ML101060346

From kanterella
Jump to navigation Jump to search
Unit #3 Containment Delamination Update
ML101060346
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 11/20/2009
From:
Progress Energy Florida
To:
Office of Nuclear Reactor Regulation
References
FOIA/PA-2010-0116
Download: ML101060346 (83)


Text

November 2 0 th 2009 Progress Energy

e-n d a *+f*~,~V4St4, $ww4 '*W-Ž~~ 4f*r Introduction

' Plant Overview SCR3 Containment Design Features SGR Opening Sequence & Identification of Delamination Investigative Approach SCondition Assessment Root Cause Analysis (RCA)

Operational Experience (OE)

Design Basis Analysis (DBA)

Repair Approach Summary Comments / Questions 2

.

  • Progress Energy

-Cr-

.ys a Ri Ver'3 .0"'er V. view SBabcock and Wilcox Pressurized Water Reactor Location: Crystal River Florida 2609 MWth

° 838 MWe

~ Commercial Operations began 1976 3 .. Progress Energy

Routine refueling scope o Off line maintenance and fuel for 2 years SSteam Generator Replacement (SGR)

Extended Power Uprate (EPU) - Phase 2 o Extensive steam plant work Taking advantage of longer OTSGR duration o Steam plant efficiencies Part of total -15% Uprate 4 ...

ihwk , Progress Energy

Containment Opening

  • Lifting and Rigging
  • Cutting and welding I

5

~Progress Energy

  • Moisture Separators.
  • MSR Drain Coolers
  • Feed Water Heaters
  • Iso-Phase cooling 6 link D Floo. " " Progress Energy

CRYSTAL RIVER #3 DESIGN FEATURES 7

Progress Energy

Hssio.n;-Product Barriers "plifted IM Sdhematic r ...........................................................

Barrier,# .3 - Containment Li~nerJ Barrier # 2 -Reactor~

Ve-sseI_&_Cooiaht~ Piping FBarrier'#

Enclosing The Fuel 1-. Clad ding~

Tendon depiction is for illustrative 8 purposes and is not an exact scale

ý,3;RCd--'-n't a i t bimensions:

Dimension >jj i Vue Value Containment Outside 137 ft 0.75 in Dimension (OD)

Dome Thickness 36 in Basemat Thickness 12 ft 6 in Liner Thickness 0.375 in Wall Thickness 42 in Buttress Wall Thickness 5 ft 10 in Vertical & Hoop Conduit OD 5.25 in

  1. of Vertical Tendons 144
  1. of Tendon Hoops 94
  1. of Tendons per Hoop 3
  1. of Prestressed Dome 123 Tendons 9

SGR OPENING SEQUENCE &

IDENTIFICATION OF DELAMINATION 10 o Progress Energy

SGR Opening Dimensions

@ Liner 23' 6" x 24' 9"

@ Concrete 25'0"x 27"Opening 0"

11 Progress Energy

'1 Ur.

&3,*,,

  • Progress Energy

C,oncreie t A Lih er -R-Mo e '"

a I Sequence 13

2 etmia 1:!? .C

- I1tt4 N .3 4

I.

14

~Progress Energy

PP

$ P A ~ ~

P< *SPP,'7 PA*7 ~ P V PP P~ P P P ~ ~

P Pt IP -P~

Note - Tendon depiction is for illustrative purposes and is not an exact scale K

j/4Iw0N5 15

INVESTIGATION APPROACH 16 SProgress Energy

I I

I Condition Assessment I Construction Technology (CTL~)

.Laboratories Design Basis Analysisr Ios<.Contractdr,!wTBD~

plement Reprairss MPR Associates, Inc pair AlIternatives Analysis%

ictural Preservation Systems (SPS-)..

17 Isis Cross Check k&Progress Energy

S o . ._ -.

Condition Assessment & Laboratory Testing NDT - Construction Technology Laboratories(CTL)

Labs - Mac Tec, Soil& MaterialsEngineers (S&ME)

Other Field Data - Sensing Systems, nc; Core Visual Inspection Services (Core VIS), Nuclear Inspection & Consulting, Inc; Precision Surveillance; Gulf West Surveying Inc; AREVA Root Cause Analysis Lead - PerformanceImprovement International(PIt)

Owner's Support - Worley Parsons,Bechtel 18

  • Progress Energy

...d.m.

... *,xte.r-'nal.,suppo-t.-- on.ti0 -ued Design Basis Analysis Lead - MPR Associates, Inc.

Owner's Support - Worley Parsons Repair Analysis

  • Lead - StructuralPreservationSystems (SPS)
  • Owner's Support - Wiss, Janney, Elstner, Inc (WJE)

° Industry Support Exelon, SCANA, and Southern Company 19 ,Thinkt Progress Energy

.. ra S.toný- S F*aio 0 a.

T~ec'hnical.ntrae I Containment J:

Project Analysis _____ Conhtrols Root Cause Design Basis7 Nt.i, INO ontr~act

  • Analysis Analysis >4. _"________"_J AdministrAati

/Condition NR ... IchedUiig Assesment Repair Analysis, Public/ Media - Financial 11 --Nuclear 20

uvear afot", 0" -ht-C0, -thklttoeý (NSOC)ý

.,ClbmainmentSu -om.mirree Mem be-rs ip h

.- Mhbe TRI 21 k Progress Energy

CONDITION ASSESSMENT 22 4 Progress Energy

'di"on -A§-,9'i-,evgffl,erit, ctiviti 6-

ý'.OmblOt dlor:'Plahhe

-- d Determine Extent of Condition Characterize the extent of delamination at the SGR opening Determine condition of other portions of structure Non Destructive Testing (NDT) of Containment Wall Surfaces Use of Impulse Response (IR) Method Comprehensive on external exposed surfaces Accessible areas in adjacent buildings 23 I ihkPeet Progress Energy

ssess'rhienýýAA ct 0 -00 "Antio-oh A-,-`:-

.0mptere&6ýPianned,,

Concrete Cores Used to confirm IR results (over 80 cores)

Visual examination of core bore holes with boroscope to identify if delamination present ASME Section XI IWL visual inspection (affected areas) o Containment Dome Inspections NDT IR scans in segment above the SGR opening Concrete cores with boroscope examination of bore holes Physical survey with established benchmarks 24

. Progress Energy

ssessment'Tdchues mpu se, es onsti IR Equipment @IR Performed in the Field Primary test method used in this evaluation 25 jProgress Energy

-'-'-C6 ition Ass-'es-smentl ec nique

"'-dknerraring

ý-roun e MM daw"", R):

Ground Penetrating Radar o GPR Performed in the (GPR) Equipment Field Locates internal features (rebar, tendon conduits, etc.)

26 sProgress Energy

Con dlitiio.ný'A$` sessm6 ýn ecnmque S,

.,.,Cdre,-,B.br6s, oroscopic,,E) 60, Examination - Inward View Examination - Side View Cote en ae.I oe#3 II Core 51, Gap 1 Depth 5-1/4" Gap 1 Width Less than 1/8" 27

, Progress Energy

C hdition"Assessm e ht"T`dh

0. e . n k, qu es.

M ac O'ho -(/E IE Equipment o IE Performed in the Field Ability to determine depth of delamination 28 Progress Energy

P I View,-

Buttress #

(typical)

Source Drawing:

101-112 SHOOW Construction 29

C

.- '*'- i B r ---- EL 250' A B C~ I A I R I C' I A A SB C Pour 16 EL 240' D -E F Pour 15 EL 230' IR scans completed H G H' G Pour 14 per PT-407T: 220' J, K H ' Pour 13 Blue = no delamination ----------- EL 210' K L Pour 12 EL 200' P o Pour 11 II---- - - - EL 190' S U ST Pour 10

--- EL 180'

_T~~,x~.--

Actual IR scan output

  • Pour 9

.EL 170' data:

-y z AA- Pour 8 Blue = no delamination 1ý 6'x 40' @ 1 Pour- EL 160' X EL 164" 'x Yellow= transition ABI AC 'AD Pour 7 11 EL 150" EL 150' Red = delaminated ]nt~rmnediate Bldg Roof EL'149: 6" 'AA' Pour 6 AE

-1 "x 25' EL 140'

20' x 22' ýAB'7 AF Pour 5
44. 13O' EL 128' AC,',

"8' x 15'

~AG7 Pour 4


EL 120' Drawing scale EL 128' Equipment Hatch is not exact Pour 3 110' I/

4-...-.

\ Pour 2

-7 ~ ----------- EL 100' 10'X60' 13' x 42' 1lOx 16' Pour 1


EL 90' I ;i i Conclusion -~IR scans-With cobnfirmatioh44core bores identified delamnination only~ PrVs nm 30 in the Buttress 3-4 span above the Equilpmient, Hatch, as shown in red above -

It MI 09r)

  • t .-. -U *

- C ,

j'-C--

2-I B "'AC A' B~< Pour 16

--- EL 240' D E'- ~F" Pour 15

- EL 230'

,G1 Pour 14 EL 220' IR scans completed Pour 13 JK L1. KL EL 210' per PT 407T:  !KM' 0 Pour 12 Blue = no delaminatior EL 200' Fuel Transfer Bldg Roof P ,~ R Pour 11 "P Pour---- EL 190' EL 200' 4" S TU Pour 10

-S 'T U

--- EL 180' EL 180' R

Actual IR scan output V "~W' Pour 9 V W

-Pou - EL 170' data:

.8'x .16' y Z- AA Pour 8 Blue = no delamination 3'Xx 9' T EL 160' EL 160' Yellow= transition '6' xi1S' 6'x 24'

'AB ~AC AD 7AB <AC AD Pour 7 EL 150' Red = delaminated 10' x60> --

Intermediate Bldg Roof Intermediate Bldg Roof Pour 6 EL' 14 3' EL 149' 0" EL 149' 0" EL 140' 28' x Pour 5 Drawing scale --- EL 130' is not exact Pour 4 EL 122'

-- --- EL 120' EL 119' -

Pour 3 EL 110' Pour 2


EL 100' 8'X12 Pour 1

- - - EL 90' 31 3Cbonclusion '- No delamination identified in these Buttress s*ans' JProgress Energy

S9, -N6 mO09 Z- f. 17 ID

,1 tress #-4 NOMR 11,t 2"

tOU FOR 12 MES 1W ELIW AUX- BLDG. ROOF EL. l1r-8" 001101 INTERMEDIATE BLDG. ROOF EL. 149'-0" ELtO Et-R 04- 1.0'E SIPA TOIO5011

  • go-s' ttr -S 6-1 fN 7 Du 09 SButtress #51 Butess # bL tresisfl.! buiiesis 2 42 .40 .0 i

4z; A B C A B C A B C POUR0.

.73 D E F D E F D E F

,0 4 G H I 68G H 67 1 G o H3 I 024 62 J K 33 29 L J K L J K L a77 0

O 64 N I ELMrs M M N 0 M N 0 21 9

FUEL TRANSFER P Q 76 R p Q 65 R P BLDG. ROOF EB EL. 200'-4" 42 4 I Q I. S T U S T U j1 4 A EL00 R V W 75 X v 6%w x 505 70 Y z AA Y z AA 50,0 33 'L021D_

AB AC AD AB AC AD INTERMEDIATE INTERMEDIATE BLDG. ROOF BLDG. ROOF EL. 149'-0" EL.149'-0V *000 BORE41005L54110100 OEL BOR NOT9550 TED05 O 05 ooES00 0500500000000 "I.

sm x0504550 Conclu~sion - Core bore hole(s) bo'roscopic e~xansonte-Btrs spans confirm the JR results, that no delamination has occurred~K~

T m l I A B C POUR 16

-,ý..Bonnas 4/ ------------------

/mmmmmmm----------- EL. 240' W40, POUR 15 EL. 230' ITOM11 POUR 14 PESlMWL EL. 220' POUR 13 L

2f -EL. 210'"

POUR 12

  • 9 13 IYJTTRESS4.1 EL. 200'
  • CORE BORE WITH 1ELAMINATION SGR 2Or 9 CORE BORE NOT DELAMINATED OPENING F POUR 11 0 TO BE CORE BORED EL. 190' T CORE BORE 0RILUED POUR 10 EL. 180'_

Conclusion - D~elam-ination has'ionlIy~

been observed in-core bore hole(s) POUR 9 bookpceaý n hbtrs 3-4 span, as accurately pre~dicted by IR ___ 47 AD /52 EL. 170' POUR 8 EL.PR 7' 48 34 34p AT CORE #46 POUR 7

60 N 120" (BUTTRESS NO 2 HOri.20, I' EL 248'-9 3/4**

EL 245-7 1/2" tBUTTRESS NO 3 BUTTRESS NO 4 RBTN-42H47 RBTN-42H46 T hddh s"-,:,.. EL 242'-5 1/4' EL 239'-3" RBTN-42H45 R9TN-42H44 E!u-,ft r0-s sý 2 I -I--------------------

-- i-i---">-- - - -

EL 236'-@ .3/4" RBTN-42H43 EL 232'-10 1/2" RBTN--42H42 EL 229'-8 1/4' RiSTN-42H41 EL 226,- "

Additional tendons 0 RBTN-42H40 EL- 22" -3:3/4 to be detensioned prior to closing EL'1 I/ ------ Opening-- SRBTN-42437:

SGR opening (pre-

....- 4 1:,

20'

.ELo213 -

/2 jf I

.RTIJ-4243517 outage plan) EL 218 8 3/4

  • EL. 473' <3":

L28 - 81/4 Ri' -------------- :RBT*N- 2H35 RTN--42H34 R-9N-42H33 J I _

EL2014-'F1 RBT8-42H32 EL W. -9 3/4' Tendons - 988-42.31 R-T8-42H31 EL 1944- 1/2' RBTN-42H30 Removed EL I,"- 5 /4" R 9TN8-42H29 EL 18'- 2 3/4' RHT5-42728 EL 14'-11 3/4" 'RBTN4-42H23 Additional tendons EL 181 8-3/4'. - :88 -

RTN-42H2 4 .4.2 EL 1,--5 31,"

to be detensioned prior to closing SGR opening (pre-EL 1J71-1 1 /4

'EL" 58 II 3/4,"

EL 19- 8 3,4" Z -r -211-242 outage plan) EL 165- 53/4"

-I-

- RBTN-42H21 EL 182'- 1 3/4" -- - - - ---- - -j6 ýTN-ýý2.2

_%- - ------ --- -7 - -

I2

- - - - - RBTN-42H19 EL 1558-S 3/4" [ R13TN-42HI8 EL 152-5 3/4" FE1L1 A R-TN-42H17 EL 149- 2 3/4" 4 RBTN-42H11

-" " - - - - -- -4 EL 145'-IlI 3/4" RBT49 -42815 EL 155'-8 3/4" -I -- - - - -.. -- 4" - - - - - - -

RBTN-42HI4 EL 139-5 3/4' - "-"-- -"4- "- -- - --- R-TN-42H13 EL 136'-2 3/4" - - - - - - - - - - ------ RBTTN-42HI2 EL 132'-I 3/4" RBTN1-42H1I EL 12'-8 3/4" RIBTN-42H10 EL 126'-5 3/4" RBTN-42H9 Source Drawing: EL 123'-2 3/4"

-- - -- RBTN-42H8 0425-006 SH001 EL T19'--11 3/4" RIITN-42H7

- SH 000 EL 116'-8 3/4" RHTN-42H6 EL 113'-5 3/4" EL 110'-2 3/4" RBTN-42H4 EL 106'-11 3/4" RBTN-42H3 EL 103'-8 3/4" RBT---42H2 I R-8N-42HI E EL 98'- 9 3/4" 35

I 12 ES SBUTTRELSS NO 3 180" BUTTRESS NO 4 240' tBUTTRESS NO 5 EL 247-9" ------------------

it' t I------------------ RBTN-53H47 I


------------------ RTN2-53F146 16,64 EL 244'-6 3/4" EL 241'-4 1/2" - -' 1 - ------------------ ------------------ RBTN-53H45 Butird' EL 238'-2 EL 235-0" EL 231'-9 3/4" 1/4" iii -I-- ------------------

iii" RB1-53H44 RBTN-53H43 RBTN-53H42 Additional tendons EL 228'-7

,[' ' 53;.4

/2"

1. - - I- -

'ii-- R1TN-53H41 to be detensioned prior to closing it Ii

REIN BTI-'H3

-534ý39 SGR opening (pre- - - - - - - - - - - - -- - -

88T19-53928 RB29-53H3N outage plan) EL 2ag'-6" - - - - - - - - - - - - - - - - - -

~~~1~~ 8829-53937 RBN- 53H35 EL 206'-31 5/4" I Lz R8B9-53434 El 203'-' 1/2" EL 2

- -SGR - -

- I]-- * ,RB TI' 53H31 EL 19'-11 18/'"

Tendons - - - - - - - - - - - - - - - - - - R8TN1-53H32 8829'i-53431

"'it' EL 196'-9" EL 293'-6 3/4" - Opening - - - - - - - - - - - - - - - - - -

Removed i~ - - - - - - - - - - - - - - - - - -

K~iEt' 9L10'-4 1'/'2" RTN--53H25 ii--

EL 18078-I 3/4" EL 183-0 3/4"

- - - - - - - - - - - - - - - - - - RBN-53H20 I

- - I""'""

Additional tendons EL 180-7 3/4" - - - - - -- ---- - - -" - -" -"" -- - - - - - - - - - - - - - - - -

R8828-53H29 PBTN--53H27 EL 1648-4 3/4 - - - - - - - - - - - -

to be detensioned EL 177-1 3/4, RBTN-53H2Z prior to closing EL174'-1 EL 187'-1 3/1-EL 857-18 3/4" 3/4"

-- I ------ -- --------

~ I, SGR opening (pre- I, - I -

RBTN-53H22 outage plan)

EL 167 73/4 EL 184'- 4 3/4' I~ IITI 53H21 8R8TN9-EL 181'-13/4" I- -

2--- /---- --- -- "--- -- 4-- R2TN-53H21 EL 1748-182/4 EL 157'-10 3/4' tidy RBT-53H40 RBTN-53Ht9 EL 1542-7 3/-

EL 151'-4 3/4' - - -- - -- -

/-- --- - - - - - - - - - 0o 0 0 "fl-I RBTN--53HI7 EL 148'-1 3/4" ii"- "- - -

- ~

0 000

~KillI RBTN-53HI7 EL 144'-10 3/4' - -- - - -- - - -

- -- - - -- -__---.- _ "=-*. L--*

EL 141'-7 EL 138'-4 3/4" 3/4" -- ---H "RBTN-53H 64 R8TN-53H13 EL 135-1 3/4" RBTN-53H42 EL 131'-103/4" EL 128'-7 5/4"

'ml 11111 -- - - _

RBTN-53H13 RBN9-53H18 ----

Source Drawing:

0425-007 SH001 EL 25'-4 3/4" EL 122'-I 3/4"

--F 7F ----------------

-I"-- RBTN-53H9 RBTN-53H9

~ ~ - --~-

- SH 000 EL 118-10 3/4' EL EL 115-7 112'-4 3/4" 3/4" lijif :z4zr -

- ~ 1

~uAul RBTN-53H97 RBTN-53H8 RBI2-53H5 EL EL 109'-1 105'-10 3/4~'

3/4" ~1~~

-- ~Pt-- -- -- t---- ,

--"1-- -r - -

RBTN-53H4 RBTN-53H3 EL 102'-7 3/4*' R8TN-53H2 36

  • 1ii "e EL W8-I 3/-"

i--I--

RBTN-53HI

TrES lea EQUIPMENT -I ACCESS -MqTFS1*

Additional tendons to be detensioned prior to closing SGR opening (pre-outage plan) 37

R3 -T-ýY 1 al ema ffc-an Pbbl to'-(foe' horizonta-I te-ndon 53H27)

SECTION Source Drawing:

425-020-SH-001-SHOOO 38 9o Progress Energy

I-U I I

- 1-1

/

Tendon Pattern at EL 210 time of cutting SGR Opening EL. 2W~

- Energized Tendon H Removed Tendon SEL.

Wu a W. ff U W

- EL 17U

- EL i~

(tendons continue below)

I I II Buttress (typical) iiI IHI I ~ EL 14t?

39

C,ý,2, Buttress # 3 1 Buttress #4 renaon,--,

R Mflt"?

6fM 1fl4uI" -

113"PO

""l,.2mI~ -

R3TN-WI Tendon Patterr iat time of cutting SGR Opening nr~

- Energized Tendo n~

MM1-IIý qa"ýw ý

-Removed Tendor Fat f31-

-SIýMm 9-E mRwn MrwTN" RUT""-

A91"4MM

  • FO P,1 R~wTmio a

RK1T4,IIv

.""Ma as Rn#.,M4-Buttress (typical) 40

VO. Sectmon-,,ý.

C

- Maw

-2/'B LINER, It

.G5I -. 0it P

RE \CTOR BLMG.

Wall Section at SGR Opening (elevation view) FIELD CLUT, EXIST. REIN TO SUIT AT PENIETR. SL Source Drawing:

425-033 SHOOO Is8Y, 1l-3 @ '-4 0 'PF "E TR

'(C, EXITING- REINF.

41

'Energy

ui away., (coho.

Bottom of Ring Girder Wall section at higher elevations showing additional stirrup reinforcement (elevation view)

Source Drawing:

425-033 SHOO0 42 I ress Energy

tI~aG Suftress (4I- PER ~~4S1~i

_C*.U.awav..

Buttress 4A53.2.Pf3. match-line Wall Section at BUTTRESS#1 PERSONNEL ACCESS SGR Opening BUTTRESS #6 (Plan View)

Source Drawing:

425-033 SHOW0 BUTTRESS #6 BUTTRESS #4 43

Alpm E-guipme ht HAt:ehD penin Resinford-eme ht 1972ý',

44

ROOT CAUSE ANALYSIS 45 SProgress Energy

RV, _aus-e naiys-ls, Pit. M, le ricst

- n4eA.06-d-Jr,"Y' e, ..at ure --

A'd-b es asW N V 17ýh 2009 Y!

80

  • External Events 70 Operational Events 60
  • Inadequate Containment Cutting 50-
  • Inadequate Concrete - tendon interactions 40
  • Shrinkage, Creep, and Settlement 30
  • Chemically or Environmentally Induced Aging 20-o10 ..I...
  • Inadequate Use of Concrete Materials
  • Inadequate Concrete Construction
  • Inadequate Concrete Design due to High Local Stress I.-~~ 0 00000 0 0) 0 0 0N 0~ 0 0) 0 0- 0 0) 0 C14 (N C14 co MO - - - - - - - - - - (N 46 Progress Energy

Impulse Response (IR) Scans Boroscopic Inspections Core bore holes

' Inside the delaminated gap Visual inspections Delamination cracks at SGR Opening Larger fragments from concrete removal process Containment external surface 47 ln Progress Energy

Rd i".4 _.C na.wY9 11S, M,ir Aff d),

DaI&ACquisition(If Nearby energized tendons lift-off (vertical and horizontal)

Containment dimension measurements SStrain gauge measurements o Linear variable displacement transducer (LVDT) gap monitoring Building natural frequency 48 SPrgress Energy

Ana ys.is (c, n tin eo,

'te q:u-ig iti t7-, 0 U Core bores laboratory analysis Petrographic Examination Modulus of Elasticity and Poisson's Ratio Density, Absorption, and Voids

  • Compressive Strength, Splitting Tensile Strength, and Direct Tensile Strength 0 Accelerated Creep test Accelerated Alkali Silica Reaction (ASR) test Chemistry and contamination test Scanning Electron Microscope (SEM) examination of micro-cracking 49
  • Progress Energy

OPERATIONAL EXPERIENCE (OE)

,

  • Progress Energy 50

St 3eabrinro Re ace ethe Indus n' Generator,, o/161edfrom, rMation, by Architect Engineer and Constructor Type of Containment and design pressure o# of Buttresses SConcrete design strength requirement SDimensions Internal containment diameter and wall height Containment cylinder wall and dome thickness Tendons. details (# vertical, # horizontal, # dome, strand diameter)

Liner thickness

. ,.Progress Energy

ear Geeao -- Re laenn GR OE~W~:

Reinforcement details

  • Whether concrete opening was made
  • Was hydro-excavation used
  • And if so, equipment operating parameters
  • Detensioning details

° # by cutting

  1. by relaxation
  1. of tendons removed/detensioned beyond the SGR opening IMa Flm Progress Energy

Worley Parsons 1976 dome delamination investigation and repair.(as Gilbert I Commonwealth)

  • Structural Preservation Systems (SPS) 0 Largest Concrete Repair Contractor in the US, 2nd largest Concrete Contractor (of any type) in the US Defects, Damage, and Deterioration Performs > 4,000 repair projects per year 3,.000 employees in 27 offices Nationwide, and London, Dubai &

Singapore Wiss, Janney, Elstner, Inc (WJE)

Structural engineering and materials science firm specializing in failure investigations and problem solving Specialist in structural condition assessments and design of repairs and retro-fits for reinforced and post tension concrete structures Conducted original CR3 Structural Integrity Test (SIT) 450 employees in 20 offices nationwide 53 Thin Progress Energy

o Compression - tension interaction failure occurred N Contributing Effects 4 Radial tension due to pre-stressing Thermal effects-Tendon alignment ,.-,NT,,,L.Y DISCOVERED Stress concentrations -"JA E Shrinkage SEE SECT-**

Combined with biaxial 0*5 , E °GE compressive. stresses and lower than normal(2) direct °.l 0 tensile strength of concrete ISO (1 )Cause information taken from 1976 Final Report prepared by Gilbert / Commonwealth' (2 )Lower than normal (or typical), but above design requirements Progress Energy

Tendons detensioned (18)

  • Delaminated surface was N removed - -

Lower level cracks grouted with epoxy New reinforcement placed I./_t

  • New cap poured and cured Sk,*CU e 44 5 ,WCUT " RA, -.

T Tendons partially re- - L EDEFFON M'W tensioned (18) 0*

55

  • Progress Energy

DESIGN BASIS ANALYSIS 56

_* Progress Energy

'igh Basis,

" Reinforced Post-Tensioned Concrete Structure

" Live and Dead Loads

" Wind (110mph @ 30' increasing to 179 mph @ 166'10")

" Tornado Wind (300 mph)

Tornado pressure (external pressure of 3 psig)

Tornado Missiles (35' utility pole or 1 ton, car @ 150 mph)

~ Seismic (OBE -0.05 and SSE - 0.10)

Temperature Loads 0 Accident Pressure (55 psig) cAccidental Containment Spray Actuation Press (- 6.0 psig) 57

.. Progress Energy

-~ AN]

-, A, M A I 3--ý-FE 180 degree Symmetric model H. ~I.

L Symmetry plane @ 150 degrees midway Between Buttress 3 & 4 / 1 & 6 a 1/2 Opening, 1/2 Damage & 11/2 Hatch Modeled Explicitly o Concrete Model

' Brick elements for all components Dome and Base modeled independently Simplified ring beam and buttress geometry Constraint equations used to join dome and ring girder for meshing efficiency Constraint equation used to model sloped surfaces of the hatch 58 A Think Rept Progress Energy

Liner Model

  • Shell mesh with variable thickness
  • Shared nodes with containment inner surface

'Tendon Modeling Hoop tendons modeled explicitly for release and re-tensioning Vertical Tendons modeled explicitly for release and re-tensioning Dome tendons. modeled independently with forces ported to global model 59

  • Progress Energy
,C... jlý --rdtý'e.. .,eometry, Based n.Gil be-id A' s, h-s"Orawings,

/

I IL' I

N N~S 0, -. 2 A

I-. '

-ST I>.

2 F-'

.......... O'T z4 A.

-V I

DETAIL ,T,, IS.VA50..

.7

--I- ** *:**

  • 11450 jV A-'

-A ~

60 Progress Energy

'en tryl B on- Prsc D A

5~W tt7~L~ 04fl Sf14

~ I 1

j5 43fSkS& 35.

5.-fr r.r. I ~ I 61 Progress Energy

D. om FAMoel i

ELEMENTS NOV 6 2009 17:48:48 Gravity Loading 62 Progress Energy

Rihg: GI'Me Model-,*

63 SE~U~Nt~- 43

ýCore B"'u4Idi-n-g leome ry FEAN esh ti "s-Defined.

H'"' -Te'hdo"'nLoca on II W TYPICAL SECTION TH-RU WALL & DUNE 64

.4 or inmGonty-Btrse 65 PrPmgress Energy

uIpme nt-H-a"b-h M del 66 Progress Energy

ELEMENTS NOV 10 2009 HAT NUM 07:44:56 CR3 FEA Model 67 SProgress Energy

ons are preloaded to a prescribed load magnitude.

The application of the tendon loads is achieved in the analysis using initial strain input An empirical formula has been developed to account for the loss of load as the distance from the anchor point increases:

P-P 0 e-(ma + ks)

Where:

P0 = preload magnitude m = friction coefficient a = inflection angle (0.16)

Ok = wobble coefficient (0.0003)

  • s

= distance from anchor point Tendon preloads used in analysis:

ePO-dome = 1635 Kips (1,215,000 lb. 40 years)

SPo-horizontal = 1635 Kips (1,252,000 lb. 40 years)

SPO-vertical

= 1635 Kips (1,149,000 lb. 40 years) 68 Progress Energy

00a Ord'a 0 .

  • ei

- w 41' Y -X 7;I 69 SProgress Energy

FIAI Moel" -e ica an Hoop T' AN~

70 1 Progress Energy

..'FEA Model.ý V.e ica ýahd Hoop T'en d n S, rts 71 & Progress Energy

FEAW ***" o e * *'

-~~~4'h - -p ~44 e, H. 4- 44 nes4. 4 44 -- .4<Ž 4., S4444444444 4 444 o 4 4 ELEMENTS I ,

NOV' 8 2009 A... ................... ...... .....

15: 12: 13 ip ------ AV I

-I.................

72 jProgress Energy

Zop-te on-Forces:in.

I- ~

ELEMENT SOLUTION

.AN,::-

NOV 8 2009 STEP=1 15:29:39 SUB =1 TIME=1 SMIST (NOAVG) ->.

TOP 4-DMX =1.169 SMN =598638

[2.

SMX =. 120E+07 7-N

--732037 665337 798736 932135 .107E+07 .120E+07 73 Progress Energy

`4h--d-A e naiys.s, Existing Design Cases lanned Analysis Steps for Comparison Dead Load + Tendons Gravity (.95 G) Remove Hoop + Vertical

° Internal Dead Load (200 psf) Tendons in SGR Opening

  • Tendons (1635 kips / tendon) Remove SGR Opening I Include losses Delamination(l)

° Internal Pressure (55.0 psi) Remove Additional Hoop &

Vertical Tendons Wind Pressure (0.568 psi)

Replace the SGR Plug(2 )

Seismic Repair(2 )

Accident Thermal Re-tension Tendons SAVE Path Dependent Model for Starting point to Run 5 Controlling Design cases (1)Analysis will consider timing of delamination and specific concrete properties (2) Sequence of replacing SGR concrete plug and 74 repair may be adjusted SProgress Energy

Ks k-71IN -.

pnt ro ing ad',St, eps Restart the Re-tensioned Model and solve the following Controlling Load Steps 1.5 Internal Pressure + Accident Thermal 1.25 Wind + 1.25 Pressure + Accident Thermal 1.25 Earthquake + 1.25 Pressure + Accident Thermal

" 2.0 Wind + Pressure + Accident Thermal 0 SSE Earthquake + Pressure + Accident Thermal Run Comparison to original building elastic design results 75

. Progress Energy

ire im-in a GAA, ýý"",

AW

ý-Y ý FEA R Ults to'

""f s re en s,ý

..fOSi So .-:-qh!qtp ýn NDE Measurements Calculated Gap Status Calculated Displacements (figure not to scale) behind Delamination

.797454

.708848

.620242

- .531636

-. 44303 NearContact Sliding -. 354424

-.265819

- Sticking

-. 177212

-. 088606 76 SProgress tnergy

REPAIR APPROACH 77

&,Progress Energy

Incorporates and is compatible with Root Cause Analysis findings Restores applicable design basis margins Incorporates Extended Life Long Term Surveillance and/or Maintenance Requirements License Renewal Constructability 78

~Progress Energy

i'ai Aftdr`ýn` tv, ons, ered Use-as-Is - Rejected Anchorage Only - Rejected Cementitious Grout - Rejected Epoxy Resin - Rejected Delamination Removal and Replacement - Selected 79 S.Progress Energy

-bimp fied'Overvie W of ngineering & Repair Work Flow rca a ive .SUbjec.16 '-CAIa'hd D8A Pesvltsý MPR Tendon MPR 3D.

Calculations Finite Element Analysis Failure Modes Failure Modes Analysis Update Analysis Update 80 Progress Energy

Pott R pak`ý Tes-tin enfati"-;7 "SU Vect to RCA Results

--b'--

  • Approach - ILRT and System Pressure Test
  • ASME Section XI IWE for the liner and IWL for the concrete Concrete exterior will be visually examined prior to pressurization and following de-pressurization Evaluating other additional instrumentation based on the final repair that is implemented, and as driven by:

Root cause analysis NDE will be required for restored liner plate 8 * !

,* *

  • Progress Energy

it4, all(enoia.er P.td ra. ti-ohs Prompt Notification of Regulator & Industry Engagement of Critical Industry Organizations NEI Energy Institute (NEI)

Including Nuclear Safety Information Advisory Council (NSIAC)

Institute for Nuclear Power Operations (INPO)

Electric Power Research Institute (EPRI)

Continued Transparency with Regulator Special Inspection Team (SIT)

Region and NRR/RES technical discussions Periodic Updates with U.S. Licensees 82 Progress Energy

-m ar . u_ e rt4~ n s Questions 83