ML17255A689

From kanterella
Revision as of 22:40, 3 May 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Dynamic Collapse of Steam Generator Tubes.
ML17255A689
Person / Time
Site: Ginna Constellation icon.png
Issue date: 11/16/1982
From: PRIDEMORE W H
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17255A688 List:
References
82-7P6-EMVTL-R2, 82-7P6-EVMTL-R2, NUDOCS 8402290172
Download: ML17255A689 (62)


Text

ReportNo.82-7P6-.TL-R2DYNAMICCOLLAPSEOFSTEAMGENERATORTUBESW.H.PridemoreMaterialsTestingandEvaluationLaboratoriesNovember16,19828402290172840224PDRADOCK05000244"'PDRApproved:S.A.Rosecrans,ManagerGeneralSciences'-'-"'--..V/estinghouseRBDCenter1310BeulahRoadPittsburgh,Pennsylvania15235 IT45/

82-7P6-EVHTL-R2DYNAMICCOLLAPSEOFSTEAMGENERATORTUBESW.H.PridemoreMaterialsTestingandEvaluationLaboratoriesABSTRACTRoomtemperaturelateralimpactloading'"testswereperformedon0.875O.D.x0.050inchwallInconel600steamgeneratortubesundersimulatedoperatingconditions.Thesetestswereperformedtodeterminetheconditionswhichwouldresultinthecollapseofanexternallypressurizedtubebylateralimpactloads.Thetestvariablesincludeimpactload,frequency,andcontactsurface,externalpressure,axialload,lengthoftube,lengthofunsupportedtubeneartheimpactzone,degreesoftuberotation,geometry'fimpactor,andpressurizingmedium.Thetestresultsshowthatundercertainconditionsthetubewillcollapse.

fI 1~'INTRODUCTIONThepurposeofthistestprogramwastodeterminetheimpactloadingconditionswhichwouldcausethecollapseofaplugged,externallypressurizedInconel600generatortube0.875inchoutsidediameter(0."D.)and0.050inchnominalwallthickness.Thesetestsweredesignedtosimulateaforeignobjectimpactingagainstthewallofapluggedsteamgeneratortubeunderoperatingcon-ditions.TheywerepartofaprogramtoverifythemethodoffailureforthecollapsedtubesfoundinthesteamgeneratorattheJohnGinnaNuclearPowerPlant.Thetheoryisthatalooserectangularsteelplate,impactingagainstthetubesforseveralyears,causedthefailures.Manytubeloadingconditionsweretested,howeverthisreportwillcoveronlythetestconditionswhichcausedcollapseofthetubes.Thecollapseconditionsreportedhereinmaynotbetheonlyconditionswhichwillcausethetubestocollapse,buttheyaretheonlyonesfoundforthissizetubeinthelimitedtimeallowedforthisprogram.

.]

CONCLUSIONS1.Thesteamgeneratortubeswillcollapseusingaseriesoflateralimpactloadsovera40'ircumferentialsurfaceareatwotothreeinchesinaxiallength.2.Considerableovalitywilloccurbeforecollapseoccurs.3.Thecollapseisdependentontheshapeoftheimpactor.4.Impactloadslessthan525lbs.andanexternalpressureof1000psigdidnotcausethetubetocollapse.5.Impactloadscrackintheconcentratedinasmallareawillcauseafatigueimpactarearatherthanacollapse.

CO EXPERIMENTAL~SecimensThespecimensareInconel600steamgeneratortubewith0.875in.O.D.and0.050in.nominalwall.Thetestlengthsforthedynamiccollapsetestswere19.2in.and52.0in.Thebenchtesttubeswere6.0in.long.TestEuimentA.BenchTests-The6.0inchlong0.875inchO.D.tubespecimenwasmountedintotwo-two-inchlongV-blocks,oneateachend,ofthetube,withatwo-inchspacebetweentheV-blocks.ThespecimenwassecuredtotheV-blocksbyaplateandscrews.SeeFigures3and4.Thechiseltypedevice,similartotheonesusedinthedynamictests,wasinstalledinthecrossheadofaBaldwinuniversaltestingmachinewhichappliedtheload.Theloadrangewassetto+5000lbs.whichhasanaccuracyof5lbs.Thediametralmeasurementsweremadewithamicrometerwhichisaccuratetothefourthdecimalplacealthoughonlythefirstthreeplaceswereused.B.'nami'cCollaseTubeTests-Thedynamiccollapsetubetestfixturewasdesignedtosimulateatroomtemperature,specificoperatingconditionsofthesteamgeneratorandtoapplylateralimpactloadstothetubespecimen.Thistestfixturehasthecapabilitytoapplysimultaneouslytothetubespecimen(1)upto1000lb.impactload,(2)impactrodtravelof1.5inches,(3)externalpressureupto2000psig,and(4)axialtensileloadupto1500lbs.ThetestfixtureisshowninFigure1andphotographs1,2and3.Photograph3alsoshowstheinstrumentation.

4I Thetubespecimenismountedandse.aledinsid>>the2.00inchdiametertestchamberasshowninFigurel.Ifwaterisrequired,thetestchamberisfilledwithwaterfromthereservoirandtheairisbledoffas'equired.Thepressureisappliedtothedeionizingwaterreservoirordirectlytothetestchamberbyahighpressurenitrogengasbottle.Apressuregagemountedonthetestchambershowsappliedtotheexternalsurfaceofthetube.Ahydrauliccylinderappliestheimpactforceandstroketotheimpactrod.Ahydrauliccontrollerandfunctiongeneratorsdirectaservovalvewhichcontrolsthefluidpressureappliedtothehydrauliccylinder,andresultsinacontrolledcyclicforce.Theforce,displacement,andaccelerationaremeasuredbya"loadcell,LVDTandaccelerometerrespectively.TheLVDTandaccelero-meterarenotshownonFigure1,butareshowninPhotograph1.ThesignalsfromthesetransducersaremonitoredandrecordedonaNicoletstoragescope.TheloadcellwascalibratedbeforethetestsusingaI'eferenceload-celltraceabletoN.B,S.Inaservohydraulicsystem,frequency,loadanddisplacementareinterdependent.Raisinganyoneofthemtotoohighalevelwilllimitthelevelwhichcanbeattainedbytheothertwo.Also,thepistonvelocityisafunctionofbothfrequencyanddisplacement.Therefore,inthesetestsfrequencyanddisplacementwerenotheldconstant,butwerevariedtoproducethespecifiedforceandvelocityofimpact.TestProcedureA.BenchTests1.MeasureinitialO.D.andI.D.threeinchesinfromoneendusingmicrometers2.AttachthechiselinthecrossheadoftheBaldwinTensileMachine.

(f I~~6~3.MountthetubespecimenintheV-blocksandpositionthetube/V-blockassemblysothatthechiseliscenteredonthetubeinthespacebetweenthesupports.4.Initializecrossheaddeflection.5.Increaseloadby50lb.6.Releaseload(tozero)7.8.MeasuretheO.D.atthepointwherethechiselcontactedthetube(minor)andO.D.perpendiculartoloadingpoint(major).RepeatSteps5through7forhigherloads.ThefinalloadwillbereachedwhentheminorO.D.isabout0.500inc.B.DynamicCollapseTests-Priortoeachtestthespecifictestparametersweredeterminedandwereusedwherethetestprocedurecallsfor"asspecified"testrequirement.1.Cuttubetothe"asspecified"length.2.MeasureandrecordI.D.,O.D.,andovalityofthetubeinthetestsection.Marktheendofthetubetoindicatethesmallestdiameterifthereisovality.3.Adjustspacerstothespecifiedseparation,iftheyarerequired.4.Installthetubeinthetestfixtureensuringthesmallestdiameterisinlinewiththeimpactrod.5.,Installendcapsealsandothertestfixturehardware.6.Turncapscrewstoprovideahandtightcontactwiththetube.7.Aligntheimpactrodtomeetthetestrequirements.8.Applywaterorgas(asspecified)externalpressure.Checkforleaksandeliminateiftheyexist.9.Applyaxialloadifspecified.J10.Applythelateralload,asspecified,atvariouslocationsonthetubesurfaceoveranareaapproximatelytwoorthreeincheslong(asspecified)in.theaxialdirectionandroughlyfortydegreesinthecircumferentialdirection.

f gj7RESULTSThebenchtestresultsarelistedinTables1and2andFigures3and4.Figures3and4showacurveofallthedatapointsrecordedduringthebenchtests.Tables1and2listthereductionsindiameterforloadsupto1000lbs.SincewewereinterestedinloadsIthatwouldresultinovalitiesaround2%,forastartingpointtocalcu-latetheinitialdynamicimpactloads,theremainderofthedataisnotlisted."Todeterminetheeffectonthetube,thebenchtestswererununtiltheminordiameterdecreasedtoabout0.500inches.Thecurves~showthattherateofchangeofthediameterincreasesrapidlywhenthe4loadisabove1000lbs.,andwiththeblunt(1/8x1.0)chiselthechangeindiameterincreasesveryrapidlyatloadsabout2200lbs.Figure5showsacomparisonoftheresultsofthetwobenchtests.ThereisverylittlechangeintheO.D.2untiltheappliedloadisover1000lbs.inbothcases.ThisimpliesthatthechangeinthediameterofO.D.1ismainlyduetolocalplasticdeformationatthepointofcontactwiththechisel.Photo4showsthespecimenaftertesting.Theresultsofdynamictest1through4arelistedinTables3through6respectively.IntestNo.1thetubespecimendidnotcollapseusingthesharpchiselorthebluntchiselsusedinthesecondphase.However,thetubediddevelopafatiguecrackatthepointofimpactusingthe1/4x1/4pointchiselafter22,345cycles.Thistestwasstoppedbecauseofthiscrack.Photo5showstubeconditionsafterthefirstfourspecimensoftesting,andPhoto6showsthecrackafterthelastseriesoftests.IndynamictestNo.2,thetubebegantocollapseduringthefinaltwosequences.Acollapseisdefinedasasignificantconcavedeformationoccurringonthesideofthetube180'romtheareaofimpacts.

DynamictestNo.3wasarepeatoftestNo.2excepttheexternalpressurewasincreasedto1500psig,deionizedwater;theimpactloadwasdecreased50lbs.to600lbs.andthespacerseparationwasincreasedfromsixtoeightinches.Thetubecollapsedduringthethirdsequence.DynamictestNo.4wasarepeatoftestNo.,3,exceptitwasdesignedtodeterminethelowestimpactloadthatwouldcauseacollapse.Afterincrementingtheimpactloadupwardfrom450to525lbs.forninetotalsequences,thetubecollapsed.

IOIlbV DISCUSSIONTwotypesoftestswereperformed-lateralloadbenchtestsanddynamiccollapsetubetests.Thebenchtestswereperformedtodetermineastartingimpactloadforthedynamictests.Benchtestswereperformedusingtwotypesofchiseldevices-onesharpedge(0.030inchwidex1.00inchlong)andtheotherabluntedge(0.125x1.00).Figure2isasketchofthesedevices.Thesharpedgechisel(0.030inchwidex1.0inchlong)simulatesasharpedgeofasteelblockwhilethebluntedgechisel(0.125widex1.00long)isawornedge.Thechiselisinstalledinthecrossheadofthetestingmachine.Thecenterofthesixinchlongtubespecimenismarkedpriortopositioningunderthechiselinthetestingmachinetogiveareferencepointforchiselcontact.Theloadisincreasedto50lbs.thenreleased.Theminor(O.D.1)andmajordiamters(O.D.2)aremeasuredwiththemicrometerandrecorded.Theloadisthenincre-mentedby50lbs.(Eoranappliedloadof100lbs.)thenreleasedanddiametralmeasurementstakenandrecorded.Thisprocesscontinuesuntiltheminordiameter(O.D.1)isapproximately.500inch.Thepercentovalitiesarecalculatedusingthefollowingequation.PercentOvalityx100O.D.2O.D.1ForceIO.D.2TubeSpecimen

\

Tables1and2listthebenchtestdataupto1000lbs.loadforthesharpandbluntedgechisels,respectively.Figures3and4areaplotofallthetestdataforloadvsdiametersforthesharpand'bluntedgechisels,respectively.Thesetestsshowthatwiththesharpedgechisel550lbs.isrequiredtogetanovalityof.1.09%and700lbs.loadfor2.14%.Forthebluntedgech'isel,1.18%ovalityrequires750lbs.and2.36%requires900lbs.ThisdatawasgiventothepersonnelatWestinghouseNTDwhocalculatedastartingloadforthedynamictests.ForthedynamiccollapsetubeteststhespecimenwasinstalledintothetestchamberasshowninFigure1,except,insometests,twospacerswereaddedtoreducethetubebendingandplacethetubeintheshellmode.Figure6isasketchshowingthespacerinstalledonatubespecimen.Thenominaldiametralclearancebetweenthespacerandtubeis.005inch,and.010inchdiametralclearancebetweenthespacersandtheI.D.ofthetestchamber.Thethroughholesandclearancesallowwaterorgastopass.Thediametralclearancesbetweenthespacersandthetestchambersarerequiredforinstallation.Thespacebetweenthespacerswastwotofour,inches,dependingonthetest.Thedynamictestsconsistofaseriesofimpactloadsapplied0.25inchesapartstartingatthebeginningofthetestsectionandcontinuingtotheendofthetestsection.Theimpactoristhenoffsetaxially0.125inches,thentheimpactscontinueatincrementsof0.25inchestothestartingpoint.Thisprocedureresultsinimpact,loadingevery-0.125inchestoanaxiallineonthesurfaceofthespecimen.Itshouldbenotedthattotransitthetestsectioninthismanner,thetubeismovedaxiallywhiletheimpactorlocationisfixedinthetestfixture.Thisseriesofimpactsisrepeatedforcircumferentiallocation+0of20fromtheinitialpointinthetestsectionasshownbelow.

IfHrfJ'J InitialPointTestSectionImpacts00200~~~W~~>>iIIIIIIIIIItIIllIIIIIII!II1/8in.Marks~-TubeMovementTubeSpecimenThisseriesofimpactsatthree:axiallocationsisdefinedasasequence.At,theendofeachsequencetheI.D.ofthetubeismeasuredinthetestsectionwithaDitestermicrometertodeterminetheminimumdiameterinthetestsection.TheO.D.cannotbemeasuredwhilethespecimenisinthetextfixture.ThereforethespecimenisremovedperiodicallyforinspectionoftheimpactsurfaceandmeasurementoftheO.D.Theimpactswereappliedonepersecondatanimpactortravelvelocityequivalentto40Hz.Tables3to6arethetestdataforthefourdynamictests.Thefirstdynamictestwasperformedwiththesharpchisel,spacersseparatedby6.0inches,1000psigargongas,600lb.impactforce,atestsectionof2.0inchesandaninitialovalityof2.6%.Thetubewasdeformedinavisewithcopperplatestoobtaintheovality.Aftercompletionoffoursequencesthetubewasremovedforinspectionandremovalofthespacersforthenexttest.Aftertheinspection,thespecimenwasreinstalledintothetestfixture,thetestchamberfilledwithwaterandpressurizedto1000psig,anda1/2x1.0inchimpactorinstalled.Thespecimenwaspositionedsothattheimpactorstruckthetubeinthecenteroftheprevioustestarea.After750impactsat600lbs.load,thespecimenwasremovedforinspectionandinstallationofa1/4x1/4impactor.Thetestcontinueduntilacrackdevelopedinthespecimenattheimpactlocation.Atotalof22,345impactswererecordedwiththe1/4x1/4impactor.10

~IV Theseconddynamictestwasperformedwiththeblunt(1/8x1.0)chisel,spacerseparationof6.0inches,1000psigdeionizedwater(Seq.1-4);argongas(Seq.5-10),650lb.impactforce,atestsectionof2.0in.andaninitialovalityof"0"%.Afterfoursequencesthespecimenwasremovedforinspection.Thespecimenwasreinstalledintothetestfixtureandtestingcontinuedasbefore.Afterfourmoreimpactsequences(atotalofeight)thespecimenwasagainremovedforinspection.Afterinspectionthetubewasreinstalledandtheimpactingsequencescontinued.Thetubebegantocollapseontheninthsequence.Thetestwasstoppedattheendofthetenthsequence,whentheminordiamtercollapsedtoabout0.500inches.Thespecimenwasremoved,inspected,andovality,calculated.Thethirddynamictestwasperformedwiththebluntchisel,spacerseparationof8.0inches,1500psigdeionizedwater,600lb.impactforce,atestsectionof3.0inchesandaninitialovalityof2.0%.Afterthreesequencesthespecimencollapsed.Thespecimenwasremovedandinspected.Thefourthdynamictestwasperformedwiththebluntchisel,Iaspacerseparationof8.0inches,1500psigdeionizedwater,aninitialforceof450lbs.,atestsectionof3.0inches,aninitialovalityof2.52%.Thetestwasdesignedtodeterminethelowerloadboundwhichwouldcausethespecimentocollapse.Afterfoursequencestheimpactforcewasincreased50lbs.to500lbs.fortwosequencesthenincreasedto525lbs.fortheremainderofthetest.Theimpactloadswereincreasedwhentherewaslittleorno.changeintheminordiameteraftercompletionofasequence.Thetubecollapsedduringtheninthsequence.Thetubewasremovedandinspected.

ACKNOWLEDGEMENTSIwouldliketoacknowledgetheeffortsofT.R.Gribbinwhoassembledthetestfixture,instrumentationandperformedthetestsandalsoC.C.Longforpreparingthereportforpublication.W.H.PridemoreMaterialsTestingandEvaluationLaboratoriesM.Spck,ManagerMaterialsTestingandEvaluationLaboratories12

~I~I1JCISnJl' TABLE3BENCHTEST-SHARPCHISELIl'PACTORLoad(Lbs)O.D.1(in.)O.D.2(in.)IOva1itvRemarks50.8720.8720InitialI.D..7659;Wa11,~.0531001502002503003504004505005506006507007508008509009501000.8715.8710.8700.8695.8690.8682.8652.8630.8620.8585.8550.8535.8480.8432.8385.8271~8262.8725.8725.8735.8735.8735.8740.8768.8752.8762.8774.n6.22.34.43.781.091.211.732.142.313.013.904.285.766.01 C

LATERALLOADBENCHTEST-BLUNT(1/8x1)CHISELPOINTIHPACTORLoadLbsO.D.1'(in.O.D.2(in.)%OvalitRemarks50.8719.8719InitialI.D.-.7658;Wall.053100150200250300350400450500550600650700750800850900950'000.8715.8709.9702.8700.8690.8678.8665.8632.8612.8578.8538.8488.8442.8720.8732.8735.8735.8740.8740.8742.8746.8759.06~12.20.22.34.62.80l.18l.471.872.362.993.68 V

TABLE3DYNAMICCOLLAPSETUBETESTNO.1Specimen:2609-1-B1ImpactRod:Chiselwith.030radiustip(sharppoint)Load:600lbs.Pressure:1000psig,argongas(Seq.1-4);deionizedwater(forremainderoftests)SpaceSeparation:6.0in.Sequence:0',20'cw,20'wx2.0in.length,.25in.incrementswith.125offsetcomingback.10-25impactsateachlocation.~Seuence00.D..884/.861I.D.%Ova~]it.750'6.734.711.689RemarksPresetovality4".9165/.781Aftercompletionofabove.668Tuberemovedforinsepctiontest,thefollowingdynamictestswererunwitha600lb.load,1000psigwater.Imaeter1/2x11/4x1/41/4x1/41/4x1/4~Imacts750700900012,645I.D..642.633.632RemarksTuberemovedtochangeimpactors.eWithoutspacers-specimendevelopedcrack.Teststopped.FinalO.D.=.9278/.7328Ovality=23.5%

O.I1 TABLE4DYNAMICCOLLAPSETUBETESTNO.2Specimen:2609-1-B-2ImpactRod:Rectangularpoint:1/8"x1.0"(bluntchisel)Load:650lbs.Pressure:1000psig,deionizedwater(Seq.1-4);Air(Seq.5-10)SpacerSeparation:6.0in.Sequ'ence:0'cw,20'wx2.0in.length,.25in.incrementwith.125offsetcomingback.10-25impactsateachlocationSeuence0.D..873/.873.923/.766I.D..766.7341.6953.6643.6467%Ovalit18.5RemarksMall-.053TuberemovedforinspectionTubeReinstalled:10-25axialimpactsaddedatendofeachsequence.6093.5872.5561.9812/.6721.546337".3TuberemovedforinspectionTubeReinstalled:Sequence-sameas5-810.52011.0587/.4851.3952'4TuberemovedforinspectionFinalTest:5650axialimpactsincenteroftestsection.Comments:Tubebegantodeformonbacksideduringsequences9and10.

L TABLE5DYNAMICCOLLAPSETUBETESTNO.3Specimen:2609-1-C-1ImpactRod:1/8x1.0inchchiselLoad:600lbs.Pressure:1500psig,deionizedwaterSpacerSeparation:8.0in.Sequence:0',20'cw,20'wx3.0in.length,.25in.incrementwith.125offsetcomingback.10-25impactsateachlocation.SeuenceO.D.I.D.%OvalitRemarks0.878/.8605.7562.6914.5331Initial:O.D..871;I.D.=.765Mall=.053,Ovality=01.1925/.3694105Tubecollapsed TABLE6DYNAMICCOLLAPSETUBETESTNO.Specimen:2609-1-C-2CtImpactRod:1/8x1.0inchchiselpointPressure:1500psig,deionizedwaterSpaceSeparation:8.0in.Sequence:0',20'cw,20'wx3.0in.length,1/4-in.incrementwith1/8in.offsetcomingback.10-25impactsateachlocationandincenteraftercompletionofsequence.SeuenceLoadO.D.I.D.%OvalitRemarks30.87050.881/.859450450450450500500525525.7652.7531.7161.6995.6851.6771.6584.6378.5882.50672.52InitialdiameterInitialovalityStartusing1/2in.incrementsIncreasedloadIncreasedload95251.1597/.492.372380.8Tubecollapsed.Removedforinspection.

DwG.SCo>C28AIRBLEED(TYP.BOTHENDS)NUTCAPSCREWENIDCAPSPE.CIMEN2.0OIA.'TUBESWAGELOKQ.ODIA.'TEE"0"RINGS(TYP.BOTHENDB)1000PSIWATERORGASDYNAMICSEALItvlPAG'TRODSTANDOFFSLOADCELLHYDRAULICCYLINDER.HYDRAULICCYLINDER,MOUNTINGFIXTURE.Figure1TestFixtureforDynamicCollapseofSteam,GeneratorTubes 1.00-8UNC6.0090'030in.-RadiusTipa.SharpEdgeChisel1.0b.TypicalSideView~125En'.BluntEdgeChiselFigure2BenchTestChisels 22002000180016001400,O.D.112001000800600400200LoadChiselClampClampTube78O.D.x6.0LonSupport2.0Support6.0I!i.l~II~~IIIIIO.D.2Chisel:SharpEdge(0.030x90'1.0)InitialO.D.0.872in.I.DE~0.766in.Ovality~"0"XLoadTubeO.D.2.87200.40.50.60.70.80.9Diameter,InchO.D.11.01.2Figure3ResultsofLateralLoadBenchTestwith.SharpChiselImpactor PC,Il 22002000180016001400O.D.1~~~O.D.2rrtr1200Load1000Chisel:BluntEdge(0.125x1.0x90')800600ChiselInitialO.D.~0.872I.D.~0.766Ovality~"0"%400200ClampClamTube(7/8O.D.x6.0Long)6.0Support2.0Support!!!!.872LoadO.D.1TubeO.D.20.40.50.60.80.90.9.Diameter,,Inch1.01.2-Figure4ResultsofLateralLoadBenchTestwithBluntChiselImpactor 2200BluntChisel200018001600O.D.1O.D.214001200SharpChiselA1000800600400200.872in.O.D.004050607'8091011Diameter,in,Figure5ComparisonofBenchTestResultsforSharpandBluntChisels SetScrewSpacersTubeSpecimen)IIilIliThroughHolesTestSectionFigure6TubeSpecimenwithSpacers r'llII 1/81/21.0.030x901.01/4Sqr.1.0+a.Sharp.030x1~0x90Cb.Bluntc.Square1/8x1.01/4x1/4d.Rectangular1/2x1.0~375Dia.ChromePlated(II(((((IIlNOTE:ImpactorMaterial17-4PH(RC32)and303S.S.Figure7ChiselsUsedinDynamicLmpactTests KJ Photo1DynamicCollapseTubeTestFixtureRM-96927 Photo2DynamicCollapseTubeTestFixture,WaterReservoir,andHighPressureGasBottleRM-96928 n

IlIII01I51IIOII:i'tI~~I'tIr>,.4'IV,~Photo3DynamicCollapseTubeTestSystemRM-96926 0rr~a4hI b.Photo:41/8x1.0in.ChiselBenchTestSpecimenAfterTestingRM-97491

'I~Ql b.Photo:5SharpEdgeChisel-TubeSpecimenAfterImpactSequenceTestsRM-97492 f0 a.SpecimenAfter1/4x1/4ImpactorTestsb.DyePenetrantTestShowingFatigueCrackPhoto:6SharpEdgeChisel-TubeSpecimenAfter1/4x1/4ImpactorTest-ShowingFatigueCrackRM-97493 4~t~'r SO-Bl-+'2(C.RIC.IItt~"5~~~~II)Iga~b.5Q-Pl-0'Z~C9-I-C.I%~~a~e~IIIIIC~Photo:7DynamicImpactTestNo.3TubeSpecimenAfterTestscc 0

a~b.C~Photo:8DynamicImpactTestNo.4TubeSpecimenAEterTests A'4'I'I