ML17229A710

From kanterella
Jump to navigation Jump to search
Analysis of Capsule 263 from FPL St Lucie Unit 2 Reactor Vessel Radiation Surveillance Program.
ML17229A710
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 04/30/1998
From: Bencini L, Laubham T, Williams J
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17229A709 List:
References
WCAP-15040, NUDOCS 9805050419
Download: ML17229A710 (234)


Text

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-1 5040 Analysis of Capsule 263 from the Florida Power 8 Light Company St. Lucie Unit 2 Reactor Vessel Radiation Surveillance Program T. J. Laubham Les Bencini J.F. Williams APRIL 1998 Work Performed Under Shop Order F6MP-106 Prepared by the Westinghouse Electric Company for the Florida Power 8 Light Company Approved: d+Z C. H. Boyd, Manager Equipment 8 Materials Technology Approved:

D. M . Trombola, Manager Mechanical Systems Integration WESTINGHOUSE ELECTRIC COMPANY Nuclear Services Division P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355 1998 Westinghouse Electric Company All Rights Reserved 980S0 <9 980~

POR <>OCR Ospp~89 p

POR

PREFACE This report has been technically reviewed and verified by:

Reviewer:

Sections 1 through 5, 7, 8, Appendices A, B Ed Terek and C Section 6 John Perock Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

1 EXECUTIVE

SUMMARY

The purpose of this report is to document the results of the testing of surveillance capsule 263'rom St.

Lucie Unit 2. Capsule 263'as removed at 11 EFPY and post irradiation mechanical tests of the Charpy V-notch'and tensile specimens were performed, along with a fluence evaluation. The capsule fiuence (E

> 1.0 MeV) after 11 EFPY of plant operation was 1.244 x 10" n/cm'. A brief summary of the charpy V-notch testing can be found in Section 1 and a suggested capsule removal schedule can be found in Section 7.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

A ~ J

'I

TABLE OF CONTENTS SECTION TITLE PAGE 1.0

SUMMARY

OF RESULTS

2.0 INTRODUCTION

3.0 BACKGROUND

4.0 DESCRIPTION

OF PROGRAM 5.0 TESTING OF SPECIMENS FROM CAPSULE 14 263'.1 Overview 14 5.2 Charpy V-Notch Impact Test Results 16 5.3 Tensile Test Results 20 6.0 RADIATIONANALYSISAND NEUTRON DOSIMETRY 60 6.1 Introduction 60 6.2 Discrete Ordinates Analysis 61 6.3 Neutron Dosimetry 65 6.4 Projections of Reactor Vessel Exposure 70 7.0 SURVEILLANCECAPSULE REMOVALSCHEDULE 98

8.0 REFERENCES

99 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

TABLE OF CONTENTS APPENDIX A - "

LOAD-TIMERECORDS FOR CHARPY SPECIMEN TESTS APPENDIXB- C~Y V-NOTCH SHIFT RESULTS FOR EACH CAPSULE HAND-FIT VS. HYPERBOLIC TANGENT CURVE-FITT1NG METHOD (CVGRAPH, VERSION 4.1)

APPENDIX C- CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TAGENT CURVE-FITTING METHOD Analysis of St. Lucie Unit 2 Capsule 263'p0'I 1998

LIST OF TABLES Title ~Pa~e 4-1 Chemical Composition (wt%) of the St. Lucie Unit 2 Reactor Vessel Beltline Region Surveillance Material

'6 5-1 Charpy V-Notch Data for the St. Lucie Unit 2 Intermediate Shell Plate 21 M-605-1 Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV)

(Transverse Orientation) 5-2 Charpy V-notch Data for the St. Lucie Unit 2 Surveillance Weld Metal 22 Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV) 5-3 Charp'y V-notch Data for the St. Lucie Unit 2 Heat-Affected-Zone 23 (HAZ) Metal Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV) 5-4 Charpy V-notch Data for the St. Lucie Unit 2 Standard Reference Material 24 HSST 01MY Plate Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV)

Instrumented Charpy Impact Test Results for the St. Lucie Unit 2 25 Intermediate Shell Plate M-605-1 Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV) (Transverse Orientation) 5-6 Instrumented Charpy Impact Test Results for the St. Lucie Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 1.244 x 10" n/cm'E>

1.0 MeV) 5-7 Instrumented Charpy Impact Test Results for the St. Lucie Unit 2 27 Heat-Affected-Zone (HAZ) Metal Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV) 5-8 Instrumented Charpy Impact Test Results for the St. Lucie Unit 2 28 Standard Reference Material HSST 01MY PlateIrradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV)

Analysis of St. Lucie Unit 2 Capsule 263 April 1998

LIST OF TABLES (CONTINUED)

Table Title ~Pa e 5-9 Effect Irradiation to 1.244 x 10" n/cm'. (E > 1.0 MeV) on the Notch 29 Toughness Properties of the St. Lucie Unit 2 Reactor Vessel Surveillance Materials 5-10 Comparison of the St. Lucie Unit 2 Surveillance Material 30 ft-Ib 30 1

Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions 4

5-11 Tensile Properties'of the St. Lucie Unit 2 Reactor Vessel Surveillance 31 Materials Irradiated to 1.244 x 10" n/cm'E >.1.0 MeV) 6-1 Calculated Fast Neutron Exposure Rates and Iron Atom Displacement 76 Rates at the Surveillance Capsule Center 6-2 Calculated Azimuthal Variation of Fast Neutron Exposure Rates and Iron Atom 77 Displacement Rates at the Reactor Vessel Clad/Base Metal Interface 6-3 Relative Radial Distribution of $ (E > 1.0 MeV) Within the Reactor Vessel Wall 78 6-4 Relative Radial Distribution of $ (E > 0.1 MeV) Within the Reactor Vessel Wall 79 6-5 Relative Radial Distribution of dpa/sec Within the'Reactor Vessel Wall 80

'6-6 Nuclear Parameters Used in, the Evaluation of Neutron Sensors 81 I

6-7 Monthly Thermal Generation During The First Nine Fuel Cycles of the 82 St. Lucie Unit 2 Reactor 6-8 Measured Sensor Activities and Reaction Rates

- Surveillance Capsule 263' 85 Surveillance Capsule 83 86 6-9 Summary of Neutron Dosimetry Results Surveillance Capsules 263'nd 83'7 t

6-10 Comparison of Measured, Calculated, and Best Estimate Reaction Rates at 88 the Surveillance Capsule Center Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

6-11 6-12 6-13 Title Capsule 83'9 LIST OF TABLES (CONTINUED)

Best Estimate Neutron Energy Spectrum at the Center

- Capsule 263' of Surveillance 83'1 Comparison of Calculated and Best Estimate Integrated Neutron Exposure of St. Lucie Unit 2 Surveillance Capsules 263'nd Azimuthal Variations of the Neutron Exposure 4 (E > 1.0 MeV) [n/cm']

Capsule

~Pa 90 92 e

Projections on the Reactor Vessel Clad/Base Metal Interface at Core Midplane 6-14 Neutron Exposure Exposure Values Within The St. Lucie Unit 2 Reactor Vessel 93 6-15 Updated Lead Factors for St. Lucie Unit 2 Surveillance Capsules 97 7-1 St. Lucie Unit 2 Reactor Vessel Surveillance Capsule Withdrawal Schedule 98 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

A LIST OF ILLVSTRATIONS

~Fi ure Title ~Pa e 4-1 Arrangement of Surveillance Capsules in the St. Lucie Unit 2 10 Reactor Vessel 4-2 Typical St. Lucie Unit 2 Surveillance Capsule Assembly 4-3 'ypical St. Lucie Unit 2 Surveillance Capsule Charpy Impact Compartment 12 Assembly 4-4 Typical St. Lucie Unit 2 Surveillance Capsule Tensile and Flux Monitor 13 Compartment Assembly 5-1 Charpy V-Notch Impact Energy vs. Temperature for St. Lucie Unit 2 32 Reactor Vessel Intermediate Shell Plate M-605-1 (Transverse Orientation) 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for St. Lucie Unit 2 33 Reactor Vessel Intermediate Shell Plate M-605-1 (Transverse Orientation) s-~ Charpy V-Notch Percent Shear vs. Temperature for St. Lucie Unit 2 34 Reactor Vessel Intermediate Shell Plate M-605-1 (Transverse Orientation) 5-4 Charpy V-Notch Impact Energy vs. Temperature for St. Lucie Unit 2 35 Reactor Vessel Weld Metal 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for St. Lucie Unit 2 36 Reactor Vessel Weld Metal 5-6 Charpy V-Notch Percent Shear vs. Temperature for St. Lucie Unit 2 37 Reactor Vessel Weld Metal 5-7 Charpy V-Notch Impact Energy vs. Temperature for St. Lucie Unit 2 38 Reactor Vessel Heat-Affected-Zone Material 5-S Charpy V-Notch Lateral Expansion vs. Temperature for St. Lucie Unit 2 39 Reactor Vessel Heat-Affected-Zone Material 5-9 Charpy V-Notch Percent Shear vs. Temperature for St. Lucie Unit 2 40 Reactor Vessel Heat-Affected-Zone Material Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

LIST OF ILLUSTRATIONS(CONTINUED)

~Fi ure Title ~Pa e I

5-10 Charpy V-Notch Impact Energy vs. Temperature for St. Lucie Unit 2 Reactor Vessel Standard Reference Material 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for St. Lucie Unit 2 42 Reactor Vessel Standard Reference Material 5-12 Charpy V-Notch Percent Shear vs. Temperature for St. Lucie Unit 2 43 Reactor Vessel Standard Reference Material 5-13 Charpy Impact Specimen Fracture Surfaces forSt. Lucie-Unit 2 44 Reactor Vessel Intermediate Shell Plate M-605-1 (Transverse Orientation) 5-14 Charpy Impact Specimen Fracture Surfaces for St. Lucie Unit 2 45 Reactor Vessel Weld Metal 5-15 Charpy Impact Specimen Fracture Surfaces for St. Lucie Unit 2 46 Reactor Vessel Heat-Affected-Zone Metal 5-16 Charpy Impact Specimen Fracture Surfaces for St. Lucie Unit 2 47 Reactor Vessel Standard Reference Material 5-17 Tensile Properties for St. Lucie Unit 2 Reactor Vessel Intermediate Shell 48 Plate M-605-1 (Transverse Orientation) 5-1S Tensile Properties for St. Lucie Unit 2 Reactor Vessel Weld Metal 49 5-19 Tensile Properties for St. Lucie Unit 2 Reactor Vessel Heat-Affected-Zone 50 (HAZ) 5-20 Fractured Tensile Specimens from St. Lucie Unit 2 Reactor Vessel 51 Intermediate Shell Plate M-605-1 (Transverse Orientation) 5-21 Fractured Tensile Specimens from St. Lucie Unit 2 Reactor Vessel 52 Weld Metal 5-22 Fractured Tensile Specimens from St. Lucie Unit 2 Reactor Vessel 53 Heat-Affected-Zon'e (HAZ)

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

~Fi 5-23 ure Title'Pa LIST OF ILLUSTRATIONS(CONTINUED)

Engineering Stress-Strain Curves for Intermediate Shell Plate M-605-1 Tensile Specimens 2K1 and 2JS (Transverse Orientation) 54 e

5-24 Engineering Stress-Strain Curve for Intermediate Shell Plate M-605-1 55 Tensile Specimen 2KE (Transverse Orientation) 5-25 Engineering Stress-Strain Curves Weld Metal Tensile Specimens "

56 3J7 and 3KY 5-26 Engineering Stress-Strain Curve Weld Metal Tensile Specimen 3JK 57 5-27 Engineering Stress-Strain Curves'for Heat-Affected-Zone (HAZ) Material 58

'Tensile Specimens 4JC and 4K2 5-28 Engineering Stress-Strain Curve for Heat-Affected-Zone (HAZ) Material 59 Tensile Specimen 4KP Plan View of a Flux Monitor Housing and Holder (cm) 74 6-2 The R-8 DORT Model (cm) 75

'nalysis of St. Lucie Unit 2 Capsule 263'pril 1998

0 0

SECTION 1.0

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance capsule 263'he second capsule to be removed from the St. Lucie Unit 2 reactor pressure vessel, led to the following conclusions: (General Note: Temperatures are reported to two significant digits only to match CVGraph output.)

o The capsule received an average fast neutron fluence (E > 1.0 MeV) of 1.244 x 10" n/cm'fter 11 effective full power years (EFPY) of plant operation.

o Irradiation of the reactor vessel intermediate shell plate M-605-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction of the plate (transverse orientation), to 1.244 x 10" n/cm'E > 1.0 MeV) resulted in a 30 ft-Ib transition temperature increase of 103.12'F resulting in an irradiated 30 ft-Ib transition temperature of 133 09'F.

o Irradiation of the weld metal (Heat 83637, Linde 124 Lot 0951) Charpy specimens to 1.244 x 10" n/cm'E > 1.0 MeV) resulted in a 30 ft-Ib transition temperature increase of 25.98'F resulting in an irradiated 30 ft-lb transition temperature of -24.44'F.

o Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 1.244 x 10" n/cm'E

> 1.0 MeV) resulted in a 30 ft-Ib transition temperature increase of 73.3'F resulting in an irradiated 30 ft-lb transition temperature of 47.12'F.

t o Irradiation of the Standard Reference Material (SRM) HSST-01MY Plate Charpy specimens to 1.244 x 10" n/cm'E > 1.0 MeV) resulted in a 30 ft-Ib transition temperature increase of 131.09'F resulting in an irradiated 30 A-Ib transition temperature of 156.98'F.

o The average upper shelf energy of the intermediate shell plate M-605-1 (transverse orientation) resulted in an average energy decrease of 24 ft-Ib after irradiation to 1.244 x 10" n/cm'E > 1.0 MeV). This results in an irradiated average upper shelf energy of 79 ft-Ib for the transversely oriented specimens.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

o The average upper shelf energy of the weld metal (Heat 83637, Linde 124 Lot 0951) Charpy specimens resulted in an average energy decrease of 7 ft-lb after irradiation to 1.244 x 10" n/cm'E

> 1.0 MeV). This results in an irradiated average upper shelf energy of 108 ft-ib for the weld metal specimens.

The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in no average energy decrease after irradiation to 1.244 x 10" n/cm'E > 1.0 MeV). This results in an unchanged irradiated average upper shelf energy of 96 ft-Ib for the weld HAZ metal.

The average upper shelf energy of the Standard Reference Material HSST-01MY Plate Charpy specimens resulted in an average energy decrease of 36 ft-lb after irradiation to 1.244 x 10"

'/cm'E > 1.0 MeV). This results in an irradiated average upper shelf energy of 86 ft-lb for the Standard Reference Material.

o A comparison of the St. Lucie Unit 2 reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 2"l, predictions led to the following conclusions:

h The measured 30 ft-lb shift in transition temperature value of intermediate shell plate M-605-1 (transverse orientation) for capsule 263's - 25'F greater than the Regulatory

(

Guide 1.99, Revision 2, prediction. However, this is less than to 2 sigma allowance of 34'F required by Regulatory Guide 1.99, Revision 2, when calculating adjusted reference temperatures of base metal.

The measured 30 ft-lb shift in transition temperature value for the surveillance program weld metal for capsule 263's less than the Regulatory Guide 1.99, Revision 2, predictions.

The measured 30 ft-lb shift in transition temperature value for the standard reference material HSST-01MY plate 263's less than the Regulatory Guide 1.99, Revision 2, predictions.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

Credibility Criteria 3 from the Regulatory Guide 1.99, Revision 2, was perform for the surveillance plate and weld metal. It was determined that both the plate and weld metal t

are credible per criteria 3. Florida Power and Light Co. is to verify credibility for Criteria 1, 2, 4 and 5.

The measured upper shelf energy decreases of the intermediate shell plate M-605-1 (transverse orientation) for capsules 83'nd 263; and weld material for capsules 83'nd 263're in good agreement with the Regulatory Guide 1.99, Revision 2, predictions.

The calculated and best estimate end-of-license (32 EFPY) neutron fluences (E > 1.0 MeV) at the core midplane for the St. Lucie Unit 2 reactor vessel using the Regulatory Guide 1.99, Revision 2 attenuation formula (i.e. f/3) is as follows:

Calculated:

Vessel inner radius = 2.85 x 10" n/cm'essel 1/4 thickness = 1.70 x 10" n/cm',

E Vessel 3/4 thickness = 6.03 x 10" n/cm'est Estimate:

Vessel inner radius = 2.71 x 10" n/cm'essel 1/4 thickness = 1.62 x 10" n/cm'essel 3/4 thickness = 5.73 x 10" n/cm' Clad/base metal interface o Allbeltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are expected to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (32 EFPY) as required by 10CFR50, Appendix G"'.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

0 SECTION 2.0 INTRODVCTION This report presents the results of the examination of the Capsule located at 263', the second capsule to be removed from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the St. Lucie Unit 2 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Florida Power and Light Company St. Lucie Unit 2 reactor pressure vessel materials was designed and recommended by Combustion Engineering. A description of the surveillance programPl and the preirradiation mechanical properties of the reactor vessel materials is presented in Reference 12. The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-73, "Standard Recommended Practice Surveillance Tests for Nuclear Reactor Vessels". Capsule 263'as removed from the reactor after 11 EFPY of exposure and shipped to the Westinghouse Science and Technology Center Hot Cell Facility, where the postirradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

I This report summarizes the testing of and the post-irradiation data obtained from surveillance capsule located at 263', removed from the St. Lucie Unit 2 reactor vessel and discusses the analysis of the data.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

I I

SECTION

3.0 BACKGROUND

t The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low alloy, ferritic pressure vessel steels such as A533 Grade B Class I (base material of the Florida Power and Light Company St. Lucie Unit 2 reactor pressure vessel beltline) are well documented in the literature. Generally, low alloy feiritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code"'. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RT>>,).

RT>>r is defined as the greater of either the drop weight nil-ductilitytransition temperature (NDTT per ASTM E-208i") or the temperature 60'F less than the 50 ft-Ib (and 35-mil lateral:expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major working direction of the plate. The RT>>r of a given material is used to index that material to a reference stress intensity factor curve (Kcurve) which appears in Appendix G to the ASME Code"'. The Kcurve is a lower bound of dynamic, crack arrest, and static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the Kcurve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.

RT>>, and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor surveillance program, such as the St. Lucie Unit 2 reactor vessel radiation surveillance program<", in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens tested. The increase in the average Charpy V-notch 30 ft-lb temperature (bRT>>r) due to irradiation is added to the Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

initial RTNDz, along with a margin (M) to cover uncertainties, to adjust the RT~ (ART) for radiation embrittlement. This ART (RT~z initial + M + dXT~z) is used to index the material to the Kcurve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

0 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

SECTION

4.0 DESCRIPTION

OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the St. Lucie Unit 2 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant start-up. The six capsules were positioned in the reactor vessel between the core barrel and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core.

Capsule 263 was removed after 11 effective full power years (EFPY) of plant operation. This capsule contained Charpy V-notch (transverse orientation) and tensile specimens made from intermediate shell plate M-605-1, weld metal made with heat 83637 Linde 124 flux Lot 0951 and heat-affected-zone (HAZ) metal. AllHAZ specimens are obtained within the heat-affected-zone of Plate M-605-1 side. Standard Reference Material from HSST-01MY Plate"" was included in the program in addition to the reactor vessel materials. The best estimate Cu and Ni chemistry values for the surveillance materials are provided in Table 4-1.

4 Test material obtained from intermediate shell plate (after the thermal heat treatment and forming of the plate) was taken at least one plate thickness from the quenched ends of the plate. Alltest specimens were machined from the 1/4 thickness location of the plate after performing a simulated post-weld stress-relieving treatment on the test material. Specimens from weld metal was machined from a stress-relieved weldment joining intermediate shell plates M-605-2 and M-605-3. Allheat-affected-zone specimens were obtained from the weld heat-affected-zone of intermediate shell plate M-605-1 side.

Charpy V-notch impact specimens from intermediate shell plate M-605-1 were in the transverse orientation (longitudinal axis of the specimen perpendicular to the major working direction of the plate).

1 The core region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

Tensile specimens from intermediate shell plate M-605-1 were machined in transverse orientation.

Tensile specimens from the weld metal were oriented with the long dimension of the specimen perpendicular to the weld direction.

Capsule 263'ontained dosimeter wires of sulfur, iron, titanium, nickel (cadmium-shielded), aluminum-(cadmium-shielded and unshielded), copper (cadmium shielded) and uranium (cadmium-shielded

'obalt and unshielded).

The capsule contained thermal monitors made from four low-melting-point eutectic alloys and sealed in Pyrex tubes. These thermal monitors were used to define the maximum temperature attained by the test specimens during irradiation. The composition of the four eutectic alloys and their melting points are as follows:

80.0% Au, 20% Sn Melting Point: 536'F (280'C) 5.0% Ag, 5.0% Sn, 90.0%Pb Melting Point: 558'F (292'C) 2.5% Ag, 97 5% Pb Melting Point: 580'F (304'C) 1.75% Ag, 0.75% Sn, 97 5% Pb Melting Point: 590'F (310'C)

The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in capsule 263's shown in Figure 4-2.

A typical St. Lucie Unit 2 surveillance capsule Charpy impact compartment assembly is shown in Figure 4-3.

A typical St. Lucie Unit 2 surveillance capsule tensile and flux-monitor compartment assembly is shown in Figure 4-4.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

TABLE 4-1 Chemical Composition (wt%) of the St. Lucie Unit 2 Reactor Vessel Beltline Region Surveillance Materials Surveillance Weld Metal<'>

Element Inter. Shell Plate Standard Reference TR-L-MCM-001 Best Estimate Per M-605-1 Material HSST Analysis Pl CE-NPSD-1039 TR-L-MCM- 01MY PlateP43 (See Note a) Rev.2P5)

'oolt:3I 0.23 0.12 0.010 0.011.

0.009 0.003 Co 0.010 0.006 0.11 0.18 0.05 0.048 Si 0.23 0.38 Mo 0.57 0.59 Ni 0.61 0.66 0.07 0.066 1.37 1.55 Cr 0.07 0.04 0.003 0.005 0.004 0.003 Sn 0.009 0.002 B <0.001 0.001 Cb <0.01 <0.01

<0.01 <0.01 W <0.01 <0.01 As 0.002 <0.001 Zr <0.001 0.001 Sb 0.0024 0.0030 Pb <0.001 <0.001 Al 0.022 0.002 263'prii Notes:

a) Surveillance weld specimens made with wire 83637 with Linde 124 flux, Lot 0951.

Analysis of St. Lucie Unit 2 Capsule 1998

10 l86P

~outlet Nozzte

//

I

/ I I I Vessel u40

/ ~ st~~mPQ Inlet

/ I iwozzle

( Core Shroud

.)

Core Support Barrel I I

J mO Vessel Reactor Vessel

~Vessel 2630 Core Midplane Vessel

'essel Vessel Ca e ZVO A y 830 Vessel

'-- WO j

/

Core Reactor Support Barrel

/I Vessel

//

I I I Elevation View Figure 4-1. Arrangement Analysis of St. Lucie Unit 2 Capsule 263'pril of Surveillance Capsules in the St. Lucie Unit 2 Reactor Vessel 1998

Lock Assembly Wedge Coupling Assembly Tensile -Monitor Compartment Charpy Impact Compartments Tensile -Monitor Compartment C harpy Impact Compartments Tensile -Monitor Compartment Figure 4-2 263'pril Typical St. Lucie Unit 2 Surveillance Capsule Assembly Analysis of St. Lucie Unit 2 Capsule 1998

Wedge Coupling,- End Cap Charpy impact Specimens Spacer Rectangular Tubing Wedge Coupling - End Cap Figure 4-3 Assembly Analysis of St. Lucie Unit 2 Capsule 263'pril Typical St. Lucie Unit 2 Surveillance Capsule Charpy Impact Compartment 1998

Wedge Coupling - End Cap~ Flux Spectrum Monitor Cadmium Shielded Flux Monitor Housing ~

~

Stainless Steel Tubing Stainless Steel Tubing Cadmium Shield Threshold Detector Threshold Detector Flux Spectrum Monitor Quartz Tubing Temperature Monitor Weight Temperature Monitor Low Melting Alloy Housing Tensile Specimen Split Spacer Tensile Specimen Housing Rectangular Tubing Wedge Coupling - End Cap 263'pril Figure 4-4 Typical St. Lucie Unit 2 Surveillance Capsule Tensile and Flux-Monitor Compartment Assembly Analysis of St. Lucie Unit 2 Capsule 1998

0 SECTION 5.0 TESTING OF SPECIMENS FROM CAPSULE 263'.1 Overview The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed in the Remote Metallographic Facility (RMF) at the Westinghouse Science and Technology Center. Testing was performed in accordance with 10CFR50, Appendices G and Ã", ASTM Specification E185-82i'i, and Westinghouse Procedure RMF 8402, Revision 2 as modified by Westinghouse RMF Procedures 8102, Revision 1, and 8103, Revision 1.

Upon receipt of the capsule at the hot cell laboratory, the specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in TR-L-MCM-001i'i.

No discrepancies were found.

Examination of the four low-melting, eutectic alloy thermal monitors contained in 1, 1.25, 1.50 amd 1.75 inch long quartz tubes (melting at 536 F, 558'F, 580'F and 590'F, respectively) indicated that the 1 inch thermal monitor melted completely and that the thermal monitor in the 1.25 inch tube started to melt.

Based on this examination, the maximum temperature to which the test specimens were exposed to was less than 558'F.

The Charpy impact tests were performed per ASTM Specification E23-93ai'i and RMF Procedure 8103, Revision 1, on a Tinius-Olsen Model 74, 358J machine. The tup (striker) of the Charpy impact test machine is instrumented with a GRC 830-I instrumentation system, feeding information into an IBM

,compatible pentium computer. With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy (Q). From the load-time curve (Appendix A),

the load of general yielding (P~), the time to general yielding (t0), the maximum load (Pg, and the time to maximum load (tg can be determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture load (P,), and the load at which fast fracture terminated is identified as the arrest load (PJ. The energy at maximum load ~ was determined by comparing the energy-time record and the load-time record. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (Ep) is the difference between the total energy 263'pril to fracture (ED) and the energy at maximum load (Eg.

Analysis of St. Lucie Unit 2 Capsule 1998

~

The yield stress (s Y) was calculated from, the three-point bend formula having the following expression:

m =(Por*L)l(B*(W-a) *CJ where: L distance between the specimen supports in the impact machine the width of the specimen. measured parallel to the notch W height of the specimen, measured perpendicularly to the notch notch depth The constant C is dependent on the notch flank angle (f), notch root radius (r) and the type of loading (ie.

pure bending or three-point bending). In three-point bending, for a Charpy specimen in which f = 45'nd r = 0.010 inch, Equation 1 is valid with C = 1.21. Therefore, (for L = 4W),

cn = (Por*L) I [B*(W-a) *121] = (3.3*Par*V) I fB*(W-a)'] (2)

For the Charpy specimen, B = 0.394 inch, W = 0.394 inch and a = 0.079 inch. Equation 2 then reduces to:

I cn = 33.3*Par (3) 4 where a~ is in units of psi and Pc is in units of lbs. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula.

\

The symbol A in columns 4, 5, and 6 of Tables 5-5 through 5-8 is the cross-section area under, the notch of the Charpy specimens:

A = B*(W-a) = 0.1241sq. in. (4)

I Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM Specification A370-92<'i. The lateral expansion was measured using a dial gage rig similar to that shown in the same specification.

Analysis of St. Lucie Unit 2 Capsule 263' April 1998

Tensile tests were performe'd on a 20,000-pound Instron, split-console test machine (Model 1115) per ASTM Specification E8-93i'i and E21-92"", and RMF Procedure 8102, Revision 1. All pull rods, grips, and pins were made of Inconel 718. The upper pull rod was connected through a universal joint to improve transverseity of loading. The tests were conducted at a constant crosshead speed of 0.05 inches per minute throughout the test.

Extension measurements were made with a linear variable displacement transducer extensometer. The extensometer knife edges were spring-loaded to the specimen and operated through specimen failure.

The extensometer gage length was 1.00 inch. The extensometer is rated as Class B-2 per ASTM E83-93u'i.

Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 9-inch hot zone. All tests were conducted in air. Because of the difficulty in remotely attaching a thermocouple directly to the specimen, the following procedure was used to monitor specimen temperatures. Chromel-Alumel thermocouples were positioned at the center and at each end of the gage section of a dummy specimen and in each tensile machine griper. In the test configuration, with a slight load on the specimen, a plot of specimen temperature versus upper and lower tensile machine griper and controller temperatures was developed over the range from room temperature to 550'F. During the actual testing, the grip temperatures were used to obtain desired specimen temperatures. Experiments have indicated that this method is accurate to+2'F.

The yield load, ultimate load, fracture load, total elongation, and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength, and fracture strength were calculated using the original cross-sectional area. The final diameter and final gage length were determined from post-fracture photographs. The fracture area used to calculate the fracture stress (true stress at fracture) and percent reduction in area was computed using the final diameter measurement.,

5.2 Ch V-Notch Im act Test Results The results of the Charpy V-notch impact tests performed on the various materials contained in capsule 263', which received a fluence of 1.244 x 10" n/cd(E > 1.0 MeV) in 11 EFPY of operation, are presented in Tables 5-1 through 5-8 and are compared with unirradiated resultsi'" as shown in Figures 5-1 263'pril through 5-12.

Analysis of St. Lucie Unit 2 Capsule 1998

17 The transition temper'ature increases and upper shelf energy decreases for th'e capsule 263'aterials are summarized in Table 5-9. These results led to the following conclusions: I Irradiation of the reactor vessel intermediate shell plate M-605-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction of the plate (transverse orientation), to 1.244 x 10" n/cm'E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 103.12'F and a 50 ft-Ib transition temperature increase of 110.61 F. This results in an irradiated 30 ft-Ib transition temperature of 133.09'F and an irradiated 50 ft-Ib transition temperature of 181.99'F for transversely oriented specimens.

Irradiation of the weld metal (Heat S3637, Linde 124 Lot 0951) Charpy specimens to 1.244 x 10" n/cm'E

> 1.0 MeV) resulted in a 30 ft-Ib transition temperature increase of 25.98'F and a 50 ft-Ib transition temperature increase of 33.04'F. This results in an irradiated 30 fi:-Ib transition temperature of -24.44'F and an irradiated 50 ft-lb transition temperature of 20.37'F.

Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 1.244 x 10" n/cm'E >

1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 73.3'F and a 50 ft-lb transition temperature increase of 90.91'F. This results in an irradiated 30 ft-lb transition temperature of 47.12'F and an irradiated 50 ft-Ib transition temperature of 109.23'F. ~

Irradiation of the Standard Reference Material (SRM) HSST 01MY Plate Charpy specimens to 1.244 x 10" n/cm'E > 1.0 MeV) resulted in a 30 ft-Ib transition temperature increase of 131.09'F and a 50 ft-lb transition temperature increase of 147.66'F. This results in an irradiated 30 ft-Ib transition temperature of 156.98'F and an irradiated 50 ft-Ib transition temperature of 200.61'F.

The average upper shelf energy of the intermediate shell plate M-605-1 (transverse orientation) resulted in an average energy decrease of 24 ft-lb after irradiation to 1.244 x 10" n/cm'E > 1.0 MeV). This results in an irradiated average upper shelf energy of 79 ft-Ib for the transversely oriented specimens.

The average upper shelf energy of the weld metal (Heat 83637, Linde 124 Lot 0951) Charpy specimens resulted in an average energy decrease of 7 ft-Ib after irradiation to 1.244 x 10" n/cm'E > 1.0 MeV).

This results in an irradiated average upper shelf energy of 10S ft-Ib for the weld metal specimens.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in no average energy decrease after irradiation to 1.244 x 10" n/cm'E > 1.0 MeV). This results in an unchanged irradiated average upper shelf energy of 96 ft-Ib for the weld HAZ metal.

The average upper shelf energy of the Standard Reference Material Charpy specimens resulted in an .

average energy decrease of 36 ft-lb after irradiation to 1.244 x 10" n/cm'E > 1.0 MeV). This results in an irradiated average upper shelf energy of 86 ft-Ib for the Standard Reference Material.

A comparison of the St. Lucie Unit 2 reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 2"', predictions, presented in Table 5-10, led to the following conclusions:

The measured 30 ft-lb shift in transition temperature value of intermediate shell plate M-605-1 (transverse orientation) for capsule 263's -25'F greater than the Regulatory Guide 1.99, Revision 2, prediction. However, this is less than to 2 sigma allowance of 34'F required by Regulatory Guide 1.99, Revision 2, when calculating adjusted reference temperatures of base metal.

The measured 30 ft-lb shift in transition temperature value of intermediate shell plate M-605-1 (longitudinal orientation) for capsule 83's -5'F greater than the Regulatory Guide 1.99, Revision 2, prediction. However, this is less than to 2 sigma allowance of 34 F required by Regulatory Guide 1.99, Revision 2, when calculating adjusted reference temperatures of base metal.

The measured 30 ft-Ib shift in transition temperature value for'the surveillance program weld metal (Heat 83637, Linde 124 Lot 0951) for capsules 83'nd 263're less than the Regulatory Guide 1.99, Revision 2, predictions.

The measured 30 ft-lb shift in transition temperature value for the standard reference material HSST-01MY plate 263's are less than the Regulatory Guide 1.99, Revision 2, predictions.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

19 Credibility Criteria 3 from the Regulatory Guide 1.99, Revision 2, was perform using actual data from capsule 83'nd 263'or the surveillance plate and weld metal. The results are presented in Table 5-10. It was determined from this table that both the plate and weld metal are credible per criteria 3 since the difference between the predicted and measured values for dXTNDT are less than+/- 17'F. Note that the plate actually had one data point that was -17.5', which is slightly outside the -17'imit, however, this should be considered within the accuracy of the temperature recording method and be deemed acceptable. Note, Florida Power and Light Co. is to verify credibility for Criteria 1, 2, 4 and 5.

The measured upper shelf energy decreases ofthe intermediate shell plate M-605-1 for capsules 83'Longitudinal Orientation) and 263'Transverse Orientation),and weld material for capsules 83'nd 263're in good agreement with the Regulatory Guide .

1.99, Revision 2, predictions.

The fracture appearance of each irradiated Charpy specimen from the various surveillance capsule 263'aterials is shown in Figures 5-13 through 5-16 and show an increasingly ductile or tougher appearance with increasing test temperature.

Allbeltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are expected to maintain an upper shelf energy of no less than 50 ft-lb throughout the life of the vessel (32 EFPY) as required by 10CFR50, Appendix G"i.

The load-time records for individual instrumented Charpy specimen tests are shown in Appendix A.

The Charpy V-notch data presented in BAW-1880'"i was based on hand-fit Charpy curves using engineering judgment. However, the results presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1. which is a hyperbolic tangent curve-fitting program. Hence, Appendix B contains a comparison of the Charpy V-notch shift results for each surveillance material (hand-fitting versus hyperbolic tangent curve-fitting). Additionally, Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

20 5.3 Tensile Test Results The results of the tensile tests performed on the various materials contained in capsule 263'rradiated to 1.244 x 10" n/cm'E > 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated resultsn" as shown in Figures 5-17 through 5-18.

The results of the tensile tests performed on the intermediate shell plate M-605-1 (transverse orientation) indicated that irradiation to 1.244 x 10" n/cm'(E > 1.0 MeV) caused a 8 ksi increase in the 0.2 percent offset yield strength and approximately a 4 to 8 ksi increase in the ultimate tensile strength when compared to unirradiated data"" (Figure 5-17).

The results of the tensile tests performed on the surveillance weld metal indicated that irradiation to 1.244 x 10" n/cm'(E > 1.0 MeV) caused a 3 ksi increase in the 0.2 percent offset yield strength and a 1 to 2 ksi increase in the ultimate tensile strength when compared to unirradiated data'"> (Figure 5-18).

The results of the irradiated HAZ tensile specimens are provided in Table 5-11 and Figure 5-19.

The fractured tensile specimens for the intermediate shell plate M-605-1.material are shown in Figure 5-20, while the fractured tensile specimens for the surveillance weld metal and heat-affected-zone are shown in Figures 5-21 and 5-22, respectively. 'aterial The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-28.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

TABLE 5-1 Charpy V-notch Data for the St. Lucie Unit 2 Intermediate Shell Plate M-605-1 Irradiated to a'Fluence of 1.244 X 10" n/cm'E > 1.0 MeV)

(Transverse Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number F ft-lbs Joules mils mm 254 -18 3 5 6 015 25T 40 11 15 9 0.23 10 23C 72 22" 16 22 14 0.36 15 23K 100 38 19 26 14 036 20 21C 125 52 36 49 34 0.86 30 224 150 66 41 56 40 1.02 35 22U 160 71 23, 31 22 0.56 20 243 195 91 47 63 49 1.24 50 26J 225 107 80 108 65 1.65 100 237 250 121 66 89 62 1.57 100 25A 300 149 86 116 85 2.16 100

. 26D 375 191 84 114 78 1.98 100 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

22 TABLE 5-2 Charpy V-notch Data for the St. Lucie Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number ft-Ibs Joules mils mm 37K -80 -62 11 15 9 0.23 15 366 -40 -40 21 29 24 0.61 25 315 -20 -29 36 48 29 0.74 30 345 -18 48 65 40 '.02 40 327 50 10 60 81 52 1.32 65 32U 72 22 68 92 66 1 68 75 33L 120 49 91 124 91 2.31 95 36K 150 66 104 140 103 2.62 100 36L 195 91 107 145 107 2.72 100

'11 341 250 121 111 150 2.82 100 31C 275 135 89 120 87 2.21 100 300 149 130 176 132, 3.35 100 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

23 TABLE 5-3 Charpy V-notch Data for the St. Lucie Unit 2 Heat Affected Zone Material Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV) 0 Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-Ibs Soules mils mm 426'61

-40 -40 32 44 26 0.66 20 10 -12 15 21 15 038 25 47P 60 16 13 17 13 0.33 20 46B 72 22 45 61 42 1.07 45 442 120 52 51 68 43 1.09 50 44T 120 49 54 73 47 1.19 50 42E 150 66 83 113 60 1.52 75 41M 180 82 70 95 "

56 1.42 80 427 250 121 119 161 54 1.37 100 475 250 121 49 66 78 1.98 70 423 300 149 144 195 83 2.11 100 412 375 '91 126 170 77 1.96 100 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

24 TABLE 5-4 Charpy V-notch Data for the St. Lucie Unit 2 Standard Reference Material HSST 01MY Plate Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-Ibs Joules mils mm A7E -40 -40 3' 1 0.03 50 10 7 9 7 0.18 100 38 12 16 11 0.28 15 Ajc 125 52 23 31 18 0.46 20 A7L* 125 52 AAE 150 66 40 55 33 0.84 35 A7Y A7D 160 195 195 71 91 91 27 33 45

'5 37 61 28 34 29 0.71 086 0.74 30 50 35 250 121 75 101 67 1.70 100 300 149 89 120 77 1.96 100 A7M 375 191 93 126 80 2.03 100

  • Specimen Alignment Error. Data is not valid.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

25 TABLE 5-5 Instrumented Charpy Impact Test Results for the St. Lucie Unit 2 Intermediate Shell Plate M-605-1 Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV) (Transverse Orientation)

Normalized Energies (A-lb/in2)

Time Time Fast Charpy Yield to Max. to Fract. Arrest Yield Flow Test Energy Charpy Max. Prop. Load Yield Load Max. Load Load Stress Stress Sample Temp. ED ED/A EM/A Ep/A PGY tGY PM tM PF PA sY (ksi)

No. (F) (ft-lb) (lb) (m sec) (lb) (m sec) (lb) (Ib) (ksi) 254 3.4 28 14 14 1759 0.11 1780 0.12 1774 58 59 25T 40 10.8 87 50 37 3404 = 0.16 3693 0.20 3641 113 118 23C 72 15.9 128 68 60 3624 0.16 4197 0.23 . 3976 365 120 130 23K 100 19.1 154 72 83 3601 0.16 4069 0.23 4004 434 120 127 21C 125 36.3 293 198 94 3162 0.16 3946 0.51 3896 1053 105 118 224 150 41.3 332 196 136 3090 0.16 3875 0.52 3821 1674 103 116 22U 160 22.8 184 120 64 3203 0.16 3762 0.35 3754 808 106 116 243 195 46.8 377 195 182 3006 0.16 3802 0.52 3728 2206 100 113 26J 225 79.9 644 265 379 2941 0.16 3905 0.67 0 98 114 237 250 65.8 529 193 336 3199 0.16 4144 0.48 106 122 25A 300 85.7 690 260 431 2590 0.15 3667 0.70 86 104 26D 375 83.3 675 249 425 2660 0.16 3616 0.68 88 104 Ana ysis of St. Lucie Unit 2 Capsule 263'pril1 98

TABLE 5-6 Instrumented Charpy Impact Test Results for the St. Lucie Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV)

Normalized Energies (ft-Ib/in2)

Time Time Fast C harpy Yield to Max. to Fracas Arrest Yield Flow Test Energy C harpy Max. Prop. Load Yield Load Max. Load Load Stress Stress Sample Temp. ED ED/A EM/A Ep/A PGY tGY PM tM PF PA sY (ksi)

No. ('F) (ft-Ib) (lb) (m sec) (lb) (msec) (Ib) (lb) (ksi) 37K -80 11.0 89 47 42 3978 0.16 4185 0.18 4140 132 136 366 -40 21.3 171 63 109 3517 0.15 4237 0.21 4194 1092 117 129 315 -20 35.7 288 212 76 3797 0.16 4348 0.48 4257 600 126 135 345 48.3 389 305 84 3784 0.17 4285 0.67 4181 818 126 134 327 50 59.8 482 210 271 3510 0.16 4169 0.50 3898 1635 117 128 32U 72 67.9 547 294 253 3382 0.16 4201 0.67 4018 2156 112 126 33L 120 91.3 735 286 449 3324 0.15 4050 0.67 2988 2353 110 122 36K 150 103.5 834 284 550 3121 0.16 4003 0.69 104 118 36L 195 106.8 860 271 589 3019 0.16 3849 0.69 0 100 114 341 250 110.7 891 274 617 3015 0.16 3942 0.68 100 116 31C 275 88.8 715 266 449 2968 . 0.16 3786 0.68 99 112 3A2 300 130.1 1048 318 730 2556 0.15 3617 0.84 85 103 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

TABLE 5-7 Instrumented Charpy Impact Test Results for the St. Lucie Unit 2 Heat-Affected-Zone (HAZ) Metal Irradiated to a Fluence of 1.244 x 10" n/cm'(E> 1.0 MeV)

Normalized Energies (ft-lb/in2)

Time Time Fast Charpy Yield to Max. to Fract. Arrest- Yield Flow Test Energy Charpy Max. Prop. Load. Yield Load Max. Load Load Stress Stress Sample Temp. ED ED/A EM/A Ep/A PGY tGY PM tM PF PA SY (ksi)

No. ('F) (ft-Ib) (lb) (m sec) (lb) (m sec) (ib) (lb) (ksi) 426 -40 32 260 202 58 4054 0.16 4645 0.44 4589 0 135 144 461 10 15 124 57 67 3611 0.17 4012 0.22 3932 790 120 127 47P 60 13 101 50 51 3545 0.16 3823 0.19 3745 451 118 122 46B 72 45 364 167 197 3429 0.16 4075 0.43 4056 2576 114 125 442 100 51 407 209 198 3212 0.15 4008 0.52 3928 2219 107 120 44T 120 54 433 196 237 3390 0.16 4034 0.49 3757 463 113 123 42E 150 83 671 375 297 3381 0.16 4253 0.83 3532 2663 112 127 41M 180 70 562 286 276 3419 0.17 4039 0.68 3809 2432 114 124 427 250 119 955, 367 588 3181 0.16 4137 0.84 106 122 475 250 49 392 158 233 2545 0.13 3502 0.46- 2976 2579 85 100 423 300 144 1161 360 800 3180 0.17 4092 0.84 106 121 412 375 126 1012 341 672 2755 0.16 4107 0.81 92 114 Analysis of St. Lucie Unit 2 Capsule 2634 Apnl1 96

TABLE 5-8 Instrumented Charpy Impact Test Results for the St. Lucie Unit 2 Standard Reference Material HSST 01MY Plate Irradiated to a Fluence of 1.244 x 10" n/cm'E > 1.0 MeV)

Normalized Energies (ft lb/in2)

Time Time Fast Charpy Yield to Max. to Fract. Arrest Yield Flow Test Energy Charpy Max. Prop. Load Yield Load Max. Load Load Stress Stress Sample Temp. ED ED/A EM/A Ep/A PGY tGY PM tM PF PA sY (ksi)

No. ('F) (ft-Ib) (Ib) (m sec) (Ib) (m sec) (Ib) (Ib) (ksi)

A7E -40 20 10 1299 0.10 1327 0.11 1320 43 44 AAB 50 54 27 27 2768 0.12 3110 0.15 3110 92'- 98 AA2 100 12 96 40 57 3549 0.16 3605 0.17 3605 695 118 119 .

Ajc 125 23 187 119 69 3635 0.16 4050 0.32 4015 625 121 128 A7L4 125 AAE 150 40 325 233 92 3531 0.16 4428 0 53 4337 813 117 132 A7Y 160 27 221 140 80 3509 0.16 4019 0.37 3993 1142 117 125 A7D 195 33 267 168 99 3488 0.16 4199 0.42 4186 990 116 128 AA7 195 45 365 220 145 3438 0.16 4314 0.52 4219 1790 114 129 AAI 250 75 602 186 416 3156 0.15 4147 0.46 0- 105 121 AA6 300 89 715 205 509 3262 0.16 4061 0.51 108 122 A7M 375 93 747 292 454 3135 0.16 4184 0.69 104 122 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

29 TABLE 5-9 Effect of Irradiation to 1.244 x 10" n/cm'(E> 1.0 MeV) on the Notch Toughness Properties of the St. Lucie Unit 2 Reactor Vessel Surveillance Materials Average 30 (ft-lb) (a) Average 35 mil Lateral (b) Average 50 ft-lb (a) Average Energy Absorption (a)

Transition Temperature ('F) Expansion Temperature ('F) Transition Temperature ('F) at Full Shear (ft-Ib)

Material Unirradiated Irradiated Unirradiated Irradiated Unirradiated Irradiated Unirradiated Irradiated hE 29.97 133.09 103.12 37.84 154.68 116.84 71.38 181.99 110.61 103 79 -24 Intermediate Shell Plate M-605-1 (Transverse)

Weld Metal -50.42 -24.44 25.98 -27.15 -0.69 26.46 -12.67 20.37 33.04 115 108 -7 HAZ Metal -26.17 47.12 73.3 8.18 76.52 68.34 18.32 109.23 90.91 96 130 SRM 25.89 156.98 131.09 37.85 183.50 145.65 52.95 200.61 147.66 122 86 -36 (a) "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-1, 5-4, 5-7 and 5-10).

(b) "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-2, 5-5, 5-8 and 5-11).

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

TABLE 5-10 Comparison of the St. Lucie Unit 2 Surveillance Material 30 A-lb Transition Temperature ShiAs and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions Material Capsule Fluence(n/cm'E 30 ft-lb Transition Temperature ShiA Upper Shelf Energy Decrease

> 1.0 MeV)

(x IO>>) Predicted ('F) Predicted ('F) Measured('F) Predicted (%) (a) Measured (a) (b) (c) (%)(d)

Inter. Shell Plate 83o 40.22 47.5 45 13.5 M-605-1(Long.) 263o Inter. Shell Plate 0.1779 40.22 47.5 30 13.5 83'63o M-605-1(Trans.) 1.244 78.36 92.6 103 21.0 23 Weld Metal 263'.1779 83o 0.1779 17.8 13 14 12.5 10 Heat 83637 Linde 124 263o 1.244 34.7 26 26 20.0 Lot 0951 HAZ Metal 83o 0.1779 O.pp(')

1.244 73 0 263'3o (HSST 01 MY Plate) 1.244 143.7 131 30 (a) Based on Reg. Guide 1.99, Rev. 2, methodology using the mean weight percent values of Cu and Ni of the surveillance material(See Table 4-1).

(b) Based on Reg. Guide 1.99, Rev. 2, methodology using chemistry factor calculated from surveillance data (Plate CF = 87.7, Weld CF = 24.S).

(c) Calculated using measured Charpy data plotted using CVGRAPH, Version 4.1 (See Appendix C).

(d) Values are based on the definition of upper shelf energy given in ASTM E1S5-82.

(e) Due to the scatter in Capsule 83'AZ charpy test results, a true hyperbolic tangent curve fit resulted in a bT>> of -25.04 when compared to unirradiated charpy test data. Physically this should not happen. Hence, based on engineering judgment a value of O'F is reported here (ie.

263'pril No change in hT>>).

Analysis of St. Lucie Unit 2 Capsule 1998

31 TABLE 5-11 Tensile Properties of the St. Lucie Unit 2 Reactor Vessel Surveillance Materials Irradiated to 1.244 x 10" n/cm'E > 1.0 MeV) 0.2% Yield Ultimate Fracture Fracture Fracture Uniform Total Reduction Sample Test Temp. Strength Strength Load Stress Strength Elongation Elongation in Area (%)

Material Number ('F) (ksi) (ksi) (kip) (ksi) (ksi) (%) (%)

Inter. Shell 2K1 150 64.4 87.0 3.22 203.3 65.6 13.5 24.2 68 Plate M-605-1 2JS 280 61.6 83.9 3.20 142.7 65.2 13.5 24.2 54 (Transverse) 2KE 550 56.5 87.6 3.33 167.7 67.8 11.7 21.6 60 3J7 76 66.7 86.6 2.70 194.3 55.0 12.0 27.0 72 Weld Metal 3KY 240 60.1 75.0 2.55 189.2 51.9 10.5 21.3 73 3JK 550 59.6 81.5 2.75 189.3 56.0 10.8 22.1 70 Heat 4JC 100 65.2 87.6 2.70 216.5 55.0 12.0 25.4 75 Affected 4K2* 240 51.9 72.7 2.55 130.1 51.9 12.0 18.0 60 Zone 4KP 550 56.5 77.0 2.62 133.6 53.4 12.0 18.8 60 Specimen broke out of gage length. Calculations are based on Load vs. Time chart records.

Analysis of St. Lucie Unit 2 Capsule 263'prii 1998

32 INTERMEDIATE SHELL M-605-1 (TRANSVERSE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at I4K49 on 12-2?-1997 Results Curve Fluence LSE d-LSE USE d-USE T o 31 d-T o 30 T '0 d-T o 50 I 0 2.19 0 10325 0 2997 0 TL38 0 2 LHE418 > 19 0 1015 -I.75 59111 2984 108.81 3 X 3 L244E>I9 2.19 0 79 -2425 13316 103.12 18L99 IION 150 OO 100

-200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend 20 38 Bata Set(s) Plotted Plant Ca e Material Ori bI~I Heat'12 UNIRR PLATE SA533BI TL SI2 WW PLATE SA533BI TL bH%-I SL2 W-263 PLATE SA533BI TL bHN-I Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for St. Lucie Unit 2 Reactor Vessel Analysis of St. Lucie Unit 2 Capsule 263'pril Intermediate Shell Plate M-605-1 (Transverse Orientation) 1998

33 INTERMEDIATE SHELL M '605-1 (TRANSVERSE)

CVGRAPH 43 Hyperbolic Tangent Curve Printed at IM4Q on 01-02-1998 Results Curve Fluence VSE d-VSE T o LE35 d-T o LE35 I

3 0

L779EIIB 1244E419 7783 mS 895

-nn 0

8.41

'5'7%

3784 154N 0

11683, "

K

'150 0

0 0

0 e ~

-200 -100 0 100 200 300 400 500 600 Temperature in Degrees F 20 38 ,,

Ihta Set(s) Plotte!

Plant Ca le Material . Ori Heat SI2 VNIRR PLATE SA533BI TL M-6Qrl SI2 Il'W PLATE SA53381 TL hHN-I SI2 W-263 PLATE SA533BI TL M~I Figure 5-2 Charpy'V-Notch Lateral Expansion vs. Temperature for St. Lucie Unit 2 Reactor Vessel Analysis of St. Lucie Unit 2 Capsule 263'pril Intermediate Shell Plate M-605-1 (Transverse Orientation) 1998

INTERMEDIATE SHELL M-605-1 (TRANSVERSE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at IMM9 on OIW-1998 Results Curve Fiuence T o 50'. Shear d-T o Rr. Shear I 0' 87111 0 L779E+18 169N 1244K%19 17al9 Nb18

/

/J

+0 0

o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F 20 -

Data Set(s) Plotted Curve Plant Ca e material Ori Heat I SI2 UNIRR PLATE SA533BI TL M~I 2 S12 WW PLATE SA533BI TL bHN5-I 3 SI2 1-263 PLATE SA533BI TL be-I Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for St. Lucie Unit 2 Reactor Vessel Analysis of St. Lucie Unit 2 Capsule 263'pril Intermediate Shell Plate M-605-1 (Transverse Orientation) 1998

35 SURVEILLANCE WELD CYGRAPH 4l Hyperbolic Tangent Curve Printed at 15m5 on 04&-1998 Curve Fluence LSE d-LSE USE d-ISE T o 30 d-T o 30 . T o 50 d-T o 50 I

2 3

0 L779E418 1244 E<19 219 219 219 0

0 0

114N IK59 10E19 0

-1209

-f49'24A4

-R42

-3M 0

1382 2598

~

-1267 2M7 0

?.44 3315 100

-300 -8$ -100

~

100 200 300 400 500 600 Tem.perature in Degrees F Curve Legend 20 Data Set(s) Plotted Curve Plant Ca e IIateriaI Ori Heat I SI2 UNIRR WELD 83637gNDE 124JDI'951 2 SI2 WW "

WELD 83637gNDE 124@F 0951 3 S12 W-263 WELD 83637gNBB 124JOT 0951 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for St. Lucie Unit 2 Reactor Vessel Weld Metal Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

36 SURVEILLANCE WELD CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1559;49 on MP-1998 Results Curve Fluence USE d-USE To LE35 d-T o LE35 2

3 I 0 L779E418 1244 E419 8828 8M8 114l3

~ 0 2584 W15

-1596

-$9 0

1119 26.46 K

150

-200 -100 0 100 200 300 400 500 600 Temperature in Degrees F 20 lhta Setjs) Plotted Curve Plant Ca e Ori Heat I SI2 UNIRR '83637gNBE I24JDT 0951 2 SL2 WW 83637JJNOE 124gT 0951 3 SI2 1-263 I7JJNDE I24JDT 0951 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for St. Lucie Unit 2 Reactor Vessel Weld Metal Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

37 SURVEILLANCE WELD CVGRAPH 41 Hyperbolic Tangent Curve Printed at 16%26 on 04-07-1998 Results Curve Fluence T o Rz Shear d-T o R/ Shear I 0 l4 0 2 Dl9E418 10.78 93?

3 1244E419 16.4 1499

/

Q 0 ~

C4

-200 -100 0 100 200 300 400 500 800 Temperature in Degrees F ..

Curve kgend 20 Data Set(s) Plotted Curve Plant Ca e Material Ori Heat I S12 UNIRR 83637JJNBE 124g7 0951 2 SI2 M3 83637QNDE 124JDF 0951 3 SI2 W-263 83N7JJNBE 124JQT 0951 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for St. Lucie Unit 2 Reactor Vessel Weld Metal Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

38 SURVEILLANCE HEATAFFECTED-ZONE CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13;16% on 03-5-1996 Results Curve Fluence LSE d-LSE USE d-USE T o 30 d-T o 30 T o 50 d-T o 50 I 0 2.19 0 96 0 -26.17 0 ISA 0 L779EWIS 2.19 0 Ii&5 225 <121 -2504 2027 194 3 1244E419 KI9 0 1299 336 47K 733 10923 9091 150 o

100

-200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend Data Set(s) Plottel Plant Ca le bhterial Ori Heatil SI2 UNIRR HEAT AFFD ZONE M~1 SIDE OF WELD S12 M3 HEAT AFFD ZONE bHN-I SIDE OF WELD S12 W-263 HEAT AFFD ZONE bf~l SIDE OF WELD Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for. St. Lucie Unit 2 Reactor Vessel Analysis of St. Lucie Unit 2 Capsule 263'pril Heat-Affected-Zone Material 1998

39 SURVElLLANCE .HEATAFFECTED-ZONE CVGRAPH 42 Hyperbolic Tangent Curve Printed at 13o797 on 01-08-1998 Results Curve Fluence USE d-USE T o LE35 d-T o LE3o 1 0 0 818 0 2 J.779'8 -L73 IOX) PJ7 3 1244E419 831m 98 76Ã %33 M

150 00

-200 -100 0 100 200 300 400 500 600 Temperature in Degrees F 20 Curve Legend Ihta Set(s)'lotted Curve Plant Ca e hhterial Ori Heat SL2 UNIRR HEAT AFFD ZONE hHKrl SIDE OF WELD SI2 WW HEAT AFFD ZONE hi~I SIDE OF WELD SI2 W-263 HEAT AFFD ZONE he%-I SIDE OF WELD Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for St. Lucie Unit 2 Reactor Vessel Analysis of St. Lucie Unit 2 Capsule 263'pril Heat-AQected-Zone Material 1998

40 SURVEILLANCE HEAT-AFFECTED-ZONE CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 14:ILI7 on OI~I998 Results Curve Fluence T o Ri.'hear d-T o 50'. Shear I 0 5M3 Q 2 L779E>18 6L4 9X 3 1244 E>19 IQL71 4968 0

0

//

I+

II Q 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend 20 Data Set(s) Plotted Curve Plant Ca e Material OrL Heat I SL2 UiiR HEAT AFFD ZONE M~1 SIDE OF WELD 2 S12 M3 HEAT AFFD ZONE M~I SIDE OF WELD 3 SI2 W-263 HEAT AFFD ZONE M~I SIDE OF WELD Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for St. Lucie Unit 2 Reactor Vessel Analysis of St. Lucie Unit 2 Capsule 263'pril Heat-Affected-Zone Material 1998

41 STANDARD REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1521:42 on %-04-1998 Results Curve Fluence LSE d-LSE USE d-USE T o 30 d-T o 30 T o 50 d-T o 50 0 219 0 12L5 2M9 0 0

'N1 5295 0 1

2 1244E419 219 0 8559 -359 15698 13M8 14756 150 Q

100 0

0 ~

o d

-300 -200 -100 0 100 200 GOO 400 500 600 Temperature in Degrees F t'

Curve Legend Data Set(s) Plotted Curve Phnt Ca e lhterial OrL Hea 1 S12 UNIRR PLATE SA533B1 LT HSST PLATE 01MY 2 SI2 W-263 SRM SA533B1 LT HSSI'LATE 01N Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for St. Lucie Unit 2 Reactor Vessel Standard Reference Material Analysis of St. Lucie Unit 2 Capsule 263 April 1998

42 STANDARD REFERENCE MATERIAL CVGRAPH 43 Hyperbolic Tangent Curve Printed at SR%42 on 8?-06-1998 Curve Fluence USE d-USE T o LEI d-T o LE35 1 0 7723 0 37N 0 2 1244K%19 0789 1M5 1035 14584 R

150 0

-300 -200 -100 0 100 200 300 400 500 '00 Temperature in Degrees F Data Set(s) Plotted Curve Plant Ca e Material Ori Heat 1 S12 UMRR PLATE SA533B1 LT HSS1'LATE 01MY 2 S12 W-203 SRM SA533B1 LT EE1'LATE 01N Figure 5-11 Charpy U-Notch Lateral Expansion vs. Temperature for St. Lucie Unit 2 Reactor Uessel Analysis of St. Lucie Unit 2 Capsule 263'pril Standard Reference Material 1998

'43 STANDARD REFERENCE MATERIAL CVGRAPH 4l Hyperbolic Tangent Curve Printed at IM489 on 02-06-1998 Results Curve Fluence T o Rr. Shear d-T o 50/. Shear I 0 rM 0 2 1244EWI9 19MI IILII Q

0 Q

S4 a

/

/

/

-300 -200 -100, 0 100 200 300 400 500 600 Temperature in Degrees F 20 Data Set(s) Plotted Curve Plant Ca e Material Ori Heat I SI2 'NIRR PLATE SA533BI LT HSST PLATE,OIMY 2 S12 1-263 SRM SA533BI LT K81'IATE OIMY Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for St. Lucie Unit 2 Reactor Vessel Standard Reference Material Analysis of St. Lucie Unit 2 Capsule 263' April 1998

44 C

gljl f + A 254 25T 23C 23K

~PNYf@j

%!i'. -+k. ',

~V4$~+

V @~~/C

~VX

~c ~ Pc ~

21C 224 22U 243 hW K y 4..

r I ~q~,

26J 237 25A 26D Figure 5-13 Charpy Impact Specimen Fracture Surfaces for St. Lucie Unit 2 Reactor Vessel Analysis of St. Lucie Unit 2 Capsule 263'pril Intermediate Shell Plate M-605-1 (Transverse Orientation) 1998

45 pAYa I

r h r

~~ApAi4 Qg+ P r

37K 366 315 345

  • =)

r

~kg r r~

r'27

<<r""

32U 33L 36K

~

'aj Qgpk rr r

Cg h

r5 36L 341 31C 3A2

'igure 5-14 Charpy Impact Specimen Fr'acture Surfaces for St. Lucie Unit 2 Reactor Vessel Weld Metal Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

C Cy

~

~ ~ I .

~

I ~

~

47 Picture

( e File I

Missing j

i:

44 Ml&W I

A7E AAB A7C Specimen Alignment Error.

Data is not valid.

A7L A7Y A7D r

t*

gC A7M Figure 5-16 Charpy Impact Specimen Fracture Surfaces for St. Lucie Unit 2 Reactor Vessel Standard Reference Material Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

48

('C) 0 100 150 200 250 300 120 f I I 800 100 700 ULTIMATETENSILE STRENGTH 90 600

~ 80 cn 70

~

cn 60 G~

0.2% YIELD STRENGTH

'~ 0 O 400 300 40 LEGEND:

A0 UNIRRADIATED 4 ~ IRRADIATEDTO A FLUENCE OF 1.244 x 10" n/cm'E > 1.0 MeV) 80 REDUCTION IN AREA 70 60

~ 50

~ 40 R TOTAL ELONGATION 30 p Q

-- ~ O 20 o o 10 UNIFORM ELONGATION 0

0 100 200 300 400 500 600 TEHPERATURE ( F)

Figure 5-17 Tensile Properties for St. Lucie Unit 2 Reactor Vessel Intermediate Shell Plate M-605-1 Analysis of St. Lucie Unit 2 Capsule 263'pril (Transverse Orientation) 1998

49

('C) 0 SO 100 150 200 250 300 120 I I I . I 800 100 700 ULTIMATE TENSILE STRENGTH 90 600

~ 80

~ 70 cn 40'--~

60 50 0.2% YIELD STRENGTH 400 300 LEGEND:

A0 UNIRRADIATED A~ IRRADIATED TO A FLUENCE OF 1.244 x 10" n/cm'E > 1.0 MeV) 80 REDUCTION IN AREA 70 60

'~ 50

~ 30 TOTAL ELONGATION 20 0 0 O o O 10 UNIFORM LONGATION 0 100 200 300 '00 500 600 TEMPERATURE ('R Figure 5-18 Analysis of St. Lucie Unit 2 Capsule 263'pril Tensile Properties for St. Lucie Unit 2 Reactor Vessel Weld Metal, 1998

50

('C) 0 50 100 150 200 250 300 120 I I 800 100 700 ULTIMATE TENSILE STRENGTH 90 A 600

~ 80 C/

CL

~ 70 O~

cn 60 400 0.2% YIELD STRENGTH 300 40 LEGEND:

A~ IRRADIATEDTO A FLUENCE OF 1.244 x 10" n/cm'E > 1.0 MeV) 80 70 REDUCTION IN AREA 60 -A

~ 50 8 30 TOTAL ELONGATION 20 10 UNIFORM ELONGATION 100 200 300 400 500 600 TEHPERATURE ('R Figure 5-19 Analysis of St. Lucie Unit 2 Capsule 263'pril Tensile Properties for St. Lucie Unit 2 Reactor Vessel Heat-Affected-Zone (HAZ) 1998

51 N

I Specimen 2J5 Tested at 280'F g .~".--'- ~~I::.!~. CQQMr.i..q... f F87%+

. -!! MAMlkbhJ&L4dai I

Specimen 2KE Tested at 550oF Figure 5-20 Fractured Tensile Specimens from St. Lucie Unit 2 Reactor Vessel Intermediate Shell Analysis of St. Lucie Unit 2 Capsule 263'pril Plate M-605-1 (Transverse Orientation) 1998

Specimen 3 J7 Tested at 76'F Specimen 3KY Tested at 2400F iaoe

-,;..SOS'.

Ss

~~l I U@4~~8 4k)N-ap F%

Specimen 3JK Tested at 550'F Figure 5-21 Analysis of St. Lucie Unit 2 Capsule 263'pril Fractured Tensile Specimens from St. Lucie Unit 2 Reactor Vessel Weld Metal 1998

53 4

g~'g~~Q~g~

C S ecimen 4JC Tested at 100'F 1'

ecimen 4K2 Tested at 24&'F Specimen 4KP Tested at 550'F Figure 5-22 Fractured Tensile Specimens from St. Lucie Unit 2 Reactor Vessel Heat-Affected-Zone (HAZ)

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

54 STRESS%TRAIN CURVE ST. LUCIE UNIT 2 263 DEGREE CAPSULE 100 90 80 70 3

\

60 co 50 40 30 20 10 "2K'150F 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN STRESS-STRAIN CURVE ST. LUCIE UNIT 2 263 DEGREE CAPSULE 100 90 80 70 6o Pep 50 I

40 3O 20 -

-;; ',2J5, 10 '.280 F 0

0 0.05 0.1 0.15 0.2 0.25 '.3 STRAIN, IN/IN e Figure 5-23 Engineering Stress-Strain Curves for Intermediate Shell Plate M-605-1 Tensile Analysis of St. Lucie Unit 2 Capsule 263'pril Specimens 2K1 and 2JS (Transverse Orientation) 1998

55 STRESSTRAIN CURVE ST. LUCIE UNIT 2 263 DEGREE CAPSULE 100 90 80 70 60 co 5Q C 4Q 30 20 2KE 10 550 F 0

0 0.05 0.1 0.15 0.2 0.25 0.3 Figure 5-24 Engineering Stress-Strain Curve for Intermediate Shell Plate M-605-1 Tensile Specimen Analysis of St. Lucie Unit 2 Capsule 263'pril 2KE (Transverse Orientation) 1998

56 STRESS%TRAIN CURVE ST. LUCIE UNIT 2 263 DEGREE CAPSULE 100 90 80 70 eo g 50 4o 30 20 '.'3J7 10 '.

76 F-0 0 0.1 0.2 0.3 STRAIN, IN/IN STRESSNTRAIN CURVE I ST. LUCIE UNIT 2 263 DEGREE CAPSULE 100 90 80 v) 6o 50 g 40 3O 20 3KY.

10 . :..: ','240'F 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, INtIN Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

57 STRESSTRAIN CURVE ST. LUCIE UNIT 2 263 DEGREE CAPSULE 90 80 70 Q 60 co 50 40

~ 30 20

-MK'550.

10 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, I WIN Figure 5-26 Analysis of St. Lucie Unit 2 Capsule 263'pril Engineering Stress-Strain Curve Weld Metal Tensile Specimen 3E 1998

58 STRESS%TRAIN CURVE ST. LUCIE UNIT 2 263 DEGREE CAPSULE 100 90 co 70 60 co 50 40 30 20 4JC.

10 100 F.

~ )

0 0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN STRESSNTRAIN CURVE ST. LUCIE UNIT 2 263 DEGREE CAPSULE

. Specitneii Sroke outside'of gage hath:

80 60 40 I

CO 20 4K2 240 E 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, I WIN Figure 5-27 Engineering Stress-Strain Curves for Heat-Affected-Zone (HAZ) Material Tensile Analysis of St. Lucie Unit 2 Capsule 263'pril Specimens 4JC and. 4K2 1998

59 STRESS%TRAIN CURVE ST. LUCIE UNIT 2 263 DEGREE CAPSULE 100 90 80 70 60 50 40 30 20 4KP 10 550 F 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, ININ Figure 5-28 Engineering Stress-Strain Curve for Heat-Affected-Zone Material (HAZ) Tensile Specimen 4KP Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

60 SECTION 6.0 RADIATION'ANALYSISAND NEUTRON DOSIMETRY 6.1 Introduction Knowledge of the neutron environment within the reactor vessel and surveillance capsule geometry is required as an integral part of LWR reactor vessel surveillance programs for two reasons. First, in order to interpret the neutron radiation induced material property changes observed in the test specimens, the neutron environment (energy spectrum, flux, fluence) to which the test specimens were exposed must be known. Second, in order to relate the changes observed in the test specimens to the present and future condition of the reactor vessel, a relationship must be established between the neutron environment at various positions within the reactor vessel and that experienced by the test specimens. The former requirement is normally met by employing a combination of rigorous analytical techniques and measurements obtained with passive neutron flux monitors contained in each of the surveillance capsules.

The latter information is generally derived solely from analysis.

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the n eutron exposure of the material has traditionally been accepted for development of damage trend curves as well as for the implementation of trend curve data to assess vessel condition. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves as well as to a more accurate evaluation of damage gradients through the reactor vessel wall.

Because of this potential shiA away from a threshold fluence toward an energy dependent damage function for data correlation, ASTM Standard Practice E853, "Analysis and Interpretation of Light-Water Reactor Surveillance Results," recommends reporting displacements per [iron] atom (dpa) along with fluence (E > 1.0 MeV) to provide a data base for future reference. The energy dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693, "Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom." The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials."

AnaIysis of St. Lucie Unit 2 Capsule 263'pril 1998

61 This section provides the results of the neutron dosimetry evaluations performed in conjunction with the analysis of test specimens contained in surveillance Capsule 263', withdrawn at the end of the ninth fuel cycle. Also included is an update of the dosimetry evaluation for Capsule 83'i"i withdrawn at the end of the first fuel cycle. This update is based on current state-of-the-art methodology and nuclear data including recently released neutron transport and dosimetry cross-section libraries derived from the ENDF/B-VI data base. This report provides a consistent up-to-date neutron exposure data base for us'e in evaluating the material properties of the St. Lucie Vnit 2 reactor vessel.

In each of the capsule dosimetry evaluations, fast neutron exposure parameters in terms of neutron fluence (E > 1.0 MeV), neutron fluence (E > 0.1 MeV), and iron atom displacements (dpa) are established for the capsule irradiation history. The analytical formalism relating the measured capsule exposure to the exposure of the vessel wall is described and used to project the integrated exposure of the vessel wall. Also, uncertainties associated with the derived exposure parameters at the surveillance capsules and with the projected exposure of the reactor vessel are provided.

6.2 Discrete Ordinates Anal sis A plan view of the reactor geometry at the core midplane is shown in Figure 4-1. Six irradiation capsules attached to the reactor vessel are included in the reactor design to constitute the reactor vessel surveillance program. The capsules are located at azimuthal angles of 83', 97', 104', 263', 277', and 284'elative to the core cardinal axis as shown in Figure 4-1.

A plan view of a surveillance capsule holder is shown in Figure 6-1. The stainless steel Flux Monitor Housings are 1.5 by 0.75-inch an'd positioned axially such that the 3 Flux Monitor Housings are centered on the core midplane, thus spanning the central 8 feet of the 12-foot high reactor core.

From a neutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the core support barrel and the reactor vessel.

In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

62 In performing the fast neutron exposure evaluations for the surveillance capsules and reactor vessel, two distinct sets of transport calculations were carried out. The first, a single computation in the conventional forward mode, was used primarily to obtain relative neutron energy distributions throughout the reactor geometry as well as to establish relative radial distributions of exposure parameters {$(E > 1.0 MeV), $ (E

> 0.1 MeV), and dpa/sec} through the vessel wall. The neutron spectral information was required for the interpretation of neutron dosimetry withdrawn from the surveillance capsules as well as for the determination of exposure parameter ratios; i.e., [dpa/sec]/[$ (E > 1.0 MeV)], within the reactor vessel geometry. The relative radial gradient information was required to permit the projection of measured exposure parameters to locations interior to the reactor vessel wall; i.e., the i/~T and ~/~T locations.

The second set of calculations consisted of a series of adjoint analyses relating the fast neutron flux, $ (E 1.0 MeV), at surveillance capsule positions and at several azimuthal locations on the reactor vessel inner radius to neutron source distributions within the reactor core. The source importance functions generated from these adjoint analyses provided the basis for all absolute exposure calculations and comparison with measurement. These importance functions, when combined with fuel cycle specific neutron source distributions, yielded absolute predictions of neutron exposure at the locations of interest for each cycle of irradiation. They also established the means to perform similar predictions and dosimetry evaluations for all subsequent fuel cycles. It is important to note that the cycle specific neutron source distributions utilized in these analyses included not only spatial variations of fission rates within the reactor core but also accounted for the effects of varying neutron yield per fission and fission spectrum introduced by the build-up of plutonium as the burnup of individual fuel assemblies increased.

The absolute cycle-specific data from the adjoint evaluations together with the relative neutron energy spectra and radial distribution information from the reference forward calculation provided the means to:

1 - Evaluate neutron dosimetry obtained from surveillance capsules, 2- Relate dosimetry results to key locations at the inner radius and through the thickness of the reactor vessel wall, 3 - Enable a direct comparison of analytical prediction with measurement, and 4- Establish a mechanism for projection of reactor vessel exposure as the design of each new fuel cycle evolves.

The forward transport calculation for the reactor model summarized in Figures 4-1, 6-1, and 6-2 was Analysis of St. Lucie Unit 2 Capsule 263'pril carried out in r-8 geometry using the DORT two-dimensional discrete ordinates code Version 3.1i"i and 1998

63

the BUGLE-96 cross-section library '"i. The BUGLE-96 library is a 47 energy group ENDF/B-VI based data set produced specifically for 'light water reactor applications. The Group-Organized Cross Section Input Program, GIPi"i, accepts nuclide-organized microscopic cross section data from the BUGLE-96 library and prepares macroscopic energy-group cross sections for forward and adjoint transport calculations. In these analyses, anisotropic scattering was treated with a P, expansion of the scattering cross-sections and the angular discretization was modeled with an S, order of angular quadrature.

The core power distribution utilized by the forward transport calculation used a pin-by-pin array of relative pin power from middle of Cycle 9. The transport calculation with the pin-by-pin power distribution gives the exposure parameters, reaction rate ratios, and is used to create the importance functions for each pin location.

The source was converted from the X-Y fuel pin geometry to the r-6 DORT geometry by modeling the core power distribution as pin by pin arrays in an X-Y geometry, then overlaying it with a fine mesh r-6 geometry. The fine r-6 mesh is developed such that a single pin on the periphery is overlaid with, for example, a 10x10 r-6 mesh. The X-Y source is then transformed to the fine mesh r-6 geometry by assigning a pin power to the fine mesh based on the location of the geometric center of the fine mesh relative to the pin it overlays. So as the fine mesh gets diQerentially small, the X-Y to r-6 transformation becomes exact. The source is then converted from the fine r-6 mesh to the r-6 DORT geometry by area weighting the fine mesh.

All adjoint calculations were also carried out using an S, order of angular quadrature and the P, cross-section approximation generated from GIP. Adjoint source locations were chosen at several azimuthal locations along the reactor vessel inner radius as well as at the geometric center of each surveillance capsule. Again, these calculations were run in r-6 geometry to provide neutron source distribution importance functions for the exposure parameter of i'nterest, in this case $ (E > 1.0 MeV).

Having the importance functions and appropriate core source distributions, the response of interest could be calculated as:

R(r,8) = J J Jl(r,8,E)S(r,8,E)rdrd8dE I e Z Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

64 where: R(r,6) = $ (E > 1.0 MeV) at radius r and azimuthal angle 6.

I(r,6,E)= ~

Adjoint source importance function at radius r, azimuthal angle 6, and neutron source energy E.

S(r,6,E)= Neutron source strength at core location r,6 and energy E.

Although the adjoint importance functions used in this analysis were based on a response function defined by the threshold neutron fiux $ (E > 1.0 MeV), prior calculations "" have shown that, while the implementation of low leakage loading patterns significantly impacts both the magnitude and spatial distribution of the neutron field, changes in the relative neutron energy spectrum are of second order.

Thus, for a given location, the ratio of [dpa/sec]/[$ (E > 1.0 MeV)] is insensitive to changing core source distributions. In the application of these adjoint importance functions to the St. Lucie Unit 2 reactor, therefore, the iron atom displacement rates (dpa/sec) and the neutron flux $ (E > 0.1 MeV) were computed on a cycle-specific basis by using [dpa/sec]/[$ (E > 1.0 MeV)] and[)(E > 0.1 MeV)]/[$(E > 1.0 MeV)]

ratios from the forward analysis in conjunction with the cycle specific $ (E > 1.0 MeV) solutions from the individual adjoint evaluations.

The reactor core power distributions used in the plant specific adjoint calculations were taken from physics data for the first nine operating cycles of St. Lucie Unit 2"" provided by Florida Power and Light Company.

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-5. The data listed in these tables establish the means for absolute comparisons of analysis and measurement for the capsule irradiation periods and provide the means to correlate dosimetry results with the corresponding exposure of the reactor vessel wall.

In Table 6-1, the calculated exposure parameters [$ (E > 1.0 MeV), )(E > 0.1 MeV), and dpa/sec] are given at the geometric center of the surveillance first-octant equivalent capsule position 7'for capsules at S3', 97', 263', and 277') and 14'for capsules at 104'nd 284') relative to the core cardinal axis for the plant specific core power distributions. For calculation purposes, the DORT model assumes eighth-core symmetry in the loading and power distribution. The plant-specific data, based on the adjoint transport analysis, are meant to establish the absolute comparison of measurement with analysis. Similar data is given in Table 6-2 for the reactor vessel inner radius. The two-dimensional adjoint calculations are combined with axial power distributions to pr'oduce the plant specific results for azimuthal capsule and vessel locations. This approach Analysis of St. Lucie Unit 2 Capsule 263'pril will tend to over-predict axial flux maxima for flux propagation to 1998

65 the pressure vessel. Again, the three pertinent exposure parameters are listed for the Cycle 1 through 9 specific power distributions. 'lant It is important to note that the data for the vessel inner radius were taken at the clad/base metal interface, and, thus, represent the maximum predicted exposure levels of the vessel plates and welds.'adial gradient information applicable to $ (E > 1.0 MeV), $ (E > 0.1 MeV), and dpa/sec is given in Tables 6-3, 6-4, and 6-5, respectively. The data, obtained from the reference forward neutron transport calculation, are presented on a relative basis for each exposure parameter at several azimuthal locations.

Exposure distributions through the vessel wall may be obtained by normalizing the calculated or projected exposure at the vessel inner radius to the gradient data listed in Tables 6-3 through 6-5.

For example, the neutron flux $ (E > 1.0 MeV) at the '/iT depth in the reactor vessel wall along the is given by:

0'zimuth g i~~(0 ) = P(221.44 0 ) F(226.92'0 )

where: $ y T( 0') = Projected neutron flux at the '/iT position on the 0'zimuth.

$ (221.44,0') = Projected or calculated neutron flux at the vessel inner radius on the 0'zimuth.

F(226.92,0') = Ratio of the neutron flux at the ~/iT position to the flux at the vessel inner radius for the 0'zimuth. This data is obtained from Table 6-3.

~ ~

Similar expressions apply for exposure parameters expressed in terms of $ (E > 0.1 MeV) and dpa/sec where the attenuation function F is obtained from Tables 6-4 and 6-5, respectively.

The passive neutron sensors included in the St. Lucie Unit 2 surveillance program are listed in Table 6-6.

Also given in Table 6-6 are the primary nuclear reactions and associated nuclear constants that were used 263'pril in the evaluation of the neutron energy spectrum within the surveillance capsules and in the subsequent determination of the various exposure parameters of interest [$ (E > 1.0 MeV), $ (E > 0.1 MeV), dpa/sec].

Analysis of St. Lucie Unit 2 Capsule 1998

66 The relative locations of the neutron sensors within the capsules are shown in Figure 4-4. The iron, nickel, copper, cobalt-aluminum, sulfur (not used), titanium monitors and uranium fission monitor were placed in holes drilled in the Flux Monitor Housing all at the same radial location relative to the core center.

The use of passive monitors such as those listed in Table 6-6 does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure o'f the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only ifthe irradiation parameters are well known. In particular, the following variables are of interest:

The measured specific activity of each monitor, The physical characteristics of each monitor, The operating history of the reactor, The energy response of each monitor, and The neutron energy spectrum at the monitor location.

The specific activity of each of the neutron monitors was determined using established ASTM procedures i"~+ ">. Following sample preparation and weighing, the activity of each monitor was determined by means of a lithium-drifted germanium, Ge(Li), gamma spectrometer. The irradiation history of the St. Lucie Unit 2 reactor was obtained from Florida Power and Light Companyii'i for the Cycles I through 9 operating period. The irradiation history applicable to the exposure of Capsules 263'nd 83's given in Table 6-7.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

Np FYZ Il-e"'~J(e""J P~y C~

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

'7 where:

N Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus).

Measured specific activity (dps/gm). ~

No Number of target element atoms per gram of sensor.

F Weight fraction of the target isotope in the sensor material.

Y I Number of product atoms produced per reaction.

j Average core power level during irradiation period (MW).

Maximum or reference power level of the reactor (MW).

Ci Calculated ratio of $ (E > 1.0 MeV) during irradiation period j to the time weighted average

$ (E > 1.0 MeV) over the entire irradiation period.

Decay constant of the product isotope (1/sec).

j Length of irradiation period (sec).

j t'ecay time following irradiation period (sec).

and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio [P>]/[P,] accounts for month by month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio C,, which can be calculated for each fuel cycle using the adjoint transport technology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single cycle irradiation, C; is normally taken to be 1.0. However, for multiple -cycle irradiations, particularly those employing low leakage fuel management, the additional Ci term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

For the irradiation history of Capsules 263'nd 83', the flux level term in the reaction rate calculations was developed from the plant-specific analysis provided in Table 6-1. Measured and saturated reaction product specific activities as well as the derived full power reaction rates are listed in Table 6-8. The specific activities and reaction rates of the 238U sensors provided in Table 6-8 include corrections for Analysis of St. Lucie Unit 2 Capsule 263'pril 235U impurities, plutonium build-in, and gamma ray induced fissions.

1998

68 Values of key fast neutron exposure parameters were derived from the measured reaction rates using the FERRET least squares adjustment code <">. The FERRET approach used the measured reaction rate data, sensor reaction cross-sections, and a calculated trial spectrum as input and proceeded to adjust the group fluxes from the trial spectrum to produce a best fit (in a least squares sense) within the constraints of the parameter uncertainties. The best estimate exposure parameters, along with the associated uncertainties, were then obtained from the best estimate spectrum.

In the FERRET evaluations, a log-normal least squares algorithm weights both the a priori values and the measured data in accordance with the assigned uncertainties and correlations. In general, the measured values fare linearly related to the flux $ by some response matrix A:

where i indexes the measured values belonging to a single data set s, g designates the energy group, and u delineates spectra that may be simultaneously adjusted. For example, relates a set of measured reaction rates R; to a single spectrum $ by the multi-group reaction cross-g section oig. The log-normal approach automatically accounts for the physical constraint of positive fluxes, even with large assigned uncertainties.

In the least squares adjustment, the continuous quantities (i.e., neutron spectra and cross-sections) were approximated in a multi-group format consisting of 53 energy groups. The trial input spectrum was converted to the FERRET 53 grou'p structure using the SAND-II code"'>. This procedure was carried out by first expanding the 47 group calculated spectrum into the SAND-II 620 group structure using a SPLINE interpolation procedure in regions where group boundaries do not coincide. The 620 point spectrum was then re-collapsed into the group structure used in FERRET.

The sensor set reaction cross-sections, obtained from the ENDF/B-VI dosimetry file i">, were also collapsed into the 53 energy group structure using the SAND-II code. In this instance, the trial spectrum, as expanded to 620 groups, was'employed as a weighting function in the cross-section collapsing procedure. Reaction cross-section uncertainties in the form of a 53 x 53 covariance matrix for each Analysis of St. Lucie Unit 2 Capsule 263 April 1998

69 sensor reaction were also constructed from the information contained on the ENDF/B-VI data files.

These matrices included energy group to energy group uncertainty correlations for each of the individual reactions. However, correlations between cross-sections for different sensor reactions were not included.

The omission of this additional uncertainty information does not significantly impact the results of the adjustment.

r Due to the importance of providing a trial spectrum that exhibits a relative energy distribution close to the actual spectrum at the sensor set locations, the neutron spectrum input to the FERRET evaluation was taken from the center of the surveillance capsule modeled in the reference forward transport calculation.

While the 53 x 53 group covariance matrices applicable to the sensor reaction cross-sections were developed from the ENDF/B-VI data files, the covariance matrix for the input trial spectrum was constructed from the following relation:

Msg = R' Rg Rii Pgg where Rn specifies an overall fractional normalization uncertainty (i.e., complete correlation) for the set of values. The fractional uncertainties R g specify additional random uncertainties for group g that are correlated with a correlation matrix given by:

Pgg = (J-8J Bgg + 8 e" where:

The first term in the correlation matrix equation specifies purely random uncertainties, while the second II term describes short range correlations over a group range y (6 specifies the strength of the latter term).

The value of 5 is 1 when g = g'nd 0 otherwise. For the trial spectrum used in the current evaluations, a short range correlation of y = 6 groups was used. This choice implies that neighboring groups are strongly correlated when 6 is close to 1. Strong long range correlations (or anti-correlations) were justified based on information presented by R. E. Maerkeii33'. The uncertainties associated with the 263'pril measured reaction rates included both statistical (counting) and systematic components. The systematic Analysis of St. Lucie Unit 2 Capsule 1998

70 component of the overall uncertainty accounts for counter efficiency, counter calibrations, irradiation history corrections, and corrections for competing reactions in the individual sensors.

Results of the FERRET evaluations of the Capsules 263'and 83'osimetry are given in Table 6-9. The data summarized in this table include fast neutron exposure evaluations in terms of 4(E > 1.0 MeV), 4(E

> 0.1 MeV), and dpa. In general, excellent results were achieved in the fits of the best estimate spectra to the individual measured reaction rates. The measured, calculated and best estimate reaction rates for each reaction are given in Table 6-10. An examination of Table 6-10 shows that, in all cases, reaction rates calculated with the best estimate sp'ectra match the measured reaction rates to better than 10% except for 238U(n,f) reaction rates which are less than 22%. The best estimate spectra from the least squares evaluation is given in Table 6-11 in the FERRET 53 energy group structure.

In Table 6-12, absolute comparisons of the best estimate and calculated Quence at the center of each capsule are presented. The results for the Capsules 263'nd 83'osimetry evaluations (BE/C ratios of 1.00 and 0.89 for 4(E > 1.0 MeV)) are consistent with results obtained from similar evaluations of dosimetry from other reactors using methodologies based on ENDF/B-VI cross-sections.

6.4 Pro'ections of Reactor Vessel Ex osure The best estimate exposure of the St. Lucie Unit 2 reactor vessel was developed using a combination of absolute plant specific transport calculations and all available plant specific measurement data. In the case of St. Lucie Unit 2, the measurement data base consists of the two surveillance capsules discussed in this report.

Combining this measurement data base with the plant-specific calculations, the best estimate vessel exposure is obtained from the following relationship:

+Best E'er. + +cole.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

71 where: @Best Est. The best estimate fast neutron exposure at the location of interest K The plant specific best estimate/calculation (BE/C) bias factor derived from the surveillance capsule dosimetry data.

~'Calc. The absolu'te calculated fast neutron exposure at the location of interest.

The approach defined in the above equation is based on the premise that the measurement data represent the most accurate plant-specific information available at the locations of the dosimetry; and, further that the use of the measurement data on a plant-specific basis essentially removes biases present in the analytical approach and mitigates the uncertainties that would result from the use of analysis alone.

That is, at the measurement points the uncertainty in the best estimate exposure is dominated by the uncertainties in the measurement process. At locations within the reactor vessel wall, additional uncertainty is incurred due to the analytically determined relative ratios among the various measurement points and locations within the reactor vessel wall.

For St. Lucie Unit 2, the derived plant specific bias factors were 0.95, 1.01, and 0.96 for C(E > 1.0 MeV),

4(E > 0.1 MeV), and dpa, respectively. Bias factors of this magnitude are fully consistent with experience using the BUGLE-96 cross-section library.

The use of the bias factors derived from the measurement data base acts to remove plant-specific biases associated with the definition of the core source, actual versus assumed reactor dimensions, and operational variations in water density within the reactor. As a result, the overall uncertainty in the best estimate exposure projections within the vessel wall depends on the individual uncertainties in the measurement process, the uncertainty in the dosimetry location, and, in the uncertainty in the calculated ratio of the neutron exposure at the point of interest to that at the measurement location.

The uncertainty in the derived neutron flux for an individual measurement is obtained directly from the results of a least squares evaluation of dosimetry data. The least squares approach combines individual uncertainty in the calculated neutron energy spectrum, the uncertainties in dosimetry cross-sections, and the uncertainties in measured foil specific activities to produce a net uncertainty in the derived neutron flux at the measurement point. The associated uncertainty in the plant specific bias factor, K, derived from the BE/C data base, in turn, depends on the total number of available measurements as well as on the uncertainty of each measurement.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

72 In developing the overall uncertainty associated with the reactor vessel exposure, the positioning it uncertainties for dosimetry are taken from parametric studies of sensor position performed as part a series of analytical sensitivity studies included in the qualification of the methodology. The uncertainties in the exposure ratios relating dosimetry results to positions within the vessel wall are again based on the analytical sensitivity studies of the vessel thickness tolerance, downcomer water density variations, and vessel inner radius tolerance. Thus, this portion of the overall uncertainty is controlled entirely by dimensional tolerances associated with the reactor design and by the operational characteristics of the reactor.

The net uncertainty in the bias factor, K, is combined with the uncertainty from the analytical sensitivity study'to define the overall fiuence uncertainty at the reactor vessel wall. In the case of St. Lucie Unit 2, I

the derived uncertainties in the bias factor, K, and the additional uncertainty from the analytical sensitivity studies combine to yield a net uncertainty of +10%.

Based on this best estimate approach, the best estimate exposure projections at key locations on the reactor vessel inner radius are given in Table 6-13 followed by the calculated exposure corrections.

Projections are provided for the current cycle exposure of 11 EFPY and exposure periods of 25 EFPY and 32 EFPY. Projections for future operation were based on the assumption that the average exposure rates averaged over the Cycles 1 through 9 irradiation period would continue to be applicable throughout plant life.

In the calculation of exposure gradients within the reactor vessel wall for the St. Lucie Unit 2 reactor vessel, best estimate and calculated exposure projections to 25 EFPY and 32 EFPY were also employed.

Data based on both a i'(E > 1.0 MeV) slope and a plant-specific dpa slope through the vessel wall are provided in Table 6-14.

In order to access RTNDT versus fluence curves, dpa equivalent fast neutron fiuence levels for the 'liT and '/4T positions were defined by the relations:

4 (~V = P(~V y (gq Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

73

'PPliT) = P(OT) e Using this approach results in the dpa equivalent fluence values listed in Table 6-14.

In Table 6-15, updated lead factors are listed for each of the St. Lucie Unit 2 surveillance capsules. The lead factor is the calculated capsule fluence divided by the calculated maximum fluence on the vessel inner radius at one time in the plant power history, typically at the time of capsule withdrawal. For each capsule position, the lead factor indicates the extent to which the capsule exposure exceeds (or lags) that of the maximum vessel exposure.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

74 Figure 6-1 Plan View Of A Flux Monitor Housing and Holder (cm) 3.91 3.21 1.91 3.81 vessel 4.92 housing 5.6 1.55 water holder Analysis of St. Lucie Unit 2 Capsule 263'pr>l 1998

75 Figure 6-2 The R-6 DORT Model (cm)

St. Lucie 2 CO

~8 O

C M

50 100 150 200 250 300 350 r, node Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

76 Table 6-1 Calculated Fast Neutron Exposure Rates And Iron Atom Displacement Rates At The Surveillance Capsule Center

$ (E > 1.0 MeV) (n/cm2-sec)

~Cole No. 70 140 5.358E+10 3.956E+10 4.917E+10 3.492E+10 4.147E+10 2.978E+10 3.038E+10 2.568E+10 3.021E+10 2.592E+10 3.271E+10 2.454E+10 3.708E+10 2.723E+10 2.131E+10 1.S12E+10 3.259E+10 2.804E+10

$ (E > 0.1 MeV) (n/cm2-sec)

~Cele No. 70 14'.956E+10 1.006E+11 9.229E+10 3.492E+10 7.784E+10 2.978E+10 5.702E+10 2.568E+10 5.670E+10 2.592E+10 6.140E+10 2.454E+10 6.960E+10 2.723 E+10 4.000E+10 1.812E+10 6.117E+10 2.804E+10 Displacement Rate (dpa/sec)

~Cole No. 70 140 7.801E-11 3.956E+10 7.159E-11 3.492E+10 6.038E-11 2.97SE+10 4.423 E-11 2.568E+10 4.399E-11 2.592E+10 4.763E-11 2;454E+10 5.399E-11 2.723E+10 3.103E-11 1.812E+10 4.745 E-11 2.804E+10 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

77 Table 6-2 Calculated Azimuthal Variation Of Fast Neutron Exposure Rates And Iron Atom Displacement Rates At The Reactor Vessel Clad/Base Metal Interface

$ (E > 1.0 MeV) (n/cm'-sec)

~Cole No. 00 15'.759E+10 30'.228E+10 45'.564E+10 1 4.113E+10 2 i 4.279E+10 2.644E+10 2.216E+10 1.573E+10 3 3.362E+10 2.050E+10 1.687E+10 1.155E+10 4 2.509E+10 2.059E+10 1.941E+10 1.38SE+10 5 2.293 E+10 1.927E+10 1.817E+10 1.256E+10 6 2.610E+10 1.752E+10 1.518E+10 1.157E+10 7 2.900E+10 1.SSSE+10 1.550E+10 1.232E+10 8 1.670E+10 1.368E+10 1.568E+10 1.161E+10 9 2.167E+10 1.874E+10 1.601E+10 1.087E+10

$ (E > 0.1 MeV) (n/cm'-sec)

~Cele No. 00 15o 30'.855E+10 45'.439E+10 8.975E+10 5.993 E+10 9.337E+10 "

5.742E+10 4.828E+10 3.459E+10 7.336E+10 4.452E+10 3.675E+10 2.540E+10 5.475 E+10 4.472E+10 4.230E+10 3.052E+10 5.004E+10 4.1SSE+10 3.958E+10 2.762E+10 5.694E+10 3.804E+10 3.308E+10 2.544E+10 6.328E+10 4.101E+10 3.378E+10 2.709E+10 3.645E+10 2.972E+10 3A16E+10 2.553 E+10 4.729E+10 4.071E+10 3.489E+10 2.390E+10 Displacement Rate (dpa/sec)

~Cole No. 00 15 450 30'.416E-11 6.306E-11 4.232E-11 2.469E-11 6.560E-11 4.055E-11 3.397E-11 2.484E-11 5.154E-11 3.144E-11 2.586E-11 1.824E-11 3.847E-11 3.159E-11 2.976E-11 2.192E-11 3.515E-11 2.956E-11 2.785E-11 1.983E-11 4.000E-11 2.6S7E-11 2.327E-11 1.827E-11 4.446E-11 2.896E-11 2.377E-11 '.945E-1.1 2.561E-11 2.099E-11 2.403 E-11 1.833E-11 3.323 E-11 2.875E-11 2.455E-11 1.716E-11 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

78 Table 6-3 Relative Radial Distribution Of $ (E > 1.0 Mev)

Within The Reactor Vessel Wall Radius Azimuthal Angle

~cm 00 ]50 45'.000 221.440 1.000 30'.000 1.000 221.955 0.969 0.969 0.969 0.989 222.895 0.894 0.896 0.896 0.911 223.865 0.809 0.813 0.809 0.826 224.960 '.715 0.716 0.714 0.729 226.055 0.627 0.631 0.626 0.642 226.920 0.564 0.566 0.563 0.575 227.150 0.547 0.549 0.547 0.558 228.245 0.476 0.479 0.474 0.489 229.340 0.413 0.415 0.412 0.422 230.435 0.358 0.359 0.356 0.367 231.530 0.309 0.311 0.308 0.318 232.390 0.276 0.276 0.274 0.283 232.630 0.267 0.267 0.265 0.273 233.725 0.230 0.231 0.228 0.237 234.820 0.198 0.198 0.196 0.203 235.915 0.169 0.170 0.168 0.176 237.010 0.145" 0.145 0.145 0.151 237.870 0.128 0.129 0.127 0.134 238.105 0.124 0.124 0.123 0.129 239.200 0.105 0.106 0.105 0.111 240.295 0.089 0.089 0.089 0.094 241.390 '.074 0.075 . 0.074 0.080 242.485 0.061 0.062 0.062 0.067 243.190 0.053 0.054 0.053 0.060 243.350 0.053 0.054 0.053 0.059 Base Metal Inner Radius 221.44 cm Base Metal ~/4 T 226.92 cm Base Metal ~/u T 232.39 cm Base Metal ~/4 T 237.87 cm Base Metal Outer Radius 243.35 cm Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

79 Table 6-4 Relative Radial Distribution Of $ (E > 0.1 Mev)

Within The Reactor Vessel Wall radius Azimuthal Angle

~cm 00 15o 45'.000 221.440 .1.000 30'.000 1.000 221.955 1.010 1.010 1.008 1.010 222.895 223.865 224.960 1.002 0.978 0.941 1.002 0.979 0.940

'.973 1.001 0.935 1.004 0.982 0.947 226.055 0.898 0.899 0.892 0.908 226.920 0.862 0.863 0.856 0.873 227.150 0.853 0.853 0.846 0.864 228.245 0.807 0.807 0.799 0.822 229.340 0.761 0.761 0.753 0.777 230.435 0:725 0.725 0.717 0.743 232.390 0.715 0.715 0.707 0.734 231.530 0.669 0.670 0.662 0.691 232.630 0.625 0.625 0.618 0.648 233.725 0.581 0.582 0.575 0.607 234.820 0.538 0.539 0.533 0.565 235.915 0.496 0.498 0.492 0.527 237.010 0.455 0.457 0.453 0.487 237.870 0.423 0.426 0.421 0.458 238.105 0.415 0.417 0.413 0.449 239.200 0.375 0.378 0.375

"'.412 240.295 0.335 0.339 0.337 . 0.375 241.390 0.295 0.300 0.300 0.339 242.485 0.254 0.259 0.261 0.302

'43.190 0.226 , 0.233 0.235 0.277 243.350 0.224 0.231 0.233 0.276 Base Metal, Inner Radius 221.44 cm Base Metal '/~ T 226.92 cm Base Metal ~lu T 232.39 cm Base Metal ~/4 T 237.S7 cm Base Metal Outer Radius 243.35 cm Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

80 Table 6-5 Relative Radial Distribution Of dpa/sec.

Within The Reactor Vessel Wall radius Azimuthal Angle (cm) 00 15'0'.000 45'.000 221.440 1.000 1.000 221.955 0.974 0.825 0.973 0.972 222.895 0.912 0.773 0.912 0.910 223.865 0.843 0.716 0.841 0.841 224.960 0.766 0.649 0.763 0.764 226.055 0.694 0.589 0.691 0.694 226.920 0.641 0.544 0.639 0.640 227.150 0.627 0.532 0.625 0.626 228.245 0.567 0.481 0.563 0.569 229.340 0.512 0.434 0.509 0.513 230.435 0.462 0.392 0.459 0.466 232.390 0.427 0.362 0.424 0.432 231.530 0.417 0.354 0.414 0.422 232.630 0.377 0.318 0.373 0.381 233.725 0.339 0.288 0.337 0.347 234.820 0.306 0.259 0.304 0.313 235.915 0.275 0.233 0.272 0.284 237.010 0.246 0.209 0.245 0.256 237.870 0.225 0.191 0.224 0.237 238.105 0.220 0.187 0.219 0.231 239.200 0.195 0.166 0.195 0.208 240.295 0.172 0.146 0.173 0.186 241.390 0.149 0.128 0.151 0.166 242.485 0.127 0.110 0.131 0.146 243.190 0.113 0.098 0.117 0.134 243.350 0.112 0.098 0.116 0.134 Base Metal Inner Radius 221.44 cm Base Metal '/i T 226.92 cm Base Metal ~/i T 232.39 cm Base Metal ~/i T 237.87 cm Base Metal Outer Radius 243.35 cm Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

81 Table 6-6 Nuclear Parameters Used In The Evaluation Of Neutron Sensors Monitor Reaction of Target Atom Response Product Fissiori Material Interest e Fraction ~Ran e Half-life ~Yield Copper 63Cu (n,a) 60Co 0.6917 E>4.7 MeV 5.271 y Iron 54Fe (n,p) 54Mn 0.0580 E> 1.0 MeV 312.5 d Nickel 58Ni (n,p) 58Co 0.6827 E>1.0MeV 70.78 d Uranium-238 238U (n f) 137Cs 0.9996 E> 0.4 MeV 30.17 y 6.02 Titanium-46 46Ti(n,p) 46Sc 0.0825 E > 0.414 MeV 83.80d Cobalt-Al 59Co (n,y) 60Co 0.0017 thermal 5.271 y Note: 238U, 59Co, 63Cu, and 58Ni monitors may be bare or cadmium shielded. ~

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

82 Table 6-7 Monthly Thermal Generation During The First Nine Fuel Cycles Of The St. Lucie Unit 2 Reactor Cycle 1 Cycle 2 Cycle 3 Thermal Thermal Thermal Gen. Gen. Gen.

Month MW-hr Month MW-hr Month MW-hr Jun-S3 77926 Nov-84 92205 Jun-86 1944000 Jul-83 449305 Dec-84 1137132 Jul-86 1767420 Aug-83 1776204 Jan-85 1980612 Aug-86 1809675 Sep-83 712576 Feb-85 1732374 Sep-86 1805706 Oct-S3 1759590 Mar-85 1668411 Oct-86 1940733 Nov-83 1896012 Apr-85 1208763 Nov-86 504603 Dec-83 1814732 May-SS 1879416 Dec-86 1937385 Jan-84 1525376 Jun-85 1944000 Jan-87 2001213 Feb-84 1671398 Jul-85 1876581 Feb-87 1809918 Mar-84 1903718 Aug-85 636444 Mar-87 1839456 Apr-84 1843200 Sep-SS 636471 Apr-87 1881387 May-84 1834828 Oct-85 1921941 May-87 1880118 Jun-84 1843200 Nov-85 1944000 Jun-S7 2000862 Jul-84 1840819 Dec-85 1767420 Jul-87 1708263 Aug-84 1901286 Jan-86 1809675 Aug-87 1904904 Sep-84 1216230 Feb-86 1805706 Sep-87 1942947 Oct-84 854195 Mar-S6 1940733 Oct-87 224100 Apr-86 504603 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

83 Table 6-7 Cont'd Monthly Thermal Generation During The First Nine Fuel Cycles Of The St. Lucie Unit 2 Reactor Cycle 4 Cycle 5 Cycle 6 Thermal Thermal Thermal Gen. Gen. Gen.

Month MW-hr Month MW-hr Month MW-hr Nov-S7 44010 Apr-89 4104 Dec-90 13S1455 Dec-87 1717686 May-89 1759914 Jan-91 2007180 Jan-88 2004831 Jun-89 1901313 Feb-91 1812861 Feb-88 1876149 Jul-89 1943163 Mar-91 2005695 Mar-SS 2005047 AUG-89 1952694 Apr-91 2001969 Apr-88 1968381 Sep-89 1728081 May-91 186S535 May-88 1942731 Oct-S9 1941246 Jun-91 190 S360 Jun-S8 1988577 Nov-89 1965789 Jul-91 1943352 JQI-88 1940463 Dec-89 1919214 Aug-91 2008233 Aug-88 1996110 Jan-90 1190835 Sep-91 1965492 Sep-88 1986417 Feb-90 1S04896 Oct-91 1900233 Oct-8S 1844235 Mar-90 2008800 Nov-91 1975995 Nov-88 1985391 Apr-90 1992222 Dec-91 1918809 Dec-88 1943757 May-90 1856385 Jan-92 1962414 Jan-89 2007369 Jun-90 1985877 Feb-92 1848690 Jul-90 1922562 Mar-92 1931121 Aug-90 958149 Apr-92 1472364 Sep-90 1752894 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

84 Table 6-7 Cont'd Monthly Thermal Generation During The First Nine Fuel Cycles Of The St. Lucie Unit 2 Reactor Cycle 7 Cycle 8 Cycle 9 Thermal Thermal Thermal Gen. Gen. Gen."

Month MW-hr Month MW-hr Month MW-hr Jun-92 55701 Apr-94 25758 Jan-96 1295973 Jul-92 1589409 May-94 1862433 Feb-96 1868589 Aug-92 1688445 Jun-94 1794069 Mar-96 1994166 Sep-92 2007072 Jul-94 1784862 Apr-96 1848393 Oct-92 1941273 Aug-94 1923669 May-96 1922103 Nov-92 1696059 Sep-94 2003265 Jun-96 1428354 Dec-92 1054836 Oct-94 1943055 Jul-96 1942704 Jan-93 973647 Nov-94 2010636 Aug-96 2005317 Feb-93 0 Dec-94 1878660 Sep-96 1995354 Mar-93 0 Jan-95 2007909 Oct-96 1945269 Apr-93 1715769 Feb-95 1615734 Nov-96 2002158 May-93 1509597 Mar-95 1938141 Dec-96 1938546 Jun-93 1998945 Apr-95 1965816 Jan-97 1977102 Jul-93 1792800 May-95 1937871 Feb-97 1774494 Aug-93 1754973 Jun-95 1973430 Mar-97 2006451 Sep-93 1724598 Jul-95 1844829 Apr-97 1016928 Oct-93 1804491 Aug-95 1671489 Nov-93 1004832 Sep-95 1927206 Dec-93 1311687 Oct-95 572130 Jan-94 2006586 Feb-94 995193 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

85 Table 6-8 Measured Sensor Activities And Reaction Rates Surveillance Capsule Measured263'eaction Saturated Reaction Activity Activity Rate Location ~ds'/~m Qd)~s/ ~~m Q)s/at~om 63Cu(n,a)60Co (Cd) Top 1.91E+05 3.40E+05 5.17F 17 Middle 1.78E+05 3.17E+05 4.82E-17 Bottom 1.83E+05 3.26E+05 4.95E-17 46Ti (n,p) 46Sc Top 8.45E+04 8.06E+05 7.71E-16 Middle 8.04E+04 7.67E+05 7.34E-16 Bottom 7.89E+04 7.52E+05 7.20E-16 54Fe(n,p)54Mn Top 1.13E+06 2.72E+06 4.31E-15 Middle 1.09E+06 2.62E+06 4.16E-15 Bottom 1.06E+06 2.55E+06 4.05E-15 58Ni (n,p) 58Co (Cd) Top 2.74E+06 3.82E+07 5.42E-15 Middle 2.62E+06 3.66E+07 5.18E-15 Bottom 2.58E+06 3.60E+07 5.11E-15 59Co (n,y) 60Co Top 1.14E+08 2.03E+08 1.16E-11 Middle 1.01E+08 1.80E+08 1.03E-11 Bottom 8.19E+07 1.46E+OS 8.37E-12 59Co (n,y),60Co (Cd) Top 1.40E+07 2.49E+07 1.43E-12 Middle 1.42E+07 2.53E+07 1.45E-12 Bottom 1.32E+07 2.35E+07 1.35E-12 238U (n fj 137Cs Top S.78E+05 4.16E+06 2.73E-14 Middle 9.14E+05 4.33E+06 2.84E-14 Bottom S.12E+05 3.84E+06 2.52E-14 238U (n,f) 137Cs (Cd) 'op Middle 2.21E+05 1.16E+05 1.05E+06 5.49E+05 6.S7E-15 3.61E-15 Bottom 2.16E+05 1.02E+06 6.71E-15 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

86 Table 6-8 Cont'd Measured Sensor Activities And Reaction Rates Surveillance Capsule 83'OIL MEAS. SAT. REACTION ACTIVITY ACTIVITY RATE Location ~ds/ ~~m ~ds/~m frps/a~tom 63Cu(n,a)60Co Top 6.07E+04 4.74E+05 '.23E-17 Middle 6.59E+04 5.14E+05 7.85E-17 Bottom 6.48E+04 5.06E+05 7.72E-17 54Fe(n,p)54Mn Top 2.06E+06 3.77E+06 6.03E-15 Middle '.15E+06 3.93E+06 6.29E-15 Bottom 2.08E+06 3.81E+06 6.09E-15 58Ni (n,p) SSCo Top 4.88E+07 5.66E+07 8.08E-15 Middle 4.79E+07 5.56E+07 7.93E-15 Bottom 4.78E+07 5.54E+07 7.91E-15 238U (n,f) 137Cs Top 9.88E+04 4.14E+06 2.72E-14 Middle 1.54E+05 6.45E+06 4.24E-14 Bottom 1.17E+05 4.90E+06 3.22E-14 59Co (n,y) 60Co Top 4.00E+07 3.12E+08 1.80E-11 Middle 3.97E+07 3.10E+08 1.78E-11 Bottom 3.12E+07 2.44E+OS 1.40E-11 46Ti (n,p) 46Sc Top 1.02E+06 1.20E+05 1.15E-15 Middle 9.22E+05 1.08E+06 1.04E-15 Bottom 9.08E+05 1.06E+06 1.03E-15 59Co (n,y) 60Co (Cd) Top 3.48E+06 2.72E+07 1.56E-12 Middle 3.63E+06 2.83E+07 1.63E-12 Bottom 3.26E+06 2.54E+07 1.47E-12 238U (n,f) 137Cs (Cd) Top 7.22E+04 3.03E+06 1.99E-14 Middle 7.51E+04 3.15E+06 2.07E-14 Bottom 5.70E+04 2.39E+06 1.57E-14 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

87 Table 6-9 Summary Of Neutron Dosimetry Results Surveillance Capsules 263'nd 83'est Estimate Flux and Fluence for Capsule Flux Fluence 263'uantity

~n/cm2-eec guantiti ~n/em 2 ~Uncertain

) (E> 1.0 MeV) 3.598E+10 4 (E > 1.0 MeV) 1.249E+19 8%

$ (E > 0.1 MeV) 7.294E+10 4(E> 0.1 MeV) 2.532E+19

$ (E < 0.414 MeV) 6.238E+10 4 (E < 0.414 MeV) 2.165E+19 86%

dpa/sec 5.221E-11 dpa 1.812E-02 9%

Best Estimate Flux hnd Fluence for Capsule 83' Flux Fluence Quantity/ ~n/cm2-eec Quan~ti ~n/cm2 Unce~intn iIi (E > 1.0 MeV) 4.788E+10 4 (E> 1.0 MeV) 1.591E+18 7%

iIt (E > 0.1 MeV) 9.386E+10 0> (E > 0.1 MeV) 3.119E+18

$ (E < 0.414 MeV) 8.800E+10 @ (E < 0.414 MeV) 2.924E+18 86%

. dpa/sec 6.995E-11 dpa 2.324E-03 8 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

88 Table 6-10 Comparison Of Measured, Calculated, And Best Estimate Reaction Rates At The Surveillance Capsule Center Surveillance Capsule 263'( )

Best Measured Calculated Estimate BE/Meas BE/Calc Meas/Calc 63Cu (n,u) Cd 4.98E-17 5.17E-17 4.82E-17 0.97 0.93 0.96 46Ti (n,p) 7.42E-16 8.14E-16 7.43E-16 1.00 0.91 0.91 54Fe (n,p) 4.17E-15 4.67E-15 4.28E-15 1.03 0.92 0.89, 58Ni (n,p) Cd 5.24E-15 6.10E-15 5.62E-15 1.07 0.92 0.86 238U (n,f) 1.96E-14 1.61E-14 1.56E-14 0.80 0.97 1.22 Surveillance Capsule 83'( )

Best V

Measured Calculated Estimate BE/Meas BE/Calc Meas/Calc 63Cu (n,a) 7.60E-17 7.73E-17 7.29E-17 0.96 0.94 0.98 54Fe (n,p) 6.13E-15 6.98E-15 6.21E-15 1.01 0.89 0.88 58Ni (n,p) 7.98E-15 9.12E-15 8.11E-15 1.02 0.89 0.87 238U (njf) 2.58E-14 2.40E-14 2.14E-14 0.83 0.89 1.07 46Ti (n,p) ,1.07E-15 1.22E-15 1.11E-15 1.03 0.91 0.88 238U (n,f) Cd 1.SSE-14 2.40E-14 2.14E-14 1.14 0.89 0.78 The 238 U (n,f) Cd reaction rate for St. Lucie Unit 2 Capsule 263'as not used in the FERRET evaluation due to low reaction rate relative to the expected reaction rate. Due to the oxidation of the cadmium cover and combining with UO2 powder during the irradiation period, a heating process was used in thc laboratory in an attempt to bum offthe cadmium. The 238U-cadmium covered sensor result indicates that the heating was not successful. The 5>Co, bare and Cd-covered reaction rates for both Capsules 263'nd 83'ere not used in the FERRET evaluation duc to the high reaction rate relative to established results in previous work.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

89 Table 6-11 Best Estimate Neutron Energy Spectrum At The Center Of Surveillance Capsule Capsule 263' Energy Flux Energy Flux

~Grou ¹ ~MeV ~n/cm2-eec ~Grou ¹ (M~eV ~n/cm2-eec 1 1.73E+01 S.20E+06 28 9.12E-03 2.70E+09 2 1.49E+01 1.70E+07 29 5.53E-03 2.72E+09 3 1.35E+01 5.S9E+07 30 3.36E-03 S.60E+OS 4 1.16E+01 1.51E+08 31 2.84E-03 S.SOE+OS 5 1.00E+01 3.27E+OS 32 2.40E-03 8.51E+08 6 S.61E+00 5.48E+08 33 2.04E-03 2".56E+09 7.41E+00 1.37E+09 34 1.23E-03 2.57E+09 8 6.07E+00 1.93E+09 35 7.49E-04 2.56E+09 9 4.97E+00 3.42E+09 36 4.54E-04 2.43E+09 10 3.68E+00 3.36E+09 37 2.75E-04 2.57E+09 11 2.S7E+00 5.72E+09 38 1.67E-04 2.63E+09 12 2.23E+00 5.74E+09 39 1.01E-04 '.62E+09 13 1.74E+00 5.94E+09 40 6.14E-05 2.62E+09 14 1.35E+00 4A6E+09 41 3.73E-05 2.62E+09 1.11E+00 6.32E+09 42 2.26E-05 2.62E+09 0

15 16 8.21E-01 5.99E+09 43 1.37E-05 2.58E+09 17 6.39E-01 5.37E+09 44 8.32E-06, 2.56E+09 18 4.98E-01 3.82E+09 45 5.04E-06 2.62E+09 19 3.88E-01 4.35E+09 46 3.06E-06 2.63E+09 20 3.02E-01 6.46E+09 47 1.86E-06 2.62E+09 21 1.83E-01 5.31E+09 48 1.13E-06 2.53E+09 22 1.11E-01 4.15E+09 49 6.83E-07 2.24E+09 23 6.74E-02 3.56E+09 50 4.14E-07 2.76E+09 24 4.09E-02 2.56E+09 51 2.51E-07 9.28E+09 25 2.55E-02 1.83E+09 52 1.52E-07 1.58E+10 26 1.99E-02 1.54E+09 53 9.24E-OS 3.46E+10 27 1.50E-02 2.63E+09 Note: Tabulated energy levels represent the upper energy in each group.

Analysis of St. Lucie Vnit 2 Capsule 263'April 1998

90 Table 6-11 Cont'd

=Best Estimate Neutron Energy Spectrum At The Center Of Surveillance Capsule Capsule 83'Grou Energy Flux Energy Flux

¹ $ M~eV ~n/om2-eec ~Grou ¹ ~MeV ~n/cm2-eec 1 1.73E+01 1.17E+07 28 9.12E-03 3.76E+09 2 1.49E+01 2.46E+07 29 5.53E-03 3.80E+09 3 1.35E+01 8.59E+07 30 3.36E-03 1.21E+09 4 1.16E+01 2.21E+08 31 2.84E-03 1.19E+09 5 1.00E+01 4.83E+08 32 2.40E-03 1.20E+09 6 8.61E+00 8.10E+08 33 2.04E-03 3.61E+09 7 7.41E+00 2.03E+09 34 1.23E-03 3.62E+09 8 6.07E+00 2.85E+09 35 7.49E-04 3.60E+09 9 4.97E+00 5.05E+09 36 4.54E-04 3.43E+09 10 3.6SE+00 4.84E+09 37 2.75E-04 3.62E+09 11 2.S7E+00 7.88E+09 38 1.67E-04 3.71E+09 12 2.23E+00 7.56E+09 39 1.01E-04 3.70E+09 13 1.74E+00 7.67E+09 40 6.14E-05 3.69E+09 14 1.35E+00 5.73E+09 41 3.73E-05 3.69E+09 15 1.11E+00 8.02E+09 42 2.26E-05 3.69E+09 16 8.21E-01 7.52E+09 43 1.37E-05 3.64E+09 17 6.39E-01 6.74E+09 44 8.32E-06 3.61E+09 18 "

4.98E-01 4.80E+09 45 5.04E-06 3.69E+09 19 3.88E-01 5.51E+09 46 3.06E-06 3.70E+09 20 3.02E-01 8.27E+09 47 1.86E-06 3.69E+09 21 1.83E-01 6.90E+09 48 1.13E-06 3.56E+09 22 1.11E-01 5.46E+09 49 6.83E-07 3.16E+09 23 6.74E-02 4.75E+09 50 4.14E-07 3.89E+09 24 4.09E-02 3.46E+09 51 2.51E-07 1.31E+10 25 2.55E-02 2.51E+09 52 1.52E-07 2.23E+10 26 1.99E-02 2.13E+09 53 9.24E-OS 4.88E+10 27 1.50E-02 3.65E+09 Note: Tabulated energy levels represent the upper energy in each group.

\

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

91 Table 6-12 Comparison Of Calculated And Best Estimate Integrated Neutron Exposure Of St. Lucie Unit 2 Surveillance Capsules 263'nd 83'APSULE 263'alculated Best Estimate BE/C 4 E > 1.0 MeV) 1.244E+19 1.249E+19 1.00 4 E > 0.1 MeV) 2.340E+19 2.532E+19 1.08

'pa/sec 1.790E-02 1.812E-'02 1.01 CAPSULE 83'alculated Best Estimate BE/C 4(E > 1.0 MeV) 1.779E+18 1.591E+18 0.89 4(E > 0.1 MeV) 3.346E+18 3.119E+18 0.93 dpa/sec 2.559E-03 2.324E-03 0.91 n

AVERAGE BE/C RATIOS E>1.0 MeV 0.95 E>0.1 MeV 1.01 dpa 0.96 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

Table 6-13 Azimuthal Variations Of The Neutron Exposure 4 (E > 1.0 MeV) [n/cm'] Projections On The Reactor Vessel Clad/Base Metal Interface At Core Midplane Best Estimate Ex osure (E > 1.0 MeV) po 9.30E+1S 11 EFP 15'0' at the Reactor Vessel Inner Radius 6.61E+18 5.84E+18 45'.20E+18 4 (E > 0.1 MeV) 2.15E+19 1.52E+19 1.35E+19 9.80E+18 dpa 1.44E-02 1.02E-02 9.07E-03 6.71E-03 4

Best Estimate Ex osure 25 EFP (E > 1.0 MeV)

(E > 0.1 MeV) 00 2.11E+19 4.90E+19 15'0'5' at the Reactor Vessel Inner Radius 1.50E+19 3.26E+19 1.33E+19 2.90E+19 9.55E+18 2.11E+19 dpa 3.28E-02 2.20E-02 1.95E-02 1.44E-02 Best Estimate Ex osure 32 EFPY at the Reactor Vessel Inner Radius po 45o 4 (E > 1.0 MeV) . 2.71E+19 15'.92E+19 30'.70E+19 1.22E+19 4 (E > 0.1 MeV) 6.27E+19 4.13E+19 3.67E+19 2.67E+19 dpa 4.20E-02 2.78E-02 2.46E-02 1.83E-02 Calculated Ex osure 4 (E > 1.0 MeV) po 9.80E+18 11 15'0'5~

EFPY at the Reactor Vessel Inner Radius 6.96E+18 6.16E+18 4.42E+1S 4 (E > 0.1 MeV) 2.14E+19 1.51E+19 1.34E+19 9.73E+18 dpa 1.50E-02'.07E-02 9.44E-03 6.99E-03

@ (E > 1.0 MeV) po 2.23E+19 15o 1.58E+19 30'5o Calculated Ex osure 25 EFPY at the Reactor Vessel Inner Radius 1.40E+19 1.01E+19 4 (E > 0.1 MeV) 4.86E+19 3.24E+19 2.88E+19 2.09E+19 dpa 3.42E-02 2.29E-02 2.03E-02 1.50E-02

@ (E > 1.0 MeV) po 2.85E+19 15'0'5~

Calculated Ex osure 32 EFPY at the Reactor Vessel Inner Radius 2.02E+19 1.79E+19 1.29E+19 4 (E > 0.1 MeV) 6.22E+19 4.10E+19 3.65E+19 2.66E+19 dpa 4.37E-02 2.89E-02 2.57E-02 1.91E-02 Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

93 Table 6-14 Neutron Exposure Values Within The St. Lucie Unit 2 Reactor Vessel FLUENCE BASED ON E > 1.0 MeV SLOPE and COMPARED TO REG. GUIDE 1.99 REV. 2 ATTEICJATIONFORMULA*

e Surface Best Estimate 9.30E+18 11 EFPY 15 6.61E+18 4 E> 1.0 MeV 30'5O 5.85E+18 n/cm'0 4.20E+18 1/4 T ~ . 5.25E+18 3.74E+18 3.29E+18 2.42E+18 1/4T* 5.54E+18 3.94E+18 3.48E+18 2.50E+18 3/4 T 1.19E+18 8.19E+17 7.07E+17 4.96E+17 3/4T~ 1.97E+18 1.40E+18 1.24E+18 8.89E+17 Surface 2.11E+19 15'0'5O Best Estimate 25 EFPY C E > 1.0 MeV 1.50E+19 1.3 3E+19 n/cm'0 9.55E+18 1/4 T 1.19E+19 8.50E+18 7.48E+18 5.49E+18 1/4 T* 1.26E+19 8.94E+18 7.93E+18 5.69E+18 3/4 T 2.71E+18 1.86E+18 1.61E+18 1.13E+18 3/4 T* 4.47E+18 3.18E+18 2.82E+18 2.02E+18 Best Estimate 32 EFPY N > 1.0 MeV 00 n/cm'0'5'.70E+19 15'.92E+19 Surface 2.71E+19 1.22E+19 1/4 T 1.53E+19 1.09E+19 9.58E+18 7.03E+18 1/4T4 1.62E+19 1.44E+19 1.01E+19 7.27E+18 3/4T 3.47E+18 2.38E+18 2.06E+18 1.44E+18 3/4 T* 5.73E+18 4.06E+18 3.60E+18 2.58E+18 Per Equation 3 of Regulatory Guide,1.99, Revision 2.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

Table 6-14 Cont'd Neutron Exposure Values Within The St. Lucie Unit 2 Reactor Vessel FLUENCE BASED ON E > 1.0 MeV SLOPE and COMPARED TO REG. GUIDE 1.99 REV. 2 ATTENUATIONFORMULA*

Calculated 11 EFPY 4 > 1.0 Me 00 150 30O n/cm'urface 45O 9.80E+18 6.96E+18 6.16E+18 4.42E+18 I/4 T 5.53E+18 3.94E+18 3.47E+18 2.54E+18 I/4 T4 5.84E+18 4.15E+18 3.67E+18 2.63E+18 3/4 T 1.25E+18 8.63E+17 7.45E+17 5.22E+17 3/4 T* 2.07E+18 1.47E+18 1.30E+18 9.36E+17 Calculated 25 EFPY 4 E > 1.0 MeV 00 n/cm'urface 15'.58E+19 30'.40E+19 45'.01E+19 2.23E+19 1/4 T 1.26E+19 8.95E+18 7.88E+18 5.78E+18 1/4 T* 1.32E+19 9.42E+18 8.34E+18 6.02E+18 3/4 T 2.85E+18. 1.96E+18 1.69E+18 1.19E+18 3/4 T* 4.72E+18 3.35E+18 2.96E+18 2.14E+18 Calculated 32 EFPY 4 E > 1.0 MeV 00 n/cm'urface 15'.03E+19 30'.79E+19 45'.29E+19 2.85E+19 1/4 T 1.61E+19 1.15E+19 1.01E+19 7.40E+18 I/4 T* 1.70E+19 1.21E+19 1.07E+19 7.69E+18 3/4 T 3.65E+18 2.51E+18 2.17E+18 1.52E+18 3/4 T* 6.03E+18 4.30E+18 3.79E+18 2.73E+18 Per Equation 3 of Regulatory Guide 1.99, Revision 2.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

95 Table 6-14 Cont'd Neutron Exposure Values Within The St. Lucie Unit 2 Reactor Vessel FLUENCE BASED ON dpa SLOPE and COMPARED TO REG. GUIDE 1.99 REV. 2 ATTENUATIONFORMULA*,

Best Estimate 11 EFPY 4 > 1.0 MeV 00 n/cm'5'0'5'.61E+18 9.30E+18 5.85E+18 4.20E+18 5.96E+1S 3.59E+1S 3.74E+18 2.69E+18 5.54E+1S 3.94E+1S 3.48E+18 2.50E+18 2.15E+18 1.46E+18 ~ 1.30E+18 9.66E+17 1.97E+18 1.40E+18 1.24E+18 8.89E+17 Best Estimate 25 EFPY @ > 1.0 MeV 00 n/cm'urface 15'.50E+19 30'.33E+19 45'.55E+1S 2.11E+19 1/4 T 1.36E+19 8.17E+1S 8.49E+18 6.11E+18 1/4 T4 1.26E+19 8.94E+18 7.93E+18 5.69E+1S 3/4 T 4.89E+18 3.32E+18 2.96E+18 '.20E+18 3/4 T* 4.47E+18 3.18E+18 2.82E+18 2.02E+18 II Best Estimate 32 EFPY 4 > 1.0 MeV 00 15' n/cm'0'5'.70E+19 Surface 2.71E+19 1.92E+19 1.22E+19 1/4 T 1.74E+19 1.05E+19 1.09E+19 7.82E+18 1/4T* 1.62E+19 1.44E+19 1.01E+19 7.27E+18 3/4 T 6.25E+18 4.25E+18 3.79E+18 2.81E+18 3/4 T* 5.73E+18 4.06E+18 3.60E+18 2.58E+18 Per Equation 3 of Regulatory Guide 1.99, Revision 2.

Analysis of St. Lucie Unit 2 Capsule 263'pri I 1998

96 Table 6-14 Cont'd Neutron Exposure Values Within The St. Lucie Unit 2 Reactor Vessel FLUENCE BASED ON dpa SLOPE and COMPARED TO REG. GUIDE 1.99 REV. 2 ATTENUATIONFORMULA*

Calculated 11 EFPY 4 E > 1.0 MeV po n/cm'urface 45O 15'.96E+18 30'.16E+IS 9.80E+18 4.42E+18 I/4 T 6.28E+18 3.79E+18 3.94E+18 2.83E+18 I/4 T~ 5.S4E+18 4.15E+18 3.67E+18 2.63E+18 3/4 T 2.26E+18 1.54E+18 1.37E+18 1.02E+1S 3/4 T* 2.07E+18 1.47E+18 1.30E+1S 9.36E+17 Calculated 25 EFPY 4 E > 1.0 MeV po n/cm'urface 450 15'.58E+19 30'.40E+19 2.23E+19 1.01E+19 I/4 T 1.43E+19 8.61E+18 8.95E+18 6.44E+18 1/4 T~ 1.32E+19 9.42E+1S 8.34E+18 6.02E+18 3/4 T 5.15E+18 3.50E+1S 3.12E+18 2.31E+18 3/4 T* 4.72E+18 3.35E+18 2.96E+18 2.14E+1S Calculated 32 EFPY 4 E > 1.0 MeV 00 n/cm'urface 15'.03E+19 30'.79E+19 45'.29E+19 2.85E+19 I/4 T 1.43E+19 8.61E+18 8.95E+18 6.44E+18, 1/4 T4 1.70E+19 1.21E+19 1.07E+19 7.69E+1S 3/4 T 5.15E+18 3.50E+18 3.12E+1S 2.31E+IS 3/4 T4 6.03E+18 4.30E+18 3.79E+18 2.73E+18 Per Equation 3 of Regulatory Guide 1.99, Revision 2.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

97 Table 6-15 Updated Lead Factors For St. Lucie Unit 2 Surveillance Capsules Ca sule De ees from Axis Lead Factor W-83 a 7 1.30 W 97b] 7 1.27 W-263 [c] 7 1.27 W-277 d] 7 1.27 W-104 [e] 14 0.98 W-284 [f] 14 0.98

[a] - Withdrawn at the end of Cycle 1.

[b] - Future withdrawal.

[c] - Withdrawn atthe end of Cycle 9.

- Future withdrawal. 'd]

[e] Future withdrawal.

[f] - Future withdrawal.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998 I

98 SECTION 7.0 SURVEILLANCE CAPSULE REMOVALSCHEDULE The following surveillance capsule removal schedule meets the intent of ASTM E185-82 and is recommended for future capsules,to be removed from the St. Lucie Unit 2 reactor vessel~ This recommended removal schedule is applicable to 32 EFPY of operation.

TABLE 7-1 St. Lucie Unit 2 Reactor Vessel Surveillance Capsule Withdrawal Schedule Time Fluence Capsule Location Lead Factor'emoval (EFPY)<" (n/cm',

E 1.0 MeV)<'i 83o 1.779 x 101S(c) 1.27 1.244 x 1019(c) 263'7'770 263'7'770 1.27 24* - 2.67 x 1019(d) 104'84'30 104'84'.30 1.27 EOL 3.53 x 1019(e) 0.98 Standby 0.98 Standby Notes: F (a) Updated in Capsule 263'osimetry analysis, See Table 6-15.

(b) Effective Full Power Years (EFPY) from plant startup.

(c) Plant specific evaluation.

(d) This fluence is approximately equal to the calculated peak reactor vessel surface fluence at 30 EFPY.

(e) This capsule will reach the peak reactor vessel surface (Clad/Base Metal Interface) fluence at life extension of 48 EFPY at 37.7 EFPY of operation. In addition, per ASTM E1SS-S2, this capsule can be held without testing, thus serving as a standby capsule.

The removal times are based on accumulated fluence values in E185-82 as opposed to time values due to the smaller lead factors associated with the capsules mounted on vessel inner 263'pril radius.

Analysis of St. Lucie Unit 2 Capsule 1998

99 SECTION

8.0 REFERENCES

1. Regulatory Guide 1.99, Revision 2, Radiation Embrittlement ofReactor Vessel Materials, U.S.

Nuclear Regulatory Commission, May, 1988.

2. Code of Federal Regulations, 10CFR50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Pi ogram Requirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
3. TR-I MCM-001, "Summary Report on Manufacture of Test Specimens and Assembly of Capsules For Radiation Surveillance of St. Lucie No. 2 Reactor Vessel Materials", A.D. Emery, November 1979.

/

4. Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G, Fracture Toughness Criteria for Protection Against Failure.
5. ASTM E208, Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature ofFerritic Steels, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA.
6. ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF), in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.
7. ASTM E23-93a, Standard Test Methods for Notched Bar Impact Testing ofMetallic Materials, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.
8. ASTM A370-92, Standard Test Methods and Definitions for Mechanical Testing ofSteel Products, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.
9. ASTM E8-93, Standard Test Methods for Tension Testing ofMetallic Materials, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.
10. ASTM E21-92, Standard Test Methods for Elevated Temperature Tension Tests ofMetallic Materials, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.
11. ASTM E83-93, Standard Practice for Verification and Classification ofExtensometers, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.

Analysis of St. Lucie Unit 2 Capsule 263' April 1998

100

12. BAW-1880, "Analysis of Capsule W-83 Florida Power and Light Company St. Lucie Unit No. 2, Reactor Vessel Materials Surveillance Program", A.L. Lowe, Jr., et. al., September 1985.
13. RSIC Computer Code Collection CCC-650, "DOORS 3.1 One, Two- and Three-Dimensional Discrete Ordinates Neutron/Photon Transport Code System, ", August 1996.
14. ORNL RSICC DLC-185, "BUGLE-96 Coupled 47 Neutron, 20 Gamma-Ray Group Cross-Section Library Derived from ENDF/B-VI for LWR Shielding and Pressure Vessel Dosimetry Applications" Oak Ridge National Laboratory, Oak Ridge, Tennessee, March 1996 II
15. R. E. Maerker, et al., Accounting for Changing Source Distributions in Light Water Reactor Surveillance Dosimetry Analysis, Nuclear Science and Engineering, Volume 94, Pages 291-308, 1986.

I

16. NF-98-001, Physics Data for St. Lucie 2 Surveillance Capsule Neutron Fluence Evaluation, January 2, 1998, J. B. Sun
17. ASTM Designation E482-89 (Re-approved 1996), Standard Guide for Application ofNeutron

, Transport Methods for Reactor Vessel Surveillance, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.

18. ASTM Designation E560-84. (Re-approved 1996), Standard Recommended Practice for Extrapolating Reactor Vessel Surveillance Dosimetry Results, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
19. ASTM Designation E693-94, Standard Practice for Characterizing Neutron Exposures in Iron and Low AlloySteels in Terms ofDisplacements per Atom (dpa), in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
20. ASTM Designation E706-87 (Re-approved 1994), Standard Master Matrixfor Light-Water Reactor Pressure Vessel Surveillance Standard, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
21. ASTM Designation E853-87 (Re-approved 1995), Standard Practice for Analysis and Interpretation ofLight-Water Reactor Surveillance Results, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
22. ASTM Designation E261-96, Standard Practice for Determining Neutron Fluence Rate, Fluence, and Spectra by Radioactivation Techniques, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

101

23. ASTM Designation E262-86 (Re-approved 1991), Standard Method for Determining Thermal Neutron Reaction and Fluence Rates by Radioactivation Techniques, in ASTM Standards, III Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
24. ASTM Designation E263-93, Standard Method for Measuring Fast-Neutron Reaction Rates by Radioactivation ofIron, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
25. ASTM Designation E264-92 (Re-approved 1996), Standard Method for Measuring Fast-Neutron Reaction Rates by Radioactivation ofNickel, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
26. ASTM Designation E481-86 (Re-approved 1991), Standard Method for Measuring Neutron-Fluence Rate by Radioactivation ofCobalt and Silver, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
27. ASTM Designation E523-92 (Re-approved 1996), Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation ofCopper, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
28. ASTM Designation E704-96, Standard Test Methodfor Measuring Reaction Rates by Radioactivation of Uranium-238, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
29. ASTM Designation E1005-84 (Re-approved 1991), Standard Test Method for Application and Analysis ofRadiometric Monitors for Reactor Vessel Surveillance, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
30. F. A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.
31. W. N. McElroy, S. Berg and T. Crocket, A Computer-Automated Iterative Method ofNeutron Flur Spectra Determined by Foil Activation, AFWL-TR-7-41, Vok I-IV,AirForce Weapons Laboratory, Kirkland AFB, NM, July 1967.
32. RSIC Data Library Collection DLC-178, "SNLRMLRecommended Dosimetry Cross-Section Compendium", July 1994.
33. EPRI-NP-2188, Development and Demonstration ofan Advanced Methodology for LWR Dosimetry Applications, R. E. Maerker, et al., 1981.

Analysis of St. Lucie Unit 2 Capsule 263'pril 1998

102

34. NUREG/CR-4947, Analysis of the A302B and A533B Standard Reference Materials in Surveillance Capsules of Commercial Power Reactors",I F.W. Stalmann, January 198S.
35. CE NPSD-1039, Rev. 2, "Best-Estimate Copper and Nickel Values in CE Fabricated Reactor Vessel Welds", C-E Owners Group, June 1997. (Ref. CEOG Task 902)

Analysis of St. Lucie Unit 2 Capsule 263 April 1998

APPENDIX A Load-Time Records for Charpy Specimen Tests

Curve 784472-AF13 WI WP PM = Maximim Load PF = Fast Fracture Load I

= General I PGY I

Yield Load I

I I

I PF = Fast Fracture I Arrest Load I

I I

I I

I I

I I

4 GY M

tF Wl = Fracture Initiation Region .tGY = Time to General Yielding WP = Fracture Propagation Region tM = Time to Maximum Load tF = Time to Fast (Brittle) Fracture Start Figure A-I. Idealized load-time record

L1 32.41 T 0.00 C) I ID I I

I I

I I 0$

O I I

I I I I

I lO I C) 0.00 "

0.60 f 20 1.80 2 40 3.CO 3.60 420 490 5.40 6.00 Time ('Ilscc)

Figure A-2 Load-Time record for transverse specimen 254 tested at O'.

L1 41 AS T 0.00 C)

CD CO I I I I I I I I I I I I I I I I I I I

.13. I P tI I P ~ 1 I I 1

I I I I I I I I I I I I I I I I I I I I I I I I I 'I' t 'I I I I

I I I I I

I I

I 090 0.60 1 20 1 $0 2.40 390 3.60 420 480 5.40 6.00 Time (msec)

Figure A-3 Load-Time record for transverse specimen 25T tested at 40'F.

L1 32.44 T 0.00 I I I

~ ~

I I

~ ~

I h

3 I

I I

0$

O I I I I I I I I r

I 1 r I I I I

I I I I

I iI -r-I I I 4 ~

I I I 0.00 0.60 120 1.80 2.40 ~

380 390 420 4.80 "

5.40 6.00 Time (msec)

Figure A-4 Load-Time record for transverse specimen 23C test at 72'F.

L1 34.56 T 0.00 C) I C)

CO I

I I I I I I 3 ~

I I I I I I I r I I I

I I I I I

~ I I I I I I

\

r I

I I I I I

I 4 I I I I

090,0.60' 20 1.80 2AO 3AS 350 420 480 5.40 6.00 Time fmeec)

Figure A-5 Load-Time record for transverse specimen 23K tested at 100'F.

I

L1 3256 T 090 C7 I C) I I I CO I I I

I I I I I I 3 ~ I I I I I I I I I EO I I O I I I

I I 1 I

I I

'I I I I I I I I I I I I I I4 '

I I

I i I I I I I 0.00 0.60 120 1.80 2AD 3A)D 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-6 Load-Time record for transverse specimen 254 tested at 125'F.

o L1 36.76 T 0.00 aCI I EG I I

I I

W~

I I I I I 31 I I I I I J2

' ~ '\I I I I I CS I I I I O I I I I I I I I 1 t I I I I I I I I ~ ~ 2 ~

I I

0.00 090 120 190 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) 1 Figure A-7 Load-Time record for transverse specimen 224 tested at 150'F.

A-5

ID L1 38.88 O.OO

~ O IA I I I I I I I I I I I I I 4

I I I

I I I I I I'

'D I I Cl I I O I I I I I I I I

1 I

I I

I I

I I

C) I 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5AO 6.00 Time (msec)

Figure A-8 Load-Time record for transverse specimen 22U tested at 160'F.

I I I I I I I I I

~ I I I I I I

I I I I I I I I I 'I ~ I' I I I I 4$

I I O

I4 I I

I I I 1 I I T I' I I I~ I I I I I I I I I I I I I ~ L I

I I I I C) I C) 0.00 OLD 120 1.80 2.40 3.00 3.60 420 4.80 5.40 SA)0 Tune (msec)

Figure A-9 Load-Time record for transverse specimen 243 tested at 195'F.

a L1 -1 0.81 T 4.69 I

I I I I

I I I I I I I I I I I I I I I I 0$

CI I I I I I I I I

I I I I I ~ I I I I I I I I I I

~ '

0.00 050 1 20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-10 Load-Time record for transverse specimen 26J tested at 225'F.

L1 30.28 T 0.00 C) I I C) I I CO I I I

I I I I I I I I I I I I I I I I I I I

\

I I I I I I I I I I I 'C C 1 I I I I I

I I I I I I I I I I I I I I I 000 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-11 Load-Time record for transverse specimen 237 tested at 250'F.

L1 3892 T 0.00 I I I I I I I I I I I I I I

I I 4 W ~ 4 ~ N ~

I I I I I I I I I I I a I I I I

N I I I I I O 1 ~ I I I I I I I I I ~, I I I I ~ -'rI 1 --r-I 1 C 1 I ~

I ~

I I I 0.00 0.60 1 20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-12 Load-Time record for transverse specimen 25A tested at 300'F.

L1 3892 T 0.00 I I I I I

I I I

I

~

I

~ ~

I I

I I I I I I I I I I I I I I I I I

I rI 1 '

p I

~ ~

l5 I I I O I I I

'V I

I I 1 -- r--

I 1 --rI I I I I I I I I I I I C)

CD 0.00 090 120 190 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) I Figure A-I3, Load-Time record for transverse specimen 26D tested at 375'F.

A-8

L1 41.01 T 0.00

~, I I I I I I I I

I I

rI I I I I

I I I I I rI I

I I I

I I I

I I I I

0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5A0 6.00 Time (msec)

Figure A-14 Load-Time record for weld specimen 37K tested at -80'F.

C)

C?

CI I I C) I CO I

I I I I I I

I 0

r I OJ I

o I I

I I

I 4 I I I

0.00 . 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 '5AO 6.00 Time (msec)

Figure A-15 Load-Time record for weld specimen 366 tested at -40'F.

A-9

L1 41.04 T 090 I I I

I I I I I I I I I 4

I I I I I I I I

I I rI '1 I I I

I I

I I I I I I I I I I I I I

I 1 I

--r 1 I

I I I

I I

I 0.00 0.60 120 180 2.40 3.00 3.60 420 4.80 5AO 6.00 Time (msec)

Figure A-16 Load-Time record for weld specimen 315 tested at -20'F.

L1 0.00 T 4.19 I I I

I I I I I

~ 3 I I

I I I I I I I I I

I I I I I I I I I I I I I I I I I I I I I 1 t 1 1 I I I I I I I ~

I 4---i I I

~

I I I I I I C) I D

OM 0.60 120 1 $0 2.40 390 3.60 - 420 490 5.40 6XIO Time (msec)

Figure A-17 Load-Time record for weld specimen 345 tested at O'.

A-10

L1 34.69 T 0.00 C) lD CO I I I I

~

3 I I I I I 1 I' I I C$

I I I I O I I I I I I I I I I I

'I I l' 'II 4 i I I

I I I I I I

Cl Cl

'0.00 0.60 120 1.80 2AO 390 3.60 420 490 S.40 6.00 Time (msec)

Figure A-18 Load-Time record for weld specimen 327 tested at 50'F.

L1 34.60 T 0.00 I I I I I I I I I I I I I I I

"I I

'Z$

---.- I I I I I P

I I

Cl I I I I I I O I I I I I I I I

I l ..4..

I Z ~ --- r I I

l' I

I C

I I I I I I I I I I I I

0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-19 Load-Time record for weld specimen 32U tested at 72'F.

L1 '450 I T 0.00 I

I I I

I I I I I I I I I I I I I I I

I rI 1 I

I I' I I I I I 05 O I I I I I I I I I I' 1 I

I I

I C) I C) 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-20 Load-Time record for weld specimen 33L tested at 120'F.

L1 34.58 T 0.00 I I I I I I I I I I Il I I I I I I I I 1 ~ ~I 1 I 1 I I I I I I I I I 0$

O I I I I I I I I I I 1 1

~

O I I I I

I I I I I I I I I I I I I C) I C) 0.00 0.60 1 20 1.80 2.40 3.00 390 420 490 5.40 6.00 Time (msec)

Figure A-21 Load-Time record for weld specimen 36K tested at 150'F.

, A-12

L1 32.44 T 0.00 C7 I I C7 CO I I

I I I

I I

I I

I I C I I

I I

0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-22 Load-Time record for weld specimen 36L tested at 195'F.

L1 41.04 T OAS lO I I I C) I I Q) I I I I I I I

I I

I I

I 4$

O I I

I I

I I

I I

0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6A)0 Time (msec)

Figure A-23 Load-Time record for weld specimen 341 tested at 250'F.

4 L1 3897 T 0.00 I I I I I I I I I I I I I I I I

~ ~

I I

I I

I I

I I

I I

I I

~,

I I

'I I

I I

I I

I I

I I I I I I I 1 P I I I I I I I I I I I I I I I I I I I I I I

'I I I r 1

~ I I I I I I I I I

I I I I I I

D D

0.00 050 120 1.80 2AO 390 350 420 490 5.40 690 Time (msec)

Figure A-24 Load-Time record for weld specimen 31C tested at 275'F.

8 L1 41.05 T 0.00 D I I I I I I D

(0 I I I I I I I I I s I I I I 4 ~ ~

~

I I I

~ I I I I I I I I I I I t ~ P I I OJ I I I I O I I g I I I

I r---

I

'lI F I I I

I I I

I I I I

I I I 4 ~

D I D

0.00 090 120 1.80 2.40 390 3.60 420 490 5.40 6.00 Time (msec)

Figure A-25 Load-Time record for-weld specimen 3A2 tested at 300'F.

L1 40.99 T 0.00 C)

(D 3 ~

I I I I I I I I I I I I I I I I I 'I ~ \ ~

I I I I I I I C$

o I I I I I I I I I '1 I I I I

I I

C)

C) 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-26 Load-Time record for HAZ specimen 426 tested at -40'F.

L1 28.06 T 0.00 C7 I CD I CO I I

I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I I I I' I I I I I I C$

I I I I I I ~

O I I I I I I I I I T I I I I I

'I T T T' T C' 'T CP I I I I I I I I I 4 I I

I I I I I I I I I I I I I 0.00 0.60 1 20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-27 Load-Time record for HAZ specimen 461 tested at 10'F.

8 L1 39.05 T 0.00 I I

~ I I I I I I I I I I I I I I I I I I I I I I I 13 I I I I I I

'I r I

I' I

1 I I Cl I I I I I I O I I I I I I I I I I I I C I' 1 l' 1 I

I I

I I

~ 2 L ~

I I

I I I I

0.00 090 120 1.80 2.40 300 3.60 420 4.80 5.40 6.00 Tinw (mme I

Figure A-2S Load-Time record for HAZ specimen 47P tested. at 60'F..

ce L1 34.61 T 0.00 I I I 3 ~ I I

I I

I I

I I I I I I I 1

'I ~ r '

I

~ I' I

Cl I O 4I I I I I I

1 1 C 'I O I I I I I I I

I I I

I I I I

0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-29 Load-Time record for HAZ specimen 46B tested at 72'F.

A-16

L1 41.01 T 0.00 CD I I CD CO I I I I I I I I I

I I I I I I I I I I I I I I I I I I I I I I I I r I

~

I

~

C5 I I I I I I I I I

~ ----1-I 4 I I

C I

I 1 I

1 I

I I I I I I I CD I I I I I I CD 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 S.40 6.00 Time (msec)

Figure A-30 Load-Time record for HAZ specimen 442 tested at 100'F.

L1 36.77 T 0.00 I I I I I I I I I I I I I I I I I I I I I I I

l5 I I rI 1 I

I

~'

I I

I I

I 05 I I I I I I I o I I I I I I I I I I 1

I r 1 --r- '1 I

C O I I I I I I I I I I I I I I I I I I4 I I

I I I

0.00 0.60 1 20 1.80 2AO 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-31 Load-Time record for HAZ specimen 44T tested at 120'F.

A-17

L1 350.43 T 0.04 I I I I I I I I I I ~

~

I ~'

I r ~ rI I I

I I I I I I I I I I I I I I I' 1 I

r I I 05 I I I I O I I I I I I I I I I I I T I 1 r I I

I I I I I I I

I t

I I I I I 0.00 0.60 1 20 1.80 2.40 3.00 3.60 4.20 490 5.40 6.00 Time (msec)

Figure A-32 Load-Time record for HAZ specimen 42E tested at 150'F.

8 L1 3898 T 0.00 I I I I

I, I I

I I I I I I t~

I I

I I I

~ P 1 I I I Cl I I I O I I I 4 I 1

I r 1 I

l I I I I I I I I I I P I I I

0.00 0.60 1 20 1.80 2.40 390 3.60 420 490 5.40 6.00 Time (msec)

I Figure A-33 Load-Time record for HAZ specimen 41M tested at 180'F.

A-18

L1 34.51 T 0.00 C) I I (0 I I I I

I I 4

C)

C7 0.00 0.60 1.20 1.80 2.40 3AM 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-34 Load-Time record for HAZ specimen 427 tested at 250'F.

C)

C)

I I CD CO I I I

I I I I I I

I I I I

I I I I I I I I I I I I I I 7 I I I I I I I I I I I I

0.00 0.60 1 20 1.80, 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-35 Load-Time record for HAZ specimen 475 tested at 250'F.

A-19

C)

Cl I C) I I ~ ~

Cl I~

tO I I I I I I I I I

X2

'II ~ rI I I I I I I 0$

I I I I I I I

O I I I I I I I I I I I 1

I I


r 1 I

F I I I I I I I I I I I

I l I

I I

8 I I 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 490 5.40 6.00 Time (msec)

Figure A-36 Load-Time record for HAZ specimen 423 tested at 300'F..

L1 3896 T 0.00 I I I I I I I I I I I I I I I I I I l5 I 8~ ~ '

I rI 1 ~ I' I

CI I I I I I I O I I I I I I ~, r I I I I I I I

'l I 7 l' '1 I

r I

I I

I I

I I I

I Cl Cl o 0.00 0.60 120 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-37 Load-Time record for HAZ specimen 412 tested at 375'F.

L1 3452 T 0.00 C7 I I (0 I I I I I I I I I I I I I I

I I I I J2 I I I I I I I'

'V I I

I I

05 O

I I I I I I I

3 I I I I I

I I I I I I I I I I 0.00 ~

0.60 1 20 1 $0 2.40 3.00 350 420 4.80 5.40 6.00 Time (msec)

Figure A-38 Load-Time record for SRM specimen A7E tested at -40'F.

L1 39.01 T 0.00 I I I

I I I I I I I I I I I I I I I I I I I I

~Q I I I I T r 1 I

I I I O I I I I I I I I C I 1 I

l I I I I I I I I I I I I I I I I I I I lI i I

I I

I 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-39 Load-Time record for SRM specimen AAB tested at 50'F.

A-21

L1 38.88 0.00 C) I I I C) I CO I I I I

I I I

I

"~ I I

I I I I

Cl I I I I I I I I I I

'1 I I 1 CP I I

I I

h 4 I I I I I I I I I I I I I 0.00 0.60 1 20 1.80 I 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-40 Load-Time record for SRM specimen AA2 tested at 100'F.

C)

L1 41.08 T 0.00 Ih I I I I I I

I I I I 3 I I I I I I I'

I I I I I I 0$

I I I I I I O I I I I I I

'r---

I 1 '1 C I I I I I I I I I I I I ~ L I

4 I I

I I

~ I I I I

0.00 0.60 1 20 1.80 2AO 390 3.60 420 4.80 5.40 6.00 Time (msec)

I Figure A-41 Load-Time record for SRM specimen A7C tested at 125'F.

A-22

L1 36$ 9 T 0.00 I

I I I I I I I I I I I I I I I I vaTid Test - Spenmen Afignmenf Error I I I I I I I I 15 I I

~ '

rI I

\

I I

I I

~

CS I o I I I I I I I I 1 C 1 1 C I I I I I I I, I I I 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A-42 Load-Time record for SRM specimen A7L tested at 125'F - INVALID.

L1 34.77 T 0.00 CD I I C)

(O I I I I

I I 3I I I I I I I I I I I I I I I I tI I I

I I I I I I oCZ I I I I I I I I I I I I I 1 I 1 1 ~

I I I

I I

D C) 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-43 Load-Time record for SRM specimen AAE tested at 150'F.

I'-23

L1 41.01 T 090 CI I I I Cl Q I I

I I I I I I I I I I I I I 3 I I I I I I 1 I I I I T ~ '

~ ~ I I I I I I I I I I I I I I I I

'l I T 1 C I

'l I I I I I I I I I I I I I 4 I I I I I I i l.

I CI C) 0;00 0;60 120 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

I Figure A-44 Load-Time record for SRM specimen A7Y tested at 160'F.

C)

D L1 3450 T 0.00 CT Cl I C)

I I

I

~  % ~ N ~

I I I I 3 I I I I I I I I I I ~ i I I I I

'1 I I r 'I I' I

I Tj I I I O I I I I I I I I I I I I I I I

'1 I T 1 r I I I I I I I I

~ ~ I I I

I I

Cl Ci 0.0 0 0.60 1 20 1.80 2.40 3.00 390 420 480 5.40 6.00 Time (msec)

Figure A-45 Load-Time record for SRM specimen A7D tested at 195'F.

A-24

o L1 36.76 T 0.00 I

I I I I I I I I I I I

~>>

3I I I I I

I I

I I

I I I I I I I I I I I I I I I I P

I C II CS I I I I I O I I I I I I I 4

F I

I T r I

1 I

I I

I I

I C) I C) 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-46 Load-Time record for SRM specimen AA7 tested at 195'F.

L1 41.04 T 0.00 C) I CO I

I I I I I I I I I I I I I I I I I I I I I I I I I I I C

I r

I

'1 I

I' I

I I

~ ~

0$ I I I I

>>0 I I I I I I I I I I I I I 7 C 'II Cd I 0

C) 0.00 090 1 20 1.80 2.40 3.00 3.60 4.20 490 5.40 690 Time (msec)

Figure A-47 Load-Time record for SRM specimen AA1 tested at 250'F.

A-25

L1 38.86 T 090 C) I I I I I C) I I CO I I I I I I I I I I I I I I I I I I I I I I I I I I I I

~ '\ 'II ~

'O I 0$

I I I I I I O I I I I I I I I I I I

'I r 1 1 . I

'V I I

I I

'L I

I C)

C) 0.00 0.60 120 1.80 2.40 ~

3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-48 Load-Time record for SRM specimen AA6 tested at 300'F.

L1 36.76 T 0.00 I I I I I I I I I I I I I I I I I I I 1

I I I'

I I CJ I I I I I O I T

1 I 1 I' 'I C O I I I I I

I I I

I I I I I 0O I I

~

I

~

0.00 0.60 1.20 1.80 2AO 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

Figure A-49 Load-Time record for SRM specimen A7M tested at 375'F.

A-26

APPENDIX B Charpy V-Notch Shift Results for Each Capsule Hand-Fit vs. Hyperbolic Tangent Curve-Fitting Method (CVGRAPH, Version 4.1)

B-0

TABLE B-1 Changes in Average 30 ft-Ib Temperatures for Intermediate Shell Plate M-605-1 (Transverse Orientation)

Hand Fit vs. CVGRAPH4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit 83o 40'F 61'F 21'F 29 97oF 59.81'F 29.84'F 263o 40oF 29 97oF 133 09oF '103.12'F TABLE B-2 Changes in Average 50 ft-Ib Temperatures for Intermediate Shell Plate M-605-1 (Transverse Orientation)

Hand Fit vs. CVGRAPH4.1 Capsule Unirradiated Hand Fit iso Unirradiated CVGRAPH Fit 103'F 29'F 263'4oF 83o 74oF 71.38'F 71.38'F 108.61'F 181.99'F 37.23'F 110.61'F TABLE B-3 Changes in Average 35 mil Lateral Expansion Temperatures for Intermediate Shell Plate M-605-1 (Transverse Orientation)

Hand Fit vs. CVGRAPH4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit 83o 40'F 87'F 47oF 37 84oF 75.5'F 37.66'F 263o 40'F 37.84oF 154.68'F 116.84'F TABLE B4 Changes in Average Energy Absorption at Full Shear for Intermediate Shell Plate M-605-1 (Transverse Orientation),

Hand Fit vs. CVGRAPH4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit 83o 103 ft-Ib 102 ft-Ib -1 ft-Ib 103 ft-Ib 102 ft-Ib -1 ft-Ib

TABLE B-5 Changes in Average 30 ft-lb Temperatures for Surveillance Weld Material Hand Fit vs. CVGRAPH4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit 83o -26'F 26oF OoF -50.42'F -36.6'F 13.82'F 263o -26'F 5042oF 24 44oF 25 98oF TABLE B-6 Changes in Average 50 ft-lb Temperatures for Sutveillance Weld Material Hand Fit vs. CVGRAPH4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit 83o -18'F -11'F 7'F 12 67oF -5.23'F 7.44'F 263o -18'F -12.67'F 20 37oF 33.04'F TABLE B-7 Changes in Average 35 mil Lateral Expansion Temperatures for Surveillance Weld Material Hand Fit vs. CVGRAPH4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit 83o -36'F -18'F 18'F -27.15'F -15 96'F 11.19'F 263o -36'F -27.15'F -0 69'F 26.46'F TABLE B-8 Changes in Average Energy Absorption at Full Shear for Surveillance Weld Material Hand Fit vs. CVGRAPH4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit 83o 115 ft-Ib 103 ft-Ib -12 ft-Ib 115 ft-Ib 103 ft-Ib -12 ft-Ib 263o 115 ft-Ib 115 ft-Ib 108 ft-Ib -7 ft-Ib B-2

TABLE B-9 Changes in Average 30 ft-lb Temperatures for the Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit 83'o 10'F -6'F -16'F -26.17'F -51.21'F 25 04oF 263o 10'F -26.17'F 47.12'F 73 3oF TABLE B-10 Changes in Average 50 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Hand Fit,vs. CVGRAPH 4.1 Capsule Unirradiated . Hand Fit Unirradiated CVGRAPH Fit 83o 47'F 38oF -9'F 18.32'F 20 27oF 1.94'F 263o 47'F 18 32oF 109.23'F 90 91oF TABLE B-11 Changes in Average 35 mil Lateral Expansion Temperatures for the Heat-Affected-Zone Material Hand Fit vs. CVGRAPH4.1 4l Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit ass 83o 38oF 12oF -26'F 8.18'F 10 35oF 217oF 263o 38'F 8.18'F 76 52oF 68 34'F TABLE B-12 Changes in Average Energy Absorption at Full Shear for the Heat-Affected-Zone Material Hand Fit vs. CVGRAPH4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH Fit 83o 96 ft-Ib 119 ft-Ib 23 ft-Ib 96 ft-Ib 119 ft-Ib 23 ft-Ib 263o, 96 ft-Ib 96 ft-Ib 130 ft-Ib" 34 ft-Ib B-3

APPENDIX C Charpy V-Notch Plots for Each Capsule Using Hyperbolic Tangent Curve-Fitting Method C-0

I Contained in Table C-1 are the upper shelf energy values used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 4.1. Lower shelf energy values were fixed at 2.2 ft-lb. The unirradiated and irradiated upper shelf energy values were calculated per the ASTM E185-82 definition of upper shelf energy.

TABLE C-1 Upper Shelf Energy Values Fixed in CVGRAPH Material Unlrradiated Capsule Capsule 83'19 263'9 Intermediate Shell Plate M-605-1 134 ft-Ib ft-Ib

'I (Longitudinal Orientation)

Intermediate Shell Plate M-605-1 103 ft-Ib 102 ft-Ib ft-Ib (Transverse Orientation)

Weld Metal 115 ft-Ib 103 ft-Ib 108 ft-Ib (Heat¹ 83637)

HAZ Material 96 ft-Ib 119 ft-Ib 130 ft-Ib Standard Reference Material 122 86 a

UNIRRADIATED (TRANSVERSE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1426:49 on 12-22-1997 Page 1 Coefficients of Curve 1 TO = 7657 Equation IE CVN = A tB' tanh((T - TO)/C) )

Upper Shelf Energy: 10325 Fixed Temp. at 30 ft-Ibs: 299 Temp. at 50 ft-Ibm 71.3 Lower Shelf Energy: 2.19 Fixed hiaterial: PLATE SA533B1 'eat Number. hi-605-1 Orientation: TL Capsule UNIRR Total Fluence 300 250 I

200 150 CI 0 100

-300 -200 100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: S12 Cap UNIRR Material: PLATE SA533B1 Ori TL Heat g; hf~l Charpy V-Notch Data, Temperature Input CVN Energy Computed CVN Energy Differential

-40 6 10.42 ~

-4.42

-20 23 1426 8N 2 23 19% 3.11 20 27 26.02 97 40 31 3439 -139 50 44 3931 4M 50 49 3931 988 50 42 3931 M8 60, 39 44.1 , a1

"" Data continued on next page "'"

C-2

UNIRRADIATED (TRANSVERSE)

Page 2 MateriaL PLATE SA533BI Heat Number. hI-605-1 Orientation: TL ~

Capsule: UNIRR Total Fluence:

Cha'rpy,V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 60 37 44.1 -7.1 I

60 44.1 -153 70 46 4927 -327 63 5733 5%

105 71 6723 3.76 125 85 762 879 150 44 8521 -4121 155 107 86.7 2029 176 108 9159 IQ 200 108 96.03 . 1199 2M 83 10057 -1757 300 100 10228 -228 3M 108 102.9 509 400 107 10332 337 450 105 1032 1.79 SUhl of RESIDUALS = K64 C-3

CAPSULE W88 (TRANSVERSE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1426:49 on 12-22-1997 Page 1 Coefficients of Curve 2 A =51% B = 4965 C = 112.15 TO = 1R79 Equation ir. CVN = A t 'B tanh((T TO)/C) I Upper Shelf Energy: 1015 Fixed Temp. at 30 ft-Ibm 59j Temp. at 50 ft-Ibs: 10M Lower Shelf Energy: 2.19 Fixed hlaterial: PLATE SA533B1 Heat Number: hl-605-1 Orientation: TL Capsule WW Total Fluence L779E418 300 250 200 150 100 50

-300 -200 -100 0 100 200 300 400 500 '00 Temperature in Degrees F Data Set(s) Plotted 7 Plant: SI2 Cap KM hlateriah PLATE SA533B1 Ori TL Heat z~. hM6-1 .

Charpy V-Notch Data Temperature Input CVN Energy Computel CVN Energy Differential 1 13 141 -1.1 47 24 2596 -166 60 32 30.06 1.93 78 44 %92 7.07 113 48 5194 -3.94 140 51 63K -IM6 157 83 70.46 12K 217 78 883 -10.1

"" Data continued on next page ~ "'

C-4

CAPSULE W88 (TRANSVERSE)

Page 2 hiaterial: PLATE SA53381 Heat Number. M~1 Orientation: TL Capsule W-83 Total Fluence 1779E418 Charpy V.-Notch 'Data (Continued)

Temperature Input CVN Energy Computed CVN Energ Differential 252 104 9384 1035 300 106 98.09 7.9 350 97 100.07 -3.07 401 100.92 -192 SUbi of RESIDUALS = 5.13 C-5

CAPSULE W 263 (TRANSVERSE)

CVGRAPH 43 Hyperbolic Tangent Curve Printed at 14K49 on 12-22-1997 Page I Coefficients of Curve 3 A = 4059 C = 9168 TO = 159M Equation iz CVN = A + 8 ' tanh((T - TO)/C) )

Upper Shelf Energy: 79 Fixed Temp. at 30 ft-Ibs: 133 Temp. at 50 ft-Ibs: 181.9 Lower Shelf Energy: 2.19 Fixed biaterial: PLATE SA53381 Heat Number. bI-605-1 Orientation: TL Capsule: 7-263 Total Fluence 1244E%19 300 250 200 150 100

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Ihta Set(s) Plotted Plant: SI2 Cap W-263 Material: PLATE SA53381 Ori TL Heat ~. be%-I Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 0 3 451 -151 40 11 7Ã 3.47 72 16 219 33 IOO 19 18.79 2 125 36 26.94 9.05 150 41 '63 4.19 160 23 40.98 -17.98 I95 47 54.91 -7.91

"" Data continued on next page

'"'-6

CAPSULE W263 (TRANSVERSE)

Page 2 blaterial: PLATE SA533B1 Heat Number. bI-6O5-1 Orientation: TL Capsule W-263 Total Fluence 1244K%19 Charpy V-Natch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 225 8O 6426 15.73 250 69.7 -3.7 XO 88 7M 1039 375 84 7831 5Q SUhl of RESIDUALS = 21.41 C-7

UNIRRADIATED CVGRAPH 4l Hyperbolic Tangent Curve Printed at 10:14% on 01<2-1998 Page 1 Coefficients of Curve 1 A = 3931 B = 3831 TO = 48.75 Equation h LK = A 4 B ' tanh((T - TO)/C) j Upper Shelf LE: 77N Temperature at LE 35: 378 Lower Shelf LF' Fixed Materiah PLATE SA533B1 Heat Number. M-605-1 Orientation: TL Capsule UNIRR Total Fluence R

f50 100 0

0

-200 -i00 0 i00 200 300 400 500 600 Temperature in. Degrees F Data Set(s) Plotted Plant: SL2 Cap UNIRR MateriaL PLATE SA533B1 Ori. TL Heat g; M~1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

<0 7 11.48 H.48

-20 23 15N 7.16 2 24 22.05 L94 20 30 2R2I L78 40 35 35Q -ll4 50 43 39lll 3.18 50 46 3931 Gl8 50 42 3981 2i8 60 36 43.7! -7.77

'~'ata continued on next page ~"

c-s

UNIRRADIATED Page 2 bIateriaL PLATE SA533B1 Heat Number. bI-605-1 Orientation: TL Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE.

60 41 43.77 -2.77 60 29 43.77 -14.77 70 85 105 46 59 62 VMS'ifferential 4753 53.09 59.45

-163 59 254 125 73 64K 8.41 150 46 6929 -2329 155 79 7093 896 176 83 7254 10.45 200 83 74.46 8Z 250 75 76.48 -148 300 78 7722 .77 350 79 77.49 15'S8 400 71 7758

-492

'50 SUbI of RESIDUALS = 127 C-9

CAPSULE W-83 CVGRAPH 4i Hyperbolic Tangent Curve Printed at IM4Q on 01-02-1998 Page 1 Coefficients of Curve 2 C = 84.47 Equation is: LE = A tB' tanh((T - TO)/C) )

Upper Shelf LE: 75% . Temperature at LE 35: N5 Lower Shelf LE: 1 Fixed biateriaL PLATE SA533B1 Heat Number. bi-605-1 Orientation: TL Capsule W-83 Total Fluence 17M%18 200 I 150 ioo 300 -200 -100 0 100 200 800 400 500 600 Temperature in Degrees F Ihta Set(s) Plotted Plant: SI2 Cap WW Material PLATE SA533B1 Ori. TL Heat II: bi~-I V-Notch Data I'harpy Temperature Input Lateral Expansion Computed LE Differential 1 12 IOX 163 47 23 2u 60 30 2838 L61 78 39 3M9 2.9 113 41 51 -10 140 50 6028 -1022 157 87 64% 22.44 217 65 7257 -757

"" Data continued on next page ""

CAPSULE %'-83 Page 2 MateriaL PLATE SA533BI Heat Number: M-605-1 Orientation: TL Capsule 1-83 Total Fluence 17M%18 Chary V-Notch Data (Continued.)

Temperature Input Lateral Expansion Computed LE Differential 252 77 , 7422 2.77 300 78 7513 286 350 75 75.43 .43 401 70 75K SUM of RESIDUALS = 36

CAPSULE W 263 CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1M4$ on 01-02-1998 Page 1 Coefficients of Curve 3 C = 11534 Equation h LE = A 4 B ' tanh((T TO)/C) )

Upper Shelf LE: 861j5 Temperature at LE 35: 1548 Lover Shelf LE: 1 Fixed Material: PLATE SA533B1 Heat Number. bf-605-1 Orientation: TL Capsule W-263 Total Fluence 1244E419 M

150 100

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant. SI2 Cap. 1-263 bfateriaL PLATE SA533B1 Ori; TL Heat II: bf-605-1 Char py V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 0 6 4.7 129 40 9 Kf S9 72 14 1265 L34 100 14 18.44 -444 125 34 2521 8.78 150 40 33r5 6.64 160 22 3689 -1489 195 49 49.7 -7

"" Data continued on next page ""

C-12

CAPSULE  %' 263 Page 2 hiaterial: PLATE SA533Bl H at Number. hf-86-I Orientation: TL Capsule W-263 Total Fluence 1244K%19 Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computol LE Differential 225 65 5991 598 250 6795 a05 3I 85 76% 831 375 78 N34 <34 SUhi of RESIDUALS = 1.71 C-13

UNIRRADIATED CVGRAPH 4l Hyperbolic Tangent Curve Printed at 1M'n 01<2-1998 Page 1 Coefficients of Curve 1 TO = 87.01 Equation is: Shear/ = A + B ' tanh((T - TO)/C) J Temperature at I/ Shear. 87 3Iaterial: PLATE SA533Bl Heat Number. hI-605-1 Orientation: TL Capsule UNIRR Total Fluence 100 c5 A

CG

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: Sl2 Cap. UNIRR hiateriah PLATE SA533Bl Ori. TL Heat g; hi~i Charpy V-Notch Data Temperature Input Percent Shear 'omputed Percent Shear Differential

<0 0 28 -28

-20 10 92 9.07 2 10 238 751 20 10 518 4.9 40 10 1131 -128 50 30 1658 13.41 50 20 1658 3.41 50 10 1633 60 20 2352 -3%

>>>> Data continued on next page>>>>

C-14

UNIRRADIATED Page 2

'Materiah PLATE SA533B1 Heat Number. M-605-1 Orientatioz TL Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Sh ear Differential 60 30 23P. 6.47 60 23P. -M2 70 20 3224 -1224 85 40 478 -78 105 80 6897 1132 125 90 83.99 6 150 80 9398 -1398 155 100 Kd 489 176 100 9798 201 200 4 100 9928 .71 2M 100 9991 Q 3I 100 9999 0 3M 100 9999 0 400 100 9999 0 450 100 9939 0 SUM of RESIDUALS = 20.49, =

C-IS

CAPSULE W-83 CVGRAPH 43 Hyperbolic Tangent Curve Printed at iMl09 on 01-02-1998 Page 1 Coefficients of Curve 2 C = 116.04 TO = 16958 Equation is: Shear/ = A + B ' tanh((T - TO)/C) t Temperature at Mr. Shear. 1699 bfaterial PLATE SA533B1 Heat Number. bf-6%-1 Orientation: TL Capsule: W-83 Total Fluence L7M418 100 a5 A

V3 C4 0 0 0 0

-300 -KO -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SL2 Cap; KM bfateriaL PLATE SA533B1 Ori TL Heat g M-6%-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 1 0 K17 <J7 47 5 10.77 <.77 60 10 1311 -311 78 30 17K 1292 113 30 2734 265 140 30 37.48 -7.48 157 60 4455 15.44 217 35 693> -3422

'~'ata continued on next page ~

CAPSULE W83 Page 2 bfaterial: PLATE SA533Bl Heat Number. bi-6%-1 Orientation: TL Capsule K-83 Total Fluence L779E418 Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computel Percent Shear Differential 252 1M 8051 19.48 3M 1M 90.42 957 350 1M F).72 427 401 1M R17 L82 SUbi of RESIDUALS = 103

CAPSULE W 263 CVGRAPH 4A Hyperbolic Tangent Curve Printed at IMN9 on 01-02-1998 Page 1 Coefficients of Curve 3 C = 70.07 TO = 17519 Equation Is: Shear/ = A + B ' tanh((T TO)/C) I Temperature at 50/. Shear. 17M MateriaL PLATE SA533B1 Heat Number. M~1 Orientation: TL Capsule 1-263 Total Fluence: 1244919 100 80 c5 A

CG 4

-300 -200 -100 0 100 200 300 400 500 600 Temperature. in Degrees F Data Set(s) Plotted Plant: SL2 Cap'-263 MateriaL PLATE SA533B1 Ori TL Heat f MM6-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 5 $5 433 40 10 2.06 793 72 15 499 10 100 20 10.47 952 125 30 1927 10.72 150 35 %76 223 160 20 3922 -19K 195 50 63.76 -13.76

"'" Data continued on next page ""

C-1S

CAPSULE W263 Page 2 bfateriaL PLATE SA533BI Heat Number. hI-605-1 Orientation: TL Capsule W-263 Total Fluence 1244K%19 Charpy V-Notch Data (Continued)

Temperature Input Percent Shear ComputelI Percent Sh ear Differential 225 100 80K '19.44 2M 100 89.42 1057 300 100 9723 2.76 375 100 9956 SUhl of RESIDUALS = 44.78 C-19

UNIRRADIATED CVGRAPH 4l Hyperbolic Tangent Curve Printed at 0945:43 on 12-30-1997 Page 1 Coefficients of Curve.1 C = 9M6 TO = 1.4 Equation is: CVN = A tB' tanh((T TO)/C) ]

Upper Shelf Energy: 11499 Fixed Temp. at 30 ft-Ibs: -504 Temp. at 50 ft-Ibs: -126 Lower Shelf Energy: PJ9 Fixed Material: WELD Heat Number. 83637gNDE 124)ST 0951 Orientation:

Capsule UNIRR Total Fluence 300 250 200 150 100 0

0 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in. Degrees F Data Set(s) Plotted Plant: S12 Cap UNIRR MateriaL WELD Ori. Heat P bi~2 AND be-3 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

<0 10 34% -24%

-30 62 4015 2184

-30 41 4035 S4

-30 19 4035 -2115

-20 29 42.9 -13.9

-20 62 42.9 19.09

-20 38 42.9 <9

-20 50 45.73 426,

-1 93 5699 36

'~" Data continued on next page

'~'-20

UNIRRADIATED Page 2 hiaterial: WELD Heat Number: 83637J,NDE 124JDf 0951 Orientation:

'apsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Com putoI CVN Energy Differential 20 61 69K 40 69 8051 -1151 70 74 93.73 -19.73 85 118 9858 1931, 1% 95 103.73 H.73 150 124 110K) 13.74 200 106 11333 -7.13 250 123 11435 M4 300 98 1145 -165 3M 127 11452 1237 400 117 11486 n3 450 108 114M WN SUhf of RESIDUALS = -5.06

CAPSULE W83 CYGRAPH 41 Hyperbolic Tangent Curve Printed at S45:43 on 12-30-1997 Page 1 Coefficients of Curve 2 A = R39 B = 502 Equation h CVN = A + B ' tanh((T T0)/C) ]

Upper Shelf Energy: 10'ixed Temp. at 30 ft-Ibs: -36$ Temp. at 50 ft-Ibs: -52 Lower Shelf Energy: 2.19 Fixed

. biaterial: WELD Heat Number: 83637,UNDE 124JDF 0951 Orientation:

Total Fluence L779Et18 300 250 200 150 100

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: S12 Cap.'W MateriaL WELD Ori. Heat g; hI~2 AND he%-3 Charpy V-Notch Data Temperature Input CYN Energy Computed CVN Energy Differential

<0 22 2I116 <36

-20 39 3685 PJ4

-13 31 44N -13N 62 5015 1L84 0 61 5391 7%

48 80 8226 -226 78 87 9255 <55 117 100 98.92 1.07

"~ Data continued on next page ""

C-22

CAPSULE  % 83 Page 2 bfateriaL WELD Heat Number. 83837gNDE 124PI'951 Orientation:

Capsule WW Total Fluence: L779Et18 Char py V-Notch Data (Continued)

. Temperature Input CVN Energy Computed CVN Energy Differential, 158 10131 <31 217 97 10235 Hr5 3I 121 10257 1M 401 99 10259 -859 SUbI of RESIDUALS = -1.08 C-23

CAPSULE W 263 CVGRAPH 4l Hyperbolic Tangent Curve Printed at OR45:43 on 12-30-1997 Page 1 Coefficients of Curve 3 A = 5519 C = 10705 Equation ir. CVN = A 4 8 * ( tanh((T - TO)/C) )

Upper Shelf Energy: 1M19 Fixed 'emp. at 30 ft-ibm -24.4 Temp. at 50 ft-Ibm 203 Lower Shelf Energy: 2.19 Fixed hiaterial: WELD Heat Number. 83637gNDE 124@T 0951 Orientation:

Capsule W-263 Total Fluence 1244E419 300 250 I

200 150 100

-300 -200 -100 0 100 200 300 400 500 600 Yem.perature in Degrees F Data Set(s) Plotted Plant S12 Cap W-263 hfateriaL WELD Ori Heat z~ hi-6%-2 AND he%-3 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 11 1405 -3.%

<0 21 24.46 -3.46

-20 36 3173 426 0 48 403 799 50 60 64Q HS4 72 68 7459 <59 120 91 9132 150 104 97% 6.14

~" Data continued on next page '""

C-24

CAPSULE F 263 Page 2 hfateriaL WELD Heat Number. 83637gNDE 124JDF 0951 Orientation:

Capsule 1-263 Total Fluence 1244E+19 Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 195 107 103.47 3Z 2M 111 106.45 4Q 2t5 89 1072 -183 300 130 1075 22.49 SUhi of RESIDUALS = E56 C-25

UNIRRADIATED CVGRAPH 41 Hyperbolic Tangent Curve Printed at 130M9 on 01-02-1998 Page 1 Coefficients of Curve 1 A =44% B =4M4 TO = -1039 Equation is: LE = A + B ' tanh((T TO)/C) j Upper Shelf LE: 8828 Temperature at LE 35: -273 Lower Shelf LE: I Fixed MateriaL WELD Heat Number. 83637gNDE 12438F 0951 Orientation:

Capsule: UNIRR Total Fluence 200 M

150 1OO

-300 -200 -100 0 100 200 300 400 500 600 Temperature in. Degrees F Data Set(s) Plotted Plant: SI2 Cap UNIRR hfateriaL WELD Orf.'eat g b1~2 AND AS-3 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

'0 16 2798 -1198

-30 49 3X% 15.61

-30 31 333I -23I

-30 16 333I -1728

-20 27 3624 424

-20 54 3624 17.75

-20 29 3624 -724

-20 45 3938 591

-1 73 5057 22.42

~~ Data continued on next page ~"

C-26

UNIRRADIATED Page 2 MateriaL WELD Heat Number: 83637PNDE 124JDF 0951 'rientation:

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential m 53 6222 -922 40 60 7L1 -111 70 67 79% -285 96 %52 13.47 105 8487 312 1M 93 8727 5.72 m0 91 8M2 2.97

, 2M 92 8E22 3.77

'00 80 IL26 <26 3M 88 8828 -28 400 86 882B -228 450 87 8828 -128 SUM of RESIDUAIB = -2li5 C-27

CAPSULE W83 CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13938 on 01-02-1998 Page 1 Coefficients of Curve 2 A = 4144 B = 40.44 C = 7692 Equation is: LK = A + B ' tanh((T TO)/C) I Upper Shelf LE: 8M8 Temperature at, LE 35: -159 Lover Shelf LE: I Fixed l Iateriah WELD Heat Number. 83637gNDE 124LOT 0951 Orientation:

Capsule W-83 Total Fluence 1.779E+18 M

150 0

0

-BOO -200 -100 0 100 200 300 400 500 600

~ ~

Temperature in Degrees F Data Set(s) Plotted Plant: SIR Cap WW hiateriaL WELD Ori Heat $ : hi<05-2 AND hHN-3 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

-40 17 23.49 <.49

-h 33 30.42 257

-13 28 3654 48 40.77 722 0 51 43.43 7%

48 62 6528 -33I 78 71 73.45 -2.45 117 77 78Q -164

"" Data continued on next page

'~'-28

CAPSULE W83 Page 2 MateriaL WELD Heat Number. 83637+NDE 124jOT 0951 Orientation:

Capsule W-83 Total Fluence 17iSE418 Charpy V-Notoh Data (Continued)

Temperature Input Lateral Expansion Computol LE Differential

. 156 78 8099 -2.69 217 77 H.64 8'185 300 88 6.14 401 8UI 411 SUM of RESIDUALS = -223 C-29

CAPSULE W263 CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13CM9 on 01-02-1998 Page 1 Coefficients of Curve 3 A =57% C = 11705 TO = 48.75 Equation is: LE = A + B ' tanh((T TO)/C) I Upper Shelf LE: 11423 Temperature at LE 35: -9 Lower Shelf LF 1 Fixed hiaterial: WELD Heat Number. 83637gNDE l24JOT 0951 Orientation:

Capsule W-263 Total Fluence 1244Et19 K

150 100

-300 -200 -100 0 '00 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SI2 Cap W-263 hlaterial: WELD Ori. Heat f. hMh-2 AND hi~3 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 9 1228 -328

<0 24 2L36 263

-20 27.7 129 0 40 3528 4.71 50 52 5K17 <37 72 6855 -255 120 91 8829 2.7 150 103 97$ 59

"~ Data continued on next page ~

C-30

CAPSULE W263 Page 2 MateriaL WELD Heat Number: E637gNDE 124JDF 0951 Orientation:

Capsult" W-263 Total Fluence 1244E419 Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 195 107 '105% 1.45 250 111 11091 275 87 1K61 -24111 300 132 112$ 1929 SUM of RESIDUALS = IS

UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 132293 on 01-02-1998 Page 1 Coefficients of Curve 1 TO = L4 Equation h Shear/ = A t 'B tanh((T TO)/C) ]

Temperature at Rt Shear. L4 hiateriaL WELD Heat Number. 83637gNDE 124gT 0951 Orientation:

Capsule UNIRR . Total Fluence 100 s

c5 A

CQ 0 0

-300 -200 -100 0 100 200 300 400 500 600 Tem.perature irh. Degrees F Data Set(s) Plotted Plant: SI2 Cap UNIRR hiateriah WELD Ori Heat z~ M-605-2 AND hHN-3 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-40 2731 -711

-30 %07 1792

-30 3M7 -2.07

-30 -2.07

-20 34.73 <.73

-20 34.73 526

-2o -14.73

-20 37.48 -7.48

-1 4856 3L43

~~ Data continued on next page ~

C-32

UNIRRADIATED Page 2 MateriaL WELD Heat Number. 83637@RE 124JDF 0951 Orientation:

Capsule UNIRR, Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computel Percent Shear Differential 20 50 60.92 -1092 40 7L54 -1154 80 83.73 -3.73

, 85 1M 88.04 11.95 105 9223 -223 150 1M 972 2.79 2M 1M 99l3 E6 250 1M 99.73 26 3M 1M 9992 97 350 1M 9997 N 400 ,, 1M 9999 0 450 .1M 9939 0 SUM of RESIDUALS = 395 C-33

CAPSULE  %' 83 CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 132233 on 0142-1998 Page I Coefficients of Curve 2 C = 5398 TO = 10.78 Equation is: Shears = A W B ' tanh((T - TO)/C) j Temperature at 50/ Shear. 10.7 Material: WELD Heat Number. 83637,UNDE 124$ QT 0951 Orientation:

Capsule W-83 Total Fluence L779E&18

-300 -200 -100 0 100 200 300 400 500 600 Temperature in. Degrees F Data Set(s) Plotted Plant. SI2 Cap WW MateriaL WELD Ori Heat P he%-2 AND M~3 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

<0 10 1322 -322

-h 40 2098 1991

-13 10 2929 -1929 40 35.78 421 0 40 4024 -14 48 80 79K 78 95 %34 2$

117 100 98M 191

'"'ata continued on next page "'~

C-34

CAPSULE W83 Page 2 hiateriah WELD Heat Number. 83637gNOE 124+T 0951 Orientation:

Capsule W-83 Total Fluence 1779E418 Charpy V-Notch Data (Continued)

~ Temperature Input Percent Shear Computed Percent Sh ear Differential 156 1M 99K .45 217 IM " '995 .04 300 100 9999 0 401 1M 99.99 0 SUbl of RESIDUALS = 5.75 C-35

CAPSULE W263 CVGRAPH 43 Hyperbolic Tangent Curve Printed at 1325% on 01<2-1998 Page 1 Coefficients of Curve 3 C = 91.94 TO = 16.4 Equation is: Shear/ = A t '

B tanh((T TO)/C) I Temperature at Mt. Shear. 16.4 hfateriaL NKD Heat Number: 83N7QSE 124JDF 0951 Orientation:

Capsule W-263 Total Fluence 1244Et19 100 c5 A

CG C4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SI2 Cap W-2N'ateriaL WELD Ori Heat g: hHN-2 AND hf<605-3 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 15 1093 4.06

<0 25 2267 232

-20 30 3L17 -1l7 0 40 4117 -1.17 50 67.49 -2.49 72 75 77.01 -201 120 90.49 45 150 180 9481 5.18

'~'ata continued on next page "~

C-36

CAPSULE W-263 Page 2 material: IIELD Heat Number. 63637JJNDE 124JDF 0951 Orientation:

Capsule %-263,Total Fluence 1244Et19 Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computol Percent Shear Differential 1% 1M %98 . 2.01 2M 1M 993I $1 2(0 1M 9994 25 3M 1M 99.79 SUM of RFSIDUAIS = 12.4 C-37

UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13%% on 03-24-1998 Page I Coefficients of Curve I A = 4911 B = 469 C = 9M6 TO = 16.43 Equation is: CVN = A + B ' tanh((T - TO)/C} 1 Upper Shelf Energy: 96 Fixed Temp. at 30 ft-Ibs: -26.1 Temp. at 50 ft-Ibm 183 Lower Shelf Energy: F19 Fixed hlaterial: HEAT AFFD ZONE Heat Number. hf-605-1 SIDE OF WELD Orientation:

Capsule UNIRR Total Fluence 300 250 200 150 100 p 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant; S12 Cap UNIRR Material: HEAT AFFD ZONE Ori Heat g: hH%-I SIDE OF WELD Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-40 17 24K -784

-20 27 %51 <Sl

-1 90 40119 49.1 20 41 50.79 -9.79 40 21 602 -39.1 50 67 64.48 KI 50 49 -15.48 50 16 64.48 -48.48 60 59 6E57 -957

~ Data continued on next page '

UNIR RADIATED Page 2 kfaterial: HEAT AFFD ZONE Heat Number. iI-Nh-I SIDE OF WELD Orientation:

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 60 I'r9 857 110.42 60 61 6857 737 70 62 7234 -1034 85 45 7721 -%21 105 103 8266 20m 1M "131 9035 4084 200 93.79 30. (9 250 111 95.18 15jl 300 "

68  %.7 -977 3M 67 %l19 -2889 400 122 2693 450 I07 %98 11.01 SUM of RESIDUALS = -2.33 C-39

CAPSULE W 83 CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1026K on 12-30-1997 Page I Coefficients of Curve 2 B =5M5 C = 17933 Equation h CVN = A tB' tanh((T TO)/C) I Upper Shelf Energy: 1185 Fixed Temp. at 30 ft-Ibs: -512 Temp. at 50 ft-Ibs: 202 Lovrer Shelf Energy: 2.19 Fixed hfateriai: HEAT AFFD ZONE Heat Number: hMS-I SIDE OF WELD Orientation:

Capsule W-83 Total Fluence L779E%18 30 250 200 150 Q l,t 00 100 0

0

-300 -200 -100 0 100 200 300 400 500

~

Temperature in Degrees F 600"'ri.

Data Set(s) Plotted Plant; SL2 Cap WW hlaterial: HEAT AFFD ZONE Heat $ hHN-1 SIDE OF WELD Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

<0 26 3K73 <.73

-12 17 4027 -2327 1 45 44.07 .92 48 56 58M -288 60 113 %78 5021 78 108 6857 39.42 118 25 80.71 o5.71 157 47 90% HM8

'~'ata continued on next page ~"

C-40

CAPSULE W83 Page 2 hiateriaL HEAT AFFD ZONE . Heat Number. hf-6%-1 SIDE OF WELD Orientation:

'apsule W-83 Total Fluence 1.7MWI8 Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 217 137 10251 34.48, 250 . 100 106.95 300 145 11159 33.4 401 92 11627 -2417 SUII of RESIDUALS = -5.16 C-41

CAPSULE W 263 CVGRAPH 41 Hyperbolic Tangent Curve Printed at 102627 on 12-30-1997 Page 1 Coefficients of Curve 3 C = 1%14 Fquation is: CVN = A 4 B "r tanh((T TO)/C)

}

Upper Shelf Energy: 129$ Fixed Temp. at 30 ft-ibm 471 Temp. at 50 ft-Ibs: 1092 Lower Shelf Energy: 59 Fixed hfateriaL HEAT AFFD KONE Heat Number. M-605-1 SIDE OF WELD Orientation:

Capsule 1-263 Total Fluence 1244E419 300 250 200 150 100

-200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SI2 Cap W-263 Material: HEAT AFFD 20NE Ori. Heat g; hHN-1 SIDE OF WELD Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 40 32 1328 18.71 10 15 2131 <31 60 13 339 -209 72 45 3723 7.76 100 51 46@ 435 120 54 5492 -.02 150 83 65% 17K 180 70 77m -7X

~" Data continued on next page ""

C-42

CAPSULE W263 Page 2 MateriaL HEAT AFFD 20NE Heat Number. M-605-1 SIDE OF WELD Orientation:

Capsule %-263 Total Flume 1244K%19 Charpy V-Notch Data (Continued)

Temperature Input CltN Energy Computed CVN Energy Differential 2M 119 100.7 1829 250 49 100.7 oL7 300 144 1E18 3L81 375 126 122.07 392 SUM of RESIDUALS = 1622 C-43

UNIRRADIATED CVGRAPH 4l Hyperbolic Tangent Curve Printed at 135787 on 01~1998 Page 1 Coefficients of Curve 1 A = 3733 B = 3623 TO = 15.46 Equation is: LE = A 4 B ' tanh((T TO)/C) j Upper Shelf LE: 7327 Temperature at LE 35: 8.1 Lower Shelf LIL I Fixed MateriaL HEAT AFFD ZONE Heat Number: M-6%-1 SIDE OF WELD Orientation:

Capsule: UNIRR Total Fluence 200 K

150 100 0 0 0

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plottel Plant: SL2 Cap UNIRR liateriah HEAT AFFD ZONE Ori Heat q~. MAN-I SIDE OF WELD Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential HO 20 2M6 -186

-20 26 26% -99

-1 3232 23K 20 31 3146 -7.46 40 23 44$) -2125 50 57 47.02 9.97 50 41 47N -6.02 50 17 47N -30N 60 49 4997 -Ei

"" Data continued on next page ""

C-44

UNIRRADIATED Page 2 hiaterial: HEAT AFFD ZONE Heat Number. hi-605-1 SIDE OF WELD Orientation:

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 60 51 4957 132 60 83 4997 33K 70 52 %18 .18 85 41 55N -1483 105 75 599 1529 150 82 6598 16.01 200 54 691b -1585 2M '77 7171 528 300 7257 <57 350 68 H.96 400 76 7313 2.86 450 77 7321 3.78, SUhf of RESIDUALS = LI C-45

CAPSULE W83 CVGRAPH 42 Hyperbolic Tangent Curve Printed at 135797 on 01-08-1998 Page 1 Coefficients of Curve 2 B = 3527 C = 128.92 TO= 15 Equation h LE = A 4 B * [ tanh((T TO)/C) I Upper Shelf LE: 7154 Temperature at LE 35: 103 Loiter Shelf LE: 1 Fixed hfaterial: HEAT AFFD ZONE Heat Number. hM6-I SIDE OF WELD Orientation:

Capsule W-83 Total Fluence L7NE418 200 M

150 100 OO

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SL2 Cap. WM hiateriaL HEAT AFFD ZONE Ori Heat g: hHN-I SIDE OF WELD Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

-40 24 %07 1.92

-12 12 2899 -16.99 1 34 32.45 L54 48 42 451 -31 6O 72 482 2389 78 72 5225 19.74 118 26 59h7 -3397 157 46 64$ -1852

'~'ata continued on next page ""

C-46

CAPSULE W83 Page 2 Material: HEAT AFFD MNE Heat Number. he%-I SIDE OF %ELD Orientation:

Capsule W-83 Total Fluence, L779Etl8 Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 217 85 6859 16.4 250 72 69.74 225 3M 78 70.7 729 401 b7 7186 HX SUh1 of RESIDUALS = -859 C-47

CAPSULE W 263 CVGRAPH 43 Hyperbolic Tangent Curve Printed at im797 on 01M-1998 Page 1 Coefficients of Curve 3 A" = 42.04 B = 41.04 C = 172.49 =

TO 106.4 Equation is: LE = A tB' tanh((T TO)/C) I Upper Shelf LF; 83.08 Temperature at LE 35: 765 Lower Shelf LE. 1 Fixed Material: HEAT AFFD ZONE Heat Number: hf-605-1 SIDE OF WELD Orientation:

Capsule 1-263 Total Fluence 12QEWI9 200 K

150 100 cd

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SIR Cap. W-263 MateriaL HEAT AFFD ZONE Ori Heat jf; AS-1 SIDE OF WELD Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 40 26 13.7 1229 10 15 2L?2 -622 60 13 3125 -1825 72 42 3396 K03 100 43 4051 2.48 120 47 4526 173 150 60 VJ9 73 IN 56 5855 -255

<<'>> Data continued on next page ""

C-48

CAPSULE W263 Page 2 hlaterial: HEAT AFFD RNE Heat Number: he%-I SIDE OF WELD Orientation:

Capsule %-263 Total Fluence 1244K+19 h

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 2M 54 70.02 -1692 250 78 70.02 797 3I 83 7521 7.78 77 79% -258 SUhI of RESIDUALS = 2.46 C-49

UNIRRADIATED CVGRAPH 4S Hyperbolic Tangent, Curve Printed at 14DL17 on 01-08-1998 Page 1 Coefficients of Curve 1 B =50 C = 9324 TO = R03 Equation is: Shear/ = A tB' tanh((T TO)/C) j Temperature at Rr. Shear. 52 hfaterial: HEAT AFFD XONE Heat Number. hf-605-1 SIDE OF WELD Orientation:

Capsule: UNIRR Total Fluent" 100 OO

-300 -200 -100 0 100 200 300 400 500 600 Tem.perature in Degrees F Data Set(s) Plotted Plant: SL2 Cap UNIRR hfaterial: HEAT AFFD ZONE Ori. Heat z~ hf~l SIDE OF WELD Charpy V-Hotch Data Temperature Input Percent Shear Computed Percent Shear Differential 40 20 R19 7j

-20 20 17K 2.41

-1 40 24Z1 15.72 20 30 33.46 -3.46 40 30 43K -13%

50 70 48.91 21.08 50 50 4891 1.08 50 20 4891 -28.91 60 30 543i -2426

'~'ata continued on next page ""

C-50

UNIRRADIATED Page 2 Material: HEAT AFFD ZONE Heat Number. M-605-1 SIDE OF WELD Orientation:

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear '0 Computed Percent Shear Differential 60 5426 -1426 60 1M 5426 45.73 70 60 5901 .48 85 40 6697 -2697 105 ~ $ 0 7%9 243 150 1M 891 1039 2M 1M 9598 4.01 2M 1M 9M8 1.41 3M 1M 9951 .48 350 1M 99N 26 400 100 9994 .05 450 1M 9998 .01 SUbl of RESIDUALS = 2423

,C-51

CAPSULE W83 CVGRAPH 4i Hyperbolic Tangent Curve Printed at 14:1117 on 01-08-1998 Page I Coefficients of Curve 2 C = 148.07 TO = 61.4 Equation Is: Shear/ = A e B ' tanh((T TO)/C) 1 Temperature at R/ Shear. 61.4 Material: HEAT AFFD ZONE Heat Number. he%-1 SIDE OF WELD Orientation:

Capsule W'-83 Total Fluence L779Etl8 100 c5 A

CG 4

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set(s) Plotted Plant: SL2 Cap WM Material: HEAT AFFD XONE Ori. Heat g~ M~1 SIDE OF WELD Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

<0 5 2026 -1526

-12 10 27.06 -173$

I 40 3056 9X 48 40 45.48 a48 60 90 49P. 40.47 78 75 5557 19.42 118 30 6823 -3823 157 60 7K43 -18.43

"" Data continued on next page ~"

C-52

CAPSULE W83 Page 2 hfateriah HEAT AFFD RNE Heat Number. hi-60o-1 SIDE OF IfELD Orientation:

Capsule: W-83 Total Fluence L779Etl8 Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 217 IM 891 1089 NO 1M K73 726 300 100 9636 3N 401 1M 9I199 1 SUhf of RESIDUALS = -225 C-53

CAPSULE W 263 CVGRAPH 4S Hyperbolic Tangent Curve Printed at 14%17 on 01M-1998 Page 1 Coefficients of Curve 3 C = 14029 TO = 101.71 Equation ir. Shear/ = A + B ' tanh((T TO)/C) )

Temperature at 50/. Shear. 101.7 hiaterial: HEAT AFFD ZONE Heat Number. hH%-I SIDE OP WELD Orientation:

Capsule W-263 Total Fluence: 12&419 100 80 A

M C4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SL2 Cap  %-263 hfateriah HEAT AFFD ZONE Ori Heat g. hi~1 SIDE OF WELD Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

<0 20 11.7 829 10 25 2129 3.7 60 20 3555 -IH5 72 45 3956 5.43 100 50 493l .61 120 50 56.47 %47 150 75 6655 8.44 180 80 753? 487

"" Data continued on next page ""

C-54

CAPSULE W-263 Page 2 hiaterial: HEAT AFFD ZONE Heat Number: hf-605ri SIDE OF %ELD Orientation:

Capsulj" 7-283 Total Fluence: 1244K%19 Char py V-Notch Data (Continueci}

Temperature Input Percent Shear Computed Percent Shear Differential 2M 1M 8922 10.77 250 70 8922 -1922 3M 1M 94.4 559 375 1M 98 199 SUhi of RESIDUALS = 826 C-55

STANDARD REFERENCE MATERIAL CVGRAPH 4l Hyperbolic Tangent Curve Printed at 14N96 on 02-04-1998 Page 1 Coefficients of Curve 1 A = 6184 B = 59N C ='6M2 TO = 66.76 Equation is: CVN = A tB' tanh((T TO)/C) J Upper Shelf Energy: 1215 Fixed Temp. at 30 ft-Ibs 2M Temp. at 50 ft-Ibs: 529 Lower Shelf Energy: 2.19 Fixed hlaterial: PLATE SA533BI Heat Number. HSSI'LATE 01MY Orientation: LT Capsule UNIRR Total Fluence 300 250 200 100

-300 -200 0 100 200 KO 400 500 600 Temperature in. Degrees F Data Set(s) Plotted Plant: S12 Cap UNIRR MateriaL PLATE SA533B1 Ori LT Heat g. HSSI'LATE OIMY Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy

~'100 Differential 40 10 728 2.71 0 16 1731 -1.11 20 18 2N 25 37 29.44 7%

35 27 36.05 -9N 40 51 3959 113 70 68 64N 334 85 66 -1133 7'9 1N R02 697

"'" Data continued on next page C-56

STANDARD REFERENCE MATERIAL Page 2 hlaterial PLATE SA533BI Heat Number. HSSI'LATE Olhp Orientation: LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential

,.1% 108 1118 -38 200 126 119.09 69 250 121 12093 .06 300 122 12136 N 350 122 12146 400 130 12L49 85 SUhf of RESIDUALS' 14.73 C-57

CAPSULE W263 STANDARD REFERENCE MATERIAL CVGRAPH 4l Hyperbolic Tangent Curve Printed at 13$ 28 on 12-30-1997 Page 1 Coefficients of Curve 1 A = 4359 B = 4L7 TO = 187.6 Equation is: CVN = A 4 B ' tanh((T TO)/C) I Upper Shelf Energy: 8559 Fixed Temp. at 30 ft-Ibs: 156.9 Temp. at 50 ft-Ibs: 2009 Lower Shelf Energy: 89 Fixed hfateriaL SRbf SA533B1 Heat Number. HSST PLATE OlbfY Orientation: LT Capsule 1-263 Total Fluenm 1244E+19 250 I

200 100

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SL2 Cap. 1-263 hfateriaL SRbf SA533B1 Ori. LT Heat, g. HSST PLATE 01hfY Charpy V-Notch Data Temperature Input CVN Energy Computel CVN Energy Differential 3 267 22 50 7 5.74 L?5 1I 12 1228 -28 125 23 18.47 452 150 40 2715 E84 160 27 3127 H27 195 45 47K -238 195 33 4728 -1428 250 75 6926 5.73

'~ Data continued on next page ""

C-58

CAPSULE W-263 STANDARD REFERENCE MATERIAL Page 2 biateriaL SRM SA533BI Heat Number. HSSI'LATE 01MY Orientatioz LT Capsule %-263 Total Fluence 1244E+19 Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computnl CVN Energy Differential 300 89 79K 9.47 375 93 84.41 858 SUbf of RESIDUALS = 21.4 C-59

STANDARD REFERENCE MATERIAL CVGRAPH 4l Hyperbolic Tangent Curve Printed at 142493 on 02-04-1998 Page,1 Coefficients of Curve 1 A = 39.11 C= 61% TO = 44K Equation iz LE = A + B ' tanh((T TO)/C) )

Upper Shelf LE: 7723 Temperature at LE 35: 373 Lower Shelf LE: 1 Fixed Materiah PLATE SA533B1 Heat Number. HSST PLATE OM Orientation: LT Capsule UNIRR Total Fluence K

i50 1OO

-300 -200 -100 0 l00 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SL2 Cap. UNIRR Material: PLATE SA533B1 Ori LT Heat g: HSST PLATE 01MY Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 40 11 559 5.4 0 18 1M2 2.47 20 17 24M -758 25 31 27.41 358 35 26 3326 -725 40 45 3631 888 70 55 54.04 95 85 53 61.09 -8.09 1ih 73 67N 5.14

"" Data continued on next page

~'-60

STANDARD REFERENCE MATERIAL MaterlaL PLATE SA533BI Capsule UNIRR Page 2 Heat, Number. HSSI'LATE Total Fluence OM Orientation: LT 0

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 150 82 74M 716 200 (9 76.74 2ZI 250 71 7733 <.13 300 74 7721 -321 350 78 7723 .76 400 76 (723 -123 SUhf of RESIDUALS = 2.79

CAPSULE W 263 STANDARD REFERENCE MATERIAL CVGRAPH 4l Hyperbolic Tangent Curve Printed at 082727 on 02<4-1998 Page 1 Coefficients of Curve I B = 4329 C = 110.75 TO = 207%

Equation h LE = A + B ' tanh((T - TO)/C) I Upper Shelf LE: 8759 Temperature at LE 35: 1835 Lower Shelf LF 1 Fixed MateriaL SRhf SA533BI Heat Number. HSST PLATE 01bIY Orientation: LT Capsule 1-263 Total Fluence 1244E419 200 M

150 100 S

50

-300 -200 -100 0 i00 200 800 400 500 600 Ter'nperature in Degrees F Data Set(s) Plotted Plant: SI2 Cap W-263 MateriaL SRM SA533B1 Ori. LT Heat g: HSST PLATE 01MY Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 40 1 197 -97 50 7 5.74 125 100 11 1184 -84 125 18 1689 1.1 150 33 2359 9.4 160 28 26.73 126 195 29 3937 -1037 195 34 3937 Mj 2M 67 6011 691

"~ Data continued on next page

'"'-62

CAPSULE  % 263 STANDARD REFERENCE MATERIAL Page 2 hiaterial: SRhI SA533BI Heat Number. HSSI'LATE 01MY Orientation: LT Capsule W-263 Total Fluence 1244E+19 Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 30O 77 7384 K15 375 BM7 -357 SUhi of RESIDUALS,= 1.96

~ ~

C-63

STANDARD REFERENCE MATERIAL CVGRAPH 43 Hyperbolic Tangent Curve Printed at 14MO on 02-04-1998 Page 1 Coefficients of Curve 1 C = 53.01 Equation IE Shear/ = A t B f tanh((T - TO)/C) I Temperature at Rr. Shear. 791 blateriaL PLATE SA533B1 Heat Number. HSST PLATE OlbIY Orientation: LT Capsule UNIRR Total Fluence 100 A

CG 4

S4

-100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SI2 Cap UNIRR bfaterial: PLATE SA533B1 Ori LT Heat g: HSSI'LATE 01MY Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-40 0 -Il 0 10 481 5.18 20 10 9.71 28 25 10 11.49 -1.49 35 10 1592 <92 40 20 IE61 13I 70 50 41.49 85 85 50 55K <.53 105 70 7265 -2.65

~'ata continued on next page ~"

C-64

STANDARD REFERENCE MATERIAL Page 2 hfateriah PLATE SA533BI

)

Heat Number. HSSI'LATE OM Orientation: LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Penmnt Shear Differential 1% 1M 93% 6.44 2M 1M 98% L03 2M 1M 9984 35 3M 1M 99.97 .02 350 1M 9999 0 400 1M 9999 0 SUhl of RESIDUALS = 63

'-65

CAPSULE W263 STANDARD REFERENCE MATERIAL CVGRAPH 4l Hyperbolic Tangent Curve Printed at OI46 on 02-04-IS98 Page 1 Coefficients of Curve 1 C = 76K TO = 19021 Equation IE Shear/. = A t 'B tanh((T TO)/C) I Temperature at Ri.'hear: 1902 bfateriaL SRM SA533B1 Heat Number. HSSI'LATE OlbfY Orientation: LT Capsule 1-263 Total Fluence 1244E419 100 CG 0

4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in. Degrees F Data Set(s) Plotted Plant. SL2 Cap W-263 Material: SRb1 SA533B1 Ori LT Heat g. HSSI'LATE OIbiY Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 24 -24 50 5 2.47 252 1% 15 86 639 125 20 1534 495 150 35 25N 9.14 160 30 3L18 -1.18 195 35 %18 -1832 195 50 5332 -3Z 2M 100 82.7l 1728

~" Data continued on next page ""

C-66

CAPSULE % 263 STANDARD REFERENCE MATERIAL Page 2 Material: SRbf SA533B1 Heat Number. HSSI'LATE OibIY Orientation: LT Capsult". W-263 Total'luence 1244K%19 Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential X0 100 948i 5X 375 1% 9921 .78 SUbl of RESIDUALS = 23.43 C-67

INTERMEDIATE SHELL M605 I (LONGITUDINAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1%755 on 03-24-1998 Results Curve 2

1 Fluence 0

L779E418 LSE Q9 2.19 d-LSE 0

0 USE 134 119 d-USE 0

-15

~

T o 30 36.46 d-T o 30 0

4511 T o 50 33.08 6731 d-T o 50 0

34.03 300 250 200 150 100 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in. Degrees F Curve Legend 2 0 --

Data Set(s) Plottel Curve Plant Ca sule hfaterial OrL Heat~

1 SL2 UNIRR PLATE SA533B1 LT hM5-1 2 SL2 M3 PLATE SA533BI LT hH05-1 C-68

UNIRRADAITED (LONGITUDINAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 12:49:17 on 03-24-1998 Page 1 Coefficients of Curve 1 A = 6K09 B = 65.9 C = 110.44 ir. CVN = A tB* { tanh((T TO)/C) j

'quation Upper Shelf Energy: 134 Fixed Temp. at 30 ft-Ibs: -88 Temp. at 50 ft-Ibm 33 Lower Shelf Energy: 2.19 Fixed-hiaterial: PLATE SA533BI Heat Number. hI-605-1 Orientation: LT Capsule UNIRR Total Fluence 300 250 200 150 100

-300 -200 -100 "

0 100 200 300 400 500 600 Temperature in Degrees 'F Oata Rt(st Plotted Plant: SL2 Cap UNIRR MateriaL PLATE SA533B1 Ori. LT Heat q~ MAN-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-40 15 19/4 H54

-20 20 2o 7D -5.75

-1 33 33.15 -35 20 45 43.04 1%

40 51 5381 -2N 50 40 59.66 50 102 59.66 50 46 5956 ~

60 54 65%

'"'ata continued on next page ""

C-69

UNIRRADIATED (LONGITUDINAL)

Page 2 hiaterial: PLATE SA533BI Heat Number. hf-605-1 Orientation: LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 60 35 %28 -3028 60 86 %28 20.71 60 33 %28 -R28 70 90, 71.03 18%

70 89 71.03 1796 82 101 77.9 23.09 87 79.6 739 105 101 90.48 IODI 150 73 IIOS -37m 200 122 1243 -23 250 141 13128 9.71 300 136 1340 1.49 3M 122 135.92 -13.92 400 142 13654 5.45 450 139 13611 2.19 SUhl of RESIDUALS =-1637

CAPSULE W83 (LONGITUDINAL)

CVGRAPH 43 Hyperbolic Tangent Curve Printed at 1497:16 on 12-22-1997 Page 1 Coefficients of Curve 2 A = 6059 B = 58.4 C = 76.96 TO = 8124 Equation ir. CVN = A 4 B ' tanh((T - TO)/C) j Upper Shelf Energy: 119 Fixed Temp. at 30 ft-Ibs: 36.4 Temp. at 50 ft-ibm 673 Lo>ver Shelf Energy: B9 Fixed Material PLATE SA533B1 Heat Number. M-605-1 Orientatioz LT Capsule W-83 Total Fluence 1.7BE418 300 2@0 I

200 150 100

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SL2 Cap, M3 Material: PLATE SA533B1 Ori LT Heat g; MM6-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 1 10 15.11 <.H 25 6 24.18 -18,18

35. 48 29.19 18.8 48 40 36.83 3.16 60 78 116 140 43 61 87 71 44.87 58.13 8K31 98.15

-I!I7

-27.15

~

"~ Data continued on next page "'"

C-71

CAPSULE W88 (LONGITUDINAL)

Page 2 hfaterial: PLATE SA533B1 Heat Number: hf-605-1 Orientation: LT Capsule %-83 Total Fluence L779Et18 Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 156 125 1043'15$

20Q 217 125 933 300 112 1186 <.6 401 119 118.97 02 SUhl of RESIDUALS = -2.42 C-72

INTERMEDIATE SHELL M805 1 (LONGITUDINAL)

CVGRAPH,41 Hyperbolic Tangent Curve Printed at 14:4M2 on 12-30-1997 Results Curve Fluence USE d-USE T o LE35 d-T e LE35 1 0 M4 0 133i 0 2 1779'8 lh.43 .08 5137 381 M

150 C4 100 a5 (D or6 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in. Degrees F Curve Legend 2 0 --

Data Set(s) Plotted Curve Plant Ca le bfaterial Ori Heat 1 SL2 'NIRR PLATE SA533B1 LT bf-805-1 1-83 M&1 0

2 SL2 PLATE SA533B1 LT b C-73

UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 14:4922 on 12-30-1997 Page 1 Coefficients of Curve 1 A = 43l7 B = 42l7 C = 8523 Equation is: LE = A e B ' tanh((T TO)/C) I Upper Shelf LE.'534 Temperature at LE 35: 132 Lower Shelf LE. 1 Fixed bfaterial: PLATE SA533B1 Heat Number: hf-605-1 Orientation: LT Capsule UNIRR Total Fluence K

150 100 o+0 q

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant. SI2 Cap UNIRR MateriaL PLATE SA533B1 OrL LT, Heat g: bi-605-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

-40 16 1497

-20

'1 22 2092 1.07

'~'22 31 28.47 2N 20 38 3824 -24 40 51 48.09 29 50 42 5289 -1089 50 78 5289 25l 50 42 5289 -10li9 60 49 57.43 W.43

~'ata continued on next page C-74

UNIRRADIATED MateriaL PLATE SA533B1 Page 2 Heat Number. M-605-1 Capsule. UNIRR Total Fluence Orientation: LT 0

Charpy V-Notoh Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 60 34 57.43 -23.43 60 70 57.43 1256 60 33 57.43 '24.43 70 68 6163 63) 70 79 61N 1726 82 76 66.12 987 N 71 6724 3N 1N 78 7296 5.03 150 67 80% -13%

200 86 8MI 'RN 2M '90 84% 5.13 300 N %19 -39 3M 87 N3 l69 400 81 N33 HX 450 86 %34 SUM of RESIDUAIS = 12 C-75

CAPSULE W83 CVGRAPH 43 Hyperbolic Tangent Curve Printed at 14:4922 on 12-30-1997 Page 1 Coefficients of Curve 2 A = 4321 B = 4221 Equation Is: LE = A t 'B tanh((T - TO)/C) j Upper Shelf LE: lb.43 Temperature at LE 35: 513 Lower Shelf LE: I Fixed MateriaL PLATE SA533BI Heat Number. M-605-1 Orientatioz LT Capsule WW Total Fluence L779Etl8 K

150 C4 100

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant SI2 Cap WW Material: PLATE SA533B1 Ori LT Heat II: be%-I Charpy V-Notch Data Temperature Input Lateral Expansion Computed I E Differential 1 17.13 8%

25 5 248i -19$

35 40 283i 11.63 48 35 3358 1.41 60 37 38.7 -1.7 78 48 46% 1.41 116 619 4.09 140 56 69.4 -13.4

~" Data continued on next page

C-76

CAPSULE %' 83 Page 2 MateriaL PLATE SA533B1, Heat Number. M-605-1 Orientation: LT Capsule 1-83 Total Fluence 17M%18 Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 156 81 7329 7.7 217 86 8163 426 300 85 84.73 26 401 82 8M4 -334 SUM of RESIDUALS = M4 C-77

INTERMEDIATE SHELL M605 1 (LONGITUDINAL)

CVGRAPH 43 Hyperbolic Tangent Curve Printed at 15%19 on 12-30-1997 Results Curve Fluence T o Ri.'hear d-T o Mr. Shear 1 0 103 2 1.779 E+18 12159 100 I

II II 00 I II I

I I

I I 0 II I

I 0 Do/6

-300 -200 -100 0 100 200 800 400 500 600 Temperature in Degrees F Curve Legend 2 0- ---

Data Set(sj Plotted Curve Plant Ca sule hfaterial Ori. Heat 1 S12 UNIRR PLATE SA533B1 LT M~1 2 SL2 WM PLATE SA533B1 LT hH05-1 C-78

UNIRRADIATED CVGRAPH 4J Hyperbolic Tangent Curve Printed at 15%19 on 12-30-1997 Page I Coefficients of Curve I C = 9039 K= 88J3 Equation iz Shear/. = A + B ' tanh((T TO)/C) j Temperature at R/ Shear: NJ lfateriab PLATE SA533BI Heat, Number. M-65-1 Orientation: LT Capsule UNIRR Total Fluence 100 05 OQ A

CG (D

V (D

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Planl SI2 Cap. UNIRR bfateriaL PLATE SA533BI Ori LT Heat f M~I Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 40 0 5% <Q

-20 10 837 152

-I 10 1221 -221 20 10 18J3 M3 40 20 2M3 50 10 30.07 50 70 30.07 M 10 30.07 -20.07 M 30 34.92 <92

"~ Data continued on next page

~'-79

UNlRRADIATED Page 2 MateriaL PLATE SA53301 Heat Number. bI-605-I Orientation: LT Capsule VMRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 60 10 3492 -2492 60 60 3492 25.07 60 10 3492 -2492 70 70 401 29II9 70 40 401 82 60 4651 133I 85 60 483i 1173 105 60 5922 .77 150 50 79.71 -29.71 200 IM 9223 7.76 250 IM 972) 2.7 300 100 99.08 .91 350 IM 9959 400 IM 9989 1 450 IM 9996 .03 SUbl of RESlDUALS =-12.04

CAPSULE W83 CVGRAPH 4l Hyperbolic Tangent Curve Printed at 15%19 on 12-30-1997'age 1

Coefficients of Curve 2 Equation h Shear/ = A 4 B ' tanh((T TO)/C) j Temperature at 50% Shear. 12L6 Material: PLATE SA533B1 Heat Number. hW6-1 Orientation: LT Capsule WW Total Fluence 1.7i%%18 100 c5 A

CG 0

V'D M

-200 -100 0 100, 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: SI2 Cap.'W MateriaL PLATE SA533B1 Ori. LT Heat P hHN-I Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 1 5 256 2.43 25 35 '0 0 514 61i3

<14 48 10 9.79 60 10 13.48 3.16'33.45 78 20 2114 116 45.72 140 30 63.45

~ '" Data continued on next page

'~'-81

CAPSULE W83 Page 2 Material: PLATE SA533Bl - Heat Number. MWS-1 Orientation: LT Capsule M3 Total Fluence L779E418 Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 156 73.76 1623 217 1M 94Q 5X 3M 1M 9953 .46 401 1M 9997 .02 SUM of RESIDUALS = 393 C-82