ML14365A055

From kanterella
Revision as of 06:47, 1 July 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search

Sequoyah, Units 1 and 2 - Expedited Seismic Evaluation Process Report (CEUS Sites) Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fuku
ML14365A055
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 12/22/2014
From: Shea J W
Tennessee Valley Authority
To:
Document Control Desk, Division of Operating Reactor Licensing
References
CNL-14-211
Download: ML14365A055 (64)


Text

Tennessee Valley Authority, 1101 Market Street, Chattanooga, Tennessee 37402 CNL-14-211

December 22, 2014

10 CFR 50.4 10 CFR 50.54(f)

Attn: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001 Sequoyah Nuclear Plant, Units 1 and 2 Facility Operating License Nos. DPR-77 and DPR-79 NRC Docket Nos. 50-327 and 50-328

Subject:

Tennessee Valley Authority's Sequoyah Nuclear Plant Expedited Seismic Evaluation Process Report (CEUS Sites) Response to NRC Request for

Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi

Accident

References:

NRC Letter, "Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3, and 9.3, of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident,"

dated March 12, 2012 (ML12056A046)

On March 12, 2012, the U.S. Nuclear Regulatory Commission (NRC) issued the referenced letter to all power reactor licensees and holders of construction permits in active or deferred status. Enclosure 1 of the referenced letter requested each addressee located in the Central and Eastern United States (CEUS) to submit a Seismic Hazard Evaluation that includes "an interim evaluation and actions taken or planned to address the higher seismic hazard relative to the design basis, as appropriate, prior to completion of the risk evaluation."

In accordance with the referenced letter above, TVA is enclosing the Expedited Seismic Evaluation Process (ESEP) Report for Sequoyah Nuclear Plant.

Enclosure 2 provides a list of new regulatory commitments as described in Section 8.0 of the enclosed ESEP Report.

ENCLOSURE 1 EXPEDITED SEISMIC EVALUATION PROCESS (ESEP) REPORT FOR SEQUOYAH NUCLEAR PLANT

Page1 EXPEDITED SEISMIC EVALUATION PROCESS (ESEP) REPORT FOR SEQUOYAH NUCLEAR PLANT SequoyahNuclearPlantESEPReport Page2 TableofContents PageLISTOFTABLES............................................................................................................................................4LISTOFFIGURES..........................................................................................................................................51.0PURPOSEANDOBJECTIVE...............................................................................................................62.0BRIEFSUMMARYOFTHEFLEXSEISMICIMPLEMENTATIONSTRATEGIES......................................63.0EQUIPMENTSELECTIONPROCESSANDESEL..................................................................................83.1EquipmentSelectionProcessandESEL..............................................................................83.1.1ESELDevelopment...............................................................................................93.1.2PowerOperatedValves.....................................................................................103.1.3PullBoxes...........................................................................................................103.1.4TerminationCabinets.........................................................................................103.1.5CriticalInstrumentationIndicators....................................................................103.1.6Phase2and3PipingConnections.....................................................................103.2JustificationforUseofEquipmentThatisNotthePrimaryMeansforFLEXImplementation................................................................................................................114.0GROUNDMOTIONRESPONSESPECTRUM(GMRS)......................................................................114.1PlotofGMRSSubmittedbytheLicensee.........................................................................114.2ComparisontoSSE............................................................................................................135.0REVIEWLEVELGROUNDMOTION(RLGM)...................................................................................145.1DescriptionofRLGMSelected..........................................................................................145.2MethodtoEstimateInStructureResponseSpectra(ISRS)..............................................156.0SEISMICMARGINEVALUATIONAPPROACH.................................................................................176.1SummaryofMethodologiesUsed....................................................................................176.2HCLPFScreeningProcess..................................................................................................186.3SeismicWalkdownApproach...........................................................................................196.3.1WalkdownApproach..........................................................................................196.3.2ApplicationofPreviousWalkdownInformation...............................................206.3.3SignificantWalkdownFindings..........................................................................206.4HCLPFCalculationProcess................................................................................................216.5FunctionalEvaluationsofRelays......................................................................................216.6TabulatedESELHCLPFValues(IncludingKeyFailureModes)..........................................227.0INACCESSIBLEITEMS.....................................................................................................................227.1IdentificationofESELItemInaccessibleforWalkdowns..................................................227.2PlannedWalkdown/EvaluationSchedule/CloseOut....................................................238.0ESEPCONCLUSIONSANDRESULTS...............................................................................................248.1SupportingInformation....................................................................................................24 SequoyahNuclearPlantESEPReport TableofContents(continued)Page Page3 8.2IdentificationofPlannedModifications...........................................................................258.3ModificationImplementationSchedule...........................................................................258.4SummaryofRegulatoryCommitments............................................................................2

69.0REFERENCES

..................................................................................................................................27ATTACHMENTA-SEQUOYAHNUCLEARPLANTESEL.............................................................................A1ATTACHMENTB-ESEPHCLPFVALUESANDFAILUREMODESTABULATIONFORSEQUOYAHNUCLEARPLANT.........................................................................................................B1 SequoyahNuclearPlantESEPReport Page4 List of Tables PageTABLE41:GMRSFORSEQUOYAHNUCLEARPLANT...............................................................................11TABLE42:SSEFORSEQUOYAHNUCLEARPLANT...................................................................................13TABLE51:2XSSEFORSEQUOYAHNUCLEARPLANT..............................................................................15TABLE81:SUMMARYOFREGULATORYCOMMITMENTS......................................................................26TABLEA1:EXPEDITEDSEISMICEQUIPMENTLIST(ESEL)FORSEQUOYAHNUCLEARPLANT................A2TABLEB1:ESEPHCLPFVALUESANDFAILUREMODESFORSEQUOYAHNUCLEARPLANT...................B2 SequoyahNuclearPlantESEPReport Page5 List of Figures PageFIGURE41:GMRSFORSEQUOYAHNUCLEARPLANT.............................................................................12FIGURE42:GMRSTOSSECOMPARISONFORSEQUOYAHNUCLEARPLANT.........................................14FIGURE51:2XSSEFORSEQUOYAHNUCLEARPLANT............................................................................15FIGURE52:NUREG/CR0098(0.3G)VERSUSSEQUOYAHNUCLEARPLANTSSE....................................16FIGURE61:84THPERCENTILEOFTHEENSEMBLEOFTHE30RESPONSESPECTRA..............................18FIGURE62:SEQUOYAHNUCLEARPLANTIPEEEADJUSTEDHCLPFVSESEPTARGETHCLPF..................18 SequoyahNuclearPlantESEPReport Page6 1.0 PURPOSEANDOBJECTIVEFollowingtheaccidentattheFukushimaDaiichinuclearpowerplantresultingfromtheMarch11,2011,GreatTohokuEarthquakeandsubsequenttsunami,theNuclearRegulatoryCommission(NRC)establishedaNearTermTaskForce(NTTF)toconductasystematicreviewofNRCprocessesandregulationsandtodetermineiftheagencyshouldmakeadditionalimprovementstoitsregulatorysystem.TheNTTFdevelopedasetofrecommendationsintendedtoclarifyandstrengthentheregulatoryframeworkforprotectionagainstnaturalphenomena.Subsequently,theNRCissueda50.54(f)letteronMarch12,2012[1],requestinginformationtoassurethattheserecommendationsareaddressedbyallU.S.nuclearpowerplants.The50.54(f)letterrequeststhatlicenseesandholdersofconstructionpermitsunder10CFRPart50reevaluatetheseismichazardsattheirsitesagainstpresentdayNRCrequirementsandguidance.Dependingonthecomparisonbetweenthereevaluatedseismichazardandthecurrentdesignbasis,furtherriskassessmentmayberequired.Assessmentapproachesacceptabletothestaffincludeaseismicprobabilisticriskassessment(SPRA),oraseismicmarginassessment(SMA).Basedupontheassessmentresults,theNRCstaffwilldeterminewhetheradditionalregulatoryactionsarenecessary.ThisreportdescribestheExpeditedSeismicEvaluationProcess(ESEP)undertakenforSequoyahNuclearPlantUnits1and2.TheintentoftheESEPistoperformaninterimactioninresponsetotheNRC's50.54(f)lettertodemonstrateseismicmarginthroughareviewofasubsetoftheplantequipmentthatcanbereliedupontoprotectthereactorcorefollowingbeyonddesignbasisseismicevents.TheESEPisimplemente dusingthemethodologiesintheNRCendorsedguidanceinElectricPowerResearchInstitute(EPRI)3002000704,SeismicEvaluationGuidance:AugmentedApproachfortheResolutionofFukushimaNearTermTaskForceRecommendation2.1:Seismic[2].TheobjectiveofthisreportistoprovidesummaryinformationdescribingtheESEPevaluationsandresults.ThelevelofdetailprovidedinthereportisintendedtoenabletheNRCtounderstandtheinputsused,theevaluationsperformed,andthedecisionsmadeasaresultoftheinterimevaluations.ThisESEPreportisforbothSequoyahUnit1andUnit2whichareidentical.Unlessnotedotherwise,alldescriptionsinthisreportapplytobothUnit1andUnit2structures,systems,andcomponents.Forthisreason,unitdesignationsarenotincludedonequipmentunitidentificationsintheFLEXstrategyorExpeditedSeismicEquipmentList(ESEL)descriptions.2.0 BRIEFSUMMARYOFTHEFLEXSEISMICIMPLEMENTATIONSTRATEGIESTheSequoyahFLEXstrategiesforReactorCoreCoolingandHeatRemoval,ReactorInventoryControl,andContainmentFunctionaresummarizedbelow.ThissummaryisderivedfromtheSequoyahOverallIntegratedPlan(OIP)inResponsetotheMarch12,2012,CommissionOrderEA12049submittedinFebruary2013[3][]andisconsistentwiththethirdsixmonthstatusreportissuedtotheNRCinAugust2014[5].ForAtPowerConditionsCoreCoolingandHeatRemovalReactorcorecoolingandheatremovalisachievedviasteamreleasefromtheSteamGenerators(SGs)withSGmakeupfromtheTurbineDrivenAuxiliaryFeedwaterPump(TDAFWP)duringFLEXPhase1withsuctionfromtheCondensateStorageTank(CST)[5].LocalcontrolandoperationoftheSG SequoyahNuclearPlantESEPReport Page7 AtmosphericReliefValves(ARVs)andtheTDAFWPsystemisavailableandproceduralizedsothatoperationfromthemaincontrolroomisnotrequired.ToprovideanunlimitedsupplyofwaterforcorecoolingduringPhase2,lowpressureFLEXPumpswillbestagedattheIntakePumpStation(IPS)andtakesuctionfromtheintakechannelanddischargetofour,EmergencyRawCoolingWater(ERCW)FLEXconnectionsinsidetheIPS.TheywillbeusedtopressurizetheERCWheaders,whichcanthenbeusedfordirectsupplytotheTDAFWPsuction.WhentheTDAFWPbecomesunavailableduetoreductioninavailablesteampressure,aportableintermediatepressureFLEXpumpwillbeusedtocontinuetosupplyfeedwatertotheSGs.SuctionwouldbefromanERCWFLEXconnection.ThedischargeisroutedbyhosetotheTDAFWPdischargeFLEXconnectionsdownstreamofFlowElement3142.ReactorInventoryControlForPhase1,ReactorCoolantSystem(RCS)makeupwillbeprovidedbythecoldlegaccumulators.RCSdepressurizationandcooldownwillbeinitiatedassoonaspossibletoreducetheReactorCoolantPump(RCP)sealleakagerate.InPhase2,RCSmakeupwillbeprovidedbyrepoweringexistingSafetyInjection(SI)pumpsandusingthepumpstoinjectboratedwaterasneededintotheRCS.TheSIpumpswillberepoweredwitha6.9kVAFLEXDieselGenerator.TheSIpumpscanbemanuallycontrolledwithhandswitchesonPanelM6.ThesourceofRCSmakeupwillbetheRefuelingWaterStorageTank(RWST).LaterinPhase2,whentheRCSisdepressurizedsufficiently,ahighpressureFLEXpumpwillbeusedtoinjectboratedwaterintotheRCSthroughSIpiping.ThesepumpswouldbealignedwithasuctionhosefromRWSTFLEXconnectionsandadischargehoseroutedtoaSIpumpdischargeFLEXheaderconnection.ThehighpressureFLEXpumpsarefedfromandoperatedfromthe480vControlandAuxiliaryBuilding(C&A)VentBoards1A1Aand2A1A.ContainmentFunctionTherearenoPhase1FLEXactionstomaintaincontainmentintegrity.TheprimaryPhase2FLEXstrategyforcontainmentintegrityentailsrepoweringonetrainofhydrogenigniters.Phase2mayentailrepoweringtheContainmentAirReturnFansinsideofcontainment.SupportSystemsKeyreactorparameterstobemonitoredduringFLEXimplementationaremeasuredandindicatedbyinstrumentationthatispoweredbythe125VDCvitalbattery.DuringPhase1,thevitalbatteriesprovidepowertoneededinstrumentationthroughthevitalbatteryboards,vitalinvertersandvitalinstrumentpowerboards.DuringPhase2,powertovitalinstrumentationwillbemaintainedbysupplying480VACpowertothevitalbatterychargersthroughnew,fused,FLEXdistributionpanels,whichwillbeconnecteddirectlytothebatterychargers.480VACpowerwillbesuppliedtothedistributionpanelsbyprestaged,480VACFLEXdieselgeneratorsthatwillbelocatedontheroofoftheauxiliarybuilding.DuringtheearlyportionofPhase2,the6.9kVswitchgearand6.9kVShutdownBoardswillbeenergizedwithaprestaged6.9kVFLEXdieselgeneratorthatwillbelocatedintheadditionaldieselgeneratorbuilding.ThiswillallowreenergizingtheSIpumpsforinventorycontrol.

SequoyahNuclearPlantESEPReport Page8 ForShutdownConditionsDuringshutdown,bothsafetyfunctions(maintainingcorecoolingandheatremovalandmaintainingRCSinventorycontrol)areaccomplishedbythesameFLEXstrategyandrelyonthesameFLEXequipmentneededfortheatpowercondition.Corecoolingandheatremovalisachievedbycoolantboiloff.InjectionofboratedwatertotheRCSisneededtoreplenishthecoolantlosttoboiling.ForshutdownconfigurationswheretheRCSisdepressurizedandopenbutthecavityisnotflooded,gravityfeedfromtheRWSTmaybeusedtomaintainRCSinventoryinPhase1.AflowpathfromtheRWSTtotheRCSwouldbeestablished.IfgravityfeedisnotsufficienttomakeupcoolanttotheRCS,aprestaged,intermediatepressureFLEXpumpwillbeusedtomaintainRCSinventory(inPhase2).Sufficientflushingflowwillbeneededtopreventboronprecipitation.ConnectionoftheFLEXpumpdischargehoseswillbetothesafetyinjectionpipingusingthesameFLEXconnectionsplannedforRCSinventorycontrolunderatpowerconditions.TheFLEXconnectionsareshownin[]ForshutdownconfigurationswheretheRCSheadisoffandthecavityisfilled,therewillbesufficienttimetomobilizeportableFLEXpumpstoprovideRCSmakeupfromtheBATsoranalternateboratedwatersource.ThesameFLEXconnectionstothesafetyinjectionsystempipingwillbeusedinthismode.Inaccordancewith[7](footnotetoTableD1),someshutdownconfigurationswheretheRCSisclosedorpressurizedsothatinjectionofboratedwatercannotbeaccomplishedareconsideredoutsideofESEPbecausetheseconfigurationshaveshortdurations.3.0 EQUIPMENTSELECTIONPROCESSANDESELTheselectionofequipmentfortheESELfollowedtheguidelinesofEPRI3002000704[2].TheESELforSequoyahUnits1and2ispresentedinAttachmentA.InformationpresentedinAttachmentAisdrawnfrom[8].3.1 EquipmentSelectionProcessandESELTheselectionofequipmenttobeincludedontheESELwasbasedoninstalledplantequipmentcreditedintheFLEXstrategiesduringPhase1,2and3mitigationofaBeyondDesignBasisExternalEvent(BDBEE),asoutlinedintheSequoyahOIPinResponsetotheMarch12,2012,CommissionOrderEA12049[3]andisconsistentwiththesecondandthirdsixmonthstatusreportsissuedtotheNRC[4][5].TheOIPprovidestheSequoyahFLEXmitigationstrategyandservesasthebasisforequipmentselectedfortheESEP.Thescopeof"installedplantequipment"includesequipmentrelieduponfortheFLEXstrategiestosustainthecriticalfunctionsofcorecoolingandcontainmentintegrityconsistentwiththeSequoyahOIP.FLEXrecoveryactionsareexcludedfromtheESEPscopeperEPRI3002000704[2].TheoveralllistofplannedFLEXmodificationsandthescopeforconsiderationhereinislimitedtothoserequiredtosupportcorecooling,reactorcoolantinventoryandsubcriticality,andcontainmentintegrityfunctions.PortableandprestagedFLEXequipment(notpermanentlyinstalled)areexcludedfromtheESELperEPRI3002000704.TheESELcomponentselectionfollowedtheEPRIguidanceoutlinedinSection3.2ofEPRI3002000704.1. ThescopeofcomponentsislimitedtothatrequiredtoaccomplishthecorecoolingandcontainmentsafetyfunctionsidentifiedinTable32ofEPRI3002000704.Theinstrumentationmonitoringrequirementsforcorecooling/containmentsafetyfunctions SequoyahNuclearPlantESEPReport Page9 arelimitedtothoseoutlinedintheEPRI3002000704guidance,andareasubsetofthoseoutlinedintheSequoyahOIP.2. ThescopeofcomponentsislimitedtoinstalledplantequipmentandFLEXconnectionsnecessarytoimplementtheSequoyahOIP,asdescribedinSection2.3. ThescopeofcomponentsassumesthecreditedFLEXconnectionmodificationsareimplemented,andarelimitedtothoserequiredtosupportasingleFLEXsuccesspath(i.e.,either"Primary"or"Backup/Alternate").4. The"Primary"FLEXsuccesspathistobespecified.Selectionofthe"Backup/Alternate"FLEXsuccesspathmustbejustified.5. Phase3copingstrategiesareincludedintheESEPscope,whereasrecoverystrategiesareexcluded.6. Structures,systems,andcomponentsexcludedpertheEPRI3002000704guidanceare: Structures(e.g.containment,reactorbuilding,controlbuilding,auxiliarybuilding,etc.). Piping,cabling,conduit,HVAC,andtheirsupports. Manualvalvesandrupturedisks. PoweroperatedvalvesnotrequiredtochangestateaspartoftheFLEXmitigationstrategies. Nuclearsteamsupplysystemcomponents(e.g.RPVandinternals,reactorcoolantpumpsandseals,etc.).7. Forcasesinwhichneithertrainwasspecifiedasaprimaryorbackupstrategy,thenonlyonetraincomponent(generally'A'train)isincludedintheESEL.3.1.1 ESELDevelopmentTheESELwasdevelopedbyreviewingtheSequoyahNuclearPlantOIP[3][4][5]todeterminethemajorequipmentinvolvedintheFLEXstrategies.Furtherreviewsofplantdrawings(e.g.,PipingandInstrumentationDiagrams(P&IDs)andElectricalSingleLineDiagrams)wereperformedtoidentifytheboundariesoftheflowpathstobeusedintheFLEXstrategiesandtoidentifyspecificcomponentsintheflowpathsneededtosupportimplementationoftheFLEXstrategies.Boundarieswereestablishedatanelectricalormechanicalisolationdevice(e.g.,isolationamplifier,valve,etc.)inbranchcircuits/branchlinesoffthedefinedstrategyelectricalorfluidflowpath.P&IDsweretheprimaryreferencedocumentsusedtoidentifymechanicalcomponentsandinstrumentation.TheflowpathsusedforFLEXstrategieswereselectedandspecificcomponentswereidentifiedusingdetailedequipmentandinstrumentdrawings,pipingisometrics,electricalschematicsandonelinedrawings,systemdescriptions,designbasisdocuments,etc.,asnecessary.Hostcomponentswereidentifiedforsubassemblies.Cabinetsandequipmentcontrolscontainingrelays,contactors,switches,potentiometers,circuitbreakersandotherelectricalandinstrumentationthatcouldbeaffectedbyhighfrequencyearthquakemotionsandthatimpacttheoperationofequipmentintheESELarerequiredtobeontheESEL.ThesecabinetsandcomponentswereidentifiedintheESEL.ForeachparametermonitoredduringtheFLEXimplementation,asingleindicationwasselectedforinclusionintheESEL.Foreachparameterindication,thecomponentsalongtheflowpathfrom SequoyahNuclearPlantESEPReport Page10 measurementtoindicationwereincluded,sinceanyfailurealongthepathwouldleadtofailureofthatindication.ComponentssuchasflowelementswereconsideredaspartofthepipingandwerenotincludedintheESEL.3.1.2 PowerOperatedValvesPage33ofEPRI3002000704[2]notesthatpoweroperatedvalvesnotrequiredtochangestateaspartoftheFLEXmitigationstrategiesareexcludedfromtheESEL.Page32alsonotesthat"functionalfailuremodesofelectricalandmechanicalportionsoftheinstalledPhase1equipmentshouldbeconsidered(e.g.AuxiliaryFeedwater(AFW)trips)."Toaddressthisconcern,thefollowingguidanceisappliedintheSequoyahESELforfunctionalfailuremodesassociatedwithpoweroperatedvalves: PoweroperatedvalvesthatremainenergizedduringtheELAPevents(suchasDCpoweredvalves),wereincludedontheESEL. PoweroperatedvalvesnotrequiredtochangestateaspartoftheFLEXmitigationstrategieswerenotincludedontheESEL.TheseismiceventalsocausestheELAPevent;therefore,thevalvesareincapableofspuriousoperationastheywouldbedeenergized. PoweroperatedvalvesnotrequiredtochangestateaspartoftheFLEXmitigationstrategiesduringPhase1,andarereenergizedandoperatedduringsubsequentPhase2and3strategies,werenotevaluatedforspuriousvalveoperationastheseismiceventthatcausedtheELAPhaspassedbeforethevalvesarerepowered.3.1.3 PullBoxesPullboxesweredeemedunnecessarytobeaddedtotheESELsasthesecomponentsprovidecompletelypassivelocationsforpullingorinstallingcables.Nobreaksorconnectionsinthecablingwereincludedinpullboxes.Pullboxeswereconsideredpartofconduitandcabling,whichwereexcludedinaccordancewithEPRI3002000704[2].3.1.4 TerminationCabinetsTerminationcabinets,includingcabinetsnecessaryforFLEXPhase2andPhase3connections,provideconsolidatedlocationsforpermanentlyconnectingmultiplecables.Theterminationcabinetsandtheinternalconnectionsprovideacompletelypassivefunction;however,thecabinetsareincludedintheESELtoensureindustryknowledgeonpanel/anchoragefailurevulnerabilitiesisaddressed.3.1.5 CriticalInstrumentationIndicatorsCriticalindicatorsandrecordersaretypicallyphysicallylocatedonpanels/cabinetsandareincludedasseparatecomponents;however,seismicevaluationoftheinstrumentindicationmaybeincludedinthepanel/cabinetseismicevaluation(ruleofthebox).3.1.6 Phase2and3PipingConnectionsItem2inSection3.1abovenotesthatthescopeofequipmentintheESELincludes"-FLEXconnectionsnecessarytoimplementtheSequoyahOIP[3][4][5]asdescribedinSection2."Item3inSection3.1alsonotesthat"ThescopeofcomponentsassumesthecreditedFLEXconnectionmodificationsareimplemented,andarelimitedtothoserequiredtosupportasingleFLEXsuccesspath(i.e.,either"Primary"or"Backup/Alternate")."

SequoyahNuclearPlantESEPReport Page11 Item6inSection3.1abovegoesontoexplainthat"Piping,cabling,conduit,HVAC,andtheirsupports"areexcludedfromtheESELscopeinaccordancewithEPRI3002000704[2].Therefore,pipingandpipesupportsassociatedwithFLEXPhase2andPhase3connectionsareexcludedfromthescopeoftheESEPevaluation.However,anyactivevalvesinFLEXPhase2andPhase3connectionflowpathareincludedintheESEL.3.2 JustificationforUseofEquipmentThatisNotthePrimaryMeansforFLEXImplementationTheSequoyahNuclearPlantESELisbasedontheprimarymeansofimplementingtheFLEXstrategy.Therefore,noadditionaljustificationisrequired.4.0 GROUNDMOTIONRESPONSESPECTRUM(GMRS)4.1 PlotofGMRSSubmittedbytheLicenseeTheSafeShutdownEarthquake(SSE)controlpointelevationisdefinedatthebaseoftheContainmentStructures,whichcorrespondstoadepthof64ft.(Elevation641ft.)andisthedeepeststructurefoundationelevationcontrolpoint.Table41showstheGMRSaccelerationsforarangeoffrequencies.TheGMRSatthecontrolpointelevationisshowninFigure41[9].Table41: GMRSforSequoyahNuclearPlantFrequency(Hz)GMRS(g)1003.79E01903.83E01803.89E01703.98E01604.18E01504.65E01405.54E01356.14E01306.72E01257.41E01207.59E01157.57E0112.57.49E01107.06E0196.82E0186.53E0176.11E0165.58E0155.00E01 SequoyahNuclearPlantESEPReport Page12 Table41:GMRSforSequoyahNuclearPlant(Continued)Frequency(Hz)GMRS(g)44.05E013.53.78E0133.13E012.52.50E0122.30E011.51.92E011.251.68E0111.42E010.91.36E010.81.25E010.71.14E010.69.98E020.58.34E020.46.67E020.355.84E020.35.00E020.254.17E020.23.34E020.152.50E020.1252.08E020.11.67E02 Figure41:GMRSforSequoyahNuclearPlant SequoyahNuclearPlantESEPReport Page13 4.2 ComparisontoSSETheSSEwasdevelopedinaccordancewith10CFRPart100AppendixAthroughanevaluationofthemaximumearthquakepotentialfortheregionsurroundingthesite.Consideringthehistoricseismicityofthesiteregion,themaximumpotentialearthquakewasdeterminedtobeanintensityVIIIontheModifiedMercalliIntensityScaleof1931.TheSSEisdefinedintermsofaPeakGroundAcceleration(PGA)andadesignresponsespectrum.ConsideringasiteintensityofVIII,aPGAof0.18gwasestimated.TobeconsistentwithEPRIReportNos.EPRI3002000704[2]andEPRI1025287[22]thesitelicensingbasisearthquakeisusedfortheSSEtoGMRScomparisoninthisreport.ThedesignbasisearthquakewasusedinthepriorTVAsubmittal[9]whichconcludedthatariskanalysiswouldbeperformed.However,theapplicationofeitherthedesignbasisorthelicensingbasisSSEcurvetothepriorevaluationwillnotaltertheconclusion.TheSequoyahlicensingbasisSSEisbasedonapeakgroundaccelerationof0.18gwithaHousnerspectralshape.Table42showsthespectralaccelerationvaluesasafunctionoffrequencyforthe5%dampedhorizontalSequoyahlicensingbasisSSE.Table42:SSEforSequoyahNuclearPlantFrequency(Hz)SpectralAcceleration (g)1000.18250.18100.1950.272.50.261.00.140.50.08

SequoyahNuclearPlantESEPReport Page14 Figure42: GMRStoSSEComparisonforSequoyahNuclearPlantTheSSEandtheGMRSinthelowfrequencyrangeuptoabout2.5Hzareessentiallythesameamplitude.TheGMRSexceedstheSequoyahNuclearPlantSSEbeyondabout2.5Hz.AstheGMRSexceedstheSSEinthe1to10Hzrange,theplantdoesnotscreenoutoftheESEPaccordingtoSection2.2ofEPRI3002000704[2].ThetwospecialscreeningconsiderationsasdescribedinSection2.2.1ofEPRI3002000704,namelya)LowSeismicHazardSiteandb)NarrowBandExceedancesinthe1to10HzrangedonotapplyforSequoyahNuclearPlantandhenceHighConfidenceofaLowProbabilityofFailure(HCLPF)evaluationsarerequired.5.0 REVIEWLEVELGROUNDMOTION(RLGM)5.1 DescriptionofRLGMSelectedSection4ofEPRI3002000704[2]presentstwoapproachesfordevelopingtheRLGMtobeusedintheESEP:1. TheRLGMmaybederivedbylinearlyscalingtheSSEbythemaximumratiooftheGMRS/SSEbetweenthe1and10Hzrange(nottoexceed2xSSE).InstructureRLGMseismicmotionswouldbederivedusingexistingSSEbasedinstructureresponsespectra(ISRS)withthesamescalefactor.2. Alternately,licenseeswhohavedevelopedappropriatestructural/soilstructureinteraction(SSI)modelscapableofcalculatingISRSbasedonsiteGMRS/uniformhazardresponsespectrum(UHRS)inputmayopttousetheseISRSinlieuofscaledSSEISRS.BasedonareviewoftabulateddatainTable41andtheSSEvaluesinTable42,intherangebetween1and10HzthemaximumratioofGMRStotheSSEiscalculatedtobe:SFmax=SAGMRS(10HZ)/SASSE10Hz)=0.71g/0.19g=3.7 SequoyahNuclearPlantESEPReport Page15 Sincethecomputedscalefactorisgreaterthan2.0,theRLGMwouldbesetalevelof2xSSE.ThisisshowninTable51andFigure51.Table51: 2xSSEforSequoyahNuclearPlantFrequency(Hz)SpectralAcceleration(g)1000.36250.36100.3850.542.50.521.00.280.50.16Figure51: 2xSSEforSequoyahNuclearPlant 5.2 MethodtoEstimateInStructureResponseSpectra(ISRS)AfullscopeSMAwasperformedtosupporttheIPEEEforSequoyahNuclearPlantUnits1and2[11].TheReviewLevelEarthquake(RLE)isdefinedastheNUREG/CR0098[10]medianspectralshapeforrock,anchoredto0.3gPGA.TheRLEISRSweredefinedatthe84%NonExceedanceProbability(NEP).Todeterminethe84%NEPresponse,aprobabilisticmethodofgeneratingISRSwasusedwhichaccountsfortheuncertaintyinboththegroundmotiondescriptionandinthestructuralandsoilparameters.UncertaintiesinthestructuralpropertiesareaccountedforbyrepresentingstructuralnaturalfrequenciesanddampingratiosasalognormallydistributedrandomvariablewithspecifiedmedianandCoefficientofVariation(COV)values.Atotalofthirty(30)earthquaketimehistories(eachwith00.10.20.30.4 0.5 0.60.1110100 Acceleration(g)Frequency(Hz)SQN2xSSEDesignSpectra,5%Damping2xSSE SequoyahNuclearPlantESEPReport Page16 threecomponents)weregeneratedsuchthatthespectralordinateswerelognormallydistributedwithaCOVequalto0.25,andthe84%NEPvaluematchestheNUREG/CR0098medianrockshape.TheresultsoftheIPEEEforSequoyahNuclearPlantUnits1and2weresubmittedtotheNRC[11].ItshouldbenotedthattheNRC[12]tookexceptiontotheapproachusedforSequoyahNuclearPlantinthatTennesseeValleyAuthority(TVA)definedtheRLEasbeinginthefreefieldatthetopofthesoilsurface,whereastheNRCconcludedtheRLEshouldhavebeendefinedonarock.TVAreviewedtheNRCRequestforAdditionalInformation(RAI)andmadeadjustmentstotheoriginallydefiedHCLPFcapacityof0.3g.TheresultsoftheadjustmentsofthefullscopeseismicmarginassessmentweresubmittedtotheNRC[13],concludingthatSequoyahNuclearPlantUnits1and2hadaplantlevelHCLPFcapacityof0.23g.SubsequenttoTVA'sdocketedresponse[13]theNRCissuedtheirStaffEvaluationReport(SER)[14].IntheSER,theNRCrecognizedtheTVAHCLPFcapacityvalueof0.23gforSequoyahNuclearPlant,butalsoacknowledgedalowerHCLPFvalueof0.2gthatwasdevelopedbythestaffconsultant.DuringtheIPEEEadequacyreview,TVAreviewedtheNRCstaffconsultant'sopinionregardingalowerHCLPFcapacityof0.2gforSequoyahNuclearPlantandconcludedthatthetechnicalbasisdescribedbytheNRCstaffconsultantintheSERistechnicallycorrect.Consequently,TVAdecidedthattheassignmentof0.2gHCLPFcapacitywasappropriate.BecauseofthesignificanteffortexpendedbyTVAtodevelopanupdateddynamicanalysisofthesafetyrelatedstructuresforSequoyahNuclearPlantdescribedaboveandintheIPEEEsubmittal[11],TVAfeltthismodelprovidedimproveddynamicbehaviorofSequoyahNuclearPlantstructures.Consequently,forthepurposeofevaluatingseismiccapacityofESEPcomponents,TVAchosetoscalethe84thpercentilevaluesbyanincreasescalefactorof1.5(0.3g/0.2g)toachievearesponseequivalenttoa0.3gNUREG/CR0098shapedresponse.

Figure52demonstratesthattheuseofa0.3gNUREG/CR0098shaperesponsebounds2xSSEforSequoyahNuclearPlantfrom1to10Hz. Figure52:NUREG/CR0098(0.3g)versusSequoyahNuclearPlantSSE00.10.20.30.4 0.5 0.60.70.010.1110100 Acceleration(g)Frequency(Hz)2xSSECR00980.3gSSE(.18g)

SequoyahNuclearPlantESEPReport Page17 6.0 SEISMICMARGINEVALUATIONAPPROACHItisnecessarytodemonstratethatESELitemshavesufficientseismiccapacitytomeetorexceedthedemandcharacterizedbytheRLGM.TheseismiccapacityischaracterizedasthePGAforwhichthereisaHCLPF.ThePGAisassociatedwithaspecificspectralshape,inthiscasethe5%dampedRLGMspectralshape.TheHCLPFcapacitymustbeequaltoorgreaterthantheRLGMPGA.ThecriteriaforseismiccapacitydeterminationaregiveninSection5ofEPRI3002000704[2].TherearetwobasicapproachesfordevelopingHCLPFcapacities:1. Deterministicapproachusingtheconservativedeterministicfailuremargin(CDFM)methodolog yofEPRINP6041SL,AMethodologyforAssessmentofNuclearPowerPlantSeismicMargin(Revision1)[15].2. ProbabilisticapproachusingthefragilityanalysismethodologyofEPRITR103959,MethodologyforDevelopingSeismicFragilities[16].6.1 SummaryofMethodologiesUsedSequoyahNuclearPlantcompletedSMAforUnits1and2in1995.TheSMAisdocumentedin[11]thatconsistedofdevelopmentofaSafeShutdownEquipmentList(SSEL),probabilisticapproachfordeterminingseismicdemandbasedon84%NEP,newbuildingmodels,associatedgenerationofISRS,screeningwalkdowns,andHCLPFcapacitycalculations.ThescreeningwalkdownsusedthescreeningtablesfromChapter2ofEPRINP6041SL[15].ThewalkdownswereconductedbyengineerstrainedinEPRINP6041SL(theengineersattendedtheEPRISMAAddOncourseinadditiontotheSQUGWalkdownScreeningandSeismicEvaluationTrainingCourse),andweredocumentedonScreeningEvaluationWorkSheetsfromEPRINP6041SL.AnchoragecapacitycalculationsusedtheCDFMcriteriafromEPRINP6041SL.Theseismicdemandisbasedonaprobabilisticapproachthatinvolvesthegenerationofanensembleofartificialearthquake(groundmotion)timehistoriesaswellasstructuralandsoilparametersvalues.TheprobabilisticapproachofdeterminingseismicdemandisbasedonguidancefromEPRINP6041SL:"FortheSpecifiedSME,theelasticcomputedresponse(SMEdemand)ofstructuresandcomponentsmountedthereonshouldbedefinedatthe84%nonexceedanceprobability(NEP)."TheresultsoftheprobabilisticapproachfordevelopmentofseismicdemandforSequoyahNuclearplantisdocumentedin[11].Figure61showsthefitofthe84thpercentileoftheensembleofthe30responsespectra(ofthe30generatedtimehistories)tothetargetspectralshape(NUREG/CR0098medianrockspectrum).Notethisfigurerepresentstheinputmotionassumingthetargetspectrumisatthetopoffreefieldonthesoilsurface.Figure62showstheadjustedSequoyahNuclearPlantIPEEEHCLPFRLEresponsespectrumadjustedto0.2g,comparedtotheESEPRLGMresponsespectrumusedfortheSequoyahNuclearPlantESEP.Notebothspectraarerockinputmotionsatthebaseofthecontainmentstructure.ThisdemonstratesthattheESEPRLGMenvelopestheRLGMusedforSMAatallfrequenciesbyanamplitudefactorof1.5.

SequoyahNuclearPlantESEPReport Page18 Figure61:84thPercentileoftheEnsembleofthe30ResponseSpectraFigure62:SequoyahNuclearPlantIPEEEadjustedHCLPFvsESEPTargetHCLPF6.2 HCLPFScreeningProcessForESEP,thecomponentsarescreenedatRLGM(NUREG/CR0098curve)anchoredat0.3gPGA.ThescreeningtablesinEPRINP6041SL[15]arebasedongroundpeakspectralaccelerationsof0.8gand1.2g.ThesebothexceedtheRLGMpeakspectralacceleration.Theanchoragecapacitycalculations SequoyahNuclearPlantESEPReport Page19 wereonbasedfloorresponsespectradevelopedfortheSequoyahNuclearPlantIPEEEandscaledtotheadjustedRLGM.EquipmentforwhichthescreeningcaveatsweremetandforwhichtheanchoragecapacityexceededtheRLGMseismicdemand,canbescreenedoutfromESEPseismiccapacitydeterminationbecausetheHCLPFcapacityexceedstheRLGM.TheUnit1ESELcontains182items.Ofthese,27arevalves,bothpoweroperatedandrelief.InaccordancewithTable24ofEPRINP6041SL[15],activevalvesmaybeassignedafunctionalcapacityof0.8gpeakspectralaccelerationwithoutanyreviewotherthanlookingforvalveswithlargeextendedoperatorsonsmalldiameterpiping,andanchorageisnotafailuremode.Therefore,valvesontheESELmaybescreenedoutfromESEPseismiccapacitydetermination,subjecttothecaveatregardinglargeextendedoperatorsonsmalldiameterlines.ThenonvalvecomponentsintheESELaregenerallyscreenedbasedontheSMAmethodology.IftheSMAshowedthatthecomponentmettheEPRINP6041SLscreeningcaveatsandtheCDFMcapacityexceededtheRLEdemand,thenthecomponentcanbescreenedoutfromtheESEPcapacitydetermination.6.3 SeismicWalkdownApproach6.3.1 WalkdownApproachWalkdownswereperformedinaccordancewiththecriteriaprovidedinSection5ofEPRI3002000704[2],whichreferstoEPRINP6041SL[15]fortheSeismicMarginAssessmentprocess.Pages226through230ofEPRINP6041SLdescribetheseismicwalkdowncriteria,includingthefollowingkeycriteria."TheSRT[SeismicReviewTeam]should"walkby"100%ofallcomponentswhicharereasonablyaccessibleandinnonradioactiveorlowradioactiveenvironments.Seismiccapabilityassessmentofcomponentswhichareinaccessible,inhighradioactiveenvironments,orpossiblywithincontaminatedcontainment,willhavetorelymoreonalternatemeanssuchasphotographicinspection,morerelianceonseismicreanalysis,andpossibly,smallerinspectionteamsandmorehurriedinspections.A100%"walkby"doesnotmeancompleteinspectionofeachcomponent,nordoesitmeanrequiringanelectricianorothertechniciantodeenergizeandopencabinetsorpanelsfordetailedinspectionofallcomponents.ThiswalkdownisnotintendedtobeaQAorQCrevieworareviewoftheadequacyofthecomponentattheSSElevel.IftheSRThasareasonablebasisforassumingthatthegroupofcomponentsaresimilarandaresimilarlyanchored,thenitisonlynecessarytoinspectonecomponentoutofthisgroup.The"similaritybasis"shouldbedevelopedbeforethewalkdownduringtheseismiccapabilitypreparatorywork(Step3)byreferencetodrawings,calculationsorspecifications.Theonecomponentoreachtypewhichisselectedshouldbethoroughlyinspectedwhichprobablydoesmeandeenergizingandopeningcabinetsorpanelsforthisverylimitedsample.Generally,asparerepresentativecomponentcanbefoundsoastoenabletheinspectiontobeperformedwhiletheplantisinoperation.Atleastfortheonecomponentofeachtypewhichisselected,anchorageshouldbethoroughlyinspected.Thewalkdownprocedureshouldbeperformedinanadhocmanner.ForeachclassofcomponentstheSRTshouldlookcloselyatthefirstitemsandcomparethefieldconfigurationswiththeconstructiondrawingsand/orspecifications.Ifaonetoonecorrespondenceisfound,thensubsequentitemsdonothavetobeinspectedinasgreatadetail.Ultimatelythe SequoyahNuclearPlantESEPReport Page20 walkdownbecomesa"walkby"ofthecomponentclassastheSRTbecomesconfidentthattheconstructionpatternistypical.Thisprocedureforinspectionshouldberepeatedforeachcomponentclass;although,duringtheactualwalkdowntheSRTmaybeinspectingseveralclassesofcomponentsinparallel.Ifseriousexceptionstothedrawingsorquestionableconstructionpracticesarefoundthenthesystemorcomponentclassmustbeinspectedincloserdetailuntilthesystematicdeficiencyisdefined.The100%"walkby"istolookforoutliers,lackofsimilarity,anchoragewhichisdifferentfromthatshownondrawingsorprescribedincriteriaforthatcomponent,potentialSI[SeismicInteraction]problems,situationsthatareatoddswiththeteammembers'pastexperience,andanyotherareasofseriousseismicconcern.Ifanysuchconcernssurface,thenthelimitedsamplesizeofonecomponentofeachtypeforthoroughinspectionwillhavetobeincreased.Theincreaseinsamplesizewhichshouldbeinspectedwilldependuponthenumberofoutliersanddifferentanchorages,etc.,whichareobserved.ItisuptotheSRTtoultimatelyselectthesamplesizesincetheyaretheoneswhoareresponsiblefortheseismicadequacyofallelementswhichtheyscreenfromthemarginreview.AppendixDgivesguidanceforsamplingselection."6.3.2 ApplicationofPreviousWalkdownInformationSeveralESELitemswerepreviouslywalkeddownduringtheSequoyahNuclearPlantUnits1and2seismicIPEEEprogram.Thosewalkdownresultswerereviewedandthefollowingstepsweretakentoconfirmthatthepreviouswalkdownconclusionsremainedvalid. Awalkbywasperformedtoconfirmthattheequipmentmaterialconditionandconfigurationisconsistentwiththewalkdownconclusionsandthatnonewsignificantinteractionsrelatedtoblockwallsorpipingattachedtotanksexist. IftheESELitemwasscreenedoutbasedonthepreviouswalkdown,thatscreeningevaluationwasreviewedandreconfirmedfortheESEP.ExceptforinaccessibleitemsasdescribedbelowinSection7,inallcasesitwasdeterminedthattheHCLPFcapacitiesestablishedfortheseitemsundertheseismicIPEEEprogramremainedvalid.Thus,allESELcomponentsthatwerepartoftheIPEEEprogramhaveaHCLPFcapacityof0.3gorgreaterandarethusadequateforESEP[9].6.3.3 SignificantWalkdownFindingsConsistentwiththeguidancefromEPRINP6041SL[15],nosignificantoutliersandonlyone(1)anchorageconcernwasidentifiedduringtheSequoyahNuclearPlantseismicwalkdowns.Thefollowingfindingswerenotedduringthewalkdowns.OneanchorforSequoyahUnit2TDAFWPumpControlPanel2L381wasobservedtobesignificantlycorroded.Anevaluationwasperformedoftheconfigurationassumingthattheanchorwasinactive.Theevaluationdeterminedthattheconfiguration(using3of4anchors)satisfieddesignrequirements.ThecorrodedanchoredisscheduledtobereplacedinupcomingU2R20outage.Basedonwalkdownresults,HCLPFcapacityevaluationswererecommendedforthefollowingtwelve(12)components,onaboundingbasis: TurbineDrivenAuxiliaryFeedwaterPump InstrumentRack SequoyahNuclearPlantESEPReport Page21 RPanels BenchboardMPanels VerticalMandLPanels MainControlRoomCeiling WallMountedPanel BoricAcidStorageTank TDAFWPControlPanel PHMSTransformersandDistributionPanel Valves BlockWalls6.4 HCLPFCalculationProcessESELitemsnotincludedinthepreviousIPEEEevaluationsatSequoyahwereevaluatedusingthecriteriainEPRINP6041[7].Thoseevaluationsincludedthefollowingsteps: Performingseismiccapabilitywalkdownsforequipmentnotincludedinpreviousseismicwalkdowns(SQUG,IPEEE,orNTTF2.3)toevaluatetheequipmentinstalledplantconditions PerformingscreeningevaluationsusingthescreeningtablesinEPRINP6041asdescribedinSection6.2and PerformingHCLPFcalculationsconsideringvariousfailuremodesthatincludebothstructuralfailuremodes(e.g.anchorage,loadpathetc.)andfunctionalfailuremodes.AllHCLPFcalculationswereperformedusingtheCDFMmethodologyandaredocumentedinaTVACalculation:CDQ9992014000140"SQNExpeditedSeismicEvaluationProcess(ESEP)HCLPFCapacityCalculation"[17].6.5 FunctionalEvaluationsofRelaysESEPconsiderscabinetsandequipmentcontrolscontainingrelays,contactors,switches,circuitbreakersandotherelectricalandinstrumentationcomponentsthatcouldbeaffectedbyhighfrequencyearthquakemotionsandthatimpacttheoperationofequipmentintheESEL.AfullscopeSMAwasperformedtosupporttheIPEEEforSequoyahNuclearPlantUnits1and2assummarizedintheIPEEEsubmittal[11].AslightlymodifiedversionoftheEPRINP6041SL[15]recommendedapproachwasimplementedfortheSequoyahNuclearPlantIPEEEinordertoincreaseefficiency.Allrelayswerescreenedoutby:(1)groundrulesandassumptions;(2)comparisonofdesignqualificationtestspectrum(orgenericequipmentruggednessspectra)withSeismicMarginEarthquake(SME)incabinetresponsespectrum;or(3)analysisshowingthatrelaychatterdoesnotdisablesafeshutdownequipmentwithoutthepossibilityofrecovery.Inallcases,equipmentactuationwasdeterminedtonotaffectthesafeshutdowncapabilityoftheequipmentintheSSEL.Lowruggednessrelayswerescreenedoutonlyiftheeffectsofchattercouldberesetbyoperatoraction.Allbuttwolowruggednessrelaysfellintothiscategory.TheremainingtworelayswerefoundtonotbeusedinsafeshutdownequipmentatSequoyahNuclearPlant.Theprincipalconclusionfromthe SequoyahNuclearPlantESEPReport Page22 IPEEErelayevaluationwasthatsafeshutdownsystemswillnotbeadverselyaffectedbyrelaymalfunctionduringorafteranSME.FortheSequoyahNuclearPlantESEPanalysis,anevaluationwasperformedtoidentifycomponentsthatare(1)neededforFLEXimplementation,(2)notontheSequoyahIPEEESSEL,and(3)thathavethepotentialforrelaychatterissues.TheonlycasesidentifiedaretheFCV117andFCV118steamisolationvalvesthatcanisolatethesteamsupplytotheTDAFWpump.Intheeventofasteamlinebreak,bothofthesevalvescanreceiveaclosesignalifhightemperatureisdetectedintheTDAFWpumproom.However,becausethesevalvesaremotoroperatedvalves(MOVs),withaLossofOffsitePower(LOOP)thevalveswillnotisolateevenwithaspurious"close"signal.Therefore,thesevalvesdonotpresentaproblemforsuccessfulFLEXimplementation.Nootherrelaychattercaseswereidentified.NoseismiccapacitytodemandrelayevaluationswerenecessaryforESEP.6.6 TabulatedESELHCLPFValues(IncludingKeyFailureModes)TabulatedESELHCLPFvaluesareprovidedinAttachmentB.Thefollowingnotesapplytotheinformationinthetables. ItemspreviouslyincludedintheseismicIPEEEprogramsarenotlisted.WalkbyverificationsreconfirmedtheHCLPFcapacitiesfromtheIPEEE,andtheIPEEE0.3gRLEHCLPFcapacityexceedstheRLGM[18]. HCLPFcapacityevaluationswereperformedforthenonIPEEEitemsontheESEL,addressingbothstructural/anchorageandfunctionalfailuremodes.TheHCLPFcapacityofeachitemislistedinthetables,withassociatedgoverningfailuremode. Ruggeditemsnotspecificallyevaluatedareconservativelyassigneda0.50gHCLPFcapacitybasedontheEPRIscreeningtablesorbyengineeringjudgment. NewprestagedandpermanentlyinstalledFLEXitemsarenotlisted.TVAdesigncriteriaSQNDCV48.0[19]requiresthatnewFLEXitemshaveHCLPFcapacityexceedingtheRLGM.AllESEPcomponentshaveaHCLPFcapacitygreaterthantheRLGMforthefrequencyrangeof1to10Hz.7.0 INACCESSIBLEITEMS7.1 IdentificationofESELItemInaccessibleforWalkdownsTherearefour(4)valvesandseven(7)instrumentracksthatcouldnotbewalkeddownsincetheyareintheUnit1ReactorBuilding(inaccessiblearea).Thesecomponents'Unit2counterpartswerewalkeddownduringtherecentUnit2outage.TheUnit2componentsweredeterminedtobeacceptable.ItisexpectedthatthesameconclusioncanbemadefortheUnit1components.ThefollowingisalistoftheUnit1componentslocatedintheReactorBuildingthatwerenotwalkeddown: 1FCV63118ColdlegAccumulatorIsolationValve#1 1FVC6367ColdlegAccumulatorIsolationValve#4 1FCV6380ColdlegAccumulatorIsolationValve#3 1FCV6398ColdlegAccumulatorIsolationValve#2 InstrumentRack1L182locatedinFanRoom2 SequoyahNuclearPlantESEPReport Page23 InstrumentRack1L183locatedinFanRoom1 InstrumentRack1L179 InstrumentRack1L185 InstrumentRack1L704 InstrumentRack1L706 InstrumentRack1L194Alsotherearetwo(2)panelsthatcouldnotbewalkeddownintheUnit1AuxiliaryBuildingbecausethecomponentsareinaContaminatedandRadiationArea.Theyare: InstrumentRack1L196 InstrumentRack1L216Inaddition,awalkbyinsideUnit1containmentwasnotpossible.7.2 PlannedWalkdown/EvaluationSchedule/CloseOutThefollowingUnit1componentswillbewalkeddowninupcomingUnit1outage: FCV63118ColdLegAccumulatorIsolationValve#1 FVC6367ColdLegAccumulatorIsolationValve#4 FCV6380ColdLegAccumulatorIsolationValve#3 FCV6398ColdLegAccumulatorIsolationValve#2 InstrumentRack1L182locatedinFanRoom2 InstrumentRack1L183locatedinFanRoom1 InstrumentRack1L179 InstrumentRack1L185 InstrumentRack1L704 InstrumentRack1L706 InstrumentRack1L194 InstrumentRack1L196 InstrumentRack1L216Inaddition,asperformedinsidetheUnit2containment,awalkbywillbeconductedtoverifythatHCLPFcapacityofatleast0.3gismaintainedforIPEEEitemsontheESEL.ItisexpectedthatthesameconclusionswillbemadefortheUnit1componentsthatwerecompletedforthecounterpartcomponentsinUnit2.

SequoyahNuclearPlantESEPReport Page24 8.0 ESEPCONCLUSIONSANDRESULTS8.1 SupportingInformationSequoyahNuclearPlantUnits1and2haveperformedtheESEPasaninterimactioninresponsetotheNRC's50.54(f)letter[1].ItwasperformedusingthemethodologiesintheNRCendorsedguidanceinEPRI3002000704[2].TheESEPprovidesanimportantdemonstrationofseismicmarginandexpeditesplantsafetyenhancementsthroughevaluationsandpotentialneartermmodificationsofplantequipmentthatcanbereliedupontoprotectthereactorcorefollowingbeyonddesignbasisseismicevents.TheESEPispartoftheoverallSequoyahNuclearPlantUnits1and2inresponsetotheNRC's50.54(f)letter.OnMarch12,2014,NEIsubmittedtotheNRCresultsofastudy[21]ofseismiccoredamageriskestimatesbasedonupdatedseismichazardinformationasitappliestooperatingnuclearreactorsintheCentralandEasternUnitedStates(CEUS).Thestudyconcludedthat"sitespecificseismichazardsshowthattherehasnotbeenanoverallincreaseinseismicriskforthefleetofU.S.plants"basedonthereevaluatedseismichazards.Assuch,the"currentseismicdesignofoperatingreactorscontinuestoprovideasafetymargintowithstandpotentialearthquakesexceedingtheseismicdesignbasis."TheNRC'sMay9,2014NTTF2.1ScreeningandPrioritizationletter[20]concludedthatthe"fleetwideseismicriskestimatesareconsistentwiththeapproachandresultsusedintheGl199safety/riskassessment."Theletteralsostatedthat"Asaresult,thestaffhasconfirmedthattheconclusionsreachedinGl199safety/riskassessmentremainvalidandthattheplantscancontinuetooperatewhileadditionalevaluationsareconducted."AnassessmentofthechangeinseismicriskforSequoyahNuclearPlantUnits1and2wasincludedinthefleetriskevaluationsubmittedintheMarch12,2014NEIletter[21];therefore,theconclusionsintheNRC'sMay9letteralsoapplytoSequoyahNuclearPlantUnits1and2.Inaddition,theMarch12,2014NEIletterprovidedanattached"PerspectivesontheSeismicCapacityofOperatingPlants,"which(1)assessedanumberofqualitativereasonswhythedesignofSSCsinherentlycontainmarginbeyondtheirdesignlevel,(2)discussedindustrialseismicexperiencedatabasesofperformanceofindustryfacilitycomponentssimilartonuclearSSCs,and(3)discussedearthquakeexperienceatoperatingplants.Thefleetofcurrentlyoperatingnuclearpowerplantswasdesignedusingconservativepractices,suchthattheplantshavesignificantmargintowithstandlargegroundmotionssafely.Thishasbeenborneoutforthoseplantsthathaveactuallyexperiencedsignificantearthquakes.Theseismicdesignprocesshasinherent(andintentional)conservatismswhichresultinsignificantseismicmarginswithinSSCs.Theseconservatismsarereflectedinseveralkeyaspectsoftheseismicdesignprocess,including: Safetyfactorsappliedindesigncalculations DampingvaluesusedindynamicanalysisofSSCs BoundingsynthetictimehistoriesforISRScalculations BroadeningcriteriaforISRS ResponsespectraenvelopingcriteriatypicallyusedinSSCanalysisandtestingapplications SequoyahNuclearPlantESEPReport Page25 Responsespectrabasedfrequencydomainanalysisratherthanexplicittimehistorybasedtimedomainanalysis Boundingrequirementsincodesandstandards Useofminimumstrengthrequirementsofstructuralcomponents(concreteandsteel) Boundingtestingrequirements Ductilebehavioroftheprimarymaterials(thatis,notcreditingtheadditionalcapacityofmaterialssuchassteelandreinforcedconcretebeyondtheessentiallyelasticrange,etc.)ThesedesignpracticescombinetoresultinmarginssuchthattheSSCswillcontinuetofulfilltheirfunctionsatgroundmotionswellabovetheSSE.TheintentoftheESEPistoperformaninterimactioninresponsetotheNRC's50.54(f)lettertodemonstrateseismicmarginthroughareviewofasubsetoftheplantequipmentthatcanbereliedupontoprotectthereactorcorefollowingbeyonddesignbasisseismicevents.InordertocompletetheESEPinanexpeditedamountoftime,theRLGMusedfortheESEPevaluationisascaledversionoftheplant'sSSEratherthantheactualGMRS.TomorefullycharacterizetheriskimpactsoftheseismicgroundmotionrepresentedbytheGMRSonaplantspecificbasis,amoredetailedseismicriskassessment(SPRAorriskbasedSMA)istobeperformedinaccordancewithEPRI1025287[22].AsidentifiedintheSequoyahNuclearPlantUnits1and2SeismicHazardandGMRSsubmittal[9],SequoyahNuclearPlantUnits1and2screensinforariskevaluation.Thecompleteriskevaluationwillmorecompletelycharacterizetheprobabilisticseismicgroundmotioninputintotheplant,theplantresponsetothatprobabilisticseismicgroundmotioninput,andtheresultingplantriskcharacterization.SequoyahNuclearPlantUnits1and2willcompletethatevaluationinaccordancewiththescheduleidentifiedinNEI'sletterdatedApril9,2013[23]andendorsedbytheNRCintheirMay7,2013letter[24].8.2 IdentificationofPlannedModificationsOnemodificationwasidentifiedinunit2,torepairacorrodedanchorobservedforTDAFWpumpControlPanel2L381.8.3 ModificationImplementationSchedulePlantmodificationswillbeperformedinaccordancewiththescheduleidentifiedinNEIletterdatedApril9,2013[23],whichstatesthatplantmodificationsnotrequiringaplannedrefuelingoutagewillbecompletedbyDecember2016andmodificationsrequiringarefuelingoutagewillbecompletedwithintwoplannedrefuelingoutagesafterDecember31,2014.TheplantmodificationidentifiedinSection8.2requiresarefuelingoutagethatwillbeperformedintheupcomingunit2refuelingoutage(U2R20)andwillbecompletedbytheendofDecember2015.

SequoyahNuclearPlantESEPReport Page26 8.4 SummaryofRegulatoryCommitmentsThefollowingactionswillbeperformedasaresultoftheESEP.Table81:SummaryofRegulatoryCommitmentsAction#EquipmentIDEquipmentDescriptionActionDescriptionCompletionDate1NAN/APerformseismicwalkdowns,generateHCLPFcalculations,anddesignandimplementanynecessarymodificationsforUnit1inaccessibleitemslistedinSection7.1NolaterthantheendofthesecondplannedUnit1refuelingoutageafterDecember31,201422L381TDAFPControlPanelModifyanchoragetoreplacecorrodedanchorsuchthatHCLPF>RLGMNolaterthantheendofU2R20RefuelingOutage,December31,20153N/AN/ASubmitalettertoNRCsummarizingtheHCLPFresultsofItem1andconfirmingimplementationoftheplantmodificationsassociatedwithItem2Within60daysfollowingcompletionofESEPactivities,includingItems1through2 SequoyahNuclearPlantESEPReport Page27

9.0 REFERENCES

1.NRC(ELeedsandMJohnson)LettertoAllPowerReactorLicenseesetal.,"RequestforInformationPursuanttoTitle10oftheCodeofFederalRegulations50.54(f)RegardingRecommendations2.1,2.3and9.3oftheNearTermTaskForceReviewofInsightsfromtheFukushimaDaiIchiAccident,"March12,2012.2.EPRI3002000704,"SeismicEvaluationGuidance,AugmentedApproachfortheResolutionofFukushimaNearTermTaskForceRecommendation2.1:Seismic,"May2013.3.TVALettertoU.S.NRC,"TennesseeValleyAuthority-OverallIntegratedPlaninResponsetoMarch12,2012,CommissionOrderModifyingLicenseswithRegardtoRequirementsforMitigationStrategiesforBeyondDesignBasisExternalEvents(OrderNumberEA12049),"February28,2013.4.TVALettertoU.S.NRC,"SecondSixMonthStatusReportandRevisedOverallIntegratedPlaninResponsetotheMarch12,2012,CommissionOrderModifyingLicenseswithRegardtoRequirementsforMitigationStrategiesforBeyondDesignBasisExternalEvents(OrderNumberEA12049)forSequoyahNuclearPlant,"February28,2014.5.TVALettertoU.S.NRC,"ThirdSixMonthStatusReportinResponsetotheMarch12,2012,CommissionOrderModifyingLicenseswithRegardtoRequirementsforMitigationStrategiesforBeyondDesignBasisExternalEvents(OrderNumberEA12049)forBrownsFerryNuclearPlant(TACNos.MF0864andMF0865),"August28,2014.6.TVADrawing147W8111FLEX,"FlowDiagramSafetyInjectionSystem,"Revision74(ModifiedforFLEX).7.NEI1206,"DiverseandFlexibleCopingStrategies(FLEX)ImplementationGuide,"Revision0,August2012.8.AREVANPDocument519217523005,"ESEPExpeditedSeismicEquipmentList(ESEL)-SequoyahNuclearPlant."9.TVALettertoU.S.NRC,letternumberCNL14038,"TennesseeValleyAuthority'sSeismicHazardandScreeningReport(CEUSSites),responsetoNRCRequestforInformationPursuantto10CFR50.54(f)regardingRecommendation2.1oftheNearTermTaskForceReviewofInsightsfromtheFukushimaDaiichiAccident",March31,201410.U.S.NRCNUREG/CR0098,"DevelopmentofCriteriaforSeismicReviewofSelectedNuclearPowerPlants,"May1978.11.TVALetterfromR.H.ShelltoU.S.NRC,"SequoyahNuclearPlant(SQN)-GenericLetterGL8820,SupplementNo.4,IndividualPlantExaminationofExternalEvents(IPEEE)forSevereAccidentVulnerabilities-10CFR50.54(f),"June29,1995.12.NRCLettertoTVA,"SequoyahNuclearPlant,Units1and2-RequestforAdditionalInformationonIndividualPlantExaminationofExternalEvents(TACNos.M86374andM86375),"August2,2000.13.LetterfromPedroSalastoNRC,"SequoyahNuclearPlantUnits1and2-ResponsetoRequestforAdditionalInformationoftheIndividualPlantExaminationofExternalEvents(IPEEE)(TACNos.M83674andM83675),"December5,2000.

SequoyahNuclearPlantESEPReport Page28 14.LetterfromNRCtoJ.A.Scalice,"SequoyahNuclearPlant,Units1and2-ReviewofSequoyahIndividualPlantExaminationofExternalEventsSubmittal(TACNos.M83764andM83675),"February21,2001.15.EPRINP6041SL,"MethodologyforAssessmentofNuclearPowerPlantSeismicMargin,"Revision1,August1991.16.EPRITR103959,"MethodologyforDevelopingSeismicFragilities,"July1994.17.TVACalculationCDQ9992014000140,"SQNExpeditedSeismicEvaluationProcess(ESEP)HCLPFCapacityCalculation."18.TVAlettertoU.S.NRC,LetternumberCNL14013,"HighlightsofImprovementstotheSequoyahNuclearPlantIPEEESeismicAnalysisResultsandSupplementalResponsetoNRCRequestforInformationPursuanttoTitle10oftheCodeofFederalRegulations50.54(f)regardingtheSequoyahNuclearPlantUnit1SeismicWalkdownResultsofRecommendations2.3oftheNearTermTaskForceReviewofInsightsfromtheFukushimaDaiichiAccident",January31,2014.19.TVADesignCriteria,SQNDCV48.0,Revision4,"FLEXResponseSystem."20.NRC(E.Leeds)LettertoAllPowerReactorLicenseesetal.,"ScreeningandPrioritizationResultsRegardingInformationPursuanttoTitle10oftheCodeofFederalRegulations50.54(F)RegardingSeismicHazardReEvaluationsforRecommendation2.1oftheNearTermTaskForceReviewofInsightsFromtheFukushimaDaiIchiAccident,"May9,2014.21.NuclearEnergyInstitute(NEI),A.Pietrangelo,LettertoD.SkeenoftheUSNRC,"SeismicCoreDamageRiskEstimatesUsingtheUpdatedSeismicHazardsfortheOperatingNuclearPlantsintheCentralandEasternUnitedStates,"March12,2014.22.EPRI1025287,"SeismicEvaluationGuidance:Screening,PrioritizationandImplementationDetails(SPID)fortheResolutionofFukushimaNearTermTaskForceRecommendation2.1:Seismic.ElectricPowerResearchInstitute,"February2013.23.NuclearEnergyInstitute(NEI),A.Pietrangelo,LettertoD.SkeenoftheUSNRC,"ProposedPathForwardforNTTFRecommendation2.1:SeismicReevaluations,"April9,2013.NRCAdamsAccessionNo.ML13101A379.24.NRC(ELeeds)LettertoNEI(JPollock),"ElectricPowerResearchInstituteFinalDraftReportxxxxx,"SeismicEvaluationGuidance:AugmentedApproachfortheResolutionofFukushimaNearTermTaskForceRecommendation2.1:Seismic,"asanAcceptableAlternativetotheMarch12,2012,InformationRequestforSeismicReevaluations,"May7,2013.

SequoyahNuclearPlantESEPReport PageA1ATTACHMENTA-SEQUOYAHNUCLEARPLANTESEL SequoyahNuclearPlantESEPReport PageA2TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlantESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1VLV1512SteamGenerator#3MainSteamSafetyValveOperationalOperational2VLV1517SteamGenerator#2MainSteamSafetyValveOperationalOperational3VLV1522SteamGenerator#1MainSteamSafetyValveOperationalOperational4VLV1527SteamGenerator#4MainSteamSafetyValveOperationalOperational5PCV15SteamGenerator#1ARV(SGPORV)OperationalOperationalFailclosedonlossofTrainAessentialair6PCV112SteamGenerator#2ARV(SGPORV)OperationalOperationalFailclosedonlossofTrainBessentialair7PCV123SteamGenerator#3ARV(SGPORV)OperationalOperationalFailclosedonlossofTrainAessentialair8PCV130SteamGenerator#4ARV(SGPORV)OperationalOperationalFailclosedonlossofTrainBessentialair9PCV15SteamGenerator#1ARV(SGPORV)HandwheelOperationalOperationalLocalcontrolofsteamgeneratorPORVduringELAP10AirBottlesSteamGenerator#2ARV(SGPORV)LocalControlStationOperationalOperationalEmergencycontrolstationperEA12FLEXcompressedaircylinders11AirBottlesSteamGenerator#3ARV(SGPORV)LocalControlStationOperationalOperationalEmergencycontrolstationperEA12FLEXcompressedaircylinders12PCV130SteamGenerator#4ARV(SGPORV)HandwheelOperationalOperationalLocalcontrolofsteamgeneratorPORVduringELAP SequoyahNuclearPlantESEPReport PageA3 TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState13L501PCV112LocalControlStationOperationalOperationalEmergencycontrolstationperEA1214L502PCV123LocalControlStationOperationalOperationalEmergencycontrolstationperEA1215PMP3142TurbineDrivenAFWPumpStandbyOperatingAutomaticstartonLOOP16FCV151TDAFWPumpTripandThrottleValveClosedOpenNormalpowersupplyisfrom125VVitalBatteryBoardIII17FCV152TDAFWPumpGovernorValveClosedOpenFailsopenonlossofDCcontrolpower18XS4657AFWTASBackupControlTransferSwitchOperationalOperationalThesecomponentsareontheESELifmanualoperationofTDAFWisimplemented19HS151BTDAFWPumpTripandThrottleValveHandswitchOperationalOperational20SI4656BTDAFWPumpSpeedIndicatorOperationalOperational21FIC4657TDAFWPumpMasterSpeedControllerOperationalOperational22L381TDAFWPumpControlPanelOperationalOperational23PI3138TDAFWPumpDischargePressureIndicatorOperationalOperational24L215AFWFlowMonitoringPanelOperationalOperationalPortabledeltapressgaugecanbeusedforlocalmonitoringofAFWflow SequoyahNuclearPlantESEPReport PageA4TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState25FT3147AFWFlowtoSteamGenerator#3FlowTransmitterOperationalOperational26FT3155AFWFlowtoSteamGenerator#2FlowTransmitterOperationalOperational27FT3163AFWFlowtoSteamGenerator#1FlowTransmitterOperationalOperational28FT3170AFWFlowtoSteamGenerator#4FlowTransmitterOperationalOperational29FI3147BAFWFlowtoSteamGenerator#3FlowIndicationOperationalOperational30FI3155BAFWFlowtoSteamGenerator#2FlowIndicationOperationalOperational31FI3163BAFWFlowtoSteamGenerator#1FlowIndicationOperationalOperational32FI3170BAFWFlowtoSteamGenerator#4FlowIndicationOperationalOperational33L341AFWFlowtoSteamGenerator#3FlowTransmitterRackOperationalOperational34L217AFWFlowtoSteamGenerator#2FlowTransmitterRackOperationalOperational35L216AFWFlowtoSteamGenerator#1FlowTransmitterRackOperationalOperational36L703AFWFlowtoSteamGenerator#4FlowIndicationRackOperationalOperational SequoyahNuclearPlantESEPReport PageA5TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState37LCV3172SteamGenerator#3LevelControlValveClosedOpenFailsopenonlossofAXpowerorcontrolair.Backupairsupplybottlesavailable.Manualoperationwithhandwheelisavailable.38LCV3173SteamGenerator#2LevelControlValveClosedOpenFailsopenonlossofACpowerorcontrolair.Backupairsupplybottleavailable.Manualoperationwithhandwheelisavailable.39LCV3174SteamGenerator#1LevelControlValveClosedOpenFailsopenonlossofACpowerorcontrolair.Backupairsupplybottlesavailable.Manualoperationwithhandwheelisavailable.40LCV3175SteamGenerator#4LevelControlValveClosedOpenFailsopenonlossofACpowerorcontrolair.Backupairsupplybottlesavailable.Manualoperationwithhandwheelisavailable.41XS3172SteamGenerator#3LevelControlValveTransferSwitchOperationalOperational42XS3173SteamGenerator#2LevelControlValveTransferSwitchOperationalOperational43XS3174SteamGenerator#1LevelControlValveTransferSwitchOperationalOperational44XS3175SteamGenerator#4LevelControlValveTransferSwitchOperationalOperational45L11ASteamGeneratorLevelControlPanelOperationalOperational46L11BSteamGeneratorLevelControlPanelOperationalOperational47HS3172BSteamGenerator#3LevelControlValveHandSwitchOperationalOperational SequoyahNuclearPlantESEPReport PageA6TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState48HS3173BSteamGenerator#2LevelControlValveHandSwitchOperationalOperational49HS3174BSteamGenerator#1LevelControlValveHandSwitchOperationalOperational50HS3175BSteamGenerator#4LevelControlValveHandSwitchOperationalOperational51L661SteamGenerator#2LevelControlValveFLEXBackupAirStationOperationalOperational52L662SteamGenerator#1LevelControlValveFLEXBackupAirStationOperationalOperational53L663SteamGenerator#3LevelControlValveFLEXBackupAirStationOperationalOperational54L664SteamGenerator#4LevelControlValveFLEXBackupAirStationOperationalOperational55LT343SteamGenerator#1WideRangeLevelTransmitterOperationalOperational561LT356SteamGenerator#2WideRangeLevelTransmitterOperationalOperational572LT356SteamGenerator#2WideRangeLevelTransmitterOperationalOperationalUnit2SG3LevelTransmitteronRackL182Unit1SG3LevelTransmitteronRackL70658LT398SteamGenerator#3WideRangeLevelTransmitterOperationalOperational59LT3111SteamGenerator#4WideRangeLevelTransmitterOperationalOperational60L183SteamGeneratorLevelTransmitterRackOperationalOperational SequoyahNuclearPlantESEPReport PageA7TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState61L706SteamGeneratorLevelTransmitterRack(Unit1)OperationalOperational62L704SteamGeneratorLevelTransmitterRackOperationalOperational63L185SteamGeneratorLevelTransmitterRackOperationalOperational64L182SteamGeneratorLevelTransmitterRack(Unit2)OperationalOperational65LI343SteamGenerator#1WideRangeLevelIndicatorOperationalOperational66LI356SteamGenerator#2WideRangeLevelIndicatorOperationalOperational67LI398SteamGenerator#3WideRangeLevelIndicatorOperationalOperational68LI3111SteamGenerator#4WideRangeLevelIndicatorOperationalOperational69PT12ASteamGenerator#1DischargePressureTransmitterOperationalOperational120VVIPBIRack370PT19ASteamGenerator#2DischargePressureTransmitterOperationalOperational120VVIPBIRack371PT120ASteamGenerator#3DischargePressureTransmitterOperationalOperational120VVIPBIRack472PT127ASteamGenerator#4DischargePressureTransmitterOperationalOperational120VVIPBIRack473L194SteamGeneratorDischargePressureTransmitterRackOperationalOperational SequoyahNuclearPlantESEPReport PageA8TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState74L196SteamGeneratorDischargePressureTransmitterRackOperationalOperational75PI12DSteamGenerator#1DischargePressureIndicatorOperationalOperationalChannelAinput76PI19DSteamGenerator#2DischargePressureIndicatorOperationalOperationalChannelAinput77PI120DSteamGenerator#3DischargePressureIndicationOperationalOperationalChannelAinput78PI127DSteamGenerator#4DischargePressureIndicationOperationalOperationalChannelAinput791TNK0020229Unit1CondensateStorageTankOperationalOperationalDCN23191willseismicallyqualifyCSTto2xSSEHCLPF802TNK0020232Unit2CondensateStorageTankOperationalOperationalDCN23191willseismicallyqualifyCSTto2xSSEHCLPF81FCV3179AERCWHeaderBAFWSupplyValveClosedOpenSwitchovertoERCWheader480VMOVBoard1(2)B2B/11Eorhandwheel82FCV3179BERCWHeaderBAFWSupplyValveClosedOpenSwitchovertoERCWheader480VMOVBoard1(2)B2B/11Borhandwheel83FCV3136AERCWHeaderAAFWSupplyValveClosedOpenSwitchovertoERCWheader480VMOVBoard1(2)A2A/2Eorhandwheel84FCV3136BERCWHeaderAAFWSupplyValveClosedOpenSwitchovertoERCWheader480VMOVBoard1(2)A2A/2Borhandwheel85FCV63118ColdLegAccumulator#1IsolationValveOpenClosed86FCV6398ColdLegAccumulator#2IsolationValveOpenClosed SequoyahNuclearPlantESEPReport PageA9TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState87FCV6380ColdLegAccumulator#3IsolationValveOpenClosed88FCV6367ColdLegAccumulator#4IsolationValveOpenClosed891PMP6310ASafetyInjectionPumpStandbyOperational902PMP6310ASafetyInjectionPumpStandbyOperational91HS6310ASafetyInjectionPumpHandSwitchOperationalOperational92M6PanelM6OperationalOperational931TNK0620239BoricAcidTank(BAT)AAvailableAvailable942TNK0620239BoricAcidTank(BAT)BAvailableAvailable950TNK0620243BoricAcidTank(BAT)CAvailableAvailable96HEX0740015RHRHeatExchanger1AIntactIntactRWSTgravityfeedpath97TNK063044RWSTOperationalOperational98PCV0680340ARCSPressurizerPowerReliefValveOperationalOperational125VDCVitalBatteryBoardI99HS68340AAPressurizerPORVHandSwitchOperationalOperational SequoyahNuclearPlantESEPReport PageA10TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState100PDT3044ContainmentPressureDifferentialTransmitterOperationalOperational101PDI3044ContainmentPressureDifferentialIndicatorOperationalOperational1021FAN0300038Unit1ContainmentAirReturnFanAStandbyOperationalPoweredby480VSDB1A11032FAN0300038Unit2ContainmentAirReturnFanAStandbyOperationalPoweredby480VSDB2A1104HS3038AContainmentAirReturnFanAHandSwitchOperationalOperational105M9PanelM9OperationalOperational1061XFA2681AAPHMSXfrm1AOperationalOperationalPowersupplytohydrogenigniters1072XFA2682AAPHMSXfrm2AOperationalOperationalPowersupplytohydrogenigniters1081PNL268YA120VACPHMSDistributionPanel1AOperationalOperationalPowersupplytohydrogenigniters1092PNL268YC120VACPHMSDistributionPanel2AOperationalOperationalPowersupplytohydrogenigniters110TNK018381AA7DayOilSupplyTankAvailableAvailableUsetosupplydieselpoweredFLEXequipment111TNK018401BB7DayOilSupplyTankAvailableAvailableUsetosupplydieselpoweredFLEXequipment112TNK018392AA7DayOilSupplyTankAvailableAvailableUsetosupplydieselpoweredFLEXequipment SequoyahNuclearPlantESEPReport PageA11TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState113TNK018412BB7DayOilSupplyTankAvailableAvailableUsetosupplydieselpoweredFLEXequipment1141BDB201DJ480VShutdownBoardA1AOperationalOperational1151BDB201DK480VShutdownBoardA2AOperationalOperational1161BDB201DL480VShutdownBoardB1BOperationalOperational1171BDB201DM480VShutdownBoardB2BOperationalOperational1182BDB201DN480VShutdownBoardA1AOperationalOperational1192BDB201DO480VShutdownBoardA2AOperationalOperational1202BDB201DP480VShutdownBoardB1BOperationalOperational1212BDB201DQ480VShutdownBoardB2BOperationalOperational1221BDC201GG480VReactorMOVBoard1A1AOperationalOperationalPowertosafetyinjectionaccumulatorisolationMOVs1231BDC201GJ480VReactorMOVBoard1B1BOperationalOperationalPowertosafetyinjectionaccumulatorisolationMOVs1242BDC201GL480VReactorMOVBoard2A1AOperationalOperationalPowertosafetyinjectionaccumulatorisolationMOVs1252BDC201GN480VReactorMOVBoard2B1BOperationalOperationalPowertosafetyinjectionaccumulatorisolationMOVs SequoyahNuclearPlantESEPReport PageA12TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1261BDC201JE480VC&AVentBoard1A1AOperationalOperationalPowertohighpressureFLEXpumpRepoweredby6.9kVFLEXdieselgenerator1271BDC201JF480VC&AVentBoard1A2AOperationalOperationalPowertointermediatepressureFLEXpumpRepoweredby6.9kVFLEXdieselgenerator1282BDC201JJ480VC&AVentBoard2A1AOperationalOperationalPowertohighpressureFLEXpumpRepoweredby6.9kVFLEXdieselgenerator1292BDC201JK480VC&AVentBoard2A2AOperationalOperationalPowertointermediatepressureFLEXPumpRepoweredby6.9kVFLEXdieselgenerator130BDG250KE125VDCVitalBatteryBoardIOperationalOperational131BDG250KF125VDCVitalBatteryBoardIIOperationalOperational132BDG250KG125VDCVitalBatteryBoardIIIOperationalOperational133BDG250KH125VDCVitalBatteryBoardIVOperationalOperational1341BDE250NCD120VACVitalInstrumentPowerBoard1IOperationalOperational1351BDE250NEE120VACVitalInstrumentPowerBoard1IIOperationalOperational1361BDE250NGF120VACVitalInstrumentPowerBoard1IIIOperationalOperational1371BDE250NJG120VACVitalInstrumentPowerBoard1IVOperationalOperational1382BDE250NDD120VACVitalInstrumentPowerBoard2IOperationalOperational SequoyahNuclearPlantESEPReport PageA13TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1392BDE250NFE120VACVitalInstrumentPowerBoard2IIOperationalOperational1402BDE250NHF120VACVitalInstrumentPowerBoard2IIIOperationalOperational1412BDE250NKG120VACVitalInstrumentPowerBoard2IVOperationalOperational1420BATB250QV125VDCVitalBatteryIOperationalOperational1430BATB250QW125VDCVitalBatteryIIOperationalOperational1440BATB250QX125VDCVitalBatteryIIIOperationalOperational1450BATB250QY125VDCVitalBatteryIVOperationalOperational1460CHGB250QE125VDCVitalBatteryChargerIOperationalOperational1470CHGB250QG125VDCVitalBatteryChargerIIOperationalOperational1480CHGB250QH125VDCVitalBatteryChargerIIIOperationalOperational1490CHGB250QJ125VDCVitalBatteryChargerIVOperationalOperational1501INVB250QL120VACVitalInverter1IOperationalOperational1511INVB250QN120VACVitalInverter1IIOperationalOperational SequoyahNuclearPlantESEPReport PageA14TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1521INVB250QR120VACVitalInverter1IIIOperationalOperational1531INVB250QT120VACVitalInverter1IVOperationalOperational1542INVB250QM120VACVitalInverter2IOperationalOperational1552INVB250QP120VACVitalInverter2IIOperationalOperational1562INVB250QS120VACVitalInverter2IIIOperationalOperational1572INVB250QU120VACVitalInverter2IVOperationalOperational1581XE925001N31NeutronDetectorOperationalOperationalUnit1NISChannel11591XM925001AN31NeutronSourceRangeAmplifierOperationalOperational1601XM925001BN31NeutronSourceRangeOpticalIsolatorOperationalOperational1611XI925N31SignalProcessorAppROperationalOperational1621XX925001N31SourceRangeIndicatorOperationalOperational1631XI925001AN31BSourceRangeIndicatorOperationalOperational1642XE925002N32NeutronDetectorOperationalOperationalUnit2NISChannel2 SequoyahNuclearPlantESEPReport PageA15TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1652XM925002AN32NeutronSourceRangeAmplifierOperationalOperational1662XE925002BN32NeutronSourceRangeOpticalIsolatorOperationalOperational1672XI925N32SignalProcessorAppROperationalOperational1682XX925002N32SourceRangeIndicatorOperationalOperational1692XI925002BN32BSourceRangeIndicatorOperationalOperational170L10InstrumentRackOperationalOperational171M4InstrumentPanelOperationalOperational172M13InstrumentPanelOperationalOperational173PT6869RCSLoopWRPressureTransmitterLoop1OperationalOperational174PT6866RCSLoopWRPressureTransmitterLoop3OperationalOperational175PI6869RCSLoopWRPressureIndicationLoop1OperationalOperational176PI6866ARCSLoopWRPressureIndicationLoop3OperationalOperational177L388InstrumentpanelOperationalOperational SequoyahNuclearPlantESEPReport PageA16TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState178L340InstrumentPanelOperationalOperational179L649InstrumentPanelOperationalOperational180R4InstrumentRackOperationalOperational181R5InstrumentRackOperationalOperational182TE6818ColdLegWRTemperatureElementLoop1OperationalOperational183TE6841ColdLegWRTemperatureElementLoop2OperationalOperational184TE6860ColdLegWRTemperatureElementLoop3OperationalOperational185TE6883ColdLegWRTemperatureElementLoop4OperationalOperational186TI6818ColdLegWRTemperatureIndicationLoop1OperationalOperational187TI6841ColdLegWRTemperatureIndicationLoop2OperationalOperational188TI6860ColdLegWRTemperatureIndicationLoop3OperationalOperational189TI6883ColdLegWRTemperatureIndicationLoop4OperationalOperational190TE681HotLegWRTemperatureElementLoop1OperationalOperational SequoyahNuclearPlantESEPReport PageA17TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState191TE6824HotLegWRTemperatureElementLoop2OperationalOperational192TE6843HotLegWRTemperatureElementLoop3OperationalOperational193TE6865HotLegWRTemperatureElementLoop4OperationalOperational194TI681HotLegWRTemperatureIndicationLoop1OperationalOperational195TI6824HotLegWRTemperatureIndicationLoop2OperationalOperational196TI6843HotLegWRTemperatureIndicationLoop3OperationalOperational197TI6865HotLegWRTemperatureIndicationLoop4OperationalOperational198M5InstrumentPanelOperationalOperational199R2InstrumentRackOperationalOperational200R6InstrumentRackOperationalOperational201LT68325CRCSPressurizerLevelTransmitterOperationalOperational202LI68325CRCSPressurizerLevelIndicationOperationalOperational203L179InstrumentationPanelOperationalOperational SequoyahNuclearPlantESEPReport PageA18TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState2040DG360000A480VFLEXDieselGeneratorStandbyOperational2050DG360003A6.9kVFLEXDieselGeneratorStandbyOperational2061PNLA082TUDieselGenerator1BBControlPanelStandbyOperational2071PNLA082TTDieselGeneratorG1AAControlPanelStandbyOperational2082PNLA082TVDieselGenerator2AAControlPanelStandbyOperational2092PNLA082TWDieselGenerator2BBControlPanelStandbyOperational2100BD3600003AFLEXDieselGenerator3ASwitchgearStandbyOperational2110BKR3600003A/1/A2FLEXDG3ASwitchgearBreakerA2StandbyOperationalDCN231972120TANK3601136900V3MWFLEXDGFuelOilStorageTank3AStandbyOperationalDCN231972130SW3600003A/16900V3MWFLEXDieselGEN3AFusedDisconnectSwitchStandbyOperationalDCN231972140XFMR3603A/16900V480V3MWFLEXDieselGEN3A20KVADryTypeTransformerStandbyOperationalDCN231972150XFMR3603A/2480V120/240V3MWFLEXDieselGEN3A5KVADryTypeTransformerStandbyOperationalDCN231972160DPL3600003A/1480VoltDistributionPanelwith100AMainCircuitBreakerStandbyOperationalDCN23197 SequoyahNuclearPlantESEPReport PageA19TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState2170DPL3600003A/2120/240VACPanelboardStandbyOperationalDCN231972180FU13600103APrimaryCntrlFuseforFuelOilPumpAStarterStandbyOperationalDCN231972190FU13600103BSecondaryCntrlFuseforFuelOilPumpAStarterStandbyOperationalDCN231972200FU13600103CPrimaryCntrlFuseforFuelOilPumpAStarterStandbyOperationalDCN231972210HS360103CFuelOilTransferPmpAEmerStopSWStandbyOperationalDCN231972220PMP360103FuelOilSystemTransferPump3AStandbyOperationalDCN231972230RES360003A3MWFLEXDieselGeneratorANeutralGroundingResistorStandbyOperationalDCN231972240STR36001033MWFLEXDieselGeneratorFuelOilTransferPumpStarterStandbyOperationalDCN231972250LS36001033MWFLEXDieselGeneratorFuelOilFloatSwitch(FillPumpControl)StandbyOperationalDCN231972260XSW0820001ATransferSwitch1AStandbyOperationalDCN231972270XSW0820002ATransferSwitch2AStandbyOperationalDCN231972280XSW0820003BTransferSwitch2BStandbyOperationalDCN231972290XSW0820004BTransferSwitch1BStandbyOperationalDCN23197 SequoyahNuclearPlantESEPReport PageA20TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState2301BDA202CMA6.9kVShutdownBoard1AAOperationalOperational2312BDA202COA6.9kVShutdownBoard2AAOperationalOperational2321BDA202CN6.9kVShutdownBoard1BBOperationalOperational2332BDA202CP6.9kVShutdownBoard2BBOperationalOperational2341OXF202DL480VShutdownTransformer1B1OperationalOperationalListedas1XFA2020317inIPEEE2351OXF202DM480VShutdownTransformer1B2OperationalOperationalListedas1XFA2020319inIPEEE2361OXF202DJ480VShutdownTransformer1A1OperationalOperationalListedas1XFA2020313inIPEEE2371OXF202DK480VShutdownTransformer1A2OperationalOperationalListedas1XFA2020315inIPEEE2382OXF202DN480VShutdownTransformer2A1OperationalOperationalListedas2XFA2020315inIPEEE2392OXF202DO480VShutdownTransformer2A2OperationalOperationalListedas2XFA2020313inIPEEE2402OXF202DP480VShutdownTransformer2B1OperationalOperationalListedas2XFA2020319inIPEEE2412OXF202DQ480VShutdownTransformer2B2OperationalOperationalListedas2XFA2020317inIPEEE2421PMP360IP01U1IntermediatePressureFLEXPumpStandbyOperationalPoweredby480VC&AVentBD1A2,DCN23193 SequoyahNuclearPlantESEPReport PageA21TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState2432PMP360IP01U2IntermediatePressureFLEXPumpStandbyOperationalPoweredby480VC&AVentBD2A2,DCN231932441PMP360HPCSU1HighPressureFLEXPumpStandbyOperationalPoweredby480VC&AVentBD1A1,DCN231932452PMP360HPCSU2HighPressureFLEXPumpStandbyOperationalPoweredby480VC&AVentBD2A1,DCN23193246SQN1IGN2680142AUnit1TrainAHydrogenIgniterStandbyOperational247SQN1IGN2680130AUnit1TrainAHydrogenIgniterStandbyOperational248SQN1IGN2680125AUnit1TrainAHydrogenIgniterStandbyOperational249SQN1IGN2680123AUnit1TrainAHydrogenIgniterStandbyOperational250SQN1IGN2680116AUnit1TrainAHydrogenIgniterStandbyOperational251SQN1IGN2680128AUnit1TrainAHydrogenIgniterStandbyOperational252SQN1IGN2680129AUnit1TrainAHydrogenIgniterStandbyOperational253SQN1IGN2680114AUnit1TrainAHydrogenIgniterStandbyOperational254SQN1IGN2680133AUnit1TrainAHydrogenIgniterStandbyOperational255SQN1IGN2680102AUnit1TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport PageA22TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState256SQN1IGN2680115AUnit1TrainAHydrogenIgniterStandbyOperational257SQN1IGN2680132AUnit1TrainAHydrogenIgniterStandbyOperational258SQN1IGN2680108AUnit1TrainAHydrogenIgniterStandbyOperational259SQN1IGN2680127AUnit1TrainAHydrogenIgniterStandbyOperational269SQN1IGN2680155AUnit1TrainAHydrogenIgniterStandbyOperational270SQN1IGN2680136AUnit1TrainAHydrogenIgniterStandbyOperational271SQN1IGN2680131AUnit1TrainAHydrogenIgniterStandbyOperational272SQN1IGN2680121AUnit1TrainAHydrogenIgniterStandbyOperational273SQN1IGN2680122AUnit1TrainAHydrogenIgniterStandbyOperational274SQN1IGN2680135AUnit1TrainAHydrogenIgniterStandbyOperational275SQN1IGN2680159AUnit1TrainAHydrogenIgniterStandbyOperational276SQN1IGN2680126AUnit1TrainAHydrogenIgniterStandbyOperational277SQN1IGN2680107AUnit1TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport PageA23TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState278SQN2IGN2680226AUnit2TrainAHydrogenIgniterStandbyOperational279SQN2IGN2680235AUnit2TrainAHydrogenIgniterStandbyOperational280SQN2IGN2680202AUnit2TrainAHydrogenIgniterStandbyOperational281SQN2IGN2680223AUnit2TrainAHydrogenIgniterStandbyOperational282SQN2IGN2680222AUnit2TrainAHydrogenIgniterStandbyOperational283SQN2IGN2680231AUnit2TrainAHydrogenIgniterStandbyOperational284SQN2IGN2680206AUnit2TrainAHydrogenIgniterStandbyOperational285SQN2IGN2680205AUnit2TrainAHydrogenIgniterStandbyOperational286SQN2IGN2680234AUnit2TrainAHydrogenIgniterStandbyOperational287SQN2IGN2680214AUnit2TrainAHydrogenIgniterStandbyOperational288SQN2IGN2680208AUnit2TrainAHydrogenIgniterStandbyOperational289SQN2IGN2680259AUnit2TrainAHydrogenIgniterStandbyOperational290SQN2IGN2680250AUnit2TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport PageA24TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState291SQN2IGN2680232AUnit2TrainAHydrogenIgniterStandbyOperational292SQN2IGN2680201AUnit2TrainAHydrogenIgniterStandbyOperational293SQN2IGN2680230AUnit2TrainAHydrogenIgniterStandbyOperational294SQN2IGN2680249AUnit2TrainAHydrogenIgniterStandbyOperational295SQN2IGN2680254AUnit2TrainAHydrogenIgniterStandbyOperational296SQN2IGN2680224AUnit2TrainAHydrogenIgniterStandbyOperational297SQN2IGN2680233AUnit2TrainAHydrogenIgniterStandbyOperational298SQN2IGN2680255AUnit2TrainAHydrogenIgniterStandbyOperational299SQN2IGN2680207AUnit2TrainAHydrogenIgniterStandbyOperational300SQN2IGN2680236AUnit2TrainAHydrogenIgniterStandbyOperational301SQN2IGN2680221AUnit2TrainAHydrogenIgniterStandbyOperational302SQN2IGN2680213AUnit2TrainAHydrogenIgniterStandbyOperational303SQN2IGN2680228AUnit2TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport PageA25TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState304SQN2IGN2680216AUnit2TrainAHydrogenIgniterStandbyOperational305SQN2IGN2680229AUnit2TrainAHydrogenIgniterStandbyOperational306SQN2IGN2680242AUnit2TrainAHydrogenIgniterStandbyOperational307SQN2IGN2680227AUnit2TrainAHydrogenIgniterStandbyOperational308SQN2IGN2680215AUnit2TrainAHydrogenIgniterStandbyOperational309SQN2IGN2680225AUnit2TrainAHydrogenIgniterStandbyOperational310SQN1IGN2680105AUnit1TrainAHydrogenIgniterStandbyOperational311SQN1IGN2680154AUnit1TrainAHydrogenIgniterStandbyOperational312SQN1IGN2680106AUnit1TrainAHydrogenIgniterStandbyOperational313SQN1IGN2680113AUnit1TrainAHydrogenIgniterStandbyOperational314SQN1IGN2680149AUnit1TrainAHydrogenIgniterStandbyOperational315SQN1IGN2680101AUnit1TrainAHydrogenIgniterStandbyOperational316SQN1IGN2680150AUnit1TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport PageA26TABLEA1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState317SQN1IGN2680124AUnit1TrainAHydrogenIgniterStandbyOperational318SQN1IGN2680134AUnit1TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport PageB1ATTACHMENTB-ESEPHCLPFVALUESANDFAILUREMODESTABULATIONFORSEQUOYAHNUCLEARPLANT SequoyahNuclearPlantESEPReport PageB2TABLEB1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear PlantEquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)1PCV152PCV15SteamGenerator#1ARVHandwheel7ACB734Screen0.501PCV1302PCV130SteamGenerator#4ARVHandwheel7ACB734Screen0.501L5012L501PCV112LocalControlStation18ACB714Functional0.621L5022L502PCV123LocalControlStation18ACB714Functional0.621PMP31422PMP3142TDAFWPump5ACB669Functional1.011FCV1512FCV151TDAFWPumpTripandThrottleValve8AACB669Screen0.501FCV1522FCV152TDAFWPumpGovernorValve7ACB669Functional1.011XS46572XS4657AFWTASBackupControlTransferServiceWater14ACB669Functional0.881HS151B2HS151BTDAFWPumpTripandThrottleValveHS20ACB669Functional0.881L3812L381TDAFWPumpControlPanel20ACB669Functional0.851L2152L215AFWFlowMonitoringPanel18ACB669Functional0.621L3412L341AFWFlowtoSteamGenerator#3FTRack18ACB714Functional0.621L2172L217AFWFlowtoSteamGenerator#2FTRack18ACB714Functional0.621L2162L216AFWFlowtoSteamGenerator#1FTRack18ACB690Functional0.621L7032L703AFWFlowtoSteamGenerator#4FlowIndicationRack18ACB690Functional0.621L11A2L11ASteamGeneratorLevelControlPanel20ACB734Functional0.751L11B2L11BSteamGeneratorLevelControlPanel20ACB734Functional0.75 SequoyahNuclearPlantESEPReport PageB3TABLEB1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear Plant (Continued)EquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)1L1832L183SteamGeneratorLevelTransmitterRack18RB697Functional0.621L7062L182SteamGeneratorLevelTransmitterRack18RB697Functional0.621L7042L704SteamGeneratorLevelTransmitterRack18RB697Functional0.621L1852L185SteamGeneratorLevelTransmitterRack18RB697Functional0.621L1942L194SteamGeneratorDischargePressureTransmitterRack18ACB690Functional0.621L1962L196SteamGeneratorDischargePressureTransmitterRack18ACB690Functional0.621TNK0020229Unit1CondensateStorageTank21YARD705DCN23191>2xSSE2TNK0020232Unit2CondensateStorageTank21YARD705DCN23191>2xSSE1FCV631182FCV63118ColdLegAccumulator#1IsolationValve8aRB693Screen0.501FCV63982FCV6398ColdLegAccumulator#2IsolationValve8aRB693Screen0.501FCV63802FCV6380ColdLegAccumulator#3IsolationValve8aRB693Screen0.501FCV63672FCV6367ColdLegAccumulator#4IsolationValve8aRB693Screen0.501M62M6MCRBenchboardM620ACB732MainControlRoomCeiling0.4251TNK0620239BoricAcidTank(BAT)A21ACB690OverturningMoment0.782TNK0620239BoricAcidTank(BAT)B21ACB690OverturningMoment0.780TNK0620243BoricAcidTank(BAT)C21ACB690OverturningMoment0.781M92M9MCRVerticalPanelM920ACB732MainControlRoomCeiling0.425 SequoyahNuclearPlantESEPReport PageB4TABLEB1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear Plant (Continued)EquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)SQN1IGN268(MANY)HydrogenIgniters0RBSCVScreen0.501XFA2681AAPHMSXfrm1A4ACB759Functional0.362XFA2682AAPHMSXfrm2A4ACB759Functional0.361PNL268YA120VACPHMSDistributionPanel1A14ACB759Functional0.362PNL268YC120VACPHMSDistributionPanel2A14ACB759Functional0.36TNK018381AA7DayOilSupplyTank21DGB719Screen0.50TNK018401BB7DayOilSupplyTank21DGB719Screen0.50TNK018392AA7DayOilSupplyTank21DGB719Screen0.50TNK018412BB7DayOilSupplyTank21DGB719Screen0.501XE925001N31NeutronDetector18RB697Screen0.501XM925001AN31NeutronSourceRangeAmplifier20ACB734Screen0.501XM925001BN31NeutronSourceRangeOpticalIsolation20ACB734Screen0.502XE925002N32NeutronDetector18RB697Screen0.502XM925002AN32NeutronSourceRangeAmplifier20ACB714Screen0.50 SequoyahNuclearPlantESEPReport PageB5TABLEB1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear Plant (Continued)EquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)2XM925002BN32NeutronSourceRangeOpticalIsolation20ACB714Screen0.501L102L10RemoteControlPanelL1020ACB734Functional0.4251M42M4MCRBenchboardM420ACB732MainControlRoomCeiling0.4251M132M13MCRVerticalPanelM1320ACB732MainControlRoomCeiling0.4251L3882L388RCSLoopWRPTLoop1InstrumentRack28ACB690Functional0.621L3402L340RCSLoopWRPTLoop3InstrumentRack28ACB690Functional0.621R42R4AIRPanelR420ACB685Functional0.641R52R5AIRPanelR520ACB685Functional0.641TE68182TE6818ColdLegWRTemperatureElementLoop119RB693Screen0.501TE68412TE6841ColdLegWRTemperatureElementLoop219RB693Screen0.501TE68602TE6860ColdLegWRTemperatureElementLoop319RB693Screen0.501TE68832TE6883ColdLegWRTemperatureElementLoop419RB693Screen0.501TE6812TE681HotLegWRTemperatureElementLoop119RB679Screen0.501TE68242TE6824HotLegWRTemperatureElementLoop219RB679Screen0.501TE68432TE6843HotLegWRTemperatureElementLoop319RB679Screen0.501TE68652TE6865HotLegWRTemperatureElementLoop419RB679Screen0.501M52M5MCRBenchboardM520ACB732MainControlRoomCeiling0.425 SequoyahNuclearPlantESEPReport PageB6TABLEB1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear Plant (Continued)EquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)1R22R2AIRPanelR220ACB685Functional0.641R62R6AIRPanelR620ACB685Functional0.641L1792L179RCSPressurizerLevelTransmitterInstrumentRack18RBFunctional0.622XM925002BN32NeutronSourceRangeOpticalIso.20ACB714Screen0.501M2CabinetM220ACB732MainControlRoomCeiling0.4251FCV3136A2FCV3136AERCWHeaderAAFWSupplyValve8aACB669Screen0.501FCV3136B2FCV3136BERCWHeaderAAFWSupplyValve8aACB669Screen0.501FCV3179A2FCV3179AERCWHeaderBAFWSupplyValve8aACB669Screen0.501FCV3179B2FCV3179BERCWHeaderBAFWSupplyValve8aACB669Screen0.50 E2-1 of 1 ENCLOSURE 2 LIST OF COMMITMENTS

1. Perform seismic walkdowns, generate HCLPF calculations, and design and implement any necessary modification for the following Unit 1 inaccessible items no later than the end of the second planned Unit 1 refueling outage after December 31, 2014:
a. FCV 63-118 - Cold Leg Accumulator Isolation Valve #1
b. FCV 63-067 - Cold Leg Accumulator Isolation Valve #4 c. FCV 63-080 - Cold Leg Accumulator Isolation Valve #3 d. FCV 63-098 - Cold Leg Accumulator Isolation Valve #2
e. Instrument Rack 1 - L - 182 located in Fan Room 2
f. Instrument Rack 1 - L - 183 located in Fan Room 1
g. Instrument Rack 1 - L - 179 h. Instrument Rack 1 - L - 185 i. Instrument Rack 1 - L - 704
j. Instrument Rack 1 - L - 706
k. Instrument Rack 1 - L - 194
l. Instrument Rack 1 - L - 196
m. Instrument Rack 1 - L - 216
2. Modify TDAFP Control Panel 2-L-381 anchorage to replace the corroded anchor such that HCLPH > RLGM no later than the end of the U2 Cycle 20 refueling outage.
3. Submit a letter to NRC summarizing the HCLPF results of Commitment 1 and confirming implementation of the plant modifications associated with Commitment 2 within 60 days following completion of ESEP activities.