ML17329A673

From kanterella
Revision as of 10:10, 4 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 1 to SECL-91-429, Main Steam Safety Valve Lift Setpoint Tolerance Relaxation.
ML17329A673
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 11/11/1992
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17329A671 List:
References
SECL-91-429, SECL-91-429-R01, SECL-91-429-R1, NUDOCS 9211170225
Download: ML17329A673 (215)


Text

ATTACHMENT4toAEP:NRC:1169WESTINGHOUSEREPORTSECL-91-429,Revision1,"DONALDC.COOKUNITS1AND2MAINSTEAMSAFETYVALVELIFTSETPOINTTOLERANCERELAXATION"92iii7022592iiiiPDRADOCK050003i5PPDR

SECL-91-429,Revision1DONALDC.COOKUNITS1R2HAINSTEANSAFETYVALVELIFTSETPOINTTOLERANCERELAXATIONNuclearandAdvancedTechnologyDivisionWestinghouseElectricCorporationSeptember19921992WestinghouseElectricCorporationAllRightsReserved SECL-91-429,Revision1LISTOFCONTRIBUTORSJeffreyC.BassLeighA.BrooksRobertW.GarisonScottR.GriffithGregJ.HillRobertG.OrendiWilliamJ.RinkacsTimD.RowellKenRubinJillL.StackhouseHikeB.WatsonHaureenR.Zawalick

SECL-91-429,Revision1TABLEOFCONTENTSSECTIONListofTablesListofFiguresSafetyEvaluationCheckListIntroductionLicensingBasisEvaluationsNon-LOCALOCAContainmentIntegritySteamGeneratorTubeRuptureComponentPerformanceSystemsEvaluationRadiologicalEvaluationPlantRiskAnalysis(IPE)PlantRiskAnalysis(non-IPE)I&CSystemsTechnicalSpecificationsAssessmentofNoUnreviewedSafetyguestionConclusionReferencesAppendixA:SignificantHazardsEvaluationAppendixB:RecommendedTechnicalSpecificationMarked-UpsPAGEvii52024.25272727,272828292933

SECL-91-429,Revision1LISTOFTABLESTABLEPAGETable1:MainSteamSafetyValveLiftSetpointsTable2:DNBDesignBasisTransientsNotAffectedAffectedbyMSSVLiftSetpointToleranceIncreaseTable3:Unit1TurbineTripSequenceofEventsTable4:Unit2TurbineTripSequenceofEventsTable5:CurrentLicensingBasisSteamLineSafetyValvesperLoopTable6:MSSVSetpointIncreaseSteamLineSafetyValvesperLoopTable7:Unit1LowPressureLowTemperatureInputParametersTable8:Unit1LowPressureHighTemperatureInputParametersTable9:Unit2LowPressureHighTemperatureInputParametersTable10:Unit1SmallBreakLOCAEvaluationTimeSequenceofEventsTablell:Unit1SmallBreakLOCAEvaluationSummaryofResultsTable12:Unit2SmallBreakLOCAEvaluationTimeSequenceofEventsTable13:Unit2SmallBreakLOCAEvaluationSummaryofResults3537394O4144454647 SECL-91-429,Revision1LISTOFFIGURESFIGUREFigurela:IllustrationofOvertemperatureandOverpowerhTProtectionforUnit1Figure1b-c:IllustrationofOvertemperatureandOverpowerATProtectionforUnit2(mixedandfullV-5Hcores)Figure2:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure3~Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure4:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure5~Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandHSSVReliefRateFigure6:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure7:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure8:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure9:Figure10:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureUnit1TurbineTripEventWithoutPressureControl,HaximumReactivityFeedback:SteamGeneratorPressureandHSSVReliefRate111 0

SECL-91-429,Revision1FIGURELISTOFFIGURES(Continued)Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerReliefRateUnit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeUnit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRUnit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureUnit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandHSSVReliefRateUnit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerReliefRateUnit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeUnit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRUnit1TurbineTripEventWithPressureControl,HinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureUnit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandHSSVReliefRateUnit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerReliefRate

SECL-91-429,RevisionIFIGURELISTOFFIGURES(Continued)Figure22a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure23a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivityFeedback:NuclearPowerandDNBRFigure24a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure25a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivityFeedback:SteamGeneratorPressureandHSSVReliefRateFigure26a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivityFeedback:PressurizerReliefRateFigure27a-b:Unit2TurbineTripEventWithoutPressureControl,HaximumReactivityFeedback:PressurizerPressureandMaterVolumeFigure28a-b:Unit2TurbineTripEventWithoutPressureControl,HaximumReactivityFeedback:NuclearPowerandDNBRFigure29a-b:Figure30a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureUnit2TurbineTripEventWithoutPressureControl,HaximumReactivityFeedback:SteamGeneratorPressureandHSSVReliefRateFigure3la-b:Unit2TurbineTripEventMithoutPressureControl,HaximumReactivityFeedback:PressurizerReliefRateFigure32a-b:Unit2TurbineTripEventMithPressureControl,HaximumReactivityFeedback:PressurizerPressureandWaterVolume SECL-91-429,Revision1LISTOFFIGURES(Continued)FIGUREFigure33a-b:Unit1TurbineTripEventWithPressureControl,HaximumReactivityFeedback:NuclearPowerandDNBRFigure34a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure35a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure36a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure37a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure38a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure39a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure40a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandHSSVReliefRateFigure41a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerReliefRate SECL-91-429,Revision1CustomerReferenceNo(s).PO:04877-040-INWestinghouseReferenceNo(s}.WESTINGHOUSENUCLEARSAFETYSAFETYEVALUATIONCHECKLIST1)NUCLEARPLANT(S):OONALDC.COOKUNITS1AND22)SUBJECT(TITLE)'ELAXATIONOFHSSVSETPOINTTOLERANCETO+-3%3)Thewrittensafetyevaluationoftherevisedprocedure,designchangeormodificationrequiredby10CFR50.59(b)hasbeenpreparedtotheextentrequiredandisattached.Ifasafetyevaluationisnotrequiredorisincompleteforanyreason,explainonPage2.PartsAand8ofthisSafetyEvaluationCheckListaretobecompletedonlyonthebasisofthesafetyevaluationperformed.CHECKLIST-PARTA10CFR50.59(a)(1)(3.1)YesXNo(3.2)YesNoX(3.3)YesNoX(3.4)YesXNo4)CHECKLIST-PartB(4.1)YesNoX(4.2)YesNoX(4.3)YesNoX(4.4)YesNoX(4.5)YesNoX(4.6)YesNoX(4.7}YesNoXAchangetotheplantasdescribedintheUFSAR?AchangetoproceduresasdescribedintheUFSAR?AtestorexperimentnotdescribedintheUFSAR?Achangetotheplanttechnicalspecifications?(SeenoteonPage2.)10CFR50.59(a)(2)(JustificationforPartBanswersmustbeincludedonPage2.)WilltheprobabilityofanaccidentpreviouslyevaluatedintheUFSARbeincreased?WilltheconsequencesofanaccidentpreviouslyevaluatedintheUFSARbeincreased?HaythepossibilityofanaccidentwhichisdifferentthananyalreadyevaluatedintheUFSARbecreated?WilltheprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARbeincreased?WilltheconsequencesofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARbeincreased?NaythepossibilityofamalfunctionofequipmentimportanttosafetydifferentthananyalreadyevaluatedintheUFSARbecreated?Willthemarginofsafetyasdefinedinthebasestoanytechnicalspecificationsbereduced?vi1 SECL-91-429,Revision1NOTES:Iftheanswerstoanyoftheabovequestionsareunknown,indicateunder5)REMARKSandexplainbelow.IftheanswerstoanyoftheabovequestionsinPartA3.4orPart8cannotbeansweredinthenegative,basedonthewrittensafetyevaluation,thechangereviewwouldrequireanapplicationforlicenseamendmentasrequiredbyIOCFR50.59(c)andsubmittedtotheNRCpursuantto10CFR50.90.5)REMARKS:TheattachedsafetyevaluationsummarizesthejustificationforanswersgiveninPartA3.4andPartBofthissafetyevaluationchecklist:Referencetodocumentscontainingwrittensafetyevaluation:FORUFSARUPDATESection:variousPages:Reasonfor/DescriptionofChange:Tables:Figures:UFSARMark-ustoberovidedbsegratetransmittal6)SAFETYEVALUATIONAPPROVALLADDER:6.I)Preparedby(NuclearSafety):Date:6.2)Reviewedby(NuclearSafety):6.3)NuclearSafetyGroupManager:Date:9/d2.Date:0l SECL-91-429,Revision1DONALDC.COOKUNITS1&2INCREASEDHAINSTEAMSAFETYVALVESETPOINTTOLERANCESAFETYEVALUATIONI.INTRODUCTIONAmericanElectricPowerServiceCorporation(AEPSC)hasfoundthatoveranoperatingcyclethesetpointoftheHainSteamSafetyValves(HSSVs)canchangebymorethan1%fromtheoriginalset-pressure.AEPSChasrequestedthatWestinghouseperformanevaluationtoincreasetheliftsetpointtoleranceontheHSSVsatDonaldC.CookUnits1&2.Thefollowingsafetyevaluationisprovidedtosupportchangingtheas-foundliftsetpointtoleranceasstatedbytheTechnicalSpecificationsfrom+1%to+3%.Duringnormalsurveillance,ifthevalvesarefoundtobewithin+3%,theywillbewithinthebasesoftheaccidentanalyses,however,thevalveswillberesetto+1%toaccountforfutureaccumulationofdrift.Thus,thisevaluationpermitsa+3%setpointtolerancetoaddressas-foundconditions.TheHSSVsarelocatedoutsidecontainmentupstreamoftheMainSteamIsolationValves.Thepurposeofthevalvesistopreventoverpressurizationofthesteamgenerators.Inordertoaccomplishthis,abankoffivevalvesislocatedoneachofthefoursteamgenerators,andthereliefcapacityisdesignedsuchthatthetotalsteamflowfromthe20valveswillboundthatproducedbythelimitinglicensing-basisanalysis.ForDonaldC.Cook,thetotalreliefcapacityofthe20valvesis17.153E6ibm/hrat1186.5psia(1171.5psig).

SECL-91-429,Revision1Theliftsetpointsoftheindividualvalvesoneachsteamlinearestaggeredatdifferentpressurestominimizechatteringoncethevalvesareactuated.Staggeringthevalvesalsominimizesthetotalnumberofvalvesactuatedduringthosetransientswherelessthanthemaximumreliefcapacityisrequiredtherebyreducingmaintenancerequirementsonthevalves.TheactualsetpointsareprovidedinTable1andaredocumentedinTables4.7-1and3.7-4oftheUnits1and2TechnicalSpecifications,respectively(Reference1).TheoperationoftheClass2mainsteamsafetyvalves(HSSVs)isgovernedbytheASHECode(Reference2).AEPSCwillmaintainthedesignbasisoftheHSSVsbyensuringthatthevalves,ifoutsidethe+lXtolerance,willberecalibratedtowithin+1X.Thepurposeofthisevaluationistoprovideaquantificationoftheeffectsofahigheras-foundliftsetpointtolerance.Thissafetyevaluationwilladdresstheeffectsofthe+3Nas-foundtoleranceonUFSARaccidentanalyses(non-LOCA,LOCA,SGTR)andwilldocumenthowtheeffectsareaccountedforwithintheaccidentanalysesandtheacceptabilityoftheincreaseintheliftsetpointtolerance.

0 SECL-91-429,Revision1TABLE1MAINSTEAMSAFETYVALVELIFTSETPOINTVALVENUMBERLIFTSETPOINT(+I/o)SV-1SV-1SV-2SV-2SV-31065psig1065psig1075"psig1075psig1085psig(1080psia)(1080psia)(1090psia)(1090psia)(1100psia)

References:

Table4.7-1oftheUnit1TechnicalSpecificationsandTable3.7-4oftheUnit2TechnicalSpecifications SECL-91-429,RevisionIII.LICENSINGBASISTitle10oftheCodeofFederalRegulations,Section50.59(10CFR50.59)allowstheholderofalicenseauthorizingoperationofanuclearpowerfacilitythecapacitytoinitiatecertainchanges,testsandexperimentsnotdescribedintheUpdatedFinalSafetyAnalysisReport(UFSAR).PriorNuclearRegulatoryCommission(NRC)approvalisnotrequiredtoimplementthemodificationprovidedthattheproposedchange,testorexperimentdoesnotinvolveanunreviewedsafetyquestionorresultinachangetotheplanttechnicalspecificationsincorporatedinthelicense.WhiletheproposedchangetotheMSSVliftsetpointtolerancesinvolvesachangetotheDonaldC.CookTechnicalSpecificationsandrequiresalicensingamendmentrequest,thisevaluationwillbeperformedusingthemethodoutlinedunder10CFR50.59toprovidethebasesforthedeterminationthattheproposedchangedoesnotinvolveanunreviewedsafetyquestion.Inaddition,anevaluationwilldemonstratethattheproposedchangedoesnotrepresentasignificanthazardsconsideration,asrequiredbylOCFR50.91(a)(I)andwilladdressthethreetestfactorsrequiredbylOCFR50.92(c).Thenon-LOCAsafetyanalyseswillbeexaminedtodeterminetheimpactoftheMSSVliftsetpointtolerancerelaxationontheDNBdesignbasisaswellastheapplicableprimaryandsecondarysystempressurelimits.Thelong-termcorecoolingcapabilityofthesecondarysidewillalsobeconsidered.TheLOCAevaluationwillinvestigatetheeffectsonthelicensingbasissmallbreakanalysisintermsofpeakcladtemperature,andanyadverseeffectsonthesteamgeneratortuberuptureeventandsubsequentdosereleasecalculationswillalsobedetermined.

SECL-91-429,Revision1III.EVALUATIONSTheresultsofthevariousevaluationsfromtheNuclearSafetyrelateddisciplineswithinWestinghousescopearediscussedinthefollowingsections.l.Non-LOCAEvaluationThenon-LOCAaccidentanalysesthatarecurrentlypresentedintheUFSARmodelledtheMSSYsasabankoffivevalves,allofwhichhavingaIliftsetpointequaltothatofthehighestsetvalve(1100psia)plus3%toaccountforaccumulation.AlloftheanalysesandevaluationsperformedforthisreportmodelledthestaggeredbehavioroftheMSSVs.Specifically,eachvalvewasassumedtooperateindividually.Moreover,theanalyses/evaluationsofthisreportmodelledtheflowrateofeachvalvetoramplinearlyfromnoflowatitsliftsetpoint(nominalTechnicalSpecificationsetpointplusorminusthe3%tolerancevalue)tofullopenflowatitsfullopenpoint(3%abovethepressureatwhichthevalveswereassumedtopopopen-i.e.,accumulationeffect).+3%Tolerance:Forthepurposesofthisevaluation,all20MSSVsareassumedtolift3%abovetheTechnicalSpecificationliftsetpointandachievefullratedflow(normallyat3%abovethesetpoint)6%abovethesetpoint.ATProtectionTheincreaseintheMSSVliftsetpointtolerancehasthepotentialtoimpacttheOvertemperaturehTandOverpowerhTsetpointequations.ReferringtoFigurelaforUnit1andFigureslbandlc(whicharethemost'limitingcaseforeachunit/coretype),increasingthepointatwhichtheMSSVsliftwilllowerthesteamgeneratorsafetyvalveline.

SECL-91-429,RevisionIIfthecurrentOTATsetpointcoefficients(KIthroughK3)resultinprotectionlinesthatjustboundthethermalcorelimits,itispossiblethatbyloweringtheSGsafetyvalvelinetotheright,aportionofthecorelimitswillbeuncovered.Inordertoevaluatetheeffectsoftheincreaseinthesetpointtolerance,theOvertemperatureATandOverpowerbTsetpointequations(KlthroughK6)wereexaminedtodetermineiftheequationsremainedvalidassumingthatall20NSSVsopenedwitha+3%tolerance.Theresultsofthatevaluationshowedthattherewassufficientmargininthegenerationofthecurrentsetpointequationstooffsetthe1oweringoftheSGsafetyvalveline.Thus,changestotheOvertemperatureandOverpowerTechnicalSpecificationsarenotneeded.TheresultsofthisevaluationarepresentedasFiguresla,Ib,andlc.DNBEventsThetransientsidentifiedinTable2areanalyzedintheD.C.CookUFSARtodemonstratethattheDNBdesignbasisissatisfied.Withoneexception,theseeventsarea)ofsuchashortdurationthattheydonotresultintheactuationoftheHSSVs,b)core-relatedanalysesthatfocusontheactivefuelregiononly(i.e.,onlythecoreismodelled),orc)cooldowneventswhichresultinadecreaseinsecondarysteampressure.Thesingleexceptionisthelossofexternalload/turbinetripeventwhichisaddressedexplicitlyintheANALYSISsectionofthissafetyevaluation.Thus,basedontheabove,thesenon-LOCADNBtransientsarenotadverselyimpactedbytheproposedchange,andtheresultsandconclusionspresentedintheUFSARremainvalid.BoronDilutionEventTheborondilutionevent(14.1.5)isanalyzedtodemonstratethattheoperators(ortheautomaticmitigationcircuitry)havesufficienttimetorespondpriortoreactorcriticality.Thesecondarysystemisnotmodeledin SECL-91-429,Revision1TABLE2DNBDESIGNBASISTRANSIENTSNOTAFFECTEDBYMSSVLIFTSETPOINTTOLERANCEINCREASEEVENTUFSARSectionExcessiveHeatRemovalDuetoFeedwaterSystemMalfunction14.1.10,ExcessiveLoadIncreaseIncident14.1.11RuptureofaSteamPipe(SteamlineBreak-CoreResponse)14.2.5LossofReactorCoolantFlow(IncludesLockedRotorAnalysis)UncontrolledRCCABankWithdrawalFromaSubcriticalCondition14.1.614.1.1UncontrolledRCCABankWithdrawalatPower14.1.2RCCAMisalignment14.1.3 SECL-91-429,Revision1theanalysisofthisevent,andthus,changestotheHSSVshavenoimpactonthisevent.Therefore,theresultsandconclusionspresentedintheUFSARremainvalid.SteamlineBreakMass5EnerReleasesForthesteamlinebreakmassandenergyreleases,thesteamreleasecalculationsareinsensitivetothechangesintheHSSVliftsetpointssincethevastmajorityofthesecalculationsresultindepressurizationsofthesecondarysidesuchthattheHSSVsarenotactuated.Forthesmallerbreakcasesthatmightresultinaheatup,oneHSSVpersteamgeneratorissufficient(basedontheexistinganalyses)toprovideanyrequiredheatremovalfollowingreactortrip.Thesecondarypressureswillbenogreaterthanthosepresentlycalculated.Thustheexistingsteamlinebreakmassandenergyreleasecalculationsremainvalid.EVENTUFSARSectionSteamlineRuptureMass5EnergyReleasesInsideContainmentWCAP-11902Supplement1SteamlineRuptureMass8EnergyReleasesOutsideContainmentforEquipmentEnvironmentalgualificationWCAP-10961Rev1(current)SubmittalAEP:NRC:1140*(approved11/20/91)*SubmittalAEP:NRC:1140"TechnicalSpecificationChangeRequest,BITBoronConcentrationReduction,"March26,1991.(includedinWCAP-11902,Supplement1)

SECL-91-429,Revision1Lon-TermHeatRemovalEventsTheonlynon-LOCAtransientsremainingarethelong-termheatupevents.Thelong-termheatremovaleventsareanalyzedtodetermineiftheauxiliaryfeedwater(AFW)heatremovalcapabilityissufficienttoensurethatthepeakRCSandsecondarypressuresdonotexceedallowablelimits,thepressurizerdoesnotfill(LONF/LOOP),andthecoreremainscoveredandinaeoolablegeometry(FLB).Thesetransientsarelistedbelow.EVENTUFSARSectionLossofAllACPowertothePlantAuxiliaries(LossofOffsitePower-LOOP)14.1.12LossofNormalFeedwater(LONF)14.1.9FeedwaterSystemPipeBreak(FLB)*14.2.8*TheFeedwaterSystemPipeBreakeventisnotpartoftheUnit1licensingbasisandispresentedintheUnit1UFSARforinformationpurposesonly.ThesetransientsareimpactedbytheincreaseintheMSSVliftsetpointtolerancebecausethecalculationsdeterminingtheamountofAFWflowavailablemustassumeamaximumgivensteamgeneratorbackpressureinordertodeterminetheamountofAFWthatcanbedelivered.Asthesteamgeneratorbackpressureincreases,theamountofAFWdeliveredwillbereduced.ForthelossofnormalfeedwaterandthelossofallACpowertothePlantAuxiliariesevents,evaluationswereperformedinwhichthestaggeredactuationoftheMSSVswastakenintoaccount.ThesafetyanalysispresentedinthecurrentUFSARassumedanAFWflowrateof450gpm,splitevenlytoallfoursteamgenerators.Theevaluationsdoneforthisreportconcerninglossofnormalfeedwater(LONF)forUnits1

SECL-91-429,Revision1and2,aswellaslossofallACpowertotheplantauxiliaries(LOOP)forUnit1,demonstratedthatthesecondarysidepressureswillnotexceed1123psiaduringthetimeAFWisdeliveredtothesteamgenerators.BasedonReference10,theAFWassumptionsmodeledinthesafetyanalysisremainvalidforsteamgeneratorbackpressuresupto1123psi'a.Sincetheevaluation,inwhicha+3%HSSVsetpointtolerancewasassumed,showedthatthesecondarysidepressuretransientwillnotprecludetheAFWflowratesassumedintheanalysisfrombeingsuppliedtothesteamgenerators,theexistinganalysesremainvalidforUnit1LONF/LOOPandUnit2LONF.TheLossofOffsitePowerevent(LOOP)forUnit2wasalsoevaluatedforthisreport.TheLOOPsafetyanalysispresentedinthecurrentUFSARforUnit2assumedanAFWflowrateof430gpmsplitevenlytoallfoursteamgenerators.TherecentevaluationdoneforthisreporttookcreditforthestaggeredactuationoftheHSSVsaswellasa+3Msetpointtolerance,asdiscussedearlier.TheevaluationyieldedresultssimilartothosediscussedaboveforUnit1.ThesecondarysidepressureforthisUnit2evaluationwasdemonstratednottoexceed1133psiaduringtheperiodAFWissupplied.BasedonReference10,thesecondarysidepressuretransientwasfoundnottoprecludetheAFWflowratesassumedintheanalysisfrombeingdeliveredtothesteamgenerators.Therefore,theexistingLossofOffsitePoweranalysisforUnit2remainvalid.TheevaluationsfortheLONF/LOOPeventsforbothUnit1andUnit2,asdiscussedabove,demonstratethattherespectiveanalysesarestillapplicableevenifaNSSVliftsetpointtoleranceof+3Misassumed.ThereforetheresultsandconclusionspresentedintheDonaldC.CookUnit1&2UFSARremainvalid.TheevaluationdoneforthisreportfortheUnit2FeedlineBreakeventdemonstratedthatthesecondarysidepressurewillnotexceed1133psiaduringtheperiodwhenAFWisbeingdelivered.At1133psia,anAFWflowrateof685gpmwithasymmetricflowsplitstothethreeintactsteamgeneratorscouldbesuppliedbasedoninformationcontainedinReference10.

SECL-91-429,Revision1ThecurrentanalysisforthiseventassumedatotalAFWflowrateof600gpmwithanevensplitof200gpmtothethreeintactsteamgenerators.SincethetotalAFWflowrateismorethansufficienttoaccommodateAFWflowsplitdeviationsofasmuchas25gpmperloop,thecurrentFeedlineBreakanalysiscontinuetobeapplicableandremainboundingforthisevaluation.Therefore,theresultsandconclusionspresentedintheUnit2UFSAR(14.2.8)remainvalid.-3%Tolerance:ThesecondarysteamreleasesgeneratedforthelockedrotoroffsitedosecalculationsforUnit2couldbepotentiallyaffectedbyanincreaseintheHSSVsetpointtolerancefrom-1Nto-3X.Reference9transmittedthemostrecentlockedrotordoseanalysis.GiventhattheradiologicalassumptionsusedintheReference9analysisdonotchangewithanincreaseinMSSVsetpointtolerance(i.e.,rods-in-DNBandprimarytosecondaryleakageremainatllNand1gpmrespectively)theonlyeffectthetoleranceincreasewouldhavewouldbeonthemassreleasevalues.ThemethodologyusedtocalculatethesemassesisbasedondeterminingtheamountofsecondarysideinventoryrequiredtocooldowntheRCS.Duringthefirsttwohours(0-2hours),theoperatorsareassumedtolowertheRCSaveragetemperaturetono-loadconditions(547'F)bybleedingsteam.Overthenext6hours(2-8hours),theoperatorswillcooltheplantdownsuchthatMode4operation(hotshutdown)canbeentered.Theexistingsteamreleasecalculationsforthe0-2hourperiodusedenthalpiescorrespondingtosaturatedconditionsatboththenominalfullpowerRCSaveragetemperatureandtheno-loadtemperature(581.3'Fand547'F,respectively).Thus,aslongastheincreasedliftsetpointtolerance(-3X)doesnotresultintheHSSVsremainingopenatasaturationtemperatureoutsideoftherangeidentifiedabove,theexistingmassreleasesremainvalid(Reference9).

SECL-91-429,Revision1Theexistingmassreleasecalculationswereperformedusingthetemperaturespreviouslyidentified(581.3'Fand547'F).PertheDonaldC.CookTechnicalSpecifications,thelowestsetHSSVoneachsteamgeneratorwillopenat1080psia(1065psig)notincludinganytolerance.BasedontheASMESteamTables(Reference6)atsaturatedconditions,547'Fcorrespondsto1020.1psiaandrepresentstheloweststeampressureconsideredinthemasscalculations.Thus,theexistingreleasesincludeareseatpressureapproximately5.5NbelowthelowestTechnicalSpecificationliftsetpoint.Aslongasthevalvescontinuetoreseatwithinthispressurerange,thecurrentmassreleasesremainvalid.TheoperatingwindowsthatareapplicableforUnit1operationareboundedbytheUnit2doseanalysis.Therefore,themassreleasesforUnit2,asfoundinReference9,areapplicabletoUnit1.EvaluationSummarThus,basedonthediscussionspresentedabove,onlyoneUFSARnon-LOCAtransientisimpactedsuchthatanewanalysismustbeperformedinordertoaddresstheeffectsoftheNSSVliftsetpointtoleranceincreasefrom+1%to+3K.Thiseventisthelossofexternalload/turbinetripaccident.Fortheothertransients,theresultsandconclusionspresentedintheDonaldC.CookUnit182UFSARremainvalid.

SECL-91-429,RevisionINon-LOCAAnalsis:elLossofExternalLoadTurbineTriThelossofexternalload/turbinetripeventispresentedinSection14.1.8oftheDonaldC.CookUFSAR.Thistransientiscausedbyaturbine-generatortripwhichresultsintheimmediateterminationofsteamflow.Sincenocreditistakenforadirectreactortriponturbinetrip,primaryandsecondarypressureandtemperaturewillbegintoincrease,actuatingthepressurizerandsteamgeneratorsafetyvalves.Thereactorwilleventuallybetrippedbyoneoftheotherreactorprotectionsystem(RPS)functions;specifically,overtemperatureAT,highpressurizerpressure,orlow-lowsteamgeneratorwaterlevel.Theturbinetripeventisthelimitingnon-LOCAeventforpotentialoverpressurization,i.e.,thistransientformsthedesignbasisfortheprimaryandsecondarysafetyvalves.SincetheHSSVswillnowpotentiallybeopeningatahigherpressureduetotheincreaseintheliftsetpointtolerance,itisnecessarytoanalyzethistransientinordertodemonstratethatalltheapplicableacceptancecriteriaaresatisfied.AturbinetripisclassifiedasanANSconditionIIevent,afaultofmoderatefrequency.Assuch,theappropriateacceptancecriteriaareDNBR,peakprimarypressure,andpeaksecondarypressure.ThetransientisdescribedingreaterdetailintheUFSAR.TheturbinetripeventisanalyzedusingamodifiedversionoftheLOFTRANdigitalcomputercode(Reference6).ThismodifiedversionofLOFTRANonlydiffersfromthestandardcodeversioninthewaytheHSSVsaremodelled.Theprogramsimulatesneutronkinetics,reactorcoolantsystem,pressurizer,pressurizerreliefandsafetyvalves,pressurizerspray,steamgenerators,andmainsteamsafetyvalves.Withthemodifiedcode,theHSSVsareexplicitlymodeledasabankof5valvesoneachsteamgeneratorwithstaggeredliftsetpoints.WhereasthestandardLOFTRANversionprogramconservativelymodelstheHSSVsasabankoffivevalves,allhavingone SECL-91-429,Revision1commonliftsetpoint.BymodellingthestaggeredbehavioroftheHSSVs,amoreaccuratesimulationofhowthevalvesactuallybehaveisachieved.Sincehighersteampressuresareconservativeforthisevent,noblowdownorhysteresisbehaviorwasassumed.ConsistentwiththeexistingUFSARanalysis,allassumptionswerethesameaspreviouslyusedunlessspecificallynoted.Thefollowingassumptionswereusedinthisanalysis:a.Initialpower,temperature,andpressurewereattheirnominalvaluesconsistentwith:1)ITDPmethodology(WCAP-8567)forUnit1,withtheexceptionthata2Xconservatismoninitialcorepowerwasassumed.2)RTDPmethodology(WCAP-11397)forUnit2,withnoexceptions.b.Turbinetripwasanalyzedwithbothminimumandmaximumreactivityfeedback.C.Turbinetripwasanalyzedbothwithandwithoutpressurizerpressurecontrol.ThePORVsandsprayswereassumedoperableinthecaseswithpressurecontrol.ThecaseswithpressurecontrolminimizetheincreaseinprimarypressurewhichisconservativefortheDNBRtransient.ThecaseswithoutpressurecontrolmaximizetheincreaseinpressurewhichisconservativefortheRCSoverpressurizationcriterion.d.ThesteamgeneratorPORVandsteamdumpvalveswerenotassumedoperable.ThisassumptionmaximizessecondarypressurewhichinturnmaximizestheprimarytemperatureforDNBRandprimarypressureforpressurecases.

SECL-91-429,Revision1e.Hainfeedwaterflowwasassumedtobelostcoincidentwiththeturbinetrip.Thisassumptionmaximizestheheatupeffects.f.OnlytheovertemperaturehT,highpressurizerpressure,andlow-lowsteamgeneratorwaterlevelreactortripswereassumedoperableforthepurposesofthisanalysis.g.TheflowrateforeachHSSVwasmodelledtoramplinearlyfromnoflowatitsliftsetpoint(3XabovethenominalTechnicalSpecificationsetpoint)tofullopenflowatitsfullopenpoint(6Xabovethenominalsetpoint).Thefullopenflowrateisbasedonareferencefullflowcapacityof238ibm/secat1186.5psia(basedontheASHEratedflowforthesevalves).Forsecondarysidepressuresbetweentheinitialfullopenpointforeachvalveand1186.5psia,thefullopenflowratewasmodelledtovaryproportionallywithpressure.ThisassumptionmaximizessecondarypressurewhichinturnmaximizestheprimarytemperatureforDNBRandpr'imarypressureforpressurecases.ResultsFourcasesforeachunit/coretype(i.e.Unit1,Unit2mixedcore,andUnit2fullV5core)wereanalyzed:a)minimumfeedbackwithoutpressurecontrol,b)maximumfeedbackwithoutpressurecontrol,c)maximumfeedbackwithpressurecontrol,andd)minimumfeedbackwithpressurecontrol.ThemostlimitingcasesinthecurrentUFSARcontinuetobethemostlimitingcases.ThecalculatedsequenceofeventsforthefourcasesforeachunitarepresentedinTables3and4.

SECL-91-429,Revision1UNIT1CaseA:Figures2through6showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithoutpressurecontrol.Thereactoristrippedonhighpressurizerpressure.Theneutronfluxremainsessentiallyconstantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.ThemainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelowllONofthedesignvalue.CaseB:Figures7through11showthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithoutpressurecontrol.Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytheincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizerpressure.TheDNBRincreasesthroughoutthetransientandneverdropsbelowth'einitialvalue.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110/ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110Xofthedesignvalue.CaseC:Figures12through16showthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithpressurecontrol.Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabrupt SECL-91-429,Revision1UNIT1continuedlossoftheheatsink.Thereactoristrippedonlow-lowsteamgeneratorwaterlevel.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue.Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseD:Figures17through21showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithpressurecontrol.Thereactoristrippedonhighpressurizerpressure.AlthoughtheDNBRvaluedecreasesbelowtheinitialvalue,itremainswellabovethelimitthroughouttheentiretransient.Thepressurizerrelief.valvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.AnalsisConclusionUnit1BasedontheresultsoftheseUnit1turbinetripanalyseswitha+3%toleranceontheHSSVliftsetpoints,alloftheapplicableacceptancecriteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondarypressuresremainbelow110%ofdesignatalltimes.

SECL-91-429,Revision1UNIT2:amixedandbfullV-5coresCaseA:Figures22athrough26b("a"designatesmixedcorefiguresand"b"denotesfullV-5corefigures)showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithoutpressurecontrolforbothcoretypes.Thereactoristrippedonhighpressurizerpressure.Theneutronfluxremainsessentiallyconstantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.ThepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelowllOXofthedesignvalue.ThemainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelowllOXofthedesignvalue.Case8:Figures27athrough3lbshowthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithoutpressurecontrolforbothmixedandfullV-5coretypes.Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizerpressure.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110Xofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110Xofthedesignvalue.CaseC:Figures32athrough36bshowthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithpressurecontrolforthetwoapplicableUnit2coretypes.Thecorepowerisobservedtoundergo SECL-91-429,Revision1UNIT2:continuedamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonlow-lowsteamgeneratorwaterlevel.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue.Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110Xofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110Xofthedesignvalue.CaseD:Figures37athrough41bshowthetransientresponsefo}theturbinetripeventunderminimumreactivityfeedbackconditionswithpressurecontrolforboththemixedandfullV-5cores.Thereactoristrippedonhighpressurizerpressure.AlthoughtheDNBRvaluedecreasesbelow'theinitialvalue,itremainswellabovethelimitthroughouttheentiretransient.Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110Xofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110Xofthedesignvalue.AnalsisConclusionUnit2BasedontheresultsoftheseUnit2mixedandfullcoreturbinetripanalyseswitha+3XtoleranceontheNSSVliftsetpoints,alloftheapplicableacceptancecriteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.ThepeakprimaryandsecondarypressuresremainbelowllOXofdesignatalltimes.

SECL-91-429,Revision1Non-LOCAConclusionsTheeffectsofincreasingtheas-foundliftsetpointtoleranceonthemainsteamsafetyvalveshavebeenexamined,andithasbeendeterminedthat,withoneexception,thecurrentaccidentanalysesaspresentedintheUFSARremainvalid.Thelossofload/turbinetripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerancerelaxation.Aspreviouslydemonstratedinthissafetyevaluation,allapplicableacceptancecriteriaforthiseventhavebeensatisfiedandtheconclusionspresentedintheUFSARarestillvalid.Thus,withrespecttothenon-LOCAtransients,theproposedTechnicalSpecificationchangedoesnotconstituteanunreviewedsafetyquestion,andthenon-LOCAaccidentanalyses,aspresentedinthereport,supporttheproposedchange.2.LOCAandLOCARelatedEvaluationsLareBreakLOCAThecurrentlargebreakLOCAanalysesforDonaldC.CookUnitsIand2wereperformedwiththeNRCapproved1981EvaluationHodelplusBASH.AfterapostulatedlargebreakLOCAoccurs,theheattransferbetweenthereactorcoolantsystem(RCS)andthesecondarysystemmaybeineitherdirection,dependingontherelativetemperatures.Inthecaseofcontinuedheatadditiontothesecondarysystem,thesecondarysystempressureincreasesandtheHSSVsmayactuatetolimitthepressure.However,thisdoesnotoccurinthelargebreakevaluationmodelsincenocreditistakenforauxiliaryfeedwateractuation.Consequently,thesecondarysystemactsasaheatsourceinthepostulatedlargebreakLOCAtransientandthesecondarypressuredoesnotincrease.Sincethesecondarysystempressuredoesnotincrease,itisnotnecessarytomodeltheHSSVsetpointinthelargebreakevaluationmodel.Therefore,anincreaseintheallowableHSSVsetpointtoleranceforDonaldC.CookUnitsIand2willnotimpactthecurrentUFSARlargebreakLOCAanalyses.

SECL-91-429,RevisionISmallBreakLOCAThesmallbreakLOCAanalysesforDonaldC.CookUnitsIand2wereperformedwiththeNRCapprovedEvaluationModelusingtheNOTRUMPcode.AfterapostulatedsmallbreakLOCAoccurs,'heheattransferbetweentheRCSandthesecondarysystemmaybeineitherdirectiondependingontherelativetemperatures.Inthecaseofcontinuedheatadditiontothesecondarysystem,thesecondarysystempressureincreaseswhichleadstosteamreliefviatheMSSVs.InthesmallbreakLOCA,thesecondaryflowaidsinthereductionofRCSpressure.Subsequently,DonaldC.CookUnitsIand2werereanalyzedtodeterminetheimpactofanincreasedMSSVsetpointtoleranceof3%.ThelicensingbasissmallbreakLOCAanalysisforDonaldC.CookUnitIincludedasafetyevaluationtoaddressa25gpmchargingpumpflowimbalanceandoperationwiththehighheadsafetyinjectioncrosstievalveclosedat3250MWtcorepowerlevel.Also,asafetyevaluationhadbeenperformedwhichmodeledanincreasedauxiliaryfeedwaterenthalpydelaytime.TheseassumptionswereincorporatedintheincreasedMSSVsetpointtoleranceNOTRUMPanalysisofthelimiting3inchbreakforUnitI.However,in'ordertoobtainadirectsensitivityfortheincreasedMSSVsetpointtolerance,aNOTRUMPanalysiswasalsoperformedincorporatingtheseassumptionsbutmodellingtheoriginalMSSVsetpoints.Inaddition,a3inchNOTRUMPanalysiswasperformedforthelowpressure,hightemperatureoperatingconditionforUnitIsinceasafetyevaluationhadbeenoriginallyperformedaspartofthelicensingbasisanalysis.TheincreasedMSSVsetpointtolerance,acorepowerlevelof3250MWtwiththehighheadcrosstievalveclosed,anda25gpmchargingpumpflowimbalancewereassumedfortheanalysisofthelowpressure,hightemperaturecase.DonaldC.CookUnit2wasreanalyzedforthelimiting3inchbreak,lowpressureandhightemperatureoperatingconditionwiththehighheadcrosstievalveclosed.Thepowershapeaxialoffsetwasreducedfromthelicensingbasisanalysisof+30Xto+13XfortheMSSVincreaseanalysis.Anaxialoffsetof+13NisequaltothevalueassumedinthelicensingbasislargebreakLOCA SECL-91-429,Revision1analysis.Inaddition,thelicensingbasisanalysisconservativelyassumedamaximumassemblyaveragepower(P>A)of1.519.The3%increasedHSSVsetpointtoleranceanalysisassumedaPMAwhichwasreducedto1.46.InordertoobtainadirectsensitivityfortheincreasedHSSVsetpointtolerance,aNOTRUHPanalysiswasperformedincorporatingtheseassumptionsbutmodellingtheoriginalHSSVsetpoints.Tables5and6summarizetheHSSVsetpointsusedintheDonaldC.CookUnits1and2currentlicensingbasissmallbreakLOCAanalysesandtheincreasedMSSVsetpointtoleranceanalyses,respectively.Tables7and8summarizetheinitialinputassumptionsusedintheUnit1analysis.TheUnit2initialinputassumptionsaresummarizedinTable9.ThetimesequenceofeventsandresultsoftheUnit1analysisaresummarizedinTables10and11,respectively.Thelimitingpeakcladtemperaturecalculatedis1879'F,includinga25'Fburstandblockagepenalty,forthe3%increasedMSSVsetpointtolerancecaseat3250HWtandthelowpressure,lowtemperatureoperatingconditions.Thisvalueislessthantheacceptancecriterialimitof2200'F.Themaximumlocalmetal-waterreactionis3.47%,whichiswellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1Ncriterionof10CFR50.46.ThetimesequenceofeventsandresultsoftheUnit2analysisaresummarizedinTables12and13,respectively.Thelimitingpeakcladtemperaturecalculatedis2125'F,includinga12'Fartificialleak-bypenaltyand157'Fburstandblockagepenalty,forthe3%increasedHSSVsetpointtolerancecaseat3250MWtandlowpressure,hightemperatureoperatingcondition.Thisvalueislessthantheacceptancecriterialimitof2200'F.Themaximumlocalmetal-waterreactionis4.26%,whichiswellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.

SECL-91-429,RevisionIPost-LOCALonTermCoreCoolinTheWestinghouselicensingpositionforsatisfyingtherequirementsof10CFR50.46Paragraph(b),Item(5),"LongTermCooling,"concludesthatthereactorwillremainshutdownbyboratedECCSwaterresidingintheRCS/sumpafteraLOCA.SincecreditforthecontrolrodsisnottakenforalargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulatorsandtheRWSTmusthaveaboronconcentrationthat,whenmixedwithotherwatersources,willresultinthereactorcoreremainingsubcriticalassumingallcontrolrodsout.ThecalculationisbaseduponthereactorsteadystateconditionsattheinitiationofaLOCAandconsiderssourcesofbothboratedandunboratedfluidinthepost-LOCAcontainmentsump.ThesteadystateconditionsareobtainedfromthelargebreakLOCAanalysiswhich,asstatedabove,doesnottakecreditforHSSVactuation.Thusthepost-LOCAlong-termcorecoolingevaluationisindependentoftheHSSVsetpointtolerance,andtherewillbenochangeinthecalculatedRCS/sumpboronconcentrationafterapostulatedLOCAforDonaldC.CookUnitsIand2.HotLeSwitchove~toPreventPotentialBoronPreciitationPost-LOCAhotlegrecirculationtimeisdeterminedforinclusioninemergencyoperatingprocedurestoensurenoboronprecipitationinthereactorvesselfollowingboilinginthecore.ThistimeisdependentonpowerlevelandtheRCS,RWST,andaccumulatorwatervolumesandwiththeirassociatedboronconcentrations.TheproposedHSSVsetpointtoleranceincreaseto3XdoesnotaffectthepowerlevelortheboronconcentrationsassumedfortheRCS,RWST,andaccumulatorinthehotlegswitchovercalculationforUnit1.TheproposedHSSVsetpointtoleranceincreaseto3NdoesnotaffecttheboronconcentrationsassumedfortheRCS,RWST,andaccumulatorinthehotlegswitchovercalculationforUnit2.ThecurrentlicensingbasishotlegswitchovercalculationforUnit2isatfullpower,3413MWt,withcrosstievalveatclosedposition.WithMSSVsetpoint SECL-91-429,Revision1toleranceincreasedto3%,Unit2LOCAanalysesassumedareducedcorepower,3250NWt,withcrosstievalveatclosedposition.Areductioninpowerreducestheboil-offrateinthehotlegswitchovercalculation.Areductionintheboil-offrateresultsintherateofboronbuildupalsobeingreduced.Therefore,thelicensingbasishotlegswitchovercalculationfortheDonaldC.CookUnits1and2remainsbounding.LOCAHdraulicForcinFunctionsThepeakhydraulicforcingfunctionsonthereactorvesselandinternalsoccurveryearlyinthelargebreakLOCAtransient.Typically,thepeakforcingfunctionsoccurbetween10and50milliseconds(0.01and0.05seconds)andhavesubsidedwellbefore500milliseconds(0.50seconds).AnychangeintimeassociatedwithanincreasedMSSVsetpointtolerancewouldoccurseveralsecondsintothetransient.SincetheLOCAhydraulicforcingfunctionshavepeakedandsubsidedbeforethetimeatwhichtheNSSVmayactuate,theincreaseintheNSSVsetpointtoleranceto3%willnotimpacttheLOCAhydraulicforcingfunctionscalculationforDonaldC.'CookUnits1and2.LOCAConclusionsTheeffectofincreasingtheNSSVsetpointtoleranceto3%forDonaldC.CookUnitsIand2hasbeenevaluatedforeachoftheLOCArelatedanalysesaddressedintheUFSAR.Forcurrentlyanalyzedconditions,orforUnit2operationatareducedpowerlevelof3250NWtwhenthehighheadcrosstievalvesareclosed,itwasshownthatthe3%NSSVsetpointtolerancedoesnotresultinanydesignorRegulatorylimitbeingexceeded.Therefore,withrespecttotheLOCAanalyses,itcanbeconcludedthatincreasingtheNSSVsetpointtoleranceto3%forDonaldC.CookUnits1and2willbeacceptablefromthestandpointoftheUFSARaccidentanalysesdiscussedinthesafetyevaluation.

SECL-91-429,Revision13.ContainmentInteritEvaluationRelaxationoftheDonaldC.CookUnits152TechnicalSpecificationMainSteamSafetyValvesetpointtolerancesfrom+1Nto+3/.donotadverselyaffecttheshorttermorlongtermLOCAmassandenergyreleasesand,subsequently,the'relatedcontainmentanalyses.Sincethereisnoimpactonthemainsteamlinebreakmassandenergyreleasecalculations,thereisalsonoimpactonthatassociatedcontainmentresponseanalysis.Theproposedchangedoesnotaffectthenormalplantoperatingparameters,systemactuations,accidentmitigatingcapabilitiesorassumptionsimportanttothemassandenergyreleaseandcontainmentanalyses,orcreatemorelimitingconditionsthanthosealreadyassumedinthecurrentanalyses.Therefore,theconclusionspresentedintheDonaldC.CookUFSARremainvalidwithrespecttocontainment.4.SteamGeneratorTubeRutureTodemonstratethatanunreviewedsafetyquestiondoesnotexistforthesteamgeneratortuberupture(SGTR)event,theincreasedMSSVsetpointtolerancewasevaluatedforDonaldC.CookUnits1and2.Theanalysisforupratingto3600MWTconsideredupto15XsteamgeneratortubepluggingforbothUnits1and2.ThelimitingcasesfromthisanalysiswerereevaluatedfortheincreasedMSSVsetpointtolerance.Anincreasedsteamgeneratortubeplugginglevelof20Xwasalsoconsideredatpowerlevelsof3262MWTforUnit1and3425MWTforUnit2.ThecriteriastatedintheUFSARanalysisforDonaldC.CookwereusedinestablishingthecontinuedapplicabilityoftheSGTRlicensingbasissafetyanalysisbydemonstratingthattheconclusionsforSGTRUFSARanalysisremainvalid.AnevaluationhasbeenperformedtodeterminetheimpactontheDonaldC.CookUnits'GTRanalysisofrecordforincreasedMSSVsetpointtoleranceforallthecaseswithdifferentsteamgeneratortubepluggingandpowerlevelsstatedabove.TheprimarythermalhydraulicparameterswhichaffectthecalculationofoffsiteradiationdosesforaSGTRaretheamountof j

SECL-91-429,Revision1radioactivityassumedtobepresentinthereactorcoolant,theamountofreactorcoolanttransferredtothesecondarysideoftherupturedsteamgeneratorthroughtherupturedtube,andtheamountofsteamreleasedfromtherupturedsteamgeneratortotheatmosphere.Thus,thecalculatedoffsiteradiationdosesforanSGTRforDonaldC.Cookaredependentonthesethreefactors.FortheUFSARSGTRanalysis,theactivityinthereactorcoolantisbasedonanassumptionof1%defectivefuel,andthisassumptionwillnotbeaffectedbytheincreasedHSSVsetpointtolerance.ThetworemainingfactorsareaffectedbytheincreasedHSSVsetpointtolerance,andtheevaluationwasperformedtoquantifythiseffect.ToevaluatetheeffectoftheincreasedHSSVsetpointtoleranceontheDonaldC.CookSGTRanalysis,therevisedSGsafetyvalvesetpressurewasloweredby3Xfrom1080psiato1047.6psia.Thisresultedinaslightlyhigherequilibriumprimary-to-secondarybreakflow(approximately0.5X),sincetherewasanincreaseinthepressuredifferentialbetweentheRCSandsecondarysideassumedintheanalysis.Thesteamreleasedtotheatmospheresubsequentlyincreased(byapproximately0.2X)because'fthelowerpressureassumedforthemainsteamsafetyvalves.Thelimitingcases,forallpowerlevelsandsteamgeneratortubeplugginglevelsconsidered,wereat3600HWt.ThethyroidandwholebodydosesestimatedforUnits1and2,basedontheanalysesdescribedabove,areboundedbythosepreviouslydeterminedforthereratingprogram.Theactualestimateddosefactors(comparedtotheresultsofthereratingcalculation)areasfollows:Unit1:thyroid0.7,wholebody1.005Unit2:thyroid0.99,wholebody0.98AlthoughtheUnit1wholebodydoseexceedsthepreviousvaluebyapproximately0.5N,thisincreaseiswellwithintheacceptablelimit.Thus,theresultsandconclusionintheDonaldC.CookUFSARthattheoffsitedosesforanSGTReventwouldbewithinasmallfractionofthe10CFR100guidelinesremainsvalid.

SECL-91-429,RevisionI5.ComonentPerformanceTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.Cookdoesnotdirectlyorindirectlyinvolvemechanicalcomponenthardwareconsiderations.Directeffectsaswellasindirecteffectsonequipmentimportanttosafety(ITS)havebeenconsidered.Indirecteffectsincludeactivitieswhichinvolvenon-safetyrelatedequipmentwhichmayaffectITS-equipment.Componenthardwareconsiderationsmayincludeoverallcomponentintegrity,sub-componentintegrity,andtheadequacyofcomponentsupportsduringallplantconditions.Anevaluationisnotrequiredtodeterminewhethertheconditionaltersthedesign,material,constructionstandards,functionormethodofperformingthefunctionofanyITSequipment.6.SstemsEvaluationTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.Cookasdescribedwouldnotaffecttheintegrityofaplantauxiliaryfluidsystemortheabilityofanyauxiliarysystemtoperformitsintendedsafetyfunction.7.RadioloicalEvaluationTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.CookasdescribeddonotaffectradiologicalconcernsotherthanthoseidentifiedaboveinSectionIII.4orpost-LOCAhydrogenproduction.TheevaluationinSectionsIII.IandIII.3concludedthattheexistingmassreleasesusedintheremainingoffsitedosecalculations(i.e.,steamlinebreak,rodejection,lockedrotor,andshort-term&long-termLOCA)arestillapplicable.8.PlantRiskAnalsesactivitiesaffectinIPETherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.CookdoesnotadverselyaffecttheIndividualPlantExamination(IPE)fortheplant.Thistestdoesnotaffectthenormalplantoperating SECL-91-429,RevisionIparameters,systemactuations,accidentmitigatingcapabilities,operatingproceduresorassumptionsimportanttotheIPEanalyses,orcreateconditionsthatwouldsignificantlyaffectcoredamageorplantdamagefrequencyorthefrequencyofcoredamageinitiatingevents.Therefore,theconclusionspresentedintheIPEremainvalid.9.PlantRiskAnalseschanesothertlPE-relatedTherelaxationoftheliftsetpointt~.,~ancefortheHSSVsdoesnotresultinanincreaseintheprobabilityofoccurrenceofaccidentspreviouslyevaluatedintheUFSAR.ThisproposedchangetotheTechnicalSpecificationsdoesnotresultinanincreaseintheprobabilityofoccurrenceofamalfunctionofequipmentimportanttosafetyorofequipmentthatcouldindirectlyaffectequipmentimportanttosafety..~ILTherelaxationoftheliftsetpointtolerancefortheNSSVsdoesnotdirectlyorindirectlyinvolveelectricalsystems,components,'orinstrumentationconsiderations.Directeffectsaswellasindirecteffectsonequipmentimportanttosafetyhavebeenconsidered.Indirecteffectsincludeconditionsoractivitieswhichinvolvenon-safetyrelatedelectricalequipmentwhichmayaffectClasslE,postaccidentmonitoringsystems,orplantcontrolelectricalequipment.Considerationhasbeengiventoseismicandenvironmentalqualification,designandperformancecriteriaperIEEEstandards,functionalrequirements,andplanttechnicalspecificationswithrespecttoallplantconditions.AnevaluationisnotrequiredtodeterminewhethertheMSSVsetpointtolerancerelaxationaltersthedesign,configuration,qualification,orperformanceofsafetyrelatedelectricalsystemsorcomponents.TheHSSVsetpointtolerancerelaxationhasnopotentialforimpacttotheidentificationofanunresolvedsafetyquestionasitwouldrelatetothesafetyrelatedfunctionofelectricalsystemsofcomponents.

SECL-91-429,Revision111.TechnicalSecificationsAreviewoftheDonaldC.CookUnit1andUnit2TechnicalSpecificationswasperformedtoaddressachangeintheliftsetpointtolerancefortheMainSteamSafetyValves.TheTechnicalSpecificationreview,inclusiveofAmendments157and141forUnits1and2,respectively.ProposedmarkupsareattachedtothisevaluationforbothUnit1andUnit2,andreflectchangestoTable4.7-1and3.7-4,respectively.Achangetothebasisforbothunitsisalsoproposedanddiscussestherelationshipbetweenthe+1%and+3%tolerances.IV.ASSESSMENTOFNOUNREVIEMEDSAFETYUESTIONTherelaxationintheliftsetpointtolerancefortheHSSVsatDonaldC.CookUnits1and2hasbeenevaluatedconsistentwiththerequirementsof10CFR50.59anddoesnotinvolveanunreyiewedsafetyquestiononthebasisofthefollowingjustifications:1.WilltheprobabilityofanaccidentpreviouslyevaluatedintheSARbeincreased2No.The+3%toleranceontheHSSVsetpointdoesnotincreasetheprobabilityofanaccidentpreviouslyevaluatedintheUFSAR.Therearenohardwaremodificationstothevalvesand,therefore,thereisnoincreaseintheprobabilityofaspuriousopeningofaHSSV.TheHSSVsareactuatedtoprotectthesecondarysystemsfromoverpressurizationafteranaccidentisinitiated.Sufficientmarginexistsbetweenthenormalsteamsystemoperatingpressureandthevalvesetpointswiththeincreasedtolerancetoprecludeanincreaseintheprobabilityofactuatingthevalves.Therefore,theprobabilityofanaccidentpreviouslyevaluatedintheUFSARwouldnotbeincreasedasaresultofincreasingtheHSSVliftsetpointtoleranceby3%aboveorbelowthecurrentTechnicalSpecificationsetpointvalue.

SECL-91-429,Revision12.WilltheconsequencesofanaccidentpreviouslyevaluatedintheSARbeincreased?No.Basedonthediscussionspresentedwithin,alloftheapplicableLOCAandnon-LOCAdesignbasisacceptancecriteriaremainvalidbothforthetransientsevaluatedandthesingleeventanalyzed.Additionally,nonewlimitingsinglefailureisintroducedbytheproposedchange.TheDNBRandPCTvaluesremainwithinthespecifiedlimitsofthelicensingbasis.AlthoughincreasingthevalvesetpointwillincreasethesteamreleasefromtherupturedsteamgeneratorabovetheUFSARvaluebyapproximately0.2N,theSGTRanalysisindicatesthatthecalculateddosesareboundedbythosedeterminedforthereratingprogramwhich,inturn,arewithinasmallfractionofthe10CFR100doseguidelines.Theevaluationalsoconcludedthattheexistingmassreleasesusedintheoffsitedosecalculationsfortheremainingtransients(i.e.,steamlinebreak,rodejection)arestillapplicable.Therefore,basedontheabove,thereisnoincreaseinthe'doseconsequences.3.HaythepossibilityofanaccidentwhichisdifferentthananyalreadyevaluatedintheSARbecreated'o.AspreviouslyindicatedinSectionIII.1,theInadvertentOpeningofaSGRelieforSafetyValveeventiscurrentlypresentedintheDonaldC.CookUFSAR(Section14.2.5)andisboundedbytheSteamlineBreakanalysis.Increasingtheas-foundliftsetpointtoleranceontheNSSVsdoesnotintroduceanewaccidentinitiatormechanism.Nonewfailuremodeshavebeendefinedforanysystemorcomponentimportanttosafetynorhasanynewlimitingsinglefailurebeenidentified.NoaccidentwillbecreatedthatwillincreasethechallengetotheHSSVsand SECL-91-429,Revision1resultinincreasedactuationofthevalves.Therefore,thepossibilityofanaccidentdifferentthananyalreadyevaluatedintheUFSARisnotcreated.4.WilltheprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheSARbeincreased7No.Althoughtheproposedchangetakesplaceinequipmentutilizedtopreventoverpressurizationonthesecondarysideandtoprovideanadditionalheatremovalpath,increasingtheas-foundliftsetpointtoleranceontheHSSVswillnotadverselyaffecttheoperationofthereactorprotectionsystem,anyoftheprotectionsetpoints,oranyotherdevicerequiredforaccidentmitigation.Therefore,theprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARwillnotbeincreased.5.WilltheconsequencesofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheSARbeincreased7No.Asdiscussedintheresponsetoguestions2and4,thereisnoincreaseinthedosereleaseconsequencesasaresultofincreasingtheas-foundliftsetpointtoleranceontheHSSVsasdefinedintheattachedsafetyevaluation.6.HaythepossibilityofamalfunctionofequipmentimportanttosafetydifferentthananyalreadyevaluatedintheSARbecreated'o.Asdiscussedinguestion4,anincreaseintheas-foundliftsetpointtoleranceontheHSSVswillnotimpactanyotherequipmentimportanttosafety.Therefore,thepossibilityofamalfunctionofequipmentimportanttosafetydifferentthananyalreadyevaluatedintheUFSARwillnotbecreated.

SECL-91-429,Revision17;Willthemarginofsafetyasdefinedinthebasestoanytechnicalspecificationbereduced'o.Asdiscussedintheattachedsafetyevaluation,theproposedincreaseintheas-foundHSSVliftsetpointtolerancewillnotinvalidatetheLOCAornon-LOCAconclusionspresentedintheUFSARaccidentanalyses.Thenewlossofload/turbinetripanalysisconcludedthatallapplicableacceptancecriteriaarestillsatisfied.ForalltheUFSARnon-LOCAtransients,theDNBdesignbasis,primaryandsecondarypressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperaturesremainbelowthelimitsspecifiedin10CFR50.46.Thecalculateddosesresultingfromasteamgeneratortuberuptureeventremainwithinasmallfractionofthe10CFR100permissiblereleases.Thus,thereisnoreductioninthemargintosafety.Notethat,asidentifiedearlier,changeswillberequiredtotheplantTechnicalSpecificationsinordertoimplementtheproposedchange.

SECL-91-429,Revision1V.CONCLUSIONSTheproposedchangetomainsteamsafetyvalveliftsetpointtolerancesfrom+1%to+3XhasbeenevaluatedbyWestinghouse.TheprecedinganalysesandevaluationshavedeterminedthatoperationwiththeHSSVsetpointswithina+3%toleranceaboutthenominalvalueswillhavenoadverseimpactuponthelicensingbasisanalyses,aswellasthesteamlinebreakmass&energyreleaseratesinsideandoutsideofcontainment.Inaddition,itisconcludedthatthe+3%toleranceontheHSSVsetpointdoesnotadverselyaffecttheoverpowerorovertemperatureprotectionsystem.Asaresult,adequateprotectiontothecorelimitlinescontinuestoexists.Therefore,alllicensingbasiscriteriacontinuetobesatisfiedandtheconclusionsintheUFSARremainvalid.Thus,basedontheinformationpresentedabove,itcanbeconcludedthattheproposedincreaseofmainsteamsafetyvalveliftsetpointtolerancesfrom+1Xto+3Xdoesnotrepresentanunreviewedsafetyquestionperthedefinitionandrequirementsdefinedin10CFR50.59.TherecommendedTechnicalSpecificationchanges,alongwithanosignificanthazardsevaluation,arepresentedasappendicestothisevaluation.

ii SECL-91-429,Revision1VI.REFERENCES1)DonaldC.CookUnits15.2TechnicalSpecificationsthroughAmendments157and141,respectively,10/1/91.2)ANSI/ASMEBPV-Ill-1-NB,"ASMEBoilerandPressureVesselCode-SectionIIIRulesforConstructionofNuclearPowerPlantComponents,"ASME,1983.3)ANSI/ASMEOM-1-1981,"RequirementsforInservicePerformanceTestingofNuclearPowerPlantPressureReliefDevices,"ASME,1981.4)"DonaldC.CookUnits152UpdatedFinalSafetyAnalysisReport(UFSAR),datedthroughJuly1991.5)ASMESteamTables,FifthEdition,1983.6)Burnett,T.W.T.,etal.,"LOFTRANCodeDescription,"WCAP-7907-P-A,June1972.7)Chelemer,H.etal.,"ImprovedThermalDesignProcedure,"WCAP-8567-P-A,February1989.8)Butler,J.C.andD.S.Love,"SteamlineBreakMass/EnergyReleasesforEquipmentEnvironmentalQualificationOutsideContainment,"WCAP-10961-P,October1985.9)90AE*-G-0126W/AEP2-0098Transmittalregarding"LockedRotorDoseAnalysisforDonaldC.CookUnit2Cycles8&9,"7/19/90.10)LetterregardingAFWflowratesfromR.B.BennettofAmericanElectricPowertoJ.N.SteinmetzofWestinghouseElectric,9/24/91.

SECL-91-429,Revision1TABLE3UNIT1TURBINETRIPSE(UENCEOFEVENTSACCIDENTWithoutpressurizercontrol(minimumreactivityfeedback)EVENTTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureocculs~TINEsec0.07.79.710.5MinimumDNBRoccursWithoutpressurizercontrol(maximumreactivityfeedback)Turbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccurs0.07.99.910.5MinimumDNBRoccurs*DNBRdoesnotdecreasebelowitsinitialvalue.

SECL-91-429,Revision1TABLE3(continued)UNIT1TURBINETRIPSEQUENCEOFEVENTSACCIDENTWithpressurizercontrol(maximumreactivityfeedback)EVENTTurbinetrip,lossofmainfeedwaterflowPeakpressurizerpressureoccurs~TIMEsec0.010.0Low-lowsteamgeneratorwaterlevelreactortripsetpointreached47.1RodsbegintodropMinimumDNBRoccurs49.1Withpressurizercontrol(minimumreactivityfeedback)Turbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccurs0.012.414.416.0MinimumDNBRoccurs15.5*DNBRdoesnotdecreasebelowitsinitialvalue.

SECL-91-429,Revision1TABLE4UNIT2TURBINETRIPSE(UENCEOFEVENTSACCIDENTWithoutpressurizercontrol(minimumreactivityfeedback)EVENTTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursTIMEsecmixed,fullcorecore0.00.05.57.57.59.59.511.0MinimumDNBRoccursWithoutpressurizercontrol(maximumreactivityfeedback)Turbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreached0.00.05.57.6RodsbegintodropPeakpressurizerpressureoccurs7.59.69.010.0MinimumDNBRoccurs*DNBRdoesnotdecreasebelowitsinitialvalue.

ft SECL-91-429,Revision1TABLE4(continued)UNIT2TURBINETRIPSE(UENCEOFEVENTSACCIDENTEVENTTIMEsecmixedfullcorecoreWithpressurizercontrol(maximumreactivityfeedback)Turbinetrip,lossofmainfeedwaterflow0.00.0Peakpressurizerpressureoccurs7.07.5Low-lowsteamgeneratorwater60.1levelreactortripsetpointreached52.8RodsbegintodropMinimumDNBRoccurs62.154.8Withpressurizercontrol(minimumreactivityfeedback)Turbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreached0.010.60.011.2RodsbegintodropPeakpressurizerpressureoccurs12.613.213.514.5MinimumDNBRoccurs14.515.0*DNBRdoesnotdecreasebelowitsinitialvalue.

~~4 SECL-91-429,Revision1DONALDC.COOKUNITS15L2INITIALINPUTPARAMETERSFORTHESMALLBREAKLOCAEVALUATIONOFINCREASINGTHEMSSVSETPOINTTOLERANCETable5CurrentLicensingBasisSteamLineSafetyValvesperLoopSafetyValve1B2A2BSetpointPressuresi10651065107510751085PercentAccumulation10.010.08.988.987.97AccumulationPressuresi1171.51171.51171.51171.51171.5Flowrate8AccPressurelbshr*857690857690857690857690857690*Theratedvalvecapacityatfullaccumulationpressurewascalculatedasfollows:51.5xAxKxP=ActualFlowratewhere:A=Valveorificearea=16in2K=Coefficientofdischarge=0.975P=Pressure(psia)ataccumulationpressureTheaboveactualflowrateisreducedby0.9togetthevalveratedcapacity.

SECL-91-429,Revision1DONALDC.COOKUNITS18L2INITIALINPUTPARAMETERSFORTHESMALLBREAKLOCAEVALUATIONOFINCREASINGTHE'SSVSETPOINTTOLERANCETable6MSSVSetpointIncreaseSteamLineSafetyValvesperLoopSafetyValveSetpointPressurePercent~NNiRAccumulationPressuresiFlowrate8AccPressurelbshr*1A1B2A2B1096.951096.951107.251107.251117.553.03.03.03.03.01129.861129.861140.471140.471151.08827585.6827585.6835257.2835257.2842928.9*Theratedvalvecapacityatfullaccumulationpressurewascalculatedasfollows:51.5xAxKxP=ActualFlowratewhere:A=Valveorificearea=16in2K=Coefficientofdischarge=0.975P=Pressure(psia)ataccumulationpressureTheaboveactualflowrateisreducedby0.9togetthevalveratedcapacity.

SECL-91-429,Revision1DONALDC.COOKUNIT1INITIALINPUTPARAMETERSFORTHESHALLBREAKLOCAEVALUATIONOFINCREASINGTHEHSSVSETPOINTTOLERANCETable7:LowPressure,LowTemperatureCurrentHSSVLicensingSetpointBasisIncreaseLicenseCorePower1(HWt)TotalPeakingFactor,FqAxialOffset(X)HotChannelEnthalpyRiseFactor,FHMaximumAssemblyAveragePower,PHAFuelAssemblyArrayAccumulatorWaterVolume(f))AccumulatorTankVolume(ft)MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)VesselOutletTemperature(F)RCSPressure(psia)SteamPressure(psia)SteamGeneratorTubePluggingLevel(X)MaximumRefuelingWaterStorageTankTemperatureMaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(N)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)HainFeedwaterIsolationDelayTime(sec)HainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)358822.32+301.551.43315X9461350600354000509.89581.712100564.3615(F)12012027518601715271010Closed2.04.40.06O~Table132502.32+301.551.43315OFA9461350600354000513.23578.572100596.48~1512012027518601715271025Closed4,44.40.08.0272Table2Twopercentisaddedtothispowertoaccountforcalorimetricerror.Asafetyevaluationfor25gpmchargingflowimbalancelimitsoperationwithHHSIcrosstievalveclosedto3250HWt.Valueisbasedon102Xcorepower,maincoolantpumpheatneglected,andbestestimateTavg.Asafetyevaluationwasperformedtoaccountforaauxiliaryfeedwaterenthalpydelayof272seconds.

SECL-91-429,Revision1DONALDC.COOKUNIT1INITIALINPUTPARAMETERSFORTHESMALLBREAKLOCAEVALUATIONOFINCREASINGTHEMSSVSETPOINTTOLERANCETable8:LowPressure,HighTemperatureCurrentHSSVLicensi~gSetpointBasisIncreaseLicenseCorePower(HWt)TotalPeakingFactor,FqAxialOffset(%)HotChannelEnthalpyRiseFactor,FHHaximumAssemblyAveragePower,PHAFuelAssemblyArrayAccumulatorMaterVolume(f))AccumulatorTankVolume(ft)HinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)VesselOutletTemperature(F)RCSPressure(psia)SteamPressure(psia)SteamGeneratorTubePluggingLevel(%)HaximumRefuelingWaterStorageTankTemperature(F)HaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)HainFeedwaterIsolationDelayTime(sec)HainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)HainSteamSafetyValveSetpoint(psia)NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA32502.32+301.551.43315X15OFA9461350600354000543.63606.792100793.901512012027518601715271025Closed4,40.08.0272Table2Twopercentisaddedtothispowertoaccountforcalorimetricerror.Asafetyevaluationforthelowpressure,hightemperatureoperatingconditionwasperformedinthelicensingbasisanalysis.Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.

P SECL-91-429,Revision1DONALDC.COOKUNIT2INITIALINPUTPARAMETERSFORTHESMALLBREAKLOCAEVALUATIONOFINCREASINGTHEMSSVSETPOINTTOLERANCETable9:LowPressure,HighTemperatureCurrentHSSVLicensingSetpointBasisIncreaseLicenseCorePower(HWt)TotalPeakingFactor,F~AxialOffset(%)HotChannelEnthalpyRiseFactor,FHHaximumAssemblyAveragePower,P~AFuelAssemblyArrayAccumulatorWaterVolume(fg)AccumulatorTankVolume(ft~)HinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)2VesselOutletTemperature(F)2RCSPressureIncludingUncertainties(psia)SteamPressure(psia)2SteamGeneratorTubePluggingLevel(%)HaximumRefuelingWaterStorageTankTemperatureHaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)HainFeedwaterIsolationDelayTime(sec)HainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)HainSteamSafetyValveSetpoint(psia)(F)34132.34+301.6441.51917X179461350600354000544.41610.192100807.031512012027518601715271025Closed4.74.40.08.0349Table132502.357+131.6661.46V59461350600354000544.41610.192100807.031512012027518601715271025Closed4.72.06.0349Table21Twopercentisaddedtothispowertoaccountforcalorimetricerror.2Valueisbasedon102%corepower,maincoolantpumpheatneglected,and.,bestestimateTavg.

SECL-91-429,Revision1D.C.COOKUNIT1HSSVSETPOINTTOLERANCEINCREASESHALLBREAKLOCAEVALUATIONTABLE10TINESEqUENCEOFEVENTS~TimesEventLPLTLPLTLPHTLPHTw/HSSVw/oMSSVw/HSSVw/oMSSVBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionsignalLoopsealventing'oopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorecoveredSIflowrateexceedsbreakflowrate011.2319.2846.28643.4NANA1139.21730.01935.5NA1988011.2319.2846.28644.7NANA1077.31751.01831.4NA2024013.5422.4249.42601.8NANA1073.41647.81872.3NA2293013.5422.4249.42608.3NANA1057.81695.81824.7NA2284LPLTislowpressure,lowtemperatureoperatingcondition.LPHTislowpressure,hightemperatureoperatingcondition.W/HSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250HWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3250HWtcorepower.

SECL-91-429,Revision1DONALDC.COOKUNIT1HSSVSETPOINTTOLERANCEINCREASESHALLBREAKLOCAEVALUATIONTABLEllSUMMARYOFRESULTSLPLTw/HSSVLPLTLPHTLPHTw/oHSSVw/MSSVw/oHSSVNOTRUHPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H20ReactionMaximum(%)LocalZr/H20ReactionLocation(ft)TotalZr/H20Reaction(N)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature('F)1853.711.751935.53.4711.75<1.0None251878.71772.911.751831.42.4711.75<1.0None151787.91837.711.751872.33.1311.75<1.0None161853.71710.311.751824.71.8211.75<1.0None151725.3LPLTislowpressure,lowtemperatureoperatingcondition.LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250HWtcorepower.W/0HSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3250HWtcorepower.

SECL-91-429,Revision1DONALDC.COOKUNIT2HSSVSETPOINTTOLERANCEINCREASESHALLBREAKLOCAEVALUATIONTABLE12TINESEQUENCEOFEVENTSEvent~TimesLPHTw/HSSVLPHTw/oHSSVBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionsignalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecovery~Boil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorecoveredSIflowrateexceedsbreakflowrate11.0120.9247.92620.0NANA620.01604.31691.0NA1683.0011.0120.9247.92627.2NA'NA627.21631.71720.6NA1984.0LPHTislowpressure,hightemperatureoperatingcondition.W/HSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250HWtcorepower.W/0HSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3413HWtcorepower.

SECL-91-429,Revision1DONALDC.COOKUNIT2HSSVSETPOINTTOLERANCEINCREASESMALLBREAKLOCAEVALUATIONTABLE13SUMMARYOFRESULTSLPHTw/MSSVLPHTw/oHSSVNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H20ReactionMaximum(%)LocalZr/H20ReactionLocation(ft)TotalZr/H20Reaction(%)RodBurstArtificialLeak-ByPenalty('F)BurstandBlockagePenalty('F)TotalPeakCladTemperature('F)1955.911.751691.04.2611.75<1.0None121572124.91947.111.751720.64.8311.75<1.0None121432102.1LPHTislowpressure,hightemperatureoperatingcondition.W/HSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250HWtcorepower.W/0HSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3413MWtcorepower.

75031840o51ApSIA'000iPS;Ai2100iPSIA2400PSIA45~gglgNTORSAFETYYALYESOPBI518Sl55885855~8'15688685613615628625638ovg(<F:eamammQ~CareListstsNomfnaITavg~578.7'F.'(ominatPrassure2100ps.'aDONALDC.COOKUNIT1FIGURElaILLUSTRATIONOFOVERTEHPERATUREANO.OVERPOWEROELTATPROTECTION

75OPaT651922PSIA2250PSIA~684D552000PSIA2%0PSIASB45ITENGENERATORSAFETYVALVESOPQl5685655785755SS5855'RS5'l5Sle685618615628625tevetoF)-----OTaTProtectionLinesCarsThsrsslSafetyLtsitsNominalVesselAverageTemperature~575'FNominalPressurizerPressure2250psiaDONALDC.COOKUNIT2(MIXEDCORE)FIGURE1bILLUSTRATIONOFOVERTEMPERATUREANDOVERPOWERDELTATPROTECTION

1922PSIAOPaTOQ2400PSIA2000PSIASTENGENERATORSAFETYVALVESOPEN2250PSIA75588SBS5985~5688685618615628625638ov9toF----OTaTProtectionLinesCoraThsrsalSafetyUsitsNominalVesselAverageTemperature~581.3'FNominalPressurizerPressure2100psia.OONALOC.COOKUNIT2(FULLV5CORE)FIGURElcILLUSTRATIONOFOYERTEHPERATUREANOOVERPOMERDELTATPROTECTION "500n500n~q<<VvII'n*n"70C2300.1900.1800.0.2'300.10.20.30.40.50.60.70.80.90.10C.TME(SEC)13QQ,1600,1400.1200.Jl1000.800Q,10.20.30.40.50.60.70.,80.90.100.TIME(SEC)DONALDC.COOKUNITIFIGURE2TURBINETRIPEVENTMITHOUTPRESSURECONTROL,HINUHUNREACTIVITYFEEDBACK

0IO203C40506070809CtC~TME(SEC)4,53.X'i5I.Sl.0102030405060lO809CT-'MK(SEC}DONALDC.COOKUNITIFIGURE3TURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINUHUMREACTIVITYFEEDBACK II 68056064062063G.)5805605~05205000t0203C405060IO809CtC3Tu=(SEC)700680560540520500'580560540520500102030405060708090tCOTv=(SEC)I~DONALDC.COOKUNITIFIGURE4TURBINETRIPEVENTMITHOUTPRESSURECONTROL,MINUMUMREACTIVITYFEEDBACK x1IOQ.1300.nn30C.jI300.700.600.500.400IQ35030010.20.30.40.50.60.70.80.90.IOC.T>MK(SEC)250200t50CC10050rnQ-500102030405060108090,ICOTlilE(SKC)DONALDC.COOKUNIT1FIGURE5TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITYFEEDBACK 4p30CAIA252P15105CO0-5-100102030ip5080loSO901OOTiff(SKC)ONALDC.COOKUNITIFIGURE6TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NININNREACTIVITYFEEDBACK iIh'RAPoVe"SOC"OC<<~CC~eelC'OCn21OC.230Cl900.1800.'0.~0.20.30.40.50,do.70.80.90.ioc.T!vK(SEC)2300.taboo.t600ac(400t200.l$04,0.10,20.30,i0.50.d0,70.d0.90.IOC.T<gK(SKC)ONALDC.COOKUNITIFIGURETURBINETRIPEVENTWITHOUTPRESSURECONTROL,,NXINNREACTIVITYFEEOBACK I1 8Z102030i05060708090~COT'MK(SKC'.53.53,2.50l02030l05060706090>COTlQK(SKC)ONALDC.COOKUNITIFI6NE8TURBINETRIPEVENTitITHOUTPRESSNECONTROL,NXINNREACTIVITYFEEOBACK MII 530t56G5<0626530C5605eQ520500102030405060708090~CQTvK(SEC)~006806606~062060095805605405240i02030io5084708090iCAT<SR(MC)ONllOC.COOKNIT1FISuaa9TNBIltKTRIPEVENTVITHOuTPRKSSNKCONTROl,NXINNREACTIVITYFEEOBACK 1

c11001300300.900.700.600.5000.10.20.30.<0.50.So.70.80.90.1OO.71MK(SKC)400tQ350300'lir)'r250200l~15010050P~0-501020304050do70do90100718K(SKC)DONALDC.COOKUNITIFIGURE10TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEDBACK ac1000.QC900.800.700.SOO.0.10.20.30.<0.50.60.70.80.90.100.TIME(SEC)4003503OO250zoo150100500Mo>02030io5080>Q8090iooTtiC(SEC)00NAU)C.COOKNIT2(NIXEDCDRE)FIGURE25aTURSINETRIPEVENTWITHOUTPRESSURECONTROt.,NINNNREACTIVITYFffDBACK 2001100.1300.300.900.700.600.0.10.20.30.4050.60.70.80.90.100.TIME(SEC)400CJu)3503002502OO150100500501020304050do708090100(SEC)00NLDC.COOKUNIT2(FULLVSCORE)FIGURE25bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NINNNREACTIVITYFEEOBACK T

403530CA2520154JN10V)0-5-100102030405060108090100TILING(SEC)OONALDC.COOKUNIT2(NIXEDCORE)FIGURE26aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NIHNNREACTIVITYFEEOBACK 403530pn25w~2015W105CA0-5-1001020304050d0708090100TisC(SCC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE26bTURBINETRIPEVENTltITHOUTPRESSURECONTROL,HINNNREACTIVITYFEEOBACK lI0 17nc2500250C~QC<3AW'V~one+WCi'Jl2100,2300.<900.1800.0.10.20.30.40505070d0.90.100.TtsE(SEC)2300.)800.f600.cet400.l200.1000.10.20.30.io.50.60.TiSK(SEC)10.80.90.100.ONNU)C.COOKUNIT2(NIXEOCORE)FIGURE27aTURSMTRIPGENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEOBACK I0

7"-C'5OC'Jl"2500"~CCCSOCvgOn')hC2tOO2300.1900.l500.lO.ZO.30.40.50.dO.7C.80,90.IOOrvE(SKC)23OC.F900.h1500.>ZOO.1300.$00~0,t0.20,30.40.M.00.70.80.90.l00.r~E(MC)OONlLDC.COOKUNIT2(FULLVsCORE)FIGNE27bTURBINETRIPEVENTWITHOUTNESSURECONTROL,IQXINNREACTIVITYFE'EOBACK

CZQ.>02030<0506010)090>iMK(SEC)2.4a221.20102030io506Q706Q90tCQ(SEC)OOOOC.COOKUNIT2(NDEOCNE)FIQNE28aTNSINETRiPEVENTWITHOUTNESSNECNTROL,NXINNREACTIVITYFEEOBACK Cj4ZZiO20So+05060To80eatCO7'QK(SKC)25l,5toZo30.iO50dO10aOeClCat:~c(sac)OOOOC.COOKNlT2(FULLVSCNE)FNURE2abTNBlNETllPEVNTMlTHOUTPRESSNECQiTROL,NXlllNREACTlVlTYFEEDBACK l<JEF 56Ci54062953G56054052050001020304050d0708090T-'ME(SEC)700dao6606406206005805805<0520IO20304050d0'lO8090ICO(SEC)ONNU)C.COOKUNIT2(NIXEOCORE)FINRK29aTNSINETRIPEVENT'WITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEDBACK

6603'0=.-zc)I%/1JP53C560540520500001020304050d0708090'QQTvK(SKC)3805~052050025805505t05200io20Soio50dO1080r.~g(sKc)00lQLOC.COOKUNIT2(FULLVSCtWE)FINRE29bTNBlNETRIPEVENTWITHOUTPRESSURECONTIML,NXINNREACTIVITYFEEDBACK

1100.'4Jac1300.900.900.700.600.0.10.20~30'0.SO.60.74.80.90.100.TIME(SEC)30025020015010050WcR0410ZO34445060108090100TIhC(SEC)ONALOC.COOKUNIT2(llIXEOCORE)FIGVRE30aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEDBACK

t200t100t300.300.300.700.500.500.400CJ35030010.20.30.40.50.60.70.80.90.l00.T(ME;(SQC)25020015010050001020304050dO70SO90>00TIME(SEC)DONALDC.COOKLNIT2(FULLV5CORE)FINRE30bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NCINNREACTIVITYFEEOBACK 0

20105QC0-5-1001020304050d070d090100,TiME(SEC)DNhLDC.COOKUNIT2(NIXEDCORE)FIGURE31aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXIHLNREACTIVITYFEEOBACK

20CJ1510QC4J5-5-1001O2030iO50do10eOeo100TIME(SEC)DONALDC.COOKUNIT2(FULLV5CORK)FIGURE3lbTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEOBACK 27CC26002500nn-qOC'"Cvcn210C.2300.1900.18002300.O.102030iO50807C.8090'1OC1'1MK(SKC)1300.1500.Agcx1400.1200.J71QOO.800.0.10.20'0.40.50.80.10.80.90.10C,TiMK(SKC)OONNC.COOKNIT2(IIIXEOCORE)FINRE32aTURBINETRIPEVENTQITHPRESSURECNTROt.,NXINNREACTIVITYFEEGBACK

'py

~<<ht<<<<v.50C5CCogg(1t<<favI')hea<<Vnn<<lppC300F900>8000.lO.20.30'050d0.TO.50.90.iOCTl4E(SEC)2r00.1300.~e'lip~<<.~<<~Iel)~<<]f7it~'500C!40Ct20C,n'n>300.aoo.l0.20.30.40.50.50.rvc(sec)'0.50.90.IOC90NLOC.COOKUNIT2(FULLV5CORE)FIQURE32bTNSINETRIPEVENTltITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK l'

$8c6.4C0.lOZO3040SO6020809C'C3TMK(SEC)t.dl.20IO2030iO5050'lO8090>COT>hC(MC)rIjONLQC.COOKUNIT2(NIXEDCNE)FI6NE33aTNSINETRiPEVENTMITHPRESSNECNTROL,NXINNREACTIVITYFEEOeaCX

l0ZQ30405060~08090'CQTMK(SKC)l0203040506070809C:3TvK(SKC)OONILOC.COOKNIT2(FUllVSCORE)FISm33bTWNETRIPEVENTWITHPRESSURECONTROl,NXINNREACTIVITYFEEDBACK I

":BC~6605206GI58Ga56Q5<0520500lQ203Q40506010SQ9G~GQr~K(SEC)>'30680660640620600580m560540520500l02030405014704090>CQr~c(saciOONAU)C.COOKUNIT2(NIXEOCORE)FI6URE34~TURBINETRIPEVENTMITHPRESQlRECONTROL,NXINNREACTIVITYFEEOBACK

4g56Gt5~0~IhI+tI=:-"r5605cQ500l0203C<05060>080K'v3TvE(SEC'30560540520500580m5605c0520010203040506010809GICQT-~K(SKC)ONALDC.COOKUNIT2(FULLVSCORE)FI6URE34bTURBINETRIPEVENTKITHPRESSURECONTROL,NXINNREACTIVITYFEEOBACK

1100.N'J)!."00.z300.900.700.500.500.0.)0.20.30.40.50.60.70.80.90.100.T:MK(SEC)3004J250I4200(Z1501QQCX500-50102030405080708090100TiME(SEC)DONALDC.COOKUNIT2(MIXEDCORE}FIGURE35aTURSINETRIPEVENTQITHPRESSURECONTROL,HAXINNREACTIVITYFEEDBACK

'z1100.600.5000.10.20.30.4050.60.TO.SO.90.100.T'MK(SEC)400~n350300<g250200ac1501005000102030405080708090100T1MK(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE35bTURBINETRIPEVENTWITHPRESSURECONTROL,NXIHNREACTIVITYFEEDBACK 1

25201510OC5OCV70OCQ-1001Q2030iOSOSO70eO9O1QOTiud(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE36aTURBINETRIPEVENTttITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK

252010ac5ac0-51020304050507080901COTIME(SEC)OONALOC.COOKUNIT2(FULLV5CORE}FIGURE36bTURBINETRIPEVENTKITHPRESSURECONTROL,NXINNREACTIVITYFEEOBACK hII

<<yC26CCn'5CC~<<C<<~4gA(0<<<<evihoC2."CC.1300'doo."300toZo-30.<050.So.70.50.90.iQQT"vE(SEC)>800.iSOCQC'4oc.C~zoo.1300.800.0.10.20.30.iO.50,do.>0.do.30.iOO.TivE(SEC)DONAlDC.COOKUNIT2(NIXEDCORE)FI6URE37'URSINETRIPEVENTMITHPRESSURECONTROl,NINNNREACTIVITYFEEDBACK

'I n2500"~oo1nh)Alli'4Cvn1)QQ,[6000.10.20.30.40.50.80.70.80.90.iOC.TivE(SEC)2000.tSOO.)600.I4QQ.i200.ntao0~0.t0,20.JO.40.54.60.Ti%'MC)V0,80.90.iOC.DONILDC.COOKNIT2(FULLVSCORE)FIGURE3IbTNBINETRIPEVBITWITHNESSURECNTROL,IIINNNREACTIVITYFEEDBACK 0lO2030<050dQ7Q809C1CQT4K(SEC)2,210ZO304050d0TOdO90(COT>QK(SEC)DCNLOC.CNKUNIT2(NIXEOCNK}FI6NE38aTURBINETRIPEVENTitlTHPRESSURECNTROL,NINNNREKTIVITYFEEDBACK 5t'01020304050d0708090lCQT'MK(SEC)4,52.5'l02030-405080708090t00TIME(SKC)QOlQLDC.COOKUNIT2(FULLNCORE)FIGNE38bTURBINETRIPEVENTARITHPRESSURECONTROL,NIlNNllREACTIVITYFEEOBACK d'

58C'605<Q520500102030~05080'IQ809C:COIMK(SEC)~QQ6806806cQ6206002580580540520500t02030io5010708090'CaTi~K(SEC)DONALDC.COOK'NIT2(MIXEDCORE)FINRE39aTURBINETRIPEVENTMITHPRESSURECONTROL,NI80%NREACTIVITYFEE08ACK

oAQCV~h~~VCgrVWl560S<G5000lG2050<05060~0809C'CQTMK(SEC)3058G560540a5)h53GSao5605<05205000l02030405080108090100fiQK(Mc)GNALOC.COOKUNIT2(FULLV5CORE)FINRE3gbTUNItIETRIPEVENTMITHNESSURECONTROL,NINNNREACTIVITYFEEDBACK 11OC1300.300.BC'.700.SOO.500.'O.IO.20.30.40.50.60.70.80.90.100.T'ME(SEC)400350300250QC2001501000500-50102030405060708090100TIME(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE40aTURBINETRIPEVENTMITHPRESSURECONTROL,MINIMUMREACTIVITYFEEDBACK

11QC'00~300.+AC700.500Q.10.20.30.40.50.60.70.SO.90,10C.T'ME(SEC)5004QQk1000-100010203040506070SO901COTiMK(SEC)ONALOC.COOKUNIT2(FULLVSCORK)FIGUREl0bTURBINETRIPEVENTQITHPRESSURECONTROL,HINIHNREACTIVITYFEEDBACK 4p30252015/Ap4ipQCD0-5-lp0l0203040506070Sp90tPPTlMK(SKG)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE411TURBINETRIPEVENT'IJITHPRESSURECONTROL,NININNREACTIVITYFEEDBACK

30'J72c2015~A4)05102030io5060ZO80eOtC."TIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE4lbTURBINETRIPEVENTMITHPRESSURECONTROL,MINIMUMSREACTIVITYFEEDBACK SECL-91-429,Revision1APPENDIXASIGNIFICANTHAZARDSEVALUATION SECL-91-429,Revision1SIGNIFICANTHAZARDSEVALUATIONDONALDC.COOKUNITS152NSSVLIFTSETPOINTTOLERANCETECHNICALSPECIFICATIONCHANGEINTRODUCTION:Pursuantto10CFR50.92,eachapplicationforamendmenttoanoperatinglicensemustbereviewedtodetermineiftheproposedchangeinvolvesasignificanthazardsconsideration.TheCommissionhasprovidedstandardsfordeterminingwhetherasignificanthazardsconsiderationexists(lOCFR50.92(c)].Aproposedamendmenttoanoperatinglicenseforafacilityinvolvesnosignificanthazardsconsiderationifoperationofthefacilityinaccordancewiththeproposedamendmentwouldnot:1)involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated,or2)createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated,or3)involveasignificantreductioninamarginofsafety.DESCRIPTIONOFAMENDMENTREVEST:ThepurposeofthisamendmentrequestistoreviseTechnicalSpecificationSection3/4.7forbothDonaldC.Cookunitsinordertorelaxthemainsteamsafetyvalve(MSSV).liftsetpointtolerancefrom+INto+3M.Thecurrentlyspecifiedtoleranceof+INoftheliftsetpointcanbedifficulttomeetwhenthevalvesaretestedduetosetpointdriftoverthedurationoftheoperatingcycle.ThisevaluationwillprovidemarginforAmericanElectricPowerServiceCorporation(AEPSC)whentheyperformtheirsurveillancetesting.

SECL-91-429,Revision1TheASHECoderequiresthatthevalvesliftwithinIXofthespecifiedsetpoint(NB-7512.2).Thecodealsostatesthatthevalvesmustattainratedlift(i.e.,fullflow)within3/oofthespecifiedsetpoint(NB-7512.1).ThisevaluationwillformthebasisfortakingexceptiontotheASHECodewithrespecttotheliftsetpointtolerances.AsdefinedinNB-7512.2,exceptionscanbemadetothecodeprovidingtheeffectsareaccountedforintheaccidentanalyses.BASISFORNOSIGNIFICANTHAZARDSDETERHINATION:-Theeffectsofincreasingtheas-foundliftsetpointtoleranceonthemainsteamsafetyvalvehavebeenexaminedforthenon-LOCAaccidents,andithasbeendeterminedthat,withoneexception,thecurrentaccidentanalysesaspresentedintheUFSARremainvalid.Thelossofload/turbinetripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerancerelaxation.Aspreviouslydemonstratedinthisevaluation,allapplicableacceptancecriteriaforthiseventhavebeensatisfiedandtheconclusionspresentedintheUFSARarestillvalid.Thus,theproposedTechnicalSpecificationchangedoesnotconstituteanunreviewedsafetyquestion,andthenon-LOCAaccidentanalyses,aspresentedinthereport,supporttheproposedchange.TheeffectofanincreaseintheallowableHainSteamSafetyValvesetpressuretolerancefrom+IXto+3XontheUFSARLOCAanalyseshasbeenevaluated.Ineachcasethe-applicableregulatoryordesignlimitwassatisfied.SpecificanalyseswereperformedforsmallbreakLOCAassumingthecurrentHSSVTechnicalSpecificationsetpressuresplustheproposedadditional3Xuncertainty.ThecalculatedpeakcladdingtemperaturesremainedbelowtheIOCFR50.462200'Flimit.Thesteamgeneratortuberuptureeventwasalsoanalyzedtodeterminetheeffectsoftheliftsetpointtoleranceincrease.TheresultsoftheanalysisconcludedthattherewasaveryslightincreaseinthewholebodydosereleaseforUnit1,butthemagnitudeoftheincreasewas

SECL-91-429,Revision1withintheuncertaintyassociatedwiththecalculationitself,andthatthereleasesgeneratedfortheDonaldC.CookReratingProgramboundthosecalculatedforthisevaluation.TheevaluationalsodeterminedthatthecurrentUnit2dosesremainbounding.Thus,theconclusionspresentedintheDonaldC.CookUFSARremainvalid.Neitherthemassandenergyreleasetothecontainmentfollowingapostulatedlossofcoolantaccident(LOCA),northecontainmentresponsefollowingtheLOCAanalysis,credittheHSSVinmitigatingtheconsequencesofanaccident.Therefore,changingtheHSSVliftsetpointtoleranceswillhavenoimpactonthecontainmentintegrityanalysis.Inaddition,basedontheconclusionofthetransientanalyses,thechangetotheHSSVtolerancewillnotaffectthecalculatedsteamlinebreakmassandenergyreleasesinsidecontainment.TheproposedchangehasbeenevaluatedinaccordancewiththeSignificantHazardscriteriaof10CFR50.92.Theresultsoftheevaluationdemonstratethatthechangedoesnotinvolveanysignificanthazardsasdescribedbelow.l.Asignificantincreaseintheprobabilityorconsequencesofan~~~accidentpreviouslyevaluated.RelaxationoftheHSSVsetpointtolerancefrom+IXto+3Xdoesnotincreasetheprobabilityorconsequencesofanaccidentpreviouslyevaluated.Componentandsystemperformancewillnotbeadverselyaffectedsinceequipmentandsystemdesigncriteriacontinuetobemet.TheHSSVsdonotinitiateanyaccidentnotalreadydiscussedintheUFSAR.Neitherthemassandenergyreleasetothecontainmentfollowingapostulatedlossofcoolantaccident(LOCA),northecontainmentresponsefollowingtheLOCAanalysis,credittheHSSVinmitigatingtheconsequencesofanaccident.Fortheeventsanalyzed,allapplicableacceptancecriteriaweresatisfied,andtherewasno SECL-91-429,Revision1increasein-thedosesoverthosepreviouslygenerated.Asaresult,theconclusionspresentedintheDonaldC.CookUFSARareunaffectedbytheproposedchange.Therefore,changingtheHSSVliftsetpointtoleranceswouldhavenoimpactontheconsequencesofanaccident.2.Createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated.Thepossibilityforanaccidentormalfunctionofadifferenttypethanevaluatedpreviouslyinthesafetyanalysisreportisnotcreated.IncreasingtheliftsetpointtoleranceontheMSSVsdoesnotintroduceanewaccidentinitiatormechanism.Nonewfailuremodeshavebeendefinedforanysystemorcomponentimportanttosafetynorhasanynewlimitingsinglefailurebeenidentified.NoaccidentwillbecreatedthatwillincreasethechallengetotheHSSVsorresultinincreasedactuationofthevalves.Therefore,thepossibilityofanaccidentdifferentthanpreviouslyevaluatedisnotcreated.3.Involveasignificantreductioninamarginofsafety.ThemarginofsafetyasdefinedinthebasisoftheTechnicalSpecificationsisnotreducedbythechangeintheMSSVliftsetpointtolerance.Theproposedincreaseintheas-foundHSSVliftsetpointtolerancewillnotinvalidatetheLOCAornon-LOCAconclusionspresentedintheUFSARaccidentanalyses.Thenewlossofload/turbinetripanalysisconcludedthatallapplicableacceptancecriteriaarestillsatisfied.ForalltheUFSARnon-LOCAtransients,theDNBdesignbasis,primaryandsecondarypressurelimits,anddose SECL-91-429,Revision1limitscontinuetobemet.Peakcladdingtemperaturesremainbelowthelimitsspecifiedin10CFR50.46.Thecalculateddosesresultingfromasteamgeneratortuberuptureeventremainwithinasmallfractionofthe10CFR100permissiblereleases.Thus,thereisnoreductioninthemargintosafety.Note,however,inordertoimplementtheproposedchange,theTechnicalSpecificationswillhavetobechanged.

SECL-91-429,Revision1APPENDIXBMARKEDUPTECHNICALSPECIFICATIONSECTIONS 3.1.L.LAllaainsteaaLinecodesafetyvalvesassociatedvttheachsesvgeneratorshaLLbeOPERhSLE,MODE51,2and3.hQZM:aeb.C.Wteh4reactorcoolantLooysaadassociatedsteaageneraeocsiaoyeraetoaandvieh,oaeoraorsaataseaaaLinecodesafetyvalvesinoyerable,oyeraetoaialNDN1,2and3sayyroceedyrovtdad,thatvtthta4hours,etcherthetaoyerablevalveRsrestoredtoQMhb?XstatusorthePacerRangeNeutronFLuxMt'eeyoiaetrtyisreducedyerTable3.7-1;othervtsa,<oinatLease80'TANDITvtehiaehenextIhoursan4tnCO+58VttOWNviehinehefollovtai30bours.3gQtth3reactorcoolaatLoopsandassoctatsdstsaageneralsiaoyerattonandvtthoneormreaatastsaaLtaecodesafetyvalvesassociatedvtthanoyerattnglooytnoyerable,oyeraekoninlNDI3aayyrocaedyrovtde4,chatvtehtn4hours,eitherehetaoyerabievalveisrestoredtoQHRQQaeacusorahareaceoreriybreakersareoyeae4;oehervtse,betnCOLD5HUTDORfvtthtnehenext30hours.Theyrovtstoaaof5yectftcattoa3.0.4arenotayylicable.~~I4.7.1.1Eachaatns~Ltn>>codesafetyvalvesha11bedsmaaeraeadOPERASLE,vtthliftsetttngaandorificestsesaasbovataTable4.7~L,inaccordanceviehSectionXXofeheASARIoilerandtres'sureVesselCode,1974~D.C.OX%UNIT13/471AmINmmeHO.L2o

TABLE3.y-l~l~"LLSHSLEPOMERRANGENEUTROIIFLUEHIGHSETPOIHTMITHINOPERMLESTEglIIRVWAKTIIIHaxiaaNeaNNoflaopeableSafetyValvesoaAsatiSteawSaaeratorlhximaAllowablePoserRangeNautronfluxHIghSetpointPercentofRATEDTHERNALPORN65.1 n5%14in.1Cin16in.1Cin24oN21CinSV-1$0C5palyh.aV-l40C5paiyLoeSV25075paly$47%palyOsQf3k$paly~)In~%holp~4aeehallooraoe~n4toeabieatoonlitioneotthovalveateaiseloyoretiIyteapereturoen4proeaum'

VVIhaOttRAblLZTYofehaaatnseeaaLtnaco4asafoeyvaLvosensuresehaethesacondarysysesapressurevillboLkaieadeoviehtniesdos'.gnyraasuroofLOTSpat)duringehanosesevereaneiciyaeadsysesaopera.eionalezanaiene.Theaaxhasraltavtngcayacteyisassociaes4vizhseurbinaeziyfzoaLO41RATIOMRHALt%LLcotnctdaneviehanassumed:as~ofcondansazhaaesilk(i~~noseNsbyyaageaehacondansor).Zhasyectfte4valveLifesaeetnlaan4raltavtnlcayactetossrsinaccozdanc~viehehatequttsaanesof5acetonJTToftheASNXSoilozandprissuroCodaL97LKdteton.ThatotaLzaltavtngcayacteyforallvaLvssonao~seaaanaaaD.LS3.800Lba/hrvhtchtaayyroxtaaeeLyL2'arcaneofehatoealsacondaryseamflovafL4.L20,000Lba/hraeL00%RA~Ogling.tCQCR.AaLntaaof2OPQAILRaafaeyvaLvoayatoyorabLeseaaagonaraeotensuresthatsufftetanetalteCngcayacteytaavatLaforehaallovablaTSRQLLNQRraaertettontnTable$.7~l.5TARTUtand/orNUN,OPXRAtIONinoyarablaviehtntheLtateaeionaofoftheraduceton.tnsecondarysyseoabyehareducedreaceoreriysaeetagschannals.TharaaceorertysaeytnefoLLovtngbases:Fot4looyoyaraetontaallerailavtehsafaeyvalehaACTIONrapatreaaneaonehabeat..seemftovandTIKQ.AMERred.ofehaPowerR45$aNaueronFLUÃraduaetonsaradartvo4oneha~roanXMhara:5t~te4scadraaceoreztysaepotnetnyarcaneofNATNtHERQt.8ÃSRV~aaxtaanuaberoftneyarablesafaeyvalvoaparseaaaLinel,2or3.~TaealraltavtnlcayacteyafallsafaeyvalvoayarseaaaLtna~4,2!8,4SOLba/beur.~Hertauszoliaviagcayacteyofanyonesafaeyvalw~lS7,690Lba/hour.(LO9)~RoverRangeNaueronflue-HtgTriy5aeyotnefor4Loopoyaracton.0.C.COOCOCTL53/4)4LhNRfDltEHTNO.lc

3.7.L.LhLLmaiasceaaLinecodesafety~elvesassociaceaviaeachice~generatorshallbe0PQhbAv'.=4liftsettingsasspecifiedinTable3:7-~.gEJC4gli:slm413~he%:aeMich4reactorcoolantloopsa@4associatedstecageaeracorsiaoperationaa4vtthceoorloremaiasee@aLiaacode.safetyvalvesarable,operationtaNDCSl,2aa}3layproceedyrcnrided,thatvithi'hours,eieherchetaoyerablevalveisrestoredcoOfthL1LCstatusorthe?averEmceelaacrocLteaEtymTripSeeyoiac.isreducedperTable3.7-L;othaerLae,beSaatleastSCSTL%SYvichhaeheaeatChoursmlinCOLDSEQTDOIIvtthSathefollevfgg30hours.iVteh3reactorcoolantLooysaa4assooSate4steasgeaeratorsbioyorattoaan4etchoaeorsoreaatnscaasIkoncodasafetyvalvesasaoeiate4etchcaoyerattagleoyLacerable,operationinMDt3aayyrocee4yeetda4,thatvithts4bours,eithereheSnoyerabl~+ahabLsreacore4eoOPXRASLXstatusorehersaccorcrLybreakersareeyeoe4;ocheartae,baiaCOLO$5t?DOWvf,ch'aneheaam30hours.e.TheyeovtstonaofSyocificatioa3.0.4areaotapplicable.4.V.l.l%a44tt5eaa1Sere>>%leeXayattmeatsocherChanchose~redby4.05,Z0.C.CXSNT?23/471AÃ5ÃSQST50.82

TASI.E3.7-1HAXIIINALI.SNSl.EPOMERRANGEiIE~Ul@}FALVKKKQNSETPOIIITMITllINOPERASI.E5TEAHiiaxlmmNueberoCValvesoa~IleSafetyI}axlmmAllaablep~rRangeNeutronFluxIliehSetpointPercentofRATEDTIIERNLLPOMER265.1

"3CC2600.2400.2000.1800.1d00.0.10.20.3040.50.d0.70.d0%.10C.T1>K(SKC)2300.1800.1600.1400.1200~0.10,20.30.40,50,50,VO.80.90.10C.71'SKCjOOIALDCCOOKUHlT1FI6NE17TNSlNETRIPEVENTltITHPRESSNECONTROL,NlNNNREACT?VITYFEEOBACK

2520(J1510QC50(N0QCQ-100102030405060708090100TIME(SEC)DONALDC.COOKUNITlFIGUREllTURBINETRIPEVENTWITHOUTPRESSURECONTROl,NXINNREACTIVITYFEEDBACK 2500'A"50C.5400-'pci-"200n2tOC2300.1900.ie00.2300.t0.20.304050.&0.70.&0.90~ppTi>K(SEC)F800.t&00.t400.I200.IGOO,NO.0.10.24.30.IO.50.54.70.84.90.>OC.r&(SEC)ONMLDC.COOKlNIT1fIQNE12TNSINETRIPEVENTliITHPRESSNECONTROL.,NXINNREACTIVITYFEEDVCX 620.102030<05080TO8090rvctsac)3.52.5t.4l02030405464708090lCQ7i&(SEC)00NLDC.COOKUNIT1FI6LNE13TNSINETRIPEVENTWITHPRESQNECONTROL,NXINNREhCTIVITYFEEDBACK

5805605~0520580560540520500TOOtO2030<05080208090lCQViue(SKC)580660d<O620500580SdO5io500t02030405484208090>COTi&(SCC)OSLOC.CONtSITIFI6VRf14TNSINETRIPEVNTkITHNESSNKCONTROL,NXINNREACTIYITYFEEDBACK

>>00.4J1000.900.SOO.700.O600.5000.10.20.30.40.50.50.70.80.IO.100.risc'(sac)'00CJ3503OO25020015010050C50102030405060708090100TluE(SEC)GONLOC.COOKUNIT2(FULLV5CORE)FIGURE15TURBINETRIPEVENTMITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK

204710QC59j-100102030405060108090100TIVE(SEC)~~DONALDC.COOKUNIT2(FULLV5CORE)FIGURE16TURBINETRIPEVENTMITHPRESSURECONTROL,NAXINNREACTIVITYFEEDBACK

SV-lI..SV-l@.SV-24.SV-2e.SV-3TABLE3.7-4STEMILlNEShfETVVALVESPERLOOP810LlFTSETTlNGl065psigl065psig)075psig1075psigl015psiIGRlFlCESILE16in.~l6in.~l6in.~l6in.~MeHf~seXi'ressureslellcorrespoadto~ieateoaditionsofAevalveataoeiaa)eyeratiaItesyeratwe.aalpressure.

a7a7TheOtQAk?UTTefcheactaeceaaLtneee4esefocyvelvoeonncoechacchooooon4azyeyecoaytoeeutovillbe1taice4cevtchtn1101ofLce4eetyaycooaureef104fyetg4ctngcheeeocsevereanctotyaco4syecoe,oyegactonalCtaaaten!.Theaeshma>>teLtevtngeayaetcyLaaaeoctace4vichaoahtneMt'tea100%NitsTRIAL85CLeetna54en!v5chanace~4loco~fe&hl5anaefheacetna(te~Ma~lyNaacecheeen4anaeT)theeyeetfte4Mmltf!eacctngsMteltevtngaayaetcteeateLnaaaec4ancev5chchec~tMeocaeflee!tedlitefcheASSWtletan4QggggTAPteeeuteCe4e,1%71I4tcteaThececal!eitevtngcayaotcyefallrafecyvieen~e~1LneaLal),DS,NOSejmMebtaa!JeascLOSye!concetcheaaxhaeseeen4atyeceaII6evtacea!10K~5RRliiLNIL.Aatnto%efaOnautxeafecyvalvea~e~gen~acer~eechacautfte5eneaeltevtngeayaeteyta<<vatlablefetcheallevabletQRIQ,NOSERreecztecteaLItalle3.1l.StiRtltcol/etNQCLOtQif'INtaalleveilevtciaafeeyvalveataeyerahlevtehtacheltitcacteaaetchei'?Neeystteeeocaeacdbaaiaet!hetHuecteaLnseeeniaryaye~a~flmaI4~RNAf.Ni-reqetxe41'heeo4sceireaecatmidaee!tNIaefcheSee!Range'4%eha55%2aITheteaacec'FSQac~fiscf04$0Ciena~4a!iverNschefe11evtngbaaea:0'f41'fa!taII(LN)Nese:Neeence&reaeeeeel'eeyotnltayeeeaneetQtQ~~L88RLUse~5%%nilhefef~fahlaaatecy%livea~a~'..IelaicNltevtngeeyaetcyefaQ<<afeeyvillaye!aceQataQa.jhyga1,g4,4gfeaallaeeeltivtNIeayocttgefalyaeaatecyvalvetaQe.)leariIS)>4'N~SwanRaageNeecgeathe~tetySoeyeta!fetileep~ye!a!teaOXCRCLQLPQÃtiNg?taSlat.iiNK!N~IO.Qt3'

1,210203040508070d09C>CQT~QK(SCC)452.51.50IO2030IO506070d090t00riK(SCC)DONLDC.COOKUNITIFINE18TVRSINETRiPEVENTARITHPRESSURECONTROL,NINNNREACTIVITYFEEDBACK 6606226)c)58c5605~O5205000l02050405060y0809CtC"T'~K(SEC)~006405606<0620600=5606605405200102030405060708090)CQTiQC(Sgc)NNMlI)C.CONUNiT1FNNE19TURIIKETRIPEVENT'QITHPRESSNECONTROL,IIINNNIREACTIVITYFEEDBACK

Thesafetyvalve)sOPERABLEw)thal)ftsett1ngofg3%aboutthenoefna~alue.H~er,thesafetYvalveshallberesettothenoe)na]valuepicwheneverr~outsidethe+1%tolerance.

1100Ãa'J)1O00.900.800.CD700.600.5000.102030.40.50607080.90.100.TiMK(SEC)500CJ4JVl4004300M200100Vl0cB-1000102030405060708090100TtMK(SEC)QONLNC.CO%NITIFIGURE20TURBINETRIPEVENTWITHPRESSURECONTROL,HININNREACTIVITYFEEOBACK 254l201510OC5mao5g4J-100102030405060708090100T1&(SEC)ONNLOC.CONUNITIFIGURE21TURBINETRIPEVENTWITHNESSURECONTROL,NININNREACTIVITYFEEOSACK

2500.25OC~n'n:~OC.~GOC'v:2OC.n2100.2300.1900.18000.10.20.30.40.50.60.70.60.90,1POri~K(SKC)2000.1800.1600.1F00.1200.1000.0.10.20.30.40.50.80.rim(sac)VO.60.90.iOO.ONNU)C.COOKUNIT2(NIXEOCORE)FINRE22aTNIINETRIPBtENTVITHOuTPRESSNECONTML,NINNNREACTIVITYFEEOeaCX 9

'TC":rocI'gCChO443'1OC~OC19OC.1800,O.10.ZQ.30.10.50.60.70.gQ.9Q1QQr~E(SgC',"30C.13OC1500.140C.1200,1300.600.0.10.20.30,i0.50.60.70,50.90.10CT.K(SEC)tNKL9C.COOKNIT2(NLLVSCORE}FINE22bTNSlNETRlPEVNTMITHOUTPRKS$QRECefTROL,NNNllREACTIVITYFEEDBACK 218Cd4x200102030+0505070b090tCQTiMK(SKC)2.d2.4i.d102030i0546010b090>COrisc(sec)OONLOC.CNKNIT2{NlXEOCORE)FINE23aTWNETRIPEVENTWITHOUTPRESQNECONTROL,NNNNREACTIVITYFKE08ACK tOZO30+050do70809C'CO~MK{SEC)102030iO50do10809C>CoT:MK(MC)OaeeC.CmUNIT2~FuLLVSCORa)FINE23bTURBINETRIPEVENTitITHOUTPRKSSNKCONTROL,NINNYREACTIVITYFEEDBACK 0

5806605<05205805605405205007000iO2030iO50607080SClC~TiSK(SKC)6806808<0o6206009580540112030405080'lo8090>00Tiff(SEC}CDNWLOC.CONNIT2(IIIXKOCORE)FINRE24aTNSINETRIPEVNTWITHOUTPRESSNtECONTROL,NINNNREACTIVITYFKEOBACK 530560$4062053C56v5~0520500102030405060lO8090tCOTatK(SEC)Sao5606<05205005805605<05200t42030IO5060106090ICQTK(SKC)OONhLOC.COOKUNIT2(FULLVSCORE)FINK24bTlNSINETRIPEVENT'WITHOUTNESSNECONTROL,NINNNREACTIVITYFEEDBACK Attachment4toAEP:NRC:1159CPage1Includedinthisattachmentaretwotables.Thefirsttable,entitled"IssuesTrackingList,"isacompilationoftheinformationrequeststhattheNRCmadeofAEPSCduringtheApril21,1992meeting.QuestionsthatwerespecifictotheMod30instrumentationhavebeendeleted.Thesecondcolumninthistableindicatesthefilenumberwheretherequestedinformationcanbefound.Thesefileswillbeprovidedduringtheaudit.Thesecondtable,entitled"DocumentationTrackingList,"containsalistingofwhatisineachfile.AsexplainedduringtheDecember1,1992meeting,thefilingsystemdelineatedinthistablewasdevelopedtoensurethatthedocumentationdevelopedtosupportthispro]ectaddressedtheNRC'squestions.

0