ML23192A447
ML23192A447 | |
Person / Time | |
---|---|
Site: | Browns Ferry, Watts Bar, Sequoyah |
Issue date: | 07/31/2023 |
From: | Kimberly Green NRC/NRR/DORL/LPL2-2 |
To: | Jim Barstow Tennessee Valley Authority |
References | |
Download: ML23192A447 (1) | |
Text
July 31, 2023 Mr. James Barstow Vice President, Nuclear Regulatory Affairs and Support Services Tennessee Valley Authority 1101 Market Street, LP 4A-C Chattanooga, TN 37402-2801
SUBJECT:
BROWNS FERRY NUCLEAR PLANT, UNITS 1, 2 AND 3; SEQUOYAH NUCLEAR PLANT, UNITS 1 AND 2; WATTS BAR NUCLEAR PLANT, UNITS 1 AND 2 - STAFF ASSESSMENT OF UPDATED SEISMIC HAZARDS AT TVA SITES FOLLOWING THE NRC PROCESS FOR THE ONGOING ASSESSMENT OF NATURAL HAZARDS INFORMATION
Dear Mr. Barstow:
The purpose of this letter is to document the U.S. Nuclear Regulatory Commission (NRC) staffs assessment of seismic hazards at the Browns Ferry Nuclear Plant, Units 1, 2, and 3 (Browns Ferry), Sequoyah Nuclear Plant, Units 1 and 2 (Sequoyah), and Watts Bar Nuclear Plant, Units 1 and 2 (Watts Bar), following the process for the ongoing assessment of natural hazards information.
The enclosed seismic hazard reports provide the NRC staffs updated seismic hazard curves and response spectra for the Browns Ferry, Sequoyah, and Watts Bar plant sites that are based on the implementation of (1) a new seismic ground motion model for the central and eastern North America and (2) recent advances in site response analysis. The NRC staffs updated hazard curves and site amplification factors are included in the enclosed seismic hazard reports.
The NRC staff conducted a screening evaluation that compared the updated seismic hazard curves contained in the attached report with previous seismic hazard curves developed by the Tennessee Valley Authority (TVA) for Browns Ferry, Sequoyah, and Watts Bar. Based on its comparison and evaluation of the updated seismic hazard curves in combination with an estimate of the Browns Ferry, Sequoyah, and Watts Bar, seismic capacity and available information on the consideration of seismic events in Browns Ferrys, Sequoyahs, and Watts Bars approved risk-informed programs, the NRC staff has determined that no further regulatory evaluation of, or action to modify, the Browns Ferry, Sequoyah, and Watts Bar, plant seismic risk licensing basis is warranted.
Although the NRC staff is taking no further action at this time, the control point seismic hazard curves developed by the NRC staff for these reports may be considered in the context of potential future evaluations of the Browns Ferry, Sequoyah, and Watts Bar plant sites by the NRC staff (e.g., future license amendment requests) consistent with agency policy procedures (e.g., NRC Management Directive 8.4, Management of Backfitting, Forward Fitting, Issue Finality, and Information Requests).
J. Barstow The NRC staff plans to make the enclosed Seismic Hazard Reports publicly available five working days from the date of this letter, pending the identification of any factual inaccuracies.
If you have any questions, please contact me at (301) 415-1627 or via email at Kimberly.Green@nrc.gov.
Sincerely,
/RA/
Kimberly J. Green, Project Manager Plant Licensing Branch II-2 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation Docket Nos. 50-259, 50-260, 50-296 50-327, 50-328, 50-390, 50-391
Enclosures:
- 1. Browns Ferry Seismic Hazard Report
- 2. Sequoyah Seismic Hazard Report
- 3. Watts Bar Seismic Hazard Report
ENCLOSURE 1 BROWNS FERRY SEISMIC HAZARDS REPORT
Browns Ferry Seismic Hazard Report Overview This report provides the NRC staffs updated seismic hazard curves and response spectra for the Browns Ferry Nuclear Plant (Browns Ferry) site that are based on the implementation of (1) a new seismic ground motion model for the central and eastern United States (CEUS) and (2) recent advances in site response analysis. The NRC staffs updated hazard curves and site amplification factors are included in an appendix to this report.
Background
In response to the March 11, 2011, Great East Japan Earthquake and tsunami, which triggered an accident at the Fukushima Dai-ichi nuclear power plant, the U.S. Nuclear Regulatory Commission (NRC) established the Near-Term Task Force (NTTF) to conduct a systematic and methodical review of NRC processes and regulations and determine whether the agency should make additional improvements to its regulatory system. In SECY-11-0093, Near-Term Report and Recommendations for Agency Actions Following the Events in Japan, dated July 12, 2011 (NRC, 2011), the NRC staff recommended a set of actions to clarify and strengthen the regulatory framework for protection against natural hazards. In particular, NTTF Recommendation 2.1 (NTTF R2.1) instructed the NRC staff to issue requests for information to all power reactor licensees pursuant to Title 10 of the Code of Federal Regulations 50.54(f)
(50.54(f) letter). Enclosure 1 to the 50.54(f) letter requested that addressees reevaluate the seismic hazards at their sites, using present day NRC requirements and guidance to perform a probabilistic seismic hazard analysis (PSHA) and develop a site-specific ground motion response spectrum (GMRS). To comply with the 50.54(f) request, the Nuclear Energy Institute submitted Electric Power Research Institute (EPRI) Report 1025287, Seismic Evaluation Guidance: Screening, Prioritization, and Implementation Details (SPID) for the Resolution of Fukushima NTTF Recommendation 2.1 Seismic, dated November 27, 2012 (EPRI, 2012).
Recipients of the 50.54(f) letter committed to following the SPID to develop seismic hazard and screening reports (SHSRs). By December 2017, the NRC staff had finished assessing the SHSRs for all operating U.S. nuclear power plants.
Under the process for the ongoing assessment of natural hazards information (POANHI),
described in SECY-16-0144, Proposed Resolution of Remaining Tier 2 and 3 Recommendations Resulting from the Fukushima Dai-ichi Accident, dated December 26, 2016 (NRC, 2016), the NRC staff continuously seeks out and integrates new natural hazards information for operating plants in the United States. The Office of Nuclear Reactor Regulations Office Instruction LIC-208, Process for the Ongoing Assessment of Natural Hazards Information, issued November 2019 (NRC, 2019), provides guidance to the staff on how to collect, integrate, and evaluate new information for consideration in its regulatory decision-making. This report presents the NRC staffs latest understanding of seismic hazards at the Browns Ferry site following the POANHI framework.
2 The Browns Ferry site is located on the northern shore of Wheeler Reservoir along the Tennessee River within the Interior Low Plateaus physiographic province and is founded on competent sedimentary rock (limestone, shale, and dolomite) of Paleozoic age, which is assumed to be about 1,500 meters thick.
Motivation After evaluating the SHSR submittals, the NRC staff captured in NUREG/KM-0017, Seismic Hazards Evaluations for U.S. Nuclear Power Plants: Near-Term Task Force Recommendation 2.1 Results, issued December 2021 (Munson et al., 2021), the information used to develop the GMRS at each of the U.S. nuclear power plants. This includes a compilation and synthesis of (1) information provided by licensees in their SHSRs, (2) information collected by the NRC staff during its reviews of the SHSRs, and (3) information subsequently collected by the NRC staff from the scientific and engineering literature pertaining to several of the nuclear power plant sites. In addition, NUREG/KM-0017 includes updated approaches and relationships, relative to those recommended by the SPID, that the NRC staff used to perform its analyses.
After the development of NUREG/KM-0017, a new Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 ground motion model (GMM) for Eastern North America called NGA-East was published by Goulet et al. (2018). In addition, the NRC staff also participated in a SSHAC Level 2 study, documented in Research Information Letter (RIL) 2021--15, Documentation Report for SSHAC Level 2: Site Response, issued November 2021 (Rodriguez-Marek et al., 2021). This SSHAC Level 2 study implemented the SSHAC approach to performing site response analyses (SRAs). The SSHAC process, described most recently in NUREG-2213, Updated Implementation Guidelines for SSHAC Hazard Studies, issued October 2018 (Ake et al., 2018),
provides a structured and logical framework for the systematic evaluation of alternative data, models, and methods. This seismic hazard report for the Browns Ferry site incorporates the NGA-East GMM in place of the EPRI (2013) GMM and lessons learned from the SSHAC Level 2 SRA study (RIL 2021-15) into a PSHA to develop updated seismic hazard curves and a GMRS for the site.
Methods Reference Rock Hazard For the reference rock PSHA, the NRC staff used the distributed seismicity zones (DSZs) from the SSHAC Level 3 Central and Eastern United States Seismic Source Characterization for Nuclear Facilities (CEUS-SSC) model in NUREG-2115, Central and Eastern United States Seismic Source Characterization for Nuclear Facilities, issued January 2012 (NRC, 2012).
Specifically, the NRC staff selected the DSZs that are located within 500 kilometers of the site.
For this reevaluation, the NRC staff used the SSHAC Level 2 update to the CEUS-SSC seismicity catalog and recurrence parameters (Gatlin, 2015), which primarily impact the DSZs that encompass Monticello Reservoir and Lake Keowee in South Carolina as well as the 1886 Charleston earthquake sequence. In addition, the NRC staff selected the RLME sources that are within 1,000 kilometers of the site. To develop the reference rock seismic hazard curves for the site, the NRC staff used the NGA-East GMM (2018) to compute the median and logarithmic
3 standard deviation of the spectral accelerations. Because the NGA-East GMM implements the rupture distance parameter, the NRC staff developed virtual rupture planes for each of the distributed source zones surrounding the site. For each virtual rupture, the NRC staff used the CEUS-SSC hazard input document (NRC, 2012) to specify the size of the rupture plane and the orientation of the rupture plane in terms of the strike and dip angles, dip direction, and rupture type (e.g., reverse and strike slip). In contrast, to develop the hazard curves for NUREG/KM-0017, the NRC staff used point source approximations for the CEUS-SSC and EPRI GMM (EPRI, 2013) combination.
Figure 1 shows the distribution of the virtual ruptures for one of the four alternative CEUS-SSC seismotectonic DSZ configurations along with the resulting 10-Hertz (Hz) mean hazard curves developed using the NGA-East GMM. In particular, Figure 1 shows the distribution of the surface projection of the updip segments of the virtual rupture planes for each of the six seismotectonic DSZs within 500 kilometers of the site. As expected, the Midcontinent Craton Geometry A (MIDC-A) source zone, which surrounds the site, is the largest contributor to the 10 Hz reference rock mean hazard curves at the 10-4 annual frequency of exceedance (AFE) level. Similarly, Figure 2 shows the distribution of the virtual ruptures for one of the three alternative CEUS-SSC maximum-magnitude DSZ configurations along with the resulting 10 Hz mean hazard curves developed using the NGA-East GMM. The Non-Mesozoic-and-Younger ExtensionNarrow Configuration (NMESE-N) source zone, which surrounds the site, is the largest contributor to the 10 Hz reference rock mean hazard curves at the 10-4 AFE level.
Figure 3 shows the RLME sources within 1,000 kilometers of the site, and their contribution to the 1 Hz reference rock mean hazard, from using the NGA-East GMM. The New Madrid Fault System RLME source is the largest contributor to the 1 Hz reference rock mean hazard curves at the 10-4 AFE level. Figure 4 shows the contribution from all of the DSZs relative to the RLMEs, as well as the total mean hazard for the 1 and 10 Hz mean reference rock hazard curves, from using the NGA-East GMM. For both the 1 and 10 Hz mean reference rock hazard curves, the RLME sources provide the largest contribution at the 10-4 AFE level. Finally, Figure 5 shows the mean 1,000-, 10,000-, and 100,000-year return period mean reference rock uniform hazard response spectra (UHRS) for the Browns Ferry site from using the EPRI GMM (blue) and the NGA-East GMM (red). For this reevaluation, the NRC staff used the NGA-East single station standard deviation and for the comparison shown in Figure 5, the NRC staff used the EPRI GMM ergodic standard deviation. As shown in Figure 5, the spectral accelerations from using the NGA-East GMM are higher than those from using the EPRI GMM, up to the spectral frequency of about 25 Hz. This result is due to the larger hazard that the New Madrid Fault System RLME contributes to the total mean hazard relative to the hazard from the DSZs for not just the lower frequencies (Figure 4 left) but also for the higher frequencies (Figure 4 right). The NGA-East GMM predicts higher median ground motions than the EPRI GMM for larger magnitude earthquakes and because the large and distant New Madrid Fault System RLME dominates the hazard for both the lower and higher spectral frequencies, the UHRS (see Figure 5) developed from using the NGA-East GMM have higher amplitudes than the UHRS developed using the EPRI GMM.
4 Site Response Analysis SRAs, which are used to develop site adjustment (or amplification) factors , depend on several factors, including the site strata (material type, stiffness, and thickness) and their response to dynamic loading. Because this information is site specific, the ability to accurately model the site response depends on the quantity and quality of site-specific geologic and geotechnical data available, and on the interpretation and use of these data to develop input models for assessing amplification (or deamplification) of ground motions. The resulting are assessed for a wide range of input ground motions as part of understanding the changes in the soil and rock response as input ground motions increase.
The NRC staff followed the site response approach described in RIL 2021-15, which uses a logic tree for systematically identifying and propagating epistemic uncertainties in the SRA. As described in RIL 2021-15, to produce a truly probabilistic estimate of the seismic hazard at the control point elevation, it is necessary to estimate both the epistemic uncertainties and the aleatory variability of the soil and or rock dynamic response, and to propagate these through the SRA and the calculation of the site hazard curves.
Site Exploration. As described in the NTTF R2.1 SHSR submitted by the Tennessee Valley Authority (TVA; Shea, 2014) and summarized in section 2.3.12 of NUREG/KM-0017, the field investigations for Browns Ferry consisted of downhole and crosshole geophysical measurements of the uppermost soil and rock strata to a depth of 31 meters. In addition to the field investigations conducted for the initial siting of the plant, TVA performed a more recent surface geophysics program as part of its seismic probabilistic risk assessment (SPRA) NTTF R2.1 submittal (Polickoski, 2019) consisting of Spectral Analysis of Surface Waves (SASW) testing to estimate shear wave velocities ( at the Browns Ferry site.
Basecase Profiles. TVA stated in its NTTF R2.1 SHSR (Shea, 2014) that the Browns Ferry site consists of a thin layer (about 15 m) of clay, clayey gravel, and gravel overlying about 15 m of fossiliferous limestone that grades into the Fort Payne Formation, which contains chert, cherty limestone and shale. The major structures of the Browns Ferry plant are founded on the Fort Payne Formation. For its site response analysis , TVA used the top of the Fort Payne Formation, which corresponds to an elevation of 156 m above mean sea level, as the control point elevation for the Brown Ferry site. Based on its field geophysical measurements (Polickoski, 2019), TVA estimated a of about 1,830 meters/second (m/s) for the uppermost 2 meters of the Fort Payne Formation followed by a of about 2,438 m/s from 2 to 6 meters and a of 3,048 m/s from 6 to 24 meters. TVA then estimated a very thin 1-meter layer with a low of about 991 m/s followed by an increase in to about 2,652 m/s for 10 meters and then a final of about 2,515 m/s for the remainder of the 1,023 meters of the profile. Other than the uppermost portion of the profile and the thin 1-meter layer at a depth of 24 meters, the majority of the basecase profile developed by TVA has values that are close to the NGA-East reference condition of 3,000 m/s. TVA stated (Polickoski, 2019) that the data collected through its geophysics program did not support the modeling of multiple basecase profiles and, as such, developed a single best-estimate basecase profile for its SPRA site response analysis.
5 As TVA conducted multiple recent geophysical field investigations to characterize the sedimentary strata beneath the Browns Ferry site, the NRC staff used TVAs layer thicknesses and for its best-estimate basecase profile.
Based on (1) the heterogeneity of the stratigraphy of the Interior Low Plateaus physiographic province in the vicinity of the Browns Ferry site and (2) consistent with the NRC staffs effort to capture a wider range of uncertainty (RIL 2021-15), the NRC staff developed lower and upper basecase profiles by multiplying its best-estimate basecase profile by scale factors of 0.82 and 1.21, respectively, which corresponds to an epistemic logarithmic standard deviation of 0.15.
The weights for the lower, best-estimate, and upper basecase profiles are 0.3, 0.4, and 0.3, respectively. Figure 6 shows the three lower, best-estimate, and upper basecase profiles used by the NRC staff. The lower epistemic value used by the NRC staff to determine the lower and upper basecase profiles is due to the staffs conclusion that the lithology of the sedimentary strata beneath Browns Ferry site likely has a low range in .
Site Kappa. To estimate the site kappa ( ), which captures the overall attenuation (i.e., intrinsic and scattering attenuation) of the geologic profile, the NRC staff used the four - models from Campbell (2009), where is the effective quality factor of shear waves, which captures both the frequency-independent component of intrinsic attenuation and small-scale scattering.
For each of the four - models, the NRC staff estimated a for each layer in the basecase profiles, then used the estimated , , and layer thickness to determine a for each layer. Summing these values for each layer and adding the reference value of 6 milliseconds (msec) provides an estimate of the total . The NRC staff used a weight of 0.25 for each of the four - models. Assuming a lognormal distribution for with a logarithmic standard deviation of 0.2 from Xu et al. (2020), the NRC staff developed a nine-point discrete distribution. This results in 45 values and associated weights for each of the basecase profiles, which the NRC staff then resampled using the approach from Miller and Rice (1983) to reduce the distribution to five representative values and associated weights. These five values and weights, which are listed in Table 1, range from 6 msec to 22 msec for the three basecase profiles.
Nonlinear Dynamic Properties. For the equivalent linear (EQL) SRA, nonlinearity is incorporated using strain-compatible site properties (i.e., shear modulus and damping ratio) for each layer. The strain-compatible properties model both the shear modulus reduction and the increased damping that are expected as the intensity of shaking increases. To model the nonlinear response within 1-meter-thick lower velocity layer in the profile, the NRC staff used the EPRI rock modulus reduction and damping (MRD) curves (EPRI, 1993).
Table 2 provides the layer depths, lithologies, , unit weights, and dynamic properties for the NRC staffs three basecase profiles. It is important to note that the NRC staff has adjusted the critical damping ratio values in each of the layers of the profiles, which are treated as having a linear response, so that each profile as a whole has the appropriate value. Figure 7, which shows tornado plots for the reference rock peak ground acceleration (PGA) value of 0.64g, shows the site response logic tree nodes that contribute to the variance of the . Each
6 tornado plot in Figure 7 is associated with one of the four oscillator frequencies of 1, 5, 10, and 100 Hz. For each of the four frequencies, the epistemic uncertainty in the basecase contributes the most to the variance in the .
Input Motions. Input motions used for the SRA were generated as outcrop motions at the reference rock horizon, located at the bottom of the basecase profiles. The NRC staff used random vibration theory to generate the input motions after first developing an input Fourier amplitude spectrum (FAS) using seismological source theory (i.e., single-corner frequency Brune source spectrum). To develop the FAS, the NRC staff used the source and regional attenuation parameters recommended in the SPID for Eastern North American rock sites and then used random vibration theory to develop corresponding 5 percent damped acceleration response spectra. The NRC staff developed 12 input FAS assuming a magnitude () of 6.5 and 12 different source-to-site distances, as recommended in the SPID.
Analysis Methodology. To develop for the Browns Ferry site, the NRC staff used traditional EQL analysis and the recently developed kappa-corrected EQL analysis, which adjusts the high-frequency control point (i.e., top of profile) FAS from the EQL SRA to be consistent with the target value. In particular, the NRC staff used the kappa-corrected EQL analysis methodology (Xu and Rathje, 2021) with the modification in which the EQL control point FAS remains unmodified below a specified transition frequency, and then a slope equal to the target value is imposed at frequencies above the transition frequency (RIL 2021-15). To capture the uncertainty in this transition frequency value, the NRC staff selected three frequencies for which the FAS amplitude equals 5 percent, 11 percent, and 17 percent of its peak value, with weights of 0.2, 0.6, and 0.2, respectively.
To capture the spatial variability in site properties across the site, the NRC staff generated randomized profiles around each of the basecase profiles using the Toro (1995) model, which quantifies the aleatory variability through a depth-dependent standard deviation of the natural log of the velocities. The logarithmic standard deviation values used by the NRC staff for the Browns Ferry site were based on site-specific data and are shown in Table 2. In addition to randomizing the profiles, the NRC staff also randomized the MRD curves following the logit function approach used in the SPID and described in RIL 2021-15.
For each terminal branch of the site response logic tree, the NRC staff developed 60 randomized profiles and then determined the by dividing the computed control point response spectrum by the outcrop response spectrum for the reference condition. Next, the NRC staff computed a median and logarithmic standard deviation for the , using the 60 from the randomized profiles, for each terminal branch of the logic tree. To facilitate implementing the medians and logarithmic standard deviations into the PSHA seismic hazard integral, the NRC staff reduced the median s from the over 200 logic tree terminal branches to seven discrete fractiles and weights using the resampling procedure outlined by Miller and Rice (1983). As recommended by Rodriguez-Marek et al. (2021), to ensure that estimates of the SRA capture enough epistemic uncertainty in the median , the NRC staff implemented a minimum logarithmic standard deviation value of 0.15, which causes the seven median fractiles to spread apart if necessary.
7 Finally, because the logarithmic standard deviation for each spectral frequency does not vary significantly across the terminal branches of the logic tree, the NRC staff used a single mean value for each frequency. In addition, to avoid double-counting the aleatory variability already captured by the GMM, the NRC staff adjusted the logarithmic standard deviation to include only the portion of the standard deviation associated with the nonlinear site response.
Figure 8 shows the seven median values (top) and the average logarithmic standard deviation (bottom) as a function of input reference rock spectral acceleration for the 1 and 10 Hz spectral frequencies. As shown in Figure 8, the median range from about 0.8 to 1.5 and remain constant with higher input spectral accelerations. The lower half of Figure 8 shows both the total and the nonlinear values of the logarithmic standard deviation, the latter of which are implemented into the PSHA hazard integral. Figure 9 shows the seven median values versus frequency at the 10-4 AFE spectral acceleration value for each of the 23 NGA-East GMM spectral frequencies as well for PGA, which is plotted at 200 Hz. Overall, the Browns Ferry site produces a flat from about 0.1 Hz to 3 Hz and then falls off over the higher frequencies out to about 40 Hz.
Control Point Hazard and Ground Motion Response Spectra The NRC staff calculated the mean control point hazard for the Browns Ferry site using Convolution Approach 3 from NUREG/CR-6728, Technical Basis for Revision of Regulatory Guidance on Design Ground Motions: Hazard- and Risk-Consistent Ground Motion Spectra Guidelines, issued October 2001 (McGuire et al., 2001), which convolves the predetermined mean reference condition hazard with the . For each NGA-East GMM spectral frequency, the NRC staff convolved the mean reference condition hazard curve with the seven to determine the final mean control point hazard. Using the mean control point hazard curves, the NRC staff then determined the 10-4 and 10-5 UHRS in order to calculate the final GMRS for the site, which are provided in Table 3. Figure 10 shows this final GMRS (red curve) compared to the GMRS (black curve) developed for NUREG/KM-0017, the GMRS (blue curve) in TVAs SHSR (Shea, 2014) and the GMRS (purple curve) in TVAs seismic probabilistic risk assessment (SPRA; Polickoski, 2019). The years in the legend for Figure 10 show when the GMRS were developed either by TVA or the NRC staff. As shown in Figure 10, the final GMRS from this study is higher than the previous GMRS for the frequencies out to about 20 Hz and then is lower than the previous GMRS above 20 Hz. The higher spectral accelerations for the updated GMRS up to 20 Hz are due to the NGA-East GMM, which predicts higher median ground motions for the larger magnitude RLMEs, which dominate both the low and higher spectral frequencies, relative to the EPRI GMM (see Figure 5) for the Browns Ferry site. Based on a sensitivity analysis, the NRC staff found that the lower spectral accelerations in the upper frequencies for the updated GMRS developed by this study and the previous GMRS are due to the higher values estimated for the Browns Ferry site (see Table 1), compared to the lower values estimated for the previous studies.
Data Tables Appendix A provides the data tables for the Browns Ferry site. Tables A-1, A-2, and A-3 give the reference rock mean hazard curves for 23 spectral frequencies ranging from 0.1 to 100 Hz and
8 for PGA. Tables A-4 through A-27 give the medians and logarithmic standard deviations for the 23 spectral frequencies and for PGA. Tables A-28, A-29, and A-30 give the control point hazard mean hazard curves for the 23 spectral frequencies and for PGA.
References Campbell, K.W. Estimates of Shear-Wave Q and 0 for Unconsolidated and Semiconsolidated Sediments in Eastern North America. Bulletin of the Seismological Society of America. Vol. 99, No. 4, pp. 2365-2392. August 2009.
Electric Power Research Institute (EPRI). Guidelines for Determining Design Basis Ground Motions, Vol. 1-5. EPRI TR-102293. Palo Alto, CA. 1993.
EPRI. EPRI (2004, 2006) Ground-Motion Model (GMM) Review Project: Final Report.
Palo Alto, CA. June 2013. ADAMS Accession No. ML13155A553.
EPRI. Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic.
EPRI Report 1025287. Palo Alto, CA. November 27, 2012. ADAMS Accession No. ML12333A170.
Gatlin, T.D., Letter from South Carolina Electric & Gas to the NRC. Response to the NRC Request for Additional Information Associated with Near-Term Task Force Recommendation 2.1, Seismic Re-Evaluations, April 28, 2015. ADAMS Accession No. ML15124A596.
Goulet, C.A., Y. Bozorgnia, N. Abrahamson, N. Kuehn, L. Al Atik, R. Youngs, R. Graves, and G. Atkinson. Central and Eastern North America Ground-Motion CharacterizationNGA-East Final Report. PEER Report 2018-08. Pacific Earthquake Engineering Research Center.
Berkeley, CA. 2018.
Miller, A.C., III, and T.R. Rice. Discrete Approximations of Probability Distributions.
Management Science. Vol. 29, No. 3, pp. 352-362. 1983.
National Center for Research on Earthquake Engineering (NCREE). Development of GMRS and FIRS for Nuclear Power Plants in Taiwan. 2021.
U.S. Nuclear Regulatory Commission (NRC). Near-Term Report and Recommendations for Agency Actions Following the Events in Japan. SECY-11-0093. Washington, DC.
July 12, 2011. ADAMS Accession No. ML11186A950.
NRC. Proposed Resolution of Remaining Tier 2 and 3 Recommendations Resulting from the Fukushima Dai-ichi Accident. SECY-16-0144. Washington, DC. December 29, 2016. ADAMS Accession No. ML16286A552.
NRC. Central and Eastern United States Seismic Source Characterization for Nuclear Facilities. NUREG-2115. Washington, DC. January 2012. ADAMS Accession No. ML12048A776.
NRC. Updated Implementation Guidelines for SSHAC Hazard Studies. Ake, J., C. Munson, J.
Stamatakos, M. Juckett, K. Coppersmith and J. Bommer. NUREG-2213. Washington, DC.
October 2018. ADAMS Accession No. ML18282A082.
9 NRC. Technical Basis for Revision of Regulatory Guidance on Design Ground Motions:
Hazard- and Risk-Consistent Ground Motion Spectra Guidelines. McGuire, R.K., W.J. Silva, and C.J. Costantino. NUREG/CR-6728. Washington, DC. October 2001. ADAMS Accession No. ML013100232.
NRC. Seismic Hazards Evaluations for U.S. Nuclear Power Plants: Near-Term Task Force Recommendation 2.1 Results. Munson, C., J. Ake, J. Stamatakos and M. Juckett.
NUREG/KM-0017. Washington, DC. December 2021. ADAMS Accession No. ML21344A126.
NRC. Process for the Ongoing Assessment of Natural Hazards Information. Office of Nuclear Reactor Regulation (NRR) Office Instruction LIC-208. Washington, DC. November 2019.
ADAMS Accession No. ML19210C288.
Polickoski, J.T. Letter from Tennessee Valley Authority to the NRC. Seismic Probabilistic Risk Assessment for Browns Ferry Nuclear Plant, Units 1 and 2 - Response to NRC Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident. December 17, 2019. ADAMS Accession No. ML19351E391.
Rodriguez-Marek, A., E. Rathje, J. Ake, C. Munson, S. Stovall, T. Weaver, K. Ulmer and M. Juckett. Documentation Report for SSHAC Level 2: Site Response. Research Information Letter (RIL) 2021-15. Washington, DC. November 2021. ADAMS Accession No. ML21323A056.
Shea, J.W. Letter from Tennessee Valley Authority to the NRC. Tennessee Valley Authoritys Seismic Hazard and Screening Report (CEUS Sites), Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident. March 31, 2014. ADAMS Accession No. ML14098A478.
Toro, G. Probabilistic Models of Site Velocity Profiles for Generic and Site-Specific Ground-Motion Amplification Studies. Technical Report No. 779574. Brookhaven National Laboratory. Upton, NY. 1995.
Xu, B., E.M. Rathje, Y. Hashash, J. Stewart, K. Campbell, and W.J. Silva. 0 for Soil Sites:
Observations from KiK-net Sites and Their Use in Constraining Small-Strain Damping Profiles for Site Response Analysis. Earthquake Spectra. Vol. 36, Iss. 1, pp. 111-137. 2020.
Xu, B. and E.M. Rathje. The Effect of Soil Nonlinearity on High-Frequency Spectral Decay and Implications for Site Response Analysis. Earthquake Spectra. Vol. 37, Iss. 2, pp. 686-706.
2021.
10 Table 1 Site Kappa ( ) Values for Each Basecase Profile Shallow Profile Kappa Distribution Lower Case Base Case Upper Case (sec) Weight (sec) Weight (sec) Weight 0.009 0.101 0.007 0.101 0.006 0.101 0.012 0.244 0.010 0.244 0.008 0.244 0.015 0.309 0.012 0.309 0.011 0.309 0.018 0.244 0.016 0.244 0.014 0.244 0.022 0.101 0.019 0.101 0.017 0.101
11 Table 2 Layer Depths, Shear Wave Velocities ( ), Unit Weights, and Dynamic Properties for Browns Ferry Vs (m/s) Vs Unit Dynamic Properties Layer Depth LR BC UR Sigma Weight Alt 1.
- (m) (0.3) (0.4) (0.3) (ln) (kN/m3) (1.0) 1 2 1509 1829 2216 0.25 25 Linear 2 6 2012 2438 2955 0.25 25 Linear 3 24 2516 3048 3693 0.15 25 Linear 4 25 818 991 1200 0.15 21 EPRI Rock 5 35 2189 2652 3213 0.15 25 Linear 6 1058 2075 2515 3047 0.15 25 Linear LR = lower range; BC = basecase; UR = upper range; ln = natural log; Alt. = Alternative EPRI Rock = EPRI, 1993 rock For LR, BC, UR and Alt.: Values in parentheses refer to weights for site response analysis logic tree branches.
12 Table 3 GMRS and UHRS for Browns Ferry Frequency (Hz) UHRS 1E-4 (g) GMRS (g) UHRS 1E-5 (g) 0.100 0.020443 0.023100 0.045046 0.133 0.029822 0.032700 0.063398 0.200 0.046927 0.051300 0.099296 0.250 0.060975 0.067100 0.130166 0.333 0.090196 0.098600 0.191033 0.500 0.140929 0.153300 0.296547 0.667 0.160891 0.181500 0.354232 1.000 0.215872 0.232800 0.449140 1.333 0.258356 0.281000 0.543435 2.000 0.315858 0.340100 0.656168 2.500 0.348696 0.384300 0.745690 3.333 0.411447 0.451400 0.874783 4.000 0.453811 0.497600 0.964296 5.000 0.467797 0.516800 1.003426 6.667 0.501034 0.567300 1.108289 10.000 0.526255 0.615600 1.212456 13.333 0.497125 0.588800 1.163243 20.000 0.396428 0.488500 0.974670 25.000 0.328591 0.410300 0.821260 33.333 0.248295 0.314500 0.631735 40.000 0.221245 0.279800 0.561987 50.000 0.213350 0.268200 0.537851 100.000 0.181320 0.211900 0.417309 PGA 0.198625 0.246100 0.491685
13 Figure 1 Distribution of virtual ruptures (left) for CEUS-SSC Seismotectonic Configuration 1 DSZs, and associated mean 10 Hz reference rock hazard curves (right) for Browns Ferry
14 Figure 2 Distribution of virtual ruptures (left) for CEUS-SSC maximum-magnitude narrow-configuration DSZs, and associated mean 10 Hz reference rock hazard curves (right) for Browns Ferry
15 Figure 3 CEUS-SSC RLME sources (left), and associated mean 1 Hz reference rock hazard curves (right) for Browns Ferry
16 Figure 4 DSZ, RLME, and total mean reference rock hazard curves for 1 Hz (right) and 10 Hz (left) for Browns Ferry
17 Figure 5 1,000-, 10,000-, and 100,000-year return period mean reference rock UHRS for CEUS-SSC and EPRI GMM (blue curves) and CEUS-SSC and NGA-East GMM (red curves)
18 Figure 6 Complete (left) and upper 400 m (right) shear wave velocity (VS) basecase profile for Browns Ferry; thick horizontal black line indicates reference rock horizon; best estimate basecase profile shown as solid blue line; lower and upper range basecase profiles shown as dotted red and purple lines, respectively
19 Figure 7 Tornado plots for site response logic tree nodes profile, , MRD curves, and the analysis method for 1, 5, 10, and 100 Hz spectral frequencies for an input motion with a PGA of 0.63g.
20 Figure 8 Seven median SAFs (above) and mean log standard deviations of SAF (below) as functions of input acceleration for 1 Hz (left) and 10 Hz (right)
21 Figure 9 Seven median SAFs as functions of spectral frequency for spectral accelerations at the 10-4 AFE level
22 Figure 10 GMRS for the Browns Ferry site
23 Appendix AData Tables
24 Table A-1 Reference Rock Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.00100 3.37628E-03 4.33932E-03 6.22055E-03 7.98285E-03 1.07882E-02 1.94903E-02 2.78929E-02 4.67384E-02 0.00126 2.94590E-03 3.79936E-03 5.40126E-03 6.86238E-03 9.17426E-03 1.62510E-02 2.30642E-02 3.89353E-02 0.00158 2.57766E-03 3.33578E-03 4.70365E-03 5.91774E-03 7.82808E-03 1.36014E-02 1.91469E-02 3.25582E-02 0.00200 2.24296E-03 2.91296E-03 4.07266E-03 5.07181E-03 6.63550E-03 1.12998E-02 1.57724E-02 2.70238E-02 0.00251 1.93660E-03 2.53241E-03 3.54514E-03 4.39089E-03 5.69152E-03 9.46577E-03 1.30251E-02 2.21014E-02 0.00316 1.65425E-03 2.19016E-03 3.07485E-03 3.79248E-03 4.87710E-03 7.91813E-03 1.07308E-02 1.79887E-02 0.00398 1.37113E-03 1.87259E-03 2.65093E-03 3.27089E-03 4.19476E-03 6.64493E-03 8.84585E-03 1.45340E-02 0.00501 1.13571E-03 1.60062E-03 2.28571E-03 2.82164E-03 3.60908E-03 5.57921E-03 7.29596E-03 1.17489E-02 0.00631 8.27335E-04 1.26827E-03 1.91464E-03 2.39369E-03 3.09387E-03 4.72206E-03 6.07047E-03 9.49608E-03 0.00794 6.03456E-04 1.00586E-03 1.60495E-03 2.03199E-03 2.65384E-03 3.99927E-03 5.05454E-03 7.68174E-03 0.01000 4.39620E-04 7.97024E-04 1.34443E-03 1.72384E-03 2.27503E-03 3.38492E-03 4.20564E-03 6.20893E-03 0.01260 2.55176E-04 5.18638E-04 1.00034E-03 1.35282E-03 1.87590E-03 2.84606E-03 3.52405E-03 5.08925E-03 0.01580 1.49799E-04 3.40512E-04 7.48896E-04 1.06700E-03 1.55300E-03 2.40162E-03 2.96379E-03 4.18874E-03 0.02000 8.60117E-05 2.19686E-04 5.53948E-04 8.33312E-04 1.27562E-03 2.01233E-03 2.47472E-03 3.41977E-03 0.02510 4.25795E-05 1.19712E-04 3.48947E-04 5.69097E-04 9.61917E-04 1.62699E-03 2.03320E-03 2.81754E-03 0.03160 2.03849E-05 6.27837E-05 2.10773E-04 3.72651E-04 6.99913E-04 1.28431E-03 1.64091E-03 2.29681E-03 0.03980 8.98330E-06 2.96797E-05 1.12550E-04 2.14879E-04 4.56272E-04 9.42745E-04 1.25674E-03 1.82119E-03 0.05010 3.96358E-06 1.40418E-05 6.01069E-05 1.23869E-04 2.97223E-04 6.91390E-04 9.61777E-04 1.44334E-03 0.06310 1.59903E-06 5.91574E-06 2.72956E-05 5.93092E-05 1.57908E-04 4.19055E-04 6.26225E-04 1.01287E-03 0.07940 6.47443E-07 2.50090E-06 1.24346E-05 2.84813E-05 8.41055E-05 2.54501E-04 4.08443E-04 7.11795E-04 0.10000 2.61227E-07 1.05373E-06 5.64728E-06 1.36382E-05 4.46869E-05 1.54264E-04 2.65956E-04 4.99527E-04 0.12600 9.66040E-08 4.06933E-07 2.29412E-06 5.70575E-06 1.98712E-05 7.53941E-05 1.39153E-04 2.84144E-04 0.15800 3.64706E-08 1.60286E-07 9.49542E-07 2.43067E-06 8.98618E-06 3.73996E-05 7.37936E-05 1.63533E-04 0.20000 1.32221E-08 6.07359E-08 3.78866E-07 9.99380E-07 3.93186E-06 1.80193E-05 3.81146E-05 9.19807E-05 0.25100 4.60277E-09 2.22919E-08 1.47157E-07 3.98352E-07 1.63671E-06 7.96006E-06 1.76713E-05 4.54381E-05 0.31600 1.55517E-09 7.95155E-09 5.57273E-08 1.55102E-07 6.66397E-07 3.43140E-06 7.98125E-06 2.18063E-05 0.39800 4.97738E-10 2.69216E-09 2.01991E-08 5.81119E-08 2.61759E-07 1.41182E-06 3.41244E-06 9.78559E-06 0.50100 1.59665E-10 9.13337E-10 7.33483E-09 2.18121E-08 1.03004E-07 5.81884E-07 1.46137E-06 4.39740E-06 0.63100 4.84036E-11 2.89311E-10 2.47567E-09 7.66134E-09 3.84491E-08 2.28471E-07 5.94212E-07 1.85426E-06
25 Table A-1 Reference Rock Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.79400 1.47441E-11 9.20651E-11 8.39227E-10 2.70227E-09 1.44088E-08 9.00429E-08 2.42485E-07 7.84593E-07 1.00000 4.47041E-12 2.91669E-11 2.83295E-10 9.49273E-10 5.37913E-09 3.53585E-08 9.86087E-08 3.30876E-07 1.26000 1.31521E-12 8.97600E-12 9.14906E-11 3.17806E-10 1.91044E-09 1.33829E-08 3.89271E-08 1.35023E-07 1.58000 3.96894E-13 2.83076E-12 3.02486E-11 1.08843E-10 6.93249E-10 5.16855E-09 1.56665E-08 5.61348E-08 2.00000 1.13952E-13 8.50913E-13 9.55105E-12 3.56527E-11 2.41180E-10 1.91871E-09 6.07093E-09 2.25014E-08 2.51000 3.21156E-14 2.57592E-13 3.10038E-12 1.20012E-11 8.53164E-11 7.22808E-10 2.38750E-09 9.15815E-09 3.16000 8.68961E-15 7.52658E-14 9.80144E-13 3.94930E-12 2.95649E-11 2.67019E-10 9.21073E-10 3.66074E-09 3.98000 2.16577E-15 2.05670E-14 2.97902E-13 1.26380E-12 1.00107E-11 9.64505E-11 3.47198E-10 1.43317E-09 5.01000 5.40804E-16 5.62999E-15 9.07026E-14 4.05158E-13 3.39603E-12 3.49046E-11 1.31108E-10 5.62061E-10 6.31000 1.13797E-16 1.31395E-15 2.42441E-14 1.16385E-13 1.05836E-12 1.17998E-11 4.62436E-11 2.07351E-10 7.94000 2.40949E-17 3.08445E-16 6.51454E-15 3.35997E-14 3.31372E-13 4.00638E-12 1.63788E-11 7.67995E-11 10.00000 5.07103E-18 7.19988E-17 1.74157E-15 9.65324E-15 1.03285E-13 1.35457E-12 5.77776E-12 2.83356E-11 Table A-2 Reference Rock Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.00100 6.13453E-02 7.69954E-02 8.15846E-02 8.56759E-02 8.65191E-02 8.77056E-02 8.78838E-02 8.64051E-02 0.00126 5.22300E-02 6.82559E-02 7.34785E-02 7.84447E-02 7.96021E-02 8.13127E-02 8.16953E-02 8.00425E-02 0.00158 4.46179E-02 6.06600E-02 6.63218E-02 7.19553E-02 7.33649E-02 7.55044E-02 7.60578E-02 7.42663E-02 0.00200 3.78665E-02 5.36456E-02 5.96076E-02 6.57663E-02 6.73874E-02 6.98953E-02 7.05991E-02 6.86926E-02 0.00251 3.11806E-02 4.52782E-02 5.09529E-02 5.70664E-02 5.87986E-02 6.15551E-02 6.24370E-02 6.06731E-02 0.00316 2.54940E-02 3.78289E-02 4.30719E-02 4.89272E-02 5.06873E-02 5.35522E-02 5.45562E-02 5.29750E-02 0.00398 2.05252E-02 3.07563E-02 3.52930E-02 4.05169E-02 4.21766E-02 4.49348E-02 4.59904E-02 4.47079E-02 0.00501 1.65318E-02 2.50120E-02 2.89237E-02 3.35547E-02 3.50964E-02 3.77039E-02 3.87689E-02 3.77314E-02 0.00631 1.31643E-02 1.97410E-02 2.28496E-02 2.65933E-02 2.78946E-02 3.01124E-02 3.11052E-02 3.04237E-02 0.00794 1.04924E-02 1.55956E-02 1.80680E-02 2.10957E-02 2.21910E-02 2.40711E-02 2.49784E-02 2.45524E-02 0.01000 8.35535E-03 1.23094E-02 1.42741E-02 1.67196E-02 1.76379E-02 1.92250E-02 2.00412E-02 1.97977E-02 0.01260 6.71254E-03 9.64191E-03 1.11174E-02 1.29596E-02 1.36822E-02 1.49117E-02 1.56213E-02 1.55842E-02 0.01580 5.41731E-03 7.59090E-03 8.70388E-03 1.00985E-02 1.06698E-02 1.16273E-02 1.22393E-02 1.23286E-02
26 Table A-2 Reference Rock Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.02000 4.33321E-03 5.91705E-03 6.74533E-03 7.78783E-03 8.23502E-03 8.97298E-03 9.49270E-03 9.65853E-03 0.02510 3.53874E-03 4.72337E-03 5.35261E-03 6.13526E-03 6.48765E-03 7.04337E-03 7.48298E-03 7.68897E-03 0.03160 2.87201E-03 3.76309E-03 4.24754E-03 4.84050E-03 5.12108E-03 5.53890E-03 5.90907E-03 6.12670E-03 0.03980 2.30285E-03 3.00878E-03 3.40684E-03 3.88068E-03 4.11452E-03 4.43245E-03 4.74593E-03 4.94894E-03 0.05010 1.84591E-03 2.40566E-03 2.73308E-03 3.11245E-03 3.30743E-03 3.54891E-03 3.81389E-03 3.99973E-03 0.06310 1.34322E-03 1.80705E-03 2.11007E-03 2.45988E-03 2.64568E-03 2.83788E-03 3.07561E-03 3.24002E-03 0.07940 9.78665E-04 1.35895E-03 1.63076E-03 1.94596E-03 2.11823E-03 2.27134E-03 2.48238E-03 2.62682E-03 0.10000 7.12175E-04 1.02083E-03 1.25906E-03 1.53801E-03 1.69446E-03 1.81632E-03 2.00190E-03 2.12794E-03 0.12600 4.23494E-04 6.39606E-04 8.27630E-04 1.06593E-03 1.20837E-03 1.29798E-03 1.45896E-03 1.58311E-03 0.15800 2.54562E-04 4.04658E-04 5.48793E-04 7.44400E-04 8.67802E-04 9.34063E-04 1.07027E-03 1.18504E-03 0.20000 1.49813E-04 2.51187E-04 3.57736E-04 5.12154E-04 6.14698E-04 6.63044E-04 7.75089E-04 8.76439E-04 0.25100 7.67206E-05 1.34683E-04 2.00162E-04 3.03304E-04 3.77087E-04 4.07589E-04 4.86239E-04 5.67184E-04 0.31600 3.81160E-05 6.98965E-05 1.08096E-04 1.72897E-04 2.22611E-04 2.41663E-04 2.94453E-04 3.54666E-04 0.39800 1.75937E-05 3.33634E-05 5.30727E-05 8.85437E-05 1.17768E-04 1.29395E-04 1.61336E-04 2.01054E-04 0.50100 8.13148E-06 1.59436E-05 2.60828E-05 4.53745E-05 6.23299E-05 6.93160E-05 8.84432E-05 1.14033E-04 0.63100 3.51596E-06 7.07998E-06 1.17539E-05 2.08122E-05 2.90495E-05 3.29987E-05 4.34408E-05 5.85926E-05 0.79400 1.52537E-06 3.15418E-06 5.31370E-06 9.57586E-06 1.35802E-05 1.57561E-05 2.13976E-05 3.01864E-05 1.00000 6.59618E-07 1.40080E-06 2.39479E-06 4.39264E-06 6.32980E-06 7.50159E-06 1.05108E-05 1.55117E-05 1.26000 2.76568E-07 6.04994E-07 1.04904E-06 1.94468E-06 2.82894E-06 3.44480E-06 5.02247E-06 7.79050E-06 1.58000 1.18073E-07 2.65887E-07 4.67472E-07 8.75626E-07 1.28564E-06 1.60766E-06 2.43701E-06 3.96899E-06 2.00000 4.86550E-08 1.12927E-07 2.01431E-07 3.81401E-07 5.65424E-07 7.26879E-07 1.14746E-06 1.96616E-06 2.51000 2.03372E-08 4.85277E-08 8.80266E-08 1.68850E-07 2.53047E-07 3.33685E-07 5.49876E-07 9.91208E-07 3.16000 8.34751E-09 2.04573E-08 3.77325E-08 7.33144E-08 1.11069E-07 1.50078E-07 2.58117E-07 4.90012E-07 3.98000 3.35003E-09 8.39243E-09 1.57208E-08 3.09113E-08 4.73156E-08 6.51968E-08 1.16726E-07 2.33696E-07 5.01000 1.34670E-09 3.44840E-09 6.56004E-09 1.30527E-08 2.01859E-08 2.83606E-08 5.28456E-08 1.11558E-07 6.31000 5.08858E-10 1.32695E-09 2.56244E-09 5.15281E-09 8.02911E-09 1.14008E-08 2.18514E-08 4.82576E-08 7.94000 1.93025E-10 5.12566E-10 1.00469E-09 2.04175E-09 3.20543E-09 4.59974E-09 9.06738E-09 2.09452E-08 10.00000 7.29444E-11 1.97259E-10 3.92488E-10 8.06110E-10 1.27512E-09 1.84926E-09 3.74972E-09 9.06132E-09
27 Table A-3 Reference Rock Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.00100 8.48441E-02 8.26374E-02 8.08640E-02 7.85621E-02 7.69961E-02 7.44970E-02 6.92319E-02 6.84024E-02 0.00126 7.82708E-02 7.56983E-02 7.36228E-02 7.09050E-02 6.90731E-02 6.62283E-02 6.02867E-02 5.94199E-02 0.00158 7.23277E-02 6.94683E-02 6.71608E-02 6.41306E-02 6.21052E-02 5.90213E-02 5.26484E-02 5.17682E-02 0.00200 6.66168E-02 6.35237E-02 6.10324E-02 5.77618E-02 5.55939E-02 5.23473E-02 4.57195E-02 4.48440E-02 0.00251 5.86793E-02 5.56128E-02 5.31111E-02 4.98032E-02 4.76442E-02 4.44707E-02 3.80728E-02 3.72492E-02 0.00316 5.11161E-02 4.81724E-02 4.57406E-02 4.25057E-02 4.04259E-02 3.74159E-02 3.14172E-02 3.06551E-02 0.00398 4.31071E-02 4.04759E-02 3.82545E-02 3.52671E-02 3.33793E-02 3.06799E-02 2.53364E-02 2.46458E-02 0.00501 3.63546E-02 3.40123E-02 3.19979E-02 2.92666E-02 2.75671E-02 2.51633E-02 2.04400E-02 1.98216E-02 0.00631 2.93930E-02 2.75306E-02 2.58628E-02 2.35529E-02 2.21314E-02 2.01307E-02 1.61836E-02 1.56308E-02 0.00794 2.37847E-02 2.23030E-02 2.09217E-02 1.89712E-02 1.77831E-02 1.61190E-02 1.28256E-02 1.23377E-02 0.01000 1.92306E-02 1.80532E-02 1.69107E-02 1.52679E-02 1.42770E-02 1.28956E-02 1.01551E-02 9.72945E-03 0.01260 1.52372E-02 1.43883E-02 1.35026E-02 1.21905E-02 1.13974E-02 1.02928E-02 8.08087E-03 7.71474E-03 0.01580 1.21316E-02 1.15216E-02 1.08319E-02 9.77895E-03 9.14117E-03 8.25388E-03 6.46086E-03 6.14677E-03 0.02000 9.56783E-03 9.14119E-03 8.61010E-03 7.77292E-03 7.26467E-03 6.55839E-03 5.11779E-03 4.85143E-03 0.02510 7.66284E-03 7.35801E-03 6.94521E-03 6.27598E-03 5.86696E-03 5.30002E-03 4.12448E-03 3.89939E-03 0.03160 6.13593E-03 5.91260E-03 5.58991E-03 5.05282E-03 4.72259E-03 4.26714E-03 3.30369E-03 3.11338E-03 0.03980 4.96021E-03 4.77070E-03 4.50937E-03 4.06786E-03 3.79568E-03 3.42508E-03 2.61695E-03 2.45403E-03 0.05010 4.01164E-03 3.85069E-03 3.63879E-03 3.27555E-03 3.05114E-03 2.74944E-03 2.07269E-03 1.93395E-03 0.06310 3.22464E-03 3.04842E-03 2.86149E-03 2.54083E-03 2.34662E-03 2.09809E-03 1.51571E-03 1.39607E-03 0.07940 2.59430E-03 2.41555E-03 2.25240E-03 1.97292E-03 1.80667E-03 1.60277E-03 1.10979E-03 1.00910E-03 0.10000 2.08541E-03 1.91233E-03 1.77131E-03 1.53043E-03 1.38954E-03 1.22311E-03 8.11591E-04 7.28476E-04 0.12600 1.52895E-03 1.37248E-03 1.25179E-03 1.04802E-03 9.39188E-04 8.11487E-04 5.05286E-04 4.45391E-04 0.15800 1.12822E-03 9.91838E-04 8.91048E-04 7.23331E-04 6.39979E-04 5.42998E-04 3.17695E-04 2.75109E-04 0.20000 8.22062E-04 7.07148E-04 6.25362E-04 4.91599E-04 4.29193E-04 3.57323E-04 1.95932E-04 1.66559E-04 0.25100 5.29301E-04 4.53647E-04 3.95653E-04 3.02952E-04 2.61804E-04 2.13159E-04 1.11642E-04 9.30323E-05 0.31600 3.31214E-04 2.83890E-04 2.44721E-04 1.83502E-04 1.57208E-04 1.25425E-04 6.30729E-05 5.14998E-05 0.39800 1.91717E-04 1.66479E-04 1.43006E-04 1.07097E-04 9.14854E-05 7.20873E-05 3.55074E-05 2.83922E-05 0.50100 1.11046E-04 9.77167E-05 8.36621E-05 6.25894E-05 5.33135E-05 4.14926E-05 2.00194E-05 1.56777E-05 0.63100 5.96334E-05 5.49442E-05 4.79975E-05 3.67692E-05 3.13679E-05 2.42267E-05 1.14387E-05 8.80069E-06
28 Table A-3 Reference Rock Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.79400 3.21039E-05 3.09652E-05 2.75977E-05 2.16466E-05 1.84950E-05 1.41759E-05 6.55044E-06 4.95169E-06 1.00000 1.72417E-05 1.74124E-05 1.58340E-05 1.27175E-05 1.08826E-05 8.27757E-06 3.74303E-06 2.77983E-06 1.26000 9.07804E-06 9.74389E-06 9.01439E-06 7.30173E-06 6.21481E-06 4.67004E-06 2.03549E-06 1.48578E-06 1.58000 4.84384E-06 5.51877E-06 5.19231E-06 4.24085E-06 3.59067E-06 2.66624E-06 1.12100E-06 8.04524E-07 2.00000 2.51794E-06 3.05272E-06 2.92298E-06 2.40808E-06 2.02776E-06 1.48716E-06 6.02245E-07 4.24665E-07 2.51000 1.31649E-06 1.66403E-06 1.60413E-06 1.31484E-06 1.09576E-06 7.91288E-07 3.04997E-07 2.10501E-07 3.16000 6.74487E-07 8.87108E-07 8.60131E-07 7.00317E-07 5.77001E-07 4.09864E-07 1.49975E-07 1.01246E-07 3.98000 3.31997E-07 4.50473E-07 4.37662E-07 3.52117E-07 2.85918E-07 1.99241E-07 6.87492E-08 4.53406E-08 5.01000 1.63551E-07 2.28906E-07 2.22843E-07 1.77160E-07 1.41776E-07 9.69238E-08 3.15435E-08 2.03248E-08 6.31000 7.26922E-08 1.04203E-07 1.01397E-07 7.93907E-08 6.25201E-08 4.19075E-08 1.29208E-08 8.16277E-09 7.94000 3.24139E-08 4.75852E-08 4.62824E-08 3.56918E-08 2.76604E-08 1.81806E-08 5.31149E-09 3.29027E-09 10.00000 1.44082E-08 2.16640E-08 2.10612E-08 1.59961E-08 1.21989E-08 7.86167E-09 2.17591E-09 1.32157E-09 Table A-4 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.100 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.000390 0.8614 0.8727 0.8945 1.0016 1.1870 1.2699 1.2994 0.025387 0.000000 0.000605 0.8611 0.8726 0.8946 1.0017 1.1867 1.2700 1.2998 0.025379 0.000000 0.000769 0.8593 0.8719 0.8952 1.0019 1.1847 1.2704 1.3016 0.025293 0.000000 0.001020 0.8576 0.8712 0.8956 1.0020 1.1826 1.2707 1.3033 0.025142 0.000000 0.001393 0.8560 0.8706 0.8960 1.0019 1.1808 1.2709 1.3046 0.024961 0.000000 0.001942 0.8550 0.8702 0.8961 1.0019 1.1796 1.2709 1.3055 0.024816 0.000000 0.002624 0.8542 0.8699 0.8963 1.0018 1.1785 1.2710 1.3063 0.024676 0.000000 0.003530 0.8535 0.8696 0.8964 1.0019 1.1775 1.2711 1.3072 0.024550 0.000000 0.004766 0.8531 0.8695 0.8965 1.0022 1.1764 1.2714 1.3087 0.024449 0.000000 0.006987 0.8531 0.8697 0.8970 1.0031 1.1741 1.2729 1.3129 0.024437 0.000000 0.011085 0.8574 0.8733 0.8997 1.0066 1.1610 1.2751 1.3578 0.025921 0.004130 0.017944 0.8828 0.8940 0.9206 1.0168 1.1412 1.2815 1.4975 0.040598 0.031518
29 Table A-5 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.133 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.000696 0.8720 0.8821 0.9028 1.0100 1.2000 1.2828 1.3101 0.033331 0.000000 0.001077 0.8717 0.8820 0.9029 1.0100 1.1997 1.2829 1.3104 0.033311 0.000000 0.001353 0.8700 0.8813 0.9032 1.0100 1.1978 1.2831 1.3118 0.033164 0.000000 0.001765 0.8684 0.8806 0.9035 1.0099 1.1959 1.2832 1.3130 0.032970 0.000000 0.002384 0.8670 0.8800 0.9036 1.0097 1.1942 1.2832 1.3139 0.032764 0.000000 0.003324 0.8661 0.8796 0.9037 1.0096 1.1931 1.2832 1.3145 0.032610 0.000000 0.004537 0.8654 0.8792 0.9038 1.0095 1.1922 1.2832 1.3151 0.032466 0.000000 0.006228 0.8649 0.8790 0.9039 1.0095 1.1913 1.2832 1.3158 0.032339 0.000000 0.008611 0.8645 0.8789 0.9040 1.0097 1.1904 1.2835 1.3171 0.032239 0.000000 0.012816 0.8646 0.8791 0.9044 1.0106 1.1885 1.2849 1.3209 0.032232 0.000000 0.020416 0.8688 0.8828 0.9074 1.0142 1.1768 1.2903 1.3587 0.033645 0.009633 0.033049 0.8914 0.9024 0.9276 1.0294 1.1629 1.3003 1.4853 0.047716 0.035180 Table A-6 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.200 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.001481 0.8982 0.9066 0.9254 1.0345 1.2333 1.3165 1.3424 0.054449 0.000000 0.002290 0.8979 0.9065 0.9255 1.0344 1.2330 1.3165 1.3426 0.054425 0.000000 0.002853 0.8966 0.9059 0.9257 1.0338 1.2314 1.3166 1.3435 0.054276 0.000000 0.003642 0.8953 0.9053 0.9258 1.0333 1.2299 1.3166 1.3443 0.054116 0.000000 0.004833 0.8942 0.9048 0.9259 1.0331 1.2286 1.3165 1.3448 0.053966 0.000000 0.006749 0.8935 0.9044 0.9259 1.0329 1.2277 1.3164 1.3452 0.053864 0.000000 0.009386 0.8930 0.9042 0.9259 1.0328 1.2270 1.3164 1.3456 0.053775 0.000000 0.013315 0.8926 0.9040 0.9260 1.0328 1.2264 1.3165 1.3461 0.053699 0.000000 0.019080 0.8924 0.9040 0.9262 1.0331 1.2259 1.3168 1.3472 0.053643 0.000000 0.028886 0.8927 0.9043 0.9267 1.0341 1.2247 1.3182 1.3506 0.053683 0.000000 0.046193 0.8973 0.9086 0.9306 1.0381 1.2153 1.3286 1.3793 0.055106 0.012100 0.074776 0.9192 0.9289 0.9521 1.0627 1.2114 1.3462 1.4921 0.069301 0.043731
30 Table A-7 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.250 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.002139 0.9201 0.9278 0.9460 1.0574 1.2624 1.3459 1.3728 0.072612 0.000000 0.003308 0.9199 0.9277 0.9461 1.0573 1.2621 1.3459 1.3730 0.072591 0.000000 0.004120 0.9187 0.9272 0.9462 1.0567 1.2607 1.3459 1.3737 0.072480 0.000000 0.005226 0.9175 0.9267 0.9464 1.0561 1.2594 1.3459 1.3744 0.072389 0.000000 0.006882 0.9167 0.9263 0.9465 1.0556 1.2583 1.3459 1.3749 0.072326 0.000000 0.009622 0.9161 0.9260 0.9465 1.0555 1.2577 1.3459 1.3752 0.072295 0.000000 0.013517 0.9157 0.9258 0.9466 1.0555 1.2571 1.3459 1.3757 0.072275 0.000000 0.019493 0.9154 0.9257 0.9467 1.0556 1.2567 1.3460 1.3762 0.072263 0.000000 0.028424 0.9153 0.9258 0.9470 1.0559 1.2564 1.3465 1.3773 0.072261 0.000000 0.043315 0.9157 0.9263 0.9477 1.0570 1.2556 1.3480 1.3805 0.072349 0.002853 0.069342 0.9206 0.9310 0.9521 1.0617 1.2485 1.3588 1.4070 0.073829 0.014983 0.112250 0.9447 0.9538 0.9762 1.0922 1.2500 1.3847 1.5159 0.088738 0.051461 Table A-8 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.003240 0.9538 0.9615 0.9804 1.0983 1.3103 1.3931 1.4239 0.098658 0.000000 0.005017 0.9536 0.9614 0.9804 1.0982 1.3100 1.3931 1.4240 0.098636 0.000000 0.006274 0.9524 0.9609 0.9805 1.0976 1.3087 1.3930 1.4246 0.098546 0.000000 0.007935 0.9514 0.9604 0.9806 1.0971 1.3075 1.3930 1.4252 0.098525 0.000000 0.010397 0.9506 0.9601 0.9808 1.0968 1.3067 1.3930 1.4257 0.098566 0.000000 0.014566 0.9502 0.9600 0.9809 1.0968 1.3062 1.3931 1.4262 0.098622 0.003494 0.020691 0.9499 0.9599 0.9811 1.0969 1.3059 1.3933 1.4267 0.098693 0.005120 0.030362 0.9497 0.9599 0.9814 1.0971 1.3057 1.3936 1.4274 0.098764 0.006343 0.045105 0.9498 0.9601 0.9818 1.0977 1.3056 1.3942 1.4286 0.098832 0.007326 0.069155 0.9505 0.9609 0.9827 1.0990 1.3053 1.3960 1.4320 0.098990 0.009216 0.110790 0.9561 0.9663 0.9880 1.1046 1.3006 1.4079 1.4576 0.100650 0.020404 0.179350 0.9859 0.9951 1.0178 1.1440 1.3105 1.4448 1.5720 0.118000 0.064884
31 Table A-9 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.500 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.005273 0.9594 0.9710 1.0013 1.1445 1.3381 1.4083 1.4505 0.101210 0.000000 0.008184 0.9591 0.9708 1.0013 1.1444 1.3377 1.4082 1.4506 0.101160 0.000000 0.010361 0.9572 0.9701 1.0010 1.1441 1.3357 1.4078 1.4511 0.100870 0.000000 0.013172 0.9554 0.9694 1.0009 1.1439 1.3339 1.4074 1.4517 0.100670 0.000000 0.017280 0.9539 0.9695 1.0008 1.1437 1.3326 1.4074 1.4525 0.100550 0.000000 0.024317 0.9531 0.9692 1.0009 1.1438 1.3318 1.4074 1.4530 0.100510 0.000000 0.034951 0.9526 0.9690 1.0011 1.1439 1.3313 1.4075 1.4536 0.100500 0.000000 0.052198 0.9523 0.9690 1.0014 1.1443 1.3309 1.4078 1.4545 0.100510 0.000000 0.079010 0.9524 0.9692 1.0019 1.1450 1.3307 1.4086 1.4561 0.100530 0.000000 0.121850 0.9533 0.9703 1.0033 1.1467 1.3304 1.4111 1.4606 0.100680 0.000000 0.195340 0.9606 0.9772 1.0096 1.1532 1.3267 1.4216 1.4968 0.103050 0.020875 0.316200 1.0083 1.0223 1.0527 1.2025 1.3446 1.4737 1.6600 0.132530 0.085911 Table A-10 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.007013 0.8820 0.9098 0.9692 1.1337 1.2644 1.3229 1.3982 0.075369 0.000000 0.010911 0.8814 0.9096 0.9692 1.1337 1.2639 1.3227 1.3985 0.075308 0.000000 0.013981 0.8783 0.9086 0.9694 1.1338 1.2606 1.3216 1.4003 0.074974 0.000000 0.017930 0.8752 0.9077 0.9697 1.1339 1.2574 1.3205 1.4023 0.074687 0.000000 0.023653 0.8726 0.9069 0.9700 1.1341 1.2547 1.3195 1.4040 0.074476 0.000000 0.033432 0.8708 0.9064 0.9703 1.1344 1.2530 1.3188 1.4053 0.074356 0.000000 0.048367 0.8695 0.9061 0.9706 1.1347 1.2516 1.3183 1.4067 0.074271 0.000000 0.072852 0.8686 0.9059 0.9711 1.1352 1.2505 1.3180 1.4085 0.074212 0.000000 0.111230 0.8682 0.9062 0.9717 1.1361 1.2497 1.3181 1.4115 0.074179 0.000000 0.172060 0.8692 0.9076 0.9729 1.1381 1.2487 1.3190 1.4202 0.074275 0.000000 0.275910 0.8814 0.9176 0.9792 1.1431 1.2417 1.3229 1.4873 0.078432 0.021874 0.446630 0.9749 0.9972 1.0386 1.1720 1.2578 1.4203 1.7259 0.138980 0.116800
32 Table A-11 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=1.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.009838 0.8249 0.8795 0.9470 1.0221 1.1200 1.3250 1.4025 0.060412 0.000000 0.015366 0.8247 0.8796 0.9467 1.0222 1.1195 1.3248 1.4029 0.060368 0.000000 0.020104 0.8236 0.8798 0.9446 1.0225 1.1162 1.3232 1.4051 0.060102 0.000000 0.026218 0.8224 0.8801 0.9425 1.0228 1.1128 1.3214 1.4074 0.059841 0.000000 0.035015 0.8214 0.8803 0.9406 1.0230 1.1097 1.3197 1.4094 0.059620 0.000000 0.049887 0.8207 0.8805 0.9394 1.0232 1.1078 1.3185 1.4111 0.059480 0.000000 0.072771 0.8203 0.8807 0.9384 1.0233 1.1061 1.3175 1.4129 0.059374 0.000000 0.110510 0.8202 0.8810 0.9378 1.0237 1.1051 1.3166 1.4152 0.059296 0.000000 0.170030 0.8207 0.8816 0.9378 1.0241 1.1054 1.3157 1.4188 0.059294 0.000000 0.263830 0.8235 0.8831 0.9389 1.0245 1.1101 1.3130 1.4290 0.059679 0.000000 0.423240 0.8475 0.8982 0.9502 1.0255 1.1074 1.3018 1.5283 0.078578 0.050250 0.685130 0.9737 0.9954 1.0352 1.0922 1.2181 1.4965 2.1345 0.278040 0.271398 Table A-12 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=1.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.012067 0.8629 0.9015 0.9583 1.0661 1.1922 1.3396 1.4232 0.086414 0.000000 0.018910 0.8625 0.9012 0.9585 1.0660 1.1916 1.3395 1.4235 0.086323 0.000000 0.025173 0.8600 0.8999 0.9593 1.0652 1.1881 1.3390 1.4249 0.085792 0.000000 0.033309 0.8574 0.8985 0.9603 1.0643 1.1843 1.3384 1.4264 0.085284 0.000000 0.044978 0.8550 0.8972 0.9612 1.0634 1.1810 1.3378 1.4278 0.084860 0.000000 0.064514 0.8536 0.8965 0.9620 1.0629 1.1787 1.3375 1.4290 0.084596 0.000000 0.094649 0.8525 0.8960 0.9628 1.0625 1.1769 1.3375 1.4304 0.084395 0.000000 0.144320 0.8519 0.8958 0.9637 1.0625 1.1756 1.3378 1.4322 0.084262 0.000000 0.222780 0.8524 0.8964 0.9649 1.0629 1.1750 1.3390 1.4357 0.084256 0.000000 0.346290 0.8560 0.8993 0.9676 1.0643 1.1747 1.3430 1.4458 0.084916 0.000000 0.555660 0.8819 0.9198 0.9802 1.0691 1.1729 1.3422 1.5518 0.116690 0.079920 0.899480 0.9661 0.9911 1.0365 1.1630 1.3806 1.6898 2.4657 0.309490 0.297581
33 Table A-13 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=2.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.015262 0.8175 0.8862 0.9515 1.0577 1.1520 1.3154 1.4080 0.067227 0.000000 0.024044 0.8173 0.8862 0.9511 1.0575 1.1522 1.3147 1.4079 0.067162 0.000000 0.032921 0.8162 0.8862 0.9482 1.0563 1.1536 1.3104 1.4070 0.066765 0.000000 0.044610 0.8151 0.8862 0.9454 1.0552 1.1549 1.3059 1.4064 0.066364 0.000000 0.061344 0.8141 0.8862 0.9429 1.0542 1.1561 1.3018 1.4058 0.066015 0.000000 0.088954 0.8135 0.8862 0.9414 1.0538 1.1558 1.2995 1.4065 0.065797 0.000000 0.131610 0.8134 0.8864 0.9404 1.0536 1.1553 1.2980 1.4082 0.065655 0.000000 0.201590 0.8137 0.8868 0.9402 1.0537 1.1561 1.2967 1.4107 0.065590 0.000000 0.312160 0.8156 0.8881 0.9411 1.0541 1.1594 1.2958 1.4158 0.065793 0.000000 0.486300 0.8223 0.8921 0.9451 1.0551 1.1658 1.2959 1.4348 0.067540 0.011762 0.780610 0.8795 0.9308 0.9769 1.0596 1.1504 1.2959 1.6490 0.127760 0.109084 1.263600 0.9589 0.9939 1.0581 1.1905 1.4074 1.5267 1.6529 0.278770 0.270720 Table A-14 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=2.500 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.016960 0.8072 0.8790 0.9389 1.0698 1.1521 1.2656 1.4379 0.068985 0.000000 0.026809 0.8068 0.8788 0.9390 1.0696 1.1523 1.2650 1.4379 0.068917 0.000000 0.037361 0.8043 0.8776 0.9397 1.0681 1.1533 1.2614 1.4373 0.068494 0.000000 0.051385 0.8018 0.8763 0.9404 1.0664 1.1544 1.2576 1.4371 0.068058 0.000000 0.071463 0.7997 0.8753 0.9411 1.0646 1.1555 1.2543 1.4368 0.067680 0.000000 0.104330 0.7986 0.8747 0.9416 1.0634 1.1563 1.2522 1.4373 0.067443 0.000000 0.155130 0.7981 0.8746 0.9424 1.0626 1.1574 1.2509 1.4386 0.067287 0.000000 0.238150 0.7986 0.8750 0.9433 1.0626 1.1588 1.2503 1.4412 0.067246 0.000000 0.369320 0.8013 0.8769 0.9449 1.0634 1.1610 1.2517 1.4478 0.067516 0.000000 0.576060 0.8112 0.8833 0.9487 1.0656 1.1652 1.2566 1.4712 0.070097 0.015328 0.924930 0.8919 0.9406 0.9842 1.0727 1.1500 1.2866 1.7026 0.135460 0.116922 1.497200 0.9303 0.9725 1.0497 1.1982 1.3342 1.4543 1.4702 0.272980 0.264272
34 Table A-15 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=3.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.018964 0.7731 0.8745 0.9491 1.0437 1.1171 1.2413 1.4736 0.058931 0.000000 0.030121 0.7728 0.8739 0.9494 1.0436 1.1165 1.2407 1.4737 0.058869 0.000000 0.043060 0.7709 0.8706 0.9508 1.0429 1.1148 1.2368 1.4732 0.058490 0.000000 0.060496 0.7693 0.8675 0.9519 1.0419 1.1144 1.2324 1.4723 0.058126 0.000000 0.085502 0.7680 0.8650 0.9527 1.0411 1.1142 1.2288 1.4714 0.057834 0.000000 0.126010 0.7674 0.8639 0.9534 1.0406 1.1146 1.2266 1.4718 0.057702 0.000000 0.188700 0.7678 0.8637 0.9541 1.0404 1.1152 1.2257 1.4737 0.057716 0.000000 0.290590 0.7692 0.8651 0.9550 1.0408 1.1168 1.2262 1.4779 0.057967 0.000000 0.451540 0.7738 0.8696 0.9565 1.0419 1.1203 1.2298 1.4883 0.059047 0.007504 0.705610 0.7911 0.8840 0.9591 1.0420 1.1484 1.2337 1.5127 0.066779 0.032081 1.133400 0.8819 0.9564 0.9906 1.0653 1.1784 1.2737 1.7178 0.138650 0.125673 1.834600 0.8628 0.9250 1.0466 1.2281 1.2890 1.3293 1.4757 0.295180 0.289311 Table A-16 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=4.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.020053 0.7570 0.8592 0.9442 1.0476 1.1035 1.2065 1.4692 0.055300 0.000000 0.031962 0.7569 0.8588 0.9439 1.0475 1.1037 1.2056 1.4688 0.055241 0.000000 0.046521 0.7562 0.8562 0.9423 1.0466 1.1040 1.2012 1.4658 0.054882 0.000000 0.066342 0.7558 0.8541 0.9407 1.0453 1.1042 1.1975 1.4633 0.054574 0.000000 0.094827 0.7561 0.8526 0.9395 1.0437 1.1040 1.1974 1.4596 0.054374 0.000000 0.140680 0.7564 0.8522 0.9393 1.0428 1.1043 1.1974 1.4589 0.054366 0.000000 0.211690 0.7575 0.8527 0.9398 1.0424 1.1051 1.1981 1.4609 0.054621 0.000000 0.326740 0.7592 0.8545 0.9421 1.0429 1.1071 1.1993 1.4672 0.055303 0.005524 0.508480 0.7637 0.8597 0.9467 1.0447 1.1110 1.2020 1.4843 0.057597 0.017015 0.795670 0.7830 0.8766 0.9582 1.0454 1.1388 1.2108 1.5248 0.072149 0.046664 1.278400 0.8663 0.9494 0.9949 1.0736 1.2052 1.2874 1.6600 0.152390 0.142108 2.069400 0.8293 0.9144 0.9982 1.1683 1.2589 1.2917 1.4382 0.303400 0.298368
35 Table A-17 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=5.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.021114 0.7578 0.8411 0.9230 1.0307 1.1045 1.1969 1.4156 0.049798 0.000000 0.033808 0.7577 0.8410 0.9228 1.0304 1.1045 1.1969 1.4148 0.049744 0.000000 0.050419 0.7565 0.8402 0.9214 1.0281 1.1038 1.1966 1.4103 0.049428 0.000000 0.073358 0.7556 0.8396 0.9200 1.0260 1.1030 1.1962 1.4074 0.049244 0.000000 0.106450 0.7551 0.8390 0.9193 1.0242 1.1026 1.1961 1.4051 0.049235 0.000000 0.159330 0.7555 0.8390 0.9194 1.0236 1.1028 1.1960 1.4058 0.049507 0.000000 0.241300 0.7571 0.8399 0.9202 1.0238 1.1039 1.1968 1.4095 0.050284 0.008199 0.373650 0.7603 0.8417 0.9231 1.0255 1.1066 1.1981 1.4179 0.051917 0.015301 0.582760 0.7678 0.8466 0.9295 1.0294 1.1120 1.2012 1.4397 0.056807 0.027673 0.913690 0.7892 0.8628 0.9505 1.0380 1.1246 1.2060 1.5159 0.081651 0.064851 1.468600 0.8342 0.9219 0.9965 1.0800 1.2036 1.2948 1.5659 0.158250 0.150272 2.377300 0.8212 0.8660 0.9680 1.0426 1.1996 1.2928 1.3539 0.317770 0.313873 Table A-18 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=6.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.021916 0.7419 0.8280 0.9127 1.0021 1.0831 1.2001 1.3657 0.045520 0.000000 0.035331 0.7415 0.8277 0.9124 1.0023 1.0820 1.2001 1.3652 0.045531 0.000000 0.054590 0.7391 0.8262 0.9108 1.0005 1.0761 1.1999 1.3623 0.045543 0.000884 0.081787 0.7377 0.8252 0.9095 0.9984 1.0718 1.1993 1.3613 0.045818 0.005090 0.121310 0.7371 0.8246 0.9087 0.9970 1.0695 1.1992 1.3606 0.046373 0.008779 0.183910 0.7379 0.8248 0.9091 0.9968 1.0696 1.1993 1.3628 0.047424 0.013253 0.281190 0.7408 0.8265 0.9105 0.9977 1.0732 1.2003 1.3683 0.049567 0.019583 0.437670 0.7465 0.8298 0.9146 1.0011 1.0807 1.2026 1.3794 0.053532 0.028148 0.685100 0.7589 0.8383 0.9226 1.0082 1.0986 1.2053 1.4067 0.063941 0.044890 1.077400 0.7926 0.8618 0.9454 1.0263 1.1344 1.2124 1.4916 0.092245 0.080223 1.732900 0.7816 0.8787 1.0082 1.0674 1.2301 1.2460 1.4084 0.168250 0.161971 2.805200 0.7282 0.7964 0.8829 1.0058 1.1176 1.1623 1.1923 0.350520 0.347550
36 Table A-19 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=10.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.021591 0.7076 0.7892 0.8872 0.9649 1.0313 1.1515 1.3148 0.053719 0.000000 0.035192 0.7071 0.7881 0.8857 0.9640 1.0315 1.1495 1.3126 0.054201 0.000000 0.057653 0.7048 0.7832 0.8782 0.9590 1.0322 1.1397 1.3014 0.056308 0.013164 0.090694 0.7035 0.7802 0.8737 0.9554 1.0320 1.1335 1.2958 0.058123 0.019519 0.139540 0.7028 0.7787 0.8720 0.9534 1.0310 1.1310 1.2938 0.059908 0.024324 0.216130 0.7034 0.7792 0.8742 0.9537 1.0296 1.1331 1.2975 0.061972 0.029038 0.335820 0.7058 0.7821 0.8800 0.9562 1.0283 1.1393 1.3083 0.065467 0.035897 0.527800 0.7108 0.7883 0.8922 0.9628 1.0269 1.1528 1.3271 0.070436 0.044316 0.832030 0.7232 0.8027 0.9011 0.9771 1.0275 1.1713 1.3621 0.078689 0.056521 1.315900 0.7305 0.8166 0.9213 1.0100 1.0439 1.1738 1.4070 0.093273 0.075515 2.119000 0.7374 0.8201 0.9476 0.9971 1.0721 1.1959 1.3988 0.187850 0.179695 3.430200 0.5730 0.6110 0.6744 0.9141 0.9495 1.0202 1.2483 0.369360 0.365280 Table A-20 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=13.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.020246 0.6922 0.7609 0.8298 0.9132 1.0399 1.0830 1.2230 0.055651 0.000000 0.033281 0.6915 0.7588 0.8268 0.9124 1.0389 1.0803 1.2168 0.056766 0.000000 0.057142 0.6793 0.7523 0.8160 0.9083 1.0322 1.0671 1.1899 0.061748 0.019878 0.093608 0.6691 0.7497 0.8100 0.9052 1.0260 1.0590 1.1765 0.064882 0.028143 0.148540 0.6638 0.7479 0.8069 0.9029 1.0218 1.0549 1.1700 0.066995 0.032721 0.234290 0.6627 0.7472 0.8072 0.9018 1.0203 1.0549 1.1694 0.068157 0.035039 0.369100 0.6638 0.7480 0.8096 0.9021 1.0207 1.0577 1.1735 0.069349 0.037304 0.585410 0.6678 0.7501 0.8167 0.9039 1.0225 1.0663 1.1830 0.070242 0.038939 0.929030 0.6725 0.7543 0.8283 0.9096 1.0197 1.0804 1.2061 0.071635 0.041399 1.476900 0.6703 0.7478 0.8484 0.9222 0.9759 1.0972 1.2446 0.092199 0.071295 2.380800 0.6500 0.7281 0.7639 0.8568 0.9619 1.0697 1.1608 0.198610 0.189811 3.854000 0.4621 0.4839 0.5392 0.7600 0.7860 0.9942 1.2049 0.338330 0.333241
37 Table A-21 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=20.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.017198 0.6384 0.7111 0.7540 0.8668 0.9447 1.0138 1.1252 0.032445 0.000000 0.028572 0.6294 0.7030 0.7506 0.8589 0.9306 1.0076 1.1165 0.033602 0.000000 0.052416 0.5917 0.6678 0.7273 0.8229 0.8709 0.9719 1.0676 0.041498 0.016721 0.091524 0.5494 0.6338 0.7035 0.8025 0.8431 0.9660 1.0655 0.048061 0.029451 0.152800 0.5233 0.6135 0.6819 0.7907 0.8347 0.9631 1.0655 0.052129 0.035706 0.248440 0.5100 0.6027 0.6722 0.7850 0.8315 0.9618 1.0660 0.054399 0.038946 0.400750 0.4996 0.5933 0.6638 0.7808 0.8300 0.9619 1.0677 0.056579 0.041937 0.646150 0.4899 0.5818 0.6551 0.7772 0.8301 0.9633 1.0710 0.060704 0.047355 1.038000 0.4788 0.5617 0.6421 0.7534 0.8324 0.9667 1.0769 0.073934 0.063433 1.665300 0.4592 0.5231 0.6149 0.6989 0.8364 0.9424 1.0840 0.111420 0.104747 2.689800 0.4167 0.5001 0.5649 0.6811 0.7425 0.8411 1.0816 0.183370 0.179394 4.354200 0.3432 0.3697 0.4247 0.5509 0.5944 0.8145 0.9857 0.247940 0.245014 Table A-22 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=25.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.015309 0.6363 0.6902 0.7337 0.8414 0.9274 0.9857 1.1049 0.030835 0.000000 0.025505 0.6244 0.6807 0.7244 0.8265 0.9068 0.9750 1.0950 0.030889 0.000000 0.048104 0.5630 0.6259 0.6787 0.7620 0.8123 0.9173 1.0260 0.035531 0.009700 0.086996 0.4944 0.5665 0.6261 0.7220 0.7777 0.9037 1.0214 0.043894 0.027538 0.149780 0.4525 0.5293 0.5904 0.6985 0.7637 0.8954 1.0182 0.051211 0.038134 0.248220 0.4310 0.5089 0.5717 0.6860 0.7568 0.8908 1.0162 0.056319 0.044760 0.406510 0.4146 0.4909 0.5564 0.6754 0.7517 0.8872 1.0145 0.062302 0.052088 0.662730 0.4005 0.4732 0.5413 0.6637 0.7477 0.8794 1.0122 0.070108 0.061211 1.073400 0.3867 0.4521 0.5231 0.6328 0.7398 0.8500 1.0082 0.085334 0.078189 1.732700 0.3688 0.4211 0.4942 0.5993 0.6954 0.7922 0.9974 0.114750 0.109541 2.802400 0.3428 0.3976 0.4552 0.5502 0.6074 0.7236 0.9604 0.158460 0.154729 4.536400 0.3039 0.3325 0.3777 0.4580 0.5275 0.6740 0.8352 0.195770 0.192763
38 Table A-23 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=33.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.013154 0.6409 0.7070 0.7601 0.8614 0.9595 0.9981 1.1351 0.037017 0.000000 0.021865 0.6305 0.6946 0.7418 0.8386 0.9413 0.9813 1.1086 0.036530 0.000000 0.041667 0.5666 0.6102 0.6504 0.7331 0.8082 0.8803 0.9919 0.038185 0.002827 0.078125 0.4811 0.5337 0.5790 0.6533 0.7199 0.8196 0.9451 0.046767 0.027149 0.139870 0.4163 0.4732 0.5296 0.6038 0.6670 0.7954 0.9309 0.057289 0.042801 0.237930 0.3827 0.4408 0.4949 0.5779 0.6489 0.7827 0.9223 0.064804 0.052435 0.398130 0.3582 0.4161 0.4711 0.5576 0.6359 0.7719 0.9137 0.072232 0.061379 0.659680 0.3396 0.3967 0.4510 0.5384 0.6250 0.7470 0.9025 0.080151 0.070527 1.081700 0.3247 0.3777 0.4320 0.5175 0.6077 0.7123 0.8853 0.090256 0.081829 1.761800 0.3110 0.3565 0.4097 0.4897 0.5665 0.6595 0.8563 0.106380 0.099331 2.855000 0.2991 0.3358 0.3832 0.4496 0.5038 0.5781 0.8007 0.124620 0.118659 4.621600 0.2845 0.3049 0.3442 0.3932 0.4335 0.5293 0.6917 0.142400 0.137214 Table A-24 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=40.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.012119 0.6568 0.7299 0.8012 0.8883 0.9748 1.0469 1.1944 0.040905 0.000000 0.020050 0.6468 0.7159 0.7812 0.8766 0.9625 1.0196 1.1688 0.040774 0.000000 0.037684 0.5800 0.6285 0.6728 0.7560 0.8508 0.8981 1.0074 0.045002 0.000000 0.071393 0.4995 0.5400 0.5778 0.6530 0.7391 0.8042 0.9165 0.057593 0.034418 0.130500 0.4226 0.4732 0.5110 0.5829 0.6742 0.7566 0.8917 0.073172 0.056761 0.225600 0.3813 0.4342 0.4767 0.5464 0.6379 0.7352 0.8778 0.084695 0.070999 0.382860 0.3521 0.4064 0.4519 0.5193 0.6097 0.7191 0.8650 0.095590 0.083697 0.641470 0.3315 0.3855 0.4333 0.4964 0.5850 0.7046 0.8502 0.106970 0.096490 1.060800 0.3163 0.3695 0.4183 0.4748 0.5608 0.6810 0.8296 0.120450 0.111247 1.738900 0.3042 0.3558 0.3994 0.4508 0.5361 0.6398 0.7982 0.134230 0.126037 2.821700 0.2976 0.3438 0.3827 0.4227 0.4878 0.6105 0.7456 0.143560 0.135931 4.567700 0.2907 0.3202 0.3517 0.3899 0.4349 0.5155 0.6555 0.143760 0.136142
39 Table A-25 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=50.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.011237 0.6920 0.7742 0.8417 0.9302 1.0052 1.1138 1.2785 0.043026 0.000000 0.018464 0.6852 0.7592 0.8316 0.9160 1.0001 1.0930 1.2561 0.043165 0.000000 0.033540 0.6287 0.6814 0.7347 0.8178 0.9128 0.9693 1.1254 0.049998 0.000000 0.063036 0.5375 0.5884 0.6293 0.7044 0.8145 0.8655 1.0221 0.068138 0.040137 0.116930 0.4500 0.4922 0.5379 0.6197 0.7575 0.8066 0.9707 0.091493 0.073069 0.205470 0.4018 0.4448 0.4880 0.5735 0.7107 0.7678 0.9530 0.108790 0.093827 0.354360 0.3652 0.4105 0.4530 0.5420 0.6794 0.7324 0.9417 0.124900 0.112108 0.601820 0.3390 0.3862 0.4285 0.5149 0.6579 0.7082 0.9338 0.140010 0.128728 1.006000 0.3211 0.3695 0.4119 0.4985 0.6400 0.6880 0.9264 0.155380 0.145297 1.662500 0.3085 0.3577 0.3980 0.4791 0.6212 0.6635 0.8761 0.169960 0.160794 2.702600 0.3038 0.3531 0.3883 0.4655 0.5759 0.6384 0.8100 0.180160 0.171540 4.374800 0.3007 0.3441 0.3774 0.4473 0.5147 0.5939 0.7499 0.189750 0.181585 Table A-26 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=100.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.010157 0.7231 0.8080 0.8878 0.9840 1.0527 1.1720 1.3295 0.041097 0.000000 0.016487 0.7159 0.8023 0.8815 0.9773 1.0384 1.1644 1.3230 0.040379 0.000000 0.027389 0.6826 0.7576 0.8312 0.9237 1.0184 1.0750 1.2488 0.037481 0.000000 0.046471 0.6542 0.7093 0.7583 0.8393 0.9407 1.0101 1.1698 0.038260 0.004106 0.080508 0.6001 0.6455 0.6816 0.7517 0.8543 0.9392 1.0411 0.042443 0.018827 0.138650 0.5361 0.5826 0.6181 0.6953 0.7939 0.8895 1.0172 0.048125 0.029480 0.239320 0.4820 0.5191 0.5622 0.6441 0.7345 0.8392 0.9907 0.054974 0.039688 0.411280 0.4377 0.4818 0.5174 0.6000 0.6841 0.7918 0.9581 0.063308 0.050606 0.698630 0.4043 0.4481 0.4855 0.5677 0.6452 0.7567 0.9394 0.070128 0.058915 1.172500 0.3820 0.4258 0.4636 0.5424 0.6172 0.7374 0.9324 0.083852 0.074727 1.912900 0.3814 0.4256 0.4629 0.5369 0.6102 0.7447 0.9463 0.098263 0.090602 3.096600 0.3854 0.4196 0.4669 0.5368 0.5769 0.7018 0.9883 0.144670 0.139580
40 Table A-27 Site Adjustment Factor Medians and Logarithmic Standard Deviation for PGA SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.010020 0.7297 0.8137 0.8949 0.9895 1.0650 1.1825 1.3337 0.041389 0.000000 0.016224 0.7231 0.8089 0.8901 0.9841 1.0534 1.1748 1.3299 0.040681 0.000000 0.026327 0.6911 0.7751 0.8575 0.9433 1.0309 1.1121 1.2732 0.037802 0.000000 0.042833 0.6772 0.7447 0.8041 0.8906 0.9976 1.0468 1.2354 0.039998 0.004960 0.069979 0.6577 0.7128 0.7567 0.8359 0.9421 1.0145 1.1698 0.045122 0.021465 0.114440 0.6424 0.6905 0.7260 0.8003 0.8976 0.9779 1.1668 0.053007 0.035136 0.187600 0.6046 0.6542 0.6883 0.7697 0.8674 0.9684 1.2158 0.067153 0.054169 0.307920 0.5737 0.6231 0.6587 0.7425 0.8353 0.9672 1.2953 0.085206 0.075398 0.504880 0.5495 0.5890 0.6360 0.7204 0.8121 0.9797 1.3684 0.116000 0.108999 0.826150 0.5322 0.5728 0.6216 0.7038 0.7975 0.9991 1.5000 0.154070 0.148870 1.340700 0.5321 0.5829 0.6276 0.7029 0.8069 1.0457 1.5336 0.197200 0.193165 2.170300 0.5427 0.5786 0.6401 0.7091 0.8294 0.9888 1.6809 0.244240 0.240994 Table A-28 Control Point Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.00100 3.42190E-03 4.39933E-03 6.31161E-03 8.10738E-03 1.09676E-02 2.04298E-02 2.84296E-02 4.76056E-02 0.00130 3.08554E-03 3.97723E-03 5.67226E-03 7.45453E-03 1.00333E-02 1.85121E-02 2.56558E-02 4.15683E-02 0.00160 2.69903E-03 3.49095E-03 4.93882E-03 6.44344E-03 8.58309E-03 1.55514E-02 2.13883E-02 3.47833E-02 0.00200 2.35061E-03 3.05272E-03 4.28963E-03 5.36967E-03 7.30999E-03 1.29791E-02 1.73858E-02 2.88940E-02 0.00250 2.03418E-03 2.65878E-03 3.72539E-03 4.77948E-03 6.23704E-03 1.08318E-02 1.46088E-02 2.38033E-02 0.00320 1.73966E-03 2.30194E-03 3.23130E-03 4.12214E-03 5.33518E-03 9.05329E-03 1.20456E-02 1.94355E-02 0.00400 1.46455E-03 1.97969E-03 2.79475E-03 3.55867E-03 4.58041E-03 7.58443E-03 9.93307E-03 1.57699E-02 0.00500 1.19652E-03 1.67534E-03 2.40043E-03 3.06008E-03 3.93442E-03 6.36495E-03 8.19913E-03 1.27571E-02 0.00630 9.29777E-04 1.37645E-03 2.03805E-03 2.58535E-03 3.37979E-03 5.35863E-03 6.78703E-03 1.03122E-02 0.00790 6.90140E-04 1.10217E-03 1.71386E-03 2.20503E-03 2.90038E-03 4.52748E-03 5.63573E-03 8.33772E-03 0.01000 4.89043E-04 8.51659E-04 1.41152E-03 1.81856E-03 2.47239E-03 3.82516E-03 4.69508E-03 6.75481E-03 0.01260 3.17538E-04 6.15543E-04 1.11426E-03 1.47742E-03 2.08634E-03 3.22846E-03 3.92085E-03 5.50358E-03 0.01580 1.90810E-04 4.14779E-04 8.44628E-04 1.23630E-03 1.73812E-03 2.71878E-03 3.28135E-03 4.50709E-03 0.02000 1.05973E-04 2.64061E-04 6.16237E-04 9.02901E-04 1.41610E-03 2.27986E-03 2.63841E-03 3.69689E-03
41 Table A-28 Control Point Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.02510 5.81105E-05 1.57441E-04 4.22872E-04 7.03980E-04 1.12179E-03 1.88788E-03 2.25951E-03 3.03111E-03 0.03160 2.99118E-05 8.58534E-05 2.66630E-04 4.47082E-04 8.44627E-04 1.52189E-03 1.76563E-03 2.47056E-03 0.03980 1.49746E-05 4.35646E-05 1.54915E-04 2.80477E-04 5.98274E-04 1.18321E-03 1.39084E-03 1.98809E-03 0.05010 7.06932E-06 2.12426E-05 8.40405E-05 1.66931E-04 3.97322E-04 8.77958E-04 1.05144E-03 1.55651E-03 0.06310 3.16522E-06 1.01582E-05 4.26453E-05 9.14538E-05 2.44616E-04 6.13129E-04 7.46555E-04 1.16297E-03 0.07940 1.37764E-06 4.73115E-06 2.09846E-05 4.71327E-05 1.41580E-04 3.95736E-04 5.00064E-04 8.32299E-04 0.10000 6.06024E-07 2.10721E-06 9.76855E-06 2.33364E-05 7.54700E-05 2.38712E-04 3.19204E-04 5.71476E-04 0.12600 2.65357E-07 9.01201E-07 4.49726E-06 1.11902E-05 3.98145E-05 1.37806E-04 1.90878E-04 3.67298E-04 0.15800 1.14298E-07 3.83880E-07 2.05007E-06 5.11695E-06 1.93355E-05 7.20745E-05 1.05160E-04 2.18523E-04 0.20000 4.71525E-08 1.59531E-07 8.75396E-07 2.23852E-06 8.52731E-06 3.55721E-05 5.46819E-05 1.23124E-04 0.25100 2.00810E-08 6.82445E-08 3.76862E-07 1.00296E-06 3.99302E-06 1.75370E-05 2.87292E-05 6.63204E-05 0.31600 8.31336E-09 2.78602E-08 1.57679E-07 4.33220E-07 1.83882E-06 8.07323E-06 1.43719E-05 3.29172E-05 0.39800 3.38273E-09 1.12889E-08 6.52070E-08 1.81894E-07 8.13219E-07 3.80947E-06 6.90757E-06 1.51997E-05 0.50100 1.38904E-09 4.50907E-09 2.66231E-08 7.58516E-08 3.54035E-07 1.77971E-06 3.30631E-06 6.84902E-06 0.63100 5.60832E-10 1.77544E-09 1.06797E-08 3.12351E-08 1.52491E-07 8.08893E-07 1.58584E-06 3.34616E-06 0.79400 2.24235E-10 6.96427E-10 4.22617E-09 1.27145E-08 6.53791E-08 3.67813E-07 7.58197E-07 1.87440E-06 1.00000 8.87511E-11 2.68874E-10 1.64389E-09 5.08155E-09 2.76336E-08 1.66586E-07 3.67757E-07 1.03484E-06 1.26000 3.47362E-11 1.02891E-10 6.34332E-10 2.01203E-09 1.15826E-08 7.50210E-08 1.78435E-07 5.96693E-07 1.58000 1.37483E-11 4.00495E-11 2.47788E-10 8.07174E-10 4.92602E-09 3.44566E-08 8.85789E-08 3.52025E-07 2.00000 5.20130E-12 1.48426E-11 9.23620E-11 3.09805E-10 2.01209E-09 1.53504E-08 4.30833E-08 2.05458E-07 2.51000 2.02221E-12 5.67603E-12 3.56800E-11 1.22746E-10 8.44964E-10 7.04619E-09 2.16369E-08 1.24565E-07 3.16000 7.71402E-13 2.14711E-12 1.36022E-11 4.79396E-11 3.49730E-10 3.20668E-09 1.08365E-08 7.56386E-08 3.98000 2.93494E-13 8.09001E-13 5.15413E-12 1.86421E-11 1.44295E-10 1.46120E-09 5.45391E-09 4.63127E-08 5.01000 1.11688E-13 3.03862E-13 1.95394E-12 7.26093E-12 5.95810E-11 6.68452E-10 2.76517E-09 2.86693E-08 6.31000 4.22040E-14 1.13851E-13 7.40182E-13 2.82276E-12 2.45193E-11 3.05677E-10 1.40625E-09 1.78660E-08 7.94000 1.59674E-14 4.28720E-14 2.80200E-13 1.09736E-12 1.00958E-11 1.40302E-10 7.19957E-10 1.12360E-08 10.00000 6.00858E-15 1.59180E-14 1.04927E-13 4.22483E-13 4.12230E-12 6.41360E-11 3.68658E-10 7.10357E-09
42 Table A-29 Control Point Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.00100 6.23584E-02 7.79668E-02 8.24856E-02 8.61033E-02 8.69270E-02 8.80814E-02 8.79588E-02 8.53470E-02 0.00130 5.52742E-02 7.11168E-02 7.61104E-02 7.94416E-02 8.05475E-02 8.21744E-02 8.22849E-02 7.87813E-02 0.00160 4.72268E-02 6.31754E-02 6.86590E-02 7.27029E-02 7.40699E-02 7.61407E-02 7.64739E-02 7.36463E-02 0.00200 3.99996E-02 5.55557E-02 6.12890E-02 6.58518E-02 6.74210E-02 6.98526E-02 7.03382E-02 6.61380E-02 0.00250 3.33996E-02 4.78538E-02 5.35311E-02 5.80968E-02 5.97896E-02 6.24743E-02 6.31135E-02 5.88381E-02 0.00320 2.74457E-02 4.02387E-02 4.55449E-02 4.98194E-02 5.15416E-02 5.43358E-02 5.51253E-02 5.09938E-02 0.00400 2.22834E-02 3.31858E-02 3.79253E-02 4.18053E-02 4.34648E-02 4.62115E-02 4.71009E-02 4.32627E-02 0.00500 1.79521E-02 2.69650E-02 3.10384E-02 3.44086E-02 3.59334E-02 3.84983E-02 3.94257E-02 3.60187E-02 0.00630 1.43759E-02 2.15964E-02 2.49628E-02 2.77627E-02 2.90968E-02 3.13655E-02 3.22727E-02 2.94288E-02 0.00790 1.14694E-02 1.71215E-02 1.98269E-02 2.20434E-02 2.31693E-02 2.50977E-02 2.59543E-02 2.37472E-02 0.01000 9.14763E-03 1.35037E-02 1.56376E-02 1.74150E-02 1.83504E-02 1.99575E-02 2.07401E-02 1.90137E-02 0.01260 7.32323E-03 1.06261E-02 1.22757E-02 1.36336E-02 1.43893E-02 1.56795E-02 1.63760E-02 1.50894E-02 0.01580 5.88255E-03 8.34224E-03 9.59187E-03 1.05964E-02 1.11933E-02 1.21975E-02 1.28053E-02 1.19720E-02 0.02000 4.73695E-03 6.55172E-03 7.32936E-03 8.23362E-03 8.70329E-03 9.47760E-03 1.00006E-02 9.40152E-03 0.02510 3.83106E-03 5.17492E-03 5.88297E-03 6.43538E-03 6.80552E-03 7.39462E-03 7.84026E-03 7.46046E-03 0.03160 3.10445E-03 4.11531E-03 4.66000E-03 5.08298E-03 5.37863E-03 5.82311E-03 6.20098E-03 5.96649E-03 0.03980 2.50581E-03 3.28555E-03 3.71812E-03 4.04748E-03 4.28998E-03 4.62665E-03 4.94215E-03 4.81162E-03 0.05010 1.98567E-03 2.60304E-03 2.95499E-03 3.23573E-03 3.44252E-03 3.70020E-03 3.94398E-03 3.89418E-03 0.06310 1.51748E-03 2.01747E-03 2.25206E-03 2.57305E-03 2.75954E-03 2.96072E-03 3.12227E-03 3.15178E-03 0.07940 1.12097E-03 1.52997E-03 1.73621E-03 2.03154E-03 2.20467E-03 2.36433E-03 2.50509E-03 2.54149E-03 0.10000 7.97668E-04 1.12502E-03 1.31210E-03 1.57440E-03 1.73286E-03 1.85840E-03 1.97531E-03 2.00596E-03 0.12600 5.31814E-04 7.79027E-04 9.24757E-04 1.15662E-03 1.29937E-03 1.39490E-03 1.49321E-03 1.52818E-03 0.15800 3.29464E-04 5.05383E-04 6.17705E-04 8.07166E-04 9.31877E-04 1.00233E-03 1.09506E-03 1.14000E-03 0.20000 1.93714E-04 3.12479E-04 3.98347E-04 5.48400E-04 6.51371E-04 7.02050E-04 7.76214E-04 8.10818E-04 0.25100 1.08512E-04 1.83437E-04 2.39981E-04 3.47977E-04 4.26008E-04 4.60026E-04 5.13987E-04 5.45026E-04 0.31600 5.65754E-05 9.98817E-05 1.32378E-04 2.02153E-04 2.55789E-04 2.76609E-04 3.15195E-04 3.40788E-04 0.39800 2.79500E-05 5.07928E-05 6.86081E-05 1.10061E-04 1.43726E-04 1.55865E-04 1.81986E-04 2.01392E-04 0.50100 1.31760E-05 2.46244E-05 3.41194E-05 5.66567E-05 7.60749E-05 8.28329E-05 1.00019E-04 1.13889E-04 0.63100 6.02423E-06 1.14759E-05 1.71092E-05 2.79645E-05 3.80945E-05 4.19519E-05 5.26867E-05 6.18770E-05 0.79400 3.08176E-06 5.11130E-06 8.17210E-06 1.35131E-05 1.83266E-05 2.05266E-05 2.68421E-05 3.27197E-05
43 Table A-29 Control Point Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 1.00000 1.71858E-06 2.55054E-06 3.92573E-06 6.59882E-06 8.92848E-06 1.01009E-05 1.35230E-05 1.73000E-05 1.26000 9.82745E-07 1.38367E-06 2.06911E-06 3.36670E-06 4.62314E-06 5.12658E-06 6.86194E-06 8.96340E-06 1.58000 5.91772E-07 7.62398E-07 1.07835E-06 1.73523E-06 2.35609E-06 2.64354E-06 3.56402E-06 4.49637E-06 2.00000 3.54465E-07 4.18010E-07 5.64475E-07 8.62976E-07 1.14561E-06 1.25743E-06 1.69515E-06 2.15875E-06 2.51000 2.17590E-07 2.37897E-07 3.04253E-07 4.59951E-07 5.85298E-07 6.20413E-07 8.06688E-07 1.03088E-06 3.16000 1.35053E-07 1.35845E-07 1.67341E-07 2.45940E-07 3.01105E-07 3.12119E-07 3.92901E-07 4.81628E-07 3.98000 8.45872E-08 7.85678E-08 9.32513E-08 1.34798E-07 1.58392E-07 1.59932E-07 1.96947E-07 2.32636E-07 5.01000 5.34341E-08 4.59091E-08 5.25513E-08 7.49107E-08 8.46834E-08 8.35851E-08 1.01884E-07 1.16306E-07 6.31000 3.40609E-08 2.69547E-08 2.97765E-08 4.20923E-08 4.58228E-08 4.41909E-08 5.34057E-08 5.91499E-08 7.94000 2.19320E-08 1.59375E-08 1.70175E-08 2.39298E-08 2.50557E-08 2.35798E-08 2.82997E-08 3.04089E-08 10.00000 1.41913E-08 9.44505E-09 9.74741E-09 1.36471E-08 1.37202E-08 1.25762E-08 1.49903E-08 1.55883E-08 Table A-30 Control Point Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.00100 8.29197E-02 7.93057E-02 7.73949E-02 7.63346E-02 7.57043E-02 7.49860E-02 6.97711E-02 6.89444E-02 0.00130 7.69205E-02 7.27766E-02 7.06082E-02 6.94902E-02 6.76334E-02 6.57066E-02 6.16262E-02 6.07700E-02 0.00160 7.07796E-02 6.61692E-02 6.38129E-02 6.25310E-02 6.04995E-02 5.84086E-02 5.36904E-02 5.28181E-02 0.00200 6.38233E-02 5.92774E-02 5.68302E-02 5.51130E-02 5.33537E-02 5.12092E-02 4.63573E-02 4.54938E-02 0.00250 5.64320E-02 5.12668E-02 4.95105E-02 4.77342E-02 4.60203E-02 4.38672E-02 3.91657E-02 3.83404E-02 0.00320 4.87313E-02 4.30148E-02 4.07426E-02 4.04499E-02 3.88657E-02 3.68027E-02 3.19363E-02 3.15879E-02 0.00400 4.12928E-02 3.60777E-02 3.40277E-02 3.37048E-02 3.22867E-02 3.03928E-02 2.51244E-02 2.50443E-02 0.00500 3.43413E-02 2.97295E-02 2.79587E-02 2.55253E-02 2.49897E-02 2.41767E-02 2.01836E-02 1.95753E-02 0.00630 2.80635E-02 2.41909E-02 2.27081E-02 2.06332E-02 2.01413E-02 1.94826E-02 1.60708E-02 1.55247E-02 0.00790 2.26682E-02 1.95432E-02 1.79354E-02 1.65914E-02 1.61702E-02 1.56064E-02 1.27412E-02 1.22594E-02 0.01000 1.82187E-02 1.57057E-02 1.42283E-02 1.33087E-02 1.29564E-02 1.24827E-02 1.01046E-02 9.68454E-03 0.01260 1.45239E-02 1.25577E-02 1.13328E-02 1.03997E-02 9.95561E-03 9.97943E-03 8.03801E-03 7.67560E-03 0.01580 1.15258E-02 1.00223E-02 9.01666E-03 8.14142E-03 7.89075E-03 7.96117E-03 6.24393E-03 6.09244E-03 0.02000 9.15684E-03 7.94801E-03 7.23024E-03 6.53110E-03 6.32703E-03 5.76533E-03 4.98365E-03 4.72514E-03 0.02510 7.30886E-03 6.38364E-03 5.82216E-03 4.89476E-03 4.57216E-03 4.59588E-03 3.98710E-03 3.76810E-03
44 Table A-30 Control Point Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.03160 5.87092E-03 5.08208E-03 4.37534E-03 3.82915E-03 3.57759E-03 3.35695E-03 2.91871E-03 2.99991E-03 0.03980 4.72916E-03 4.00325E-03 3.47071E-03 2.80359E-03 2.68033E-03 2.54355E-03 2.22628E-03 2.22677E-03 0.05010 3.80210E-03 3.15772E-03 2.63714E-03 2.12306E-03 1.91049E-03 1.86629E-03 1.57858E-03 1.58920E-03 0.06310 3.04315E-03 2.45702E-03 1.98306E-03 1.53512E-03 1.32784E-03 1.29770E-03 1.07282E-03 1.14662E-03 0.07940 2.41786E-03 1.88143E-03 1.46596E-03 1.06196E-03 8.97154E-04 8.70204E-04 7.19942E-04 7.81848E-04 0.10000 1.87496E-03 1.38725E-03 1.04984E-03 7.03907E-04 5.82766E-04 5.58047E-04 4.45747E-04 4.94641E-04 0.12600 1.39817E-03 9.83919E-04 7.25766E-04 4.50793E-04 3.65430E-04 3.42524E-04 2.56384E-04 2.96428E-04 0.15800 1.02066E-03 6.91095E-04 4.86942E-04 2.82824E-04 2.22653E-04 2.06797E-04 1.44686E-04 1.75503E-04 0.20000 7.10016E-04 4.50173E-04 3.06383E-04 1.66388E-04 1.27904E-04 1.17485E-04 7.68671E-05 9.83185E-05 0.25100 4.68179E-04 2.83591E-04 1.86849E-04 9.74813E-05 7.35189E-05 6.66800E-05 4.07358E-05 5.51837E-05 0.31600 2.89572E-04 1.70341E-04 1.09811E-04 5.60261E-05 4.17164E-05 3.74152E-05 2.13709E-05 3.06167E-05 0.39800 1.71636E-04 9.90749E-05 6.31897E-05 3.17774E-05 2.36365E-05 2.10733E-05 1.13552E-05 1.70520E-05 0.50100 9.81318E-05 5.64670E-05 3.57120E-05 1.79675E-05 1.33658E-05 1.19279E-05 6.12438E-06 9.53725E-06 0.63100 5.43005E-05 3.12759E-05 1.98742E-05 1.00307E-05 7.46379E-06 6.72511E-06 3.32872E-06 5.39648E-06 0.79400 2.92833E-05 1.72315E-05 1.09578E-05 5.48055E-06 4.10923E-06 3.76266E-06 1.82001E-06 3.10140E-06 1.00000 1.55231E-05 9.34171E-06 5.86530E-06 2.88279E-06 2.18372E-06 2.05574E-06 9.87603E-07 1.79323E-06 1.26000 7.92661E-06 4.96848E-06 3.00973E-06 1.42881E-06 1.10929E-06 1.08067E-06 5.25658E-07 1.02681E-06 1.58000 3.95304E-06 2.54796E-06 1.48002E-06 6.66879E-07 5.40551E-07 5.48606E-07 2.72574E-07 5.78864E-07 2.00000 1.84757E-06 1.17075E-06 6.68803E-07 2.83033E-07 2.31382E-07 2.53601E-07 1.31462E-07 3.09595E-07 2.51000 8.66933E-07 5.26188E-07 2.98247E-07 1.14251E-07 8.93884E-08 1.12493E-07 6.33218E-08 1.66335E-07 3.16000 4.05167E-07 2.30387E-07 1.24214E-07 3.92850E-08 2.82950E-08 4.55395E-08 2.91360E-08 8.75072E-08 3.98000 1.94795E-07 9.94711E-08 4.76871E-08 1.12851E-08 6.30968E-09 1.61782E-08 1.28181E-08 4.52826E-08 5.01000 9.60952E-08 4.23083E-08 1.67109E-08 2.62246E-09 1.03971E-09 4.67645E-09 5.27672E-09 2.29623E-08 6.31000 4.76674E-08 1.74086E-08 5.06260E-09 3.44027E-10 9.79905E-11 1.02501E-09 1.96612E-09 1.13393E-08 7.94000 2.36406E-08 6.77551E-09 1.18871E-09 1.59383E-11 1.40800E-12 1.52912E-10 6.77587E-10 5.45499E-09 10.00000 1.15450E-08 2.35740E-09 1.81641E-10 1.69080E-13 1.54595E-15 1.14372E-11 2.26764E-10 2.53126E-09
ENCLOSURE 2 SEQUOYAH SEISMIC HAZARDS REPORT
Sequoyah Seismic Hazard Report Overview This report provides the NRC staffs updated seismic hazard curves and response spectra for the Sequoyah Nuclear Plant (Sequoyah) site that are based on the implementation of (1) a new seismic ground motion model for the central and eastern United States (CEUS) and (2) recent advances in site response analysis. The NRC staffs updated hazard curves and site amplification factors are included in an appendix to this report.
Background
In response to the March 11, 2011, Great East Japan Earthquake and tsunami, which triggered an accident at the Fukushima Dai-ichi nuclear power plant, the U.S. Nuclear Regulatory Commission (NRC) established the Near-Term Task Force (NTTF) to conduct a systematic and methodical review of NRC processes and regulations and determine whether the agency should make additional improvements to its regulatory system. In SECY-11-0093, Near-Term Report and Recommendations for Agency Actions Following the Events in Japan, dated July 12, 2011 (NRC, 2011), the NRC staff recommended a set of actions to clarify and strengthen the regulatory framework for protection against natural hazards. In particular, NTTF Recommendation 2.1 (NTTF R2.1) instructed the NRC staff to issue requests for information to all power reactor licensees pursuant to Title 10 of the Code of Federal Regulations 50.54(f)
(50.54(f) letter). Enclosure 1 to the 50.54(f) letter requested that addressees reevaluate the seismic hazards at their sites, using present day NRC requirements and guidance to perform a probabilistic seismic hazard analysis (PSHA) and develop a site-specific ground motion response spectrum (GMRS). To comply with the 50.54(f) request, the Nuclear Energy Institute submitted Electric Power Research Institute (EPRI) Report 1025287, Seismic Evaluation Guidance: Screening, Prioritization, and Implementation Details (SPID) for the Resolution of Fukushima NTTF Recommendation 2.1 Seismic, dated November 27, 2012 (EPRI, 2012).
Recipients of the 50.54(f) letter committed to following the SPID to develop seismic hazard and screening reports (SHSRs). By December 2017, the NRC staff had finished assessing the SHSRs for all operating U.S. nuclear power plants.
Under the process for the ongoing assessment of natural hazards information (POANHI),
described in SECY-16-0144, Proposed Resolution of Remaining Tier 2 and 3 Recommendations Resulting from the Fukushima Dai-ichi Accident, dated December 26, 2016 (NRC, 2016), the NRC staff continuously seeks out and integrates new natural hazards information for operating plants in the United States. The Office of Nuclear Reactor Regulations Office Instruction LIC-208, Process for the Ongoing Assessment of Natural Hazards Information, issued November 2019 (NRC, 2019), provides guidance to the staff on how to collect, integrate, and evaluate new information for consideration in its regulatory decision-making. This report presents the NRC staffs latest understanding of seismic hazards at the Sequoyah site following the POANHI framework.
2 The Sequoyah site is located on the western shore of Chickamauga Reservoir along the Tennessee River within the Ridge and Valley physiographic province and is founded on over 3,600 meters of competent sedimentary rock (limestone, shale, sandstone and dolomite) of Paleozoic age.
Motivation After evaluating the SHSR submittals, the NRC staff captured in NUREG/KM-0017, Seismic Hazards Evaluations for U.S. Nuclear Power Plants: Near-Term Task Force Recommendation 2.1 Results, issued December 2021 (Munson et al., 2021), the information used to develop the GMRS at each of the U.S. nuclear power plants. This includes a compilation and synthesis of (1) information provided by licensees in their SHSRs, (2) information collected by the NRC staff during its reviews of the SHSRs, and (3) information subsequently collected by the NRC staff from the scientific and engineering literature pertaining to several of the nuclear power plant sites. In addition, NUREG/KM-0017 includes updated approaches and relationships, relative to those recommended by the SPID, that the NRC staff used to perform its analyses.
After the development of NUREG/KM-0017, a new Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 ground motion model (GMM) for Eastern North America called NGA-East was published by Goulet et al. (2018). In addition, the NRC staff also participated in a SSHAC Level 2 study, documented in Research Information Letter (RIL) 2021--15, Documentation Report for SSHAC Level 2: Site Response, issued November 2021 (Rodriguez-Marek et al., 2021). This SSHAC Level 2 study implemented the SSHAC approach to performing site response analyses (SRAs). The SSHAC process, described most recently in NUREG-2213, Updated Implementation Guidelines for SSHAC Hazard Studies, issued October 2018 (Ake et al., 2018),
provides a structured and logical framework for the systematic evaluation of alternative data, models, and methods. This seismic hazard report for the Sequoyah site incorporates the NGA-East GMM in place of the EPRI (2013) GMM and lessons learned from the SSHAC Level 2 SRA study (RIL 2021-15) into a PSHA to develop updated seismic hazard curves and a GMRS for the site.
Methods Reference Rock Hazard For the reference rock PSHA, the NRC staff used the distributed seismicity zones (DSZs) from the SSHAC Level 3 Central and Eastern United States Seismic Source Characterization for Nuclear Facilities (CEUS-SSC) model in NUREG-2115, Central and Eastern United States Seismic Source Characterization for Nuclear Facilities, issued January 2012 (NRC, 2012).
Specifically, the NRC staff selected the DSZs that are located within 500 kilometers of the site.
For this reevaluation, the NRC staff used the SSHAC Level 2 update to the CEUS-SSC seismicity catalog and recurrence parameters (Gatlin, 2015), which primarily impact the DSZs that encompass Monticello Reservoir and Lake Keowee in South Carolina as well as the 1886 Charleston earthquake sequence. In addition, the NRC staff selected the RLME sources that are within 1,000 kilometers of the site. To develop the reference rock seismic hazard curves for the site, the NRC staff used the NGA-East GMM (2018) to compute the median and logarithmic
3 standard deviation of the spectral accelerations. Because the NGA-East GMM implements the rupture distance parameter, the NRC staff developed virtual rupture planes for each of the distributed source zones surrounding the site. For each virtual rupture, the NRC staff used the CEUS-SSC hazard input document (NRC, 2012) to specify the size of the rupture plane and the orientation of the rupture plane in terms of the strike and dip angles, dip direction, and rupture type (e.g., reverse and strike slip). In contrast, to develop the hazard curves for NUREG/KM-0017, the NRC staff used point source approximations for the CEUS-SSC and EPRI GMM (EPRI, 2013) combination.
Figure 1 shows the distribution of the virtual ruptures for one of the four alternative CEUS-SSC seismotectonic DSZ configurations along with the resulting 10-Hertz (Hz) mean hazard curves developed using the NGA-East GMM. In particular, Figure 1 shows the distribution of the surface projection of the updip segments of the virtual rupture planes for each of the five seismotectonic DSZs within 500 kilometers of the site. As expected, the Paleozoic Extended CrustNarrow Geometry (PEZ-N) source zone, which surrounds the site, is the largest contributor to the 10 Hz reference rock mean hazard curves at the 10-4 annual frequency of exceedance (AFE) level. Similarly, Figure 2 shows the distribution of the virtual ruptures for one of the three alternative CEUS-SSC maximum-magnitude DSZ configurations along with the resulting 10 Hz mean hazard curves developed using the NGA-East GMM. The Non-Mesozoic-and-Younger ExtensionNarrow Configuration (NMESE-N) source zone, which surrounds the site, is the largest contributor to the 10 Hz reference rock mean hazard curves at the 10-4 AFE level. Figure 3 shows the RLME sources within 1,000 kilometers of the site, and their contribution to the 1 Hz reference rock mean hazard, from using the NGA-East GMM. The New Madrid Fault System RLME source is the largest contributor to the 1 Hz reference rock mean hazard curves at the 10-4 AFE level. Figure 4 shows the contribution from all of the DSZs relative to the RLMEs, as well as the total mean hazard for the 1 and 10 Hz mean reference rock hazard curves, from using the NGA-East GMM. For the 1 Hz mean reference rock hazard curves, the RLME sources provide the largest contribution at the 10-4 AFE level. In contrast, for the 10 Hz mean reference rock hazard curves at the 10-4 AFE level, the DSZs provide the largest contribution. Finally, Figure 5 shows the mean 1,000-, 10,000-, and 100,000-year return period mean reference rock uniform hazard response spectra (UHRS) for the Sequoyah site from using the EPRI GMM (blue) and the NGA-East GMM (red). For this reevaluation, the NRC staff used the NGA-East single station standard deviation and for the comparison shown in Figure 5, the NRC staff used the EPRI GMM ergodic standard deviation. As shown in Figure 5, the spectral accelerations from using the NGA-East GMM are moderately higher than those from using the EPRI GMM, up to the spectral frequency of about 5 Hz.
Site Response Analysis SRAs, which are used to develop site adjustment (or amplification) factors , depend on several factors, including the site strata (material type, stiffness, and thickness) and their response to dynamic loading. Because this information is site specific, the ability to accurately model the site response depends on the quantity and quality of site-specific geologic and geotechnical data available, and on the interpretation and use of these data to develop input models for assessing amplification (or deamplification) of ground motions. The resulting
4 are assessed for a wide range of input ground motions as part of understanding the changes in the soil and rock response as input ground motions increase.
The NRC staff followed the site response approach described in RIL 2021-15, which uses a logic tree for systematically identifying and propagating epistemic uncertainties in the SRA. As described in RIL 2021-15, to produce a truly probabilistic estimate of the seismic hazard at the control point elevation, it is necessary to estimate both the epistemic uncertainties and the aleatory variability of the soil and or rock dynamic response, and to propagate these through the SRA and the calculation of the site hazard curves.
Site Exploration. As described in the NTTF R2.1 SHSR submitted by the Tennessee Valley Authority (TVA; Shea, 2014) and summarized in section 2.3.12 of NUREG/KM-0017, the field investigations for Sequoyah consisted of downhole and crosshole geophysical measurements of the uppermost soil and rock strata to a depth of 31 meters in addition to more recent Spectral Analysis of Surface Waves (SASW) testing to estimate shear wave velocities ( at the Watts Bar nuclear plant site, which is situated over the same Valley and Ridge rock formations as Sequoyah.
Basecase Profiles. TVA stated in its NTTF R2.1 SHSR (Shea, 2014) that the uppermost 12 meters beneath the plant site are residual clays and silts overlying interbedded limestone and shale bedrock of the Conasauga Group. The primary structures of the Sequoyah plant are founded on the Conasauga Group, which is of Middle Cambrian age. TVA selected the deepest structure foundation, which is at a depth of 19.5 meters, as the control point for its basecase profile. For its SHSR, TVA developed a basecase profile that extends to a depth of 1,628 meters below the control point elevation. The major controlling geologic feature of the Sequoyah site is the Kingston Thrust fault. Movement along this fault during the Late Paleozoic Era resulted in the Cambrian age Conasauga Group resting upon the younger Ordovician age Knox Group dolomites, which would normally overlie the Conasauga sedimentary strata. The majority of TVAs best-estimate basecase profiles consist of sedimentary strata from the Conasauga (shale and limestone) and the Knox Groups, for which TVA estimated a of about 1,830 meters/second (m/s) to 2,134 m/s. In between the Conasauga and Knox Group strat is 46 meters of limestone from the Pond Springs Formation, which has an estimated of 2,896 m/s.
In summary, the sequence of sedimentary strata and thrust faults underlying the site is as follows: (1) Conasauga Group (Cambrian), (2) Kingston Fault, (3) Pond Springs Formation (Ordovician), (4) Knox Group (Ordovician-Cambrian), (5) Conasauga Group, (6) Rome Formation (Cambrian), (7) Chattanooga Fault, (8) Knox Group, (9) Conasauga Group, (10)
Rome Formation, (11) Sequatchie Valley Fault, (12) Rome Formation, and (13) basement rock.
TVA terminated its basecase profile at the top of the first instance of the Rome Formation above the Chattanooga Fault based on the estimated of 3,049 m/s, which exceeds the NGA-East GMM reference rock of 3,000 m/s.
Based on (1) the stratigraphy of the Valley and Ridge physiographic province in the vicinity of the Sequoyah site, (2) the estimated lower (i.e., < 3,000 m/s) for the sedimentary rock layers below the Chattanooga Thrust fault, and (3) consistent with the NRC staffs effort to capture a wider range of uncertainty (RIL 2021-15), the NRC staff developed two best-estimate basecase profiles
5 for the Sequoyah SRA. The first best-estimate basecase profile developed by the NRC staff extends to a depth of 1,905 meters below the control point elevation, which is similar to the best-estimate basecase profile developed by TVA. However, the second best-estimate basecase profile developed by the NRC staff extends to a depth of 3,399 meters below the control point elevation. This second best-estimate basecase profile captures the possibility that the sedimentary strata beneath the Sequoyah site consists of multiple layers beneath the Chattanooga Thrust fault that have less than the reference rock of 3,000 m/s. The estimated for these deeper rock layers beneath the Chattanooga Thrust fault are provided in Table 2.3.1-2 of TVAs SHSR and are based on geologic investigations performed by consultants to TVA (Shea, 2014).
To capture the uncertainty in its best-estimate basecase profiles, the NRC staff developed lower and upper profiles by multiplying its two best-estimate basecase profiles by scale factors of 0.82 and 1.21, respectively, which corresponds to an epistemic logarithmic standard deviation of 0.15. The weights for the lower, best-estimate, and upper basecase profiles are 0.3, 0.4, and 0.3, respectively. Figure 6 shows the six lower, best-estimate, and upper basecase profiles used by the NRC staff. The lower epistemic value used by the NRC staff to determine the lower and upper basecase profiles is due to the staffs conclusion that the lithology of the sedimentary strata beneath Sequoyah site likely has a low range in .
Site Kappa. To estimate the site kappa ( ), which captures the overall attenuation (i.e., intrinsic and scattering attenuation) of the geologic profile, the NRC staff used the four - models from Campbell (2009), where is the effective quality factor of shear waves, which captures both the frequency-independent component of intrinsic attenuation and small-scale scattering.
For each of the four - models, the NRC staff estimated a for each layer in the basecase profiles, then used the estimated , , and layer thickness to determine a for each layer. Summing these values for each layer and adding the reference value of 6 milliseconds (msec) provides an estimate of the total . The NRC staff used a weight of 0.25 for each of the four - models. Assuming a lognormal distribution for with a logarithmic standard deviation of 0.2 from Xu et al. (2020), the NRC staff developed a nine-point discrete distribution. This results in 45 values and associated weights for each of the basecase profiles, which the NRC staff then resampled using the approach from Miller and Rice (1983) to reduce the distribution to five representative values and associated weights. These five values and weights, which are listed in Table 1, range from 10 msec to 51 msec for the six basecase profiles.
Nonlinear Dynamic Properties. For the equivalent linear (EQL) SRA, nonlinearity is incorporated using strain-compatible site properties (i.e., shear modulus and damping ratio) for each layer. The strain-compatible properties model both the shear modulus reduction and the increased damping that are expected as the intensity of shaking increases. To model the nonlinear response within the upper 152 meters of weathered rock layers, the NRC staff used the EPRI rock modulus reduction and damping (MRD) curves (EPRI, 1993), which are identified in Table 2. The NRC staff used a weight of 0.5 for the MRD curves and a weight of 0.5 to capture the possibility that the weathered rock behaves linearly under seismic loading. The NRC
6 staff used MRD curves as well as a linear alternative to better capture the epistemic uncertainty in the response of the weathered rock to higher dynamic loading.
Table 2 provides the layer depths, lithologies, , unit weights, and dynamic properties for the NRC staffs basecase profiles. It is important to note that the NRC staff has adjusted the critical damping ratio values in the lower layers of the profiles, which are treated as having a linear response, so that each profile as a whole has the appropriate value. Figure 7, which shows tornado plots for the reference rock peak ground acceleration (PGA) value of 0.63g, shows the site response logic tree nodes that contribute to the variance of the . Each tornado plot in Figure 7 is associated with one of the four oscillator frequencies of 1, 5, 10, and 100 Hz. For the frequencies of 5, 10, and 100 Hz, the epistemic uncertainty in the basecase and the uncertainty in contribute similar amounts to the variance in the . For 1 Hz, the epistemic uncertainty in the basecase contributes the most to the variance in the .
Input Motions. Input motions used for the SRA were generated as outcrop motions at the reference rock horizon, located at the bottom of the basecase profiles. The NRC staff used random vibration theory to generate the input motions after first developing an input Fourier amplitude spectrum (FAS) using seismological source theory (i.e., single-corner frequency Brune source spectrum). To develop the FAS, the NRC staff used the source and regional attenuation parameters recommended in the SPID for Eastern North American rock sites and then used random vibration theory to develop corresponding 5 percent damped acceleration response spectra. The NRC staff developed 12 input FAS assuming a magnitude () of 6.5 and 12 different source-to-site distances, as recommended in the SPID.
Analysis Methodology. To develop for the Sequoyah site, the NRC staff used traditional EQL analysis and the recently developed kappa-corrected EQL analysis, which adjusts the high-frequency control point (i.e., top of profile) FAS from the EQL SRA to be consistent with the target value. In particular, the NRC staff used the kappa-corrected EQL analysis methodology (Xu and Rathje, 2021) with the modification in which the EQL control point FAS remains unmodified below a specified transition frequency, and then a slope equal to the target value is imposed at frequencies above the transition frequency (RIL 2021-15). To capture the uncertainty in the transition frequency value, the NRC staff selected three frequencies for which the FAS amplitude equals 5 percent, 11 percent, and 17 percent of its peak value, with weights of 0.2, 0.6, and 0.2, respectively.
To capture the spatial variability in site properties across the site, the NRC staff generated randomized profiles around each of the basecase profiles using the Toro (1995) model, which quantifies the aleatory variability through a depth-dependent standard deviation of the natural log of the velocities. The logarithmic standard deviation values used by the NRC staff for the Sequoyah site were based on site-specific data and are shown in Table 2. In addition to randomizing the profiles, the NRC staff also randomized the MRD curves following the logit function approach used in the SPID and described in RIL 2021-15.
For each terminal branch of the site response logic tree, the NRC staff developed 60 randomized profiles and then determined the by dividing the computed control point
7 response spectrum by the outcrop response spectrum for the reference condition. Next, the NRC staff computed a median and logarithmic standard deviation for the , using the 60 from the randomized profiles, for each terminal branch of the logic tree. To facilitate implementing the medians and logarithmic standard deviations into the PSHA seismic hazard integral, the NRC staff reduced the median s from the over 200 logic tree terminal branches to seven discrete fractiles and weights using the resampling procedure outlined by Miller and Rice (1983). As recommended by Rodriguez-Marek et al. (2021), to ensure that estimates of the SRA capture enough epistemic uncertainty in the median , the NRC staff implemented a minimum logarithmic standard deviation value of 0.15, which causes the seven median fractiles to spread apart if necessary.
Finally, because the logarithmic standard deviation for each spectral frequency does not vary significantly across the terminal branches of the logic tree, the NRC staff used a single mean value for each frequency. In addition, to avoid double-counting the aleatory variability already captured by the GMM, the NRC staff adjusted the logarithmic standard deviation to include only the portion of the standard deviation associated with the nonlinear site response.
Figure 8 shows the seven median values (top) and the average logarithmic standard deviation (bottom) as a function of input reference rock spectral acceleration for the 1 and 10 Hz spectral frequencies. As shown in Figure 8, the median range from about 0.5 to 1.5 and remain constant with higher input spectral accelerations. The lower half of Figure 8 shows both the total and the nonlinear values of the logarithmic standard deviation, the latter of which are implemented into the PSHA hazard integral. Figure 9 shows the seven median values versus frequency at the 10-4 AFE spectral acceleration value for each of the 23 NGA-East GMM spectral frequencies as well for PGA, which is plotted at 200 Hz. Overall, the Sequoyah site produces a flat from about 0.1 Hz to 3 Hz and then falls off over the higher frequencies out to about 30 Hz.
Control Point Hazard and Ground Motion Response Spectra The NRC staff calculated the mean control point hazard for the Sequoyah site using Convolution Approach 3 from NUREG/CR-6728, Technical Basis for Revision of Regulatory Guidance on Design Ground Motions: Hazard- and Risk-Consistent Ground Motion Spectra Guidelines, issued October 2001 (McGuire et al., 2001), which convolves the predetermined mean reference condition hazard with the . For each NGA-East GMM spectral frequency, the NRC staff convolved the mean reference condition hazard curve with the seven to determine the final mean control point hazard. Using the mean control point hazard curves, the NRC staff then determined the 10-4 and 10-5 UHRS in order to calculate the final GMRS for the site, which are provided in Table 3. Figure 10 shows this final GMRS (red curve) compared to the GMRS (black curve) developed for NUREG/KM-0017, the GMRS (blue curve) in TVAs SHSR (Shea, 2014) and the GMRS (purple curve) in TVAs seismic probabilistic risk assessment (SPRA; Polickoski, 2019). The years in the legend for Figure 10 show when the GMRS were developed either by TVA or the NRC staff. As shown in Figure 10, the final GMRS from this study is higher than the previous GMRS for the low frequencies between 0.5 to about 3 Hz and then is lower than the previous GMRS above 5 Hz. The higher spectral accelerations for the lower frequencies are due to the NGA-East GMM, which predicts higher median ground
8 motions for the lower spectral frequencies relative to the EPRI GMM (see Figure 5). Based on a sensitivity analysis, the NRC staff found that the lower spectral accelerations in the mid-to-upper frequencies for the updated GMRS developed by this study and the previous GMRS are due to the higher values estimated for the Sequoyah site (see Table 1), compared to the lower values estimated for the previous studies.
Data Tables Appendix A provides the data tables for the Sequoyah site. Tables A-1, A-2, and A-3 give the reference rock mean hazard curves for 23 spectral frequencies ranging from 0.1 to 100 Hz and for PGA. Tables A-4 through A-27 give the medians and logarithmic standard deviations for the 23 spectral frequencies and for PGA. Tables A-28, A-29, and A-30 give the control point hazard mean hazard curves for the 23 spectral frequencies and for PGA.
References Campbell, K.W. Estimates of Shear-Wave Q and 0 for Unconsolidated and Semiconsolidated Sediments in Eastern North America. Bulletin of the Seismological Society of America. Vol. 99, No. 4, pp. 2365-2392. August 2009.
Electric Power Research Institute (EPRI). Guidelines for Determining Design Basis Ground Motions, Vol. 1-5. EPRI TR-102293. Palo Alto, CA. 1993.
EPRI. EPRI (2004, 2006) Ground-Motion Model (GMM) Review Project: Final Report.
Palo Alto, CA. June 2013. ADAMS Accession No. ML13155A553.
EPRI. Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic.
EPRI Report 1025287. Palo Alto, CA. November 27, 2012. ADAMS Accession No. ML12333A170.
Gatlin, T.D., Letter from South Carolina Electric & Gas to the NRC. Response to the NRC Request for Additional Information Associated with Near-Term Task Force Recommendation 2.1, Seismic Re-Evaluations, April 28, 2015. ADAMS Accession No. ML15124A596.
Goulet, C.A., Y. Bozorgnia, N. Abrahamson, N. Kuehn, L. Al Atik, R. Youngs, R. Graves, and G. Atkinson. Central and Eastern North America Ground-Motion CharacterizationNGA-East Final Report. PEER Report 2018-08. Pacific Earthquake Engineering Research Center.
Berkeley, CA. 2018.
Miller, A.C., III, and T.R. Rice. Discrete Approximations of Probability Distributions.
Management Science. Vol. 29, No. 3, pp. 352-362. 1983.
National Center for Research on Earthquake Engineering (NCREE). Development of GMRS and FIRS for Nuclear Power Plants in Taiwan. 2021.
U.S. Nuclear Regulatory Commission (NRC). Near-Term Report and Recommendations for Agency Actions Following the Events in Japan. SECY-11-0093. Washington, DC.
July 12, 2011. ADAMS Accession No. ML11186A950.
9 NRC. Proposed Resolution of Remaining Tier 2 and 3 Recommendations Resulting from the Fukushima Dai-ichi Accident. SECY-16-0144. Washington, DC. December 29, 2016. ADAMS Accession No. ML16286A552.
NRC. Central and Eastern United States Seismic Source Characterization for Nuclear Facilities. NUREG-2115. Washington, DC. January 2012. ADAMS Accession No. ML12048A776.
NRC. Updated Implementation Guidelines for SSHAC Hazard Studies. Ake, J., C. Munson, J.
Stamatakos, M. Juckett, K. Coppersmith and J. Bommer. NUREG-2213. Washington, DC.
October 2018. ADAMS Accession No. ML18282A082.
NRC. Technical Basis for Revision of Regulatory Guidance on Design Ground Motions:
Hazard- and Risk-Consistent Ground Motion Spectra Guidelines. McGuire, R.K., W.J. Silva, and C.J. Costantino. NUREG/CR-6728. Washington, DC. October 2001. ADAMS Accession No. ML013100232.
NRC. Seismic Hazards Evaluations for U.S. Nuclear Power Plants: Near-Term Task Force Recommendation 2.1 Results. Munson, C., J. Ake, J. Stamatakos and M. Juckett.
NUREG/KM-0017. Washington, DC. December 2021. ADAMS Accession No. ML21344A126.
NRC. Process for the Ongoing Assessment of Natural Hazards Information. Office of Nuclear Reactor Regulation (NRR) Office Instruction LIC-208. Washington, DC. November 2019.
ADAMS Accession No. ML19210C288.
Polickoski, J.T. Letter from Tennessee Valley Authority to the NRC. Seismic Probabilistic Risk Assessment for Sequoyah Nuclear Plant, Units 1 and 2 - Response to NRC Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident. October 18, 2019. ADAMS Accession No. ML19291A003.
Rodriguez-Marek, A., E. Rathje, J. Ake, C. Munson, S. Stovall, T. Weaver, K. Ulmer and M. Juckett. Documentation Report for SSHAC Level 2: Site Response. Research Information Letter (RIL) 2021-15. Washington, DC. November 2021. ADAMS Accession No. ML21323A056.
Shea, J.W. Letter from Tennessee Valley Authority to the NRC. Tennessee Valley Authoritys Seismic Hazard and Screening Report (CEUS Sites), Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident. March 31, 2014. ADAMS Accession No. ML14098A478.
Toro, G. Probabilistic Models of Site Velocity Profiles for Generic and Site-Specific Ground-Motion Amplification Studies. Technical Report No. 779574. Brookhaven National Laboratory. Upton, NY. 1995.
Xu, B., E.M. Rathje, Y. Hashash, J. Stewart, K. Campbell, and W.J. Silva. 0 for Soil Sites:
Observations from KiK-net Sites and Their Use in Constraining Small-Strain Damping Profiles for Site Response Analysis. Earthquake Spectra. Vol. 36, Iss. 1, pp. 111-137. 2020.
Xu, B. and E.M. Rathje. The Effect of Soil Nonlinearity on High-Frequency Spectral Decay and Implications for Site Response Analysis. Earthquake Spectra. Vol. 37, Iss. 2, pp. 686-706.
2021.
10 Table 1 Site Kappa ( ) Values for Each Basecase Profile Shallow Profile Kappa Distribution Lower Case Base Case Upper Case (sec) Weight (sec) Weight (sec) Weight 0.018 0.101 0.014 0.101 0.010 0.101 0.022 0.244 0.016 0.244 0.012 0.244 0.026 0.309 0.022 0.309 0.017 0.309 0.029 0.244 0.025 0.244 0.020 0.244 0.033 0.101 0.028 0.101 0.023 0.101 Deep Profile Kappa Distribution Lower Case Base Case Upper Case (sec) Weight (sec) Weight (sec) Weight 0.027 0.101 0.019 0.101 0.014 0.101 0.032 0.244 0.023 0.244 0.017 0.244 0.040 0.309 0.032 0.309 0.025 0.309 0.046 0.244 0.037 0.244 0.031 0.244 0.051 0.101 0.043 0.101 0.036 0.101
11 Table 2 Layer Depths, Shear Wave Velocities ( ), Unit Weights, and Dynamic Properties for Sequoyah Vs (m/s) Vs Unit Dynamic Properties Layer Depth LR BC UR Sigma Weight Alt. 1 Alt. 2
- (m) (0.2, 0.2) (0.15, 0.15) (0.15, 0.15) (ln) (kN/m3) (0.5) (0.5) 1 15 1509 1829 2216 0.25 25 EPRI Rock Linear 2 152 1509 1829 2216 0.15 25 EPRI Rock Linear 3 305 1572 1905 2308 0.15 25 Linear Linear 4 457 1635 1981 2401 0.15 25 Linear Linear 5 503 2476 3000 3000 0.15 26 Linear Linear 6 1463 1761 2134 2585 0.15 25 Linear Linear 7 1905 1761 2134 2585 0.15 25 Linear Linear 8 2310 2476 3000 3000 0.15 26 Linear Linear 9 2957 1761 2134 2585 0.15 25 Linear Linear 10 3399 1761 2134 2585 0.15 25 Linear Linear LR = lower range; BC = basecase; UR = upper range; ln = natural log; Alt. = Alternative EPRI Rock = EPRI, 1993 rock For LR, BC, UR and Alt.: Values in parentheses refer to weights for site response analysis logic tree branches.
12 Table 3 GMRS and UHRS for Sequoyah Frequency (Hz) UHRS 1E-4 (g) GMRS (g) UHRS 1E-5 (g) 0.100 0.016390 0.018300 0.035540 0.133 0.025333 0.027600 0.053476 0.200 0.042003 0.046000 0.089142 0.250 0.051117 0.055600 0.107562 0.333 0.068238 0.075100 0.145741 0.500 0.099567 0.111300 0.216652 0.667 0.131164 0.148200 0.289405 1.000 0.178521 0.206700 0.406014 1.333 0.215046 0.251600 0.495427 2.000 0.252181 0.305800 0.607802 2.500 0.274824 0.331300 0.657425 3.333 0.305642 0.392300 0.790777 4.000 0.303435 0.400600 0.813089 5.000 0.312309 0.426800 0.873782 6.667 0.345758 0.475700 0.975563 10.000 0.349964 0.504000 1.045615 13.333 0.339984 0.499400 1.041188 20.000 0.301417 0.446000 0.931440 25.000 0.259101 0.378700 0.788406 33.333 0.209269 0.297300 0.614525 40.000 0.181580 0.257400 0.531974 50.000 0.158560 0.223500 0.461288 100.000 0.148498 0.192700 0.389405 PGA 0.165325 0.228700 0.469602
13 Figure 1 Distribution of virtual ruptures (left) for CEUS-SSC Seismotectonic Configuration 1 DSZs, and associated mean 10 Hz reference rock hazard curves (right) for Sequoyah
14 Figure 2 Distribution of virtual ruptures (left) for CEUS-SSC maximum-magnitude narrow-configuration DSZs, and associated mean 10 Hz reference rock hazard curves (right) for Sequoyah
15 Figure 3 CEUS-SSC RLME sources (left), and associated mean 1 Hz reference rock hazard curves (right) for Sequoyah
16 Figure 4 DSZ, RLME, and total mean reference rock hazard curves for 1 Hz (right) and 10 Hz (left) for Sequoyah
17 Figure 5 1,000-, 10,000-, and 100,000-year return period mean reference rock UHRS for CEUS-SSC and EPRI GMM (blue curves) and CEUS-SSC and NGA-East GMM (red curves)
18 Figure 6 Complete (left) and upper 600 m (right) shear wave velocity (VS) basecase profiles for Sequoyah; thick horizontal black lines indicate two reference rock horizons for shallow and deep profiles; best estimate basecase profile shown as solid blue line; lower and upper range basecase profiles shown as dotted red and purple lines, respectively
19 Figure 7 Tornado plots for site response logic tree nodes profile, , MRD curves, and the analysis method for 1, 5, 10, and 100 Hz spectral frequencies for an input motion with a PGA of 0.63g.
20 Figure 8 Seven median SAFs (above) and mean log standard deviations of SAF (below) as functions of input acceleration for 1 Hz (left) and 10 Hz (right)
21 Figure 9 Seven median SAFs as functions of spectral frequency for spectral accelerations at the 10-4 AFE level
22 Figure 10 GMRS for the Sequoyah site
23 Appendix AData Tables
24 Table A-1 Reference Rock Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.00Hz 0.00100 3.34715E-03 4.38362E-03 6.27818E-03 7.98501E-03 1.06678E-02 1.87747E-02 2.63212E-02 4.26027E-02 0.00126 2.86560E-03 3.79077E-03 5.45115E-03 6.90176E-03 9.15058E-03 1.58046E-02 2.20085E-02 3.58843E-02 0.00158 2.46125E-03 3.28801E-03 4.74696E-03 5.98354E-03 7.87418E-03 1.33519E-02 1.84710E-02 3.03333E-02 0.00200 2.10063E-03 2.83510E-03 4.11004E-03 5.15679E-03 6.73364E-03 1.12011E-02 1.53895E-02 2.54625E-02 0.00251 1.74666E-03 2.40514E-03 3.52755E-03 4.44134E-03 5.79725E-03 9.48010E-03 1.28674E-02 2.11275E-02 0.00316 1.42703E-03 2.01915E-03 3.00681E-03 3.80327E-03 4.97197E-03 8.00683E-03 1.07326E-02 1.74552E-02 0.00398 1.10682E-03 1.64758E-03 2.52049E-03 3.21522E-03 4.23730E-03 6.76587E-03 8.95128E-03 1.43312E-02 0.00501 8.57796E-04 1.34369E-03 2.11263E-03 2.71818E-03 3.61173E-03 5.71907E-03 7.46861E-03 1.17715E-02 0.00631 5.67250E-04 9.75497E-04 1.66681E-03 2.20210E-03 2.99579E-03 4.78592E-03 6.20626E-03 9.62426E-03 0.00794 3.75736E-04 7.09102E-04 1.31632E-03 1.78550E-03 2.48674E-03 4.00788E-03 5.16109E-03 7.87501E-03 0.01000 2.48482E-04 5.14816E-04 1.03858E-03 1.44653E-03 2.06270E-03 3.35401E-03 4.28886E-03 6.43867E-03 0.01260 1.32322E-04 3.01886E-04 6.94523E-04 1.03190E-03 1.57749E-03 2.68679E-03 3.46376E-03 5.19824E-03 0.01580 7.13925E-05 1.78998E-04 4.68342E-04 7.41297E-04 1.21315E-03 2.16224E-03 2.80983E-03 4.21547E-03 0.02000 3.75431E-05 1.03852E-04 3.10688E-04 5.25261E-04 9.22822E-04 1.72445E-03 2.25961E-03 3.38885E-03 0.02510 1.76725E-05 5.24295E-05 1.75879E-04 3.18952E-04 6.21610E-04 1.27765E-03 1.72379E-03 2.64840E-03 0.03160 8.12246E-06 2.56869E-05 9.60052E-05 1.86350E-04 4.03246E-04 9.17184E-04 1.28137E-03 2.03024E-03 0.03980 3.55964E-06 1.17130E-05 4.74612E-05 9.75601E-05 2.34023E-04 5.98827E-04 8.82145E-04 1.47312E-03 0.05010 1.56271E-06 5.34907E-06 2.34842E-05 5.11023E-05 1.35811E-04 3.90784E-04 6.06991E-04 1.06839E-03 0.06310 6.65661E-07 2.33511E-06 1.05984E-05 2.37258E-05 6.75019E-05 2.14371E-04 3.55114E-04 6.72380E-04 0.07940 2.84517E-07 1.02276E-06 4.79832E-06 1.10492E-05 3.36443E-05 1.17880E-04 2.08201E-04 4.23941E-04 0.10000 1.21207E-07 4.46525E-07 2.16569E-06 5.13041E-06 1.67236E-05 6.46697E-05 1.21814E-04 2.66818E-04 0.12600 4.98496E-08 1.91543E-07 9.61128E-07 2.31067E-06 7.77807E-06 3.13182E-05 6.17989E-05 1.43461E-04 0.15800 2.08837E-08 8.36220E-08 4.33801E-07 1.05807E-06 3.67550E-06 1.53968E-05 3.17969E-05 7.81358E-05 0.20000 8.43809E-09 3.52703E-08 1.89425E-07 4.69019E-07 1.68354E-06 7.34924E-06 1.59144E-05 4.14948E-05 0.25100 3.37953E-09 1.48256E-08 8.45890E-08 2.15707E-07 8.07153E-07 3.57711E-06 7.96350E-06 2.13879E-05 0.31600 1.32727E-09 6.10509E-09 3.70608E-08 9.76675E-08 3.83257E-07 1.73279E-06 3.96716E-06 1.09499E-05 0.39800 5.08206E-10 2.43756E-09 1.57805E-08 4.34279E-08 1.82073E-07 8.53440E-07 2.00908E-06 5.64655E-06 0.50100 1.94958E-10 9.74997E-10 6.72997E-09 1.93380E-08 8.66107E-08 4.20997E-07 1.01911E-06 2.91662E-06 0.63100 7.11195E-11 3.71413E-10 2.71088E-09 8.10439E-09 3.89256E-08 2.03941E-07 5.15416E-07 1.51685E-06
25 Table A-1 Reference Rock Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.00Hz 0.79400 2.60487E-11 1.42032E-10 1.09594E-09 3.40831E-09 1.75504E-08 9.90803E-08 2.61383E-07 7.90932E-07 1.00000 9.50353E-12 5.41118E-11 4.41501E-10 1.42854E-09 7.88846E-09 4.80010E-08 1.32206E-07 4.11373E-07 1.26000 3.12736E-12 1.89751E-11 1.65475E-10 5.55122E-10 3.24143E-09 2.13023E-08 6.16153E-08 2.00506E-07 1.58000 1.05316E-12 6.80026E-12 6.32968E-11 2.19992E-10 1.35675E-09 9.61456E-09 2.91750E-08 9.91968E-08 2.00000 3.38967E-13 2.33528E-12 2.32638E-11 8.38903E-11 5.47697E-10 4.19824E-09 1.33917E-08 4.76609E-08 2.51000 1.00670E-13 7.54109E-13 8.21864E-12 3.08852E-11 2.12644E-10 1.74872E-09 5.82382E-09 2.16772E-08 3.16000 2.85713E-14 2.33629E-13 2.80416E-12 1.10187E-11 8.01940E-11 7.08252E-10 2.46351E-09 9.59778E-09 3.98000 7.33438E-15 6.61038E-14 8.90325E-13 3.69351E-12 2.85806E-11 2.71149E-10 9.84299E-10 4.01690E-09 5.01000 1.88597E-15 1.87324E-14 2.83088E-13 1.23988E-12 1.02010E-11 1.03955E-10 3.93797E-10 1.68325E-09 6.31000 4.03637E-16 4.45570E-15 7.71676E-14 3.62839E-13 3.23876E-12 3.59000E-11 1.41952E-10 6.37818E-10 7.94000 8.69208E-17 1.06593E-15 2.11449E-14 1.06704E-13 1.03301E-12 1.24506E-11 5.13786E-11 2.42622E-10 10.00000 1.86063E-17 2.53587E-16 5.76484E-15 3.12304E-14 3.28021E-13 4.30029E-12 1.85227E-11 9.19453E-11 Table A-2 Reference Rock Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.00100 5.51481E-02 6.94351E-02 7.37809E-02 7.78401E-02 7.85026E-02 7.96631E-02 7.94890E-02 7.71684E-02 0.00126 4.72491E-02 6.13203E-02 6.59136E-02 7.03751E-02 7.11816E-02 7.26622E-02 7.24988E-02 6.99479E-02 0.00158 4.06116E-02 5.42938E-02 5.90231E-02 6.37593E-02 6.46747E-02 6.64032E-02 6.62498E-02 6.35325E-02 0.00200 3.46875E-02 4.78298E-02 5.26110E-02 5.75288E-02 5.85288E-02 6.04566E-02 6.03130E-02 5.74751E-02 0.00251 2.89752E-02 4.07064E-02 4.51640E-02 4.98524E-02 5.08917E-02 5.28797E-02 5.28402E-02 5.02781E-02 0.00316 2.40582E-02 3.43709E-02 3.84520E-02 4.28353E-02 4.38862E-02 4.58729E-02 4.59424E-02 4.36994E-02 0.00398 1.97282E-02 2.84523E-02 3.20437E-02 3.59830E-02 3.70191E-02 3.89207E-02 3.91502E-02 3.73766E-02 0.00501 1.61836E-02 2.35587E-02 2.67089E-02 3.02320E-02 3.12318E-02 3.30274E-02 3.33682E-02 3.19757E-02 0.00631 1.31205E-02 1.90447E-02 2.16731E-02 2.46849E-02 2.56242E-02 2.72599E-02 2.77622E-02 2.68639E-02 0.00794 1.06461E-02 1.54087E-02 1.76015E-02 2.01719E-02 2.10401E-02 2.25168E-02 2.31151E-02 2.25850E-02 0.01000 8.63136E-03 1.24566E-02 1.42832E-02 1.64711E-02 1.72628E-02 1.85852E-02 1.92321E-02 1.89748E-02 0.01260 6.92563E-03 9.89289E-03 1.13498E-02 1.31198E-02 1.38025E-02 1.49247E-02 1.55897E-02 1.55922E-02 0.01580 5.58244E-03 7.89449E-03 9.06203E-03 1.04999E-02 1.10871E-02 1.20398E-02 1.26924E-02 1.28650E-02
26 Table A-2 Reference Rock Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.02000 4.45960E-03 6.24095E-03 7.16799E-03 8.32564E-03 8.82520E-03 9.62622E-03 1.02456E-02 1.05302E-02 0.02510 3.50509E-03 4.88794E-03 5.62651E-03 6.54443E-03 6.95538E-03 7.59435E-03 8.14330E-03 8.47327E-03 0.03160 2.71144E-03 3.78026E-03 4.36951E-03 5.09621E-03 5.43254E-03 5.93429E-03 6.40938E-03 6.74982E-03 0.03980 2.00799E-03 2.83100E-03 3.30724E-03 3.88501E-03 4.15876E-03 4.53598E-03 4.92948E-03 5.24602E-03 0.05010 1.48644E-03 2.11955E-03 2.50280E-03 2.96152E-03 3.18362E-03 3.46712E-03 3.79126E-03 4.07732E-03 0.06310 9.66825E-04 1.42048E-03 1.72031E-03 2.08069E-03 2.26041E-03 2.45684E-03 2.70952E-03 2.96029E-03 0.07940 6.29933E-04 9.53506E-04 1.18423E-03 1.46391E-03 1.60712E-03 1.74334E-03 1.93903E-03 2.15204E-03 0.10000 4.09748E-04 6.39054E-04 8.14021E-04 1.02855E-03 1.14113E-03 1.23540E-03 1.38583E-03 1.56252E-03 0.12600 2.27954E-04 3.69209E-04 4.83781E-04 6.30142E-04 7.12713E-04 7.82201E-04 9.02280E-04 1.05451E-03 0.15800 1.28371E-04 2.15751E-04 2.90639E-04 3.90003E-04 4.49511E-04 4.99978E-04 5.92710E-04 7.17505E-04 0.20000 7.05859E-05 1.23292E-04 1.70946E-04 2.36610E-04 2.78127E-04 3.13691E-04 3.82609E-04 4.80446E-04 0.25100 3.74139E-05 6.76900E-05 9.59176E-05 1.36492E-04 1.64083E-04 1.91355E-04 2.43864E-04 3.21088E-04 0.31600 1.96891E-05 3.68808E-05 5.33978E-05 7.81103E-05 9.60503E-05 1.15868E-04 1.54305E-04 2.12973E-04 0.39800 1.04073E-05 2.01204E-05 2.97119E-05 4.46008E-05 5.60812E-05 6.99654E-05 9.72144E-05 1.40211E-04 0.50100 5.50995E-06 1.09932E-05 1.65566E-05 2.55020E-05 3.27866E-05 4.22933E-05 6.12993E-05 9.23698E-05 0.63100 2.93685E-06 6.02690E-06 9.26897E-06 1.46087E-05 1.91306E-05 2.51299E-05 3.75257E-05 5.84840E-05 0.79400 1.56931E-06 3.31211E-06 5.20113E-06 8.38712E-06 1.11866E-05 1.49628E-05 2.30172E-05 3.70968E-05 1.00000 8.36520E-07 1.81595E-06 2.91197E-06 4.80483E-06 6.52770E-06 8.89119E-06 1.40913E-05 2.34892E-05 1.26000 4.18815E-07 9.35995E-07 1.53970E-06 2.60435E-06 3.59927E-06 4.94049E-06 8.02416E-06 1.37823E-05 1.58000 2.12719E-07 4.89124E-07 8.24960E-07 1.42970E-06 2.00926E-06 2.77894E-06 4.62302E-06 8.17683E-06 2.00000 1.05041E-07 2.48797E-07 4.30687E-07 7.65527E-07 1.09480E-06 1.52615E-06 2.60313E-06 4.74702E-06 2.51000 4.89518E-08 1.18779E-07 2.10589E-07 3.83730E-07 5.58342E-07 7.84063E-07 1.37528E-06 2.60022E-06 3.16000 2.22059E-08 5.51473E-08 1.00057E-07 1.86734E-07 2.76301E-07 3.90849E-07 7.05320E-07 1.38555E-06 3.98000 9.50823E-09 2.40658E-08 4.45096E-08 8.47098E-08 1.27139E-07 1.81093E-07 3.36300E-07 6.90309E-07 5.01000 4.07613E-09 1.05140E-08 1.98210E-08 3.84656E-08 5.85564E-08 8.39798E-08 1.60470E-07 3.44134E-07 6.31000 1.58159E-09 4.15298E-09 7.96499E-09 1.57001E-08 2.41464E-08 3.47857E-08 6.79103E-08 1.51523E-07 7.94000 6.16006E-10 1.64651E-09 3.21238E-09 6.43117E-09 9.99237E-09 1.44596E-08 2.88383E-08 6.69350E-08 10.00000 2.39046E-10 6.50437E-10 1.29103E-09 2.62523E-09 4.12091E-09 5.99001E-09 1.22055E-08 2.94746E-08
27 Table A-3 Reference Rock Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.00100 7.48932E-02 7.20770E-02 6.98936E-02 6.72645E-02 6.56850E-02 6.32643E-02 5.87828E-02 5.80348E-02 0.00126 6.75297E-02 6.46321E-02 6.23796E-02 5.96663E-02 5.80700E-02 5.56465E-02 5.10842E-02 5.03612E-02 0.00158 6.10212E-02 5.80875E-02 5.58049E-02 5.30584E-02 5.14693E-02 4.90765E-02 4.45235E-02 4.38311E-02 0.00200 5.49081E-02 5.19744E-02 4.96926E-02 4.69525E-02 4.53906E-02 4.30567E-02 3.85842E-02 3.79281E-02 0.00251 4.79761E-02 4.53409E-02 4.32626E-02 4.07334E-02 3.92930E-02 3.71355E-02 3.29173E-02 3.22913E-02 0.00316 4.16830E-02 3.93561E-02 3.74903E-02 3.51842E-02 3.38678E-02 3.18908E-02 2.79555E-02 2.73567E-02 0.00398 3.57387E-02 3.37883E-02 3.21780E-02 3.01344E-02 2.89520E-02 2.71680E-02 2.35449E-02 2.29544E-02 0.00501 3.06496E-02 2.90159E-02 2.76261E-02 2.58166E-02 2.47567E-02 2.31512E-02 1.98360E-02 1.92661E-02 0.00631 2.58986E-02 2.46202E-02 2.34589E-02 2.18803E-02 2.09310E-02 1.94961E-02 1.64844E-02 1.59065E-02 0.00794 2.18989E-02 2.09042E-02 1.99334E-02 1.85564E-02 1.77083E-02 1.64294E-02 1.37093E-02 1.31428E-02 0.01000 1.85048E-02 1.77377E-02 1.69270E-02 1.57273E-02 1.49721E-02 1.38358E-02 1.13932E-02 1.08512E-02 0.01260 1.53166E-02 1.47814E-02 1.41109E-02 1.30633E-02 1.23926E-02 1.13966E-02 9.23110E-03 8.71388E-03 0.01580 1.27275E-02 1.23646E-02 1.18079E-02 1.08924E-02 1.02979E-02 9.42523E-03 7.51206E-03 7.02948E-03 0.02000 1.04950E-02 1.02664E-02 9.80785E-03 9.01385E-03 8.49163E-03 7.73359E-03 6.06098E-03 5.62025E-03 0.02510 8.49425E-03 8.37455E-03 7.99625E-03 7.30800E-03 6.85619E-03 6.21039E-03 4.76916E-03 4.37551E-03 0.03160 6.80165E-03 6.76050E-03 6.45010E-03 5.85800E-03 5.47188E-03 4.92865E-03 3.70172E-03 3.35703E-03 0.03980 5.30045E-03 5.31485E-03 5.06269E-03 4.55931E-03 4.23768E-03 3.79375E-03 2.77151E-03 2.47762E-03 0.05010 4.13070E-03 4.17860E-03 3.97400E-03 3.54885E-03 3.28220E-03 2.92047E-03 2.07534E-03 1.82886E-03 0.06310 3.01318E-03 3.09546E-03 2.93959E-03 2.60216E-03 2.39621E-03 2.11467E-03 1.45625E-03 1.26191E-03 0.07940 2.20077E-03 2.29583E-03 2.17706E-03 1.91038E-03 1.75158E-03 1.53318E-03 1.02329E-03 8.72014E-04 0.10000 1.60543E-03 1.70079E-03 1.61045E-03 1.40082E-03 1.27881E-03 1.11020E-03 7.18064E-04 6.01717E-04 0.12600 1.11026E-03 1.20170E-03 1.14111E-03 9.92736E-04 9.03834E-04 7.77401E-04 4.89275E-04 4.03704E-04 0.15800 7.73713E-04 8.55215E-04 8.14352E-04 7.08582E-04 6.43430E-04 5.48408E-04 3.36049E-04 2.73107E-04 0.20000 5.31149E-04 6.00084E-04 5.73069E-04 4.98721E-04 4.51624E-04 3.81295E-04 2.27232E-04 1.81780E-04 0.25100 3.65743E-04 4.21893E-04 4.05122E-04 3.53846E-04 3.19618E-04 2.67325E-04 1.54878E-04 1.22353E-04 0.31600 2.49842E-04 2.94175E-04 2.84007E-04 2.48822E-04 2.24078E-04 1.85540E-04 1.04352E-04 8.14273E-05 0.39800 1.68911E-04 2.02626E-04 1.96554E-04 1.72366E-04 1.54527E-04 1.26430E-04 6.87737E-05 5.30804E-05 0.50100 1.14259E-04 1.39635E-04 1.36091E-04 1.19451E-04 1.06606E-04 8.61866E-05 4.53464E-05 3.46185E-05 0.63100 7.38480E-05 9.16848E-05 8.95984E-05 7.83400E-05 6.94165E-05 5.53272E-05 2.80500E-05 2.11841E-05
28 Table A-3 Reference Rock Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.79400 4.78130E-05 6.03018E-05 5.90874E-05 5.14646E-05 4.52781E-05 3.55801E-05 1.73843E-05 1.29887E-05 1.00000 3.09042E-05 3.95964E-05 3.89033E-05 3.37538E-05 2.94844E-05 2.28418E-05 1.07541E-05 7.94866E-06 1.26000 1.84237E-05 2.39338E-05 2.35235E-05 2.02319E-05 1.75044E-05 1.33570E-05 6.02151E-06 4.38207E-06 1.58000 1.11019E-05 1.46187E-05 1.43732E-05 1.22565E-05 1.05052E-05 7.89821E-06 3.41246E-06 2.44588E-06 2.00000 6.55051E-06 8.74786E-06 8.60424E-06 7.27186E-06 6.17225E-06 4.56941E-06 1.88875E-06 1.33248E-06 2.51000 3.64670E-06 4.93886E-06 4.85265E-06 4.05107E-06 3.39631E-06 2.47160E-06 9.68264E-07 6.68523E-07 3.16000 1.97724E-06 2.71788E-06 2.66717E-06 2.19747E-06 1.81800E-06 1.29933E-06 4.81312E-07 3.25006E-07 3.98000 1.00568E-06 1.40594E-06 1.37732E-06 1.11720E-06 9.09692E-07 6.37005E-07 2.21886E-07 1.46339E-07 5.01000 5.11813E-07 7.27681E-07 7.11633E-07 5.68314E-07 4.55469E-07 3.12501E-07 1.02379E-07 6.59541E-08 6.31000 2.30476E-07 3.33675E-07 3.25716E-07 2.55837E-07 2.01651E-07 1.35587E-07 4.20435E-08 2.65538E-08 7.94000 1.04118E-07 1.53483E-07 1.49548E-07 1.15537E-07 8.95686E-08 5.90250E-08 1.73274E-08 1.07298E-08 10.00000 4.68903E-08 7.03854E-08 6.84548E-08 5.20161E-08 3.96589E-08 2.56122E-08 7.11653E-09 4.32041E-09 Table A-4 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.100 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.000390 0.9884 0.9996 1.0504 1.1165 1.2524 1.5189 1.5635 0.061372 0.000000 0.000615 0.9883 0.9995 1.0503 1.1166 1.2523 1.5189 1.5634 0.061356 0.000000 0.000801 0.9881 0.9991 1.0499 1.1164 1.2516 1.5185 1.5631 0.061355 0.000000 0.001091 0.9879 0.9988 1.0496 1.1161 1.2507 1.5182 1.5629 0.061450 0.000000 0.001559 0.9877 0.9985 1.0495 1.1156 1.2501 1.5178 1.5626 0.061589 0.000000 0.002177 0.9876 0.9983 1.0494 1.1151 1.2499 1.5175 1.5624 0.061720 0.000000 0.003036 0.9875 0.9982 1.0493 1.1146 1.2497 1.5173 1.5623 0.061853 0.000000 0.004162 0.9875 0.9981 1.0493 1.1143 1.2495 1.5172 1.5621 0.061974 0.000000 0.005963 0.9876 0.9982 1.0494 1.1145 1.2496 1.5173 1.5624 0.062071 0.000000 0.009541 0.9878 0.9984 1.0495 1.1154 1.2500 1.5176 1.5629 0.062118 0.000000 0.016025 0.9883 0.9988 1.0498 1.1174 1.2512 1.5184 1.5639 0.062123 0.000752 0.026916 0.9892 0.9998 1.0504 1.1208 1.2532 1.5199 1.5657 0.062141 0.001674
29 Table A-5 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.133 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.000696 1.0067 1.0214 1.0823 1.1793 1.3559 1.5404 1.5690 0.073780 0.000000 0.001095 1.0066 1.0213 1.0822 1.1793 1.3558 1.5402 1.5690 0.073780 0.000000 0.001407 1.0061 1.0208 1.0819 1.1791 1.3551 1.5395 1.5689 0.073861 0.000000 0.001882 1.0057 1.0203 1.0817 1.1788 1.3543 1.5391 1.5688 0.074065 0.000000 0.002662 1.0054 1.0201 1.0817 1.1784 1.3536 1.5390 1.5689 0.074307 0.000000 0.003740 1.0053 1.0199 1.0817 1.1780 1.3530 1.5390 1.5689 0.074520 0.000000 0.005282 1.0052 1.0198 1.0817 1.1776 1.3524 1.5391 1.5690 0.074728 0.000000 0.007424 1.0052 1.0198 1.0818 1.1774 1.3523 1.5393 1.5691 0.074916 0.000000 0.010888 1.0054 1.0200 1.0820 1.1778 1.3526 1.5396 1.5693 0.075068 0.002251 0.017574 1.0059 1.0204 1.0824 1.1788 1.3537 1.5402 1.5695 0.075151 0.004188 0.029516 1.0065 1.0210 1.0827 1.1810 1.3563 1.5397 1.5705 0.075177 0.004631 0.049573 1.0073 1.0218 1.0832 1.1848 1.3621 1.5367 1.5745 0.075245 0.005628 Table A-6 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.200 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.001481 1.0412 1.0566 1.0999 1.2303 1.2904 1.6136 1.6641 0.097836 0.000000 0.002328 1.0412 1.0565 1.0999 1.2298 1.2903 1.6135 1.6641 0.097838 0.000000 0.002957 1.0409 1.0563 1.0997 1.2274 1.2897 1.6129 1.6641 0.097966 0.000000 0.003866 1.0408 1.0563 1.0997 1.2253 1.2892 1.6128 1.6640 0.098273 0.000000 0.005376 1.0409 1.0563 1.0998 1.2244 1.2888 1.6128 1.6641 0.098632 0.000000 0.007638 1.0409 1.0563 1.0998 1.2240 1.2885 1.6128 1.6643 0.098946 0.000000 0.011048 1.0410 1.0564 1.0999 1.2236 1.2884 1.6129 1.6645 0.099252 0.004049 0.016144 1.0411 1.0565 1.1000 1.2234 1.2883 1.6133 1.6644 0.099534 0.008512 0.024434 1.0413 1.0567 1.1002 1.2239 1.2881 1.6140 1.6640 0.099767 0.010904 0.039762 1.0416 1.0570 1.1004 1.2251 1.2879 1.6152 1.6630 0.099904 0.012093 0.066782 1.0422 1.0577 1.1008 1.2275 1.2880 1.6164 1.6638 0.099972 0.012643 0.112160 1.0432 1.0588 1.1016 1.2286 1.2941 1.6132 1.6729 0.100160 0.014052
30 Table A-7 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.250 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.002139 1.0066 1.0506 1.0955 1.1433 1.3450 1.5518 1.6219 0.102210 0.000000 0.003363 1.0064 1.0502 1.0955 1.1430 1.3451 1.5513 1.6214 0.102180 0.000000 0.004267 1.0055 1.0486 1.0953 1.1415 1.3450 1.5493 1.6191 0.102200 0.000000 0.005536 1.0049 1.0470 1.0952 1.1401 1.3450 1.5475 1.6172 0.102400 0.000000 0.007642 1.0044 1.0458 1.0957 1.1390 1.3450 1.5463 1.6160 0.102690 0.000000 0.010925 1.0043 1.0450 1.0957 1.1383 1.3449 1.5455 1.6151 0.102960 0.003709 0.016004 1.0042 1.0444 1.0958 1.1378 1.3448 1.5449 1.6147 0.103240 0.008455 0.023836 1.0044 1.0441 1.0960 1.1374 1.3448 1.5447 1.6147 0.103500 0.011191 0.036592 1.0049 1.0442 1.0963 1.1373 1.3452 1.5449 1.6151 0.103730 0.013149 0.059688 1.0060 1.0449 1.0970 1.1377 1.3463 1.5456 1.6161 0.103870 0.014212 0.100250 1.0083 1.0467 1.0982 1.1384 1.3485 1.5472 1.6191 0.103970 0.014925 0.168370 1.0110 1.0488 1.1009 1.1431 1.3525 1.5549 1.6153 0.104280 0.016950 Table A-8 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.003240 0.9075 0.9600 1.0907 1.1568 1.3452 1.4184 1.5225 0.110840 0.000000 0.005103 0.9070 0.9599 1.0905 1.1567 1.3445 1.4185 1.5223 0.110790 0.000000 0.006498 0.9055 0.9598 1.0897 1.1561 1.3460 1.4158 1.5195 0.110700 0.000000 0.008397 0.9034 0.9589 1.0888 1.1567 1.3441 1.4143 1.5188 0.110840 0.000000 0.011527 0.9020 0.9584 1.0877 1.1572 1.3427 1.4129 1.5184 0.111080 0.004889 0.016598 0.9011 0.9580 1.0869 1.1576 1.3419 1.4117 1.5182 0.111330 0.008917 0.024657 0.9004 0.9576 1.0861 1.1579 1.3413 1.4108 1.5180 0.111600 0.011819 0.037473 0.9003 0.9577 1.0856 1.1581 1.3410 1.4110 1.5172 0.111860 0.014064 0.058367 0.9003 0.9577 1.0853 1.1582 1.3387 1.4138 1.5165 0.112100 0.015860 0.095369 0.9017 0.9588 1.0853 1.1579 1.3391 1.4185 1.5126 0.112260 0.016954 0.160180 0.9052 0.9616 1.0858 1.1570 1.3409 1.4288 1.5041 0.112420 0.017983 0.269030 0.9108 0.9661 1.0868 1.1566 1.3423 1.4421 1.4995 0.112990 0.021257
31 Table A-9 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.500 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.005273 0.8431 0.9457 1.0256 1.1160 1.2577 1.3705 1.4918 0.108090 0.000000 0.008333 0.8430 0.9450 1.0258 1.1161 1.2567 1.3708 1.4913 0.108050 0.000000 0.010743 0.8421 0.9418 1.0270 1.1142 1.2530 1.3694 1.4920 0.107880 0.000000 0.013947 0.8405 0.9386 1.0275 1.1148 1.2492 1.3671 1.4918 0.107840 0.000000 0.019155 0.8391 0.9363 1.0275 1.1150 1.2466 1.3651 1.4914 0.107910 0.000000 0.027817 0.8377 0.9350 1.0277 1.1147 1.2451 1.3634 1.4911 0.108020 0.004458 0.041941 0.8370 0.9342 1.0271 1.1141 1.2439 1.3623 1.4906 0.108170 0.007232 0.065039 0.8374 0.9342 1.0262 1.1132 1.2424 1.3645 1.4879 0.108440 0.010526 0.102760 0.8392 0.9351 1.0255 1.1117 1.2422 1.3705 1.4810 0.108760 0.013427 0.168140 0.8428 0.9365 1.0246 1.1131 1.2444 1.3810 1.4658 0.109240 0.016880 0.282400 0.8511 0.9409 1.0253 1.1101 1.2456 1.3935 1.4659 0.110170 0.022113 0.474310 0.8637 0.9472 1.0253 1.1189 1.2517 1.3621 1.5549 0.113130 0.033911 Table A-10 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.007013 0.9532 0.9842 1.0270 1.1252 1.3123 1.4534 1.5012 0.117840 0.000000 0.011122 0.9534 0.9837 1.0266 1.1250 1.3112 1.4535 1.5007 0.117750 0.000000 0.014519 0.9518 0.9816 1.0241 1.1241 1.3066 1.4517 1.4988 0.117370 0.000000 0.019014 0.9502 0.9796 1.0218 1.1230 1.3024 1.4498 1.4970 0.117140 0.000000 0.026243 0.9490 0.9781 1.0199 1.1220 1.2992 1.4481 1.4958 0.117060 0.000000 0.038332 0.9482 0.9770 1.0187 1.1211 1.2972 1.4468 1.4950 0.117050 0.000000 0.058249 0.9473 0.9761 1.0184 1.1204 1.2956 1.4461 1.4945 0.117130 0.000000 0.091185 0.9471 0.9757 1.0184 1.1198 1.2940 1.4473 1.4934 0.117420 0.000000 0.145020 0.9480 0.9764 1.0191 1.1198 1.2919 1.4497 1.4962 0.117820 0.003406 0.237490 0.9498 0.9779 1.0226 1.1251 1.2889 1.4569 1.5039 0.118530 0.013394 0.398880 0.9518 0.9796 1.0276 1.1365 1.2858 1.4619 1.5243 0.119920 0.022602 0.669940 0.9586 0.9857 1.0317 1.1591 1.2936 1.4591 1.5603 0.123540 0.037312
32 Table A-11 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=1.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.009838 0.9007 0.9889 1.0591 1.2388 1.3151 1.4416 1.5368 0.126930 0.000000 0.015689 0.9005 0.9887 1.0592 1.2386 1.3138 1.4419 1.5374 0.126810 0.000000 0.020937 0.8975 0.9864 1.0592 1.2348 1.3105 1.4397 1.5369 0.126210 0.000000 0.027896 0.8945 0.9840 1.0590 1.2311 1.3071 1.4374 1.5361 0.125690 0.000000 0.038939 0.8920 0.9821 1.0589 1.2281 1.3044 1.4355 1.5352 0.125340 0.000000 0.057379 0.8901 0.9808 1.0586 1.2249 1.3028 1.4341 1.5345 0.125090 0.000000 0.087965 0.8889 0.9799 1.0581 1.2221 1.3014 1.4326 1.5351 0.124960 0.000000 0.138890 0.8896 0.9801 1.0583 1.2239 1.2978 1.4345 1.5380 0.125170 0.000000 0.222220 0.8928 0.9819 1.0600 1.2270 1.2923 1.4412 1.5460 0.125530 0.000000 0.364310 0.8965 0.9843 1.0613 1.2289 1.2882 1.4389 1.5708 0.126170 0.000000 0.611880 0.9049 0.9894 1.0639 1.2236 1.3124 1.4229 1.6030 0.127030 0.005144 1.027700 0.9208 0.9991 1.0692 1.2425 1.3351 1.4401 1.5956 0.127870 0.015511 Table A-12 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=1.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.012067 0.8881 0.9526 1.0748 1.2309 1.3059 1.3956 1.5384 0.120930 0.000000 0.019336 0.8874 0.9523 1.0746 1.2316 1.3047 1.3957 1.5369 0.120880 0.000000 0.026279 0.8833 0.9506 1.0730 1.2290 1.3009 1.3924 1.5340 0.120430 0.000000 0.035544 0.8792 0.9487 1.0719 1.2261 1.2970 1.3894 1.5311 0.119980 0.000000 0.050126 0.8763 0.9475 1.0696 1.2230 1.2939 1.3869 1.5286 0.119600 0.000000 0.074377 0.8744 0.9468 1.0674 1.2195 1.2920 1.3848 1.5272 0.119250 0.000000 0.114640 0.8726 0.9460 1.0655 1.2164 1.2906 1.3824 1.5264 0.118970 0.000000 0.181730 0.8720 0.9459 1.0659 1.2134 1.2882 1.3838 1.5286 0.119100 0.000000 0.291520 0.8742 0.9476 1.0667 1.2114 1.2860 1.3911 1.5322 0.119490 0.000000 0.478300 0.8758 0.9487 1.0671 1.2126 1.2876 1.3957 1.5278 0.119840 0.000000 0.803330 0.8836 0.9536 1.0679 1.2304 1.3094 1.3919 1.5195 0.119930 0.004395 1.349200 0.8891 0.9571 1.0700 1.2374 1.3307 1.3983 1.4915 0.119240 0.000000
33 Table A-13 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=2.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.015262 0.8347 0.9090 1.0070 1.1225 1.2158 1.2869 1.5495 0.118810 0.000000 0.024642 0.8349 0.9086 1.0069 1.1218 1.2151 1.2870 1.5496 0.118850 0.000000 0.034503 0.8320 0.9051 1.0059 1.1205 1.2103 1.2845 1.5445 0.118670 0.000000 0.047835 0.8287 0.9013 1.0048 1.1199 1.2035 1.2822 1.5400 0.118330 0.000000 0.068612 0.8258 0.8981 1.0038 1.1188 1.1984 1.2802 1.5351 0.117910 0.000000 0.102930 0.8231 0.8954 1.0030 1.1181 1.1953 1.2780 1.5298 0.117400 0.000000 0.159780 0.8203 0.8929 1.0023 1.1171 1.1933 1.2747 1.5251 0.116880 0.000000 0.254330 0.8196 0.8919 1.0021 1.1158 1.1899 1.2739 1.5268 0.116690 0.000000 0.409090 0.8207 0.8920 1.0017 1.1143 1.1882 1.2836 1.5171 0.116470 0.000000 0.671930 0.8254 0.8945 1.0014 1.1104 1.1993 1.2993 1.4948 0.115120 0.000000 1.128500 0.8247 0.8943 1.0011 1.1102 1.2034 1.2998 1.4860 0.112260 0.000000 1.895400 0.8126 0.8789 0.9990 1.1215 1.1677 1.2732 1.4994 0.110660 0.000000 Table A-14 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=2.500 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.016960 0.8007 0.8911 0.9808 1.0717 1.1759 1.2869 1.4666 0.120930 0.000000 0.027516 0.8000 0.8900 0.9818 1.0712 1.1752 1.2875 1.4640 0.120950 0.000000 0.039252 0.7964 0.8868 0.9789 1.0696 1.1745 1.2812 1.4567 0.120820 0.000000 0.055264 0.7926 0.8838 0.9758 1.0679 1.1720 1.2754 1.4506 0.120460 0.000000 0.080108 0.7892 0.8811 0.9733 1.0667 1.1680 1.2706 1.4471 0.119920 0.000000 0.120980 0.7874 0.8796 0.9707 1.0659 1.1644 1.2693 1.4431 0.119170 0.000000 0.188560 0.7861 0.8787 0.9668 1.0654 1.1616 1.2672 1.4397 0.118140 0.000000 0.300730 0.7833 0.8773 0.9615 1.0658 1.1616 1.2544 1.4427 0.116830 0.000000 0.484380 0.7807 0.8758 0.9597 1.0660 1.1552 1.2502 1.4468 0.115540 0.000000 0.796150 0.7794 0.8746 0.9573 1.0682 1.1488 1.2512 1.4435 0.112580 0.000000 1.337200 0.7763 0.8673 0.9607 1.0688 1.1328 1.2497 1.4463 0.110110 0.000000 2.245900 0.7305 0.8682 0.9514 1.0347 1.1114 1.2132 1.4343 0.112450 0.000000
34 Table A-15 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=3.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.018964 0.7652 0.8458 0.9460 1.0494 1.1439 1.2434 1.3445 0.104140 0.000000 0.030981 0.7643 0.8452 0.9457 1.0479 1.1433 1.2429 1.3424 0.104110 0.000000 0.045399 0.7603 0.8409 0.9444 1.0419 1.1398 1.2376 1.3360 0.104010 0.000000 0.065344 0.7568 0.8366 0.9430 1.0366 1.1359 1.2323 1.3303 0.103650 0.000000 0.096151 0.7541 0.8326 0.9419 1.0324 1.1323 1.2279 1.3256 0.103130 0.000000 0.146590 0.7515 0.8289 0.9415 1.0296 1.1271 1.2240 1.3241 0.102370 0.000000 0.229740 0.7465 0.8262 0.9409 1.0228 1.1246 1.2201 1.3166 0.101350 0.000000 0.367410 0.7340 0.8237 0.9412 1.0147 1.1205 1.2078 1.3130 0.099640 0.000000 0.592910 0.7255 0.8269 0.9283 1.0153 1.1120 1.2027 1.3085 0.097641 0.000000 0.975570 0.7340 0.8112 0.9128 1.0059 1.0948 1.1876 1.3116 0.095430 0.000000 1.638500 0.7059 0.8179 0.8974 0.9974 1.0794 1.1740 1.2952 0.094724 0.000000 2.752000 0.6754 0.7952 0.8761 0.9481 1.0381 1.1487 1.2468 0.102230 0.000000 Table A-16 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=4.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.020053 0.7117 0.7985 0.9012 0.9958 1.0771 1.1652 1.2784 0.093579 0.000000 0.032924 0.7113 0.7974 0.8998 0.9954 1.0764 1.1635 1.2764 0.093638 0.000000 0.049170 0.7092 0.7930 0.8944 0.9935 1.0726 1.1560 1.2698 0.093861 0.004640 0.071874 0.7069 0.7889 0.8895 0.9921 1.0671 1.1495 1.2651 0.093772 0.002198 0.106870 0.7043 0.7854 0.8857 0.9899 1.0628 1.1439 1.2600 0.093455 0.000000 0.164010 0.7010 0.7819 0.8829 0.9876 1.0590 1.1381 1.2545 0.092873 0.000000 0.258050 0.6988 0.7795 0.8806 0.9848 1.0531 1.1390 1.2477 0.092011 0.000000 0.413500 0.6974 0.7738 0.8775 0.9803 1.0471 1.1419 1.2278 0.090323 0.000000 0.668250 0.6925 0.7680 0.8579 0.9790 1.0369 1.1204 1.2197 0.088809 0.000000 1.100400 0.6784 0.7644 0.8443 0.9637 1.0329 1.0988 1.2068 0.087293 0.000000 1.848200 0.6552 0.7468 0.8496 0.9275 1.0190 1.0775 1.1867 0.087454 0.000000 3.104100 0.6230 0.7493 0.8193 0.9034 0.9942 1.0579 1.1503 0.095265 0.016943
35 Table A-17 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=5.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.021114 0.6744 0.7510 0.8338 0.9670 1.0035 1.1035 1.1693 0.091268 0.000000 0.034897 0.6727 0.7501 0.8325 0.9650 1.0019 1.1018 1.1671 0.091433 0.000000 0.053467 0.6668 0.7464 0.8282 0.9590 0.9961 1.0960 1.1586 0.091801 0.006774 0.079795 0.6624 0.7434 0.8245 0.9537 0.9925 1.0907 1.1515 0.091817 0.006988 0.120320 0.6597 0.7412 0.8217 0.9490 0.9900 1.0876 1.1466 0.091589 0.002648 0.186270 0.6579 0.7398 0.8193 0.9444 0.9882 1.0863 1.1421 0.091076 0.000000 0.294640 0.6562 0.7384 0.8172 0.9376 0.9865 1.0854 1.1395 0.090433 0.000000 0.473500 0.6525 0.7289 0.8162 0.9272 0.9859 1.0684 1.1401 0.089005 0.000000 0.766830 0.6447 0.7233 0.8178 0.9158 0.9822 1.0619 1.1325 0.087599 0.000000 1.264100 0.6428 0.7128 0.8146 0.8942 0.9768 1.0540 1.1223 0.086880 0.000000 2.123200 0.6253 0.7054 0.7960 0.8806 0.9606 1.0283 1.1090 0.088188 0.000000 3.566000 0.5694 0.6893 0.7607 0.8407 0.9516 1.0169 1.0914 0.101800 0.044516 Table A-18 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=6.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.021916 0.6313 0.7046 0.7878 0.9029 0.9443 1.0412 1.0975 0.085185 0.000000 0.036575 0.6282 0.7015 0.7858 0.8995 0.9421 1.0385 1.0956 0.085590 0.000000 0.058174 0.6161 0.6905 0.7781 0.8935 0.9356 1.0318 1.0917 0.086736 0.012633 0.089486 0.6077 0.6827 0.7724 0.8877 0.9303 1.0275 1.0883 0.087299 0.016049 0.137710 0.6025 0.6774 0.7687 0.8834 0.9280 1.0253 1.0843 0.087354 0.016346 0.215910 0.5993 0.6736 0.7663 0.8791 0.9265 1.0229 1.0795 0.086932 0.013915 0.344250 0.5968 0.6697 0.7644 0.8736 0.9246 1.0157 1.0713 0.086122 0.007312 0.555830 0.5949 0.6650 0.7634 0.8679 0.9232 1.0059 1.0628 0.085113 0.000000 0.903260 0.5867 0.6572 0.7620 0.8508 0.9210 0.9968 1.0598 0.083462 0.000000 1.491700 0.5626 0.6388 0.7426 0.8243 0.9205 0.9965 1.0601 0.084647 0.000000 2.505300 0.5179 0.6133 0.7105 0.7998 0.9027 0.9718 1.0644 0.091309 0.031206 4.207800 0.4514 0.5683 0.6756 0.7773 0.8994 0.9739 1.0667 0.112130 0.072178
36 Table A-19 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=10.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.021591 0.5098 0.5755 0.6814 0.7775 0.8659 0.9501 1.0299 0.087016 0.000000 0.036608 0.5013 0.5682 0.6758 0.7719 0.8615 0.9462 1.0272 0.087905 0.000000 0.061937 0.4740 0.5443 0.6607 0.7537 0.8470 0.9337 1.0184 0.091390 0.022831 0.100210 0.4569 0.5283 0.6455 0.7422 0.8377 0.9250 1.0124 0.093680 0.030742 0.159540 0.4473 0.5170 0.6346 0.7355 0.8310 0.9185 1.0086 0.094774 0.033930 0.255500 0.4419 0.5081 0.6253 0.7315 0.8241 0.9115 1.0061 0.094956 0.034435 0.413150 0.4374 0.5008 0.6153 0.7285 0.8154 0.9067 1.0041 0.094723 0.033787 0.673070 0.4190 0.4982 0.6017 0.7189 0.8021 0.9034 1.0026 0.094224 0.032362 1.101000 0.4078 0.4873 0.5813 0.7126 0.7922 0.9032 1.0014 0.094152 0.032151 1.824000 0.3897 0.4681 0.5748 0.6824 0.7916 0.8974 1.0009 0.097322 0.040505 3.063500 0.3553 0.4397 0.5713 0.6605 0.7741 0.8741 1.0014 0.109430 0.064374 5.145300 0.3074 0.4240 0.5051 0.6328 0.7668 0.8741 1.0186 0.133860 0.100437 Table A-20 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=13.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.020246 0.4614 0.5209 0.6211 0.7135 0.8159 0.8920 0.9920 0.092359 0.000000 0.034750 0.4468 0.5063 0.6071 0.7019 0.8076 0.8862 0.9870 0.094181 0.000000 0.061800 0.3996 0.4612 0.5626 0.6664 0.7735 0.8651 0.9707 0.101150 0.032211 0.104280 0.3601 0.4297 0.5356 0.6463 0.7512 0.8506 0.9597 0.106090 0.045402 0.170860 0.3421 0.4132 0.5266 0.6354 0.7379 0.8409 0.9515 0.108870 0.051565 0.278600 0.3322 0.4053 0.5133 0.6278 0.7303 0.8342 0.9471 0.110030 0.053971 0.456160 0.3250 0.3988 0.4995 0.6196 0.7282 0.8254 0.9460 0.110560 0.055043 0.749430 0.3156 0.3943 0.4813 0.6136 0.7241 0.8155 0.9451 0.110870 0.055663 1.233400 0.3052 0.3823 0.4731 0.6096 0.7068 0.8115 0.9445 0.112000 0.057881 2.049400 0.2923 0.3657 0.4689 0.5803 0.7061 0.8192 0.9456 0.116500 0.066170 3.442000 0.2687 0.3411 0.4555 0.5429 0.6770 0.8015 0.9517 0.127250 0.083659 5.781000 0.2379 0.3243 0.3958 0.5157 0.6627 0.8123 0.9613 0.146870 0.111252
37 Table A-21 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=20.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.017198 0.4658 0.5140 0.5854 0.6758 0.7515 0.8403 0.9438 0.085079 0.000000 0.029978 0.4402 0.4881 0.5633 0.6517 0.7363 0.8228 0.9310 0.087680 0.000000 0.057271 0.3540 0.4008 0.4817 0.5694 0.6673 0.7654 0.8886 0.099316 0.035212 0.103340 0.2993 0.3447 0.4249 0.5221 0.6204 0.7301 0.8628 0.109250 0.057548 0.177530 0.2693 0.3133 0.3991 0.4969 0.6047 0.7101 0.8468 0.115610 0.068861 0.298380 0.2472 0.2956 0.3787 0.4819 0.5966 0.6967 0.8324 0.118960 0.074348 0.499340 0.2346 0.2845 0.3605 0.4631 0.5909 0.6839 0.8215 0.120960 0.077508 0.833030 0.2238 0.2763 0.3417 0.4551 0.5773 0.6788 0.8182 0.121940 0.079029 1.386300 0.2135 0.2655 0.3329 0.4488 0.5583 0.6754 0.8155 0.122690 0.080181 2.315300 0.2040 0.2550 0.3303 0.4278 0.5570 0.6739 0.8147 0.125070 0.083778 3.888700 0.1953 0.2417 0.3245 0.4013 0.5273 0.6547 0.8147 0.131470 0.093062 6.531300 0.1773 0.2244 0.2792 0.3763 0.5135 0.6526 0.8147 0.141190 0.106352 Table A-22 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=25.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.015309 0.5012 0.5450 0.6046 0.6947 0.7497 0.8447 0.9407 0.077643 0.000000 0.026801 0.4700 0.5159 0.5757 0.6630 0.7248 0.8194 0.9209 0.079439 0.000000 0.052834 0.3609 0.4026 0.4757 0.5506 0.6382 0.7315 0.8518 0.088808 0.025836 0.099007 0.2895 0.3282 0.3964 0.4767 0.5637 0.6728 0.8088 0.098430 0.049690 0.175110 0.2502 0.2867 0.3531 0.4363 0.5360 0.6419 0.7839 0.105200 0.062030 0.300000 0.2288 0.2630 0.3318 0.4148 0.5222 0.6256 0.7644 0.108980 0.068244 0.509300 0.2139 0.2470 0.3101 0.3997 0.5104 0.6050 0.7450 0.111390 0.072031 0.858470 0.1984 0.2366 0.2903 0.3848 0.4982 0.5957 0.7399 0.112480 0.073705 1.439300 0.1878 0.2272 0.2786 0.3767 0.4716 0.5907 0.7365 0.113030 0.074542 2.412200 0.1795 0.2183 0.2744 0.3538 0.4691 0.5885 0.7350 0.114530 0.076797 4.051400 0.1737 0.2088 0.2694 0.3363 0.4495 0.5660 0.7350 0.119330 0.083787 6.804600 0.1596 0.1947 0.2413 0.3162 0.4389 0.5660 0.7350 0.127020 0.094418
38 Table A-23 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=33.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.013154 0.5644 0.6000 0.6581 0.7498 0.7923 0.8922 0.9741 0.073133 0.000000 0.022962 0.5333 0.5702 0.6256 0.7103 0.7593 0.8529 0.9371 0.073854 0.000000 0.045969 0.3975 0.4369 0.4923 0.5683 0.6337 0.7232 0.8256 0.078545 0.012115 0.089771 0.3021 0.3363 0.3971 0.4599 0.5326 0.6272 0.7453 0.084855 0.034320 0.164910 0.2489 0.2800 0.3348 0.3972 0.4678 0.5743 0.6994 0.090106 0.045788 0.290120 0.2200 0.2483 0.2998 0.3617 0.4400 0.5450 0.6711 0.093288 0.051770 0.502790 0.2001 0.2257 0.2733 0.3395 0.4225 0.5180 0.6581 0.095439 0.055552 0.860550 0.1865 0.2099 0.2526 0.3251 0.4104 0.4943 0.6486 0.096350 0.057103 1.458900 0.1753 0.2000 0.2373 0.3116 0.3885 0.4826 0.6406 0.096620 0.057558 2.457500 0.1655 0.1928 0.2317 0.2906 0.3803 0.4787 0.6343 0.097205 0.058534 4.127600 0.1604 0.1860 0.2254 0.2800 0.3651 0.4657 0.6319 0.100250 0.063463 6.932400 0.1487 0.1761 0.2113 0.2697 0.3621 0.4655 0.6319 0.106990 0.073650 Table A-24 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=40.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.012119 0.5939 0.6343 0.6924 0.7969 0.8338 0.9417 1.0240 0.072358 0.000000 0.021015 0.5687 0.6053 0.6643 0.7590 0.7986 0.9003 0.9817 0.072766 0.000000 0.041583 0.4341 0.4734 0.5245 0.6009 0.6550 0.7430 0.8338 0.075619 0.004951 0.082413 0.3236 0.3571 0.4094 0.4734 0.5431 0.6233 0.7250 0.079920 0.026334 0.154650 0.2599 0.2892 0.3422 0.3962 0.4589 0.5487 0.6667 0.083870 0.036612 0.276670 0.2253 0.2519 0.3001 0.3534 0.4132 0.5097 0.6378 0.086363 0.042010 0.486140 0.2014 0.2253 0.2687 0.3228 0.3871 0.4770 0.6188 0.088061 0.045398 0.840900 0.1854 0.2062 0.2452 0.3037 0.3704 0.4527 0.6051 0.088661 0.046552 1.436700 0.1733 0.1940 0.2265 0.2888 0.3518 0.4377 0.5943 0.088581 0.046399 2.428900 0.1643 0.1872 0.2197 0.2701 0.3413 0.4323 0.5862 0.088692 0.046611 4.079400 0.1590 0.1811 0.2149 0.2611 0.3292 0.4202 0.5789 0.090881 0.050652 6.851500 0.1478 0.1735 0.2044 0.2528 0.3260 0.4193 0.5760 0.097272 0.061385
39 Table A-25 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=50.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.011237 0.6242 0.6712 0.7336 0.8475 0.8839 0.9968 1.0732 0.072075 0.000000 0.019294 0.6041 0.6458 0.7057 0.8131 0.8525 0.9591 1.0371 0.072345 0.000000 0.036891 0.4861 0.5251 0.5764 0.6559 0.7013 0.7904 0.8716 0.074213 0.000000 0.072920 0.3623 0.3975 0.4461 0.5122 0.5696 0.6500 0.7393 0.077076 0.019559 0.139230 0.2853 0.3151 0.3620 0.4180 0.4802 0.5547 0.6554 0.079787 0.028422 0.253600 0.2424 0.2688 0.3171 0.3641 0.4178 0.4973 0.6119 0.081425 0.032740 0.452910 0.2128 0.2363 0.2783 0.3252 0.3737 0.4572 0.5825 0.082468 0.035254 0.793760 0.1929 0.2133 0.2503 0.2959 0.3471 0.4271 0.5615 0.082670 0.035724 1.369700 0.1786 0.1977 0.2289 0.2802 0.3290 0.4090 0.5461 0.082245 0.034729 2.326300 0.1701 0.1896 0.2191 0.2631 0.3172 0.3986 0.5364 0.082077 0.034329 3.907100 0.1640 0.1841 0.2148 0.2519 0.3113 0.3837 0.5330 0.083873 0.038426 6.562200 0.1526 0.1783 0.2062 0.2470 0.3074 0.3831 0.5277 0.090158 0.050698 Table A-26 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=100.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.010157 0.6752 0.7273 0.8008 0.9278 0.9674 1.0780 1.1587 0.071894 0.000000 0.017129 0.6599 0.7117 0.7813 0.9066 0.9449 1.0545 1.1314 0.072062 0.000000 0.029653 0.5875 0.6344 0.6974 0.7987 0.8398 0.9406 1.0175 0.073189 0.000000 0.052661 0.4984 0.5450 0.5999 0.6826 0.7293 0.8165 0.8946 0.074861 0.010919 0.095017 0.4147 0.4556 0.5103 0.5828 0.6356 0.7145 0.7965 0.076417 0.018831 0.170860 0.3564 0.3927 0.4452 0.5099 0.5647 0.6371 0.7176 0.077238 0.021926 0.307240 0.3100 0.3419 0.3916 0.4494 0.5023 0.5694 0.6527 0.077640 0.023303 0.547090 0.2760 0.3038 0.3520 0.4010 0.4429 0.5149 0.6057 0.077349 0.022314 0.960500 0.2511 0.2755 0.3165 0.3613 0.4053 0.4742 0.5725 0.076657 0.019783 1.646600 0.2371 0.2610 0.2975 0.3454 0.3881 0.4629 0.5571 0.076390 0.018721 2.765500 0.2294 0.2545 0.2918 0.3296 0.3866 0.4410 0.5558 0.078065 0.024682 4.644800 0.2138 0.2487 0.2818 0.3229 0.3819 0.4394 0.5544 0.084543 0.040775
40 Table A-27 Site Adjustment Factor Medians and Logarithmic Standard Deviation for PGA SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.010020 0.6832 0.7357 0.8107 0.9383 0.9792 1.0915 1.1710 0.071880 0.000000 0.016836 0.6692 0.7225 0.7934 0.9212 0.9602 1.0690 1.1489 0.072034 0.000000 0.028357 0.6112 0.6602 0.7269 0.8339 0.8748 0.9800 1.0558 0.073056 0.000000 0.047926 0.5475 0.5978 0.6572 0.7462 0.7957 0.8873 0.9639 0.074518 0.008649 0.081326 0.4844 0.5318 0.5940 0.6776 0.7342 0.8210 0.9028 0.075815 0.016425 0.138230 0.4404 0.4848 0.5478 0.6266 0.6879 0.7677 0.8517 0.076417 0.019011 0.235540 0.4038 0.4450 0.5078 0.5819 0.6496 0.7243 0.8069 0.076615 0.019792 0.401380 0.3754 0.4129 0.4777 0.5428 0.5980 0.6889 0.7709 0.076149 0.017904 0.682720 0.3524 0.3861 0.4433 0.5027 0.5598 0.6450 0.7428 0.075327 0.014001 1.154100 0.3374 0.3711 0.4222 0.4880 0.5446 0.6426 0.7296 0.074909 0.011543 1.938300 0.3268 0.3620 0.4146 0.4665 0.5437 0.6046 0.7296 0.076430 0.019064 3.255500 0.3046 0.3540 0.3997 0.4572 0.5387 0.6043 0.7296 0.082964 0.037482 Table A-28 Control Point Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.00100 3.50468E-03 4.68004E-03 6.69169E-03 8.52664E-03 1.11370E-02 1.96932E-02 2.76548E-02 4.46802E-02 0.00130 3.11926E-03 4.31773E-03 6.18626E-03 7.86461E-03 1.02327E-02 1.78427E-02 2.50931E-02 4.06857E-02 0.00160 2.67866E-03 3.75241E-03 5.55453E-03 6.89123E-03 8.82501E-03 1.51935E-02 2.11347E-02 3.45003E-02 0.00200 2.28827E-03 3.24736E-03 4.83530E-03 5.96434E-03 7.57573E-03 1.23463E-02 1.76827E-02 2.90461E-02 0.00250 1.92946E-03 2.79177E-03 4.18380E-03 5.14678E-03 6.50123E-03 1.07887E-02 1.47738E-02 2.43211E-02 0.00320 1.59156E-03 2.37079E-03 3.59798E-03 4.42777E-03 5.57834E-03 8.98302E-03 1.23319E-02 2.02000E-02 0.00400 1.27484E-03 1.98065E-03 3.06468E-03 3.78477E-03 4.77819E-03 7.50668E-03 1.02920E-02 1.66725E-02 0.00500 9.86299E-04 1.62696E-03 2.58647E-03 3.21131E-03 4.07057E-03 6.35155E-03 8.58274E-03 1.37075E-02 0.00630 7.19169E-04 1.29027E-03 2.14099E-03 2.68688E-03 3.43784E-03 5.29625E-03 7.15106E-03 1.12414E-02 0.00790 4.88026E-04 9.65681E-04 1.72781E-03 2.20292E-03 2.87100E-03 4.45920E-03 5.94944E-03 9.20339E-03 0.01000 3.20202E-04 7.01490E-04 1.37555E-03 1.78690E-03 2.36942E-03 3.69406E-03 4.93588E-03 7.52090E-03 0.01260 1.97537E-04 4.87289E-04 1.04737E-03 1.40223E-03 1.91585E-03 3.03274E-03 4.06525E-03 6.12685E-03 0.01580 1.10258E-04 3.05399E-04 7.51609E-04 1.04013E-03 1.49805E-03 2.44691E-03 3.30951E-03 4.96653E-03 0.02000 5.87436E-05 1.79578E-04 5.17826E-04 7.47253E-04 1.13885E-03 1.95076E-03 2.66525E-03 4.00449E-03
41 Table A-28 Control Point Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.02510 3.01613E-05 1.02466E-04 3.35994E-04 5.14549E-04 8.37675E-04 1.50843E-03 2.10955E-03 3.19372E-03 0.03160 1.44907E-05 5.43495E-05 2.05000E-04 3.28158E-04 5.76494E-04 1.10975E-03 1.61250E-03 2.49138E-03 0.03980 6.63413E-06 2.65863E-05 1.16179E-04 1.92722E-04 3.68509E-04 7.73436E-04 1.18108E-03 1.88845E-03 0.05010 2.94811E-06 1.25011E-05 6.12140E-05 1.05861E-04 2.21061E-04 5.10567E-04 8.25419E-04 1.38139E-03 0.06310 1.28731E-06 5.68823E-06 3.07401E-05 5.50511E-05 1.24321E-04 3.15552E-04 5.45486E-04 9.64602E-04 0.07940 5.54339E-07 2.53963E-06 1.46664E-05 2.70379E-05 6.56201E-05 1.80618E-04 3.36941E-04 6.34776E-04 0.10000 2.36944E-07 1.11402E-06 6.79852E-06 1.27429E-05 3.26091E-05 9.88716E-05 1.96403E-04 3.97480E-04 0.12600 1.00527E-07 4.85350E-07 3.05296E-06 5.88988E-06 1.60464E-05 5.25337E-05 1.11685E-04 2.41676E-04 0.15800 4.27759E-08 2.14023E-07 1.39547E-06 2.73195E-06 7.69086E-06 2.69700E-05 5.99229E-05 1.37758E-04 0.20000 1.74141E-08 9.11540E-08 6.06802E-07 1.22721E-06 3.59416E-06 1.27713E-05 3.04815E-05 7.42278E-05 0.25100 7.15895E-09 3.90132E-08 2.74284E-07 5.53464E-07 1.68097E-06 6.37947E-06 1.54085E-05 3.95613E-05 0.31600 2.85104E-09 1.68212E-08 1.22172E-07 2.54942E-07 7.89718E-07 3.06191E-06 7.64913E-06 2.06062E-05 0.39800 1.12356E-09 6.88843E-09 5.32213E-08 1.14452E-07 3.76520E-07 1.49430E-06 3.78849E-06 1.05925E-05 0.50100 4.34531E-10 2.80718E-09 2.32505E-08 5.15497E-08 1.78710E-07 7.35335E-07 1.89255E-06 5.44957E-06 0.63100 1.65510E-10 1.12315E-09 9.93164E-09 2.28724E-08 8.42005E-08 3.61321E-07 9.52719E-07 2.81690E-06 0.79400 6.14970E-11 4.41277E-10 4.16390E-09 9.91684E-09 3.88024E-08 1.76973E-07 4.82395E-07 1.56525E-06 1.00000 2.25220E-11 1.69821E-10 1.70681E-09 4.20527E-09 1.74390E-08 8.55847E-08 2.43826E-07 8.18071E-07 1.26000 8.10548E-12 6.41595E-11 6.81189E-10 1.74580E-09 7.74841E-09 4.07411E-08 1.21821E-07 4.21270E-07 1.58000 3.24209E-12 2.43023E-11 2.75709E-10 7.22175E-10 3.32518E-09 1.89583E-08 5.98836E-08 2.12149E-07 2.00000 9.21644E-13 8.44947E-12 1.01985E-10 2.80673E-10 1.37129E-09 8.25398E-09 2.77930E-08 1.04300E-07 2.51000 3.32312E-13 2.95461E-12 3.91777E-11 1.08480E-10 5.60508E-10 3.69577E-09 1.30824E-08 5.02870E-08 3.16000 9.06494E-14 1.03113E-12 1.44537E-11 4.20382E-11 2.20865E-10 1.54839E-09 5.90174E-09 2.34636E-08 3.98000 2.58856E-14 3.22273E-13 5.05831E-12 1.50765E-11 8.39324E-11 6.28290E-10 2.53403E-09 1.05137E-08 5.01000 6.92987E-15 9.79057E-14 1.72110E-12 5.29881E-12 3.07688E-11 2.46626E-10 1.05765E-09 4.53469E-09 6.31000 1.76025E-15 2.81895E-14 5.59389E-13 1.79282E-12 1.08592E-11 9.29971E-11 4.24682E-10 1.88309E-09 7.94000 4.22103E-16 7.73140E-15 1.73486E-13 5.79722E-13 3.68694E-12 3.37357E-11 1.63422E-10 7.51816E-10 10.00000 1.00720E-16 2.02896E-15 5.19607E-14 1.80343E-13 1.14795E-12 1.09217E-11 5.76918E-11 2.79996E-10
42 Table A-29 Control Point Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.00100 5.75908E-02 7.19445E-02 7.46553E-02 7.82835E-02 7.74049E-02 7.76203E-02 7.60646E-02 7.01135E-02 0.00130 5.28837E-02 6.54815E-02 6.84787E-02 7.14271E-02 7.07304E-02 7.09466E-02 6.93246E-02 6.34250E-02 0.00160 4.55585E-02 5.79645E-02 6.12896E-02 6.45743E-02 6.40978E-02 6.45131E-02 6.31646E-02 5.69550E-02 0.00200 3.89820E-02 5.10525E-02 5.43912E-02 5.78895E-02 5.73584E-02 5.79065E-02 5.55692E-02 5.03313E-02 0.00250 3.30800E-02 4.42803E-02 4.74565E-02 5.08348E-02 5.02480E-02 5.08804E-02 4.93850E-02 4.37400E-02 0.00320 2.77014E-02 3.76535E-02 4.06075E-02 4.37046E-02 4.32123E-02 4.38856E-02 4.24145E-02 3.76021E-02 0.00400 2.29400E-02 3.15491E-02 3.42161E-02 3.70293E-02 3.66578E-02 3.73594E-02 3.54681E-02 3.10177E-02 0.00500 1.88567E-02 2.61395E-02 2.84800E-02 3.09806E-02 3.07130E-02 3.14083E-02 2.97298E-02 2.60862E-02 0.00630 1.54086E-02 2.14216E-02 2.34094E-02 2.55871E-02 2.53978E-02 2.61045E-02 2.47582E-02 2.19044E-02 0.00790 1.25318E-02 1.73757E-02 1.90692E-02 2.09139E-02 2.08586E-02 2.15135E-02 2.05241E-02 1.82768E-02 0.01000 1.01567E-02 1.40349E-02 1.54317E-02 1.70119E-02 1.70000E-02 1.76068E-02 1.68192E-02 1.51255E-02 0.01260 8.21106E-03 1.12657E-02 1.23976E-02 1.36964E-02 1.36994E-02 1.42495E-02 1.37256E-02 1.24305E-02 0.01580 6.61162E-03 8.98050E-03 9.89085E-03 1.09330E-02 1.09800E-02 1.14392E-02 1.10930E-02 1.01339E-02 0.02000 5.30235E-03 7.12928E-03 7.84591E-03 8.68663E-03 8.72234E-03 9.12242E-03 8.79431E-03 8.08632E-03 0.02510 4.21950E-03 5.61651E-03 6.18083E-03 6.84269E-03 6.89021E-03 7.18984E-03 6.94613E-03 6.41208E-03 0.03160 3.30536E-03 4.37261E-03 4.81389E-03 5.33328E-03 5.33070E-03 5.59038E-03 5.40761E-03 4.99933E-03 0.03980 2.53395E-03 3.34342E-03 3.66137E-03 4.09902E-03 4.05186E-03 4.16436E-03 4.13417E-03 3.80959E-03 0.05010 1.88608E-03 2.49914E-03 2.73837E-03 3.08993E-03 3.02451E-03 3.05828E-03 3.07570E-03 2.81047E-03 0.06310 1.34737E-03 1.79333E-03 1.98169E-03 2.25056E-03 2.18484E-03 2.18467E-03 2.21924E-03 2.01214E-03 0.07940 9.11775E-04 1.22366E-03 1.38261E-03 1.58595E-03 1.54907E-03 1.53134E-03 1.56650E-03 1.41661E-03 0.10000 5.89811E-04 8.15017E-04 9.35021E-04 1.09547E-03 1.06452E-03 1.03280E-03 1.07323E-03 9.68412E-04 0.12600 3.70169E-04 5.19330E-04 6.05367E-04 7.17272E-04 6.91635E-04 6.66547E-04 7.09743E-04 6.48505E-04 0.15800 2.17860E-04 3.09148E-04 3.70964E-04 4.44121E-04 4.40045E-04 4.22083E-04 4.61650E-04 4.34417E-04 0.20000 1.21400E-04 1.78652E-04 2.18690E-04 2.70464E-04 2.59232E-04 2.63089E-04 2.96824E-04 2.83740E-04 0.25100 6.68300E-05 1.01219E-04 1.27333E-04 1.60167E-04 1.55186E-04 1.60900E-04 1.89141E-04 1.87267E-04 0.31600 3.58713E-05 5.58593E-05 6.89326E-05 9.23390E-05 9.10290E-05 9.74753E-05 1.19785E-04 1.21802E-04 0.39800 1.89466E-05 3.04593E-05 3.56470E-05 5.28244E-05 5.32086E-05 5.88687E-05 7.54077E-05 7.79984E-05 0.50100 1.00029E-05 1.66013E-05 1.98584E-05 3.01931E-05 3.10815E-05 3.53795E-05 4.70142E-05 4.91423E-05 0.63100 5.29996E-06 9.06419E-06 1.10911E-05 1.72808E-05 1.81550E-05 2.11025E-05 2.89507E-05 3.04022E-05
43 Table A-29 Control Point Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.79400 2.81887E-06 4.95983E-06 6.20982E-06 9.90190E-06 1.05827E-05 1.25182E-05 1.63560E-05 1.86118E-05 1.00000 1.50149E-06 2.70988E-06 3.46148E-06 5.64728E-06 6.10652E-06 7.28702E-06 9.47607E-06 1.11284E-05 1.26000 7.91807E-07 1.45567E-06 1.88976E-06 2.98930E-06 3.44272E-06 4.11528E-06 5.21678E-06 6.44007E-06 1.58000 4.07073E-07 7.60574E-07 1.01679E-06 1.45665E-06 1.89940E-06 2.28618E-06 2.94550E-06 3.70455E-06 2.00000 2.04216E-07 3.90612E-07 5.29396E-07 7.72511E-07 1.02942E-06 1.23534E-06 1.57440E-06 1.97976E-06 2.51000 1.00886E-07 1.95251E-07 2.70848E-07 3.97217E-07 5.34147E-07 6.36474E-07 7.19029E-07 1.03345E-06 3.16000 4.78715E-08 9.32343E-08 1.29571E-07 1.94874E-07 2.63605E-07 3.12458E-07 3.49725E-07 5.10770E-07 3.98000 2.17462E-08 4.25839E-08 5.99063E-08 9.13140E-08 1.24014E-07 1.46095E-07 1.63348E-07 2.37407E-07 5.01000 9.51050E-09 1.86548E-08 2.64766E-08 4.07901E-08 5.50095E-08 6.49514E-08 7.12154E-08 1.03447E-07 6.31000 3.98943E-09 7.81190E-09 1.11533E-08 1.72179E-08 2.11129E-08 2.67517E-08 2.79016E-08 3.70822E-08 7.94000 1.59293E-09 3.07292E-09 4.32172E-09 6.50085E-09 7.48182E-09 9.60044E-09 7.99592E-09 1.21330E-08 10.00000 5.66080E-10 1.02482E-09 1.35825E-09 1.83864E-09 2.28315E-09 1.61565E-09 9.12577E-10 1.16914E-09 Table A-30 Control Point Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.00100 6.61727E-02 6.56958E-02 6.38096E-02 6.35598E-02 6.34828E-02 6.27577E-02 5.84919E-02 5.75330E-02 0.00130 5.95549E-02 5.66601E-02 5.70120E-02 5.60726E-02 5.49161E-02 5.54729E-02 5.13912E-02 5.06715E-02 0.00160 5.30632E-02 5.02159E-02 5.03234E-02 4.88217E-02 4.84778E-02 4.73755E-02 4.46577E-02 4.39402E-02 0.00200 4.65915E-02 4.36999E-02 4.41451E-02 4.27304E-02 4.12628E-02 4.01700E-02 3.69949E-02 3.63450E-02 0.00250 4.03550E-02 3.78321E-02 3.63963E-02 3.70205E-02 3.56689E-02 3.46274E-02 3.16089E-02 3.09888E-02 0.00320 3.44964E-02 3.16258E-02 3.10255E-02 3.15205E-02 3.06248E-02 2.87809E-02 2.67980E-02 2.61992E-02 0.00400 2.94525E-02 2.61153E-02 2.65040E-02 2.64285E-02 2.59705E-02 2.45015E-02 2.25957E-02 2.20111E-02 0.00500 2.49843E-02 2.20297E-02 2.18069E-02 2.20764E-02 2.20750E-02 2.07485E-02 1.83096E-02 1.83726E-02 0.00630 2.10926E-02 1.86395E-02 1.79211E-02 1.80134E-02 1.82086E-02 1.73653E-02 1.51956E-02 1.46266E-02 0.00790 1.76597E-02 1.56750E-02 1.49609E-02 1.51709E-02 1.53418E-02 1.45729E-02 1.26097E-02 1.20567E-02 0.01000 1.41046E-02 1.30981E-02 1.25065E-02 1.25058E-02 1.24057E-02 1.21382E-02 1.00276E-02 9.84045E-03 0.01260 1.16243E-02 1.06359E-02 1.03851E-02 9.99744E-03 9.95318E-03 9.73150E-03 8.12540E-03 7.63683E-03 0.01580 9.51197E-03 8.70559E-03 8.32154E-03 7.79993E-03 7.79110E-03 7.78730E-03 6.49087E-03 6.04184E-03
44 Table A-30 Control Point Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.02000 7.49633E-03 6.99024E-03 6.50813E-03 6.06988E-03 5.71580E-03 5.40028E-03 5.02744E-03 4.75892E-03 0.02510 5.90975E-03 5.06133E-03 4.63496E-03 4.07915E-03 3.99031E-03 4.00331E-03 3.52793E-03 3.49960E-03 0.03160 4.51798E-03 3.73419E-03 3.36067E-03 2.84191E-03 2.65855E-03 2.51913E-03 2.34463E-03 2.38586E-03 0.03980 3.30622E-03 2.70546E-03 2.28126E-03 1.87771E-03 1.72392E-03 1.62462E-03 1.61425E-03 1.51924E-03 0.05010 2.40113E-03 1.91033E-03 1.57177E-03 1.27222E-03 1.13058E-03 1.01659E-03 9.77095E-04 1.01432E-03 0.06310 1.70619E-03 1.33196E-03 1.09612E-03 8.08870E-04 7.00516E-04 6.31937E-04 6.08806E-04 6.80620E-04 0.07940 1.19914E-03 9.27460E-04 7.58251E-04 5.24902E-04 4.59980E-04 4.02801E-04 3.84603E-04 4.39307E-04 0.10000 8.25836E-04 6.40463E-04 5.18655E-04 3.54252E-04 3.11179E-04 2.61449E-04 2.38661E-04 2.68173E-04 0.12600 5.62570E-04 4.41009E-04 3.52398E-04 2.42579E-04 2.06701E-04 1.64144E-04 1.42892E-04 1.71956E-04 0.15800 3.85197E-04 3.04297E-04 2.40559E-04 1.65141E-04 1.33528E-04 1.00769E-04 8.73943E-05 1.10435E-04 0.20000 2.56993E-04 2.04816E-04 1.59448E-04 1.08899E-04 8.18044E-05 6.05254E-05 5.34249E-05 6.59006E-05 0.25100 1.73078E-04 1.38389E-04 1.06127E-04 7.10237E-05 5.10423E-05 3.75520E-05 3.15109E-05 4.07659E-05 0.31600 1.14525E-04 9.19558E-05 6.89621E-05 4.48015E-05 3.14359E-05 2.32511E-05 1.75731E-05 2.51893E-05 0.39800 7.46701E-05 5.98387E-05 4.40646E-05 2.74387E-05 1.92313E-05 1.41334E-05 9.42775E-06 1.47589E-05 0.50100 4.78811E-05 3.82475E-05 2.75763E-05 1.62647E-05 1.15046E-05 8.23698E-06 5.16084E-06 8.58775E-06 0.63100 3.01315E-05 2.38663E-05 1.66756E-05 9.38093E-06 6.69172E-06 4.57933E-06 2.70956E-06 4.97868E-06 0.79400 1.86227E-05 1.44695E-05 9.84576E-06 5.34696E-06 3.76229E-06 2.41668E-06 1.43540E-06 2.78403E-06 1.00000 1.10345E-05 8.51982E-06 5.68950E-06 2.95107E-06 2.01756E-06 1.19605E-06 7.40497E-07 1.40838E-06 1.26000 6.40828E-06 4.89440E-06 3.18987E-06 1.57263E-06 1.03597E-06 5.68238E-07 3.59272E-07 7.47725E-07 1.58000 3.68596E-06 2.75044E-06 1.74216E-06 8.08118E-07 5.08779E-07 2.64538E-07 1.61348E-07 3.76559E-07 2.00000 1.98866E-06 1.44336E-06 8.81846E-07 3.80192E-07 2.30356E-07 1.10710E-07 6.55847E-08 1.75970E-07 2.51000 1.04849E-06 7.38914E-07 4.36904E-07 1.69622E-07 9.72666E-08 4.42770E-08 2.60987E-08 8.00151E-08 3.16000 5.22748E-07 3.56032E-07 1.96621E-07 7.30852E-08 3.87060E-08 1.56312E-08 9.61652E-09 2.87848E-08 3.98000 2.46123E-07 1.54669E-07 8.53204E-08 2.54829E-08 1.31436E-08 4.28451E-09 2.86132E-09 1.11688E-08 5.01000 1.04290E-07 6.35736E-08 2.99921E-08 6.84163E-09 2.78353E-09 1.31387E-09 4.70725E-10 3.28436E-09 6.31000 4.00777E-08 1.92717E-08 7.23603E-09 1.26329E-09 2.65297E-11 1.73345E-19 0.00000E+00 1.19895E-09 7.94000 1.16290E-08 3.20203E-09 7.10204E-10 6.92785E-14 7.76462E-22 0.00000E+00 0.00000E+00 0.00000E+00 10.00000 1.15271E-09 6.17845E-11 3.53998E-13 5.41701E-24 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
ENCLOSURE 3 WATTS BAR SEISMIC HAZARDS REPORT
Watts Bar Seismic Hazard Report Overview This report provides the NRC staffs updated seismic hazard curves and response spectra for the Watts Bar Nuclear Plant (Watts Bar) site that are based on the implementation of (1) a new seismic ground motion model for the central and eastern United States (CEUS) and (2) recent advances in site response analysis. The NRC staffs updated hazard curves and site amplification factors are included in an appendix to this report.
Background
In response to the March 11, 2011, Great East Japan Earthquake and tsunami, which triggered an accident at the Fukushima Dai-ichi nuclear power plant, the U.S. Nuclear Regulatory Commission (NRC) established the Near-Term Task Force (NTTF) to conduct a systematic and methodical review of NRC processes and regulations and determine whether the agency should make additional improvements to its regulatory system. In SECY-11-0093, Near-Term Report and Recommendations for Agency Actions Following the Events in Japan, dated July 12, 2011 (NRC, 2011), the NRC staff recommended a set of actions to clarify and strengthen the regulatory framework for protection against natural hazards. In particular, NTTF Recommendation 2.1 (NTTF R2.1) instructed the NRC staff to issue requests for information to all power reactor licensees pursuant to Title 10 of the Code of Federal Regulations 50.54(f)
(50.54(f) letter). Enclosure 1 to the 50.54(f) letter requested that addressees reevaluate the seismic hazards at their sites, using present day NRC requirements and guidance to perform a probabilistic seismic hazard analysis (PSHA) and develop a site-specific ground motion response spectrum (GMRS). To comply with the 50.54(f) request, the Nuclear Energy Institute submitted Electric Power Research Institute (EPRI) Report 1025287, Seismic Evaluation Guidance: Screening, Prioritization, and Implementation Details (SPID) for the Resolution of Fukushima NTTF Recommendation 2.1 Seismic, dated November 27, 2012 (EPRI, 2012).
Recipients of the 50.54(f) letter committed to following the SPID to develop seismic hazard and screening reports (SHSRs). By December 2017, the NRC staff had finished assessing the SHSRs for all operating U.S. nuclear power plants.
Under the process for the ongoing assessment of natural hazards information (POANHI),
described in SECY-16-0144, Proposed Resolution of Remaining Tier 2 and 3 Recommendations Resulting from the Fukushima Dai-ichi Accident, dated December 26, 2016 (NRC, 2016), the NRC staff continuously seeks out and integrates new natural hazards information for operating plants in the United States. The Office of Nuclear Reactor Regulations Office Instruction LIC-208, Process for the Ongoing Assessment of Natural Hazards Information, issued November 2019 (NRC, 2019), provides guidance to the staff on how to collect, integrate, and evaluate new information for consideration in its regulatory decision-making. This report presents the NRC staffs latest understanding of seismic hazards at the Watts Bar site following the POANHI framework.
2 The Watts Bar site is located 80 kilometers northeast of Chattanooga, TN, on the west side of the Tennessee River in the Valley and Ridge physiographic province and consists of about 3,350 meters of competent sedimentary rock (shale, limestone, dolomite, and sandstone) of Paleozoic age.
Motivation After evaluating the SHSR submittals, the NRC staff captured in NUREG/KM-0017, Seismic Hazards Evaluations for U.S. Nuclear Power Plants: Near-Term Task Force Recommendation 2.1 Results, issued December 2021 (Munson et al., 2021), the information used to develop the GMRS at each of the U.S. nuclear power plants. This includes a compilation and synthesis of (1) information provided by licensees in their SHSRs, (2) information collected by the NRC staff during its reviews of the SHSRs, and (3) information subsequently collected by the NRC staff from the scientific and engineering literature pertaining to several of the nuclear power plant sites. In addition, NUREG/KM-0017 includes updated approaches and relationships, relative to those recommended by the SPID, that the NRC staff used to perform its analyses.
After the development of NUREG/KM-0017, a new Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 ground motion model (GMM) for Eastern North America called NGA-East was published by Goulet et al. (2018). In addition, the NRC staff also participated in a SSHAC Level 2 study, documented in Research Information Letter (RIL) 2021--15, Documentation Report for SSHAC Level 2: Site Response, issued November 2021 (Rodriguez-Marek et al., 2021). This SSHAC Level 2 study implemented the SSHAC approach to performing site response analyses (SRAs). The SSHAC process, described most recently in NUREG-2213, Updated Implementation Guidelines for SSHAC Hazard Studies, issued October 2018 (Ake et al., 2018),
provides a structured and logical framework for the systematic evaluation of alternative data, models, and methods. This seismic hazard report for the Watts Bar site incorporates the NGA-East GMM in place of the EPRI (2013) GMM and lessons learned from the SSHAC Level 2 SRA study (RIL 2021-15) into a PSHA to develop updated seismic hazard curves and a GMRS for the site.
Methods Reference Rock Hazard For the reference rock PSHA, the NRC staff used the distributed seismicity zones (DSZs) from the SSHAC Level 3 Central and Eastern United States Seismic Source Characterization for Nuclear Facilities (CEUS-SSC) model in NUREG-2115, Central and Eastern United States Seismic Source Characterization for Nuclear Facilities, issued January 2012 (NRC, 2012).
Specifically, the NRC staff selected the DSZs that are located within 500 kilometers of the site.
For this reevaluation, the NRC staff used the SSHAC Level 2 update to the CEUS-SSC seismicity catalog and recurrence parameters (Gatlin, 2015), which primarily impact the DSZs that encompass Monticello Reservoir and Lake Keowee in South Carolina as well as the 1886 Charleston earthquake sequence. In addition, the NRC staff selected the RLME sources that are within 1,000 kilometers of the site. To develop the reference rock seismic hazard curves for the site, the NRC staff used the NGA-East GMM (2018) to compute the median and logarithmic
3 standard deviation of the spectral accelerations. Because the NGA-East GMM implements the rupture distance parameter, the NRC staff developed virtual rupture planes for each of the distributed source zones surrounding the site. For each virtual rupture, the NRC staff used the CEUS-SSC hazard input document (NRC, 2012) to specify the size of the rupture plane and the orientation of the rupture plane in terms of the strike and dip angles, dip direction, and rupture type (e.g., reverse and strike slip). In contrast, to develop the hazard curves for NUREG/KM-0017, the NRC staff used point source approximations for the CEUS-SSC and EPRI GMM (EPRI, 2013) combination.
Figure 1 shows the distribution of the virtual ruptures for one of the four alternative CEUS-SSC seismotectonic DSZ configurations along with the resulting 10-Hertz (Hz) mean hazard curves developed using the NGA-East GMM. In particular, Figure 1 shows the distribution of the surface projection of the updip segments of the virtual rupture planes for each of the five seismotectonic DSZs within 500 kilometers of the site. As expected, the Paleozoic Extended CrustNarrow Geometry (PEZ-N) source zone, which surrounds the site, is the largest contributor to the 10 Hz reference rock mean hazard curves at the 10-4 annual frequency of exceedance (AFE) level. Similarly, Figure 2 shows the distribution of the virtual ruptures for one of the three alternative CEUS-SSC maximum-magnitude DSZ configurations along with the resulting 10 Hz mean hazard curves developed using the NGA-East GMM. The Non-Mesozoic-and-Younger ExtensionNarrow Configuration (NMESE-N) source zone, which surrounds the site, is the largest contributor to the 10 Hz reference rock mean hazard curves at the 10-4 AFE level. Figure 3 shows the RLME sources within 1,000 kilometers of the site, and their contribution to the 1 Hz reference rock mean hazard, from using the NGA-East GMM. The New Madrid Fault System RLME source is the largest contributor to the 1 Hz reference rock mean hazard curves at the 10-4 AFE level. Figure 4 shows the contribution from all of the DSZs relative to the RLMEs, as well as the total mean hazard for the 1 and 10 Hz mean reference rock hazard curves, from using the NGA-East GMM. For the 1 Hz mean reference rock hazard curves, the RLME sources provide the largest contribution at the 10-4 AFE level. In contrast, for the 10 Hz mean reference rock hazard curves at the 10-4 AFE level, the DSZs provide the largest contribution. Finally, Figure 5 shows the mean 1,000-, 10,000-, and 100,000-year return period mean reference rock uniform hazard response spectra (UHRS) for the Watts Bar site from using the EPRI GMM (blue) and the NGA-East GMM (red). For this reevaluation, the NRC staff used the NGA-East single station standard deviation and for the comparison shown in Figure 5, the NRC staff used the EPRI GMM ergodic standard deviation. As shown in Figure 5, the spectral accelerations from using the NGA-East GMM are moderately higher than those from using the EPRI GMM, up to the spectral frequency of about 5 Hz.
Site Response Analysis SRAs, which are used to develop site adjustment (or amplification) factors , depend on several factors, including the site strata (material type, stiffness, and thickness) and their response to dynamic loading. Because this information is site specific, the ability to accurately model the site response depends on the quantity and quality of site-specific geologic and geotechnical data available, and on the interpretation and use of these data to develop input models for assessing amplification (or deamplification) of ground motions. The resulting
4 are assessed for a wide range of input ground motions as part of understanding the changes in the soil and rock response as input ground motions increase.
The NRC staff followed the site response approach described in RIL 2021-15, which uses a logic tree for systematically identifying and propagating epistemic uncertainties in the SRA. As described in RIL 2021-15, to produce a truly probabilistic estimate of the seismic hazard at the control point elevation, it is necessary to estimate both the epistemic uncertainties and the aleatory variability of the soil and or rock dynamic response, and to propagate these through the SRA and the calculation of the site hazard curves.
Site Exploration. As described in the NTTF R2.1 SHSR submitted by the Tennessee Valley Authority (TVA; Shea, 2014) and summarized in section 2.3.18 of NUREG/KM-0017, the field investigations for Watts Bar consisted of continuous compressional wave velocities
( measured in seven boreholes at the site in addition to more recent Spectral Analysis of Surface Waves (SASW) testing to estimate shear wave velocities ( for the near-surface bedrock and deeper rock layers beneath the site.
Basecase Profiles. TVA stated in its NTTF R2.1 SHSR (Shea, 2014) that the uppermost 10 meters beneath the plant site are clay, silt, sand, and gravel layers that overlie interbedded weathered shale and limestone and that the primary Watts Bar structures are founded at a depth of 19 meters, which lies below the uppermost weathered rock and was selected as the control point by TVA. For its SHSR, TVA developed two basecase profiles. The first best-estimate basecase profile extends to a depth of about 180 meters below the control point elevation, and the second best-estimate basecase profile extends to a depth of 285 meters below the control point elevation. The major controlling geologic feature of the Watts Bar site is the Kingston Thrust fault. Movement along this fault during the Late Paleozoic Era resulted in the Cambrian age Conasauga Group and underlying Rome Formation at the plant site resting upon the younger Ordovician age Knox Group dolomites, which would normally overlie the Conasauga and Rome sedimentary strata. The majority of TVAs best-estimate basecase profiles consist of sedimentary strata from the Conasauga (shale and limestone) and the Rome Formation (sandstone), for which TVA estimated a of about 1,830 meters/second (m/s) and 2,360 m/s, respectively. At a depth of about 300 meters within the Rome Formation, the licensee estimated that the exceeded the NGA-East GMM reference rock of 3,000 m/s. However as stated above, to capture the uncertainty in the depth to reference rock, TVA developed two best-estimate basecase profiles extending to depths of 180 and 285 meters, respectively.
Based on (1) the stratigraphy of the Valley and Ridge physiographic province in the vicinity of the Watts Bar site, (2) the estimated lower (i.e., < 3,000 m/s) for the sedimentary rock layers below the Kingston Thrust fault, and (3) consistent with the NRC staffs effort to capture a wider range of uncertainty (RIL 2021-15), the NRC staff developed two best-estimate basecase profiles for the Watts Bar SRA. The first best-estimate basecase profile developed by the NRC staff extends to a depth of 320 meters below the control point elevation, which is similar to the deeper best-estimate basecase profile developed by TVA. However, the second best-estimate basecase profile developed by the NRC staff extends to a depth of 2,880 meters below the control point elevation. This second best-estimate basecase profile captures the possibility that the sedimentary
5 strata beneath the Watts Bar site consists of multiple layers beneath the Kingston Thrust fault that have less than the reference rock of 3,000 m/s. The estimated for these deeper rock layers beneath the Kingston Thrust fault are provided in Table 2.3.1-2 of TVAs SHSR and are based on geologic investigations performed by consultants to TVA (Shea, 2014).
To capture the uncertainty in its best-estimate basecase profiles, the NRC staff developed lower and upper profiles by multiplying its two best-estimate basecase profiles by scale factors of 0.82 and 1.21, respectively, which corresponds to an epistemic logarithmic standard deviation of 0.15. The weights for the lower, best-estimate, and upper basecase profiles are 0.3, 0.4, and 0.3, respectively. Figure 6 shows the six lower, best-estimate, and upper basecase profiles used by the NRC staff. The lower epistemic value used by the NRC staff to determine the lower and upper basecase profiles is due to the staffs conclusion that the lithology of the sedimentary strata beneath Watts Bar site likely has a low range in .
Site Kappa. To estimate the site kappa ( ), which captures the overall attenuation (i.e., intrinsic and scattering attenuation) of the geologic profile, the NRC staff used the four - models from Campbell (2009), where is the effective quality factor of shear waves, which captures both the frequency-independent component of intrinsic attenuation and small-scale scattering.
For each of the four - models, the NRC staff estimated a for each layer in the basecase profiles, then used the estimated , , and layer thickness to determine a for each layer. Summing these values for each layer and adding the reference value of 6 milliseconds (msec) provides an estimate of the total . The NRC staff used a weight of 0.25 for each of the four - models. Assuming a lognormal distribution for with a logarithmic standard deviation of 0.2 from Xu et al. (2020), the NRC staff developed a nine-point discrete distribution. This results in 45 values and associated weights for each of the basecase profiles, which the NRC staff then resampled using the approach from Miller and Rice (1983) to reduce the distribution to five representative values and associated weights. These five values and weights, which are listed in Table 1, range from 6 msec to 41 msec for the six basecase profiles.
Nonlinear Dynamic Properties. For the equivalent linear (EQL) SRA, nonlinearity is incorporated using strain-compatible site properties (i.e., shear modulus and damping ratio) for each layer. The strain-compatible properties model both the shear modulus reduction and the increased damping that are expected as the intensity of shaking increases. To model the nonlinear response within the upper 9 meters of weathered rock layers, the NRC staff used the EPRI rock and Stokoe weathered shale modulus reduction and damping (MRD) curves (EPRI, 1993 and Stokoe et al., 2003), which are identified in Table 2. The NRC staff used a weight of 0.33 for the two MRD curves and a weight of 0.33 to capture the possibility that the weathered rock behaves linearly under seismic loading. The NRC staff used multiple MRD curves to better capture the epistemic uncertainty in the nonlinear response of the weathered rock to higher dynamic loading.
Table 2 provides the layer depths, lithologies, , unit weights, and dynamic properties for the NRC staffs basecase profiles. It is important to note that the NRC staff has adjusted the critical damping ratio values in the lower layers of the profiles, which are treated as having a linear
6 response, so that each profile as a whole has the appropriate value. Figure 7, which shows tornado plots for the reference rock peak ground acceleration (PGA) value of 0.63g, shows the site response logic tree nodes that contribute to the variance of the . Each tornado plot in Figure 7 is associated with one of the four oscillator frequencies of 1, 5, 10, and 100 Hz. For the each of the four frequencies, the epistemic uncertainty in the basecase contributes the most to the variance in the and the uncertainty in also contributes a moderate amount.
Input Motions. Input motions used for the SRA were generated as outcrop motions at the reference rock horizon, located at the bottom of the basecase profiles. The NRC staff used random vibration theory to generate the input motions after first developing an input Fourier amplitude spectrum (FAS) using seismological source theory (i.e., single-corner frequency Brune source spectrum). To develop the FAS, the NRC staff used the source and regional attenuation parameters recommended in the SPID for Eastern North American rock sites and then used random vibration theory to develop corresponding 5 percent damped acceleration response spectra. The NRC staff developed 12 input FAS assuming a magnitude () of 6.5 and 12 different source-to-site distances, as recommended in the SPID.
Analysis Methodology. To develop for the Watts Bar site, the NRC staff used traditional EQL analysis and the recently developed kappa-corrected EQL analysis, which adjusts the high-frequency control point (i.e., top of profile) FAS from the EQL SRA to be consistent with the target value. In particular, the NRC staff used the kappa-corrected EQL analysis methodology (Xu and Rathje, 2021) with the modification in which the EQL control point FAS remains unmodified below a specified transition frequency, and then a slope equal to the target value is imposed at frequencies above the transition frequency (RIL 2021-15). To capture the uncertainty in the transition frequency value, the NRC staff selected three frequencies for which the FAS amplitude equals 5 percent, 11 percent, and 17 percent of its peak value, with weights of 0.2, 0.6, and 0.2, respectively.
To capture the spatial variability in site properties across the site, the NRC staff generated randomized profiles around each of the basecase profiles using the Toro (1995) model, which quantifies the aleatory variability through a depth-dependent standard deviation of the natural log of the velocities. The logarithmic standard deviation values used by the NRC staff for the Watts Bar site were based on site-specific data and are shown in Table 2. In addition to randomizing the profiles, the NRC staff also randomized the MRD curves following the logit function approach used in the SPID and described in RIL 2021-15.
For each terminal branch of the site response logic tree, the NRC staff developed 60 randomized profiles and then determined the by dividing the computed control point response spectrum by the outcrop response spectrum for the reference condition. Next, the NRC staff computed a median and logarithmic standard deviation for the , using the 60 from the randomized profiles, for each terminal branch of the logic tree. To facilitate implementing the medians and logarithmic standard deviations into the PSHA seismic hazard integral, the NRC staff reduced the median s from the over 200 logic tree terminal branches to seven discrete fractiles and weights using the resampling procedure outlined by Miller and Rice (1983). As recommended by Rodriguez-Marek et al. (2021), to ensure that
7 estimates of the SRA capture enough epistemic uncertainty in the median , the NRC staff implemented a minimum logarithmic standard deviation value of 0.15, which causes the seven median fractiles to spread apart if necessary.
Finally, because the logarithmic standard deviation for each spectral frequency does not vary significantly across the terminal branches of the logic tree, the NRC staff used a single mean value for each frequency. In addition, to avoid double-counting the aleatory variability already captured by the GMM, the NRC staff adjusted the logarithmic standard deviation to include only the portion of the standard deviation associated with the nonlinear site response.
Figure 8 shows the seven median values (top) and the average logarithmic standard deviation (bottom) as a function of input reference rock spectral acceleration for the 1 and 10 Hz spectral frequencies. As shown in Figure 8, the median range from about 0.5 to 1.5 and remain constant with higher input spectral accelerations. The lower half of Figure 8 shows both the total and the nonlinear values of the logarithmic standard deviation, the latter of which are implemented into the PSHA hazard integral. Figure 9 shows the seven median values versus frequency at the 10-4 AFE spectral acceleration value for each of the 23 NGA-East GMM spectral frequencies as well for PGA, which is plotted at 200 Hz. Overall, the Watts Bar site produces a flat from about 0.1 Hz to 10 Hz and then falls off over the higher frequencies out to about 50 Hz.
Control Point Hazard and Ground Motion Response Spectra The NRC staff calculated the mean control point hazard for the Watts Bar site using Convolution Approach 3 from NUREG/CR-6728, Technical Basis for Revision of Regulatory Guidance on Design Ground Motions: Hazard- and Risk-Consistent Ground Motion Spectra Guidelines, issued October 2001 (McGuire et al., 2001), which convolves the predetermined mean reference condition hazard with the . For each NGA-East GMM spectral frequency, the NRC staff convolved the mean reference condition hazard curve with the seven to determine the final mean control point hazard. Using the mean control point hazard curves, the NRC staff then determined the 10-4 and 10-5 UHRS in order to calculate the final GMRS for the site, which are provided in Table 3. Figure 10 shows this final GMRS (red curve) compared to the GMRS (black curve) developed for NUREG/KM-0017, the GMRS (blue curve) in TVAs SHSR (Shea, 2014) and the GMRS (purple curve) in TVAs seismic probabilistic risk assessment (SPRA; Shea, 2017). The years in the legend for Figure 10 show when the GMRS were developed either by TVA or the NRC staff. As shown in Figure 10, the final GMRS from this study is higher than the previous GMRS for the low frequencies between 0.5 to about 5 Hz and then is similar to TVAs two GMRS above 5 Hz. The higher spectral accelerations for the lower frequencies are due to the NGA-East GMM, which predicts higher median ground motions for the lower spectral frequencies relative to the EPRI GMM (see Figure 5). Based on a sensitivity analysis, the NRC staff found that the lower spectral accelerations in the mid-to-upper frequencies between the updated GMRS developed by this study and the previous GMRS developed for NUREG/KM-0017 are due to the higher values estimated for the Watts Bar site (see Table 1), compared to the lower values estimated in the NUREG/KM-0017.
8 Data Tables Appendix A provides the data tables for the Watts Bar site. Tables A-1, A-2, and A-3 give the reference rock mean hazard curves for 23 spectral frequencies ranging from 0.1 to 100 Hz and for PGA. Tables A-4 through A-27 give the medians and logarithmic standard deviations for the 23 spectral frequencies and for PGA. Tables A-28, A-29, and A-30 give the control point hazard mean hazard curves for the 23 spectral frequencies and for PGA.
References Campbell, K.W. Estimates of Shear-Wave Q and 0 for Unconsolidated and Semiconsolidated Sediments in Eastern North America. Bulletin of the Seismological Society of America. Vol. 99, No. 4, pp. 2365-2392. August 2009.
Electric Power Research Institute (EPRI). Guidelines for Determining Design Basis Ground Motions, Vol. 1-5. EPRI TR-102293. Palo Alto, CA. 1993.
EPRI. EPRI (2004, 2006) Ground-Motion Model (GMM) Review Project: Final Report.
Palo Alto, CA. June 2013. ADAMS Accession No. ML13155A553.
EPRI. Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic.
EPRI Report 1025287. Palo Alto, CA. November 27, 2012. ADAMS Accession No. ML12333A170.
Gatlin, T.D., Letter from South Carolina Electric & Gas to the NRC. Response to the NRC Request for Additional Information Associated with Near-Term Task Force Recommendation 2.1, Seismic Re-Evaluations, April 28, 2015. ADAMS Accession No. ML15124A596.
Goulet, C.A., Y. Bozorgnia, N. Abrahamson, N. Kuehn, L. Al Atik, R. Youngs, R. Graves, and G. Atkinson. Central and Eastern North America Ground-Motion CharacterizationNGA-East Final Report. PEER Report 2018-08. Pacific Earthquake Engineering Research Center.
Berkeley, CA. 2018.
Miller, A.C., III, and T.R. Rice. Discrete Approximations of Probability Distributions.
Management Science. Vol. 29, No. 3, pp. 352-362. 1983.
U.S. Nuclear Regulatory Commission (NRC). Near-Term Report and Recommendations for Agency Actions Following the Events in Japan. SECY-11-0093. Washington, DC.
July 12, 2011. ADAMS Accession No. ML11186A950.
NRC. Proposed Resolution of Remaining Tier 2 and 3 Recommendations Resulting from the Fukushima Dai-ichi Accident. SECY-16-0144. Washington, DC. December 29, 2016. ADAMS Accession No. ML16286A552.
NRC. Central and Eastern United States Seismic Source Characterization for Nuclear Facilities. NUREG-2115. Washington, DC. January 2012. ADAMS Accession No. ML12048A776.
NRC. Updated Implementation Guidelines for SSHAC Hazard Studies. Ake, J., C. Munson, J.
Stamatakos, M. Juckett, K. Coppersmith and J. Bommer. NUREG-2213. Washington, DC.
October 2018. ADAMS Accession No. ML18282A082.
9 NRC. Technical Basis for Revision of Regulatory Guidance on Design Ground Motions:
Hazard- and Risk-Consistent Ground Motion Spectra Guidelines. McGuire, R.K., W.J. Silva, and C.J. Costantino. NUREG/CR-6728. Washington, DC. October 2001. ADAMS Accession No. ML013100232.
NRC. Seismic Hazards Evaluations for U.S. Nuclear Power Plants: Near-Term Task Force Recommendation 2.1 Results. Munson, C., J. Ake, J. Stamatakos and M. Juckett.
NUREG/KM-0017. Washington, DC. December 2021. ADAMS Accession No. ML21344A126.
NRC. Process for the Ongoing Assessment of Natural Hazards Information. Office of Nuclear Reactor Regulation (NRR) Office Instruction LIC-208. Washington, DC. November 2019.
ADAMS Accession No. ML19210C288.
Rodriguez-Marek, A., E. Rathje, J. Ake, C. Munson, S. Stovall, T. Weaver, K. Ulmer and M. Juckett. Documentation Report for SSHAC Level 2: Site Response. Research Information Letter (RIL) 2021-15. Washington, DC. November 2021. ADAMS Accession No. ML21323A056.
Shea, J.W. Letter from Tennessee Valley Authority to the NRC. Tennessee Valley Authoritys Seismic Hazard and Screening Report (CEUS Sites), Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident. March 31, 2014. ADAMS Accession No. ML14098A478.
Shea, J.W. Letter from Tennessee Valley Authority to the NRC. Seismic Probabilistic Risk Assessment for Watts Bar Nuclear Plant, Units 1 and 2 - Response to NRC Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident. June 30, 2017. ADAMS Accession No. ML17181A485.
Stokoe, K., W. Choi, F-Y Menq. Summary Report: Dynamic Laboratory Tests: Unweathered and Weathered Shale Proposed Site of Building 9230-82 Y-12 National Security Complex, Oak Ridge, Tennessee, Department of Civil Engineering, The University of Texas at Austin, Austin, TX, 2003. (osti.gov/biblio/1371568)
Toro, G. Probabilistic Models of Site Velocity Profiles for Generic and Site-Specific Ground-Motion Amplification Studies. Technical Report No. 779574. Brookhaven National Laboratory. Upton, NY. 1995.
Xu, B., E.M. Rathje, Y. Hashash, J. Stewart, K. Campbell, and W.J. Silva. 0 for Soil Sites:
Observations from KiK-net Sites and Their Use in Constraining Small-Strain Damping Profiles for Site Response Analysis. Earthquake Spectra. Vol. 36, Iss. 1, pp. 111-137. 2020.
Xu, B. and E.M. Rathje. The Effect of Soil Nonlinearity on High-Frequency Spectral Decay and Implications for Site Response Analysis. Earthquake Spectra. Vol. 37, Iss. 2, pp. 686-706.
2021.
10 Table 1 Site Kappa ( ) Values for Each Basecase Profile Shallow Profile Kappa Distribution Lower Case Base Case Upper Case (sec) Weight (sec) Weight (sec) Weight 0.008 0.101 0.007 0.101 0.006 0.101 0.009 0.244 0.008 0.244 0.007 0.244 0.009 0.309 0.009 0.309 0.008 0.309 0.010 0.244 0.010 0.244 0.009 0.244 0.011 0.101 0.011 0.101 0.010 0.101 Deep Profile Kappa Distribution Lower Case Base Case Upper Case (sec) Weight (sec) Weight (sec) Weight 0.021 0.101 0.015 0.101 0.012 0.101 0.025 0.244 0.018 0.244 0.015 0.244 0.033 0.309 0.026 0.309 0.022 0.309 0.037 0.244 0.031 0.244 0.027 0.244 0.041 0.101 0.035 0.101 0.032 0.101
11 Table 2 Layer Depths, Shear Wave Velocities ( ), Unit Weights, and Dynamic Properties for Watts Bar Vs (m/s) Vs Unit Dynamic Properties Layer Depth LR BC UR Sigma Weight Alt. 1 Alt. 2 Alt. 3
- (m) (0.2, 0.2) (0.15, 0.15) (0.15, 0.15) (ln) (kN/m3) (0.33) (0.33) (0.33) 1 6 1459 1768 2142 0.25 24 EPRI Rock Stokoe WS Linear 2 9 1459 1768 2142 0.15 24 EPRI Rock Stokoe WS Linear 3 15 1509 1829 2216 0.15 24 Linear Linear Linear 4 20 1509 1829 2216 0.15 24 Linear Linear Linear 5 30 1514 1834 2222 0.15 24 Linear Linear Linear 6 37 1520 1842 2231 0.15 24 Linear Linear Linear 7 46 1520 1842 2231 0.15 24 Linear Linear Linear 8 61 1526 1849 2241 0.15 24 Linear Linear Linear 9 76 1539 1864 2259 0.15 24 Linear Linear Linear 10 91 1539 1864 2259 0.15 24 Linear Linear Linear 11 137 1558 1887 2287 0.15 24 Linear Linear Linear 12 152 1583 1918 2324 0.15 24 Linear Linear Linear 13 198 1583 1918 2324 0.15 24 Linear Linear Linear 14 259 1950 2362 2862 0.15 25 Linear Linear Linear 15 320 1975 2393 2899 0.15 25 Linear Linear Linear 16 427 2476 3000 3000 0.15 26 Linear Linear Linear 17 716 2476 3000 3000 0.15 26 Linear Linear Linear 18 823 1761 2134 2585 0.15 25 Linear Linear Linear 19 884 1761 2134 2585 0.15 25 Linear Linear Linear 20 1052 1761 2134 2585 0.15 25 Linear Linear Linear 21 1295 2390 2896 3000 0.15 26 Linear Linear Linear 22 1356 1761 2134 2585 0.15 25 Linear Linear Linear 23 1935 1761 2134 2585 0.15 25 Linear Linear Linear 24 1966 1761 2134 2585 0.15 25 Linear Linear Linear
12 Vs (m/s) Vs Unit Dynamic Properties Layer Depth LR BC UR Sigma Weight Alt. 1 Alt. 2 Alt. 3
- (m) (0.2, 0.2) (0.15, 0.15) (0.15, 0.15) (ln) (kN/m3) (0.33) (0.33) (0.33) 25 2195 2390 2896 3000 0.15 26 Linear Linear Linear 26 2347 1761 2134 2585 0.15 25 Linear Linear Linear 27 2576 1761 2134 2585 0.15 25 Linear Linear Linear 28 2758 1761 2134 2585 0.15 25 Linear Linear Linear 29 2880 2476 3000 3000 0.15 26 Linear Linear Linear LR = lower range; BC = basecase; UR = upper range; ln = natural log; Alt. = Alternative EPRI Rock = EPRI, 1993 rock; Stokoe WS = Stokoe et al., 2003 weathered shale For LR, BC, UR, and Alt.: Values in parentheses refer to weights for site response analysis logic tree branches for shallow and deep profiles.
13 Table 3 GMRS and UHRS for Watts Bar Frequency (Hz) UHRS 1E-4 (g) GMRS (g) UHRS 1E-5 (g) 0.100 0.015365 0.017000 0.033090 0.133 0.022613 0.024800 0.048149 0.200 0.036191 0.039700 0.076924 0.250 0.043501 0.047600 0.092073 0.333 0.059141 0.065900 0.128239 0.500 0.093555 0.105200 0.205095 0.667 0.117690 0.134300 0.262827 1.000 0.167502 0.194400 0.382065 1.333 0.229911 0.274500 0.543388 2.000 0.298758 0.361000 0.716656 2.500 0.301090 0.379400 0.761231 3.333 0.347922 0.453900 0.918693 4.000 0.346330 0.465600 0.949292 5.000 0.376813 0.522500 1.073642 6.667 0.457456 0.657300 1.362810 10.000 0.492615 0.731000 1.527845 13.333 0.530493 0.801500 1.682674 20.000 0.547067 0.838700 1.767268 25.000 0.515797 0.797100 1.683022 33.333 0.441178 0.687000 1.453325 40.000 0.397880 0.614800 1.298116 50.000 0.334050 0.511900 1.078592 100.000 0.254608 0.369000 0.766594 PGA 0.256567 0.386700 0.811490
14 Figure 1 Distribution of virtual ruptures (left) for CEUS-SSC Seismotectonic Configuration 1 DSZs, and associated mean 10 Hz reference rock hazard curves (right) for Watts Bar
15 Figure 2 Distribution of virtual ruptures (left) for CEUS-SSC maximum-magnitude narrow-configuration DSZs, and associated mean 10 Hz reference rock hazard curves (right) for Watts Bar
16 Figure 3 CEUS-SSC RLME sources (left), and associated mean 1 Hz reference rock hazard curves (right) for Watts Bar
17 Figure 4 DSZ, RLME, and total mean reference rock hazard curves for 1 Hz (right) and 10 Hz (left) for Watts Bar
18 Figure 5 1,000-, 10,000-, and 100,000-year return period mean reference rock UHRS for CEUS-SSC and EPRI GMM (blue curves) and CEUS-SSC and NGA-East GMM (red curves)
19 Figure 6 Complete (left) and upper 300 m (right) shear wave velocity (VS) basecase profiles for Watts Bar; thick horizontal black lines indicate two reference rock horizons for shallow and deep profiles; best estimate basecase profile shown as solid blue line; lower and upper range basecase profiles shown as dotted red and purple lines, respectively
20 Figure 7 Tornado plots for site response logic tree nodes profile, , MRD curves, and the analysis method for 1, 5, 10, and 100 Hz spectral frequencies for an input motion with a PGA of 0.63g.
21 Figure 8 Seven median SAFs (above) and mean log standard deviations of SAF (below) as functions of input acceleration for 1 Hz (left) and 10 Hz (right)
22 Figure 9 Seven median SAFs as functions of spectral frequency for spectral accelerations at the 10-4 AFE level
23 Figure 10 GMRS for the Watts Bar site
24 Appendix AData Tables
25 Table A-1 Reference Rock Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.00100 3.34690E-03 4.39490E-03 6.31980E-03 8.05055E-03 1.07804E-02 1.90132E-02 2.66600E-02 4.29195E-02 0.00126 2.85754E-03 3.79303E-03 5.48093E-03 6.95371E-03 9.24276E-03 1.60043E-02 2.23091E-02 3.62386E-02 0.00158 2.44775E-03 3.28361E-03 4.76748E-03 6.02459E-03 7.94977E-03 1.35198E-02 1.87375E-02 3.07054E-02 0.00200 2.08328E-03 2.82562E-03 4.12293E-03 5.18859E-03 6.79495E-03 1.13412E-02 1.56239E-02 2.58384E-02 0.00251 1.72373E-03 2.38899E-03 3.53001E-03 4.46115E-03 5.84345E-03 9.59568E-03 1.30646E-02 2.14751E-02 0.00316 1.40035E-03 1.99770E-03 3.00053E-03 3.81252E-03 5.00455E-03 8.10090E-03 1.08970E-02 1.77685E-02 0.00398 1.07754E-03 1.62085E-03 2.50549E-03 3.21318E-03 4.25520E-03 6.83953E-03 9.08484E-03 1.45994E-02 0.00501 8.28496E-04 1.31437E-03 2.09188E-03 2.70811E-03 3.61856E-03 5.77635E-03 7.57706E-03 1.20006E-02 0.00631 5.41928E-04 9.44946E-04 1.63938E-03 2.18203E-03 2.98841E-03 4.82202E-03 6.28577E-03 9.80615E-03 0.00794 3.55083E-04 6.80253E-04 1.28601E-03 1.75966E-03 2.46988E-03 4.02826E-03 5.21845E-03 8.01942E-03 0.01000 2.32275E-04 4.89078E-04 1.00786E-03 1.41786E-03 2.03981E-03 3.36281E-03 4.32921E-03 6.55312E-03 0.01260 1.22837E-04 2.84240E-04 6.66964E-04 1.00168E-03 1.54826E-03 2.67912E-03 3.48009E-03 5.27484E-03 0.01580 6.58259E-05 1.67066E-04 4.45172E-04 7.12782E-04 1.18192E-03 2.14454E-03 2.81022E-03 4.26507E-03 0.02000 3.43718E-05 9.60490E-05 2.92181E-04 5.00081E-04 8.92183E-04 1.70081E-03 2.24921E-03 3.41828E-03 0.02510 1.61687E-05 4.82945E-05 1.64130E-04 3.00777E-04 5.95287E-04 1.24981E-03 1.70346E-03 2.65621E-03 0.03160 7.43874E-06 2.35983E-05 8.89900E-05 1.74201E-04 3.82690E-04 8.89633E-04 1.25667E-03 2.02366E-03 0.03980 3.28220E-06 1.07856E-05 4.38598E-05 9.06935E-05 2.20533E-04 5.75686E-04 8.57806E-04 1.45722E-03 0.05010 1.45092E-06 4.93752E-06 2.16385E-05 4.72463E-05 1.27092E-04 3.72373E-04 5.85270E-04 1.04887E-03 0.06310 6.32649E-07 2.18612E-06 9.83175E-06 2.20105E-05 6.31539E-05 2.03384E-04 3.40649E-04 6.55962E-04 0.07940 2.76773E-07 9.71079E-07 4.48131E-06 1.02853E-05 3.14699E-05 1.11354E-04 1.98700E-04 4.11007E-04 0.10000 1.20695E-07 4.29995E-07 2.03635E-06 4.79203E-06 1.56391E-05 6.08244E-05 1.15659E-04 2.57057E-04 0.12600 5.57607E-08 1.93008E-07 9.23696E-07 2.19488E-06 7.36188E-06 2.96316E-05 5.88975E-05 1.38326E-04 0.15800 2.61777E-08 8.80867E-08 4.25927E-07 1.02175E-06 3.52014E-06 1.46526E-05 3.04160E-05 7.53986E-05 0.20000 1.19092E-08 3.89119E-08 1.90179E-07 4.60755E-07 1.63233E-06 7.03658E-06 1.52818E-05 4.00745E-05 0.25100 7.28136E-09 1.91999E-08 8.89437E-08 2.18170E-07 7.98303E-07 3.47475E-06 7.73980E-06 2.08390E-05 0.31600 4.71746E-09 9.92871E-09 4.16731E-08 1.02511E-07 3.87294E-07 1.70903E-06 3.90531E-06 1.07726E-05 0.39800 3.81581E-09 6.23270E-09 2.03454E-08 4.85414E-08 1.88878E-07 8.56405E-07 2.00697E-06 5.62311E-06 0.50100 3.08657E-09 3.92131E-09 9.96335E-09 2.30382E-08 9.22471E-08 4.29799E-07 1.03301E-06 2.93992E-06 0.63100 2.36076E-09 2.79979E-09 5.67496E-09 1.15346E-08 4.35538E-08 2.11669E-07 5.28425E-07 1.54331E-06
26 Table A-1 Reference Rock Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.79400 1.80756E-09 2.00172E-09 3.23964E-09 5.79105E-09 2.06254E-08 1.04539E-07 2.71037E-07 8.12253E-07 1.00000 1.38255E-09 1.42927E-09 1.84537E-09 2.89967E-09 9.73903E-09 5.14880E-08 1.38658E-07 4.26426E-07 1.26000 7.40474E-10 7.59596E-10 9.34463E-10 1.37406E-09 4.25628E-09 2.31416E-08 6.50121E-08 2.08657E-07 1.58000 4.01762E-10 4.09025E-10 4.79928E-10 6.61298E-10 1.89238E-09 1.05752E-08 3.09653E-08 1.03625E-07 2.00000 2.12514E-10 2.14654E-10 2.39750E-10 3.08734E-10 8.13491E-10 4.67787E-09 1.43009E-08 4.99875E-08 2.51000 9.56766E-11 9.64363E-11 1.06070E-10 1.32814E-10 3.32782E-10 1.96489E-09 6.23730E-09 2.27656E-08 3.16000 4.18396E-11 4.20873E-11 4.56142E-11 5.55861E-11 1.32424E-10 8.02359E-10 2.64555E-09 1.00912E-08 3.98000 1.71717E-11 1.72466E-11 1.84698E-11 2.20004E-11 4.99242E-11 3.09407E-10 1.05902E-09 4.22531E-09 5.01000 7.05773E-12 7.07756E-12 7.48976E-12 8.72093E-12 1.88506E-11 1.19481E-10 4.24482E-10 1.77136E-09 6.31000 2.66923E-12 2.67274E-12 2.79744E-12 3.18438E-12 6.47302E-12 4.15665E-11 1.53194E-10 6.71119E-10 7.94000 1.01343E-12 1.01326E-12 1.04897E-12 1.16745E-12 2.23226E-12 1.45218E-11 5.55129E-11 2.55256E-10 10.00000 3.83325E-13 3.82687E-13 3.91839E-13 4.26336E-13 7.66623E-13 5.05266E-12 2.00369E-11 9.67208E-11 Table A-2 Reference Rock Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.00100 5.53239E-02 6.94367E-02 7.37186E-02 7.77160E-02 7.83442E-02 7.94824E-02 7.92629E-02 7.68806E-02 0.00126 4.75201E-02 6.14229E-02 6.59415E-02 7.03241E-02 7.10943E-02 7.25423E-02 7.23350E-02 6.97460E-02 0.00158 4.09461E-02 5.44725E-02 5.91216E-02 6.37674E-02 6.46456E-02 6.63339E-02 6.61380E-02 6.34017E-02 0.00200 3.50638E-02 4.80680E-02 5.27669E-02 5.75872E-02 5.85498E-02 6.04316E-02 6.02472E-02 5.74063E-02 0.00251 2.93738E-02 4.10350E-02 4.54285E-02 5.00311E-02 5.10373E-02 5.29790E-02 5.29070E-02 5.03560E-02 0.00316 2.44563E-02 3.47617E-02 3.88008E-02 4.31165E-02 4.41408E-02 4.60847E-02 4.61299E-02 4.39070E-02 0.00398 2.00986E-02 2.88845E-02 3.24683E-02 3.63731E-02 3.73939E-02 3.92633E-02 3.94779E-02 3.77269E-02 0.00501 1.65234E-02 2.40066E-02 2.71747E-02 3.06896E-02 3.16838E-02 3.34571E-02 3.37915E-02 3.24243E-02 0.00631 1.34027E-02 1.94595E-02 2.21361E-02 2.51860E-02 2.61419E-02 2.77852E-02 2.83042E-02 2.74400E-02 0.00794 1.08805E-02 1.57869E-02 1.80465E-02 2.06858E-02 2.15860E-02 2.30920E-02 2.37248E-02 2.32374E-02 0.01000 8.82581E-03 1.27971E-02 1.47008E-02 1.69766E-02 1.78107E-02 1.91777E-02 1.98727E-02 1.96658E-02 0.01260 7.06748E-03 1.01585E-02 1.16876E-02 1.35510E-02 1.42835E-02 1.54678E-02 1.62025E-02 1.62764E-02 0.01580 5.68562E-03 8.10270E-03 9.33645E-03 1.08674E-02 1.15073E-02 1.25314E-02 1.32663E-02 1.35242E-02
27 Table A-2 Reference Rock Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.02000 4.53276E-03 6.40247E-03 7.38892E-03 8.63564E-03 9.18786E-03 1.00639E-02 1.07722E-02 1.11512E-02 0.02510 3.54542E-03 4.99416E-03 5.77865E-03 6.76834E-03 7.22311E-03 7.92556E-03 8.55538E-03 8.97985E-03 0.03160 2.72774E-03 3.84356E-03 4.46673E-03 5.24863E-03 5.61947E-03 6.17129E-03 6.71501E-03 7.14425E-03 0.03980 2.00526E-03 2.85660E-03 3.35406E-03 3.96790E-03 4.26431E-03 4.67274E-03 5.11462E-03 5.50632E-03 0.05010 1.47358E-03 2.12253E-03 2.51813E-03 2.99947E-03 3.23584E-03 3.53796E-03 3.89556E-03 4.24392E-03 0.06310 9.51627E-04 1.40994E-03 1.71278E-03 2.08050E-03 2.26513E-03 2.47011E-03 2.74409E-03 3.04277E-03 0.07940 6.15628E-04 9.38116E-04 1.16679E-03 1.44519E-03 1.58789E-03 1.72704E-03 1.93568E-03 2.18448E-03 0.10000 3.97589E-04 6.23196E-04 7.93665E-04 1.00246E-03 1.11159E-03 1.20583E-03 1.36358E-03 1.56627E-03 0.12600 2.21187E-04 3.59675E-04 4.70460E-04 6.11261E-04 6.90492E-04 7.62146E-04 8.89116E-04 1.06035E-03 0.15800 1.24559E-04 2.09967E-04 2.81919E-04 3.76570E-04 4.33178E-04 4.86327E-04 5.84916E-04 7.23687E-04 0.20000 6.84888E-05 1.19860E-04 1.65379E-04 2.27362E-04 2.66536E-04 3.04584E-04 3.78153E-04 4.86132E-04 0.25100 3.66011E-05 6.63676E-05 9.36296E-05 1.32483E-04 1.59003E-04 1.88242E-04 2.44166E-04 3.28131E-04 0.31600 1.94357E-05 3.64985E-05 5.26459E-05 7.66754E-05 9.42331E-05 1.15521E-04 1.56461E-04 2.19682E-04 0.39800 1.03915E-05 2.01460E-05 2.96758E-05 4.44407E-05 5.59097E-05 7.07390E-05 9.96574E-05 1.45605E-04 0.50100 5.56451E-06 1.11360E-05 1.67511E-05 2.57908E-05 3.32114E-05 4.33591E-05 6.35258E-05 9.65657E-05 0.63100 2.99055E-06 6.15202E-06 9.45512E-06 1.49050E-05 1.95504E-05 2.59265E-05 3.90475E-05 6.12713E-05 0.79400 1.61121E-06 3.40674E-06 5.34914E-06 8.63276E-06 1.15331E-05 1.55347E-05 2.40481E-05 3.89476E-05 1.00000 8.65984E-07 1.88218E-06 3.01952E-06 4.98936E-06 6.78954E-06 9.28952E-06 1.47825E-05 2.47138E-05 1.26000 4.34883E-07 9.72418E-07 1.60019E-06 2.71013E-06 3.75077E-06 5.16638E-06 8.41904E-06 1.44979E-05 1.58000 2.21536E-07 5.09332E-07 8.59274E-07 1.49086E-06 2.09774E-06 2.90850E-06 4.85124E-06 8.59970E-06 2.00000 1.09734E-07 2.59700E-07 4.49640E-07 8.00008E-07 1.14522E-06 1.59874E-06 2.73205E-06 4.99148E-06 2.51000 5.11791E-08 1.24039E-07 2.19917E-07 4.01045E-07 5.84013E-07 8.20960E-07 1.44218E-06 2.73131E-06 3.16000 2.32309E-08 5.76081E-08 1.04506E-07 1.95154E-07 2.88954E-07 4.09025E-07 7.38998E-07 1.45386E-06 3.98000 9.94760E-09 2.51365E-08 4.64766E-08 8.84927E-08 1.32894E-07 1.89386E-07 3.52049E-07 7.23518E-07 5.01000 4.26468E-09 1.09804E-08 2.06915E-08 4.01666E-08 6.11761E-08 8.77670E-08 1.67838E-07 3.60282E-07 6.31000 1.65409E-09 4.33546E-09 8.31067E-09 1.63845E-08 2.52106E-08 3.63298E-08 7.09775E-08 1.58495E-07 7.94000 6.43982E-10 1.71817E-09 3.35013E-09 6.70749E-09 1.04262E-08 1.50913E-08 3.01193E-08 6.99541E-08 10.00000 2.49802E-10 6.78470E-10 1.34571E-09 2.73638E-09 4.29707E-09 6.24749E-09 1.27386E-08 3.07772E-08
28 Table A-3 Reference Rock Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.00100 7.45778E-02 7.17928E-02 6.96266E-02 6.70317E-02 6.54897E-02 6.31209E-02 5.87455E-02 5.80187E-02 0.00126 6.73211E-02 6.44723E-02 6.22494E-02 5.95813E-02 5.80240E-02 5.56554E-02 5.12046E-02 5.04966E-02 0.00158 6.08998E-02 5.80277E-02 5.57834E-02 5.30888E-02 5.15387E-02 4.92012E-02 4.47592E-02 4.40766E-02 0.00200 5.48619E-02 5.19991E-02 4.97616E-02 4.70773E-02 4.55533E-02 4.32732E-02 3.89069E-02 3.82560E-02 0.00251 4.80826E-02 4.55119E-02 4.34753E-02 4.09973E-02 3.95906E-02 3.74835E-02 3.33684E-02 3.27374E-02 0.00316 4.19217E-02 3.96527E-02 3.78249E-02 3.55648E-02 3.42782E-02 3.23473E-02 2.85061E-02 2.78910E-02 0.00398 3.61180E-02 3.42183E-02 3.26415E-02 3.06388E-02 2.94834E-02 2.77407E-02 2.41955E-02 2.35705E-02 0.00501 3.11258E-02 2.95369E-02 2.81766E-02 2.64030E-02 2.53667E-02 2.37971E-02 2.05426E-02 1.99246E-02 0.00631 2.65023E-02 2.52686E-02 2.41314E-02 2.25786E-02 2.16445E-02 2.02279E-02 1.72214E-02 1.65652E-02 0.00794 2.25801E-02 2.16306E-02 2.06797E-02 1.93203E-02 1.84802E-02 1.72052E-02 1.44473E-02 1.37824E-02 0.01000 1.92264E-02 1.85051E-02 1.77112E-02 1.65222E-02 1.57688E-02 1.46250E-02 1.21118E-02 1.14589E-02 0.01260 1.60416E-02 1.55653E-02 1.49030E-02 1.38446E-02 1.31591E-02 1.21304E-02 9.84368E-03 9.20951E-03 0.01580 1.34348E-02 1.31397E-02 1.25851E-02 1.16436E-02 1.10227E-02 1.01005E-02 8.03480E-03 7.43536E-03 0.02000 1.11690E-02 1.10142E-02 1.05532E-02 9.72227E-03 9.16539E-03 8.34648E-03 6.50319E-03 5.94981E-03 0.02510 9.05866E-03 9.02638E-03 8.64084E-03 7.90399E-03 7.41192E-03 6.70097E-03 5.09240E-03 4.60609E-03 0.03160 7.25532E-03 7.30988E-03 6.98971E-03 6.34378E-03 5.91634E-03 5.30939E-03 3.92941E-03 3.51191E-03 0.03980 5.61880E-03 5.73461E-03 5.47304E-03 4.91806E-03 4.55983E-03 4.06095E-03 2.91487E-03 2.57093E-03 0.05010 4.35153E-03 4.49897E-03 4.28566E-03 3.81307E-03 3.51472E-03 3.10644E-03 2.16271E-03 1.88248E-03 0.06310 3.14860E-03 3.31311E-03 3.15159E-03 2.78003E-03 2.55116E-03 2.23566E-03 1.51029E-03 1.29539E-03 0.07940 2.28115E-03 2.44280E-03 2.32046E-03 2.02942E-03 1.85414E-03 1.61109E-03 1.05620E-03 8.92735E-04 0.10000 1.65062E-03 1.79898E-03 1.70649E-03 1.47967E-03 1.34588E-03 1.15953E-03 7.37614E-04 6.14348E-04 0.12600 1.14347E-03 1.26850E-03 1.20651E-03 1.04688E-03 9.50178E-04 8.12184E-04 5.04465E-04 4.14264E-04 0.15800 7.98199E-04 9.00954E-04 8.59180E-04 7.46025E-04 6.75684E-04 5.73112E-04 3.47743E-04 2.81640E-04 0.20000 5.48919E-04 6.30868E-04 6.03265E-04 5.24192E-04 4.73726E-04 3.98592E-04 2.36031E-04 1.88427E-04 0.25100 3.79803E-04 4.43754E-04 4.26441E-04 3.71883E-04 3.35412E-04 2.79903E-04 1.61484E-04 1.27387E-04 0.31600 2.60611E-04 3.09555E-04 2.98939E-04 2.61504E-04 2.35271E-04 1.94572E-04 1.09181E-04 8.51194E-05 0.39800 1.76739E-04 2.13273E-04 2.06892E-04 1.81206E-04 1.62355E-04 1.32754E-04 7.21188E-05 5.56258E-05 0.50100 1.19922E-04 1.47009E-04 1.43252E-04 1.25617E-04 1.12083E-04 9.06119E-05 4.76585E-05 3.63684E-05 0.63100 7.75963E-05 9.65603E-05 9.43540E-05 8.24436E-05 7.30417E-05 5.82172E-05 2.95037E-05 2.22722E-05
29 Table A-3 Reference Rock Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.79400 5.02964E-05 6.35307E-05 6.22506E-05 5.41999E-05 4.76812E-05 3.74701E-05 1.82998E-05 1.36663E-05 1.00000 3.25462E-05 4.17312E-05 4.10038E-05 3.55739E-05 3.10743E-05 2.40754E-05 1.13294E-05 8.36978E-06 1.26000 1.93994E-05 2.52217E-05 2.47927E-05 2.13225E-05 1.84466E-05 1.40750E-05 6.34009E-06 4.61139E-06 1.58000 1.16881E-05 1.54038E-05 1.51482E-05 1.29169E-05 1.10696E-05 8.32079E-06 3.59102E-06 2.57232E-06 2.00000 6.89522E-06 9.21680E-06 9.06776E-06 7.66356E-06 6.50324E-06 4.81271E-06 1.98644E-06 1.40048E-06 2.51000 3.83488E-06 5.19931E-06 5.10989E-06 4.26563E-06 3.57523E-06 2.60073E-06 1.01734E-06 7.01956E-07 3.16000 2.07714E-06 2.85862E-06 2.80606E-06 2.31173E-06 1.91198E-06 1.36590E-06 5.05219E-07 3.40933E-07 3.98000 1.05525E-06 1.47709E-06 1.44745E-06 1.17403E-06 9.55723E-07 6.68980E-07 2.32709E-07 1.53379E-07 5.01000 5.36403E-07 7.63654E-07 7.47049E-07 5.96584E-07 4.78020E-07 3.27866E-07 1.07281E-07 6.90679E-08 6.31000 2.41322E-07 3.49842E-07 3.41622E-07 2.68338E-07 2.11465E-07 1.42147E-07 4.40237E-08 2.77847E-08 7.94000 1.08915E-07 1.60769E-07 1.56711E-07 1.21082E-07 9.38529E-08 6.18344E-08 1.81299E-08 1.12180E-08 10.00000 4.90044E-08 7.36579E-08 7.16700E-08 5.44667E-08 4.15225E-08 2.68111E-08 7.44058E-09 4.51326E-09 Table A-4 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.100 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.000390 0.9564 0.9586 0.9802 1.0089 1.1435 1.4370 1.4708 0.030582 0.000000 0.000615 0.9565 0.9588 0.9806 1.0087 1.1434 1.4372 1.4712 0.030592 0.000000 0.000801 0.9567 0.9591 0.9815 1.0098 1.1430 1.4382 1.4731 0.030660 0.000000 0.001091 0.9569 0.9594 0.9820 1.0103 1.1426 1.4387 1.4744 0.030763 0.000000 0.001559 0.9570 0.9597 0.9821 1.0103 1.1424 1.4390 1.4750 0.030871 0.000000 0.002177 0.9572 0.9599 0.9821 1.0102 1.1422 1.4390 1.4752 0.030962 0.000000 0.003036 0.9573 0.9601 0.9821 1.0100 1.1421 1.4389 1.4753 0.031049 0.000000 0.004162 0.9574 0.9602 0.9820 1.0097 1.1421 1.4389 1.4753 0.031124 0.000000 0.005963 0.9574 0.9604 0.9819 1.0095 1.1421 1.4388 1.4752 0.031186 0.000000 0.009541 0.9574 0.9603 0.9818 1.0101 1.1420 1.4389 1.4754 0.031473 0.000000 0.016025 0.9573 0.9603 0.9821 1.0102 1.1419 1.4391 1.4757 0.031621 0.002915 0.026916 0.9572 0.9601 0.9830 1.0104 1.1418 1.4396 1.4765 0.033289 0.010806
30 Table A-5 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.133 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.000696 0.9847 0.9867 1.0059 1.0329 1.1875 1.4727 1.5055 0.038407 0.000000 0.001095 0.9848 0.9868 1.0062 1.0331 1.1875 1.4730 1.5060 0.038431 0.000000 0.001407 0.9853 0.9875 1.0071 1.0336 1.1875 1.4743 1.5072 0.038574 0.000000 0.001882 0.9857 0.9880 1.0076 1.0340 1.1876 1.4750 1.5081 0.038768 0.000000 0.002662 0.9861 0.9884 1.0078 1.0339 1.1876 1.4753 1.5086 0.038958 0.000000 0.003740 0.9863 0.9887 1.0079 1.0337 1.1877 1.4754 1.5088 0.039112 0.000000 0.005282 0.9865 0.9889 1.0079 1.0335 1.1877 1.4754 1.5089 0.039255 0.000000 0.007424 0.9867 0.9891 1.0078 1.0334 1.1878 1.4753 1.5092 0.039376 0.000000 0.010888 0.9868 0.9892 1.0077 1.0335 1.1878 1.4753 1.5092 0.039474 0.001311 0.017574 0.9868 0.9893 1.0077 1.0335 1.1879 1.4754 1.5092 0.039723 0.004630 0.029516 0.9868 0.9893 1.0080 1.0337 1.1879 1.4757 1.5094 0.039841 0.005552 0.049573 0.9867 0.9892 1.0089 1.0339 1.1879 1.4763 1.5099 0.041185 0.011821 Table A-6 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.200 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.001481 0.9628 0.9658 0.9962 1.0412 1.2630 1.4168 1.4670 0.039521 0.000000 0.002328 0.9628 0.9659 0.9964 1.0415 1.2633 1.4169 1.4674 0.039528 0.000000 0.002957 0.9631 0.9664 0.9973 1.0413 1.2642 1.4170 1.4686 0.039599 0.000000 0.003866 0.9633 0.9667 0.9976 1.0416 1.2651 1.4170 1.4692 0.039733 0.000000 0.005376 0.9635 0.9671 0.9977 1.0413 1.2657 1.4167 1.4692 0.039882 0.000000 0.007638 0.9637 0.9673 0.9976 1.0409 1.2661 1.4164 1.4689 0.040011 0.000000 0.011048 0.9637 0.9674 0.9974 1.0408 1.2665 1.4161 1.4686 0.040134 0.001632 0.016144 0.9638 0.9675 0.9972 1.0410 1.2668 1.4159 1.4683 0.040242 0.003368 0.024434 0.9638 0.9676 0.9970 1.0411 1.2670 1.4157 1.4681 0.040332 0.004312 0.039762 0.9639 0.9677 0.9969 1.0409 1.2672 1.4156 1.4679 0.040576 0.006192 0.066782 0.9639 0.9677 0.9972 1.0409 1.2672 1.4158 1.4681 0.040694 0.006923 0.112160 0.9636 0.9674 0.9987 1.0408 1.2674 1.4164 1.4690 0.042075 0.012737
31 Table A-7 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.250 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.002139 0.8834 0.8905 0.9643 1.0616 1.2346 1.3245 1.3848 0.048633 0.000000 0.003363 0.8831 0.8903 0.9646 1.0625 1.2339 1.3248 1.3859 0.048623 0.000000 0.004267 0.8820 0.8897 0.9657 1.0657 1.2309 1.3255 1.3908 0.048626 0.000000 0.005536 0.8811 0.8893 0.9660 1.0673 1.2281 1.3256 1.3957 0.048708 0.000000 0.007642 0.8806 0.8892 0.9660 1.0677 1.2259 1.3252 1.3995 0.048828 0.000000 0.010925 0.8806 0.8893 0.9658 1.0674 1.2240 1.3261 1.4013 0.048942 0.001662 0.016004 0.8807 0.8896 0.9655 1.0667 1.2223 1.3269 1.4027 0.049058 0.003759 0.023836 0.8808 0.8898 0.9652 1.0660 1.2210 1.3275 1.4039 0.049163 0.004944 0.036592 0.8810 0.8900 0.9650 1.0655 1.2205 1.3278 1.4044 0.049252 0.005762 0.059688 0.8811 0.8902 0.9649 1.0650 1.2205 1.3278 1.4046 0.049463 0.007351 0.100250 0.8811 0.8903 0.9650 1.0652 1.2205 1.3280 1.4048 0.049562 0.007990 0.168370 0.8797 0.8888 0.9676 1.0663 1.2201 1.3282 1.4056 0.050747 0.013517 Table A-8 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.003240 0.8237 0.8888 0.9468 0.9857 1.1255 1.3331 1.3681 0.057275 0.000000 0.005103 0.8235 0.8891 0.9464 0.9865 1.1262 1.3331 1.3677 0.057230 0.000000 0.006498 0.8222 0.8896 0.9450 0.9895 1.1290 1.3324 1.3658 0.057090 0.000000 0.008397 0.8209 0.8890 0.9441 0.9912 1.1309 1.3309 1.3637 0.057042 0.000000 0.011527 0.8202 0.8882 0.9422 0.9928 1.1322 1.3291 1.3614 0.057067 0.001131 0.016598 0.8196 0.8873 0.9406 0.9942 1.1329 1.3276 1.3595 0.057121 0.002729 0.024657 0.8191 0.8863 0.9390 0.9957 1.1332 1.3260 1.3577 0.057190 0.003916 0.037473 0.8177 0.8880 0.9369 0.9963 1.1334 1.3254 1.3568 0.057260 0.004832 0.058367 0.8175 0.8871 0.9359 0.9972 1.1336 1.3244 1.3555 0.057327 0.005570 0.095369 0.8176 0.8868 0.9353 0.9974 1.1346 1.3237 1.3542 0.057505 0.007174 0.160180 0.8179 0.8873 0.9354 0.9974 1.1343 1.3242 1.3551 0.057591 0.007833 0.269030 0.8193 0.8851 0.9363 0.9978 1.1352 1.3221 1.3582 0.058665 0.013646
32 Table A-9 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.500 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.005273 0.8314 0.8961 0.9539 1.0277 1.2452 1.2795 1.3446 0.075583 0.000000 0.008333 0.8313 0.8964 0.9543 1.0281 1.2458 1.2800 1.3438 0.075499 0.000000 0.010743 0.8305 0.8974 0.9558 1.0298 1.2479 1.2822 1.3405 0.075198 0.000000 0.013947 0.8286 0.8973 0.9564 1.0312 1.2468 1.2837 1.3395 0.075018 0.000000 0.019155 0.8269 0.8964 0.9564 1.0323 1.2455 1.2829 1.3393 0.074962 0.000000 0.027817 0.8256 0.8957 0.9562 1.0329 1.2446 1.2821 1.3391 0.074971 0.000000 0.041941 0.8247 0.8952 0.9559 1.0333 1.2437 1.2817 1.3387 0.075012 0.000000 0.065039 0.8241 0.8948 0.9557 1.0336 1.2428 1.2819 1.3380 0.075067 0.000000 0.102760 0.8235 0.8945 0.9554 1.0338 1.2423 1.2816 1.3377 0.075127 0.000000 0.168140 0.8233 0.8943 0.9554 1.0338 1.2420 1.2815 1.3376 0.075263 0.000000 0.282400 0.8233 0.8943 0.9557 1.0337 1.2419 1.2818 1.3377 0.075331 0.002691 0.474310 0.8179 0.8891 0.9511 1.0761 1.2371 1.2782 1.3335 0.076193 0.011741 Table A-10 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.007013 0.8715 0.9430 0.9929 1.0292 1.1688 1.4079 1.4544 0.082832 0.000000 0.011122 0.8715 0.9433 0.9931 1.0298 1.1695 1.4083 1.4545 0.082710 0.000000 0.014519 0.8714 0.9446 0.9941 1.0310 1.1723 1.4093 1.4545 0.082230 0.000000 0.019014 0.8709 0.9453 0.9937 1.0329 1.1744 1.4095 1.4540 0.081855 0.000000 0.026243 0.8704 0.9457 0.9925 1.0343 1.1759 1.4088 1.4535 0.081634 0.000000 0.038332 0.8701 0.9458 0.9916 1.0353 1.1766 1.4085 1.4526 0.081523 0.000000 0.058249 0.8697 0.9459 0.9908 1.0361 1.1771 1.4082 1.4517 0.081462 0.000000 0.091185 0.8694 0.9458 0.9901 1.0367 1.1775 1.4079 1.4509 0.081437 0.000000 0.145020 0.8693 0.9457 0.9896 1.0370 1.1778 1.4078 1.4501 0.081440 0.000000 0.237490 0.8694 0.9458 0.9894 1.0372 1.1781 1.4081 1.4493 0.081535 0.000000 0.398880 0.8696 0.9460 0.9895 1.0374 1.1786 1.4086 1.4484 0.081614 0.000000 0.669940 0.8705 0.9465 0.9896 1.0372 1.1832 1.4078 1.4469 0.082447 0.000000
33 Table A-11 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=1.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.009838 0.9421 0.9959 1.0505 1.0950 1.2466 1.4966 1.5411 0.110280 0.000000 0.015689 0.9421 0.9959 1.0505 1.0955 1.2471 1.4967 1.5412 0.110090 0.000000 0.020937 0.9419 0.9954 1.0527 1.0975 1.2492 1.4974 1.5418 0.109260 0.000000 0.027896 0.9419 0.9957 1.0511 1.0991 1.2506 1.4969 1.5409 0.108540 0.000000 0.038939 0.9416 0.9964 1.0497 1.0994 1.2515 1.4963 1.5401 0.108040 0.000000 0.057379 0.9414 0.9967 1.0486 1.0993 1.2520 1.4956 1.5393 0.107730 0.000000 0.087965 0.9410 0.9969 1.0476 1.0997 1.2523 1.4951 1.5386 0.107500 0.000000 0.138890 0.9408 0.9970 1.0468 1.1000 1.2526 1.4947 1.5380 0.107340 0.000000 0.222220 0.9406 0.9971 1.0463 1.1003 1.2528 1.4945 1.5375 0.107260 0.000000 0.364310 0.9407 0.9972 1.0462 1.1004 1.2531 1.4946 1.5370 0.107270 0.000000 0.611880 0.9410 0.9974 1.0467 1.1006 1.2536 1.4952 1.5368 0.107350 0.000000 1.027700 0.9421 0.9981 1.0480 1.1013 1.2581 1.4956 1.5366 0.108050 0.000000 Table A-12 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=1.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.012067 0.9385 0.9828 1.0443 1.1775 1.4375 1.6667 1.7071 0.120160 0.000000 0.019336 0.9384 0.9829 1.0445 1.1778 1.4360 1.6667 1.7071 0.119890 0.000000 0.026279 0.9375 0.9829 1.0448 1.1790 1.4294 1.6664 1.7066 0.118770 0.000000 0.035544 0.9363 0.9823 1.0444 1.1797 1.4228 1.6656 1.7059 0.117790 0.000000 0.050126 0.9352 0.9816 1.0445 1.1801 1.4177 1.6649 1.7053 0.117090 0.000000 0.074377 0.9343 0.9809 1.0444 1.1803 1.4161 1.6644 1.7049 0.116650 0.000000 0.114640 0.9334 0.9802 1.0442 1.1805 1.4153 1.6639 1.7047 0.116320 0.000000 0.181730 0.9327 0.9796 1.0440 1.1805 1.4146 1.6636 1.7048 0.116080 0.000000 0.291520 0.9322 0.9792 1.0438 1.1806 1.4141 1.6634 1.7054 0.115940 0.000000 0.478300 0.9319 0.9790 1.0438 1.1806 1.4163 1.6634 1.7068 0.115910 0.000000 0.803330 0.9319 0.9790 1.0440 1.1806 1.4194 1.6643 1.7110 0.116010 0.000000 1.349200 0.9320 0.9791 1.0445 1.1870 1.4250 1.6678 1.7153 0.116740 0.008581
34 Table A-13 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=2.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.015262 0.9964 1.0810 1.2039 1.2808 1.5068 1.6012 1.6214 0.113980 0.000000 0.024642 0.9962 1.0807 1.2026 1.2793 1.5063 1.6000 1.6202 0.113890 0.000000 0.034503 0.9943 1.0790 1.1996 1.2724 1.5039 1.5957 1.6158 0.113400 0.000000 0.047835 0.9909 1.0761 1.2008 1.2688 1.5015 1.5921 1.6124 0.112820 0.000000 0.068612 0.9877 1.0733 1.2012 1.2697 1.4993 1.5892 1.6098 0.112330 0.000000 0.102930 0.9856 1.0714 1.2014 1.2703 1.4977 1.5872 1.6079 0.111990 0.000000 0.159780 0.9839 1.0699 1.2015 1.2707 1.4961 1.5858 1.6064 0.111700 0.000000 0.254330 0.9826 1.0688 1.2017 1.2710 1.4948 1.5847 1.6060 0.111480 0.000000 0.409090 0.9822 1.0684 1.2021 1.2692 1.4938 1.5840 1.6072 0.111340 0.000000 0.671930 0.9823 1.0687 1.2025 1.2685 1.4933 1.5846 1.6089 0.111320 0.000000 1.128500 0.9837 1.0703 1.2034 1.2685 1.4932 1.5868 1.6142 0.111380 0.000000 1.895400 0.9847 1.0726 1.2048 1.2692 1.4946 1.5871 1.6235 0.112050 0.002832 Table A-14 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=2.500 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.016960 0.9213 0.9880 1.0587 1.2460 1.3854 1.4137 1.4780 0.108350 0.000000 0.027516 0.9210 0.9877 1.0580 1.2452 1.3849 1.4131 1.4773 0.108370 0.000000 0.039252 0.9196 0.9863 1.0548 1.2416 1.3822 1.4105 1.4743 0.108250 0.000000 0.055264 0.9182 0.9848 1.0519 1.2379 1.3795 1.4081 1.4711 0.107920 0.000000 0.080108 0.9171 0.9834 1.0495 1.2347 1.3772 1.4062 1.4684 0.107550 0.000000 0.120980 0.9164 0.9824 1.0478 1.2324 1.3754 1.4050 1.4663 0.107260 0.000000 0.188560 0.9157 0.9815 1.0464 1.2304 1.3740 1.4039 1.4645 0.107000 0.000000 0.300730 0.9152 0.9808 1.0453 1.2288 1.3730 1.4030 1.4630 0.106780 0.000000 0.484380 0.9149 0.9803 1.0446 1.2277 1.3726 1.4022 1.4617 0.106620 0.000000 0.796150 0.9150 0.9802 1.0446 1.2274 1.3736 1.4015 1.4606 0.106630 0.000000 1.337200 0.9161 0.9810 1.0458 1.2279 1.3758 1.4038 1.4588 0.106690 0.000000 2.245900 0.9186 0.9829 1.0487 1.2289 1.3753 1.4128 1.4627 0.107320 0.000000
35 Table A-15 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=3.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.018964 0.8750 0.9429 1.0345 1.2134 1.2734 1.3980 1.4536 0.110320 0.000000 0.030981 0.8742 0.9423 1.0343 1.2131 1.2730 1.3970 1.4526 0.110480 0.000000 0.045399 0.8717 0.9401 1.0326 1.2116 1.2713 1.3929 1.4483 0.110830 0.000000 0.065344 0.8700 0.9377 1.0306 1.2099 1.2694 1.3891 1.4442 0.110800 0.000000 0.096151 0.8688 0.9358 1.0287 1.2084 1.2677 1.3861 1.4409 0.110600 0.000000 0.146590 0.8680 0.9344 1.0273 1.2072 1.2664 1.3841 1.4384 0.110400 0.000000 0.229740 0.8674 0.9333 1.0261 1.2062 1.2653 1.3825 1.4362 0.110200 0.000000 0.367410 0.8670 0.9324 1.0251 1.2053 1.2642 1.3815 1.4347 0.110020 0.000000 0.592910 0.8669 0.9320 1.0244 1.2047 1.2633 1.3814 1.4337 0.109910 0.000000 0.975570 0.8676 0.9323 1.0245 1.2046 1.2625 1.3833 1.4340 0.109930 0.000000 1.638500 0.8699 0.9340 1.0254 1.2048 1.2628 1.3884 1.4354 0.110130 0.000000 2.752000 0.8760 0.9377 1.0274 1.2067 1.2680 1.3941 1.4431 0.111030 0.009971 Table A-16 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=4.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.020053 0.8662 0.9240 0.9952 1.1568 1.2432 1.3723 1.4416 0.113880 0.000000 0.032924 0.8647 0.9230 0.9943 1.1564 1.2432 1.3719 1.4415 0.114210 0.000000 0.049170 0.8588 0.9187 0.9897 1.1548 1.2432 1.3701 1.4407 0.115120 0.000000 0.071874 0.8537 0.9147 0.9849 1.1533 1.2434 1.3685 1.4398 0.115460 0.000000 0.106870 0.8500 0.9116 0.9814 1.1519 1.2436 1.3674 1.4390 0.115480 0.000880 0.164010 0.8474 0.9093 0.9788 1.1510 1.2439 1.3666 1.4384 0.115400 0.000000 0.258050 0.8452 0.9074 0.9766 1.1503 1.2443 1.3663 1.4378 0.115280 0.000000 0.413500 0.8435 0.9059 0.9749 1.1498 1.2450 1.3666 1.4373 0.115170 0.000000 0.668250 0.8423 0.9047 0.9738 1.1496 1.2461 1.3678 1.4369 0.115100 0.000000 1.100400 0.8418 0.9042 0.9738 1.1498 1.2484 1.3716 1.4367 0.115190 0.000000 1.848200 0.8420 0.9043 0.9748 1.1509 1.2519 1.3806 1.4412 0.115530 0.003511 3.104100 0.8425 0.9046 0.9769 1.1547 1.2521 1.3979 1.4656 0.116850 0.017862
36 Table A-17 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=5.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.021114 0.7956 0.8662 0.9430 1.1005 1.2332 1.3425 1.4283 0.116190 0.000000 0.034897 0.7940 0.8648 0.9416 1.1000 1.2329 1.3419 1.4281 0.116730 0.000000 0.053467 0.7883 0.8595 0.9363 1.0985 1.2316 1.3400 1.4274 0.118370 0.000000 0.079795 0.7838 0.8553 0.9317 1.0974 1.2305 1.3385 1.4266 0.119180 0.000000 0.120320 0.7807 0.8522 0.9283 1.0967 1.2297 1.3374 1.4259 0.119460 0.005488 0.186270 0.7786 0.8499 0.9259 1.0962 1.2291 1.3366 1.4254 0.119520 0.006667 0.294640 0.7768 0.8479 0.9239 1.0958 1.2285 1.3362 1.4250 0.119510 0.006486 0.473500 0.7755 0.8464 0.9224 1.0955 1.2280 1.3363 1.4252 0.119480 0.005907 0.766830 0.7745 0.8454 0.9213 1.0953 1.2277 1.3375 1.4264 0.119490 0.006106 1.264100 0.7740 0.8453 0.9210 1.0952 1.2275 1.3409 1.4340 0.119760 0.010094 2.123200 0.7740 0.8463 0.9216 1.0953 1.2276 1.3459 1.4380 0.120420 0.016137 3.566000 0.7740 0.8481 0.9239 1.0954 1.2292 1.3709 1.4650 0.122720 0.028629 Table A-18 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=6.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.021916 0.7367 0.8022 0.8756 1.0914 1.2931 1.3705 1.4487 0.121600 0.000000 0.036575 0.7336 0.7998 0.8734 1.0904 1.2929 1.3693 1.4480 0.122550 0.000000 0.058174 0.7227 0.7934 0.8656 1.0868 1.2922 1.3655 1.4451 0.125480 0.000000 0.089486 0.7137 0.7855 0.8597 1.0839 1.2914 1.3628 1.4429 0.127070 0.000000 0.137710 0.7092 0.7803 0.8557 1.0817 1.2906 1.3606 1.4414 0.127770 0.011511 0.215910 0.7067 0.7769 0.8531 1.0802 1.2899 1.3590 1.4408 0.128070 0.014466 0.344250 0.7045 0.7744 0.8510 1.0856 1.2893 1.3589 1.4402 0.128240 0.015901 0.555830 0.7030 0.7726 0.8495 1.0849 1.2888 1.3597 1.4404 0.128350 0.016765 0.903260 0.7020 0.7717 0.8486 1.0844 1.2884 1.3616 1.4422 0.128520 0.018020 1.491700 0.7018 0.7720 0.8489 1.0841 1.2881 1.3667 1.4508 0.129090 0.021716 2.505300 0.7024 0.7742 0.8501 1.0845 1.2881 1.3800 1.4644 0.130250 0.027792 4.207800 0.7035 0.7728 0.8521 1.0854 1.2975 1.4007 1.4974 0.133990 0.041960
37 Table A-19 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=10.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.021591 0.5987 0.6565 0.7734 1.0270 1.1905 1.3430 1.3935 0.113230 0.000000 0.036608 0.5898 0.6484 0.7688 1.0244 1.1885 1.3416 1.3923 0.115440 0.000000 0.061937 0.5650 0.6215 0.7534 1.0155 1.1823 1.3367 1.3884 0.122720 0.000000 0.100210 0.5499 0.6048 0.7431 1.0097 1.1784 1.3334 1.3861 0.127260 0.002244 0.159540 0.5412 0.5964 0.7369 1.0059 1.1762 1.3313 1.3852 0.129710 0.025192 0.255500 0.5363 0.5916 0.7332 1.0034 1.1749 1.3299 1.3860 0.131040 0.031327 0.413150 0.5326 0.5881 0.7304 1.0015 1.1741 1.3292 1.3884 0.131980 0.035052 0.673070 0.5295 0.5856 0.7284 1.0000 1.1737 1.3304 1.3941 0.132730 0.037778 1.101000 0.5274 0.5840 0.7272 0.9991 1.1743 1.3340 1.4060 0.133550 0.040565 1.824000 0.5265 0.5836 0.7272 0.9993 1.1803 1.3436 1.4295 0.134980 0.045050 3.063500 0.5265 0.5846 0.7285 1.0007 1.1954 1.3632 1.4593 0.137940 0.053267 5.145300 0.5306 0.5898 0.7294 1.0041 1.2188 1.3791 1.5206 0.145410 0.070385 Table A-20 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=13.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.020246 0.5467 0.6219 0.7148 0.9727 1.1965 1.3405 1.4028 0.104400 0.000000 0.034750 0.5338 0.6099 0.7068 0.9680 1.1937 1.3272 1.4010 0.107510 0.000000 0.061800 0.4907 0.5720 0.6811 0.9531 1.1865 1.3206 1.3954 0.117990 0.000000 0.104280 0.4647 0.5489 0.6655 0.9442 1.1824 1.3169 1.3919 0.124660 0.011529 0.170860 0.4505 0.5364 0.6568 0.9392 1.1801 1.3147 1.3900 0.128390 0.032815 0.278600 0.4425 0.5293 0.6519 0.9365 1.1787 1.3133 1.3896 0.130480 0.040222 0.456160 0.4371 0.5242 0.6483 0.9349 1.1778 1.3128 1.3912 0.132060 0.045085 0.749430 0.4333 0.5207 0.6458 0.9343 1.1775 1.3139 1.3907 0.133420 0.048926 1.233400 0.4308 0.5183 0.6440 0.9349 1.1792 1.3175 1.3976 0.134900 0.052828 2.049400 0.4301 0.5173 0.6432 0.9376 1.1837 1.3214 1.4123 0.137180 0.058405 3.442000 0.4311 0.5174 0.6433 0.9446 1.1945 1.3396 1.4411 0.141320 0.067559 5.781000 0.4332 0.5200 0.6436 0.9614 1.2102 1.3656 1.5008 0.149230 0.082840
38 Table A-21 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=20.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.017198 0.5364 0.5882 0.6668 0.9415 1.1844 1.2985 1.3693 0.086386 0.000000 0.029978 0.5108 0.5636 0.6469 0.9295 1.1741 1.2959 1.3631 0.091008 0.000000 0.057271 0.4242 0.4800 0.5814 0.8879 1.1524 1.2711 1.3438 0.107380 0.000000 0.103340 0.3710 0.4276 0.5418 0.8618 1.1470 1.2619 1.3328 0.118570 0.012138 0.177530 0.3423 0.3995 0.5212 0.8508 1.1443 1.2541 1.3278 0.125100 0.041695 0.298380 0.3269 0.3847 0.5102 0.8453 1.1428 1.2501 1.3271 0.128840 0.051848 0.499340 0.3163 0.3744 0.5027 0.8419 1.1419 1.2480 1.3291 0.131710 0.058617 0.833030 0.3092 0.3675 0.4978 0.8404 1.1415 1.2486 1.3338 0.134020 0.063638 1.386300 0.3047 0.3629 0.4938 0.8410 1.1422 1.2540 1.3371 0.136140 0.067990 2.315300 0.3033 0.3622 0.4933 0.8446 1.1451 1.2613 1.3401 0.138310 0.072237 3.888700 0.3042 0.3631 0.4967 0.8509 1.1590 1.2754 1.3636 0.140360 0.076088 6.531300 0.3048 0.3631 0.5021 0.8633 1.1745 1.2781 1.3665 0.146920 0.087601 Table A-22 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=25.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.015309 0.5648 0.6124 0.6802 0.9530 1.1876 1.2897 1.3780 0.076572 0.000000 0.026801 0.5341 0.5826 0.6504 0.9369 1.1754 1.2771 1.3698 0.081602 0.000000 0.052834 0.4229 0.4764 0.5540 0.8760 1.1395 1.2509 1.3421 0.101200 0.000000 0.099007 0.3498 0.4038 0.4926 0.8340 1.1284 1.2291 1.3259 0.115370 0.000000 0.175110 0.3095 0.3635 0.4602 0.8137 1.1234 1.2234 1.3199 0.123650 0.044109 0.300000 0.2876 0.3417 0.4432 0.8050 1.1198 1.2208 1.3179 0.128310 0.055855 0.509300 0.2723 0.3255 0.4317 0.7996 1.1144 1.2191 1.3188 0.131690 0.063234 0.858470 0.2620 0.3151 0.4242 0.7969 1.1108 1.2163 1.3222 0.134080 0.068072 1.439300 0.2552 0.3083 0.4197 0.7966 1.1084 1.2143 1.3268 0.135860 0.071514 2.412200 0.2526 0.3058 0.4175 0.7983 1.1077 1.2218 1.3168 0.137320 0.074250 4.051400 0.2529 0.3059 0.4176 0.7996 1.1128 1.2268 1.3142 0.138360 0.076156 6.804600 0.2531 0.3062 0.4176 0.8053 1.0896 1.2140 1.3258 0.143800 0.085643
39 Table A-23 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=33.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.013154 0.6284 0.6782 0.7310 0.9647 1.1990 1.2926 1.3736 0.058009 0.000000 0.022962 0.5930 0.6394 0.6970 0.9433 1.1837 1.2757 1.3565 0.062168 0.000000 0.045969 0.4556 0.4993 0.5642 0.8539 1.1308 1.2269 1.3148 0.081702 0.000000 0.089771 0.3540 0.3973 0.4679 0.7903 1.0825 1.1975 1.2962 0.098871 0.000000 0.164910 0.2970 0.3387 0.4142 0.7543 1.0648 1.1845 1.2888 0.109420 0.042704 0.290120 0.2661 0.3068 0.3854 0.7374 1.0488 1.1723 1.2831 0.115270 0.056018 0.502790 0.2448 0.2846 0.3659 0.7240 1.0379 1.1645 1.2809 0.119260 0.063827 0.860550 0.2303 0.2697 0.3530 0.7163 1.0299 1.1608 1.2790 0.121630 0.068152 1.458900 0.2208 0.2598 0.3448 0.7097 1.0262 1.1574 1.2793 0.122950 0.070481 2.457500 0.2169 0.2555 0.3403 0.7076 1.0246 1.1506 1.2806 0.124060 0.072400 4.127600 0.2172 0.2557 0.3406 0.7076 1.0199 1.1284 1.2827 0.124660 0.073423 6.932400 0.2174 0.2565 0.3399 0.7076 1.0058 1.1126 1.2726 0.132990 0.086817 Table A-24 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=40.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.012119 0.6725 0.7235 0.7745 0.9873 1.2150 1.3038 1.3848 0.049354 0.000000 0.021015 0.6378 0.6875 0.7382 0.9628 1.2003 1.2852 1.3686 0.052243 0.000000 0.041583 0.4912 0.5326 0.5921 0.8613 1.1325 1.2239 1.3136 0.068476 0.000000 0.082413 0.3743 0.4136 0.4771 0.7736 1.0713 1.1755 1.2796 0.085592 0.000000 0.154650 0.3048 0.3419 0.4079 0.7218 1.0345 1.1530 1.2503 0.097493 0.039236 0.276670 0.2669 0.3024 0.3699 0.6948 1.0241 1.1397 1.2427 0.104370 0.054108 0.486140 0.2409 0.2751 0.3439 0.6757 1.0142 1.1291 1.2279 0.108950 0.062487 0.840900 0.2234 0.2566 0.3265 0.6643 1.0029 1.1196 1.2234 0.111430 0.066717 1.436700 0.2119 0.2445 0.3153 0.6555 0.9837 1.1116 1.2212 0.112500 0.068490 2.428900 0.2071 0.2394 0.3108 0.6524 0.9718 1.0939 1.2202 0.113810 0.070621 4.079400 0.2074 0.2399 0.3114 0.6524 0.9529 1.0747 1.2190 0.114550 0.071807 6.851500 0.2077 0.2405 0.3131 0.6524 0.9472 1.0795 1.2112 0.126840 0.090127
40 Table A-25 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=50.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.011237 0.7195 0.7715 0.8255 1.0223 1.2281 1.3238 1.4009 0.045372 0.000000 0.019294 0.6885 0.7398 0.7911 0.9958 1.2163 1.3100 1.3894 0.047173 0.000000 0.036891 0.5449 0.5877 0.6431 0.8850 1.1448 1.2356 1.3263 0.058706 0.000000 0.072920 0.4147 0.4529 0.5092 0.7744 1.0679 1.1646 1.2702 0.073880 0.000000 0.139230 0.3308 0.3658 0.4222 0.7009 1.0077 1.1263 1.2307 0.086057 0.032150 0.253600 0.2832 0.3162 0.3719 0.6595 0.9792 1.0993 1.2206 0.093932 0.049508 0.452910 0.2501 0.2814 0.3368 0.6304 0.9585 1.0852 1.2071 0.099832 0.059952 0.793760 0.2281 0.2579 0.3130 0.6111 0.9399 1.0652 1.1993 0.103310 0.065580 1.369700 0.2139 0.2423 0.2975 0.5992 0.9258 1.0429 1.1923 0.104890 0.068042 2.326300 0.2078 0.2357 0.2910 0.5954 0.9117 1.0241 1.1911 0.107370 0.071806 3.907100 0.2081 0.2361 0.2914 0.5968 0.8988 1.0204 1.1697 0.107830 0.072492 6.562200 0.2086 0.2368 0.2920 0.5974 0.8819 1.0131 1.1592 0.128230 0.100353 Table A-26 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=100.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.010157 0.7909 0.8460 0.9065 1.0879 1.2529 1.3606 1.4306 0.042864 0.000000 0.017129 0.7700 0.8252 0.8832 1.0721 1.2459 1.3491 1.4242 0.043899 0.000000 0.029653 0.6709 0.7238 0.7778 0.9891 1.2122 1.3092 1.3872 0.050342 0.000000 0.052661 0.5656 0.6103 0.6690 0.8980 1.1549 1.2552 1.3453 0.060786 0.000000 0.095017 0.4761 0.5190 0.5760 0.8142 1.0914 1.1994 1.3099 0.071396 0.000000 0.170860 0.4121 0.4518 0.5075 0.7469 1.0326 1.1449 1.2708 0.079217 0.032866 0.307240 0.3607 0.3970 0.4505 0.6878 0.9774 1.0924 1.2312 0.085351 0.045713 0.547090 0.3220 0.3564 0.4076 0.6425 0.9322 1.0493 1.2038 0.091223 0.055915 0.960500 0.2955 0.3280 0.3774 0.6116 0.8994 1.0231 1.1827 0.098081 0.066519 1.646600 0.2842 0.3160 0.3642 0.6008 0.8877 1.0274 1.1762 0.114250 0.088645 2.765500 0.2848 0.3161 0.3642 0.6057 0.8901 1.0266 1.1940 0.131800 0.110345 4.644800 0.2861 0.3168 0.3643 0.6285 0.8952 1.0512 1.2607 0.195390 0.181610
41 Table A-27 Site Adjustment Factor Medians and Logarithmic Standard Deviation for PGA SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV NL-LNSTDEV 0.010020 0.8011 0.8566 0.9181 1.0979 1.2577 1.3688 1.4324 0.042479 0.000000 0.016836 0.7828 0.8386 0.8977 1.0851 1.2524 1.3612 1.4278 0.043343 0.000000 0.028357 0.7008 0.7560 0.8112 1.0242 1.2311 1.3264 1.4046 0.048267 0.000000 0.047926 0.6201 0.6685 0.7323 0.9610 1.2026 1.2952 1.3788 0.056595 0.000000 0.081326 0.5556 0.6040 0.6684 0.9088 1.1687 1.2668 1.3552 0.067798 0.000000 0.138230 0.5087 0.5566 0.6220 0.8693 1.1468 1.2479 1.3481 0.079280 0.032589 0.235540 0.4690 0.5152 0.5815 0.8326 1.1210 1.2236 1.3427 0.091464 0.056057 0.401380 0.4374 0.4827 0.5487 0.8024 1.0929 1.2085 1.3469 0.105940 0.077460 0.682720 0.4140 0.4586 0.5239 0.7804 1.0780 1.1972 1.3480 0.125610 0.102736 1.154100 0.4038 0.4477 0.5123 0.7723 1.0729 1.2030 1.3855 0.159090 0.141726 1.938300 0.4046 0.4480 0.5124 0.7782 1.0774 1.2224 1.5255 0.203260 0.189977 3.255500 0.4062 0.4487 0.5124 0.8194 1.0931 1.2702 1.8325 0.308070 0.299473 Table A-28 Control Point Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.00100 3.40128E-03 4.58102E-03 6.41304E-03 8.17246E-03 1.06095E-02 1.93477E-02 2.71436E-02 4.49855E-02 0.00130 3.02075E-03 4.10278E-03 5.92227E-03 7.31746E-03 9.43995E-03 1.70147E-02 2.37742E-02 3.96885E-02 0.00160 2.58787E-03 3.55204E-03 5.16200E-03 6.33920E-03 8.11827E-03 1.43794E-02 1.99791E-02 3.36450E-02 0.00200 2.19859E-03 3.06156E-03 4.33602E-03 5.47097E-03 6.96219E-03 1.21123E-02 1.67153E-02 2.83835E-02 0.00250 1.83978E-03 2.61366E-03 3.84890E-03 4.70645E-03 5.97300E-03 1.02127E-02 1.39663E-02 2.37674E-02 0.00320 1.50154E-03 2.19904E-03 3.28476E-03 4.02545E-03 5.10944E-03 8.62148E-03 1.16578E-02 1.97357E-02 0.00400 1.18939E-03 1.81736E-03 2.77636E-03 3.41715E-03 4.35784E-03 7.28114E-03 9.72500E-03 1.62896E-02 0.00500 9.03423E-04 1.46831E-03 2.30780E-03 2.86550E-03 3.68198E-03 6.13740E-03 8.10338E-03 1.33930E-02 0.00630 6.44254E-04 1.13364E-03 1.87808E-03 2.35901E-03 3.07331E-03 5.15174E-03 6.73981E-03 1.09809E-02 0.00790 4.33454E-04 8.29600E-04 1.49733E-03 1.91273E-03 2.54884E-03 4.30816E-03 5.59666E-03 8.98224E-03 0.01000 2.78058E-04 5.90374E-04 1.15188E-03 1.51427E-03 2.06370E-03 3.57240E-03 4.62246E-03 7.33477E-03 0.01260 1.67345E-04 3.93702E-04 8.54768E-04 1.14498E-03 1.61979E-03 2.91278E-03 3.77512E-03 5.95752E-03 0.01580 9.30071E-05 2.38000E-04 5.99781E-04 8.26956E-04 1.24705E-03 2.33782E-03 3.05072E-03 4.81111E-03
42 Table A-28 Control Point Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.02000 4.88818E-05 1.37442E-04 3.77934E-04 5.74168E-04 9.24293E-04 1.84202E-03 2.43193E-03 3.86530E-03 0.02510 2.47700E-05 7.59682E-05 2.48025E-04 3.76366E-04 6.51925E-04 1.40293E-03 1.88892E-03 3.05768E-03 0.03160 1.18671E-05 3.89214E-05 1.44538E-04 2.27725E-04 4.30914E-04 1.01602E-03 1.41031E-03 2.35860E-03 0.03980 5.42538E-06 1.88078E-05 7.72521E-05 1.27801E-04 2.65902E-04 6.96387E-04 1.00736E-03 1.76183E-03 0.05010 2.42253E-06 8.73744E-06 3.93997E-05 6.77248E-05 1.54969E-04 4.50980E-04 6.85026E-04 1.26961E-03 0.06310 1.06621E-06 3.96466E-06 1.89613E-05 3.39931E-05 8.42762E-05 2.72639E-04 4.37126E-04 8.68028E-04 0.07940 4.67162E-07 1.77151E-06 8.94333E-06 1.63256E-05 4.37220E-05 1.54547E-04 2.62801E-04 5.56300E-04 0.10000 2.04593E-07 7.85421E-07 4.03175E-06 7.60810E-06 2.16950E-05 8.37974E-05 1.51457E-04 3.46092E-04 0.12600 9.09310E-08 3.49139E-07 1.82485E-06 3.53228E-06 1.06106E-05 4.40456E-05 8.40388E-05 2.06390E-04 0.15800 4.14582E-08 1.56619E-07 8.49296E-07 1.63187E-06 5.09859E-06 2.21528E-05 4.43070E-05 1.17105E-04 0.20000 1.95519E-08 7.07058E-08 3.66041E-07 7.50514E-07 2.41467E-06 1.08264E-05 2.26000E-05 6.19108E-05 0.25100 9.99926E-09 3.24823E-08 1.75334E-07 3.47038E-07 1.15256E-06 5.28598E-06 1.14617E-05 3.30685E-05 0.31600 6.01148E-09 1.59311E-08 7.93066E-08 1.61742E-07 5.54386E-07 2.59095E-06 5.79301E-06 1.71519E-05 0.39800 4.28002E-09 8.66453E-09 3.73549E-08 7.63982E-08 2.70379E-07 1.28374E-06 2.94447E-06 8.90359E-06 0.50100 3.32377E-09 5.27558E-09 1.81100E-08 3.62825E-08 1.31466E-07 6.39759E-07 1.50647E-06 4.64038E-06 0.63100 2.61370E-09 3.47866E-09 9.17044E-09 1.75263E-08 6.34541E-08 3.18988E-07 7.73588E-07 2.42835E-06 0.79400 2.01589E-09 2.43369E-09 4.97396E-09 8.67372E-09 3.02978E-08 1.57983E-07 3.96623E-07 1.27452E-06 1.00000 1.48082E-09 1.70744E-09 2.80953E-09 4.33567E-09 1.42415E-08 7.74651E-08 2.01964E-07 6.68489E-07 1.26000 9.72529E-10 1.09883E-09 1.55125E-09 2.13825E-09 6.56266E-09 3.71235E-08 1.00545E-07 3.44434E-07 1.58000 5.61947E-10 6.26413E-10 8.31293E-10 1.03911E-09 2.95021E-09 1.71705E-08 4.83984E-08 1.86669E-07 2.00000 2.97915E-10 3.31180E-10 4.07665E-10 4.87107E-10 1.28467E-09 7.71320E-09 2.26598E-08 8.42521E-08 2.51000 1.50037E-10 1.68407E-10 2.05340E-10 2.26187E-10 5.49438E-10 3.38881E-09 1.03592E-08 4.22518E-08 3.16000 6.97051E-11 7.88196E-11 9.35343E-11 9.84568E-11 2.25884E-10 1.43108E-09 4.54400E-09 1.84605E-08 3.98000 3.01626E-11 3.43079E-11 4.01134E-11 4.09971E-11 8.93354E-11 5.80693E-10 1.91205E-09 8.12192E-09 5.01000 1.25442E-11 1.43811E-11 1.66166E-11 1.65052E-11 3.41706E-11 2.27183E-10 7.75178E-10 3.43874E-09 6.31000 5.00327E-12 5.79906E-12 6.58447E-12 6.38600E-12 1.25530E-11 8.53451E-11 3.01198E-10 1.39965E-09 7.94000 1.90512E-12 2.23421E-12 2.52103E-12 2.37915E-12 4.45091E-12 3.06377E-11 1.11357E-10 5.36586E-10 10.00000 6.03115E-13 7.62018E-13 8.38782E-13 7.45878E-13 1.26863E-12 9.26968E-12 3.43814E-11 1.83473E-10
43 Table A-29 Control Point Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.00100 5.77371E-02 7.30075E-02 7.61236E-02 8.00019E-02 8.02340E-02 8.02538E-02 7.96729E-02 7.63879E-02 0.00130 5.30852E-02 6.99194E-02 7.14620E-02 7.55640E-02 7.42606E-02 7.47798E-02 7.56095E-02 6.99251E-02 0.00160 4.73291E-02 6.36844E-02 6.41158E-02 6.85429E-02 6.72871E-02 6.83375E-02 6.90752E-02 6.42160E-02 0.00200 4.06944E-02 5.64110E-02 5.71997E-02 6.18436E-02 6.05293E-02 6.19413E-02 6.25831E-02 5.61066E-02 0.00250 3.46451E-02 4.95673E-02 5.04280E-02 5.50997E-02 5.35200E-02 5.51896E-02 5.60364E-02 4.97303E-02 0.00320 2.91965E-02 4.29133E-02 4.35939E-02 4.80846E-02 4.64179E-02 4.82335E-02 4.93138E-02 4.34488E-02 0.00400 2.43359E-02 3.65104E-02 3.70455E-02 4.12150E-02 3.96881E-02 4.15271E-02 4.27094E-02 3.75368E-02 0.00500 2.00994E-02 3.06326E-02 3.10965E-02 3.48805E-02 3.35529E-02 3.53330E-02 3.65850E-02 3.21713E-02 0.00630 1.64833E-02 2.54135E-02 2.57936E-02 2.91587E-02 2.80265E-02 2.97007E-02 3.10318E-02 2.74246E-02 0.00790 1.34409E-02 2.08512E-02 2.11569E-02 2.40979E-02 2.32081E-02 2.47537E-02 2.61261E-02 2.31815E-02 0.01000 1.09176E-02 1.69575E-02 1.72128E-02 1.97468E-02 1.90733E-02 2.04735E-02 2.17943E-02 1.95050E-02 0.01260 8.82504E-03 1.37044E-02 1.39189E-02 1.60683E-02 1.55181E-02 1.66281E-02 1.80667E-02 1.63198E-02 0.01580 7.10901E-03 1.09989E-02 1.11450E-02 1.29282E-02 1.25059E-02 1.35828E-02 1.48338E-02 1.34961E-02 0.02000 5.69739E-03 8.76280E-03 8.85914E-03 1.03162E-02 1.00006E-02 1.08124E-02 1.20478E-02 1.10686E-02 0.02510 4.52480E-03 6.93625E-03 6.99680E-03 8.17591E-03 7.92032E-03 8.63447E-03 9.69651E-03 8.96496E-03 0.03160 3.54476E-03 5.43864E-03 5.45959E-03 6.39991E-03 6.18637E-03 6.71611E-03 7.67770E-03 7.13541E-03 0.03980 2.71849E-03 4.20011E-03 4.19595E-03 4.93823E-03 4.76065E-03 5.15985E-03 5.95614E-03 5.41726E-03 0.05010 2.02967E-03 3.17966E-03 3.15841E-03 3.74097E-03 3.58873E-03 3.87858E-03 4.40607E-03 4.13152E-03 0.06310 1.45525E-03 2.33995E-03 2.30568E-03 2.75870E-03 2.62076E-03 2.82734E-03 3.26799E-03 3.08360E-03 0.07940 9.98089E-04 1.65235E-03 1.61486E-03 1.96222E-03 1.85941E-03 1.99902E-03 2.35273E-03 2.22403E-03 0.10000 6.58538E-04 1.11811E-03 1.09251E-03 1.35389E-03 1.28528E-03 1.37970E-03 1.64277E-03 1.57932E-03 0.12600 4.12881E-04 7.23332E-04 7.18639E-04 9.09304E-04 8.54731E-04 9.23574E-04 1.13078E-03 1.08129E-03 0.15800 2.49015E-04 4.59684E-04 4.46589E-04 5.78990E-04 5.44112E-04 5.95837E-04 7.59418E-04 7.33107E-04 0.20000 1.43865E-04 2.54552E-04 2.65006E-04 3.38955E-04 3.36985E-04 3.75954E-04 4.90990E-04 4.93906E-04 0.25100 7.95320E-05 1.41944E-04 1.55360E-04 2.13007E-04 2.05419E-04 2.34885E-04 3.20252E-04 3.32407E-04 0.31600 4.34451E-05 8.93301E-05 8.89559E-05 1.25479E-04 1.23007E-04 1.45089E-04 2.05641E-04 2.22094E-04 0.39800 2.33650E-05 4.56204E-05 5.01713E-05 7.28216E-05 7.30389E-05 8.90766E-05 1.31551E-04 1.47395E-04 0.50100 1.24688E-05 2.50641E-05 2.82634E-05 4.21912E-05 4.33103E-05 5.44541E-05 8.36031E-05 9.69763E-05 0.63100 6.66238E-06 1.37325E-05 1.59467E-05 2.44517E-05 2.56327E-05 3.30490E-05 5.26679E-05 6.29860E-05
44 Table A-29 Control Point Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.79400 3.57272E-06 7.74622E-06 9.00482E-06 1.41583E-05 1.51271E-05 1.98639E-05 3.27608E-05 4.00918E-05 1.00000 1.91649E-06 4.32239E-06 5.07767E-06 8.16972E-06 8.86410E-06 1.18073E-05 1.99644E-05 2.50984E-05 1.26000 1.02027E-06 2.27737E-06 2.83237E-06 4.65185E-06 5.09897E-06 6.87786E-06 1.20057E-05 1.54558E-05 1.58000 5.34641E-07 1.37274E-06 1.53966E-06 2.59776E-06 2.86395E-06 3.90774E-06 7.07733E-06 9.26610E-06 2.00000 2.74019E-07 6.29837E-07 8.16832E-07 1.22304E-06 1.57445E-06 2.15613E-06 3.93244E-06 5.33841E-06 2.51000 1.36288E-07 3.24931E-07 4.25825E-07 7.53976E-07 8.41444E-07 1.17038E-06 2.21785E-06 3.06764E-06 3.16000 6.62868E-08 1.86452E-07 2.12429E-07 3.81872E-07 4.29211E-07 6.01689E-07 1.17650E-06 1.67519E-06 3.98000 3.09947E-08 8.43869E-08 1.00875E-07 1.81270E-07 2.08433E-07 2.95554E-07 5.95974E-07 8.76703E-07 5.01000 1.38826E-08 3.92771E-08 4.58962E-08 8.49189E-08 9.65958E-08 1.38786E-07 2.88362E-07 4.38839E-07 6.31000 5.98281E-09 1.74100E-08 1.99241E-08 3.56592E-08 4.23709E-08 6.15765E-08 1.31683E-07 2.06347E-07 7.94000 2.45738E-09 7.46543E-09 8.19424E-09 1.54248E-08 1.77244E-08 2.55080E-08 5.57735E-08 8.94758E-08 10.00000 9.37359E-10 2.94850E-09 2.97624E-09 5.06043E-09 5.87820E-09 8.70085E-09 2.04274E-08 3.47367E-08 Table A-30 Control Point Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) 13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.00100 7.10572E-02 6.99301E-02 6.91261E-02 6.78597E-02 6.63195E-02 6.40615E-02 6.10774E-02 6.03448E-02 0.00130 6.53822E-02 6.36163E-02 6.34626E-02 6.31497E-02 6.19475E-02 5.95847E-02 5.65734E-02 5.58528E-02 0.00160 5.87609E-02 5.63180E-02 5.67348E-02 5.62831E-02 5.50692E-02 5.27272E-02 4.83102E-02 4.76174E-02 0.00200 5.23085E-02 4.96683E-02 4.92497E-02 4.86089E-02 4.83383E-02 4.63664E-02 4.20094E-02 4.13415E-02 0.00250 4.61182E-02 4.37032E-02 4.33652E-02 4.19797E-02 4.24255E-02 4.05323E-02 3.63301E-02 3.56861E-02 0.00320 4.02175E-02 3.80966E-02 3.70880E-02 3.64912E-02 3.60608E-02 3.48831E-02 3.11760E-02 3.05471E-02 0.00400 3.47581E-02 3.29646E-02 3.14580E-02 3.09434E-02 3.03645E-02 2.91095E-02 2.65859E-02 2.59642E-02 0.00500 2.98522E-02 2.79253E-02 2.70951E-02 2.64480E-02 2.60941E-02 2.49429E-02 2.25614E-02 2.19344E-02 0.00630 2.55259E-02 2.39469E-02 2.32681E-02 2.19177E-02 2.23539E-02 2.09144E-02 1.90462E-02 1.84127E-02 0.00790 2.17028E-02 2.04459E-02 1.95466E-02 1.87030E-02 1.85422E-02 1.77719E-02 1.57696E-02 1.53749E-02 0.01000 1.80084E-02 1.73823E-02 1.66310E-02 1.57640E-02 1.51362E-02 1.50313E-02 1.27626E-02 1.24805E-02 0.01260 1.51231E-02 1.46970E-02 1.40697E-02 1.33108E-02 1.27447E-02 1.26211E-02 1.05325E-02 9.91454E-03 0.01580 1.25775E-02 1.23205E-02 1.17970E-02 1.09004E-02 1.05320E-02 1.00670E-02 8.59821E-03 8.33988E-03
45 Table A-30 Control Point Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) 13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.02000 1.03404E-02 1.01428E-02 9.39582E-03 8.68652E-03 8.40198E-03 7.70329E-03 6.77004E-03 6.22087E-03 0.02510 8.38952E-03 7.86315E-03 7.52122E-03 6.86090E-03 6.42717E-03 5.92823E-03 5.10618E-03 4.77291E-03 0.03160 6.62214E-03 6.26361E-03 5.98296E-03 5.42015E-03 5.05356E-03 4.56193E-03 3.61353E-03 3.54403E-03 0.03980 5.15897E-03 4.93003E-03 4.70527E-03 3.82537E-03 3.54978E-03 3.20839E-03 2.70721E-03 2.46247E-03 0.05010 3.93066E-03 3.81290E-03 3.46082E-03 2.90703E-03 2.67978E-03 2.37186E-03 1.89759E-03 1.73496E-03 0.06310 2.92986E-03 2.86735E-03 2.45406E-03 2.15117E-03 1.82911E-03 1.60938E-03 1.29989E-03 1.22833E-03 0.07940 2.13488E-03 2.11088E-03 1.80157E-03 1.45177E-03 1.30792E-03 1.13792E-03 8.61636E-04 8.35029E-04 0.10000 1.52090E-03 1.50544E-03 1.30891E-03 1.04225E-03 9.32946E-04 7.96023E-04 5.50417E-04 5.63090E-04 0.12600 1.07480E-03 1.06094E-03 9.22990E-04 7.41129E-04 6.53548E-04 5.33143E-04 3.69550E-04 3.63372E-04 0.15800 7.50651E-04 7.50167E-04 6.58225E-04 5.20259E-04 4.49016E-04 3.59428E-04 2.47774E-04 2.42854E-04 0.20000 5.14806E-04 5.14943E-04 4.58480E-04 3.59977E-04 3.08848E-04 2.41420E-04 1.59578E-04 1.57419E-04 0.25100 3.56211E-04 3.61874E-04 3.23413E-04 2.51694E-04 2.14188E-04 1.63837E-04 1.02857E-04 1.04209E-04 0.31600 2.43039E-04 2.49781E-04 2.24103E-04 1.73982E-04 1.47183E-04 1.10329E-04 6.52842E-05 6.75956E-05 0.39800 1.64947E-04 1.71477E-04 1.54364E-04 1.19167E-04 9.99494E-05 7.33467E-05 4.10582E-05 4.35504E-05 0.50100 1.10808E-04 1.16657E-04 1.05201E-04 8.05334E-05 6.68748E-05 4.81519E-05 2.54555E-05 2.76681E-05 0.63100 7.32513E-05 7.78805E-05 7.03839E-05 5.35910E-05 4.39458E-05 3.08687E-05 1.54423E-05 1.72222E-05 0.79400 4.75763E-05 5.11574E-05 4.62472E-05 3.47470E-05 2.80805E-05 1.92849E-05 9.21033E-06 1.04674E-05 1.00000 3.02500E-05 3.30427E-05 2.98261E-05 2.21251E-05 1.75814E-05 1.18469E-05 5.37181E-06 6.26289E-06 1.26000 1.89183E-05 2.07982E-05 1.87334E-05 1.37525E-05 1.07047E-05 7.02183E-06 3.05238E-06 3.66764E-06 1.58000 1.15582E-05 1.28653E-05 1.15312E-05 8.27903E-06 6.28417E-06 4.03199E-06 1.69420E-06 2.10228E-06 2.00000 6.71750E-06 7.54933E-06 6.74903E-06 4.79374E-06 3.56678E-06 2.23540E-06 9.02009E-07 1.14264E-06 2.51000 3.93179E-06 4.46775E-06 3.96816E-06 2.74418E-06 1.98194E-06 1.20485E-06 4.68875E-07 6.21247E-07 3.16000 2.17605E-06 2.48963E-06 2.19421E-06 1.48210E-06 1.03734E-06 6.12936E-07 2.29793E-07 3.23029E-07 3.98000 1.15541E-06 1.33126E-06 1.16630E-06 7.66785E-07 5.20017E-07 2.97803E-07 1.07662E-07 1.60954E-07 5.01000 5.86461E-07 6.82197E-07 5.91746E-07 3.79087E-07 2.47414E-07 1.37336E-07 4.82281E-08 7.73508E-08 6.31000 2.79504E-07 3.29716E-07 2.85088E-07 1.76028E-07 1.08266E-07 5.64927E-08 2.01073E-08 3.56782E-08 7.94000 1.24307E-07 1.48089E-07 1.23596E-07 7.03309E-08 4.13281E-08 2.14538E-08 7.63335E-09 1.57522E-08 10.00000 4.74768E-08 5.47964E-08 4.51991E-08 2.50513E-08 1.18605E-08 4.77327E-09 2.30383E-09 6.48458E-09
ML23192A447 NRR-106 OFFICE NRR/DORL/LPLII-2/PM NRR/DORL/LPLII-2/LA NRR/DEX/EXHB/BC NRR/DEX/D NAME KGreen RButler BHayes EBenner DATE 07/07/2023 07/14/2023 06/12/2023 07/17/2023 OFFICE NRR/DRA/APLC/BC OGC-NLO NRR/DORL/LPLII-2/BC NRR/DORL/LPLII-2/PM NAME SVasavada DRoth DWrona KGreen DATE 07/20/2023 07/27/2023 07/28/2023 07/31/2023