo: NAX 1200 By: GWD (3) (4) (5) (6) (7)

Change in Duration Time to End Capacity at Required Section Size Load Load of Period of Section (3)x(6) =Rated Amp Hours Period (ampcrcs) (ampetcs) (minutes) (minutes) K Factor(KT) Pos Values Neg Values Section I First Period Only If A2 is grcatcr than Al, go to Section 2.

I Al 962 AI4~ 962 Ml I T=MI= I 0.882353 Sce I Total $4$ .82 Section 2 First Two Periods Only If A3 is greater than A2, go to Section 3.

I Al 962 AI4~ 962 Ml I T=MI+M2 3 0.918774 8$ 3.86 2 A2 623 A2-Al -339 M2 2 T=M2= 2 0.900574 0 -305.29 Scc Subtotal 883.86 -305.29 2 Total 578.57 ~ ~

Section 3 First Thrcc Periods Only lf A4 is grcatcr than A3, go to Section 4 Al 962 AI4~ 962 Ml I T~ M I+... 12 1.079923 1038.89 A2 623 A2-Al -339 M2 2 T~ M2+M3 11 1.062346 -360. 14 A3 507 A3-A2 -116 M3 9 T=M3= 9 1.026912 -119.12 Scc Subtotal 1038.89 <79.26 3 Total 559.63 0 ~

Section -

4 First Four Periods Only If AS is grcatcr than A4. go to Section 5.

I Al 1081. AI4~ 1081 Ml I T~MI+... 60 2162.72 2 A2 623 A2-Al <58. M2 2 T~M2+... 59 1.973431 -904,54 3 A3 507 A3-A2 -116 M3 9 T~M3+M4 57 1.921919 -222.94 4 A4 589.3 A4-A3 82.3 M4 48 T~M4~ 48 1.714833 141.24 Sco Subtotal 2303.96 -1127.48 4 Total 1176.48 aeo Section 5 First Five Periods Only If A6 o to Section 6.

Al Ml T~MI+...

A2-Al T~M2+...

M3 T~M3+...

A4 A4-A3 T~M4+M5 A5-A4 MS T~M5=

Sce Subtotal 5 Total Section 6 First Six Periods Only - If A7 is greater than A6, ski p this Section.

I Al 1081. AI4~ 1081 Ml I T=MI+... 240 4.724: 5108.35 2 A2 623 A2-Al P58. M2 2 T=M2,+ ... 239 4.706 -2157.05 3 A3 507 A3-A2 -116 M3 9 T=M3+... 237 4.671 -541.84 4 A4 470 A4-A3 -37 M4 48 T=M4+... 228 4.518 -167.17 5 AS 173.3 A5-A4-296. M5 179 T=M5+M6 180 -1140.87 6 A6 258.4 A6-A5 85.0 M6 I T~M6~ I 0.88235 75.04 Sce Subtotal 5183.39 6 Total 1176.46 Maximum Section Size 1176 + Random Section Size 0 = Uncorrcctcd Size (US) 1176 (US) 1176 x Temp Corr 1.02x Design Marg I x Aging Factor 1.0 = 1200 Rcquircd cell size ~ 1200 Ampere Hours. Cell 1200 is installed.

Cdl size correction factor for first hour~ 1.253959635 Cdl size correction factor for last 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />s= 1.635491325 CELL SIZING WORK SHEET TABLE ASA

Project: Ginna Station Vital Battery B Date Pago 3 of 4 Lowest Expected Minimum Cdl Cell Electrolyte Temp (F): 73 Cdl Voltage: 1.75 Mfg: GNB Type: NAX 1200 By: GWD (2) (3) (4) (5) (6) (7)

Chango in Duration Time to End Capacity at Required Section Sizo Load Load of Period of Section T Mn Rate (3)x(6) ~Rated Amp Hours Period (ampcrcs) (arnpcres) (minutes) (minutes) K Factor(KT) Pos Values Neg ValuesSection I First Period Only If A2 is greater than Al, go to Section 2.

I Al 1186 AW)= 1186 Ml I T=MI= I 0.&82353 1046 47 see Sec I Total 1046.47 a e ~

Section 2 First Two Periods Only If A3 is greater than A2, go to Section 3.

I Al 1186 A14~ 1186 Ml I T=MI+M2 3 0.918774 1089.67 2 A2'92 A2-Al 494 M2 2 T=M2= 2 0.900574 Sce Subtotal 1089.67 2 Total 464.67 a ~ e Section 3 First Three Periods Only If A4 is grcatcr than A3, go to Section 4 Al 1186 AW)= 1186 Ml I T~MI+... 12 1.079923 1280.79 A2 492 A2-Al 494 M2 2 T=M2+M3 I I 1.062346 -737.27 A3 248 A3-A2 -244 M3 9 T=M3~ 9 1.026912 -250.57 Sce Subtotal 1280.79 -987.84 3 Total 292.95 ~ ~ t Section 4 First Four Periods Only If AS is grcatcr than A4, go to Section 5.

Al AI= Ml T~M I+...

2, A2-Al T~M2+...

T~M3+M4 A4 M4 T~M4=

Sec Subtotal 4 Total a ~ 0 Section 5 First Five Periods Only If A6 is grcatcr than AS, go to Section 6.

I AI 1186 AIM~ 1186 Ml I T~MI+... 240 4.724 5602.66 2 A2 492 A2-Al -694 M2 2 T~M2+... 239 4.706 -3265.96 3 A3 248 A3-A2 -244 M3 9 T=M3+... 237 4.671 -1139.72 4 A4 232.2 A4-A3 -15.7 M4 227 T=M4+MS 228 4.518 -71.01 5 AS 289.5 A5-A4 57.2 M5 I T=MS= I 0.88235 50.51 See Subtotal 5653.17 M76.69 5 Total I 176.48 Section 6 First Six Periods Only If A7 is grcatcr than A6, ski p this Section.

I Al Ml T~MI+...

A2-Al T=M2+..

3 A3 T~M3+...

4 A4 M4 T=M4+...

5 A5 A5-A4 M5 T=M5+M6 6 A6 M6 T~M6~

See Subtotal 6 Total Maximum Section Size 1176 + Random Section Size 0 = Uncorrcctcd Size (U S) 1176 (US) 1176 x Temp Corr 1.02 x Design Marg I x Aging Factor 1.0= 1200 Required cell size = 1200 Ampere Hours. Cdl 1200 is installed.

Cdl size correction factor for last 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />s=. 1.100861486 CELL SIZING WORK SHEET TABLE BSA

YtteQ. gnin

.05 j 76. 441 52 (ep)

/5. 00002 75.0v185 ~Q CgdiH os 77 -.. Z7'7

~ 75 00006 75.00620

,)0

/7 64'750 vGGil 75.0 ~

1'?0 t.nq4. R R..

/ / 882~7 /54 00016 75. 018~1

~ 25 .8. 010?: /54 00025 75. 02511

..>0 :B. 08307 /I IJ4 000.4 /~ 0;%1 1 4 Z5 78. 1: 46< /5 0"'5.

~

0004;.'005~

GZ'?22

~ 40 7$ .

498.> 75 046&8

  • I+5 78. 16602 v0062 , 5 05w57

~ 50 78 17778 75>> 00071 75.06075

~ 55 78. 18611 75. 00080 75.0674

.6G 78 75. 000$ ? /5. 0751 ~

78. 1'7'7~7
78. 20610

'v

/I 5 000'7$ 75. 0$ 2 ii 0010$ 75. 08'P4?

4 'I

73. P%4 ) Qg /5 00117

~ 75.09*6>

78. ')1 / /I4 !5. 001 6 75 10~77 QC

/ +4 I GA 1:.5 /Q

~ I

~ 1

~l } 78. QQQGEP I"/iM~ v0144 7Q4 1 05

~I C'/I i 7w I ~ /I-I P 0 >15."; /Qe 4 J.

Tiv e(m n) I u.lv- T b{ Wv:leg-.

10. 00 82. 950'?4 75.02875 l7

".:0. 00 75. 06347 78. 80965 Hd4 g I{ ooyn h~4 Hp

. 0.00 $ 5.30215 '75. 10165 $ 0. 11215 u~der Loss of- Qfkike=

40. 00 86. 10*r 2 75.14521 Sl. 12765 5{.) ~ {g {Q 86. jw634 75. 1910 $ 1. 91826 ~~.(re((UAc)~~ {.;
60. 00

. 0.00

$ 7 - "~$

61762 '7.

75..8268

'5.22685 5:"519 BZ. 01722

'Si%A~K'.z, i~

SO. 00 $ 7. '?252$ /5a NDQ/ $ 3. =9511

-.O. 00 $ 8.16986 SZ. 6922 100- 00 $ 8.26520 75.44271 BZ. 92681 110.00 $ 8.52269 75.49617 $ 4. 112HZ "20. 00 88.65060 75. 54'?6 84. 26115 1~0. 00 8$ 75.60i09 84. 28007 140. OO 88.84270 75.65655 $ 4. 47*6"

'0- 00 88.91605 75.71001 $ 4. 555"4 160. 0{} 88.97$ 6 75.76a47 84. 6202$

'r /O. {){F {i '20 75.81693 (Q4 180 OV 89. OFs102 75.870~$ $ 4. 721 ~9 5'.!J- OV Q r>;~<<r pg 75. 9~(..84 $ 4. r6046

'Jlrw ~g I

?r <</~~2/.

I

84. 7'?556

~ ~ i!9. 1'."801 7!). 0~076 $ 4. $ 2610

~ rl r 8 2M& MQ :6.G8422 84. Shb&M

'vr i 'A..~ r ~55 $ &w

$ 9 2~254 76;19114 84 902 1 250.00 8'?.22211 76.24460 84. 92506 260.Co 89.35170 r6.2'?$ 06 $ 4. 94798

~0. 00 8'?. ~$ 127 76.~5152 84. 97089

0. 00 89. 4102 7 76.404@8 84. 9'? >06

'-'90. 00 8'?. 43585 b. 4 844 $ 5. 01086

~00 Oig $ 9. 46143 76.51189 85. 02866

Time(t <<) T(x'ir Loss o4 QRq,'<~ Po~r Gi. 44488 75>> 00214 75. 21'?4 1 CQYgltWLQAQ 81.6>1=7 75. 00446 75.45647 81>>8l "ii 75 00745

~ 75.68755 QgvRA92z,~

4.00 81. 'P'POZ4 '75 010-=

~ 75.'91283

5. 00 82.16~15 75. 01261 76.1a244 S. 00 82.~3160 75 01669

~ 76. 2465 i

00

~ 82.49586 75 01 778

~ 76>> 2)5525 G. 00 82.65K'8 75>> 02. $ 6 76.75872 00 8 .. $ 1212 75." 025'74 76.95706

10. 00 %64 15 02'702 77.15042

YI e e (n ') +a> v +4+qv Ie>

77.88704 75.0000=- 75. 00 ~71 Lass of Quasi@ P~e-7'P.44758 75.000i2 r 5. 01240 Qorgct ~~

5 80 2%SNA 75.00024 ~

/W ~ OQ~M

~ <<D/ /

80.7647: 75.000mB -75. 0 66 i 9ATRNi R+ R'-R.

I 25 Si. 02184 / 5>> 00052 75.05020

.:-0 81.166i2 75.00066 7 .064 1 F

~5 8 i. 2 1'P,iS r5.0007'P 7 .07842 40 8 7~ AOA=. 75. 0~~274

. 45 75.00107 75.00i2i 75 '07ii 0 81. a5470 75.12i48 Bi.37216 75.00174 75.1~586

. 60 81.38678 75.00148 75.1502~

,65 81.~-.~86 75.00162 75 i6458

.70 81.41210 75. 00i75 75. 1r 8'Pl g /5 81.42287 75. 0018'P 75.19w2w

.80 81. 4,>5~'P 75. 00.0~ 75.20751 a I 5 Bi.44*76 7c; OOM 1 r Qo 4 7P

.VO Sf 45805 5 00 "~0 75. 2:"60

,5.00244 Ale

f WW c.i > mc qf OAD CHANGE REPORT rAGE 1 of 4 VITAL BATTERY A PRINT DATE: 01/23/91 ENR 33sl REPORT DATE: 01/23/91

PREADSHEET INSTRUCTIONS OBIECTIVE:

To give the users the procedure ana documentation reouireaents for using tne Lead Change Report Spreadsheet. This spreadsheet calculates the reouired cell size of Ginna Station Vital battery A, based on present loads. :vmphonv version 2.0 uas used to oerform the calculations. The Svaphonv file is LCR 81A.MRI.

PROCEDURE:

1. Load Svmpnony, then retrieve CCR BIA :nter !ach load addition'or deletion as a separate

~

line item on page 2. ;sing the referenced Electrical Load Change (ELC) form as the source document. Attach ail r!ferenced cLC '.orms to this report.

.'. :o obtain 0'ard copies ot Lo d Chang! Report pages 1. . and 3, hotd doun the ALT kev

.hile str:king tne P kev. ".,! updated r!port ui 'e automaticailv saved. Next. :h! scr!!n gill shou tne form in th! Ailvavs Appixcation. Nit F10. se ect P for print. and G for go.

To exit AIIUavs, hi't F10. s!1!Ct 0 .'uit. After !'. ".as returned to Symphony, exit Symohony. '.he symphony Access System menu should appear on the screen.

=!!ase veep in mind, AL;-p csn only oe used once. .". '.he user uishes to get another printout. he must use ALT-N instead of ".T-P, because '.n! A!luavs Aoplication need only

attacreo once. ALT-N vill function :.". same as ALT-P !xcept it ;or.". attach Allvavs sg xn.

OOCUNENTAT ION REQUIREHENTS:

. The current r!vision o.'.his r!port dated 01/23/91 .pages 1 '.hrough 4 and attached ELC forms sr,all b! !i!ed in the EI!c'.ricai Engineerirg Centre! Technical; I!e.
. lhe current revision of this report is ref!rencea bv '.he folloving aocuments in :ne Electrical Engineering Central Technicai ii!!:

'.. KDG-ISI ".n:ex - =I!ctrical Engineerxng Central echnical F i 1!

'. EDG-15B 'Design Veri cst!on .".oaei'

OAO CHANGE RFPORT PAGE 2 :f 4 VITAL BATTERY A PRINT DATE: O.'/23/91 fWR 3341 BY: :AY REPORT DATE: 01/23/91 BASED ON BATTERY SI21ttG ANALYSIS REV 0, EWR 3341, APPROVEO 3/12/90 UPDATED fOR EWRS:

EWR ELC ELC LOAD OC (LOAD AttPS, ',-) =DELETE j REPORT SIZED Itt SERVICE No. RE DATE NAttE PANEL L2 L3 L4 ' L5 OA'TE BY DATE

( 3341 N/A N/A INITIAL N/A 106 364 37 116 339 5? 02/09/90 GWD I

I

'4756 N/A N/A ANN ALARtt ttCB PANEL 1A 0.2 07/06/90 PHS :7/31/90 l 4968 0 01/04/9 72/EOP OCPOPCB02A -364 -261 01/11/91 JAY 04/20/91 l s 4773 0 Ol/23/ 0 INVCVT-lA DCPDPCB03A -2.24 01/23/91 JAY '.4/22/91 ',

'773 0 01/23 INVCVT-lA OCPDPCB03A 10.09 01/23/91 JAY 04/22/91  ;

~ I TOTALS Ll= 114 F 05 Ai=L)s. .LS=

~ 345.05 0 A2=Llt...'= "67.05 L3= 37 A3=L}>...LS= .'51.05 L4= 116 A4=L1~L2= 114.05 I 5- 78 AS=L1= 114.05

~2 Ae=LltL6= .oe.OS

t '\

Pxoject: Ginna Station Vital Battery A Dato 01/23/91 Pago 3 of 4 Lowcec Expectod Minimum Ceil coil Electrolyte Temp (F): 73 Ceil Voltage: 1.75 MQ: GNB Type: NAX 1200 By: JAY (2) (3) (4) (5) (6) (7)

Chango in Duration Time to End Capacity at Required Section Sizo Section Load (am pores)

Load (am pexes)

I Fiat Psaod Only of Period (minutes) of Section (minutes) lfA2 is greater than Al. go T Min Rate K Factor(KT) to Soction 2.

Pos Vahxes 'eg (3)x(6)=Rated Amp Hours Values I Al* 345 0 AI~ 345 Mix I IT=MI~ I . 0.882353 I 304.46 Seo I Total Section 2 Fiat Two Periods Only IfA3 is greater than A2, go to Section 3 I Als 34S.O AI~ 345. MIi I T~MI+M2 3 0.918774 I 317.02 2 A2* 267.0 A2-Ali -78 M5 2 T=M2= 2 0.900S74 I 0 -70.24 Seo Subtotal 317.02 -70.24 I 2 Total 246.7$ I Section 3 First Three Periods Only IfA4 is gxeater than A3. go to Section 4.

I IAI= 345.0 AI~ 345. MI~ I T MI+."M5 12 1.079923 I 372.63 2 IA2* 267.0 A2-AIi -78 M2 2 T=M2+M3= ll 1.062546 I -82.86 3 A3a 151.0 A3-A2-116 IMSc 9 T=M3= 9 1.026912 I -119.12 I Seo Subtotal 372.63 I -201.98 I 3 Total 170.65 I s ea

~

Section 4 fiat Four Periods Only lfAS is greater than A4. go to Section S.

I I A I= 345.0 Al I)= 345. Ml: I T=MI+...M4 60 I 2 I 690.1 I 2 A2= 267.0 A2-Al -78 M2i 2 T=M2+...M4 59 1.975451 ', 0 -153.93 I 3 IA3* 151.0 A3-A2-116 M3i 9 T=M3+M4= 57 1.921919 I -222.94 4 IA4* 114.0 A4-A3 -37 M4 48 T=M4 48 1.714833 I -63.45 Soo Subtotal 690.1 -440.52 4 Total 249.78 Soction 5 Fust Fivo Periods Only IfA6 is gxeater than A5. go to Section 6.

I A 1* Al~ Mli T=MI+...M5' 2 A> A2-AI M2+...MS 3 A3* A3-A2, M5i T M3+...MS:

4 IAW A4-A3 T~M4+MS~

5 I AS* A5-A4 MS T=MS~

Soc Subtotal 5 Total Section o First Six Poxiods Only lfA7 is greater than A6. slap this Section.

I lAI= 345.0 IAI~ 345. IMlx I T=MI+...M6 120 I 2.941176 I 1014.85 I 2 IA2= 267.0 A2-AI -78 M2: 2 T=M2+...Mb 119 I 2.971795 I nl -231.8 I A3< 151.0 A5-A2-116 M3~ 9 T~M3+...Mb 117 3.02899 I 0 -351.36 I AQ 114.0 A4-A3. -37 M4-'8 T=M4+...M6 108 3.195429 I 0 -118.16 AS> 114.0 AS"A4 0 MSi 59 T=MS+M6 60 I A& 166.0 A6-AS'2 M6: I T=M6= I 0.882353 I 45.88 Soo Subtotal 1060.73 -701.32 I 6 Total 359.41 I a as Maximum Section Size 359 + Random Section Size 0 ~ Uncorxecxed Size (US) 359 (US) 359 x Temp Corr 1.02 x Design Mnxg I x Aging Factor 1.20= 439 Required cell sizo = 439 Ampere Hours. Cell 1200 is installed.

CELL SIZING WORK SHEET TABLE AS

PAGE 4 of 4, "A" BATTERY DUTY CYCLE PItlVRE At 350 900

-'50 100 ~

I I t i ".

I a I a 80 40 60 80 t00 iSNUTES

OAD CHANGE REPORT PAGE 1 o'. 4, VITAL BATTERY B ?RINT DATE: Jl/23/91 EWR 3341 REPORT DATE: Ol/23/91 SPREADSHEET INSTRUCTIONS OBJECTIVE:

To give the users the orocedure and documentation reouirepents for using the Load Change Report Spreadsheet. This spreadsheet calculates the reouired cell size of Ginna S".ation Vital battery 8 based on present loads. Syaphonv version 2.0 gas used to perform the calculations. The Svaohony file is LCR 81B ~ MRl.

PROCEDURE'.

Load Svaohonv, then retrieve LCR BIB. Enter eacn load addition or deletion as a separate line iten on page 2. using the referenced Electrical Load Change (ELC) form as the source docuaent. Attach ail referenced ELC fores to this report.

".. To obtain the hard copies of Load Change Reoort pages 1. ". and 3. ;old doun the ALT kev while striy, ng tne P key. ..'.: updated report ui!l be autooaticallv saved. Next, :he screen vill shou the form in the Alluays Application. Hit F19. select P for orint, ano G for go.

3. To exit Alluavs. hit F10. select ". to cuit. After it has returned :o Svaohonv, exit Symphony. The Svaonony Access Svstem menu snould apoear on the screen.

?'.esse keep in mind, ALT-P can onlv be used once. .'he user vishes :- get another printout. he aust use ALT-N instead of ALT-PE because the Alluavs Aoolication need onlv te sttacneo ores. ALT-N vi I} ." nc:icr. the same as ALT-P except . 'on t .tach Allvays

'ga!n.

DOCUNENTATTOM REQUIPEHEMTS

!. The current revision of this report gated Ol/23/91 .pages 1:hrough 4 and attached ELC forms snail be f:.".d in :he Electrical Engineering Central Technical Fi!e.

2. the current revision of :his report is referenced by :he fcllouing documents in t'he Electrical ..gineer'.'ng Central Technical F':'ie:

h 4

!. EDG-15I:ndex -:!ectr!cal Engineer!ng Central .".cnnicai F:"le

2. EDG-15B 'Design Verification Nodel

)AD CHANGE RcPORT PAGE 2 ef 4 VITAL BATTERY B PRINT DATE: 01/23/91 EWR 3341 BY:

REPORT DATE: 01/23/91 BASED ON BATTERY SIZING ANALYSIS REV 0, EMR 3341, APPROVED 3/12/90 UPDATED FOR EttRS:

EMR ELC ELC LOAD OC (LOAD AttPS. (-)cOELETE't REPORT:IZEO Itt SERVICE No. .... DATE NAttE PANEL Ll L2 L3 L4 LS >

6 DATE BY DATE

', 3341 N/A N/A INITIAL N/A 211 37 244 694 :2 02/09/90 G40 02/09/90 ',

l 4968 0 01/04/91 tlOV3150,3151 OCPDPSH018 -120 -490 01/11/91 JAY 04/20/91 !

', 4968 0 01/04/9 72/SOB DCPDPSH01B -73 -73 01/11/91 JAY 04/20/91 !

e 4773 0 01/23 0 INVCVT-18 OCPDPCB038 -2.53 01/23/91 JAY 04/22/91

< 4773 0 01/23 90 INUCVT-'lB OCPDPCB03B 4.96 01/23/91 JAY ,'4/22/91 I

gt TOTALS Ll= 145 ~ 43 Al=L1~... L:.= t37.43 0 A2cLl~...'= 306.43 17 A3=L!t...L3c '.S2.43

!24 A4cLltL2c '45.4

! ll AS= L1= 145.43 A6cLl~LO= '47 43

A84a ..~ 5 Proiect: Ginna Station Vital Battery B Date nl/23/91 Pane 3 of 4 Lowest Expected Minimum Cell Cell Electrolyte Temp (F): 73 Cell Voltage: 1.75 M@: GNB T>~: NAX 1200 By: JAY (2) (3) (4) (5) (6) (7)

Chango ia Duration Time to Bad Capacity at Required Sectioa Size Load Load of Poriod of Sectioa T Min Rate (3)x(6)=Rated Amp Hours (amperes) I (amperes)

(minutes) (minutes) K Factor(KT) Pos Values I,'(eg Values Section 1 First Period Only lfA2 is greater than Al. go to Section 2.

1 IAls 437.4 IA10 437. IMlr 1 IT=M1~ 1 I 0.882353 I 385.97 I ass ISoo 1 Total 385.97 I ear Section 2 First Two Periods Oaly IfA3 is greater thaa A2. go to Section 3.

I !Al*437.4 IAI~ 437. IMlr 1 IT~Mi+M2= 3 I 0.918774 4019 I I A2= 306.4 IA2-Al'-131 M2r 2 2 IT=M2= 2 I 0.900S74 ol -117.98 ISeo Subtotal 401.9 I -117.98 I I 2 T~ 283.92 I ceo

'Section 3 "- First Three Periods Only lfA4 is greater thaa A3. go to Section 4.

1 IA1= 437.4 IA1~ 437. Ml' T~M1+...M3 12 r 1 079923 I 472 39 0 2 A2* 306.4 IA2-Al--131 M? 2 T~M2+M3= I 1 I I.O62346 I 0 "139.17 I 3 IA3= 182.4 lA3-A2'-124 M3r 9 T=h(3= 9 I 1.026912 ol -127.34 I

,'Sec Subtotal 472.39 I -266.51 i I

' Total 205.S8 I  %% S

. Section 4 First Four Periods Only "- lfAS is rtreater than A4. rto to Section S.

I lAl= 437.4 IA1 "~ 437. Ihflr 1 IT=Ml+...M4'119 I 2.971795 I 1299.95 I nl I 2 IA2s 306.4 lA2"Al -131 !M2r 2 IT=M2+...M4 118 I 3.001116 I 0 -393.15 I 3 IA3> 1S2.4 IA3-A2 -124 IM3r IA4* 14S.4 IA4-A3 -37 IM4: 107 IT=M4 9 IT=M3+M4 116 I'.055274 I 0 "378.85 I

.4 107 I 3.200264 I 0 -118.41 I Sec Subtotal 1299.95 I -890.41 I 4 Total 409.S4 as a ~

Section 5 "- First Five Periods Only lfA6 is greater than AS. go to Section 6.

1 A I< A 1~ IMlr T=M1+...MS:

2 IA2 A2-A1 IM2r T~M2+...h(5 3 IA3* A3-A2 M3r T=M3+...MS 4 IA4- A4-A3  ! M4-'T=M4+MS=

.'AS* A5-A4 r MSr 'T=M5=

Sec Subtotal 5 Total Secrron o -- First Six Periods Only "- ifA7 is greater than A6. skip this Section 1 IAls 437.4 IA1~)= 437. IMlr 1 IT=rMl+...M6 120 I 2.941176 I 12S6.56 I 2;A2r 306.4 IA2-Al -131 IM2r '-'T=M2+...M6 119 I 2.971795 I -389.31 I 3 IA3> 182.4 IA3 "A2 -124 IM3r 9 T=M3+...M6 117 I 3.02899 I 0 -375.59 I 4 IA4= 145.4 !A4"A3 -37 IM4 107 T=M4+...M6 108 I 3 193429 ol 118 16 I I

IA5= 14s.4 A5-A4 IT-Ms+M6 5 0 M5: 1 1 I 0.8823S3 I 0 ol 6 IA6= 197.4 IA6-As 52 IM6: 0 IT=M6= 0 0.864125 I 44.93 I ol Seo Subtotal 1331.49 I -883.06 l 6 Total 448.43 I ewe I Maximum Section Size 448 i ,

Random Section Size 0 ~ Hnconectcd Size (US) 448 (US) 448 x Temp Corr 1.02 x Desiga hfarg 1 x Aging Factor 1.10= 503 Required cell size ~ 503 Ampere Hours. r.ell 1200 is iastalled.

CELL SIZING WORK SHEET TABLE BS

Alp, e >

PACE 4 of 4, "B" BATTERY DUTY CYCLE FICUS 8/

450 400 350 -:

300 t

')50 700 ~

l50 -,

cd i I

.'0 40 80 80 l00 I'70 INURES