ML17326A883

From kanterella
Revision as of 09:02, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Evaluation of Facility Containment to Determine Limiting Internal Uniform Pressure Capacity. Prepared for American Electric Power Co
ML17326A883
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 03/16/1981
From:
STRUCTURAL MECHANICS ASSOCIATES
To:
Shared Package
ML17326A884 List:
References
SMA-80C129-1, NUDOCS 8104290520
Download: ML17326A883 (155)


Text

{{#Wiki_filter:SMA.8OC129-1SECTION1EVALUATION OFD.C.COOKCONTAINMEiNT TOOETERMINE LIMITINGINT""RNiAL UNIFORMPRESSURECAPACITYPreparedfor:americanElectricPowerCo.2BroadwayNewYork,N.Y.1000416March1981Preparedby:Structural Mechanics Associates 3645'i(arrensville CenterRd.Cleveland, Ohio44122(216)991-8841 TABLEOFCOilTEl<TS

1.0 Introduction

1.1PurposeandScopeofReport1.2Evaluation Criteria1.3Containment Description andDesignBasis1.4MaterialProperties

2.0 Identification

ofLimitingFailurei~iodesAssociated withUniformStaticInternalPressure3.0Potential FailureModeAnalysis3.1ShearFailureinBaseHat3.2blembrane HoopTensionFailureofConcreteCylinder3.3PressureCapacityofEquipment HatchClosure3.3.1SplicePlateHomentCapacity3.3.1.1HandCalculation 3.3.1.2FiniteElementAnalysis3.3.2Equipment HatchCoverPlatePressureCapacity3.4PressureCapacityofPersonnel Hatch3.4.1EndPlateClosure3.4.2Door4.0SummaryandConclusions

1.0INTRODUCTION

PURPOSEANDSCOPEOFREPORT-Theobjectofthisreportistodetermine abestestimateofthelimitinguniformequivalent staticinternalpressurecapacityofthecontainment structures fortheO.C.CookNuclearGenerating UnitsNo.1and2.Theevaluation reportedislimitedtothereinforced concretebasemat,thereinforced concreterightcircularcylinderandhemispherical domeaswellasmajorcontainment penetrations including theequipment andpersonnel hatches.Thisreportcompletes PhaseIofathreephaseeffortwhichwillincludeasPhaseIIanupperandlowerboundestimateoftheinternaluniformequivalent staticpressurecapacityofthe"asbuilt"containment structures andPhaseIIIwhichwillconsiderpotential timedependent localized non-uniform pressureloadeffects.1.2EVALUATION CRITERIATheevaluation todetermining thelimitingbestestimateuniformstaticpressurecapacityofthecontainment structures isbasedonalinearelasticanalysisofcriticalportionsofthestructure uptostresslevelslimitedby"asbuilt"meanvaluesamplesoftheyieldinsteelandultimatestrengthoftheconcrete. Itshouldbeunderstood thatthestructural andleaktightintegrity ofasteellinedconcretecontainment shellandslabstructure shouldbemaintained wellbeyondactualyieldofthesteelreinforcement. Thisisdueprimarily totherelativehighductility ofthesteelliner,(ie.20-23percentuniformultimatestrainatrupture)comparedto.the40ksisteelreinforcement (ie.8-11percentuniformultimatestrainatrupture)andstrainhardening inthereinforcement. Hencethelineringeneral~ouldbeabletoaccomodate relatively largenonlinear deformation oftheconcretestructure beforesignificant leakagewouldoccur.However,sincedeformations beyondtheyieldrangearedifficult topredictandlocalizddeformations inthestructure cansignificantly exceedthosecalculated

globally, thelimitinginternalpressurehasbeendetermined conservatively considering onlyassumedelasticresponseuptotheinitialyieldofthematerials used.Itistheauthor'sopinionbasedontheobservedresultsofmodelteststhatsignificant leakage(>1.0prcentofcontainment volume)ofthecontainment wouldnotoccuruntiloressures exceededthelimitingoressures calculated inthisstudybyatleast20percent.Assumingacomposite coefficient ofvariation of10percentandalognormaldistribution ofmaterialproperties theprobability ofsignificant leakageatthepressureleveldefinedinthisstudywouldbeapproximately 0.01.Theprobability ofsignificant leakageandupperandlowerboundsonpressurewillbeevaluated inmoredetailinPhaseII.

CONTAIililENT OESCRIPTIOH Atl0DESIGNBASISThereactorcontainment structure isareinforced concreteverticalcylinderwithaflatbaseandahemispherical domeasshowninFicure1:Aductileweldedsteellinerwithathickness of1/4-inchonthecontainment baseand.3/8-inch'on theCylinderisstudattachedtotheinsidefaceoftheconcreteshelltoinsureahighdegreeofleak-tightness. Thedesignobjective ofthecontainment structure istocontainallradioactive materialwhichmightbereleasedfromthereactorcoolantsystemfollowing apostulated lossofcoolantaccident. Thestructure servesasbothabiological shieldandapressurecontainer. Thestructure consistsofsidewallsmeasuring 113-feetfromthelineronthebasetothespringline ofthedome,andhasaninsidediameterof115-feet. Thesidewallthickness ofthecylinderattnebaseis4.5ft.taperingto3.5ft.,sevenfeetabovethebasematandcontinuing at3.5ft.tothespringline. Thereinforced concretethickness ofthedomevariesuniformly from3.5ft.atthespringline to2.5ftattheapexofthedome.Theinsideradiusofthedomeisequaltotheinsideradiusofthecylinder. Theflatconcretebasematis10-ft.thickwithanoutsidediameter, of140'-0"andwiththebottomlinerplate1/4"thicklocatedontopofthismat.Thebotto~linerplateiscoveredwitha2-ft.structural slabofconcretewhichservestocarryinternalequipment loadsandformsthefloorofthecontainment. Thebasematissupported directlybyrelatively stiffsoil.Thebasicstructural elementsconsidered inthedesignofthecontainment structure isthebaseslab,sidewallsanddomeactingasonestructure underallloadingconditions. Thelinerisanchoredtotheconcreteshellwallsbymeansofstudanchorssothatitformsanintegralpartoftheentirecomposite structure underallmembraneloadings. Thereinforcing inthestructure hasanelasticresponsetoallprimarydesignloads.Thebasematis10'-0"thickand140'-0"indiameter. Thereinforcement inthetopofthebaseslabconsistsprimarily ofonelayerof818Sbarsat12"c/cinthehoopand2layersof58Sbarsat9"c/cin'theradialdirections. Thebottomreinforcement consistsof2layersof818Sbarsat12"c/cinthehoopand3layersofalternate 818Sand811barsat9"c/cintheradialdirections. Thebaseslabwaspouredintwofivefootliftswhicharetiedtogetherinordertotransmithorizontal shearinducedbybendingmomentsbyshearkeysandverticalAllbarsat6'-0"c/cspacing.

Themembranehoop(horizontal) reinforcement inthecyclinder wallsisgenerally intworows,oneoneachfaceconsisting ofN18Sat18"c/ccircumferentially extending to20'bovethebasematreducedto9"c/cspacingbetween20'nd57'bovethebaseandthenincreased to12"c/cspacingbetween57'nd113'springline) abovethebasemat.Themembranemeridional, (vertical) reinforcement inthecontainment shellconsistsprimarily oftwolayersoneoneachfaceof818Sbarson18"c/c.Intheregionofdiscontinuity at'hebasemattheamountofverticalreinforcement isdoubledto4layersof~18barsat1S"c/candatthecylinderdomeintersection oneverticalstaggerdrowof411barsat18"c/cisaddedtotheexistingmembraneverticalreinforcement toprovidediscontinuity bendingmomentresistance. Inadditiontotheverticalandhorizontal membraneandbendingreinforcing steel,inplanediagonalreinforcement hasbeenprovidedtocarryseismically inducedmembraneshear.The45degreediagonalbarsconsistof811barsspaced3'-0"onthehorizontal c/cplacedintworowsineachfaceandineachdirection. Thediagonalreinforcement isembeddedinandextendsfromthebasematto4-3"abovethespringline intothedomeforalternate barsand7'-0"fortherestofthediagonals. Thedomereinforcement consistsof818barsat18"c/cineachfaceineachdirection. Thecontainment structure enclosesanicecondenser containment systemwhichisdesignedtolimitpressurization othecontainment underdesignbasisaccidentconditions to12.0psi.Othersignificant designloadparameters aretheequivalent safeshutdownearthquake loadingof0.2gzeroperiodgroundacceleration andadesignbasistornadoof360mph.windandand3.0psidifferential pressure. Hotprocesspipepenetrating thecontainment areanchoredinthecontainment shellwiththeanchorsdesignedtoresistthepostulated ruptureoftheprocesslinewithoutlossofcontainment leaktightintegrity. Aloadfactorof1.5(additional safetyfactor)isusedwiththeinternalpressurecomponent ofdesignloadwhilealoadfactorof1.0isusedwithboththeSSEandTornadoloading.!)ATERIAL PROPERTIES Theparticular specified minimummaterials properties usedintheconstruction ofthecontainments aresummarized asfollows:(a)concrete-fc=3,500psiat28day(ACI-308-63,301,66,and214-65)(b)reinforcing rod-fy=40,000psi(ASTNA15) (c)linerplate=-fy=32,000psi;fu=60,000psi(ASTtlSA442-Gr.60) (d)equipment hatch-fy=38,000psi;fu.=70,000psi(ASTHSA516-Gr.70) (e)personnel hatch-fy=38,000psi;fu=70,000psi(ASTt<SA516-Gr.60) (f)hatchbolts-fy=105,000psi;fu=125,000psi(ASTHSA193-6r.87) InTable1canbefoundasummaryofthe"asbuilt"strengths aswellasameasureofthedispersior. associated withthematerials usedinthecontainment construction, basedonalimitedsampleofexistingtestrecorddata.AspartofPhaseIIofthisevaluation amoredetailedevaluation of"asbuilt"materialpropertydatawillbedeveloped.

2.0 IDENTIFICATION

OFLItiITING FAILURENODESASSOCIATED MITHUNIFORi~l TATICNRNALPEUInselecting thepotential limitingfailuremodesassociated withequivalent staticuniforminternaloverpressurization ofaPPRreinforced concreteicecontainment anumberofexistinganalyseshavebeenreviewed'. Theseincludethefollowing references:

Harstead, G.A."D.C.CookNuclearPowerPlant,AmericanElectricPower,EstimateofUltimatePressureCapacityofContainment Structure",

HarsteadEngineering Associates, ReportpreparedfortheNRCStaff,September, 1980.(SeeAttachment A)(2)VonRiesemann, M.A.et.al."Structural ResponseofIndianPoint2and3Containment Ouildings"SummaryofDraftReport.resultspresented to!IRCStaff,Technology-Exchange t~eeting5,17June1980.(3)(4)(5)(6)UnitedEngineers andConstructors "Evaluation ofCapability ofIndianPointContainment VesselsUnits2and3"presented toNRCStaff,Technology Exchangeileeting5,17June1980.AmericanElectricPowerServiceCorp.,"D.C.Containment DesignCalculations, AEP,1969.S.3arneset.al.IndianPoint!!uclearGeneratin UnitNo.2Containment DesinRepor~,'!estinghouse NucearEnergyystems,UnitedEngineers andConstructors, !larch,1969.Shulman,J."Analysis ofTVASequoyahContainment ShelltoDetermine ResponseofaCriticalPaneltoUniformInternalPressure", OffshorePowerSystems,September, 1980. Basedonthisreviewthefollowing areashavebeenidentified aspotentially limitingthecontainment capacitytocarryuniforminternalpressureload.(1)Bendingshearinthereinforced concretecontainment basematadjacenttoreinforced concretecylinderwalls.(2)flembrane tensioninhoopdirection inthereinforced concretecylinderadjacenttothebasemat(assuming norotational orshearrestraint bythecylinder). (3)Bendingmomentinequipment hatchendplate.(4)Bendingmomentinpersonnel hatchendplate.3.0POTENTIAL FAILUREblODEANALYSIS3.1SHEARFAILUREINBASEYATTheprogramusedtodetermine netshearandtensileforcesinthebaseslabis"GENSHL"whichwasdeveloped bytheFranklinInstitute ResearchLaboratoryof Philadelphia. Theprogramconsistsofamulti-layered staticshellformulation whereeachshelllayermayhavedifferent stiffness oroperties andcanconsiderelasticfoundation supportconditions. Thisisthesameprogramthatwasusedintheoriginaldesignandanalysisofthebaseslabfordesignbasisloadings. Auniformsoilreactiondistribution isusedfordeadloadplusinternaluniformpressurecase.Resultsoftheanalysisaresummarized asfollows:1.Specified minimumdesignstrengthofconcreteat28days=3,500psi2.t<eanSampleValueat28days3.flinimumSampleValueat28daysFoundation Slab:=4,950psi=4,156psiT=120inchesd=114inchesFromcomputeroutputasshowninTables2and3atsectionsindicated in.Figure2:

Evaluation forlowestmeasuredconcretestrengthvalue:NxzQxsk/ink/inComp+RunCase12.0psi,internalpressureAssume49.5psi,internalpressureOeadLoadOL+49.5psipressure1.8987.8291.3009.129-2.948-12.160-0.193-12.353SoilPar.1SoilPar.1SoilPar.5v=i~=12.353x1000=108.36psiwhere:Nxi=membranetensioninbaseslabQia=maximumverticalshearinbaseslabv=maximumshearstressinbaseslabFromAStlESectionIII-Oivision2andACI-359-80 CodeforConcreteReactorYesselsandContainments CC3421.4.1rIUsinglowestmeasuredmeanvalueofconcretestrength: vc-2r0pfc(1+IOr002Nu/Agjjr-,rc=20~4166!1+[00021-9.129x1000xtfltvc=2(64.46)[1 -0.152]=103.59psiNote:InternalPressureCapacitywherevernotedas"Psi"means"Psig"-~gggQgllXCLXt% ~RX2~M Evaluateformeanofmeasuredconcretestrengthvaluesk/inQx.ak/inComp.RunAssume53.8psi,internalpressureOeadLoadOL+53.8psipressure8.5091.3009.809-13.217-0.193-13.410SoilPar.1SoilPar.5v=13.410(10)1x114v"-117.63psivc=274950)1+I0.002(-9.809x1000~,1balllvc=2(70~356)C1-0.1635jvc=117.71psiInlikemanneritcanbeshoNnforaspecified minimumconcretestrengthfc=3500psithattheinternalpressurecapacityis46.4psi.Inthisevaluation nocreditistakenforthevertical/Illbarat6'/cinthebasematnorisanycredittakenforshearcapacityofthefillslababovethebasemat.Intable4canbefoundthelimitingpressurecapacityadjustedfortheassumption ofminimumspecified andminimumsampledmaterialproperties asdefinedinTable1.InReference 1theHarseadreportPg.5-1-1identified afailuremodebasedontheassumedpulloutoftheverticalmembranesteelinthecylinderwallfromthebasematashavingacontainment internalpressurecapacityof46psi.Tnepulloutfailuremodecapacityof46psiinternalpressurecapacityofthecontainment wasdetermined ivithoutconsideration oftheradialshear(diagonal tension)capacityoftheconcretevihichispermitted bytheACI-359codeeveninpresenceofmembrantension.Toignoretheshearcapacityoftheconcreteisnotinaccordance riithnormaldesignnoranalysisprocedures. Hencethefailurepressureintheconcretecontainment of53.8psiasdefinedbythecalculations performed inthissectionislimiting. 3.2MEHBRA</E HOOPTHSIO'lFAILUREOFCOtlCRETE CYLII>OER i~lembrane loadduetocontainment pressurization inthehorizontal (hoop)direction P=pRwhere:P=membraneloadinlbs/inofwallp=uniforminternalpressureR=meanradiusofwall(57.5x12=690inches)Hembraneloadcapacityofreinforced concretecylinderatitsbaseneglecting discontinuity momenttransfer: Available Reinforcement 1)2Layers818barhoopreinforcement at18"c/c=8in=5.33in2/ftofwallft2)3/8"Linerplate=3/8"x12=4.50in2/ftofwall3)2Layers811bardiagonalreinforcement at36"c/cconsidering onlythosebarsactingintension2x1.56x~2=1.47in2/ftofwall333ftFromTable1ofthisreportthemeanvalueofthereinforcement yield=49.8ksiandlinerplate=48.3ksiP=(5.33in2x49.8ksi)+(4.50in2x48.3ksi)+(1.47in2x49.8ksi)=265.4k+217.4k+73.2k=556.0kips/ft=46.33kips/inFromEq.1p=46,330lbs/in=67.1psi690>nInTable4canbefoundthlimitingpressurecapacityadjustedfortheassumption ofminimumspecified andminimumsampledmaterialproperties asdefinedinTable=l. 3.3PRESSURECAPACITYOFTHEEQUIPMENT HATCHCLOSURETheequipment hatchclosuresusedontheD.CCookContainments havebeenidentified (Ref.l)aspotentially limitingthecapacityofthecontainment tocarryinternalpressureloads.Thereasonsforthislimitation areidentified asfollows:1.Theendclosureisintheformofaflatplatehencepressureinducedloadingmustbecarriedbybendingratherthanmembraneshellaction.2.Aboltedspliceisusedinaregionofhighbendingmomentwhichmaylimitthecapacityofthehatchcovertocarrypressureload.3.Thefarspacedboltpatternandtherelatively lowrotational .stiffness oftheequipment hatchbarrelresultinlittlerotational stiffness orfixedendmomentcapacityoftheequipment hatchcover-barrel attachment. Thisrequiresthatthehatchbeanalyzedessentially aspinconnected (allowedtorotate)ratherthanfixed(momentresistant) atitssupportstherebysignificantly increasing centerspanmomentsinthehatchcover.Becauseofthepresenceoftheunsymmetric spliceandtheunsymmetric insertion ofthepersonnel hatchintotheequipment hatchcoverasshowninFigure3theevaluation oftheequipment hatchuniformpressurecapacitycannotbeperformed withahighdegreeofaccuracywithoutrecoursetoafiniteelementformulation. Twosuchanalyseswereperformed, oneofthecoverplatespliceandtheotheroftheequipment hatchcoverplateincluding theeffectofthespliceandtheinsertedpersonnelhatch todetermine. theirmaximuminternalpressurecarryingcapacities. ~r3.3.1SplicePlatet1omentCaacity3.3.1.1HandCalculation -considering 1"fullpenetration welddetailasshowninFigure4(1~Beforeproceeding toareviewofthefiniteelementanalysisofthespliceplateshowninFigure4,ahandcalculation wasperformed inordertohaveabasisofcomparison withthemoredetailedfiniteelementcalculation (1)flotetheHarsteadreportneglected theweldgeometryinitscalculation ofstresses. Given:SpliceasshowninFigure4-checksectionattopofweld(a)95-1"A-193Gr87boltsona224"lengthofsplice=2.38"spacingbetweenboltsontensionsideofspliceLimitingcapacityofspliceattopofweldisassumedatmeanyieldinoutermost fiberof2inchspliceplateontensionbolt,sideofspliceM2PL=sZ=(53.2ksi)1(2.38)(4) =84.41k-in/2.38 in.ofspliceLimitedtensilecapacityofspliceplateTx=t'I~x=1o5in+T='M/1.5=S4.41/1.5 =56.27kips/bolt MgointT'jd=(56.27)x(2.5+4.0+1.875)=471.26k-in/2.38 in.ofspliceMomentcapacity/inofsplice471.26/2.38 =198.01k-in/inMomentcapacityof4"platewithoutspliceM4<<PL=sZ=53.2ksi(1)(1) 16=141.87k-in/in<198.01~s.".4"plategovernsdesignCapacityofSplice=198.01]39,6of4"plate~87Checksectionatbaseofweld Limitingcapacityofspliceatbaseofweldisassumedatmeanyieldinoutermost. fiberof2inchspliceplateplus1"weld.(MinimumSpecified FoftheHeldmaterial=60.0Ksi)M2<<PL+1<~weld=sZ=(53.2Ksi)1(2.38)9=189.92K-in/2.38in.ofspliceLimitedtensilecapacityofsectionTx=M;x=2.5in.T=M/2.5=189.92/2.5 =75.97Kips/bolt Since75.97>56.27KipstopofweldlimitsdesignCheckcapacityofboltFromTable1MeanYieldof1"bolt=121.3KsiTensilearea1"bolt=0.605sq.in.Pyie]d=121.3x0.606=73.51Kips/bolt >56.27:.OK~

3.3.1.2FiniteElementAnalysisInFigure5isthefiniteelementmodeloftheequipment hatchsplicejointshowingplateelements. UsingthecomputerprogramAtlSYSforanappliedmomenttothe4inchhatchcoverplateequaltoareference containment internalpressureof40psi,.the.maximumoutermostfiberstressinthe2inchspliceplateis27.82ksiinelement76.Themaximumoutermostfiberstressinthefourinchplateisdetermined as46.27ksiinelement145.Itappearstherefore thatthe4inchratherthan2inchplateatthejointcontrolsdesign.Thisisdueprimarily totheweldwhichsignificantly increases theeffective thickness ofthespliceplateatitsconnection tothefourinchplate.3.3.2EuimentHatchCoverPlatePressureCapacityInreference 1Harsteaddetermined theequipment hatchcapacityof53.0psiuniformpressureloadingbasedonsimplesupportboundaryconditions ofthecoverasauniform4"thickcircularplatehavingadiameterof19'-10".8ecauseoftheeffectoftheunsymmetric spliceandpersonnel hatchinsertafiniteelementanalysisoftheplateisperformed. AfinitelmentmodelingoftheplatewhichincludedthespliceisshowninFigure6.Thepersonnel hatchbecauseofitsrigidequiva'lent 12"thicksupportringconnection totheequipment hatchisassumedtotransmitonlyreactionloadsduetopressuretotheequipment hatch.Thespliceismodeledasanequivalent 12"x4"beamparallel, tothespliceandequaltothestiffness ofthefourinchplateacrossthesplice.UsingthecomputerprogramA"(SYSthemaximumstressintensity inthecoverplateisdterminedinelement95asshowninFigure7adjacenttothesplice.Theresultant limitinginternalpressureloadatelement95is45.1psiforan"asbuilt"meanyieldstressof53.2ksiintheplate.FromSections3.3.1.1and3.3.1.2ofthisreportitisdetermined thatthespliceplatehasagreatermomentcapacitythanthefourinchplate.ThelimitinginternalpressurecapacityoftheEquipment HatchCoverPlateistherefore limitedbythecapacityofthefourinchplateat45.1psi.InTable4canbefoundthelimitingpressurecapacityadjustedfortheassumption ofminimumspecifidandminimumsampledmaterialproperties. 3'.4'RESSURE CAPACITYOFPERSOiklEL HATCH3.4.1EndPlateClosure Hecauseoftheunsymmetric stiffening ofthepersonnel hatchcoverplateassnowninFigure8,afiniteelementanalysisoftheplateisperformed todetermine itsinternalpressureretaining capacity. Asinthecaseoftheequipment hatchtheloadingfromthepersonnel hatchdooristransmitted tothepersonnel hatchclosureplateasareactionlineloadattheoointofsupport.Alsotheplateisconservatively assumedsimplysupported ratherthanfixedendsupported atitsconnection tothepersonnel hatchbarrelbecauseoftherelativelowrotational stiffness ofthebarrel.InFigure9isfoundthefiniteelementmodelofthehatchshowingallelements. TheplatandstiffnersystemisanalyzedusingthecomputerprogramAISYS.Themaximumoutermost fiberstressisdetermined inthedoorstiffneratelement87as79.3ksiforarefrence70psiinternalpressureload.Thepressurecapacitypofthepersonnel hatchclosureisdetermined: p=70x53;2=47.0psi79.33.4.2DoorThepersonnel hatchdoorisshowninFigure8.Itactsessentially asaonewayspaningsimolysupported stiffened plate.Thetotalspanofthe1/2"tliickplateis42".Theplateisstiffened by3"x1-1/4"solidplatestiffners onapproximately 15inchcenters.Assumingacomposite Tsectionwiththeeffective outstanding flangelegofteeequalto8timestheflangethickness, themomentofinertiaoftheTsectionis6.93in4anddistances totheoutermost fibersofthesectionare1.03and2.47inchesrespectively. tlaximumappliedbendingmoment:)~i=1bp121(15)(p)(422)3307.5FHomentCapacityofStiffenOoorSection:H=sZ=(5,200)I=(53,200)6.93=149,261c22iTLimitinginternalpressurep=149,261=45.1psi3307.5 InTable4canbefoundthelimitingpressurecapacityadjustedfortheassumption ofminimumspecified andminimumsampledmaterialproperties. ,4.0SUt"'u~'IARY Af'lDCONCLUSIOHFromthesummaryresultsoftheanalysispresented inTable4itcanbeseenthatthecurrentlimitinginternalpressurecapacityoftheD.C.CookContainments aretheequipnent hatchclosureplateandtheequipment hatchdoorat45.1psibasedontheuseofmean"asbuilt"materialproperties. Itshouldalsobepointedoutthatevenifspecified minimummaterialproperties hadbeenusedaswasthecasereportedinRef.1byHarsteadtheminimumcapacityoftheD.C.Cook'Containment is32.3psibasedonthemoredetailedanalysesreportedhereinratherthanthe23.5psireportedinRef.1whichwerebasedonmoreapproximate handcalculations. Itshouldalsobeemphasized thattheanalytical assumption usedinthemorerigorousanalysesreportedinthisstudyoftheequipment andpersonnel hatcheswhoselimitingfailuremodeswereinbendingstillconsidered onlyelasticbehaviorandsectionproperties. Ithaslongbeenestablished inthebehaviorofplateelementsduringtestandasthe'asisforthe1.5increaseinallowable bendingversusmenbranestresslimitsoftheASt<EBoilerandPressureVesselCodethatpl.ateandshellbendingelementsbehaveessentially elastic(smalldeformations) untiltheplasticsectionmodulusisreached.Sincetheplasticsectionmodulusforrectangular shapesassociated withthehatchplatesis1.5timestheelasticsectionmodulusthereissignificant additional safetymargininthehatchanalysiswhichisnotapplicable tothemembraneorsheartypefailuremodesidentified inthecontainment concreteshellandbasemat.Toquantifytheeffectoftheplasticsectionmodulusoftheequipment hatchontheinternalpressurecapacityofthecontainment anon-linear elastic-plastic finiteelementanalysisofthehatchcoverplateusingthecomputerProgramAf"SYSwasperformed fortheassumedfy=50.3Ksimaterialproperty. Evaluation at70psiinternalpressureor1.64timestheelasticcapacityofthecoverplateindicated .thatthemaximumdeflection oftheplateisstilllinearandthemaximumplasticstrainwas1.8timestheelasticstrainatyield.Therefore itisourconclusion thattheD.C.CookContainments aspresently designedandconstructed constitute abalanceddesign.Thatis,thetruepressureretaining capacityofthehatcheswhenthe1.5factordiscussed previously isappliedisapproximately thesameasthatoftheconcretelimitingportionofthecontainment, approximately 54.5psi.Onthisbasiswedonotrecommend anymodification oftheexistingD.C.Cook'ontainment hatches. 00 Figure1O.C.CookContainment Oimensions andGeneralArrangment Figure2ShearFailurePlanesandGeneralArrangment ofReinforcement inthe8basematFigure3GeneralArrangment oftheEquipment HatchClosurePlateFigure4GeneralArrangment oftheEquipment HatchClosurePlateSpliceFigure5FiniteElement51odelofEquipment HatchClosurePlateSpliceFigure6FiniteElementtlodeloftheEquipment HatchClosurePlate'Figure7OetailedFiniteElementi~lodeoftheEquipment HatchClosurePlateFigure8GeneralArrangement ofthePrsonnelHatchClosure,PlateFigure9FiniteElementi'lodelofthePersonnel HatchClosurePlateTable2ComputerCalculated Resultants ForcesintheContainment BaseSlabOue.toOeadl!eightTable3ComputerCalculated Resultant ForcesintheContainment BaseSlabOuetoaReference 12.0psiInternalPressure TABLE1SU&iARYOFtiItfIMUN SPECIFIED ANDASBUILTMATERIALPROPERTIES 1.LINERPLATE-SA442SAMPLESIZE=6S=2.27Cov.=0.0472.EgUIPMEiNT HATCH-SA516SAMPLESIZE=5S=2.74Cov.=0.051~GRADE60SPECIFIED MINIMUt1MEANSAMPLEVALUESi~lINIf'lUM SAMPLEVALUESGRADE70SPECIFIED MINIMUMi'lEAflSAtlPLEVALUESMIfIMUMSAiiPLEVALUESYIELD32.048.345.838.053.250.3ksiULTIMATE-60.064.762.470.081.280.23.e.5.BOLTING-SA193SAtiPLESIZE-2ea.1/2"x2-1/2"1"x5-1/2"(SPLICE)l-l/4"x10"(COVER)REINFORCING RODA1518SSAMPLESIZE9S=3.34Cov.=0.067CONCRETE-28DAYSTRENGTH-SAMiPLESIZE29S=0.508Cov.=0.103GRADE87SPECIFIEDilINIi~lUMi~lEANSAMPLEVALUESSPECIFIED MIiVIMUMi~iEAthSAMiPLEVALUES'PECIFIEDtlINIi~iUi~l flEANSAMPLEVALUESGRADE40SPECIFIEDtlINIMUMt1EANSAMPLEVALUESMINIMUMSAt'lPLEVALUESUflIT1and2SPECIFIED t'lINIflUil flEANSAt'1PLEVALUESYINItlUtl SAMPLEVALUE105.0119.0105.0121.3105.0120.140.049.844.3125.0137.0125.0141.0125.0140.370.081.875.5'.54.9564.112 WV64VJI140 ~409~i999)]l0lll974~~ii0viSOLUTIONFUNCTIONS IHSYSTEttREFEREHCE FRAttfTable2ComputerCalculated Resultant esintheContainment BaseSlabDuetoDeWeight10.207258K 04R0.220710K 0430.2340638K 040.249031E 0450.263875E 0460.279153E 0470.2940CEi50480.310?2'?E 0490.32737"E 04100.344161E04110.361263E 040.00.00.00.00.00.00.00.00.00.00.00.179783E 0.1816692E 0.183450E0.185155K 0.186704f0.188343E0.189335E 0.191265K 0.19263>>E 0.193942K0.195193K040.834138E 05040.548537K 05040.243167E 05040.8N924E04O4-O.42e949E 0504-0.796689E 0504-0.11C619E 0604-0.159789E 0604-0.20322lf 0604-0.24S953K 0604-0.29)069K 06-0.120054E"DR 0.00.148695C-OR 0.00.414161K-02 0.00.675165E-OR 0.00.9304051E DZ0,00~117869E-0 10.00.141846K-ol 0.00~164i827E-Dl 0'0.186456E-01 0.00.2071452-01 0.00.226201E-ol 0.0-0.719304E-DR 0.70479OE-OR -0'85N9E-02 -0.64346.7E-02 0'36066K-DR -0.603897K-OR 0.5646ii9E 02-0.56200034'.E-02 -0.4757042E-DR 0.421537K-DR -0.361094K-02 09163836.E030.16218iiE 030.159343E-03 0.156762E 030.152896E-030.148194"E-030.142618E-03 0.135108f-030.126616f-03 0.120092E-03 0.110472K-D3 ACTUALSTRESSRESULTAIITS-SIIELL REFERENCE FRAtlf-BODY 7%ATCEIITROIOc STATIOtlCEIITROIOS tlO;tlfRID~HOOPHllLB/IHtt12LB/IHH22LB/IN013LB/IHQ23LB/IHHllIH-LB/IHH12Itl-LB/IH tt22IH-LB/IN62.66262.BIIR62.86R62.811362.656.Sll62.85R62.811562.656262.811662.R6262.Cll762.8626".Sll0.179783E0.1S1662E0.183450K0.185155E0.166784E 0.160>>343K0.189335K 040.0040.0040.0040.0040.0040.0040.00.216753K 0.216602E 0.216593E0.216720E 0.R16971E0.217339E 0.217818E04-0.207258K Q4-0.220710K04-0.234638E 04-0.N9031E 04-0.626'3875E 04-0.279153E 04-0.2948ii E040.0040.0040.0040.0040.0040.0040.0-0.192634E 05-0.488963f 05-0.80454ioiE 05-0.113994E 06-0.149570E 06-0~187235E06-0.227037E 060.00.00900.00.00,0'~0060.0060.0060.0060.0862066R62.6110.1914"f040.00.218402E 04-0.310929K 040.0-0.269024K 962.86262.8110.192634if 040.00.219084K 04-0.327378E 040.0-0.313238E1060.06"610110;19W."E04"0;00:039060r04=0".344161E"04 D.E-0.359717E ll62.86262.8110.195193E 040.0-0.220726E 04-0.361263E 040.0-0.408547E 00,189855E 060~177062E060.163588E 060,149402E Ob0.134474E 060.11877ef 060.102285KOb0849739E050.668169E 050.47793if 050.278602K 05STATIONLAYERHO.HO.1234567STRESSSllINSIDE0.14413K01-0.46754E 02-0.1609iE-05 -0.465i7E 020.12971E01<<0.40609E 02"0.13917E-05 0.13126E01-0.46667E OR-O.16O44E-O5 -0.46276E 020~1113CEol0403r59E02-0.13820K-05 0.00.00.00.00.00.00.00.00.00.00.00.00.00.0RESULTANT STRESSES-PSI BOGYSSTRESSSllSTRESSS12STRESSS12OUTSIDEINSIDEOUTSIDESTRESSS22INSIDE0.36946K02I0.99142E-05 0.28696K030.9C645K-05 0~3>>4313K020.85744K050.24?obfD3STRESSS22OUTSIOE0.33971E020.98951E-05 0.28607E03093099E050.29374E020.85194K-05 0.24529E03

COOKPLAHTSOILPARAtlETER STUDYtIO.1LOAOItlG3DEADIIEIGIIT312-30-80ComputerCalculated. Resultant ForcesiContainment BaseSlabDuetoaReferen.0psiInternalPressureSOLUTIOII FUIICTIOIIS IHSYSTEtiREFfREtlcE FRAtiE10.362819E 20.300629E 3O.R40632E 40186rSZE50~126535E60.721415C 70.19$453E8-0.319680E 9-0.618996E 10-0.13054ZE ll-0.176029E 040.0040.0040.004Q.o040.0030.0-030.0030.0030.0040.0040.00.12<i021E 040.125169E 040.126290E 04012732rDE040.1"6295E 040.129201E 040.1300<>5E 0<i0.13OGReE O40.1315<>?E 040~132209f040~13261ZE040~197442E0.1477Z6E 0.108624E0.600810E 0.609194E0roQ246E0.493393E 0560519E0.705932E O.926286C ,0.121891E 06"0.181325E 0106-0.161004E Ol06-0.180663E Ol05-0.180361E 01050.1600<>OE 0105-0.179?RZE 0105-0.179405E 0105-0.179091E 0105-0.178760E 0105-0.1764i69E 0106-0.178159E 010.00.00.00.00.00.00.00.00.00.00.0-0.936208f-02 -0.9>0639E-02 -0.939061E-02 -0.93292QE-OZ -0.923599E-02 -O.912352E-02-0.90039<>E-02 -0.866667E-02 -0.878656E-02 "0.871393E-OR -0.667<i6<iE-02 0.193628E-03 0195016E030195358E030.1'94910E-03 0.193908E-03 0.1925?GE-03 0.191125E-03 0.18975<IE-03 0.166653E-03 0.180003E"030.187975E-03 ACTUALSTRESSRESULTAHTS-SIIELL REFEREtICE FRAtlE-BODY 7/ATCEIITROIO< STATIOIICEHIROIDS HO.ttCRIO.IIOOPtillLG/IHOI'>LG/IHll22R13LB/IHLB/IHO23LG/IHtillIH-LG/IHti12.IH-LB/IHti22IH-LG/IH162.66262.811262.66262.611362.86262.61162.66262.611562.66262.811662.6626"..811762.662GZ.I>110~124021E040.00.125169E 040.00.12629OE 040.00.12735E0<i0.00.126295E 040.00.129201E0<i0.00.13004.E0<i0.0862.652CR.GII0.13062of 0<i0.0962.66262.6110.1515<i?C040.01062.CGZ62.8110.132209E 0<i0.0ll62.66262.6110.13"612E 0<i0.00.163855E 0<>-0.362619E 040.00.16391<>E 04-0.3006 9E040.00.16320?E 04-0.2<i0632E 040.00.163539E 04-0.162652C 040.00163115E0<>-0.12653rSE 040.00.1625<>if 04-0.'/21<>15E 030.00.1616"1C 04-0.193<ir>3F 030.00.16095?E 040.3196QCE 030.00.159956E 040.81699GE 030.0O.l'>:GZOE 040.130542E 040.00.157549L 040~178029E040.00.126612E 060.7622GOE 050.3669?GC 050.736369E 04-0.123520E 05"0.2296<i2E 05-0.2<>9$14E050.00.00.00.00.00.00.0-0.166653E 050.0-0.453569E 040.001712"1E05000.460396E 050.00.250910E 060.236913E060.223955E 060~212269E060.202044E 060.193441E 06.0.186555F 0.161563E 060.17652ZE 060.177466E 060.178462E 06STATIOHLAYERIIO.IIO.STRESS511IH51DEREULTAHI'TRESSES-PSI STIIC55511Sll\L55SIROUTSJDEIl>SIDEBODY8STRESS512OUTSIDESTRESS522II>SIDESTRESS522OUTSIDE1235670.2<i416E 01-0.73659E 02-0.25338E-05 -0.?319QE 020.2)749E01-0.61216E 02-0.20934E-05 0.22035EOl-0.73<i81E 0202r5241E05-0.72691E 020.18357EOl-0.60709E 02-0.20738E-05 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.60108E020.15811E-04 0.457<ilE 030.1571ZE"04 0.53466EOR0.131<ICE-04 0.37609E030.5419?E020~15773E-04 0.4556<if 03015603E040.45064EOR0.13037E-04 0'7<>56E03

TABLE4SUf1NARYOFLIHITINGINTERNALUNIFORt1PRESSURECAPACITYOFD.C.COOKCONTAINMENT INTERNALPRESSURECAPACITY(ELASTICANALYSIS) (SeeSubsection 4.0forPlasticAnalysis) CRITICALFAILURE110DESPECIFIED MINItlUNPROPERTIES LOlJESTii/EASURED SNlPLEPROPERTYMEANSAMPLEPROPERTYl.BendingShearingConcreteBaset1at2.MembraneHoopTensioninConcreteCylinder3.BendingCapacityofEquipment Hatch4.BendingCapacityofPersonnel Hatch-(a)ClosurePlate(b)Doorfc=3500psl;fc=59.16Limitinginternalpressure=45.8psify=40,000psiLimitinginternalpressure=50.2psif>=38,000psiLimitinginternalpressure=32.3psify=38.000psiLimitinginternalpressure=33.6psiLimitinginternalpressure=32.3psifc=4100psi;fc=6403Limitinginternalpressure=49.6psif>=44,300psiLimitinginternalpressure=61.2psif>=50,300psiLimitinginternalpressure=42.6fy=50,300psiLimiting.internal pressure=44.4psiLimitinginternalpressure=42.6psifc=4950psi;fc=7036Limitinginternalpressure=54.5psify=49,800psiLimitinginternalpressure=67.1psify=53,200psiLimiting-internal pressure45.1fy=53,200psiLimitinginternalpressure=47.0psiLimitinginternalpressure=45.1psiNote:InternalPressureCapacitywherevernotedas"psi"means"Psig" CCNTAILlHEMT QlQllSTEELLILlEll>/b"THICKSPRlHGLlNIAZSTEELLINER>io'HICK~g~~'II5ŽID.STRELLIQIR>/Z'HICK<ms'~rGROUQOFL."~QRAOK4'lo"pBASEf1~ToPopMATleo'-0"OD~.GFCTtohJA-AGECTIQN4,L F.LEYATIQQ Figure1D.C.CookContainment Dimensions andGeneralArrangment .CL.F.c,.I~IAllL'I'.I7a~h\~4Sa,I,4$.TCHI~'nv0'r;CgC...l.Y=fi//vi.IiIll~T~+II~~5-~n.)lc~gl"I."IICI-"Is)=i]I.~5~~'Lvg77!w!!IggNdcc14I)-:)rCl~I<I~'p->I"4AjI'I-LCIl-IO'2A~~le."'.=vI'Pell'c)),'4IAtf+JLC ~~5Av~Gse(cd~P.A><I3yQRI&poP,c)w~.NOT=1.iV:<~irL.ii; ~Ni<W=.(r.=)<IVEIlT'3TnEC"=tIT"-R JFC3llTHNr-II.c~-=r.TA:.-II:.,T"-G. Figure2ShearFailurePlanesandGeneralArrangement ofReinforcement intheContainment BaseMat 5'-31'i'-t5 YPh-32-!~/0"$HDLESON25O'I<"S.C.S4EQUALSPACES-BoLTS8+EQ0ALSppeES-..-SoLTS'.---~-~--------I=I0'-30'O-3/<" 4HOLCS,ONl24"S.C.Figure3GeneralArrangment oftheEquipment HatchClosurePlate I]II)Ie~SI~~0~>(

<<)rLO<<%Oral<< ~0~.I~5~4'F0514$145I~014014<<1%0I5I1%0)~0%Bot.TWal.bPIIOf:IIIL),It/It>I.ILCIt%ltklt)Ill%IIe<<)~l1~ClICTO5)SCSIItl10~5SSl~41010%OC5~CICt100I~I~5I~)5C5Cl~5<<55~)0%7<<g~iII~ClICt20)04~4~44$~5~1141%IItl~tlttt4~00-$.)l-4.15-4.Il-I~SC.<<.0$-5~)4tWC5100lhJOIST)Os4LVCIC0101140rOOCLI4)Ilt-.SleCIIltI))t)4CCOritev~v%1tIP)554IV4.v<<S~)0C.~004raaSLO)II>~~rI'1nltr.ElefnentHodelof'qulpmrntI%ItchClos>>rrI'intr'.Splice 31PREP7-PLOT 34227337283831342474819565351/6e01212891121,4131411151221818853767,128138151515815,gfg~QiI16151?PREP?EPLTANSYSFigure6FiniteFlementModeloftheEquipment HatchClosurePlate rgDI~SpealOF-'.21264o313312212142/1j'6125143156875128145154155Bc1291g1311301471481571562-~l"13213813914915815'52158161159160cotTANSY56Figure7DetailedFiniteElementMode(oftheEquipment HatchClosurePlate /63/i"g!DEPTH(y/'"DEPTH.(YVP)~I$~9'lz"DEPTHPLsrrEIIP/pIT'oY'RwPEPTICi"PLATEP./7)rF'CWEAS3DEPTH~4~!TVP3~4~>Figure8GeneralArrangement ofthePersonnel HatchClosurePlate

11172S916332982128147202'?1361926335323136393533373iQ12?4856314?5562046546120ea6915125182511417241031623QiS5360844525974351586<7167017691870.8-5'?.8-44.8-31.9-189-5'7.120.133.~46.0SQ0AlaLOCKPLAYPLAYSAtlALVSls CEO?1ETRVANSYS Figure9FiniteElementModelofthePersonnel HatchClosurePlate

SECTION2PhaseIIoftheD.C.CookInternalPressureContainment Analsis-Probabilistic AnalsisInthiseffortthevariability ofthe"as-built" materialparameters onthebestestimatecapacityofthecontainment tocarrystaticuniforminternalpressureisbeingevaluated. Fourpotential limitingfailuremodeshavebeenidentified bydeterministic analysis. 'woofthemodesinvolvepotential failurebyplatebendingoftheequip-mentandpersonnel hatchclosureplates.Theothertwopotentially limitingfailuremodesarebymembranetensionfailureofthemainsteelhoopreinforcement atthebaseof'hecontainment shellandshear(diagonal tension)failureoftheconcretebasemet.TheACI-359Codeequationgoverning diagonaltensionfailureisbasedontestresultshenceitisalsobeingevaluated inaprobabilistic manner.Resultsofthisstatistical analysiswillbeprobability densityfunctionofcontainment resistance definedforthetwodifferent contain-ment"as-built" materialproperties andinthecaseofshearinthebasematthestatistical natureofthecodedefinedfailureequation. Thisevaluation shouldbecompleted byMay15,1981.SECTION3PhaseIIIoftheD.C.CookInternalPressureContainment Analsis-LocalizeDnamicLoadsInthisevaluation dynamicanalytical modelsofthecontain-mentstructure assuminglocalizedynamicpressureloadinginputarebeingprepared. Thecontainment areaswherethedynamicmodelsarebeingde-velopedincludetheequipment andpersonnel hatchclosureplates,theshellportionofthecontainment shelladjacenttothebasematandthebisematadjacenttothecylindershelljuncture. Thedevelopment ofthedynamicmodelsshouldbecompletebyMay30,1981.Thenusingtheinternalpressuretimehistoryforcingfunctions, adynamicanalysiswillbedonetodetermine theforcesandmomentsatthecriticalsectionsofthecontainment.

DONALDC.COOKNUCLEARPLANTUNITNOS.tAND2ATTACHMENT NO.2TOAEP:NRC:00500A SECONDQUARTERLY REPORTONHYDROGENMITIGATION ANDCONTROL 0

2.0 Distributed

InitionSstem2.1Introduction Indiana5MichiganElectricCompany(ISMECo.) hasdecidedtoinstallaDistributed IgnitionSystem(DIS)inUnitNos.1and2oftheDonaldC.CookNuclearPlant.TheDISutilizesthermalresistance heatingelements(glowplugs)locatedthroughout thecontainment building. Operation oftheDISwillbeaccomplished bymeansofmanualcontrolswitcheslocatedinthemaincontrolroom.2.2Distributed InitionSstemDesinTheDISisatwo-train systememploying sixtyeight(68)igniterassemblies locatedthroughout thecontainment building. Eachtrainofthirtyfour(34)igniterassemblies isfurtherdividedintotwogroupsonegroupofsixteen(16)assemblies inthegenerallowervolumeareaandasecondgroupofeighteen(18)assemblies inthegeneraluppervolumearea-including theicecondenser upperplenumvolume.EachigniterassemblyconsistsofaGeneralMotorstype7GACglowplugandaDonganElectriccontrolpowertransformer (model52-20-435) mountedinasealedboxhousingasshowninFigure2.Theigniterboxisawatertightenclosure meetingNEMA-4specifications. Acopperplateisemployedasaheatshieldtominimizetemperature riseinsidetheigniterboxandadripshieldisutilizedtominimizedirectwaterimpingement onthethermalelement.Thetransformer isseismically mountedtotheigniterboxusingunistrut. Theentireigniterassemblyisseismically mountedsoastopreventanypossibleinterferences withsafety-related equipment during/after adesignbasisseismicevent. Thenormalandemergency powersourcesforeachtrainofignitersmeetsElectrical ClasslEspecifications andtheelectrical trainseparation criteriacommensurate withaClass1Esystemaremaintained intheDISdesign.TheDISwillbeamanualsystemcontrollable fromthemaincontrolroom.Twocontrolswitchespertrainwillbelocatedonauxiliary relaypanelsA7andA8inthemaincontrolroom.Thecontrolswitchesareofthetwo-position type,'off'nd'on',andredandgreenindicating. lightsareprovidedaboveeachswitch.Controlroomannunciation willbeprovidedtoindicatelossofpowerandfailuretooperateduetohypothetical controlcircuitequipment mal:functions. 2.3JIIAIAb1Theigniterassemblyisa16"x12"x8"enclosure meetingNET-4specifications. Theigniterisprotected fromdirectwaterimpingement bya1/8"steelplate(10"x18"galvanized steel)dripshieldweldedtothetopoftheenclosure. Theigniterismountedtotheenclosure througha6"x4"x1/4"copper,platetoreducethetemperature rise.insidetheenclosure during.periodsofcombustion. Allelectrical connections insidetheigniterassembly; itsassociated conduletbox,andthetwospliceboxespertrainutilizedintheDISareprotected withheatshrinktubingtoenhancesystemperformance inanadverseenvironment. Inaddition, allDIScablesinsidecontainment areroutedinconduitandhenceareprotected fromtheenvironment associ'ated withhydrogencombustion. Accesstotheinterioroftheigniter'3assemblyisthroughahingedcoverplatesecuredwithscrews.Abeadofsiliconerubberwillbeplacedaroundallboltholesintheigniterassembly. DetailsoftheigniterassemblyanditsconduletboxaregiveninFigureNos.1and2. 2.4IniterAssemblLocations Igniterassemblies aredistributed throughout thecontainment topromotecombustion ofleanhydrogen/air/steam mixtures. TheDISwillminimizethepotential forhydrogenaccumulation andprecludedetonations intheunlikelyeventofadegradedcorecoolingeventsimilarinnaturetotheTflI-2accidentinvolving substantive hydrogengeneration. Thecontainment airrecirculation/hydrogen skimmersystem,inconjunction withupperandlowervolumecontainment sprays,providessufficient mixingsoastopreventthestratification orpocketing ofhydrogeninthevariouscompartments ofthecontainment building. Approximate igniterassemblylocations arelistedinTable2-1.Ageneralviewof.thecontainment structure isprovidedinFigure3andapproximate ~~~~~~~~~~~~~~~igniterlocations showninFigureNos.4,5and6.Thelocations givenareforD.C.CookUnitNo.2andaretypicalforUnitNo.1.'inor'.variations'n ig-niterlocations mayberequiredin.UnitiVo.1'inconsideration ofphysicalinter-ferenceswith.existingequipment. A'schematic representation oftheDISelectrical networkinsidecontainment isprovidedinFigureNos.7and8.Oneofthequestions raisedbymembersoftheNRCstaffduringourmeetingofMarch18,1981dealtwiththeneed,orlackthereof,toinstalligniterassemblies intheinstrument, room.todateindicatethatexceptforpotential betweentheinstrument roomandeithertheTheresultsofourreviews.performed in-leakage thereisnocommunicatio'n generallowervolumeorthepipetunnel(annulusregion)withtheexception oftheflowpath-through thehydrogenskimmerductwork. Theabovenotwithstanding, itshouldbenotedthatanyleakageintotheinstrument roomwould,inallprobability, besignificantly lessthanthehydrogenskimmerflow(100CFt1pertrain)outoftheroom,thuspreventing Itheaccumulation ofhydrogentocombustible levels.Itshouldalsobenoted,thattheeffectsofhydrogencombustion on'required'quipment locatedintheinstrument room,pressurizer pressureandpressurizer leveltransmitters, is,forallintentsandpurposes, boundedbythecalculations contained inAttachment No.4ofthissubmittal. TABLE2-1IGNITERASSEMBLYLOCATIONS* Sheet1of2No.TRAIN'A'omartment/Area-El evationNoTRAIN'B'omartment/Area-El evationA-1A-2A-3A-6A-7A-8A-9A-10A-11A-12A-15A-16A-17A-18A-19A-20A-21A-22A-23A-24A-25A'-26A-27A-28A-29IceCond.UpperPlenumIceCond.UpperPlunumIceCond.UpperPlenumIceCond.UpperPlenumIceCond.UpperPlenumIceCond.UpperPlenumIceCond.UpperPlenumInside¹1SGEnclosure Inside¹2SGEnclosure Inside¹3SGEnclosure Inside¹4SGEnclosure InsidePZREnclosure Outside¹1SGEnclosure Outside¹2SGEnclosure Outside¹3SGEnclosure Outside¹4SGEnclosure OutsidePZREnclosure PrimaryShieldWallPrimary.ShieldHallPrimaryShieldWallPrimaryShieldHallPrimaryShieldWallPrimaryShieldWallEastFan/Accumulator RoomEastFan/Accumulator RoomWestFan/Accumulator RoomHestFan/Accumulator RoomVicinityofPRTUpperVolumeDomeAreaUpperVolumeDomeArea708'09'09'09'09'10'09'86'86'86'86' 686'59'662'62'62'62'47'48' 648'48'41'48'31'29'34'18'60'60'-1 B-2B-3B-4B-6B-7B-8B-9B-10B-11B-12B-13B-14B-15B-16B-17B-18B-19B-20B-21B-22B-23B-24B-25B-26B-27B-28B-29B-30IceCond.UpperPlenumIceCond.UpperPlenumIceCond.UpperPlenumIceCond.UpperPlenumIceCond.UpperPlenumIceCond.UpperPlenumIceCond.UpperPlenumInside¹1SGEnclosure Inside¹2SGEnclosure Inside¹3SGEnclosure Inside¹4SGEnclosure InsidePZREnclosure Outside¹1SGEnclosure Outside¹2SGEnclosure Outside¹3SGEnclosure Outside¹4SGEnclosure OutsidePZREnclosure PrimaryShieldWallPrimaryShieldWallPrimaryShieldHallPrimaryShieldWallPrimaryShieldWallPrimaryShieldWallEastFan/Accumulator RoomEastFan/Accumulator RoomWestFan/Accumulator RoomHestFan/Accumulator RoomVicinityofPRTUpperVolumeDomeAreaUpperVolumeDomeArea709'09'09'09'09'09'09'86'86'86'85'82'62'59'59'59'59'42'37'36'36'37'45'30'29'23'34'18'60'60'

Sheet2of2Ho.TRAIN'A'omartment/Area-El evationNo.TRAIN'B'omartment/Area-Elevation A-31A-32A-33A-34UpperVolumeDomeArea-760'pperVolumeDomeArea-748'pperVolumeDomeArea-748'pperVolumeDomeArea-748'-31B-32B-33B-34UpperVolumeDomeArea-760'pperVolumeDomeArea-748'pperVolumeDomeArea-748'pperVolumeDomeArea-748'EY:SG-SteamGenerator PZR-Pressurizer PRT-Pressurizer ReliefTanklocations givenareforDonaldC.CookUnitNo.2andaretypicalfor~~~~itNo.1.

'IL~

  • <<~<<tII<<~<<tr(tl~~<<II'III~1/I<<'<<<<A1

NIfiIPI"~p't7 AEP:NRC:0500A768'pperVolumePolarCrane715'pperePlenumI)@drogenRecombiner 692'ceBedPressurizer LowerInletDoorsI(I(II1II'ZKf"1lSteamGenerators 650'7"Lower.VolumeInstrument RoomRecirculation FanPressurizer ReliefTank4q>'rReactorYesselI',FIGURE3 Section'A-A'levation 618FIGURE4gA-i<EastFan/Accumulator RoomPr,imaryShieldHa'ilCraneHallIl9-IA10XiInstrumentRoomLO8-2>g~--A>+VE'.HestFan/Accumulator Room48-2WQ-i7QID.C.CookUnitNo.2Containment. PlanBelovedElevation652'7"Pressurizer ReliefTankTrain'B"IgniterTrain'A'gniter FI6~A-Z8-c.IceCondenser p~lO~p,t5g~gP/j/~+M/Q/D.C.CookUnitNo.2Containment PlanAboveElevation 652'7"Train'B'gniter aTrain'A'gniter L~~ FIGURE50,PlatformElevation 748'5"PlatformElevation 759"32+33IIceCondenser TopDeckDoorsElevation 715'.C.CookUnitHo.2Containment PlanAboveElevation 715' 00 14IrtIIIIIIII4IIIIIII4I'IIII1IItI1II'I4~IIIII1I~I41I~IIIIII14'1tIi1i4I~II4~I'ti4i~I4II1'II-'4I1~~4I~I~'I'II!IIt111I4i4i~4I(~44~IIIIIfIIIIIII~IIIIIIIII.'I}'III'IIII~t!IIz7Bx4I4~jg'muzi!:Iiki7'L~~L.gIAZ~iQ~+ItI"4'1I1144I~~.~1'I4II~444441I~~III'II1~44l~~I4'II'~4f~I4'4I4I'4i4,1'}4I4iI44'I~~~f,'III+2Mzw&&U7-I1'~4~4tI~I~I'JI4~I1I'I~I1.-!4~,'(4',4~1I4III4I4!i*4'4'4Il~,~sI~.'~41~~,~4'IItI14~III~II~1I!IItII1~a~I4~~~4II~Ii;'4I4111II1II~1Itl'!I}I'iIII444~4I~I4iII'1IIIII~!}IIIIII;'4I}I4iIII~Is4II!~~t!I.IIIIii'iI~1,N~IIIII~I1III4I1II4i1IfIQII~I4tIIIi(IIIIIIII4II1/QIf/il441I~IIIii~14IIaII'II4x~mWAC2e~4I'441tt~'444I~t44~III~jkI4I1IIII~sI4tl4J~as~t44492-'ing~+71~'.4tIIi+(IWII}14IIiIIIa~41~t,~~~1I4-~4i1't441~I~it~~III*44~I~~fIII1'r4III1I*~}II'tI',III4II4II4-'4}Vat-='4w+~g4If~ts~I~441II444.1(.'I4ttettIIII4li~'I4ItI~IIIi~44II1III1IIIIIII(IIIIII~tII!1~I*aI'."}IIIII~~1I4I~JII41IIIIII6~AHsIIIkIII4II!I~'.~IIIi'II4~441III1~.II~}'IIeIII'i~.1I!I\.IIIIs1fI~4I~!III4II4I4IIkI!IIsI'14I11III1'I4I.II4sI"i:kII-I4f4~II';fi1~4-'II11i4*I4iIII4iJI4,t~.IIIti~444iI1i'II14"1k'.I!I4III~li~I'I','4Jk444414~~14s~Irv~EiddA.4~4(1k4:4'/T14IIIIIIIII'9aI4ItI's~41tP~~cfEAHLZIitIi11~II4~1iIeke~&44MMe4d~.~4I4I1~"'4-'4IIII4iI}iI!IIII"tIi~II.IIIIIIIiII4IIIII!IIIIIIII(I1'IIIIIIIIfI1II~4~I41~'4't4 4 'IcII1cIp1~1I~i~ItI'I~~~c1'icc1-1*r~1P',~1IIIItli,"icITI.~/~pgIt~III~chI1+cIcv.BE???:A&7&w7AJW vlt~IdC~i-cczxzemwII~III~rc~'I~IIII~~~Ig,cI1"/Q,ffIc~~tc'ItIII1II11-.1~iIccIS~vczw<WAX'~PfZ&7 CPS-:2.+W~7ERB i~lil~II*ctcXA'/WANEE2Ã/~A>..rr? I[~i~~cc,i~c~wciIci)cjt--.~~-i+ItI~IL'-Li'c=-~~~~c=~c*.=v1'~cP8z....f/'I+'~v1+c~cI1.IliiMJP>'1'{~'OP{:*<<,I~~I~+gj~IIi"I'II~uIII,~1~.~o1IIr,If'Gq.a~PCII~~1IMPIIIIII*~~:::&E?I?ER?rt~ ~:CJR+EW: Cr??WRIER7/YEnZ7:: YXFZe~im~RS:-.cde/.tlvI'~tItI*LZrr=Au'2CRa~~..rr&iHwWzd:NA'd mAl.z>-.~IIIV~;C~{?a;cInder~o.4;'507cz~MMJ&f', ~IvI1t'1II~ccIi~j+4'J'. DONALDC.COOKNUCLEARPLANTUNITNOS.1AND2ATTACHMENT NO.3TOAEP:NRC:00500A SECONDQUARTERLY REPORTONHYDROGENMITIGATION ANDCONTROL

3.0InadeuateCoreCoolinHdroenControlEuiment3.1Introduction Therearetwoprimaryconcernsassociated withaninadequate corecooling(ICC)eventsimilartotheTMI-2accidentinvolving thereleaseofsubstantive amountsofhydrogenandsubsequent combustion utilizingtheDistributed IgnitionSystem(DIS).Theseconcernsinvolve,(1)theabilitytoachieveandmaintainthereactorcoolantsysteminasafeshutdowncondition and(2)maintenance ofcontainment integrity throughadequatehydrogencontrol.Theequipment locatedinsidereactorcontainment requiredtoperformtheabovefunctions isidentified inthissection.Thesurvivability oftheequipment discussed hereinduringperiodsofhydrogencombustion isaddressed inAttachment No.4ofthissubmittal. Thecontainment responsetohydrogencombustion iscontained inOffshorePowerSystem(OPS)ReportNo.36A05previously transmitted totheCommission asAttachment No.2toourfirstquarterly reportonhydrogenissues(AEP:NRC:00500 dated12January1981).Theanalysesperformed byOPSutilizing theCLASIXcomputercodeclearlyindicatethatthepeakpressureresulting fromhydrogencombustion iswellbelowtheultimatestrengthoftheCookPlantcontainments. 3.2~EiEETable3-1liststheactivecomponents insidecontainment requiredtofunctionduringand(or)afterperiodsofhydrogencombustion. Thelocationofthesecomponents andtheirsusceptibility tohydrogencombustion effectsareaddressed below.

(1)SteamGenerator Narrow-Ran eLevelMonitors.Threesafety-grade differential pressuretransmitters (tLP)areemployedoneachsteamgenerator tomonitornarrow-range steamgenerator waterlevel.ThekPtransmitters, manufactured byITT8arton,arefullyqualified forpost-accident useinsidecontainment (LOCA/MSL8 qualification). Thesetransmitters arelocatedinthegenerallowervolume,withtwotransmitters persteamgenerator mountednearlyelevenfeetbelowthemaximumcontainment floodlevelof614'levation. ClasixrunJVAC4(seeAttachment No.2toourAEP:NRC:00500 submittal -OPSReportNo.36A05)represents theminimumtimeto'ombustion fortheS2Dcasesruntodate.andhencerepresents thecaseforwhichtheminimumcontainment waterlevelwouldexistatthetimeof'nitial combustion. FigureNo.32oftheOPSreportshowstheinitialcombustion tooccurinthelowercompartment approximately 4,600secondsintotheS2Deventsequence. Assumingthatwateristransferred tothecontainment fromtherefueling waterstoragetank(RWST)solelyviatwocontainment spraypumps,itiscle'arthattheminimumusableRl<STvolumespecified inthePlantTechnical Specifi-cations(350,000gallons)wouldhaveeffectively beendelivered tothecontainment pumplongbeforetheonsetofcombustion. Inaddition, theOPSreportshowsthatapproximately 22.4Xoftheinitialiceinventory hasbeenmeltedduringtheLOTICportionoftheanalysis; uptoatimeof3480seconds.Assumingtheinitialiceinventory tobetheTechnical Specification minimumvalueof2.37millionpounds; ~' itisthusshownthatinexcessof530,000poundsoficehasbeen.meltedpriortocombustion. Thisicemeltisequivalent toapproxi-.mately.80,000gallonsofadditional waterinthecontainment. Combining theicemeltwiththeRl<STwateryieldsatotalcontainment "waterinventory of430,000gallons,well-inexcessofthewaterinventory whichwouldresultinsubmergence oftwoleveltransmitters persteamgenerator. Thus,itisclearthatthesteamgenerator narrow-.rangelevelmonitoring functionwouldnotbesusceptible totheeffects.ofahydrogencombustion environment. '(2)Pressurizer PressureandPressurizer LevelMonitors-Thepressuretransmitters andthekPtransmitters utilizedfor.thepressurizer (PZR)pressureandlevelmonitoring functions, respectively arelocatedintheinstrument room.Thesetransmitters, -manufactured byITTBarton,arefullyqualified forpost-accident use-.insidecontainment (LOCA/MSLB qualification). AsstatedinSection'2.4ofAttachment No.2ofthissubmittal, ourreViewsperformed to'dateindicatethatthereisnocomnunication betweentheinstrument roomandeitherlowercompartment orthepipetunnel(annulusregion)-;otherthanthehydrogenskiomerductwork. Inaddition, theCLASIXH=analyses donotpredictcombustion inthedead-ended volume,ofwhichtheinstrument roomisapart.Hence,theinformation available at-thistimeindicates thatthePZRpressureandleveltransmitters wouldIInotbeexposedtoahydrogencombustion environment intheunlikelyeventofadegradedcorecoolingeventinvolving thegeneration ofsubstantive amountsofhydrogen. I~e (3(~333tll-33TTheRCSwide-range pressuretransmitters arelocatedinthelo.rercompartment nearlyelevenfeetbelowmaximumcontainment flooduplevel.Thetransmitters, manufactured byITTBarton,arefullyqualified forpost-accident useinsidecontainment (LOCA/MSLB qualifi-cation).ForreasonssetforthinItem(1)above,thesetransmitters wouldbesubmerged priortoinitiation'f combustion andhencewouldnotbeexposedtoahydrogencombustion environment intheunlikelyeventofadegradedcorecoolingeventinvolving thegeneration of,substantive amountsofhydrogen. (4)CoreExitThermocou lesTheeffectsofahydrogencombustion environment onthecore-exitthermocouple cableisaddressed inAttachment No.4tothissubmittal. (Ri~RCS(RTThehotlegandcoldlegRTQs,locatedinthelowercompartment, -arefullyqualified forpost-accident use(LOCA/MSLB qualification). 3Thecableassociated withtheRTDsisaddressed inAttachment No.4tothissubmittal. tl=(6)AirRecirculation HdroenSkimmerFans('heairrecirculation/hydrogen skimmerfansarelocatedintheuppe~cd.,partment andthePanmotorsarefullyqualified forpost-accidentuse'(LOCA/MSLB qualification). (7).Distributed InitionSstemDISComonentsTheDIScomponents insidecontainment aretheigniterassemblies; spliceboxesandconduletboxes,andtheancillary cable.AllDIScableinsidecontainment isroutedinconduitandthusisprotected

.fromahydrogenburn.Allelectrical connections insidetheigniter.assembly, itsassociated conduletbox,andthetwospliceboxespertrainutilizedintheDISareprotected withheatshrinktubingto.enhancesystemperformance inanadverseenvironment. Theigniterassemblyitselfisasealedenclosure meetingNEMA-4specifications. h

.Table3-1,;DonaldC.CookNuclearPlarltUnitNos.1and2.InadeuateCoreCoolin/HdroqenControlEuiment*-{1,)',Narrow-range SteamGenerator LevelMonitors.(2)Pressurizer LevelMonitors{3)Pressurizer PressureMonitors-':(4)RCSWide-Range PressureMonitors-.:{5):CoreExitThermocouples

-{6)RCSLoopsRTDs--{7)AirRecirculation/Hydrogen SkimmerFans=-.(8)Distributed IgnitionSystemComponents

  • insidereactorcontainment

DONALDC.COOKNUCLEARPLANTUNITNOS.1AND2ATTACHMENT NO.4TOAEP:NRC:00500A SECONDQUARTERLY REPORTONHYDROGENMITIGATION AADCONTROL

4.0 EuimentSurvivabilit

Thisattachment tothequarterly reportaddresses theissueofthesurvivability ofequipment exposedtoahydrogencombustion atmosphere insidecontainment. Heat-transfer modelshavebeendeveloped todetermine theeffectsofhydrogenburnsoncriticalcomponents (seeTable3-1inAttachment 3).Themodelsarepresented inthisattachment followedbyacalculation madeforarepresentative pieceofequipment. Particular attention hasbeendevotedtoanumberofindividual piecesofequipment, eachofwhichisdiscussed separately. 4.1~G1AInordertocharacterize theenvironment towhichapieceofcritical~~~equipment issubjected duringandsubsequent toahydrogenburn,twoheat-transfermodelshavebeendeveloped. Thefirstheat-transfer modelisatimedependent heat-transfer analysiswhichcalculates thelowercompartment environ-mentasaresultofahydrogenburn.Thismodeltakesintoaccountthepresenceofstructural heatsinksandspraysinthelowercompartment andassumesthatduringahydrogenburnenergyisremovedbytheicecondenser. Theburnitselfismodelledbyanenergyinputratetothecompartment. Attheonsetofthecombustion, thelowercompartment isassumedtobeisothermal; energyisthenintroduced intothecompartment foradurationof20seconds,comparable tothetimeofahydrogenburninthecontainment. Asaresultoftheburn,thetemperature ofthecompartment atmosphere beginstoriserapidly;concurrently, heatisbeingtransferred tothestructural heatsinksandremovedbytheicecondenser andby)helowercompartment sprays.Heattransfertothecontainment sinksischaracterized bybothconvection and

radiation. Conservative assumptions havebeenmadeinthecalculation withregardtoparameters suchasgasemissivity andconfiguration factors.~~After20seconds,theatmosphere temperature isobservedtodecreaseexponentially, whereasthecontainment walltemperature continues toriseoverthenexttwentyseconds(seeFigure4-1)untilthetimewhentheatmosphere temperature fallsbelowthewalltemperature. Themaximumatmos-pheretemperature calculated doesnotexceed500F.Sensitivity studiesofvariousparameters usedintheanalysisarepresented inFigures4-2and4-3.Figure4-2depictstheresultsobtainedwhentheheattransfercoefficient,"h", fromatmosphere towallisvaried;as"h"vanishes, thepeakatmosphere temperature approaches theCLASIXresults.Itcanalsobenotedthat,ingeneral,thepeaktemperature isfairlyinsensitive tosmallvariations inthevaluesoftheheattransfercoefficient chosen.Perturbations inthesprayflowratealsorevealsmallincreases (n15Ã)inthepeaktemperature, seeFigure4-3.Theseanalysesclearlyshowthatifcontainment structural heatsinksareconsidered, thecontainment environment isnotexpectedtoexperience temperatures inexcessof500F.Theequipment includedinthecriticallistofcomponents (Table3-1)isqualified forLOCAandMSLBevents;whichincludesexposureto340Fforaperiodinexcessofonehour.Comparison betweentheMSLBconditions andthedatapresented inFigure4-1indicates thatequipment, whichis'subjdcted Ptoahydrogenburnofthemagnitude predicted byCLASIX,will*experience environmental conditions nomoreseverethanthoseofaMSLBevent.Thesecondheat-transfer modelattemptstodescribeanddefinetheenvironmental conditionsforequipmentwhichislocatedinthepathtraversed bythehydrogenflame.ABartonpressuretransmitter has.beenselectedasarepresentative pieceofequipment tobeinvestigated. Priortohydrogenignition, thetransmitter casinganditsinternals areassuredtobeinthermalequilibrium withthecontainment environment. Attheonsetofahydrogenburn,itispostulated thatignitionoccursin-thevicinityofthetransmitter andthecasingissubjected toaveryhighhydrogenflametemperature (~2000F)initially astheflamefrontmovesawayfromthecomponent. Thetemperature towhichthetransmitter surfaceisexposedwillthendecreasegradually andwilleventually approachlong-timeresultscalculated bythepreviousheat-transfer model.Thistemperature profilewillprovidetheoutsideboundarycondition neededtoevaluatethetemperature riseontheinsidesurfaceofthetransmitter. Theone-dimension .time-dependent conduction heattransferequationisevaluated assumingthattheinsidesurface-is anadiabatic boundary. Thismodeltreatsthetrans--.mittercasingasaone-dimensional slab.Thetimedependent temperature 'profiletobeusedontheoutsidesurfaceisimposedasaconvective boundarycondition. Twodifferent temperature

profiles, whichreflecttheenvironment temperature towhichthetransmitter isexposed,havebeenemployedinthiscalculation.

Thefirstprofilerepresents ahydrogenflametemperature of'2000Fforadurationofonesecondattheonsetpriortoalineardecayto-1000Finthenextsecond;temperature continues todecreaseto300Ffromtwotosixsecondsandeventually approaches 150Fafter10seconds(seeFigure4-4),curveA.Thistemperature profileissimilartotheoneusedbyTVAinitsequipment survivability calculations. Theotherprofile,seeFigure4-4,curve8,decaysexponentially from2000Fto150Foveraperiodof18secondsandissimilartotheoneusedintheDukeanalysis. Acomputercodewasusedtoanalyzethetemperature riseina1/4"carbonsteelcasinggiventheaforementioned boundaryconditions. Theheattransfercoefficient assumedinthecodeincludesbothconvective andradiative transport. 0 Thetemperature transients attheinsidesurfacecalculated fromthetwotemperature profilesaredepictedinFigure4-5.Curve(A)ofFigure4-5,-whichcorresponds tothecurve.AofFigure4-4,showedthattheinitial-temperature riseisveryabruptduringthefirstfewseconds;laterontheinsidesurfacereachesamaximumtemperature of171Fat10secondspriortoagradualdecrease. Thetemperature responsedepictedbycurve(B)of.Figure4-5indicates .thatthereisamoregradualriseovertheinitial15secondsandthatthetemperature reachesitsmaximumof175Fatabout30secondsbeforeaslowdecaybegins.Basedonthisanalysis, onecanassumethatforasinglehydrogenburn,theinsidecasingtemperature willrisenomorethan30F..Additionally, ifoneassumesthatthereisatotalofeightconsecutive burnsandthatbetweeneachburntheinsidecasingsurfacetemperature isheldconstant, thetemperature profilewillbeastepwisefunctionsimilartotheonepresented inFigure4-6.Eachtemperature increase(30oF.)canbeinterpreted astheheatupofthecasingresulting fromonehydrogenburn.Betweeneachburn,thetemperature Iattheinsidecasingisassumedtobeconstantwhichimpliesthatnocreditisgiventothecoolingofthecomponent subsequent toanyburn.Inaddition, thetimeintervalbetweencombustions isassumedtobesubstantially shorter'thanwhatispredicted byCLASIX;only100secondintervals areusedinthiscalculation. Basedonthestepwisecurve,aconservative linearheatuptemperature profileattheinsidesurfaceofthecasingisused,seeFigure4-6.Utilizing thislineartemperature responseattheinsideofthetrans-~mittercasing,aheattransferanalysishasbeenperformed to'evaluate theheatuprateoftheairandthesubcomponents insidethecasing.Results indicatethattheheatuprateoftheairinsideisslightlybelowthetemperature ofthecasingandthattheheatuprateofthesubcomponents isestimated tobeapproximately 50Foversevenburns,or,7Fperburn..Itisimportant tobearinmindthatconservative assumptions havebeen.usedinobtaining theaboveresults.The.heattransferanalysisclearlyindicates thatformostequipment -.whichisenvironmentally. qualified forLOCAorHSLBevents,elevatedtemperatures resultedfromhydrogenburnsofthemagnitude andduration:.discussed donotappeartoposeanythreattoitsabilitytosurviveina=~2D,-type event.-4e2Survivabilit ofParticular PiecesofEuiments~~ThissectionofAttachment 4discusses thesurvivabi lityofparticular -:piecesofequipment neededforthemitigation andcontrolofaS2D-typesequence. Thesepiecesofequipment requireeitherparticular evaluations or,else,theanalysispresented inSection4.1doesnotapplytothem..a)Cables'-Theburningofhydrogeninsidecontainment byuseofaDistributed IgnitionSystem(DIS)resultsinveryshortdurationexposurefiresandmay-involvecableswhichareexposedintrays.InsidetheCookcontainment buildings powerandcontrolcablesare-eitherinstalled inconduitsorincabletrays.Cablesinstalled inconduitsarenotlikelytoburnasaresultofexposuretoshort-duration exposurefires.Thesecablescannotpropagate a-fireeveniftheyburnsincetheflameresulting fromthe.combustion is-entirely confinedtotheconduitandcannotcausefailureofcables~~~~inadjacentenclosures. -Inthecaseofthecontrolcableswherethecurrentcarriedbytheconductors issmallrelativetothethermalratingoftheconductors, .thecablesareinstalled intrayswithsolidsteelsides,bottomsandcovers..Hence,itisnotlikelyforahydrogenburninsidecontainment toigniteanycontrolcablesinstalled intrays.However,uponexitingatray,eithermid-spanthroughaholeinthetraycoverorattheendofthetrayspan,aportionofthecablebecomesexposedforaveryshortlengthuntilthecableseitherenteraconduitwhichfacilitatesentryintoterminaldevices.oruntilthecablesareconnected tothedeviceorcontainment penetration

,(belowfloodlevel)..Allcontrolcablesinsidecontainment neededforinadequate corecoolingmitigation equipment arequalified forflameresistance inaccordance

.:witheitherIPCEAStandardS-19-81orIEEE-383. Hence,fortheexposedportions:ofthecontrolcablesandcablesentirelycontained intraysorconduits, itisextremely likelythatthecableswillsurvivehydrogenburnsinsidecontain-sment.Furthermore, thecablewillbewetduetotheactuation ofcontainment spraysmakingthepossibility ofignitionfromashortdurationexposureto,fireevenmorer'emote.Forthecaseofpowercables,theyareinstalled inconduitsorin-expanded metaltrayswithoutcoversandaresizedtoaccommodate thefull.loadcurrentofconnected equipment withoutexceeding theircontinuous rated.temperature. 1Jheninstalled inexpandedmetalcabletrays,'he cablesarelaidtypically onelayerdeepwithspacesbetweenadjacentcablesandsecuredtothebottomofthetraytomaintainthisspacing.ThepowercablesforICC'equipment maybeexposedtohydrogenburninginsidecontainment buttheyare qualifiedforflameresistance inaccordance withIEEE-383orS-19-81.Further,sincethepowercablesareexposed(opentrays)theywillbewetduetotheeffectofcontainment sprays.TestingresultshavebeenreportedbyL.J.KlamerusofSandiaonIEEE-383cables.Privatecommunication withNr.Klamerusrevealedthatthecablesusedintheexperiment wereX-linkpolyethylene cables.Theywereselectedf'rthetestbecausetheywerebelievedtobemostsusceptible toexposurefi.refailure.Reportedresultsindicatethatthetimetoelectrical shortforthesecablesrangesfromfivetonineminutes.ReviewofICCequipment powercablesatCookconfirmsthefactthattheyareeitherinsulated bygpalonorasynthetic compoundmadebyKerite.Bothtypesofmaterials arebelievedtoexhibitsuperiorfireresisting capability thanthosetestedbySandiaLaboratory. Therefore, despitethefactthatpowercablesatCookmightbeexposedtoatwotothreeminutestotaldurationofhydrogenburnsexperimental evidencesupportthecontention thatitisverylikelythattheywillbeabletosurvivehydrogenburnstypicalofthosediscussed foraS2D-typeevent.b)AirRecirculation FansTherearetwoairrecirculation fansatCookandbothofthemarelocatedintheuppercompartment. Thesetwocentri,fugal fanshaveatotalcapacityof80,000cfmanddischarge theflowintothetwofan/accumulator rooms.Attheexitofeachfanthereisabackdropdamperwhichopensasaresultofflowthroughthefan.Thedamperisgravityloadedandisexpectedtocloseifthereisan"overpressure inthefan/accumulator room.TheCLASIXresultspredictburnsintheuppercompartment withpressuredifferentials 1b unaccounted forinthedesignofthesystem.Fanintegrity isbeingevaluated bothfromthepointofviewofcasingdamageandoverspeeding -ofthewheelandmotor.c)SteamInertinandPolurethane. Insulation BurnInaSD-typeevent,hydrogenreleasebeginsapproximately 3800secondsaftertheonsetofasmallbreak.ResultsobtainedfromtheMarchcodeforSequoyahindicatethatduringtheinitial700seconds,thesteamcon'centration atthelowercompartmentreachesamaximumof78/priortodecayingto45/,seeFigure4-7.Subsequently, thesteamconcentration -continues todecreasetoapproximately 25/atonsetofthehydrogenrelease.DatareportedbytheU.S.BureauofNinesindicatethatlittlechange.tothelowerflammability limitofhydrogenisnotedwhensteamconcentration inthemixtureiskeptbelow308.Therefore, witha254steamconcentration -inthelowercompartment, theeffectsofsteamuponhydrogencombustion shouldbeminimal.'oreover, lowercompartment spraysatCookwouldfurtherservetoenhancecondensation ofsteamandtopromoterapidtemperature reductioninthe.lowercompartment. Thus,itisexpectedthatthesteamconcentration intheCooklowercompartment willbesubstantially lowerthan.whathasbeenpresented inFigure4-7.Therefore, itisunlikelythatCookwillexperience steam.inerting inaS2D-likeeventexceptpossiblyduringtheinitial1000seconds.Inaddition, datapresented byLawrenceLivermore Laboratory intheirignitertestprogramclearlyshowthatsteamconcentrations upto40Ãdonotinhibittheignitionofhydrogenbytheglowplugsnortheabilityoftheigniterstofunctionasdesigned. Inspiteofthefactthattherewouldbeahighersteamconcentration inthelowercompartment, evidenceindicates1

.thattheglowplugigniterswillperformtheirintendedfunctions as~~~~-required. Itisconceivable thatattheupperplenumofice-condenser, a:higherhydrogenconcentration maybepresentasaresultofsteamstripping bytheicecondenser. Ithasalsobeenpostulated thatcombustion mayfirst-occuratthatlocationandthatitmayevenburninacontinuous manner.However,itmustbepointedoutthatthelikelihood oftheabovescenario=diminishes iftheassumption onsteaminertingatthelowercompartment isconsidered unrealistic. Giventhecomplexity ofthisissue,thequestionofburninginthe.upperplenumoftheicecondenser willcontinuetobeinvestigated byAEP.'Moreover, upcomingresultsfromthemodifiedversionofCLASIXshouldbeabletoprovideadditional information onthissubject.Ifhydrogencombustion is-assumedtooccurattheupperplenumforanextendedperiodoftime,ithasbeenpostulated thattheintegrity ofthepolyurethane insulation maybethreatened bythepresenceofhotgases.Thisquestionisbeingaddressed -atAEPsimultaneously withtheupperplenumburnissue.Theresultsofourevaluations willbetransmitted totheNRCinthenextquarterly report. 0 4-.4~~=I~~~-.l~~~=4~~~~~\44~i-i44~'4=-4I444~-444~4~44~4~LON3~C.<i'!"-,-'kg44I4~=1'I4l44j"'pFt-5c4&-4I44':.ahk:kkkjki~.- -.4=-4.4:-=-=.~4~=-~4-4kX'4tpk($QQ)FIGURE4-1TEYiPERATURE RESPOi(SES OFLOMERCGlk1PARTHENT ATi)OSPHERE ANOMALL/ ,-Jooo.~-1ii.jit-l'0--.tjOo-I'i-~t~tI~ItIIi~jr'!ti"""'T"!e~!t~I)~~!,.1!l.,'t~~It~~~=-I~>>it~~~Ii~Ia1as~1~tI~<<~~~I~~wIIV1itIi-I1~jtIII-I41...>>Jji-!-!Lj0:;!!!1Tj:I-C~r~>XTPi=SRI'~!Ij--fk1/l.I;t..11T'JI,'".'~ijatjjIi~-~LI:,IL!1!Ij.-0II~~Ej1iI!j~-II,k!Ijkj~I~tjI1I-1II=~tI:1!I',!,1I1i;',I<<i',FIGUREI1-1!~Iift>>I'IIII1It1~tT-l~III'i.t'1I11lII!!HEISTVRI!NSFR.COhF-FICieJT I'I>>IT>>I>>'.(I'I/j',. ):;i'-2EFFECTSOF!IEATTRANSFERCOEFFICIENT YARIATIONS ONt1AXIt1UM ATMOSPHERE TEt1PERATURE'N LOWERCOt1PARTt1EttT 'lk"r.(0->>jI>>-I~-~-Tt...LLaEt~f~If>>~Ct-.t-lt:I-fi!fj~trrr't.jt,.ti),~~($qillIIIIII!!(UoI(i+pQQ/,P!I(QgQ,r(r/SIC)>>>>I>,r'rrrt,i'-( 'IFIGURE",4-'3, EFFECTSOFSPRAYFLO>>'tRATEVARIATIONS ONPEAKILILLLIl(iATNoSPHERE TENERATUREINLO((ER,CONPA(ITNENT 3!Ifttj1I 4iII+'.I.4~4=t-4tII44~=~~'\it~4.I'44~I4I=*t~I4~~t-~==444EM-:-':=3'*4*'I~-,-~~+:==+4*444ftt-Jm~-~-~~M444~~~*~l4>>=44=-+II~t=.4.l*~l~t~.j~=-~-~~-.-=-.~--t-s.-~J..~tt~-~-4-~.XE.~.4='-~!tt~tW+~~~4-I~+l4j3(2~tt4~f4<<tIIll~4~I*-J-~~4I4>>*444~*I444l444~~t4~=~4f-'4-~~'-l~l-4-~>>~4~*~i~~}=-I4}t~~J'!';~I+'13t4I4I~>>~CItt4200t*~IIt-~=~'I~4-~4~=I34t~}irF>>flan.~t-<<4>>-t.<<I-FiGURE-'tf-}}.-'TEMPERATURE PROFILESUSED-ASCONVECTIVE,:. BOUNDARYCONDITIONS

0 4h4III44I~~I4:.4~--~~~44il'=~:"14I-I=I-~~-=-41-I.~4~~r'IASSU11EDINSIDESORFACE-TEMPERATURE PROFILES=r~44~

VI1I)1!IiI~1Itfjff4j!IIt>i~IQQ'.;~I:&,.'~I,1~~~f'II.'gag<<I. III!~a4o~I~~!Ir'>>~.e'.-t~~~~~I<<t.aI~>~j4~~~l~-j>')',~/ljf1f=t"tIi.'it')!vIIV'r-j!LOT<<V.". Rfffd<<'Ia-ha)j',I-J->J;I\441l'~g0'OfACg,C-0f'~tP/.',PTg," (O'T~P~%/~I'j1f.,<~O";l.<<"-!!,Iff~if-4v:l[J'fl'jjr4ar.~AT!'-:3Fa1p*,RE:<<j-ONSef..o-1iBASE=j-tl.)jt~~~~~Q.>>-"~'ljt-~>1.'1t.,"<<'.i~!;--2-o-'-~~~~*Ij-tl'~a!I!!!Ilj'4!~afi41'tl"l~1'IIII,:illk-A,Ittf;JJ..'>~(jl.tfLLX-l~1IT[:t.lf-f<<'1tl)j"-tj:-,i:.~IL0l4ER.;!~i:li<<I-:lIItlll.ij!,.I1!II!!j'}-IQjh(pMTt.~~ lL'i4'1ji,;illtI~.0;4IIi~Il~fII~~~I,~1rl41~I~~il->11l~I~~~-tIijKO'0'0I",FIGURE4-ilII4I,O.t,.DaÃ;1ll;Qt-0f;l):WOO7STEANCONCENTRATION INLOWER<l',C011PARTt1EfNT ASAFUNCTIONOFTIt1Ejla11I14+me!','!'(2c.),'

References:

(1)Klamerus, L.J.,"FireProtection Research," quarterly ProgressReport,October-December1977,NUREG/CR-0366. (2)PrivateCommunication, L.J.KlamerustoK.K.Shiu,March1981.(3)Hertzberg, M.,"Flammability LimitsandPressureDevelopment inH2-AirMixtures," U.S.BureauofMines,PRCReportNo.4305,January1981.(4)Lowry,W.,"Preliminary ResultsofThermalIgniterExperiments inH2-AirSteamEnvironments," Paperpresented attheworkshopontheimpactofHydrogenonWaterReactorSafety,Albuquerque, NewMexico,January1981.(5)SequoyahNuclearPlant,CoreDegradation Program,Yolume2,ReportontheSafetyEvaluation oftheIDIS,December15,1980. 00 DONALDC.COOKNUCLEARPLANTUNITNOS.1AND2ATTACNENT NO.5TOAEP:NRC:00500A SECONDQUARTERLY REPORTONHYDROGENMITIGATION ANDCONTROL

5.0CurrentResearchProramsSeveralresearchprogramshavebeenundertaken byAEPtoinvestigate hydrogencontrolrelatedphenomena; someoftheseprogramswerediscussed inthelastquarterly report.Inthissectionanumberofthecurrentresearchprogramswillbereviewed; programstatus,revisedtestplanandprogramscheduleofeacheffortwillbediscussed individually. ~RPRIPAEP.,alongwithDukeandTYA,areco-sponsors off'ourEPRIresearchprogramsinwhichfundamental flamestudieswi11bemade;researchanddevelopment onvariousignitertypeswillbepursued;mixinganddistribution ofhydrogeninprototypic containment environments willbeinvestigated andadditional glowplugtestingwillbeperformed. a)Mhiteshell NuclearResearchEstablishment Thisresearchfacilityisoperatedby'AtomicEnergyofCanadaLimited.Tworesearchprogramswillbepursuedindependently atthisfacility; namely,thehydrogencombustion phenomena studyandtheresearchanddevelopment ofdifferent ignitertypes.Bothoftheseprogramswillbeundertaken withthecollaboration ofOntarioHydroasanadditional financial contributor tothework.IThefirstexperimental programisdesignedtoinvestigate varioushydrogencombustion phenomena andcan'bedividedintofourparts.Thefirstpartofthisexperimental effortentailsperforming nineteenignitiontestsonleanhydrogenmixtures. Thehydrogenconcentration tobeexaminedinthesetestswillvaryfrom5.05to30Ãbyvolume.Asparkignitionsourcewhichis

intheorderof0.5joulewillbeusedtoignitethemixture.Detailsoftheexperimental setupandtestvesseldimensions havebeenpresented inthepreviousquarterlysubmittal. Fastresponsepressuretransducers, thermo-couplesandionization probeswillbeemployedtomonitorandrecordvariousimportant testparameters. Ofthe=nineteentestsplannedthemajorityofthemwillbeconducted withtheignitionsparklocatednearthebottomofthespherical testvessel.Twotestsareplannedinwhichtheignitionsourcewillbelocatedatthecenterofthevesselandonetestisplannedwiththeignitionsourcenearthetopofthevessel.Thesethreetestswillbeusedtoassesstheeffectofigniterlocation. Thesetestsareanticipated torequireapproximately threeweekstocomplete. According tothelatestestimateprovidedbyHNRE,systemshakedown isbeingperformed onthetestvesselandonthedataacquisition system;itisexpectedthatdatacollection willbeginbyarlyNay.PartIIofthehydrogencombustion programincludesatotalofIIeighteentestswhichareintendedtostudyspherical deflagrations ofahydrogenflame.Thehydrogenconcentrations thatwillbeinvestigated rangefrom105to42Kwhereasthesteamconcentrations willvaryfrom0to30Ã.Withtheexception oftwotestsinwhichignitionwillbeinitiatedatthebottomofthetestvesselalltestswillbeperformed usingcenterignition. The'timerequiredtocompletethesetestsisapproximately onemonth.IISubsequent totheseteststhetestvesselwillbemodifiedforthestudyofturbulent effectsonhydrogencombustion. Twoweekshavebeenscheduled intheprogramplantoaccomplish thesemodifications. Theprimaryobjective ofthePartIIItestsistoinvestigate turbulent effectsuponcompleteness ofhydrogenburns,anduponpressureandtemperature responses. Turbulence inthesetestswillbecreatedbytwodifferent means:1)two16"diametervaniablespeedfansand,2)gratings. Thefansareratedat1500cfmeachandconsequently arecapableofcreatingaveryturbulent environment. Thegratingsaremadeof1/4"perforated platewith50%porosityandtheyareusedtosimulateobstacle-induced turbulence. Sixtestswillbedevotedtoexamining leanhydrogencombustion underturbulent conditions; ignitionwillbeinitiated atthebottomofthevessel.Fouradditional testswillbeconducted using14%and20/hydrogen-airmixtureswhentheignitionsourcewillbeplacedatthecenterofthetestvessel.Thetimeneededtocompletethesetestsisexpectedtobeaboutonemonth.PartIVofthehydrogencombustion programentailsatotalofsix7tests.Priortoperforming thesetests,aweek'stimeisneededtosetupthevestrigwhichincludesasphereusedintheprevioustests.Ignitionforthesetestswillbeinitiated ateitherthecenterofthesphereorattheendofthepipef'rhydrogenmixturesofeither8%or20%.Inadditiontocollecting thetemperature andpressuredata,ionization probeswillbeusedtorecordflamepropagation fromonecompartment to,another. Thefinaltwotestsusingthistestgeometryincludestudyinghydrogencombustion characteristics froma8%ora10%mixturetoa6%mixture.IntheseteststhepipewillbeIfilledwitha8/or'10%mixture,whilethesphereisfilledwitha6/mixture.Ignitionwillbeinitiated inthepipesection.Thedurationofthesetestsisanticipated tobeaboutthreeweeks.

-Thesecondexperimental programthatwillbecarriedthroughatthellhiteshell facilityinvolvesresearchanddevelopment effortonvariousignitertypes.Theobjective ofthisworkistoperformextensive benchmark testsinasixcubicfootspherical testvesseltoidentifyignitertypesandtodemonstrate theircombustion capability inaprototypic environment. ThetestingprogramwillbegininMayandlastaboutfourmonths.Basedontestdataobtained, a'selection ofigniterswillthenbefurthertestedinalargerscaletestvessel(600ft)atAcurex.Presently, besidestheGMAC7G3glowplugs,afewresistance-heating glowplugsdeveloped byTaycowillalsobeexamined. ,b)AcurexIntheAcurexprogram,thetestplancanalsobedividedintotwoparts;thefirstpartisdesignedtoexaminetheeffectiveness andtheperformance of.glowplugsinignitinghydrogenundervariousprototypic contain-&mentconditions .Intheseexperiments, hydrogenflowrate,steamflowrate,waterspraysparameters andignitorlocations will'evariedtoprovideparametric studiesontheabilityofglowplugs'oignitehydrogenmixtures.Theeffectofmicro-fog onglowplugignitionandpressuretransients willalsobeinvestigated. Anumberoftheexperiments willattempttoprovidedatatocorrelate foggingasapressuresuppressant withsprayvolume,spraydropsize,andhydrogenconcentrations. Astrongignitionsource,e.g.,electricmatch,willbeusedinallthefogging-related tests.Asecondpartofthetestplancallsfortestingaselectednumberofignitersdeveloped attheWhiteshell NuclearResearchEstablishment. Thesewillbelargescaleconfirmatory testsforignitiondeviceswhichhavedemonstrated asuperiorpotential inignitingleanhydrogenmixturesandin\ replacing theexistingglowplugdesignsinthefuture.Theireffectiveness ~~~~~~~~~~~inasprayenvironment willbeevaluated atAcurex's600ftvessel.Priortocarryingthroughtheabovedescribed test'plan,aseriesofshakedown testswillbeperformed toprovidechecksforconsistency andaccuracyofallinstrumentation; specifically, resultswillbecomparedwiththoseobtainedatMhiteshell andfromtheavailable literature. c)HanfordEnineerinDevelomentLaborator HEDLTheobjective ofthiseffortistoexperimentally investigate aspectsofhydrogenmixinganddistribution inasimulated icecondenser lowercompartment geometry. Hydrogenreleaseintothecompartment willbemodelledbytwoapproaches. Inthefirstapproach, steamandhydrogenareintroduced asajetintothecompartment simulating apipebreak;inthesecondapproach, hydrogenandsteamareaddedtothecompartment asadiffusesourcesimilartopressurizer relieftankrelease.Inordertoextendtherangofhydrogenconcentration beyond"4%%d,heliumwillbeusedasasimulation fluidinplaceofhydrogen. Confirmatory testswillbeperformed todemonstrate thatheliumcanindeedbeusedtosubstitute hydrogeninthesemixirigstudies.Thefirsttestisscheduled tobeginsometimeinmidJuneandthewholetestprogramisexpectedtolastapproximately twomonths.Inthemeantime, similitude andscalingcalculations arebeingdonesoastoproperlymodelthenecessary parameters thatarevitaltotheinvestigation ofmixinganddistribution. Someofthenon-dimensional groupsthatarebeingexaminedare:theRichardson number,theReynoldsnumber,andtheGrashofnumber.d)FactorMutualResearchAEP,Duke,TVAandEPRIrecentlycametotheconclusion thatinordertobetterunderstand foggingasameansofhydrogencontrolandtoeventually 0 renderadecisiononitsapplicability asaviablesolutiontohydrogenmitigation, theywouldcontractwithFactoryMutualResearchtoundertake aresearchprogramtoinvestigate fogging.Theobjective ofthisprogramistodetermine theeffectsofmicro-fog uponthelowerflammability limit(LFL)ofhydrogen, toprovidearelationship betweendropsizeandfoggingdensityonLFLandtocorrelate theconcentrations ofleanhydrogenairmixtureswithvariousfoggingparameters. InordertoensurethattheeffectsoffoggingonLFLareproperlyreproduced, astrongignitionsourcehasbeenproposedandislikelytobeusedtoinitiateignitiononallLFLtests.Therangeofdropletsizesthatisofinteresttotheutilities variesfromafewmicronstohundredsofmicrons,whereasthefoggingdensityvariesfromzerotoa.fewpercent.Test~~~~~~~parameters thatwillbemeasuredincludetemperature,

pressure, dropsizedistribution.and fog.density distribution.

Aschematic of.theexperimental setupisshowninFigure5-1.AdetailtestplanisbeingpreparedbyFactoryMutualResearchwithaidfromAEPandtheotherparticipants. Thetestvesselisscheduled tobecomeavailable fortestinapproximately threeweeks.Finally,itisalsotheintentofthisefforttoprovidethenecessary andpertinent information 'oassistintheselection oftestparameters intheAcurexfoggingtests.e)CLASIXIntheAEP-NRCmeetingonMarch18,1981,thestaffexpressed interestinreviewing a-numberofadditional CLASIXruns.Thefirstconcerncentersaroundtheuniquelowercontainment spraycapability atCookanditspossibleeffectuponothercompartment responses duringandsubsequent toahydrogenburn. 0 ReviewsatAEPindicatethatintheCLASIXsensitivity studysubmitted totheNRC,sprayparameters suchassprayflowrate,dropletsize,heattransfercharacteristi'cs tothedropandspraytemperature werevaried;minimaleffectsonthecontainment pressureandtemperature responses werenoted.Thus,theavailable information fromCLASIX,pointsoutthatvariations insprayparameters wouldnotsignificantly affectcontainment temperature andpressureresponse. AnotherpossibleCLASIXrundiscussed intheabovementioned meetinginvolvedinitiating hydrogencombustion at10%with50%burnfraction. Experimental measurements oncompleteness ofhy'drogen combustion reportedintheliterature showthatinspiteofthelargescattering indataaround5%to7%,aninitial10/concentration consistently resultsinanalmost100%(1)burn.Inaddition, ithasbeenshownthatturbulence willfurtherenhancecompleteness ofcombustion forleanhydrogenmixtures.Therefore, iftheprobability ofincomplete combustion of10%isindeednegligibly small,asitseemstobe,itseffectsuponthecontainment neednotbeinvestigated. Itwassuggested bythestaffthatacasewithignitioninitiated at10%andthenpropagating toa8%hydrogenconcentration regionshouldbestudied.Bothtypesofcombustion wouldassumea100%burnfraction. Closeexamination ofthevariouscasespresented intheCLASIXsensitivity studiesrevealsthatthereisonecase(JVD15)whichusestheexactinputparameters requested bythestaff.Oneburnwasobservedintheuppercompartment withanestimated maximumpressureof57psia(onlyoneairrecirculation fanwasassumedtobeoperational intherun).ThismaximumpressureisveryclosetotheCookcontainment elasticlimit.However,sinceheatsinkshavenotbeenincludedinthesesensitivity calculations, theresultsarelikely.tobeoverly~~conservative. Floivmeter-AirpressureMixer-Flowmeter -Regulator WaterFlashArrostorAir-SolonoldOporatedValveSolonold/OporatodValveFogNozzles/IX/I/I/H>-AirMixSupplyLineSparkGap~Eloctrodes lonizatlonProbosForFlamoSpoodlAoasuromonts 6"Dlcmeter~x~LongthIihr'(Iii/il/IIIiIII4-Thermocoeploe, bRopSfhE: hl~sug~NQ7) peal~DrainFIGURE5-1EXPERIMENTAL ARRANGEl1ENT OFFOGGINGTESTS

References:

(1)LiuD.D.S.,etal,"SomeResultsofWNREExperimentson,HydrogenCombustion," WaterReactorSafetyWorkshopontheImpactofHydrogen, Albuquerque, NewMexico,January1981.(2)Hertzbert, M.,"Flammability Limits'nd PressureDevelopment inH2-AirMixtures," U.S.BureauofMines,PRCReportNo.4305,January1981. DONALDC.COOKNUCLEARPLANTUNITNOS.1AND2ATTACNENT NO.5TOAEP:NRC:00500A SECONDQUARTERLY REPORTONHYDROGENMITIGATION ANDCONTROL t~ 5.0CurrentResearchProramsSeveralresearchprogramshavebeenundertaken byAEPtoinvestigate hydrogencontrolrelatedphenomena; someoftheseprogramsweredi.scussed inthelastquarterly report.Inthissectionanumberofthecurrentresearchprogramswillbereviewed; programstatus,revisedtestplanandprogramscheduleofeacheffortwillbediscussed individually. 1.1~EAEP,alongwithDukeandTVA,areco-sponsors offourEPRIresearchprogramsinwhichfundamental flamestudieswillbemade;researchanddevelopment onvariousignitertypeswillbepursued;mixinganddistribution ofhydrogeninprototypic containment environments willbeinvestigated andadditional glowplugtestingwillbeperformed. a)Whiteshell NuclearResearchEstablishment ThisresearchfacilityisoperatedbyAtomicEnergyofCanadaLimited.1Tworesearchprogramswillbepursuedindependently atthisfacility; namely,the'hydrogen combustion phenomena studyandtheresearchanddevelopment ofdifferent ignitertypes.Bothoftheseprogramswillbeundertaken withthecollaboration ofOntarioHydroasanadditional financial contributor tothework.Thefirstexperimental programisdesignedtoinvestigate varioushydrogencombustion phenomena andcanbedividedintofourparts.Thefirstpartofthisexperimental effortentailsperfororing nineteenignitiontestsonleanhydrogenmixtures. Thehydrogenconcentration tobeexaminedin'thesetestswillvaryfrom5.0$to305byvolume.Asparkignitionsourcewhichis 0 intheorderof0.5joulewillbeusedtoignitethemixture.Detailsoftheexperimental setupandtestvesseldimensions havebeenpresented inthepreviousquarterly submittal. Fastresponsepressuretransducers, thermo-couplesandionization probeswillbeemployedtomonitorandrecordvariousimportant testparameters. Ofthenineteentestsplannedthemajorityofthemwillbeconducted withtheignitionsparklocatednearthebottomofthespherical testvessel.Twotestsareplannedinwhichtheignitionsourcewillbelocatedatthecenterofthevesselandonetestisplannedwiththeignitionsourcenearthetopofthevessel.Thesethreetestswillbeusedtoassesstheeffectofigniterlocation. Thesetestsareanticipated torequireapproximately threeweekstocomplete. According tothelatestestimateprovidedbyWNRE,systemshakedown isbeingperformed onthetestvesselandonthedataacquisition system;itisexpectedthatdatacollection willbeginbyearlyNay.PartIIofthehydrogencombustion programincludesatotalofeighteentestswhichareintendedtostudyspherical deflagrations ofahydrogenflame.Thehydrogenconcentrations thatwillbeinvestigated rangefrom105to421whereasthesteamconcentrations willvaryfrom0to30Ã.Withtheexception oftwotestsinwhichignition.willbeinitiated atthebottomofthetestvesselalltestswillbeperformed usingcenterignition. Thetime'required tocompletethesetestsisapproximately onemonth.Subsequent totheseteststhetestvesselwillbemodifiedforthestudyofturbulent effectsonhydrogencombustion. Twoweekshavebeenscheduled jntheprogramplantoaccomplish thesemodifications.

Theprimaryobjective ofthePartIIItestsistoinvestigate turbulent effectsuponcompleteness ofhydrogenburns,anduponpressureandtemperature responses. Turbulence inthesetestswillbecreatedbytwodifferent means:1)two16"diametervariablespeedfansand,2)gratings. Thefansareratedat1500cfmeachandconsequently arecapableofcreatingaveryturbulent environment. Thegratingsaremadeof1/4"perforated platewith50/porosityandtheyareusedtosimulateobstacle-induced turbulence. Sixtestswillbedevotedtoexamining leanhydrogencombustion underturbulent conditions; ignitionwillbeinitiated atthebottomofthevessel.Fouradditional testswillbeconducted using14/and20/hydrogen-airmixtureswhentheignitionsourcewillbeplacedatthecenterofthetestvessel.Thetimeneededtocompletethesetestsisexpectedtobeaboutonemonth.PartIVofthehydrogencombustion programentailsatotalofsixtests.Priortoperforming thesetests,aweek'stimeisneededtosetupthetestrigwhichincludesasphereusedintheprevioustests.Ignitionforthesetestswillbeinitiatedateitherthecenterofthesphereorattheendofthepipeforhydrogenmixturesofeither8/or205.Inadditiontocollecting thetemperature andpressuredata,ionization probeswillbeusedtorecordflamepropagation fromonecompartment toanother.Thefinaltwotestsusingthistestgeometryincludestudyinghydrogencombustion characteristi csfroma8Ãora10Ãmixturetoa6Xmixture.Intheseteststhepipewillbefilledwitha8Ãor105mixture,whilethesphereisfilledwitha6Xmixture.Ignitionwillbeinitiated inthepipesection.Thedurationofthesetestsisanticipated tobeaboutthreeweeks' ~~ Thesecondexperimental programthatwi11becarried.throughattheWhiteshell facilityinvolvesresearchanddevelopment effortonvariousignitertypes.The.objective ofthisworkistoperformextensive benchmark testsinasixcubicfootspherical testvesseltoidentifyignitertypesandtodemonstrate theircombustion capability inaprototypi cenvironment. ThetestingprogramwillbegininMayandlastaboutfourmonths.Basedontestdataobtained, aselection ofigniterswillthenbefurthertestedinalargerscaletestvessel(600ft)atAcurex.Presently, besidestheGMAC7G3glowplugs,afewresistance-heating glowplugsdeveloped byTaycowillalsobeexamined. b)AcurexIntheAcurexprogram,thetestplancanalsobedividedintotwoparts;thefirstpartisdesignedtoexaminetheeffectiveness andtheperformance ofglowplugsinignitinghydrogenundervariousprototypic contain-mentconditions .Intheseexperiments, hydrogenflowrate,steamflowrate,waterspraysparameters andignitorlocations willbevariedtoprovideparametric studiesontheabilityofglowplugstoignitehydr'ogen mixtures.Theeffectofmicro-fogonglowplugignitionandpressuretransients wi11alsobeinvestigated. Anumber,oftheexperiments willattempttoprovidedatatocorrelate foggingasapressuresuppressant wi.thsprayvolume,spraydropsize,andhydrogenconcentrations. Astrongignitionsource,e.g.,electricmatch,willbeusedinallthefogging-related tests.Asecondpartofthetestplancallsfortestingaselectednumberofignitersdeveloped attheWhitqshell NuclearResearchEstablishment. Thesewillbelargescaleconfirmatory testsforignitiondeviceswhichhavedemonstrated a'uperior potential inignitingleanhydrogenmixturesandin h replacing theexistingglowplugdesignsinthefuture.Theireffectiveness inasprayenvironment willbe.evaluated atAcurex's600ftvessel.Priortocarryingthroughthe'above described testplan,aseriesofshakedown testswillbeperformed toprovidechecksforconsistency andaccuracyofallinstrumentation; specifically, resultswillbecomparedwiththoseobtainedatWhiteshell andfromtheavailable literature. c)HanfordEnineerinDevelomentLaborator HEDLTheobjective ofthiseffortistoexperimentally investigate aspectsofhydrogenmixinganddistribution inasimulated icecondenser lowercompartment geometry. Hydrogenreleaseintothecompartment willbemodelledbytwoapproaches. Inthefirstapproach, steamandhydrogenareintroduced asajetintothecompartment simulating apipebreak;inthesecondapproach, hydrogenandsteamareaddedtothecompartment asadiffusesourcesimilartopressurizer relieftankrelease.Inordertoextendtherangeofhydrogenconcentration beyond45,heliumwillbeusedasasimulation fluidinplaceofhydrogen. Confirmatory testswillbeperformed todemonstrate thatheliumcanindeedbeusedtosubstitute hydrogeninthesemixingstudies.Thefirsttestisscheduled tobeginsometimeinmidJuneandthewholetestprogramisexpectedtolastapproximately twomonths.Inthemeantime, similitude andscalingcalculations arebeingdonesoastoproperlymodelthenecessary parameters thatarevitaltotheinvestigation ofmixinganddistribution. Someofthenon-dimensional groupsthatarebeingexaminedare:theRichardson number,theReynoldsnumber,andtheGrashofnumber.d)FactorMutualResearchAEP,Duke,TVAandEPRIrecentlycametotheconclusion thatinordertobetterunderstand foggingasameansofhydrogencontrolandtoeventually

renderadecisiononitsapplicability asaviablesolution,to hydrogenmitigation, theywouldcontractwithFactoryMutualResearchtoundertake aresearchprogramtoinvestigate fogging.Theobjective ofthisprogramistodetermine theeffectsofmicro-fog uponthelowerflammability limit(LFL)ofhydrogen, toprovidearelationship betweendropsizeandfoggingdensityonLFLandtocorrelate theconcentrations ofleanhydrogenairmixtureswithvariousfoggingparameters. InordertoensurethattheeffectsoffoggingonLFLareproperlyreproduced, astrongignitionsourcehasbeenproposedandislikelytobeusedtoinitiateignitiononallLFLtests.Therangeofdropletsizesthatisofinteresttotheutilities variesfromafewmicronstohundredsofmicrons,whereasthefoggingdensityvariesfromzerotoafewpercent.Testparameters thatwillbemeasuredincludetemperature,

pressure, dropsizedistribution andfogdensitydistribution.

Asch'ematic oftheexperimental setupisshowninFigure5-1.AdetailtestplanisbeingpreparedbyFactoryMutualResearchwithaidfromAEPandtheotherparticipants. Thetestvesselisscheduled tobecomeavailable fortestinapproximately threeweeks.Finally,itisalsotheintentofthisefforttoprovidethenecessary andpertinent information toassistinthese1ection oftestparameters intheAcurexfoggingtests.e)CLASIXIntheAEP-HRCmeetingonMarch18,1981,thestaffexpressed interestinreviewing a.numberofadditional CLASIXruns.Thefirst.concerncentersaroundtheuniquelowercontainment spraycapability atCookanditspossibleffectuponothercompartment responses duringandsubsequent toahydrogenburn. ReviewsatAEPindicatethatintheCLASIXsensitivitystudysubmitted totheNRC,sprayparameters suchassprayflowrate,dropletsize,heattransfercharacteristics tothedropandspraytemperature werevaried;minimaleffectson,thecontainment pressureandtemperature responses werenoted.Thus,theavailable information fromCLASIX,pointsoutthatvariations insprayparameters wouldnotsignificantly affectcontainment temperature andpressureresponse. AnotherpossibleCLASIXrundiscussed intheabovementioned meetingin'volved initiating hydrogencombustion at10/with50%burnfraction. Experimental measurements oncompleteness ofhydrogencombustion reportedintheliterature showthatinspiteofthelargescattering indataaroundI5Xto7X,aninitial10Ãconcentration consistently resultsinanalmost100'5(1)burn.Inaddition, ithasbeenshownthatturbulence willfurtherenhancecompleteness ofcombustion forleanhydrogenmixtures.Therefore, iftheprobability ofincomplete combustion of105isindeednegligibly small,asitseemstobe,itseffectsuponthecontainment neednotbeinvestigated. Itwassuggested bythestaffthatacasewithignitioninitiated at10/andthenpropagating toa8/hydrogenconcentration regionshouldbestudied.Bothtypesofcombustion wouldassumea100/burnfraction. Closeexamination ofthevariouscasespresented intheCLASIXsensitivity studiesrevealsthatthereisonecase(JVD15)whichusestheexactinputparameters requested bythestaff.Oneburnwasobservedintheuppercompartment withanestimated maximumpressureof57psia(onlyoneairrecirculation fanwasassumedtobeoperational intherun).ThismaximumpressureisveryclosetotheCookcontainment elasticlimit.However,sinceheatsinkshavenotbeenincludedinthesesensitivity calculations, theresultsarelikelytobeoverlyconservative. ll~y!t Floemeter-AlrPror."ouroMixerFlowmetor-Regulator V/atorFlashArrostorAir-SolenoidOperatedValve/SolenoidOporatodValveFogNozzles/gii/IIH-AirMixSupplyLine2SparkGap~EioctrodoslonizatlonProbesForFlamoSpoodMoasuromantsO"nromolor~x~Lnnnth/iiia/(Iii/'lIIIIIIihermocouplos, bROPS!~MEAsuklNQPEVlcCDrainFIGURE5-1EXPERIMENTAL ARRANGEMENT OFFOGGINGTESTS

References:

(1)LiuD.D.S.,etal,"SomeResultsofWNREExperiments on-HydrogenCombustion," WaterReactorSafetyWorkshopontheImpactofHydrogen, Albuquerque, NewMexico,January1.981.(2)Hertzbert, M.,"Flammability LimitsandPressureDevelopment inH2-AirMixtures," U.S.BureauofMines,PRCReportNo.4305,.January1981. DONALDC.COOKNUCLEARPLANTUNITNOS.1AND2ATTACHMENT NO.6TOAEP:NRC:00500A SECONDQUARTERLY REPORTONHYDROGENMITIGATION ANDCONTROL I 6.0CoreCoolinCaabilitSubseuenttoHdroenCombustion 6.1'ntroduction Thewrite-upbelowaddresses theexistingcomponents necessary toachieveandmaintainasafeshutdowncondition subsequent toareactortripandtomaintainasafeshutdowncondition andcontain-mentintegrity viaadequatehydrogencontrolduringandafterahypothetical degradedcorecoolingevent.I6.2SafeShutdownThethreeprimaryfunctions tobeperformed inordertoachieveandmaintainasafeshutdowncondition subsequent toareactortripare:(1)circulation ofreactorcoolant(2)residualheatremoval(3)controlofRCSpressure'hemethods6ywhich.each.o$thesefunctions canbe'erformed,.-, andthenecessary equipment locatedinsidecontainment, arediscussed below.6.2.1-Circulation ofReactorCoolantCirculation ofreactorcoolantisprovidedbynatural*circulation withthereactorcoreservingastheheatsourceandthesteamgenerators servingastheheatsink.Waterisprovidedtothesteamgenerators viathesafety-grade Auxiliary Feedwater System(AFS)or,ifoffsitepowerisavailable andsufficient steamisavailable, viathenormalfeedwater system..TheAFScanbealignedtotakesuctionfromtheEssential ServiceWaterSyst'm,whichitself,takessuctionfromLakei

Michigan, thusassuringavirtually limitless supplyofcoolingwaterforthesteamgenerators.

Steamreleasepathsincludeturbinebypass(ifoffsitepowerisavailable) usingthemaincondenser, themainsteamsafetyvalves,andthemainsteampoweroperatedreliefvalves.Thoseportionsofthereactorcoolantsystem,mainfeed-watersystem,auxiliary feedwater system,andmainsteamsysteminsidecontainment containnoactivecomponents requiredtooperatetoassurecoolantcirculation andoperation ofsaidsystemswo'ul'.dnotbe.adversel'y -affected'y;"a hydrogencombustion environment. Theequipment locatedinsidecontainment neededto.assureadequatereactorcoolantcirculation islistedbelow.Thesusceptibility ofthisequipment toahydrogencombustion environment andtheeffectsofsuchanenvironment onequipment operation areaddressed inAttachment Nos.3and4ofthissubmittal, respectively. l.SteamGenerator Narrow-Range LevelMonitors2.Pressurizer WaterLevelMonitors3.Pressurizer PressureMonitors4.LoopRTDs5.CoreExitThermocouples 6.RCSWideRangePressureMonitors 1 6.2.2ResidualHeatRemovalResidualheatisremovedviathesteamgenerators utilizing themethodsandequipment described in6.2.1above.Forthesamereasonssetforthin6.2.1,thisfunctionisnotadversely affectedbyahydrogencombustion environment. 6.2.3RCSPressureControlSubsequent toareactortrip,RCSpressureismaintained utilizing the'.natural circulation'quipment described above,withthepressurizer (PZR)safetyvalvesservingashighpressureprotection. ThePZRsafetyvalvesareselfcontained, springloadedvalvesandwouldnotbeadversely affectedbyahydrogencombustion environment. AsecondaspectofRCSpressuremaintenance dealswithisolation ofthevariousbranchlinesattached.totheRCS.Eachofthesepotential leakagepaths,including themethodofisolation, isdiscussed below.(1)Pressurizer Power0cratedReliefValvesPORVsEachPORVisnormallyclosedandi.sdesignedtofailcloseduponlossofairorlossofpower.Inaddition, ablockvalveislocatedupstreamofeachPORVtoassureRCSisolation intheeventthatPORVleakageweretodevelop. (2)LetdownLineLetdownisolation isprovidedbythreeparallelfail-closed airoperatedvalveslocatedinsidecontain-mentandafail-'closed airoperatedvalveoutsidecontainment. Thesevalveswillautomatically closeonasafetyinjectionsignal.(3)ExcessLetdown/Seal MaterIn'ectionFlowfromtheexcessletdownheatexchanger isdirected. tothereactorcoolantpumpsealwaterreturnline(connection insidecontainment) whichisisolatedbytwomotoroperatedvalvesinseries,oneinsidereactorcontainment andoneoutsidecontainment. Thesevalveswillautomatically closeonasafetyinjection signal.(4)ResidualHeatRemovalRHRLetdown'he RHRletdownlineisisolatedbytwonormallyclosedmotoroperatedvalvesinserieslocatedinsidereactorcontainment. Bothvalvesareinterlocked withRCSwide-rangepressuretoautomatically closeonincreasing pressureabove600psigandcannotbeopeneduntilRCSpressurehasdecreased below426psig.Inaddition, thevalvecontrolswitchesareadministratively keylockedclosed'in themaincontrolroomduringpoweroperation. (5)ReactorVesselHeadVentThereactorvesselheadventsystemconsistsoftwo-.redundant parallelpaths,eachpathcontaining twonormallyclosed,solenoidactuatedvalvesinseriesforisolation. Thesevalvesaredesignedtofailcloseduponlossofpower.6.3HdroenControlEuimentOperation ofthecontainment airrecirculation/hydrogen .:skimmer (CAR/HYS) fansandtheDISinconjunction withthecontainment spraysystem(CTS)furtherassuresthecombustion of'leanhydrogenmixtureswithoutposingathreattothecontainment structure viaoverpressurization. TheportionoftheCTSinsidecontainment .xontains noactivecomponents andhenceCTSoperation isnotadversely

affected byahydrogencombustion environment.

Theactivecomponents insidecontainment usedforhydrogencontrolaretheCAR/HYSfans-,andtheDIS.Theelectrical hydrogenrecombiners wouldbeusedto'removeresidualhydrogen(lessthan4volumepercent)fromthe.containment subsequent toDISoperation.

6.4ECCSInjection SubseuenttoCombustion
Anevaluation hasbeenmadetoverifyECCSinjection capability subsequent tohydrogencombustion insidecontainment.

Theresultso'fthisevaluation indicated thathigh-head safetyinjection (SI)(charging pumps)flowpathviatheBITandtheintermediate/low head'SI(SIandRHRpumps)flowpathtotheRCScoldlegswillbeunaffected byhydrogencombustion. Theseflowpathscontainmotoroperatedvalvesinsidecontainment. ThesevalvesreceiveasignaltoopenonaSIsignaldespitethefacttheyarenormallyintheopenposition, thusproviding furtherassurance ofECCSinjection capability. Nomechanism hasbeenidentified wherebytheenvironment associated withhydrogencombustion wouldresultinclosureofthesevalves.Withtherefueling waterstoragetank(RWST)available, twelveweightpercentboricacidcanbedelivered totheRCSbyaligningthesuctionofthechargingpumpstotheRWSTandaligningthepump(s)discharge totheboroninjection tank(BIT).Asecondflowpathinvolvesalignment ofthechargingpumpsuctiontothedischarge oftheboricacidtransferpumps,whicharethemselves alignedtotakesuctionfromtheboricacidtankswiththedischarge ofthechargingpumpsagainalignedtotheBIT.Neitheroftheabovedescribed flowpathsutilizecomponents (eg.valves)insidecontainment whicharerequiredtochangeposition/function inahydrogenburnenvironment. IntheeventthatthecontentsoftheRWSThadalreadybeeninjectedcoolantinjection isachievedbyaligningthechargingpump(s)suctiontothedischarge oftheresidualheatremoval(RHR)pump(s);withtheRHRpump(s)takingsuctionfromthecontainment recirculation sump.Thisthirdflowpathdoesnotutilizeanyactivecomponents insidecontainment whicharesusceptible toahydrogencombustion environment.

Thesubjectvalvesarefullyqualified forpost-accident .useinsidecontainment (LOCA/MSLB qualification). Inaddition,

theanalysesdescribed inAttachment No.4tothisreportclearlyshowthattheenvironmental conditions associated withhydrogen.combustion arelessseverethantheenvironment to.whichtheyhave
beenqualified; thusassuringmaintenance oftheaforementioned

.flowpaths.Thenormallyclosedmotoroperatedvalvesinthe-intermediate/low headSIflowpathhavealsobeenqualified foruse-inaLOCA/NSLB environment andwouldbeexpectedtoremaininoperation

subsequent tohydrogencombustion; thusproviding anotherECCSinjection path.

DONALDC.COOKNUCLEARPLANTUNITNOS.1AND2ATTACHMENT NO.7TOAEP:NRC:00500A SECONDQUARTERLY REPORTONHYDROGENMITIGATION ANDCONTROL

7.0 Preliminar

SafetEvaluation ~~~Indiana5MichiganElectricCo.(IQ1ECo.)hasdecidedtoinstallaDistributed IgnitionSystem(DIS)intheDonaldC.CookNuclearPlantUnitNos.1and2.TheDISinconjunction withoperation ofexistingsafety-related equipment providesadditional hydrogencontrolcapability intheextremely unlikelyeventofadegradedcoreeventsimilarinnaturetotheTMI-2accidentinvolving thegeneration ofsubstantive amountsofhydrogen. TheDIS,described indetailinAttachment No.2ofthisreport,isdesignedtoassurecombustion ofleanhydrogen/air/steam mixturesandhencewillminimizethepressureandtemperature transients associated withhydrogencombustion. Conservative analysesofthecontainment responsehavepreviously beensubmitted viaourfirstquarterly report(AEP:NRC:00500). Theresultsoftheseanalysesindicatethatdeliberate ignitionofleanhydrogenmixturesusingtheDISwillresultinpressures belowtheultimatestrengthoftheCookPlantcontainments. Theeffectsofahydrogencombustion environment onnecessary equipment locatedinsidecontainment hasbeenevaluated andtheresultsofthisevaluation presented inAttachment No.4ofthisreport.Itisclearfromourevaluation thatthetemperature effectsoFdeliberate hydrogencombustion arelessseverethanthosetowhichmostofthenecessary equipment hasbeenqualified (LOCA/MSLB qualification). Ithasalsobeenshownthattheabilitytoinjectemergency corecoolingwaterisnotaffectedbyhydrogencombustion. Theextensive plantmodifications andenhancedoperatortrainingimplemented subsequently totheTNI-2accidenthaveeffectively reducedthealreadylowprobability ofoccurrence ofeventswhichcouldresultinthegeneration ofsubstantive amountsofhydrogenattheCookPlant'.TheDIS,inconjunction withexistingplantequipment>will provideanadditional levelofmitigation capability forhypothetical eventswellbeyondthedesignbasisoftheCookUnits,furtherenhancing thedefense-in-depth .philosophy. Installation oftheDISprovidesfurtherassurance thatoperation oftheCookPlantwillinnowayadversely effectthehealthandsafetyofthegeneralpublic. ah4}}