ML17249A374
ML17249A374 | |
Person / Time | |
---|---|
Site: | Ginna |
Issue date: | 12/14/1979 |
From: | BUSSELMAN G J, JOHNSON B L, SOFER G A SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER |
To: | |
Shared Package | |
ML17249A368 | List: |
References | |
XN-NF-79-103, NUDOCS 7912280240 | |
Download: ML17249A374 (42) | |
Text
0KN-N-79-103PE(lllklkPlljlllLEkkPILklll'NllllLEJIBMFET7kkkL7SIISPEPBP'll'IIYMIw3IIXEBQXIIBEbhSSEliNBILIIESDECEMBER1979RICHLAND,NA99352 EI'II-II XN-NF-79-1030:IR/R1479R.E.GINNANUCLEARPLANTCYCLE10.SAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIESPrepared:G.J.Bussman,ManagerNeutronicsandFuelManagementApproved:G.A.SofenagerNuclearFuesEngineeringConcurred:J.N.Morgan,ManageLicensingandSafetyEngineeringConcurred:L.J.Federico,ManagerNuclearFuelsProjectl'~/7E)j(ONNUCLEARCOMPANY,Inc.
NUCLEARREGULATORYCOMMISSIONDISCLAIMERIMPORTANTNOTICEREGARDINGCONTENTSANDUSEOFTHISDOCUMENTIrPLEASEREADCAREFULLYThistechnicalreportwasderivedthroughresearchanddevelopmentprogramssponsoredbyExxonNuclearCompany,Inc.ItisbeingSub.mittedbyExxonNucleartotheUSNRCaspartofatechnicalcontri.butiontofacilitatesafetyanalysesbylicenseesoftheUSNRCwhichutilizeExxonNuclear.fabricatedreioarlfuelorotherteclmicalservicesprovidedbyExxonNuclearforliehtwaterpowerreactorsan<IitistrueandcorrecttothebestofExxonNuclear'sknowledge,information,andbelief.TheinformationcontainedhereinmaybeusedbytheUSNRCinitsreviewofthisreport,andbylicenseesorapplicantsbeforetheUSNQCwhicIIarecustomersotExxonNuclearintheirdemonstrationofcompliancewIththeUSNRC'sregulations.Withoutderogatingfromtheforegoing,neitherExxonNuclearnoranypersonactingonitsbehalf:A.Makesanywarranty,expressorimplied,withrespecttotheaccuracy,completeness,orusefulnessoftheinfor-mationcontained,inthisdocument,orthattheuseotanyinformation,apparatus,method,orprocessdisclosedinthisdocumentwillnotItffringeprivatelyownedrights;or8.Assumesanyliabilitieswithrespecttotheuseof,orfordan'agesresultingfromtheuseof,anyinformation,ap.paratus,method,orprocessdisclosedinthisdocument.XN-NF-FQO,766 XN-NF-79-103TABLEOFCONTENTS'ection
1.0INTRODUCTION
ANDSUMMARY.2.0OPERATINGHISTORYOFTHEREFERENCECYCLE.3.0GENERALDESCRIPTION4.0FUELSYSTEMDESIGN.~Pae2595.0NUCLEARDESIGN.................'........105.1PHYSICSCHARACTERISTICS5.1.1POWERDISTRIBUTIONCONSIDERATIONS.5.1.2CONTROLRODREACTIVITYREQUIREMENTS.125.1.3MODERATORTEMPERATURECOEFFICIENTCONSIDERATIONS..135.2ANALYTICALMETHODOLOGY.136.0THERMALHYDRAULICDESIGN....................207.0ACCIDENTANDTRANSIENTANALYSIS.7.1PLANTTRANSIENTANDECCSANALYSESFORR.E.GINNA.7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10.
8.0REFERENCES
.~~21212225
~~~.l~~~t~~t XN-NF-79-103LISTOFTABLESTable~Pae3.1R.E.GINNACYCLE10FUELASSEMBLYDESIGNPARAMETERS-.....65.1R.E.GINNANEUTRONICSCHARACTERISTICSOFCYCLE10COMPAREDWITHCYCLE9DATA....................155.2R.E.GINNACONTROLRODSHUTDOWNMARGINSANDREQUIREMENTSFORCYCLE10~~~~~~~~~~~~~~~~~~~~~~~~II7.1R.E.GINNAKINETICPARAMETERS.16~~237.2EJECTEDRODWORTHANDPEAKINGFACTORS..............24
\~~~~~~~~~l~~iI~~~~~
XN-NF-79-103LISTOFFIGURES~Fiure2.1R.E.GINNACYCLE9CRITICALBORONCURVE,PREDICTEDVS.MEASUREDe~~~~~~~~~~~~~~~~~~~~~~~~2.2R.E.GINNAPOWERDISTRIBUTIONCOMPARISONTOMAPIX-245)505MWD/MTe~~~~~~~~~~~~~~~~~~~~~~3.1R.E.GINNACYCLE10LOADINGPATTERN.3.2R.E.GINNABOC10QUARTERCOREEXPOSUREDISTRIBUTIONANDREGIONID@~~~~~~~~~~~~~~~~~~~~~~~~5.1R.E.GINNACYCLE10AROCRITICALBORONCONCENTRATIONVS.EXPOSURE~~~~~~~~~~~~~~~~~~~~~~~~~5.2R.E.GINNACYCLE10POWERDISTRIBUTIONHFP,0MWD/MT1)254PPM5.3R.E.GINNACYCLE10POWERDISTRIBUTIONHFP,9,500MWD/MTPPM~~~~~~~~~~~~~~~~~~~~~~~~~~7~Pae~~3478171818 t1~~~~~~I~li~~~~l XN-NF-79-103R.E.GINNANUCLEARPLANTCYCLE10SAFETYANALYSISREPORTkgl
1.0INTRODUCTION
ANDSUMMARYTheR.E.GinnaNuclearplantwilloperateinCycle10beginninginearly1980withthreeregionsoffuelsuppliedbyExxonNuclearCompany(ENC).Theloadingwillconsistof32ENCassembliesinRegion12and4Westinghousemixoxide(MOX)assemblies.Theremainderofthecorecontains40once-burntand32twice-burntENCassembliesand13exposedWestinghousesuppliedassemblies.ThecharacteristicsofthefuelandofthereloadedcoreresultinconformancewithexistingTechnicalSpecificationlimitsregardingshutdownmarginprovisionsandthermallimits.ThisdocumentprovidestheneutronicanalysisfortheplantduringCycle10operationandthecontrolrodejectionanalysis.TheENCfueldesign.isunchangedfromthefueldesignusedinthe"Cycle8and9ENCfuelreloads.ThepreviousPlantTransientAnalysis'(2)remainsvalidforCycle10.TheECCSanalysisisapplicabletoCycle10operation.TheconsequencesoftherodejectionaccidentforCycle10areslightlylessseverethanthosecalculatedforCycles8and9.The(4)(5)introductionofthe4MOXassembliesintothereactorcoreleadstosmallchangesinthecoreaveragekineticparametersresultinginminimaleffectstothepreviousanalysesperformedforCycles8'and9(1,2,4)(1,3,5)
~~~~~l~~~}i~~~~~~~
XN-NF-79-1032.0OPERATINGHISTORYOFTHEREFERENCECYCLER.E.GinnaCycle9hasbeenchosenasthereferencecyclewithrespecttoCycle10duetothecloseresemblanceoftheneutroniccharacteristicsbetweenthesetwocycles.TheCycle9operationbeganonApril3,1979,andasofNovember31,1979thecorehadaccruedabout6,714MWD/MT.TheCycle9loadingincluded40freshENCfuelassemblieswith32exposedENCassembliesand49exposedWestinghouseassemblies.Themeasuredpowerpeakingfactorsathot-full-power,equilibriumxenonconditions,haveremainedconsiderablybelowtheTechnicalSpecification,limitsthroughoutCycle9.Thetotalnuclearpeakingfactors,F,andtheradialnuclearpinpeakingfactor,FH,haveremainedbelow1.75and1.45,respectively.Cycle9operationhastypicallybeenrod'freewiththeDcontrolbankpositionedintherangeof218to222steps,225stepsbeingfullywithdrawn.ItisanticipatedthatsimilbrcontrolbankinsertionswillbeseeninCycle10.ThecriticalboronconcentrationascalculatedbyENCforCycle9hasagreedtowithinabout8ppmcomparedtotheobservedvalues(seeFigure2.1).Alsothepredictedpowerdistributionshavetypicallyagreedtowithin+3percentofthe,measuredvalues(seeFigure2.2fortypicalcom-parison).
-~~--~~-~~=-:LL~=*~-:..t=~I-~~-~t44C-l:-f~I~~t*'Itj=~~~++4I~~=~~~~-~~~~~-~~-~*t-Ut'e.~----I.flGMO'NT.}'~-:.-::F.-Tre~t~-:CritTcatBoronCuve,,=P=red:.~-~-~-
XN-NF-79-103.968.995-2.711.1101.129-1.68.920.938-1.92.949..965-1.661.1891.178'93.996.9633.43.794.7821.531.1081.131-2.03.9861.013-2.671.0291.048-1.811.0991.103-.361.1891.1681.801.0741.0512.19.663.6452.79.918.947-3.061.0301.051-2.00.9961.006-.991.2031.1911.011.0791.0552.27;977.974.31.953.968-1.551.0981.105-.631.1911.192-.081.0361.0211.471.1781.1492.52.714.711.42101;1951.179l.361.1881.1691.631.0721.0551.611.1731.1492.09.804.798.75.985.9632.28.772.782-1.281.0711.0511.90.651,.645.93.977.975.21.715.712.42MeasuredAssemblyPowerCalculated(XTGPWR)x100c1213CalculatedMeasured%DifferenceNFq1.5281.5642.33F~H1.351F1.1051.3371.154-1.074.42Figure2.2R.E.GinnaPowerDistributionComparison,ToMapIX-24,HFP,5,505MWD/MT I-l XN-NF-79-1033.0GENERALDESCRIPTIONTheR.E.Ginnareactorconsistsof121assemblies,eachhavinga14xl4fuelrodarray.Eachassemblycontains179fuelrods,16RCCguidetubes,and1instrumentationtube.ThefuelrodsconsistofslightlyenrichedU02pelletsinsertedintozircaloytubes.TheRCCguidetubesandtheinstrumen-tationtubearemadeofSS-304L.EachENCassemblycontainsninezircaloyspacerswithInconelsprings;eightofthespacersarelocatedwithintheactivefuelregion.Fourofthe121assembliescontainMixedOxide(Pu02plusU02)bearingfuelrods.TheMOXassembliesconsistofthreeenrichmentzonesofPu02utilizingnaturalU02asthediluent.TheprojectedCycle10loadingpatternisshowninFigure3.1withtheassembliesidentifiedbytheirFabricationID'sandRegionID's.TheinitialenrichmentsofthevariousregionsarelistedinTable3.1.BOC10exposures,basedonanEOC9exposureof9,570MHD/MT,alongwithRegionID'sareshowninFigure3.2.Thecoreconsistsof32freshENCassembliesat3.45w/oand4freshWestinghouseMOXassembliesloadedontheperipherywith72ENCand13Westinghouseexposedassembliesscatter-loadedinthecenterportionofthecore.PertinentfuelassemblyparametersfortheCycle10fuelaredepictedinTable3.1.Thetransuranicelements,includingAm-241,havebeen\accountedforuptothetimeoftheanticipatedreactorstartup.
XN-NF-79-103Table3.1R.E.GinnaCycle10FuelAssemblyDesignParameters10Region12MOXEnrichment,wtXU-235NumberofAssembliesPelletDensi'ty,XTDPellet-to-CladDiametricalGap,MilFuelStackHeight,inch7.57.5141.4142.03,1033,100133295,094,04094.032494.095.07.57.57.5142.0142.0141.43.2003.4502.626*RegionAverageBurnupatBOC10,MWD/MTNominalAssemblyWeight,KgU24,33917,8858,33500392.56373.78373,78373.78395.91***wtXPu(basedonassemblyaverage)*"inKgHM XNrNF-79-103KJIH.GFE0CBA12HOX121212N09'12L1412L09M14K03L31M391212L01H011212M02L06N17L19M28L26N36L05N121212L02M33L21M23K05N30L24M20L121212MOXL32M40L2712K09M25M31K13N07K20N08K28K19N06N22L18H13K18M27K27L131212MOX12L15M15L20M24K26M05K17H29L25M38L301212Ll0M18L22N32K25M21L23M35L041212Ml0L0712M03N34L28N26L03M37K14L17H16M19L08M04LllMll12121212L2912L16121212MOX12FabricationorNewFuelRegionIdentificationFigure3.1R.E.GinnaCycle10LoadingPattern XN-NF-79-103DCB24,7367,51724,1177,80924,708012MOX7;52224,09311,34117,5789,5441019,816101224,11711,34217,5066,92616,0611010127,80917,5746,9281018,677106,393012]n24,7089,54916,0616,19810121219,809100a1212BOC10ExposureMWD/MTRegionID*120MOX1213*SeeTable3.1forRegiondefinitionsfFigure3.2R.E.GinnaBOC10quarterCoreExposureDistributionandRegionID XN-NF-79-1034.0FUEL.SYSTEMDESIGNAdescriptionoftheExxonNuclearsuppliedfueldesignanddesignmethodsiscontainedinReference1.ThisfuelhasbeenspecificallydesignedtobecompatibletotheresidentfuelsuppliedbyWestinghouse.
I 10XN-NF-79-1035.0NUCLEARDESIGNTheneutroniccharactristicsoftheprojectedCycle10corearequitesimilartothoseoftheCycle9core(seeSection5.1).ThenucleardesignbasesfortheCycle10coreareasfollows:1)ThedesignshallpermitoperationwithintheTechnicalSpecificationsfortheR.E.Ginnaplant.2)ThelengthofCycle10shallbedeterminedonthebasisofanassumedCycle9lengthof9,570MWD/MT.3)TheCycle10loadingpatternshallbeoptimizedtoachievepowerdistributionsandcontrolrodreactivityworthsaccordingtothefollowingconstraints:a)ThepeakF~shallnotexceed2.32andthepeakFHshallnotexceed1.66(includinguncertainties)inanysinglefuelrod.throughthecycleundernominalfullpoweroperationcondi-tions.b)ThescramworthofallrodsminusthemostreactiveshallexceedBOCandEOCshutdownrequirements.4)TheCycle10coreshallhaveanegativepowercoefficient.5)TheMOXassembliesshallbelocatedinaregionofthereactorcoreastominimizetheeffectsonshutdownmarginprovisionsandthermallimits.TheneutronicdesignmethodsutilizedtoensuretheaboverequirementsareconsistentwiththosedescribedinReferences6,7,and8.
XN-NF-79-1035.1PHYSICSCHARACTERISTICSTheneutroniccharacteristicsoftheCycle10corearecomparedwiththoseofCycle9andarepresentedinTable5.1.Thedatapresentedinthetableindicatethe'eutronicsimilaritybetweenCycles9and10.TheCycle10loadingpatternisapplicableforCycle9lengthsof+700MWD/MTand-800MWD/MTaboutthenominallengthof9,570MWD/MT.ThecalculatedboronletdowncurveforCycle10isshowninFigure5.1.ThecurveindicatesaBOC10,noxenon,criticalboronconcentrationof1,254ppm.At150MWD/MT,equilibriumxenon,thecriticalboronconcentrationis921ppm.TheCycle10lengthisprojectedtobe9,500+300MWD/MTwith7ppmofboronatEOC.5.1.1PowerDistributionConsiderationsPRepresentativepredictedpowermapsforCycle10areshowninFigures5.2and5.3forBOCandEOCconditions,respectively.Thepowerdistributionswereobtainedfromathree-dimensionalmodelwithmoderatorI,densityandDopplerfeedbackeffectsincorporated.FortheprojectedCycle10loadingpatternthecalculatedBOCnuclearpowerpeakingfactors,F~,NNNF,andFz,are,l.745,1.433,and1.201,respectively.AtEOCconditionsthecorrespondingvaluesare1.517,1.358,and1.098.TheTechnicalSpecifi-cationlimitsrelativetoF~andF>H,withthemeasurementuncertaintiesNNbackedout,are2.15and1.60.AdditionallythepredictedaxialFdistri-butionsarewellbelowtheaxiallydependentTechnicalSpecificationlimitsonF~.TheBOCFvalueof1.745compareswiththemeasuredCycle9valueNinTable5.1of1.758.
12XN-NF79-,103Thecontrolofthecorepowerdistributionisaccomplishedbyfollowingtheproceduresasdiscussedinthereport,XN-76-40,"ExxonNuclearPowerDistributionControlforPressurizedWaterReactors",September1976anditsaddendum.TheresultsreportedinthesedocumentsdemonstratethatthePowerDistributionControl(PDC)proceduresdefinedinthereportwillprotectanaxiallydependentFlimitwithapeakvalueof2.30.TheTechnicalSpecificationlimitforR.E.Ginnahasapeakof2.32andanaxialdependenceidenticaltothatsupportedbytheprocedures.ThephysicscharacteristicsoftheGinnaCycle10corearesimilartothoseutilizedinthePDCsupportinganalysis.TheGinnaTechnicalSpecificationlimitsonFcanthereforebeprotectedbyoperationunderthePDCproceduresasstatedinXN-76-40.5.1.2ControlRodReactivitReuirementsDetailedcalculationsofshutdownmarginsforCycle10arecomparedwithCycle9datainTable5.2.TheENCPlantTransientSimulation(PTS)Analysisindicatesthattheminimumrequiredshutdownmarginis1,800pcmbaseduponthesteamlinebreakaccidentanalyzedforENCfuelattheEOCconditions.Avalueof1,900pcmisusedatEOCintheevaluationoftheshutdownmargintobeconsistentwith'theTechnicalSpecifications.TheCycle10analysisindicatesexcessshutdownmarginsof1,414pcmattheBOCand344pcmattheEOC.TheCycle9analysisindicatesexcessshut-downmarginsforthatcycleof1,795pcmattheBOCand393pcmattheEOC.TheslightlylowerCycle10excessshutdownmargins,whencomparedtotheCycle9values,areduetoslightlylowercalculatedrodworths.
13XN-NF-79103Thecontrol-rodgroupsandinsertionlimitsforCycle10willremainunchangedfromCycle9.Withtheselimitsthe'nominalworthofthecontrolbank,D-bank,insertedtotheinsertionlimits'atHFPis122pcmat,BOCand'70pcmatEOC.ThecontrolrodshutdownrequirementsinTable15.2allowforaHFPD-bankinsertionequivalentto300pcmforbothBOCandEOC.5.1.3ModeratorTemeratureCoefficientConsiderationsThereferenceCycle10designcalculationsindicatethatthemoderatortemperaturecoefficientisnegativeatalltimesduringthecycleasshowninTable5.1.ThismeetstheTechnicalSpecificationrequirementthatthemoderatortemperaturecoefficientbenegativeatalltimesduringpoweroperationandthedesigncriteriathatthepowercoefficientbenega-tive.TheleastnegativemoderatortemperaturecoefficientoccursatBOCHZPandis-2.0+2pcm/F.ThiscompareswiththeBOC9HZPvalueof-2.0pcm/F.5.2ANALYTICALMETHODOLOGYThemethodsusedintheCycle10coreanalysesaredescribedinReferences6,7,and8.ThesemethodshavebeenverifiedforbothU02andPu02-U02lattices.Insummary,thereferenceneutronicdesignanalysisofthereloadcorewasperformedusingtheXTG(Reference9)reactorsimulatorsystem-.Theinputexposuredatawerebasedonquartercoredepletioncalcu-lationsperformedfromCycle5toCycle9usingtheXTGcode.TheBOC5exposuredistributionwasobtainedfromplantdata.Thefuelshufflingbetweenc'ycleswasaccountedforinthecalculations.
14XN-NF-79-103PredictedvaluesofF~,Fx,andFwerestudied,withtheXTGreactormodel.Thecalculationalthermal-hydraulicfeedbackandaxialexposuredistributioneffectsonpowershapes,rodworths,andcyclelifetimeareexplicitlyincludedintheanalysis.
15XN-NF-79-103Table5.1R.E.GinnaNeutronicsCharacteristicsofCycle10ComparedwithCycle9DataBOCCcle9EOCCcle10BOCEOC(CriticalBoronHFP,ARO,EquilibriumXenon(ppm)HZP,ARONoXenon(ppm)ModeratorTemperatureCoefficientHFP,(pcm/oF)HZP,(pcm/oF)DopplerCoefficient,(pcm/F)BoronWorth,(pcm/ppm)HFPHZPTotalNuclearPeakingFactorFq,HFP961')12(1,410(2)-8.12-8.58-8.721.758(-7.6(2)-30.4-2.0-21.5-1.25to-2.09211,414-8.1-2.0-30.4-21.6-7.95,-8.621.7451.517-,1.35-1.84DelayedNeutronFraction.0061.0051.0058.0052ControlRodWorthofAllRodsInMinusMostReactiveRod,HZP,(pcm)ExcessShutdownMargin(pcm)ModeratorPressureCoefficient(pcm/psi)5,751)5,821.1,795()393(0.355';3415,6961,4143440.35(1)Extrapolatedfrommeasureddata(2)MeasuredData(3)70/PowerMap(4)Reference5 16XN-NF-79-103Table5.2,R.E.GinnaControlRodShutdownMarginsandRequirementsforCycle10BOCCcle9**EOCCcle10BOCEOCControlRodWorthHZP,cmAllRodsInserted(ARI)ARIlessmostreactive(N-1)N-1lesslOXallowanceL(N-1)*9lReactivitInsertioncm5,1765,2396,4076,6345,7515,8215,9496,4205,3415,6964,8075,125ModeratorplusDopplerFluxRedistributionVoidSumoftheabovethreeRodInsertionAllowanceTotalRequirements1,431600502,0813002,3811,996600502,'6463002,9461,4431,93260060050502,0932,5823003002,3932,882Shutdown.Margin(N-l)*.9-TotalRequirementsRequiredShutdownMargin*ExcessShutdownMargin2,7952,2931,0001,9001,7953931,4143442,4142,244100001,900*TechnicalSpecification3.10"*CalculatedvaluesfromReference5
~-~.~~'-~~*~-~*~I~>>.~=~~~=~~-~-t~=~~4h~g~~=~=WtWI.~'~~\-~*~4~t~~~->>*~~~~=-~=~-~-~-~~-Figure5tlR.E.GinnaCycle10AROCriticalBoronConcentrationvs.Exposurer4 el~~~~~~~~~~~~~~~~~~~~~~~I~~JLlII~~
I~~~~0~~I~I~I~~~~~~~~~~
20XN-NF-79-1036.0THERMALHYDRAULICDESIGNThethermalandhydraulicconsiderationsintheRegion12designareunchangedfromthosepresentedinReference4forRegion10fuel.
l~Ij 21XN-NF-79-1037.0ACCIDENTANDTRANSIENTANALYSIS7.1PLANTTRANSIENTANDECCSANALYSESfORR.E.GINNATheECCSanalysisprovidedinReference3isapplicabletoallENCfuelresidinginthecoreduringCycle10operation.ThePlantTransientAnalysisreportedinXN-NF-77-40fortheR.(2)E.GinnaplantwasintendedtocoverallanticipatedrangesofvaluesforallsignificantfueldependentplantparametersforCycle8andforallfuture7reloads.Table7.1presentsacomparisonofthekineticparametersusedinthePlantTransientAnalysisandtheparameterscalculatedspecificallyforCycle10.Duetotheintroductionofthe4MOXassembliesthereactivityworthofthe-boricacidusedbytheHPSIS(HighPressureSafetyInjectionSystem)andtheBOCdelayedneutronfractionhavebeencalculatedtobeoutsidetherangereportedintheXN-NF-77-40analysis.Theanalysiswasreviewedanditwasfoundthatthechangeinboricacidworthaffectsthesmal,landlargesteamlinebreaktransientsandthatthedelayedneutronfractionmostaffectsthefastuncontrolledrodwithdrawaltransient.TheenvelopingdataforbothsteamlinebreaksaretheEOCdataandforthefastuncontrolledrodwithdrawalareBOCdata.TheimpactoftheCycle10parameters(seeTable7.1)havebeenevaluatedforeachofthetransients.Theresultsoftheevaluationforthetransientswerefoundtobenearlyequivalenttothepreviousresultsandthatthefigureofmeritforthetransientswerenotviolated,i.e.forthesmallsteamlinebreakthesystemdoesnotgocritical,forthelargesteamlinebreaktheMDNBRisgreaterthanthe1.30limitandfortheuncontrolledrodwithdrawaltheMDNBRmarginisnotaltered.
22XN-NF-79-1037.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10AControlRodEjectionAccidentisdefinedasthemechanicalfail-ureofacontrolrodmechanismpressurehousing,resulting'intheejectionofaRodClusterControlAssembly(RCCA)anddriveshaft.Theconsequenceofthismechanicalfailureisarapidreactivityinsertiontogetherwithanadversecorepowerdistribution,possiblyleadingtolocalizedfueldamage.~TherodejectionaccidentanalysispresentedinthedocumentXN-NF-78-53isstillapplicabletoCycle10operation.Thelocationofthe4MOXassembliesintroducesminimaleffectsonejectedrodworthsandhotpelletpeakingfactors.Thee'jectedrodworthsandhotpelletpeakingfactorsarecal'culatedusingtheXTGcode.Nocreditwastakenforthepoweiflatteningeffects,ofDopplerormoderatorfeedbackinthecalculationofejectedrodworths'rpeaking'factors.ThecalculationsmadeforCycle10usingXTGweretwo-dimensional(x-y)withappropriateaxialbucklingcorrec-tionterm's.Thetotal'eakingfactors(F~)weredeterminedastheproductoftheradialpeakingfacto'r(ascalculatedusingXTG)andaconservativeaxialpeakingfactor;Thepelletenergydepositionresultingfromanejectedrodwasevaluatedtobelessthanther'esultsreportedinReferences4and5.Therodejectionaccidentwasfoundtoresultinenergydepositionoflessthan280cal/gmst'atedinRegulatoryGuide1.77'andprovidesagreaterenergydepositionmarg'inthanthatdeterminedbyReference4.TheresultsofthecontrolrodejectiontransientforthiscasearepresentedinTable7.2alongwithresults'fromReferences4and5.
23XN-NF-79-1037.1R.E.GinnaKineticParametersParameters,ModeratorTemperatureCoefficient(pcm/oF)ModeratorPressureCoefficient(pcm/psia)ReferenceCycle(1)BOCEC0.0-35.0+.25+.35Cycle10BC-8.1+.09EC-30.4+.35ModeratorDensityCoefficient(pcm/gm/cm3)DopplerCoeffi:cient(pcm/F)-1.25-2.00-1.35-1.840.0+29635.0+6858.0+25740.0BoronWorthCoefficient(pcm/ppm)DelayedNeutronFraction-8.75-8.72.0061.0051-7.95.0058-8.62.0052Reference2 XN-NF-7.9.-103Table7.2EjectedRodWorthandPeakingFactors'~BeforeEjection~C18()~C19()~C110(HFPHZPHFPHZPHFPHZP2,252.822.242.622.152.59F~AfterEjectionN4.36'.302.965.59gg4()601(MaximumRodWorthfromaFullInsertedBank(Xhp)0.4700.6400.3620.5530.2800.435EnergyDeposition(cal/gm)17137(1)IncludesaconservativeestimateofFatHFPof1.4andatHZPof1.8.(2)Reference4,calculatedwithXTRAN.(3)Reference5,calculatedwithXTGPWR.(4)CalculatedwithXTGPWR.
38.0REFERENCES
1.XN-NF-77-52,"R.E.GinnaReloadFuelDesign",November,1977.2.3.4.5.6.'XN-NF-77-40,"PlantTransientAnalysisforR.E.Ginna,Unit1NuclearPowerPlant",Revision1,July,1979.XN-NF-77-58,"ECCSAnalysisfortheR.E.GinnaReactorwithENCWREM-IIPWREvaluationModel",December,1977.XN-NF-77-53,"R.E.GinnaNuclearPlantCycle8SafetyAnalysisReport",December,1977.XN-NF-78-50,="R.E.GinnaCycle9SafetyAnalysisReport,"December,1978.F.B.Skogen,"ExxonNuclearNeutronicsDesignMethodsforPres-surizedWaterReactors",XN-75-27(A),ExxonNuclearCompany,April,1977.7.XN-75-27(A),Supplement1toReference6,April,1977.8.XN-75-27,Supplement2toReference6,December,1977.9.XN-CC-28,Rev.3,"XTG:ATwoGroupThree-DimensionalReactorSimulatorUtilizingCoarseMeshSpacing(PWRVersion)",January,1975.
IlxI 26XN-NF-79-103R.E.GINNACYCLE10RELOADSAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIESDISTRIBUTIONK.H.BlankG.J.BusselmanL.J.FedericoR.L.FeuerbacherR.G.GrummerB.L.Johnson(2)M.R.KillgoreT.L.KrysinskiC.E.LeachJ.N.MorganW.S.NechodomL.A.NielsenG.F.OwsleyJ.F.PattersonA.W.PrichardF.B.SkogenG.A.SoferA.V.WojchouskiC.H.WuRG&E/L.J.Federico(80)DocumentControl(10) lI1