ML17255A718

From kanterella
Jump to navigation Jump to search
Containment Vessel Tendons, 1983 Surveillance Final Rept
ML17255A718
Person / Time
Site: Ginna Constellation icon.png
Issue date: 01/31/1984
From: Demoss G, Fulton J, Herr J
GILBERT/COMMONWEALTH, INC. (FORMERLY GILBERT ASSOCIAT
To:
Shared Package
ML17255A717 List:
References
GAI-2512, NUDOCS 8403290188
Download: ML17255A718 (147)


Text

GAI REPORT NO. 2512

JANUARY, 1984'OBERT E

GINNA NUCLEAR POWER STATION CONTAINMENT VESSEL TENDONS 1983 SURVEILLANCE FINAL REPORT PREPARED FOR:

ROCHESTER GAS AND ELECTRIC COMPANY WRITTEN BY:

G ~ T. DEMOSS/J.

F.

FULTO REVIEWED BY:

J C

HERMs" APPROVED BY:

C.

CHEN 1

p/

PREPARED BY:

GILBERT/COMMONWEALTH READING, PENNSYLVANIA

',8403290i88.'84032b

~I

'DR ADOCK 05000244',

P

':PDR Qbert /commonwealth

TABLE OF CONTENTS SECTION TITLE PAGE PREFACE

1.0 INTRODUCTION

2.0 TENDON FORCES 2.1 2.2 2.3 2.4 2.5 3.0 4.0 Lift Off Forces Average Tendon Force Acceptance Criteria Comparison with Predicted Forces Future Need for Tendon Retensioning CONCLUSIONS REFERENCES TABLES Table 1

Tendon Selection for 1983 Surveillance Table 2 Measured and Predicted Tendon Forces APPENDICES Appendix A-Appendix B-Appendix C-Appendix D Tendon Surveillance Program Equipment Calibration DATA SHEET 1 Surveillance Force Data Force vs Time Curves Qbett

/Commonwcatth

PREFACE The second tendon surveillance after tendon retensioning of the R. E. Ginna Nuclear Power Plant containment structure was performed during July and November of 1983.

The report contained herein constitutes the final report for that surveillance.

Qberc /Commonwealth

0

1.0 INTRODUCTION

The 1983 surveillance of containment vessel tendons for the R. E. Ginna Nuclear Power Station was performed during July and November.

This was the second surveillance performed after 123 of the tendons (out of a total of 160 tendons) had been retensioned in June 1980.

A representative sample of 18 tendons was selected.

The list of selected

tendons, and the reasons for their selection, is included as Table 1.

The procedure used for the surveillance is included in Appendix A.

During the surveillance it was found that the stressing rod coupler would not thread onto tendon 8'133, so tendon 876 was selected as a substitute.

The reasons for its selection were the availability of an existing force prediction calculation and force-vs-time curve, and the fact that it is adjacent to tendon 875 which was damaged following its surveillance inspection.

2.0 TENDON FORCES 2.1, Lift Off Forces The forces obtained from two calibrated measurement systems are reported in Appendix B.

One system uses the gauge pressures of the stressing ram as input into the calibration equation.

Force (kips)

~ 0.896

+ 0.1274 x Gauge Pressure(psig)

This equation resulted from a linear regression fit-of the force-gauge pressure data obtained during the calibration of the pressure gauge and stressing ram as one unit.

Qbert /Commonwealth

The second measurement system consists of the calibrated strain gaged stressing rod, which measures the force in the tendon directly.

The calibration equation for this system is Force (kips)

= 0.2004 x Strain (micro-inches/inch)

The above equation was used during July 1983 prior to the accident involving tendon 875.

That accident also damaged the stressing rod, requiring the fabrication and calibration of a new rod.

The calibration formula for the new rod, used for all tendon testing performed in November 1983 is Force (kips)

=.1997 x Strain (micro-inches/inch)

The Data Sheets for each tendon (see Appendix C) indicate which constant was used Eor that tendon.

From the completed data records in Appendix C (Data Sheet 1), both measurement systems obtained tendon forces that were generally in good agreement at all increasing and decreasing pressure levels indicating that confirming force data was obtained.

At lift off, the agreement in forces was excellent.

The official tendon forces are considered to be the lift ofE values measured just prior to applying the 6X force increment and using the strain gaged stressing rod results.

These forces are presented in column (1) of Table 2.

2.2 Avera e Tendon Force From column (1) of Table 2, the average force for the 18 tendon sample is 709 kips.

The sample includes four tendons (35, 36, 116 and 120) that were retensioned in May of 1969, as part of a 23 tendon group.

These tendons were not retensioned in June 1980 with the remaining 137 tendons in the containment.

As expected, the lift off forces for 35, 36, 116 and 120 were lower than the Gitbert ICommonweaIth

remaining sample tendons.

Therefore, to make use of the forces from the 18 sample tendons in order to obtain the expected average tendon" force for all 160 tendons in the containment, a weighted average should be constructed.

This was done, resulting in the expected average tendon force of 713 kips reported in Table 2.

The formula for calculating the weighted average is'.

137 (Flave)

+ 23 (F2ave)

Weighted Ave. =

160 where:

Flave

= average force of 14 tendons from June 1980 retensioning F2ave

= average force of 4 tendons from May 1969 retensioning 160

= total tendons in Ginna containment structure Following surveillance inspection of tendon

875, an accident occuired 'causing shims to be dislodged and some tendon wires to be broken.

The tendon was repaired by, first, detensioning, removing the broken wires, and then retensioning.

The result of the repair is that tendon f75 was restored with a tendon force of 531 kips.

An additional weighted average of 711 kips has been provided in Table 2 to reflect the "as left" force in tendon f75.

The formula for calculating this additional weighted average is:

136 (Flave)

+ 23 (F2ave)

+ F75 Weighted Ave.

160 where.'lave

= average force of 13 tendons from June 1980 retensioning F2ave

= average force of 4 tendons from May 1969 retensioning F75

= force in tendon f75 after repair 160

= total number of tendons QbeteiComnonwealth

2 '

Acce tance Criteria In the Ginna Technical Specification, Section 4.4.4.2 provides the acceptance criterion for the lift off forces.

The criterion requires that the average stress of the sample tendons not be less than 144,000 psi, which is equivalent to 636 kips.

The 636 kip value represents the minimum required average tendon force,for the tendons.

Actually, considering that in this surveillance (or possibly any surveillance) the tendon sample includes tendons that were not retensioned in June

1980, the weighted average of the sample forces (rather than the absolute average) should be compared to the 636 kip requirement.

The "as-found" weighted average of 713 kips exceeds the minimum requirement of 636 ki'ps by 12.1X.

The "as-left" (after Tendon 875 repair) weighted average of 711 kips exceeds the minimum requirement by 11.8X.

2.4 Com arison with Predicted Forces In order to determine if the tendons are experiencing an abnormal rate of force loss with time, the measured lift off force for each sample tendon is compared with the force predicted for the tendon.

The predicted forces were provided to RG&E prior to the start of the surveillance in References 1 and 2.

This information included force-versus-time history curves for all sample tendons involved in the surveillance, along with a table containing the forces from these curves which apply for this specific surveillance.

These predicted forces are shown in column (2) and column (3) of Table 2.

Also, for each of the 18 surveillance

tendons, the force-versus-time history curve that was included in References 1

and 2 are provided herein in Appendix D.

Two sets of predicted forces are presented, which are denoted as ESR WITH RT and 16X RELAX. WITH RT.

The difference in the two sets of forces is due to different stress relaxation properties used for the tendon wires.

These properties result from the Gilbert /Commonwealth

evaluation of the stress relaxation testing performed at Lehigh University.

The method for establishing the stress relaxation values is summarized below.

A detailed report on this work has been issued (3).

In one case, the individual Effective Stress Relaxation (ESR) values of the tendons determined from the June 1980 lift off tests were used.

These are the values of stress relaxation which individual tendons had to exhibit in order for the predicted and measured forces to be equal in June 1980, after deducting other known losses.

The ESR values were then reduced by the factors developed from the Lehigh restressed wire tests to take into account the fact that the tendons were retensioned in June 1980.

These factors significantly reduce the ESR values

and, consequently, result in higher values of predicted tendon force.

This effect can be seen from the figures in Appendix D where, for information, curves noted as ESR WITHOUT RT have been included in some figures.

These curves are comparable with the curves marked ESR WITH RT, the only difference being whether the retensioning effect on stress relaxation has been included.

In the second

case, a stress relaxation curve developed from the Lehigh tests on both the unrestressed and the restressed wires was used.

The basis for this curve is the following.

From the test results of the sample wires (prior to restressing) for Tendon 76 (heat 830091) and Tendon 51 (heat 819477),

90o F stress relaxation curves were constructed by linear interpolation between the 68 F

and 104o F test curves.

The 90 F temperature was selected as an average value for the 85 F to 95o F range which the tendons are expected to have experienced during most of their existence in the containment.

This resulted in one curve for heat 830091, with a 16.7X stress relaxation value at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />, and one curve for heat 819477, with a 14.2X stress relaxation value at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.

The time of 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> was selected since the June 1980 lift off tests occurred at approximately 100,000 after GRert /Commonwealth

original tensioning in 1969.

In these tests, the average ESR value was approximately 15X for each of the three heats tested.

Therefore, since this value was within the 14.2Z and 16.7X values described

above, 15X at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> was selected to establish the one stress relaxation curve to be used for all the tendons for future force predictions.

This curve was determined by scaling the 16.7X curve for heat 830091 to 15X at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.

The 16.7X curve was selected over the 14.2X curve to establish the shape of the 15X curve because the 16.7X curve was based on longer-time data; consequently, its shape was established more accurately out to 40 years.

The resulting curve with 15X at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> exhibits a 40 year relaxation of 15.9X; therefore, it is referred to as the 16X RELAXATION case in Table 2 and in the figures in Appendix D.

Finally, the same factors discussed above to account for the retensioning effect (to reduce relaxation) were applied to the 16X curve, and this is noted as 16X RELAX. WITH RT in the table and figures.

The two relaxation cases described above were in effect for the July 1983 surveillance as part of the task to determine if one

curve, namely 16X RELAX. WITH RT, could be used for all the tendons to predict forces which'would be in reasonable agreement with those measured.

The measured lift off forces appearing in column (1) of Table 2

are also indicated on the curves in Appendix D by a circled dot.

A comparison of the lift off forces with the two predicted

curves, denoted as (1) and (2), generally shows good agreement.

The actual percent differences for the surveillance tendons are shown in columns (4) and (5) of Table 2.

From these results, the forces for 9 of the 18 tendons exceed the predicted values.

For all but one of the remaining 9 tendons, the amounts by which the measured forces are less than predicted are small and well within the 5X tolerance allowed, indicating that no abnormal force losses have occurred.

The one exception is tendon 8125 which is 5.3X below Qbert ICoemonwcalth

the prediction based on Effective Stress Relaxation.

However, a

review of the force prediction calculations indicated that the Effective Stress Relaxation for this tendon, was much lower than for other tendons, resulting in a high predicted force using this method.

Consequently, the force prediction for tendon 8125 based on 16X RELAX. is believed to be more realistic, and the measured force is only 2.0X below this value.

Considering all the tendons involved in the surveillance, a comparison of the results between column (4) and column (5) indicates that the 16X RELAXATION case generally agrees better with the measured forces than does the ESR case.

Therefore, there appears to be sufficient justification to restrict future surveillance tendon force predictions to the case of 16X relaxation, accounting for the retensioning effect.

2.5 Future Need for Tendon Retensionin In order to determine the need for future tendon retensioning, it is necessary to compare the stress relaxation experienced at the 1983 surveillance with that predicted in Figure 5 of Reference 3.

This comparison has been done for the tendons retensioned in May 1969 where the 11X actual stress relaxation compares favorably with the 11.2X stress relaxation read from the 1000 hour0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> curve in Figure 5 at 124,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.

For the tendons retensioned in June

1980, the 5.4X actual stress relaxation also compares favorably with the 6.2X stress relaxation read from the 11 year curve in Figure 5 at 27,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.

From the 1000 hour0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> curve in Figure 5 of Reference 3, the average stress relaxation for the group of 23 tendons which were retensioned in May 1969 (1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> after original tensioning) is 12.7X at 350,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (estimated plant life of 40 years).

Applying this relaxation percentage loss to the average tendon force of 758 for these 23 tendons at retensioning produces an estimated average tendon force of 662 at the assumed plant life of 40 years.

QberL ICoaunonwealth

The average stress relaxation for the group of 137 tendons retensioned in June 1980 can be read from the ll year curve in Figure 5 (above) as 10.3X at 253,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (approx.

29 years after retensioning).

The average tendon force for this group at retensioning was 760 Applying the stress relaxation percentage loss to the average retensioning force produces an estimated average tendon force of 682 at the 40 year plant life.

In order to account for Tendon 875, which was restored to a tendon force of 531 following the accident mentioned in Section 2.2, a

value for stress relaxation of 10X has been read from the 11 year curve in Figure 5 at 233,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (approx.

25.5 years after retensioning).

The effect of this stress relaxation would be to reduce the estimated tendon force for this tendon to 478k at the 40 year plant life.

In order to compare the above.tendon forces with the design requirements, a weighted average tendon force at the anticipated plant life of 40 years has been constructed as follows'.

Ave. tendon force g 40 years 23(662)

+ 136(682)

+ 478 160

= 678k The Ginna Technical Specification, Section 4.4.4.2 requires that the average stress in the containment vessel tendons be not less than 144,000 psi, which equates to an average tendon force of 636k.

Since the predicted average tendon force of 678 at 40 year plant life exceeds the required minimum average tendon force of 636 by 42 (6.6X) it can be concluded that no additional tendon retensioning will be required for the remainder of the life of the plant.

Qbert IComnenwealth

3.0 CONCLUSION

S The results of the completed tendon surveillance, in which 18 sample tendons have been lift off tested, indicate that the forces in the tendons are being maintained at the levels expected, and no abnormal force losses have occurred.

In fact, the agreement between the actual and predicted tendon forces is better than that which is generally experienced on other containments.

Based on the forces measured in the sample

tendons, the average force level of the tendons in the containment is 711 kips, and this exceeds the minimum required value of 636 kips appearing in the Ginna Technical Specification by 11.8X.

Based on the results of this surveillance, it is recommended for future surveillances that the predicted tendon force calculations be based on a 40 year wire relaxation of 16X, applicable to all

tendons, and multiplied by factors to account for the retensioning effect.

The information necessary to implement this recommendation is in Reference 3.

From the results of this surveillance and a comparison of actual stress relaxation with that predicted, no future retensioning of tendons should be required for the remainder of the expected plant life.

4.0 REFERENCES

1.

Letter:

J.

F. Fulton (G/C) to C. A. Forbes (RG&E), dated July 18, 1983.

(13N1-GR-T4289) 2.

Letter.'J.

F. Fulton (G/C) to C. A. Forbes (RGSE), dated July 20, 1983.

(13Nl-GR-T4295)

Qbert

/Commonwealth

3.

GAI Report No. 2499, "Stress Relaxation Pro erties of Retensioned Wires", December, 1983.

Qbert /Commonwealth Tendon 8

GINNA TENDONS FOR 1983 SURVEILLANCE Heat

$P Reason for Selection From July 1981 Surveillance 13 19477 (51)

Load Cell 36 51 53 62 93 10355 (150) 39377 19477 (51) 19477 (51) 21504 39377 Retensioned at 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> (Largest Percent Loss)

Third Largest, Percent Loss Load Cell Second Largest Percent Loss Load Cell 116 125 133 155 Remaining Tendons 18 35 40 60 120 128 160 Unspecified 30091 (76) 39377 19477 (51)

'0091 (76) 10355 (150) 30091 (76) 21504 30091 (76)

Unspecified 30091 (76) 19477 (51)

Retensioned at 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> (Smallest Percent Loss)

Largest Percent Loss Load Cell Smallest Percent Loss Largest ESR from this heat Retensioned at 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> Arbitrary from Heat 30091 Arbitrary from Heat 21504 16X ESR from this heat Retensioned at 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> Smallest ESR from this heat Arbitrary from Heat 19477 ESR = Effective Stress Relaxation as of June 1980 (prior to retensioning)

(

) = Tendon 8 of wire for relaxation tests Summary by Heat 8:

5 tendons from 19477 (51) 2 tendons from 21504 5 tendons from 30091 (76) 2 tendons from 39377 2 tendons from 10355 (150) 2 tendons from unspecified heat TABLE 1

TENDON SELECTION FOR 1983 SURVEILLANCE Qbert /~alth TENDON NO.

LIFT OFF FORCES (KIPS)

PREDICTED ESR 16X RELAX.

MEASURED WITH RT WITH RT MEAS-PRED PRED ESR 16X RELAX.

WITH RT WITH RT (2)

(3)

(4)

(5) 13 730 693 711 5.3 F 7 18 35-"

36::

727 662 664 703 661 686 721 650 661 3.4 0.2 3 ~ 2 0.8 1.8 0.5 40 731 714 711 2.4 2.8 51 709 718 712

-1.3

-0.4 731 697 711 4.8 2.8 60 711 712 707

-0.1 0.6 62 715 723 720

-0.7 75 723 705 709 2.5 2.0 76 700 695 704 0.7

-0.6 93 706 702 711 0.6

-0.7 116:"

693 660 656 5.0 5.6 120~

680 693 661

-1.9 2.9 125 702 741 716 5 ~ 3

-2.0 128 155 160 709 745 721 716 709 711 703 703 709

-1.0 5.1 1.4 0.9 6.0 1.7 Ave.

Wt. Ave.(1)

Wt. Ave.(2) 709 713 711 702 699 2.5(3) 2.0(3)

="Retensioned in May 1969 (1) Weighted average using inspection value of 723K for Tendon 875.

(2) Weighted average using value of 531K for Tendon 875 as repaired.

(3) Average of the absolute values.

TABLE 2 MEASURED AND PREDICTED TENDON FORCES Qbert ICommonwealth APPENDIX A TENDON SURVEILLANCE PROGRAM Qbert /Commonwealth

ROCHESTER GAS AND ELECTRIC CORPORATZO GINNA STATION

~(,

CONTROLLED COPY NUBBER QfgNA STATl<

UNIT 4'1 COMPLETKt DATE:-

TlME:-

PROCEDURE NO ~

PT-27. 2 REV.

NO.

4 TENDON SURVEILLANCE PROGRAM FOLLOWING RE-TENSIONING TECHNICAL REVIEW PORC REVIEW DATE QC REVZEW PLAART SU INTEN NT QF.p l 9 1983 EFFECTIVE DATE QA~~

NON-QA CATEGORY 1.0 REVIKVED BY:

THIS PROCEDURE CONTAINS 18 PA GES

PT-27.2=1 PT-27 2

TENDON SURVEILLANCE PROGRAM FOLLONING RE-TENSIONING PURPOSE:

1 ~ 2 2 ~ 8 To provide th e instructions necessary to pe rform a tendon lift-offsurveillance after the re-tensioning program has been completed to verify that the tendon forces are within Technical Specification limits.

To obtain data needed to continue the investigation into the larger than predicted tendon losses.

1 TEST REQUIREMENTS:

2.1 To measure l,ift-offforces in eighteen (18) selected tendons including the four (4) tendons with load cells.

2.2 To compare lift-offforces with those predicted My applying

~factors developed from the retensioned wire tests at Lehigh University, to retensioned wire stress relaxation property curves.

2 '

2.F 1 2.3 '

To compare the two force measuring systems:

Strain gaged stressing rod.

Pressure gauge and effective ram area.

2 ~ 4 To test the 6> overstress effect.

2 ~ 5 ACCEPTANCE CRITERIA:

2'.1 The measured lift-offforce of each tendon will be evaluated in accordance with the present "Ginna Technical Specifications".

2.5

~ 2 Any tendon having a lift-offforce less than '3-6 GUTS (636 kips)'ill be considered not acceptable.

2 ~ 5.3 Tendons on each side of all unacceptable tendons will be surveyed according to the procedures of 2. 5.4 and 2. 5. 5.

They shall be sequenced next after the unacceptable tendon with the lowest numbered tendon being first.

2.5

~ 4 If both adjacent tendons have lift off forces greater than 8 ~ 6 GUTS (636 kips) and the average is greater than 636 kips, the group will be considered as meeting the specifications (comments wil'1 be included in the surveillance report on this tendon)

~

PT-27.2= 2 2 ~ 5.5 only one adjacent tendon has a liftoff force gr ater than 8.6 GUTS (63'6. kips) but the average of all three is greater than 636 kips the group will be considered as meeting the specifications'.5.6 If both adjacent tendons have liftoff forces less than 8.6 GUTS (636 kips) or either average in 2. 5.4 or 2 ~ 5

~ 5 is less than 636 kips, the group will be considered to not meet the specifications'.5 7

All tendons evaluated as unacceptable will be retensioned to 8.7 GUTS at the end of the surveillance.

2.6 2.6.1 2 6.2 2.6.3 2 ~ 6.4 The tendon selectidn process will:

Verify that tendon force losses have stabilized.

Survey enough tendons to extend present data base.

Include all four tendons with load cells.

Include four (4) tendons retensioned at 1888 hours0.0219 days <br />0.524 hours <br />0.00312 weeks <br />7.18384e-4 months <br /> after initial stressing, two (2) from the July 1981 Surveillance and two (2) additional tendons.

2.6. 5 Include ten (18) tendons from the July 1981 Surveillance and two (2) additional tendons.

2.6 6

Include eight (8) tendons that were not tested during the July. 1981 Surveillance, which are from representative wire heats and had displayed a wide range of percent force loss at the June 1988 Retensioning Program.

3.8 REPERENCES F 1 3

2 Gilbert Associates Inc.

(GAI) June, 1981 Tendon Surveillance Program (Rev. 1).

Ginna Technical Specifications

<< Section 4.4.4.

INITIALCONDITIONS:

4.1 4.2 4.3 Plant may be in any phase of operation.

Pressure gauges have been calibrated.

Hydraulic ram area has been calculated.

4 PT-27 2:3 4 ~ 4 pydraulic pump and ram are functional and ready for op ration C'.d.

4.5 Stressing rod and strain indicator have been calibrated.

C'.>. P.

4.6 Load cells have been calibrated.

C 4'.7 All tendons to be stressed will be in'spected for brok~e wires and corrosion prior to liftoff.

C. CP. r.

4.8 4.9 4.18 4'l Containment structure has been inspected for cracks, spallin~g etc..

j Test personnel have been qualified in accordance with A-l.18 Q cc C

Notify QC fcfr assignment of inspection personnel.

Test personnel shall be present during all phases of tendon surveillance and related set-up/take-down activities.

0

5.8 'RECAUTIONS

5 1

5 2

5 '

Observe all RG&E safety rules and regulations.

Do not exceed 6568 psi gauge pressure for jack and tendons.

Whenever hydraulic pump is operating, the reservoir vent valve must be open.

5 '

Do not extend ram more than

8. inches.

6.8 INSTRUCTIONS

NOTE:

The tendon surveillance sequence is presented in attached Table 2.

6 '

Pill in line 1-4 on the data sheet

( sample attached) and record comments from the visual inspection on line 5.

6.2 Hove assembled hydraulic jack to position for coupling the anchor head and place the pump in a convenient location for operation.

6.2.1 6.2 2

Carefully thread stressing adaptor onto tendon anchor head.

NOTE:

Leave a minimum of one thread and maximum of three threads on tendon anchor exposed below the lower edge of the stressing adaptor.

I Place jack assembly on tendon base plate.

6.2.3 Center jack chair carefully over tendon head and thread stressing rod into stressing adaptor ensuring full engagement.

NOTE:

Leave a maximum of thread on stressing rod exposed above the top edge of the stressing ad'aptor.

6 ' '

6 ~ 2.5 6.3 Inspect for approximately equal circumferential clearance between stressing rod and jack assembly.

Center compression shims and tighten jack rod nut at top (ram) end of jack being careful not to damage strain gaged area and the electrical connector on top of the jack rod.

Make the appropriate strain gage connections and check for malfunctions.

6.4 6 ~ 4.1 6 4.2 Before attaching hoses to jack for the first tendon, check pump and hoses by performing the following:

Set valves to pump position.

Discharge Valve "OPEN".

Vent Valve "OPEN" ~

Start pump and Gauge Valve "OPEN" at the same time depress the ball valve.

Pump.slowly to fillhose with oil until it comes'ut of the hose free of bubbles.

6.4.4 Release ball valve and start pumping again.

Continue pumping; hose will become stiff; gauge pressure will rise rapidly to approximately 2888 psig and then hold constant.

6 '

Reduce pressure to "8" psig and connect hoses to jack, suction hose to top of ram and'ischarge hose to bottom of ram.

6.6 Record all initial readings in the appropriate columns on

'h data sheet.

6.7 6.7.1 6'.2 Start pump and increase pressure to 2. 888 psi.

Record stressing rod reading in column 3a on data sheet.

Record load cell reading in column 4'a on the data sheet if tendon has load cell.

6.7.3 Record ram position in inches in column 5 on data sheet.

- 6.7.4 Calculate and record force values for the stressing

rod, pressure gauge and load cell.

6.8 Increase pressure up to 4.888 psi and hold.

~

~

PT-27.2:5 6 ~ 8.1 Inspect for leakage of. hydraulic fluid and note if leakage i

is excessive.

6 ~ 8.2 Record stressing rod and load cell (if tendon has load cell),~

readings in the appropriat columns on the data sheet.

6.,8. 3 6 '

6.18 6'8.1 Calculate and record force for the stressing rod, pressure gauge and load cell.

Increase pressure until a 8.835 (I/32) inch thick feeler

'h can be inserted. into the shim stack at two equally, spaced positions around the shi'm stack.

1 Reduce ram pressure 1888 psi or until the feeler shims cannot~

be removed.

Increase pressure until both feeler shims canl be removed.

Note in the comment section if there is a large difference "in the load at which each feeler shim can be

~

removed.

This is defined as lift-off.

Record the pressure gauge reading on the data sheet in column 2a 6'8 '

Record the stressing rod reading on the data sheet in column 3a 0 6.18 3

Record the load cell reading for load cell tendons in column 4a 6 18.4 6.18.5 6'1 Record the ram position in column 5 of the data sheet.

Calculate and record force values.

Stress each tendon an additional 6% over recorded lift-off pressure.

6 ~ll~ 1 Record computed 6% overstress pressure on data sheet in column 2a.

6 ~ll~ 2 6 ~ll~ 3 Increase pressure to computed 6% over stressing pressure and record stressing rod reading, load cell reading anc ram position on the data sheet.

Place two.835 (1/32) inch thick feeler shims in the ship pack and reduce ram pressure to approximately 2988 psi.

6.11 '

Slowly increase pressure until the feeler shims can be withdraw from shim stack.

This is defined as lift-off. Record loac cell, pressure

gauge, strain gage and ram position on dat-sheet.

6.11.5 Calculate and record force values on data sheet.

PT-27 ':6 6 ~ll~ 6 Ensure permanently installed shims are properly aligned under tendon head as pressure is reduced.

6.12 6.12.1 Decrease pressure to approximately 4,808 psi.

Record stressing rod reading, load cell and ram position on the data sheet.

6'2.2 6

13 6 13 ~ 1 6.13 '

6'4 6.14.1

'6. 14. 2 Record stressing rod reading, load cell reading and ram position on the data sheet.

Re>>check alignment of permanently installed shims

~ If shims need adjustment, re-perform liftoff, as determined in step 6.1i.5.

os nntil shims can be moved easily by hand, then r peat. steps 6.12 through 6.14.2.

Do not exceed 6568 PSI.

NOTE:

Calculate and record force values on data sheet.

Decrease pressure to'approximately

2. 888 psi.

Record stressing rod reading, load cell reading and ram position on the data sheet.

Calculate and record force values on the data sheet.

Decrease pressure until all load is removed from jack rod.

6'5 Remove jack assembly from tendon.

6'5 '

6'5 '

6.15 '

6'5 4 6.16 6'7 Disconnect strain gage equipment.

Unthread stressing rod from coupler.

Remove jack chair and stressing rod assembly.

Remove adapter from tendon head.

Record any comments concerning lift-offon the data sheet.

Move to next tendon.

COMPLETED BY:

DATE COMPLETED: /I SHIFT SUPERVISOR:

RESULTS 5: TEST REVIEH-DATE

~

~

~

~

ATTACHMENT 1 INDIVIDUALLOAD CELL FACTORS PT-27 2: 7 013)

Force

~ 722.4 8.15137

(/~ Load Cell Reading) 053 )

Force

~ 51. 6 8. 1561 (Load Cell Reading) 093)

Force

= 48.6 - 8.1495 (Load Cell Reading) f133)

Force

= 26. 9 - 8. 1413 (L'oad Cell Reading)

0

PT-27.2 8

TABLE 1 TENDON SELECTION Tendon 4

Heat Reason for Selection From July 1981 Surveillance Jg2

~125

/133 jl55 19477 (51 )

10355,.39377 (158) 19477 (51) 19477 (51) 21584 39377 Unspecified.

38891 (76) 39377 19477 (51)

Load Cell Retensioned at 1888 hours0.0219 days <br />0.524 hours <br />0.00312 weeks <br />7.18384e-4 months <br /> (Largest Percent Loss)

Third Largest Percent Loss Load Cell Second Largest Percent Loss Load Cell-Retensioned at 1888 hours0.0219 days <br />0.524 hours <br />0.00312 weeks <br />7.18384e-4 months <br /> (Smallest Percent Loss)

Largest, Percent Loss Load Cell Smallest Percent Loss Remaining Tendons i 18 428 75 135 (128 J68

)168 38891 (76) 38091 (76)

'8891 (76) 18355 (158)

Unspecified 38891 (76)

~

21584 19477 (51)

Largest ESR from this heat Smallest ESR from this heat 16%

ESR from this h'eat Retensioned at 1800 hours0.0208 days <br />0.5 hours <br />0.00298 weeks <br />6.849e-4 months <br /> Retensioned at 1888 hours0.0219 days <br />0.524 hours <br />0.00312 weeks <br />7.18384e-4 months <br /> Arbitrary from Heat 38091 Arbitrary from Heat 21504.

Arbitrary from Heat 19477 ESR = Effective Stress Relaxation as of June 1980 (prior to retensioning)

(

) ~ Tendon

~ of wire for relaxation tests

~

~

4 aa TABLE 2 TENDON SURVEILLANCE SEQUENCE PT-27.2:9 Sequence Number a

2 3

4 5

6 7

8 9

18 11 12 13 14 as 16 17 18 Tendon Number 155 160 13*

18 35 36 4Q sa53*

68 62 75 93*

116 128 125 128 133*

  • Load Cell Tendon

APPENDIX B EQUIPMENT CALIBRATION G4lbett /CommonweaIth

1983 Tendon Surveillance (Ginna Station)

Linear Regression Calibration E uations 1

Tension Rod Force (Kips)'

0.2004 x Strain Stressin Ram Force (Kips) = 0.896

+ 0.1274 x Gage Pressure Load Cells No. 13:

No. 53:

No. 93:

Force (Kips) = 4.94

+ 0.15125 x Strain Force (Kips) = -1.95

+ 0.1525 x Strain Force (Kips) = 3.12

+ 0 '5106 x Strain No.

133:

Force (Kips) '= 3.42

+ 0 '5155 x Strain

Subject FRITZ ENGINEERING LABORATORY Lehigh University Calibration of Tension Link Load Cell 200.83.783.1 Sheet.......l.....of....l......

D,te 7/12/83 p ~

C.H.

R.ST Attn:

C. B. Forbes P.O.

352-44 Rochester Gas

& Electric Corporation 89 East Avenue Rochester, NY 14644 Appraveagp...>!A~

Director-Operations Indicator 8 035074 Switch Box ft 034917 (connected)

Gage Factor

~ 2.00 Shield Connected to Ground on Indicator Load

~(ki s) 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 400 First Run (11 )

+

248

+

494

+

746

+

994

+ 1246

+ 1492

+ 1748

+ 1990

+ 2242

+ 2490

+ 2746

+ 2988

+ 3238

+ 3490

+ 3738

+ 2000 Second Run (1I")

+

244

+

495

+

746

+

994

+ 1242

+ 1492

+ 1744

+ 1990

+ 2238

+ 2488

+ 2746

+ 2990

+ 3244

+ 3490

+ 3741

+ 1998 Average Run (0")

+

246

+

495

+

746

+

994

+ 1244

+ 1492

+ 1746

+ 1990

+ 2240

+ 2489

+ 2746

+ 2989

+ 3241

+ 3490

+ 3740

+ 1999

CERTIFICATE of CALIBRATION INSTRUMENT

~'ISHA1 0-3>D Jk ST~tklM I'nlblc'1~@

SERIAL NUMBER c9 z dym DUE STANDARD USED AI IiVIT I ALS As-Is Calibration Corrective Action Calibration S tan dar d Inst. Output=

Standard ts I

Inst. Output

.v'.

~ 4

/ ~

C I

~

e3 g

-t $ CC7 Cj.

~ /K'i'7

~ /9~) ~

~29

~ c-

~~vss u 3wf7

+3>

Calibration Procedure Used:

EAc

~

z Jc) J REMARKS:

- ~i>H.~r p 3 g g>g,+~7j=g 7/Agdvcl~ ~(Sr'viPP'c'~lit/4 crP~c~

~~vi7 Mc Dad 5, g -g >l~ JZ"i'yl7 c~ ~~,

JHOW~

< +~+8 fC <g)gi WHS JP// //gal'( gyp p 7

REFERENCES:

1200 BLH Model Manual Pages 5-15 to 5-16, Paragraph 5-65, Subparagraphs 1 to 43.

P-350A Instruction Manual, Pages 3-6.

Section 2.0 SPECIFICATIONS, Paragraphs 2 ~ 1 to 2.16.

Operating and Service Manual - 625 Precision Calibrator, Page 3-1,Section III, Paragraphs 3-1 through 3-20.

)

9 /.~~

oui~~

.ROCHESTER GAS ANO ELECTRIC CORPORATION ENG.

DEPT.

STATION:

/e 4~~

J ~mer5Z~

cc

/~E ~

~ A ~ 1)

DATE: 7/g p/

PAD I

OF lc~srom A~/

5frszw

. / G/cc

(~~) (cps)

Cu E~ Gree Er~r

&ys).

Ev~i /

v Ic 00

> ndO

~(n g rirg o

[y =

O. 72 g 8 O. z 2 76A.

'/

257. 5 Po.

/Z 7gF 7oZ. 5

/-

9'.

7

0. /

0.

O./

-o.g II riO P v~o0

'pa i

I g/. F

/27 I

/zg~ /

2<~ 7 K/

-o.

(~

0~ '/
0. 'I r..q pp 7DQ. 0 70/ 2.

I I

I I

~

~

i I

~

I

~

I I

~

I

~

~

I

~

0 I

0

~

I I

C I

I '

I I

~

I I

~

I

~

~

I

~

~

I

~

I

~

~

~

I

~

I

~

~

~

~

I

~

~

f

~

I C

I I

I I

I I

i

~

~

~

~

~

~

~

~

~

~

~

~

~

I I

~

I I

I I

~

I I

I

~

I

~

I i

~

I I

I

~

~

~

~

I I

I I

~ - I 0

~

~

0 I

~

~

I I I I

I I

I f

I

~

I I

\\

~

I

~

I I

I

~

~

~,

0 I

I 0

I 0

I

~

I C

~

I I

I I

~

0 I

I I

~

I I

I

~

I I

~

I 74'{.'~

O

~fWd 1 I

I I

I I

I I

~

I I

I

~

I I i I i I

I I

I I

I

~

0 I I:

I I

~

f I

I i I

I I

~

I I

I

~

I I

~

I I

I I

~

0 I

~

I I

I I

I I

~

I I

~

I

~

I ll'

~

I I

I 0

I

~

I I

I

~

~

~

I I

~

~

i I

~

~

~

i

~

I

~

I I

~

~

C C

I

~

~

0 0

~

~

I I

~

I I

I I

I

~

I I

~

~

0 I

f

~

I 0

I

~

~

I I

I

~

I

~

0

~ 0 I

~

~

I

~

0 I

0

~

I

~

~

I I

I I

I

~

~

~

I I

~

I

~

~

I I

I

~

~

I

~

I I

I

~

I I

~

I

~

~

I 1

~

I

~

I

~

~

~

~

i

~

~

~

0 I

~

~

I I

I

~

~

I 0

I

~

frf IV2VZ 4 Ov IC ~

~ v z*

Vd

+V

~ ff!

Xrl 0lf I0 40 10 f(g Ovr C/(J v I

C I

I I

I

~

I

~

~

I

~

~

I f i I

I I

I

~

I I

I

~

I I

I

~

~

~

~

I 0

~

~

0

~

~

I 0

~

I II, I

I

~

I I

~

I

~

I 0

~

0

~

0 I

~

~

I I

~

I

~

~

~

I

f

I

~

I I,

~

~

I s

~

I

~

I I

~

I I

I I

~,

t I

~

I 4

I

~

4 I

~

I 4

~

~

4 I

4

~

~;,

~

I

~ '

~

4

~

~

~

i I

i I

I I

I

~

I I

I I

I

~

~

~

4 I

~

I

~

~

1 C

~

4 I

s s

i <<s s

I I

~

I I

~

I I

~

I

~

I I

~

~

I I

s I

~

~

~

I I

I

~

I I

I I

~

4

~

~

I

~

I I

I I

I 4

~

I

~

I

~

4

~

~

~

4 I

I I

~

t I

I

~

I

~

I 1

I

~

I

~

I I

I I

~

I 4

~

I 4

~

~

~

I I

~

I 4

I

~

I '

~

I I

4 I

~ '

~

t 4

I

~

I I

I

~

~

I I

I 1

I 4

I I

I I

t I

~

~

~

I I

I

~

I I

~

4 I

~

I

~

I I

4

~

~

I I

~

I I

I I

~

I I

~

I

~

I

~

~

~

I

~

I 4

I I

I I

I

~

I I

~

~

~

I

~

~

cu

/pP

~

~

~

4, 4

~

I

~

~

4

~

I I

~

I s

~

I I

I

~

~

~

~

4 I

I

~

~

I '

~

~

I

~

I

~

~

4 I

~

~

4 4

I

~

I

~

~

I I

~

~

~

~

I

~

4

~

4 I

I

~

I I

~

4 I

4 I

I

~

I I

I I

~

~

~

I

~

~

I I

I

~

I I

~

I

~

4 4

~

I

~

~

i I

I I

~

C I

~

~

~

~

~

~

~

~

I

~

4

~

I I

I

~

~ r 4

4 I

~

I

~

I I

~

4 4

~

I 4

I I

~

I I,

~

~

~

I I

~

4 I

I I

~

I

~

I

~

~

~

4

~

I

~

I I

~ '

~

~

~

I 4

I

~

I I

I

~

t I '

I I

~

I I

~

~

I I

I I

I

~

~

~

I I

I I

~

~

I 4

C I

s I

~

I I

I

~

4

~

s

~

s

~

I

~

~

~

~

4

~ I, I

I I

I I

~

~

I

~

you Xj z*

tCO

<<C.'V

~C

? ess Qpo X~

O+

Y.

~

4 s

i I

I I

I I

I I

I I

I I

I

~

t

~

~

~

I

~

~

I

~

~

I I

i

~

I

~

~

I

~

~

I I

~

~

I

~

I '

1, I

~

~

~

~

~

~

I I

~

~

~

I

/

~

~

I

~

I

~

~

~

~

~

~

~

I

~

I I

~

I

~

I I

~

~

I

~

4 I

~

s I

I I

4

~

~

~

I I

I I

I

~

I 0

~at<<4

~

~

~

4 I

~

I 4

s /

4

1

ROCHESTER GAS AND ELECTRIC CORPORATION

ENG, DEPT.

STATION:

g ~~~A l e Jc~

5ur~ei b~~~c~

l'P I7 DATE:

PyZ7/Py PAGE /

OF'y MADE BY: Q g ~~Qg~C CK~

~r

~,

~

I) ~

~

~

F CP"i) gOQ oo e~

- vr24 ZD

-0'/ o'7

"/Pu~

/ ewSzcm Pod s+z~i~ P~~l )

8'ed/ ~ /c7'~Z r

/C'o,./'/

ore~

('a-,~~.. )

(goo@ x sin~in)

SiWnn'AELA>7/>~ (4cxO cu44A..1S) i

> ~

~ 'I c>o d'c-dP

.r7op

'7g l) /J F00 0

'gz 7d 0'7 Q

-r 4V'r ed'O Zo Vd z,'/'f 29od Z

O

/5 7'f

/ 9'00 Z Z7D ZE'7 g/ Es zs S'-

S 3/5. 'V 9PO. g O'Yb. 1 5og. g Cent; 7 7op'. p

/o 00

-V os

/ s-uy

-yg PZ

-SZ 4V'

2. 0

/7 FF Sprees r Or)

".g ng f/r'pg g

'c gg

-geol

-zo wo z

cy 205 '/

Z "/'Z Z zs FF

/, 7 222o 2<28 2/ ~'f 7/I', Z 7y.

1 od. 0

D ROCHESTER GAS ANO EI.ECTRIC CORPORATION ENG.

DEPT.

STATION: g g~

~ a

~ 33 DATE:

7/g7//so FADE /

0F /

JOB:

g ~ g~ f~~~ $g~

~

QgE 7.

MADE BY: p g ~pg~~g CK:

~

~

r

~,

. Y'5FEW cd'/4877oz>

(2 old cddL b,.(3)

I o cc4L

'ci~~row iYo~l'7 r are

~

F'fee(W

~ Fd/gg cw ~.)

'/~'/.) /A'/ s)

/PUrJ /

Ic 00 7.ado oo

'?nd P FFI ry Eiq po e'oo c Egret v I Z Er.

c./

/4 C'4 Za ~/0 vZ t7 P7/

/z ro s- '/

/Woo r'2 VO g gr s/e5 Po-'l 3'o. C/

sod'. >

oC. 4 Ip'Z. P (So

~ 7

/ i /.

F's 4.F 7/3-3

'774. 7 5o2-0

'd.

J z/V' 2.

u./

p. 7
o. 7

/

-o. 4 FQ 7

O. /

/oo p Ic o0

.ooir

)

E PO ergo p p /rF r ( r9fj

/(~

(n 4 go<'/

p gc/

gy gg i S(.

i p'7f p gzo r ZL p C

/t/

/3 )j.

g/F ~

Py(

(.

5-Z 3r Cn/.

~t/.

1 c./

0 ~ '/

O.

.7

/.2

~

~

I~tCI.i.

c'I

~

~

I I

I

~ I

~ I ~

~

i

~

1 I

I I

I I

C

~

I I

~

l

~

r

, L084'Ks4 Cgli8~8rzu~

wing 7rjp I

~

~

~ r.. ~

~ )

I

~

~

I r

I r

~

~

I I

~

I r

e j I

r r

~

r

~

r r

~

I t

I I

~

r

~

~

~I I

I f

~I-I r

(H --- --

~

~

~

~

I I

~

~

l

~

I"%

~

~

~

~

~

~

~

~

I.ccV'ade C'gZiiPc A'TrOz~-

'"jPun/ '2.

I I

I

~ '

~

~

I

~

I ~

I

.fad.

I

~

t.'"

1 I

~

~

h

~

~

't

~ l

~ ~

~

~

~

I I

~ ~

~ ( ~

~ ~

~

~.goo L

1 I

I

~

~

~

I

~

~

4 I r

~

~

>>P I I

W

~

~

~

~ ~

It I I~

I I

~'

~

~

I

~

~

W gpss' "i

. "'t I

>>L>>

~

~--

~

~ ~

Il I

~'

Pod; I

~

~

~

~

g $+0

~

~

~ ~

I I

~ I

~

~

~

I

~

I

'1' I

I

~

~

I

~

~

~

r

~ ~

~

I ~

h ~

I a

~

I

~ t-

"00 I ~

ROCHESTER GAS ANO ELECTRIC CORPORATION ENQ.

OEPT.

STATION:

g/~~g S crru'g Z-Ewmce'a

~ 13 DATE: ~rzp/gp pAGE (

cpy MAOE SV: ~ g ~g<g+5'K:

I T

CP"r)

SrWM 8 Ca</ C~ZZ 5draim (~ 'rciT)

, /e.Zr g

gap'.ol 7P~S/VM /Pop-.(

't ure~

C's-,~. )

(gOny g ~PEA ).

CZgr<~h'7rcrzi Golly C$~4 W. ~~)

E r

/ <~"-vari Ec A

~+i~.r~ C~

8 8CEPi~y IC7gr&8 1c-do

-2 It'Od

~o p y

- z9'oQ

~uoa

-is7C

>>//2 Z

-~/g zo 5 C'0

-g7/

oo f)

76

/S.o o

-3<dd VD d

-g205

/2 go

/6 zW tz./@

zo 0d z ~ z<

2549'/7 T

Z 60 29'6'S'OF SIC7 Swwr=

/z.g'. 7

/ps.

9 Z93'. 7 Jog. 2-76'. J VY5 5

py. g

<00 0

-7/6 V5 72 c/gg

-o 0

/o 00

/s-un

~a 0

!! o i)

I" ro I

-7 OP

/zz<

/6 45 2c X5 12 <Z

/ s-90 s'~r=

/ZZ-Z

/S'Y. F c8.6

".n oo

/7 pr ~r

'l< ig 0 00'"

~ r g n

-z/~ P 7 l7

2. g C/5

-r6'c7 Z

-r/7d g7 o 5 V( 5-I 28'/2 3/0'7 3/ 4o

~/QZ. P.

9'8/. f ago 7

@if Y zambo Nr cA~cw:

rove. L /Cc o Yg~

f'.

+l~tj4 ~~A 0-

/bCC /Py 0

corn cs.cc -Yg</

~ r-

ROCHESTER GAS ANO ELECTRIC CORPORATION ENG.

DEPT.

STATION: g g~~~+

ie-4~~

'J ~~er SZ~-c~-

OATE:

7/Z7/P7 P~GE / 0F/

. E/6i jgzs S cr-4 000

74. Z

,.7 9'. 2

g. 7 I 5 00 7 nOO oO

'7pP

~r 1Cp g fear~ g.

~/q Od q"00 C

1Z 9o ZogO ae'<

zoo 7

DF q>7z 12/ C' VLF 2$'~7 v /s'2 F~. 9 std. 7 4o 7 vs~ s

/'2. 5 cps.O

/ps.d 2~s

~

3'07. 7

@ZAN. 7 O. 2 D,/

02 Or j =,2dOg CK)

/ /r 0 P Ic 00 7.000

~) Pd rrgg 0 ge r) ig

!jnP,'i

~p pp r'

ref~

iz ss 7.9 r7 tl/ g/

12 s-Z.

/~'P0

/

/Z 7/gP 77 C

/z.z. 2

/P

'oj

~ 4

<3-/

~rl. 0

l. 9

/ZZ-jP/. P o$ ', 7 4'S.

5 yS/ 7 0.2 n.

o. 2

j'l

~

~

t

~

~

t

~

I

~

~

JQ.

t t

~

~

I I

'I I

~ ~

~

~

~

t I

~ ~

I

~

~

t t

~

~

~

~

~t t

--god-I

~

~

t I

~

~

~

~

I t

I

~ ~

I

~

~ t ~

I

~

/

~

h

~

~

$H:--

~

~

~

~

~

~

~

.t.%i

~

~

0 4 I

I

%i imp

'j t

I

.3oo

~

~

~ '

~

~

~ "

~

~

~ ~

(

~

~

~

I

~

I t

t 1

~

t t t

goP

-roP

"--0 '

0

~

~ ~

4

~

P I

~

~

4

~

~

I E'

I l

~

I I

~ l.-

~ ~

~

I I

~

1 4

~ I

~

~

4 I

4 I

I

~

I'

~

4

~

P

~

4

~

~

~

4

~

I

- QO.

I f

~

".- ~

~". --. i..

I

~ 4 I

I 1

P

~

I

~

4 I

~

4 4

V

\\ ~

(.+

r I.

~

~

~

1

~

~

~

I I

4 P

~

I I

~

~

I

~

~ I 4

~

~

IP.

I

)

~

~

L

~

P 1 ~ - -- ~

~

~

4 ~

I

-E I

~

4

~

I t

~

I

~

I

~

I

~

~

~ I 4

~

~

I

~

I I

I 4

~

~

~

~

P

~

~

. ~

I I

~

~ 4

~

4 l

4

--god 4

PV I

~

I

I

ROCHESTER GAS ANO ELECTRIC CORPORATION ENG.

OEPT.

STATION:

Z>riviEL~~ce FP gg OG ~ 15 DATE 7/Z~/ y FAG

(

OF (

L.C.

MAOE BY: g g +pgg~<"

CX:

T Zc'r(ar('7rczz C(oaa E."~ ~ ~i)

Cr'"/)

i e'w<roia End

/P844i~g IC 7 IrW/

/P~'ro~ /err;/

't ur C~

)

C 2opvx 57/P>J

-~/gr 2.

oO

-9g /Z oo r~

-~/d 50 l~o rJ

.O D rI'3'Z 7~+

0 52o

~

>.Z.

/ Z <'/'

lW S/

5/t+r-p'/~'. z.

lWK. F Zso. 7

~c do

".n r~ y 8 7/

-z4 7z zo '//

r s-6C~

a/'s.

F 7g-T r7 g (00 0

-// C'n

-77 z

-2 6 2.

V~ n n

-Zo?.f

/PS+ 9

/CD3 37r 2 9i 7'/

v.Z d5 2<ZO.

zz s-c gazoo Qr//. f wu/- ~/

-oO

/o rI0

".rI lI g

!(ry.4 r) l/w q~ r) t'F) 0 E,I

~ g'J FrI

- Vali.'

/EI r'~/

-'r 2 7'/

zo ~K

-/4Z 9

-//

8'7g 0 Z ~oZ gg rg rZ V'4 r 6.-E 2n <6 2 8'/

~r2/

"// Il'2 I

g@po

/ 2 V~f l G 77 2/ ~/~

0 2r2a/v9'r<

r=-

qg.

(r,'Z/.5

/ / i/

2'~-Cr.

'7 r's.

7-z7f.

~r V7~i

~d/. d b 7rI. /

7C/. 7 Zoo Cr'lr.<rrr( CEZL HlJ

0

~

~

ROCHESTER GAS ANO ELECTRIC CORPORATION

ENG, OEPT.

STATION: g grLrrtr'~

./-e-4o~- J.~~er dd~-c=

- IQ-7.:

IA ~ 'l3 DATE:

f/g/gJ PAD

/ OF/

~

L.C.

MABE BY: g g +P$gr-5'K:

A E ~

r P

f/8$'S'o8p c~L/

Sfrnrm

(~ ~-)

Tdr Sruti Iodl

/

- 5'r'r~r~ r Force

(~,4) (@ps)

C l~'rCOrCe

r. ~pr Ct'y S)

CGIE-r'FS p~c~g VSr>-<5 gzo 8'o Z.

.Err>

1 V

pi'. z r.s I

f7. 0 l 3Z. I o.

S'j i Qpo Prl oo oC IndO'Cr' or 0 il'O c000

~fr) g iz 6/

Zo 9'/

Zz F'I-'

of 775 Z-0 r'7 yZ S/

/S ~5 9 2 C'~

2-S 70 r s-4 gs-0 0 iVKb r"So. 7 777-7 v r'/.9 c.o ~-. 0

<7/. I 250. 5 s//. 7 7Z. 0 5o9.7-5'70. 2

o. /

-p-3 0.6 r=pggb (piP) = Z 22 p O.yg// ('X~A'r~)

X Or p', Z oo Y(X)

(V 2,l

/0OP i ~00

.~~06

~<00

?Pr ic n0

jnP.

-',~c t y r (":'fg

/437 g~ e(

haft 2r'r'f 32 ZY

'/I "S'Z F6~ o

/Z g4 i <'U 1 c //

2/9s 7~i yo

$ 8'2 /

/'i/. V wc~ 7 7/<

~ Z

<a/. 0 yr,'~. P 70/. 2 (z 9./

250.3 5@7,2

-0. 6

-0. 2 p'ogca (<rp/) = z. g2 Ho. I</o C"7jp+p~)

x

~. Q&gl'de+

.<ACE= 3,/2 f"O. /Sj'A CSrRarm)

l,f

/

p 1'

I

~

~

I

~

~

~

I I

I

~

~

I

~

I I

~

~

I I

~

I

~

I

~

I I

I I

I

~

I I

I

~

I I

~

I I

I

~

I I

I I

I

~

I

~

I I

~

I

~

~

~

I

~

I

~

I

~

~

~

I

~

I

~

I I

I

~

~

I

~ ',

i I

I I

I

~

I I

I I

~

I I

t

~

~

~

I

~

I

~

~

I I

I I

i !'

~

i I

~

~

I I!

I I

I

~

'I, I

I I

~

I

~

I

~

I

~

~

I

~

I

~

I

~

I I

I

~

~

! i I

i I

I

~

I I

I

~

I

~

I ~,

~

~

~

~

I

~

I I

~

I I

~

~

~

I I

~

I I

~

i

~

I I

I I

~

I I

I I

I I I

t I i I

~

I

~

~

I I

~

~

I I

~

~

~

~

I I

I

~

~

~

~

I I

I I

~

I

~

~

I I

~

I

~

i I

~

~

cv 75

~

I I

I I '

I ll

~

I I

I

~

I I

~

I I

~

I

~

I

~

I

~

I I

I

~

I I

it

~

I I

I

~

I

~

I I

I I

I

~

~

~

~

~

~

~

~

I I

I

~

I I

~

~

~

I

~

I I

I

~

I I

~

~

~,,

I

~

I I

I

~

I ii

~

I

~

I I

I

~

I

~

I

~

I I

I I

~

~

~

I I

~ r I

~

~

I

~

I i

I i

I I

I I

~

I

~

I..

I

~

I I

~

~

I I

~

I I

~

~

~

I

~

I I

~

I 1

I I

~

~,

I Ir V

o PO

)C!

V6

+V

)Od I

~

~

I I

I

~

I I

~

I I

I I

~

~

I I

~

I I

I

~

~

I I

~

I

>C g OilY

~

~

~

~

~

~

I

~

I

~

~

~

a I

I i

I a

I

~

I I

a

~

a

~

a

~

~

a

~

I

~

~

~

~

I I

i i

I a

a

~

a I

~

I

~

~

1

~

I I

1 a l I

I

~

I I

~

~

I I

a

~

I

~

I I

I

~

I

~

I I

I

~

I I

~

I I

I

~

I I

I a

I I

I

~

I I

~

a I

I I

~

~

~

I I

~

~

I I

a I

I I

I i

I I

~

~

I I

I t

I I I

~

a

~

~

I

~

I I

l

~

I I

I I

~

I I

I I

I I

I I

I a

~

~

I I

a

~

I I

I I

~

~

~

I I

a a

1

~

I a

~

I I

i 1

I

~

I

~

~

I I

R I

I i

~

R

~

I

~

I

~

I I

I I

1 I

1 I

~

R,

~

i a

I 1

1 I

I I

~

~,

I I

~

I I

I I

~

I I

~

I I

I a

t I

I I

I a

~

a

~

I I

I

~

~

I

~

I I

~

a a

i I

I a

I a

a

~

I I

I

~

~

I I

I

~

I a

I I

a I

I

~

I I

~

~

~

I

~

~

~

~

I I

a R

I I

~

a

~

I I

I a

I I

I I

I '

~

~

~

1 I

I

~

I

~

I

~

I I

I a

~

I

~

a

~

I I

I I

~

I a

I I

~

~

~

I I

/

I I

~

a i

I a

~

I

~

I

~

I

~

~

~

I a

I

~

~

I

~

I

! i I

I a

I t

a

~

I a

~

~

~

a

~

C

~

~

I I

I

~

I I

I

~

a a

a I

I a

~

I

/

I a

'I a

1 I

I

~

I

~

I

~

a a

~

I

~

a

~

~

~

I

~

~

I I

I I

I

~

~

~

~

I a

I

~

I I

a I

~

I a

ZV qPJ

<15 t g 1

~ci zv

~L Oy

~

I I

I

~

~

I

~

a

~

~

a

~

~

1

~

~

~

ROCHESTER GAS ANO ELECTRIC CORPORATION ENG.

OEPT.

STATION:

G/~~g

/ g~J ~

Jerry'gl l L<<~Ce !'5' g MAO'V:

~ g PPg/~r cK' C

/V

~ G ~ 1J DATE:

~)~p/gg PAGE )

OF/

~

~ V I

~

E F ~

P Ci "/)

l-cow/ C'cD PiFFF~ (~,'iA )

geo Ji~g, I

E

+0g oo c~

J~C'0 caO d

'7c d 0

".y pp eOO 0 c/ ~p o/

-qz of 3'"r 72

-3'Y>

-7/o l

-Z7o 0

~ f$'g (

-/vi<

-Pa /

-V FC IZ 22-

/DZ V'os/

2'/5 /

2 9//

z~oo~

VZ0Z

'27 f2'

/$ 7f WZ24 Z.s 7/

qcf. f

/52.1 1E/.

/~

7 v/ 6

~ z.

v~./

5o7, 7 los&

~g nCI rp g t7 r)

-L-,/I,I P

-c

~ err

-'/7 2'/

-.? 9r?4 S 20

-~ Or. <

6'/0 l2 /E go6Z 5 7Z.

/Z 9 7 lb 7Y

/

7'6 2Z 2.5 s 3/- 7

I

~

d 1

ROCIIESTER GAS AND ELECTRIC CORPORATION ENG.

OEPT.

STATION: gg~~+

P/e-4~ f'ail/~-C

-- rig-Z..

+A ~ 13 GATE:

P /g/jy PAGE /

OF /

MAOE BY: g g

+g/QPg $'K:

~

~

F Ysf<N cgz b748770u (fold ctu Ad/)

E

~

F I

E

~

C,o/P CcL/

s/i~.~

l~~~-)

I QOO IZZ 2-go I

gd5 000 I

8'V'b 7C~~/PM

/I PO/

5frulm:For cc

(~.Q) (ty )

0~

/Peri 1

(t)

/52. 0

/ s'/-6 C l~Ric~

8z~r Cry S)

/3'.Z (i

PF'.E

/dms

/. 2 0'- s

-O. Z I

> ado tnd

/J

~c pg

!!Ir cg <o d

<oo 0 e Prg cr

/62

~/

gp I/

gSOF iz ~Q 25"3' qcgO

'Z5/. 7 7 b,2 gyes~

c eye/p

%0 7..2 7~g, //

<oy.4 O. 7

-o. <

-o. g

-o. '/

0. <
o. I

+PA CN P+//~ ~ f, /0 7 0 /5/g C/7H//PFEJ/

Y (x')

(V) 2.

5

/odp

/ ~DO

.woe

'J.> Pd 6'/o

/z 1E

/GPF gdgZ

@77

/S 5'7

/~-7</

ISY 7

'25/, 7 A,'/

0's. /

/

7-7

/5. 7

-0. T

o. /

zvzo l

/gab 75, 7 7/.

"ic'

!jnt' fc',r 3 P

PE Jw zpcj

~:oq "7C'/

/22

~

Zc I 7

~r74

< r..'/

< ~r,/

57/. f

/// s,

//'Y2 T A~./

-o. 7

-o.F "0,

I

~

I

~

~

I

~

I I

~

I I

I I

I 1 '

i I

~

I I

~

I

~

~

~

~

I I

\\

~

~

s 1

I I

I I

I i f

I I

I

~

I

~

I I

~

I

~

~

I

~

S

~

t I I

~

~

~

1

~

I

~

I

~

I '

I

\\

~

I

~

I I

I

~

~

I I

~

~

~

I 1

~

~

I I

I f

~

I I

I I

I I

C i

I

~

~

I f

~

I I 'I s '

I

~

I

~

I

~

I I

I I

~

I I

I I

I

~

~

~

I

~

I I

I I

~

I I

I I

~

I I

I I

~

I I

i I

I I i

~

I

~

I

~

I I

~

I I

I I

I I

t

~

1 1

1 I

~

\\

I

~

I '

I I

~

I I

~

I

~

~

I

~

1 I

I 1

~

~

I I

I

~

~

I I

~

s I

1 I

~

~

I

'I

~

I

~

I I

~

~

I 1

~

~

~

~ '

I

~

~

~

~

I I

~

I I

I

~

~

I I

~

I I;

~

~

I

~

~

I

~

~

~

I I

I I

~

I

~

I I

I I

~

~

I s

I

~

I s

I I

I I

f I

~

I I

I I

I

~

I

~

I I

I I

I I

I I

~

I I

~

I I

~

I I

I

~

I

~

~

I

~

I '

1 I

~

I I

I

~

I I

I I

~

700 O

r 500 I '

i I

I

~

I I

~

I

~

~

~

I I

I

~

I I

~

I

~

~

I I

~

I I

~

~

I I

I I

~

~

I

~

I

~

~

I

~

~

~

1 I

~

I I

I I

~

I

~

I I

I I

~

~

I

~

~

I 1

I

~

I I

~

I I

~

~

~

~

I

~

I I

~

s

~

~

~

~

1 I

~

~

~

I

~

~

I I

I I,

I I

~

I I

~

I

~

~

~

~

I

~

I I

~

~

~

V I '

~

I I

I I

I

~

I

~

~

~

~

I I

~

I I

I xj Cf Ci r V 4g X Z Ctf sf s

,'~

~

I

~

s I

1

~

~

I I

I s

1

~

~

t

~

~

~

'I I

I

'I

~

I

~

~

~

I I

I I

~

I

~

I I

I I

I

~

I

~

I od 740

~

I I

IA tP very',g ggsrr lr7r) i ti r f.,:.. /

~

I

I I

I II; I

I

~ '

~

I I

I

~

I

~

I I

I I

~

I I

1

~

I I

I

~

I

~

I

~

~

I

~

~,

~

J

~

~

I I

~

~

I

~

I

~

~

~

I I

~

~

I

~ '

~

~

I I

~

I '

~

~

~

~

~

I I

~

I

~

I I

I I

I

~

i

~

\\

~

~

~

I I

~

I

~

~

I I

a I

~

~

I

~

~

~

I goo I

~

I I

I I

~

I I

I I

I I

I I

~

I I

I '

I I

I

~

~

~

~

I I

~

~

~

I I

I I

I I

~

~

I

~

I

~

I

~

~

I I

I

~

I

~

~

I I

~

I

~

I

~

i I

I

~

I a

I

~

I I

~

I

~

~

I, I

~

I I

I

~

I I

~

~

I

~

~

~

I

~

I I

I I

I

~

~

I

~

~

I I

~

I 1

I I

~

I

~

I I

~

~

I i

~

I

~

I

~

~

I

~

~

~

~

I

~

~

I

~

I 1

I

~

I 1

I

~

~

~

~

~

~

I

~

~

I

~

~

I I

I 1

I

~

~

V

$P 0.

I I

I I

~

I

~

I I

I I

I

~

I I

I i

~

I I

~

I

~

~

~

I

~

~

I

~

I

~

~

~

I

~

~

o 11 (gal KS zI

~o ZII C

I

~

\\

I

~

I

~

~

~

I I

I I

I

~

I

~

1

~

I

~

~

~

I I

I

~

~

~

Og I

~

~

~

~

~

~

IIJJ JC 0

January 24, 1984 Gilbert Associates, Inc.

P.O.

Box 1498

Reading, Pennsylvania 19603 Attention:

Mr. J. F. Fulton BE:

1983 Tendon Surveillance

Dear Jim:

Attached herewith is one (1) copy of the calibration data and material certification reports for the new stressing rod.

During our telephone conversation yesterday, I stated that the calculated "stressing rod gage factor" is 0.1997.

This value was used to determine the stressing rod force for the tendons tested subsequent to the accident involving tendon 75.

The calibration equation for the pressure gauge system was assumed to remain constant.

If you have any questions, please contact me.

Very truly yours, Clyde A. Forbes Structural Engineering CAF:mkv Enclosure xc:

R. E. Smith T. R. Weis D. R. Campbell (GAI)

File/EWR 51900 13N1-RG-L0624

WHEELOCK, LOVEJOY - METALSOURCE LABORATORYCERTIFICATION REPORT CUSTOMER Teledyne Engineering Services DATE 10/6/83 ADDRESS 130 Second Ave ~

Waltham, Ma.

02254 ORDER NO. '2806 GRADE 4150 F

HT RT INVOICE NO. 17288 SPECIFICATION MILI SOURCE Standard Steel I

SIZE HEAT NO.

10-1 /2" R d.

LVB5 681 MN.

P.

S.

SIL.

~ 47 F 00

.019

.08

.22 CR.

~ 72 MO.

.16

~SIZ TENSILE STRENGTH ELASTIC LIMIT

% ELONG IN RED. OF AREA HARDNESS 311 WHEELOCK, LOVEJOY - METALSOURCE BY Carol Gob skas STATE OF Mas s.

COUNTY OF Middlesex SWORN TO ANDSUBSCRIBED BEFORE ME, A NOTARYPUBLIC, THIS DAYOF 19 NOTARY PUBLIC MYCOMMISSION EXPIRES

rva7 c

WHEELOCK, LOVEJOY - METALSOURCE LABORATORYCERTIFICATION REPORT CUSTOMER TELEDYNE ENGINEERING SERVICES DATE Sept ember 28, 1983 ADDRESS 130 Second Street

Waltham, HA 02254 ORDER NO.

E2806 Part 1 of 2

GRADE,

'140 HR HT HR INVOICE NO.

00-17287 S P EC IF I CATION MILLSOURCE Republic SIZE HEAT NO.

5-1/4 RD 6071414

.43 MN.

S.

SIL.

~ 82

. 007

. 024

~ 20 Nl.

~ 22

.92 MO.

.26 SIZE

-1/4 RD TENSILE STRENGTH 126,500 ELASTIC LIMIT 98,000

% ELONG IN 18.0 RED. OF AREA 58.1 HARDNESS 285 WHEELOCK, LOVEJOY - METALSOURCE BY Caro yn H. Sharon STATE OF Mass.

COUNTY OF Middlesex j SWORN TO ANDSUBSCRIBED BEFORE ME, A NOTARY PUBLIC, THIS DAYOF 19 NOTARY PUBLIC MYCOMMISSION EXPIRES

Rochester Gas

& Electric Corporation 89 East Avenue Rochester, NY 14644 Attn:

Mr. C. B. Forbes Indicator II 035074 Gage Factor

= 2.00 P.O.

BZ-36613 FRITZ ENGINEERING LABORATORY Lehigh University Calibration of Tension Link Load Cell 200.83.783.1 sheet....l......of...2........

pete 11 83 E.M.

CrH.

Approved........

Director-Operations Load

~(ki s) 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 400 0

First Run (v")

0

+

244

+

496

+

746

+

988

+ 1236

+ 1488

+ 1746

+ 2000

+ 2240

+ 2500,

+ 2748

+ 2996

+ 3248

+ 3500

+ 3750

+ 1990 Second Run (11")

0

+

248

+'94

+

760

+

990

+ 1240

+ 1498

+ 1742

+ 1994

+ 2246

+ 2494

+ 2750

+ 2994

+ 3250

+ 3498

+ 3762

+ 2000 Average Run (u")

+

246

+

495

+

753

+ '989

+ 1238

+ 1493

+ 1744

+ 1997

+ 2243

+ 2497

+ 2749

+ 2995

+ 3249

+ 3499

+ 3756

+ 1995 0

Note:

Switch box used on previous calibration was not available

t

Rochester Gas

& Electric Corporation 89 East Avenue Rochester, NY 14644 Attn:

Mr. C.

B. Forbes P.

0.

BZ-36613 FRITZ ENGINEERING LABORATORY Lehigh University Calibration of Tension Link Load Cell 200 ~ 83 t 783 e 1 t

2

....of..

2 Party C. H.

Approved....... F...:

Directo -Operations I

I l

2.-

Lh-I I

~

l

+I+

I 2

2

~I-I::

I-

.J L.I r"

gl-I

'!',I

+jl 1

g:-r

'E ih I

i I

I s

1 Li I

2

'Jp I

I I. I "'

.} L 1

I

~

-'LI LfI LL rl-

IZl.j:
I J rI gj 2

I I

1" II I'

1 I

1 I"I I

N 4

I

~Q~

2'+M Tt lj O'I jhow

-(- -i-}

I I

!-I-;a Li I"I I

2 I

0+

je i

~ W

~

~

I 1

I

~

I

~ !

I

'I'!

~

~

I

.I I,,

1 I

I II" l I' 1

'.I '

I 2

I I

I I

1

~

I I

~ I

.'I"I, '.

I 2-I*"-

2 }-I'r'

-I 2

}

I 2

} [I

..2.1' I

I 1

-la~-i

~

~

..LI I:

I l-}-t j-

~

I

~

I I

~

1 1 !'I I

~

I

~

I"I !

~

I L,,

2

~

2'I 'O'I

~

~I I

I

-t--

I I

I I

I

~

I I

2 I'1 I

I I ;;--

I-'150

. !~i10

-I++I In-I-'-

I l"I'1 I

~

I

~

I I

~

I IV I

t 1

~

I 25

. I-I.

I-r2.

0 I

I-!-,

j-

  • I I

~

!'j-2-1I-

,.)30 I
35

APPENDIX C DATA SHEET 1

SURVEILLANCE FORCE DATA II Qbert ICenmonwcalth

DATA Sl IEL'T I PT-27 ':IO JIJLY 19O3.TEWDOII SIJRVEILLWNCE I ) DATI:

/2 ~/9 TEhlDOM tlO.:

2)

IIYDItAUf.IC JACK hIO.: gd 5'-/2-an>>

AREA:

3 ) IIYDRAULIC PIJt1P NO.: ~F7/f 474

~/

4) r.OAD CELL FACTOR**:

PRES. URE GAUGE nO.:

OO PO JAILl~ ~ uS ital/Alg4.r)

STRLSSIIAG POD GAGE FACTOR" *:

4 -2 4')

TENDQN iIIEPEGTio!I co!IIIINT.: ~r/ /6& +c'>/// //

aaP c<~A Tfow (I)

COttDITIOII IllITIAL:

Ze ra 8c'C IWCRLASIhIG:

(2)

PRESSIJRE GAIJGH Pressure Force*

( si)

(1hs)t'/@do RA'I POSITIO!1 inches (3)'g STRESSIWG POD r.non CEr.r, I

~h

~~~I+>

S tra in Force**

Stra.in Force**

(u in/in)

( Ibs)j'Add(u in/in) (]bs)f/oatJ 6

Cot I'IE;IrS IWCRL'ASIhIG:

Fr'!>. 5 25'0 3/pjg2 5/268!'yV'7 ',

2->

LIFTOFF:

Dr;cREASING:

DEC ItEA5ItlG:

OOr 5

zV HOT I ":

nTP!:.: g/ggg~

(*)

Ram area to be used to calcul ate ram force in column 2o:

Force

= ~ $ 5 t C /271k

[Gage Pressure (P~>IG) 3

(**)

I.oad C.ll Factor to he used to calculate fore

~ in column 4l~:

See Attact>>nent I

(***) Stress i>>g Ro I Gage Factor to be usetl to calculat>>

force in rod in col ulnn JI>:

stressinq ro;I <gage factor x (Str ~in Initial Strain Iteailin~l)

CO'IP liETI',I) BY:

)

., ~ g.<~F3 TFJJDOM JJO

'-"')

-'t PT-27. 2: I!J DATA St!Et:.T 1 -,JtlLY 1903.THWDOJJ StjRVF.ILMMCF.

/ F SJJItl STACK TIJICKtJF,SS:

III

/'/4 (3)

(q STRESSING POD J.nhD CF.I L Strain Force**

Stra.in Force**

(u in/in)

( l.bshe/-"N (u in/in)

( J bs) 0

<<)

COtJD ITIOi'J (2)

PREGSJJRE GAJJGE Pressure Force*

( si)

( Ibs)g/ddt R h51 POS ITIot J inches I JJ ITIAL:

0

~ a (geeO

<df"CCE~ C~

zS 0

nr' IWCREASIiJG:

2) JJYDtthULIC JACJ< NO.: A 3 WO /2-RA)1 AREA:
3) JJYDRAULIc Ptl)1P No.: 787/f4/A, PRl s. URE GAUGr; nn.: oat ~

tabor 5)

TENDQN 2NRPEOTIDN coIINENTr: ~i. ~a em

~e'O'Z, oM cour

~,r <

~~srke

- re84 r

COWJF.NrS IWCREASING:

LIFTOFF:

$<~

'p>tZ.

LIFTOFF

+C)c I IFTOFF: >4~ t J //rr E.

C>~02 tr s-7WOJ~~~ 7Z7. /

go >0 77~.7 ggyo

)

7 ~

pj's<:>7)'/gi 2- %~"

DECREA."ING:

n!Jnz

~

a I/

~ l0. 5 Z@do QZ/

0 2-

~/

DECRl ASItJG:

DFCREA'rrJG:

tt 2

z NOTII: (*)

(**)

(1E**)

ate ram force in column 2o:

force Ram area to be used to calcul

[Gage Pressure (PRIG)]

Load C.. 1 l Factor to be ))sed t rttr essiog Ro:1 Gage Factor to stressing rod gafle factor.

x

(

o calculate fore

~ in coluinn 4b:

See -httacl)tnt nt 1

be i)seri to calculate force in roil io col.i@no Jb:

S t r') in In it ia 1

.Si t ra in R atl i or})

co'IPI.ETEII DYi:

~

l)aTP): 7gP~l

PT-27. 2: 10 nnTn SIIFI;T l JIJLY l903.Trwnort sIJRvt'.ILLnwCF.

l) OIITE:

7/257&7 TFtlDOt<

tIO.:

rr

. IIII'I SThCI TIIICKIJFSS:

/'grx

2) IIYDIthUfIc JncK wo.:

A 3 5~4

/2 Rhw nRrn:

3) IIYDRIIur.zc Pllrlr Noc t 7V+r)7+

. PRER."vRR orruoE Ho.:

r3I3~lr)

Ocr Y

5)

TENDON XIISPECTION COIIIIENT.: /8v~cr A

rrCI7 rr cccrA Cc cr r vrv @rrrVvc A~ccc'

~

Ee (1)

COtJD IT IOI'I (2)

(3)

(it PRES~i IJRE GhIJGF.

STRrsllItJG ron LORD CFLL Pressure Force*

Strain Force**

Strain Force**

( si)

(1bs)N'idC4'u in/in)

( Ibs)q/Pd<(u in/in)

( 1bs)

Rn'I POSITIO!I inches I)

CO11'I I;IJTS IttITI))iL:

r>

XZ/0 ~ ACgmCA 0

ic)

"'gloo' WCRLPnS IHG:

IWCI<L'hSING:

LIFTOFF:

2s5.7 l 2 p2.

z 5 37 Ko~

Af/A'5X<

At 7 LIFTOFF:

Sf/~

~

6)'7 0 Pe~ t s/5 0 nrCRFnSIwG:

C'5l. r) gz Pr.~>>>>

C3F'J.

0N

)

$ 5)l'

.6 Ar/4 p7cp 'r DIJCRI hSItJG:

200(I DEC ItLPhS IWG:

o

~g

/

IIOTI

(*)

Ram area to be use(1 to calcul ate ram force in col.umn 2o; Forci.

= O,ggg 7 ~-l~ ~Y~

LGai3e Pressure (P"3IG)]

(**)

I.oad Cell Factor to be used to calculate forre in collat)nn 4h:

See httacl>)nent l

(*~*).Stressi>>g Rol Gage Factor tn be i)scil to calrulnte force in roil i>> col.urn>> 3b:

stressinq ro7~I) 2 TEIIDOti NO.:

2 )

IIYDRAUfIC JACIC )JO.:

iP J 5 ~/'i/ -/Z RAt1 AREA:

PT-27 ':1IJ

';III'IJLY 1903.TE)JDOtt SIJRVFILLANCF.

//

SIIIt1 STACI( TIIICKtJFSS:

9 P5 3 ) IIYDR/2UL)c PU/IP No 2 i c F 7 2)'/C7//

PRER.",URR G/I)ICE tin.:

023 TIP 22rt'1 /

2.2 5)

TEND0N INRppcT)GN cotpll'rNT.: ~co ooo

/L <4'ctl

/ov 12 c o o/vo/r/ / cv vtv.

o svvr'vv/C 2

or/re Iv/3 /vdo

//roc < cod/or, Dc I or oo/

2 coc /

r /'///

(1)

COWDITIOI'I (2)

PRESSIJRE GAIJGF.

(a)

(b)

Pressure Force*

( si)

(1bs)

(3)

(4 STRI'.SS I t)G ROD r.non CEr.r.

IW

~ca Yb~

Strain Force**

Stra in Force*~

/'

I' I "I RA',I POS ITIO)J inchr. s ri cot)') Ev r s ItJCRLiXSI IVG:

200g IWCREAS IIJG i 4)JI).'J LIFTOFF) 4'i i~~ p goy,

/.

gQ>~ / /gc 77iZ 33)

@<X/'.IF'I'OFI'I) t.

I IFTOFF:

gk~b (t) c / gu p2 I)'07 ye

//

/) U 1) z/o k t=~.r so/))> ~~'// Al./

/t/ /I DECRLPASIVCi 5/0 /

qz 50(, (

y'/

DECRL'AS It)G:

0 o

UO'I'I

(

)

Ram area to be used to calculate ram force in column 2o:

Forci' c

~ or v I t iI2 7~ +

LGage Pressure (PS3IG)j

(**)

[ oad Cel l Factor to he irised to calculatr fore

~ in coluinn 4>>:

See Attao>><<mt

(***) Sitressi>>g Rol Gage Factor tn be use~I to calculate force in rod ii) col>>In>>

J))i stressing roil gage factor x (Str;iin Initial Strain Iheailing) co'11'r.l'.Tvn BY:

~

t)%'I'I'.: 78/+g

I) I>I>TI:: ~/'Z. I ~

2) llYDRAULIC JACK NO.:

DATA SllFET 1

TFNDON NO.:

g-574'/2 RI>>I >II>ri>>:

r PT-27.2:10

',)

I JlJLY 1903.THNDOJJ SURVFILLXNCF.

I/

SllItl STACK TllICKtJFSS: / 2

~f/g 3 ) JlYDRAULIC PlP1P NO.:

7 7 7 4

~w

~a~'/')

TFNDON IWSl rCTION COrVJENr.":

7/Z5 PR>.S.",UII>..

G>>ua>: r>n.:

O ~~6 STRESS! HG POD GAGF. FACTOR***: g. g.~O 9 vo 5 tv'.SEa c~ I,r e 8ufTo~ A'c~/ r"curn.

c:~

o (1)

COWDI rIO'J (2)

(3)

(

PRES. l)RH GAl)GF.

TRJ'.S. I >JG ROD LOAD CF'.LL T>

hT ThT Pressure Force*

Stra in Jorce**

Stra.in Force**

( sl)

(Ibs)xjuoo(u in/in)

( IbsQsooo(u in/in) () bs)

PQS ITIOt J inches t)

CON'1 J'.I JTS IHCRLASII'JG:

INCREASING:

LIFTOFF:

5.25'(5 eiO. I>

nr'EC REA., ING:

DECREAS I tJG:

DECREASING:

~/O.C 9

gX 5I>7.'/

~ /l

>~~7

-L 5

/>g, /V n

~

/f 0

C>

0 IIO'I'I I: (*)

Ram area to be used to calcu) ate ram force in column 2n:

Forci.

= g gN + /Z>P W LGage Pressure (PS IG) ]

(**)

Load Cell Factor to J>e

>>seel to calculate fnrr. ~ in coluinn 4h:

See Attach>nn>>t 1

(*'.*) Stressi>>g Rol Gage Factor to t~e used to calrul ate force in roil i>> col.u>nn 'll>:

stressing rod gage factor x (Strain -'nitiaL.".train Reading)

>'.I>'IPI.I:Tl:.I> I>Y:

~ ~

I>>YTI'.: / ~JR

1)

D!ITE:

7/Z7/P $

PT-27

~ 2: 1I)

DATh, SIIEL'T 1 -.TIJLY 1983.TENDOII SURVE ILMNCE reer'FADOW tlO.:

5 l f>IIIII STACK TllICKtlFSS: // f/4

~ I

~,>>

~ ~ >>

..5

~ I s

2) IIYDuAuLIC VAC!C WO.:

r %45-gZ RAII WREA:

PRES. URE GAUGE tID.: D + 2 +

~)) h'/

)'rm

/Pd P 4)

LOAD CELL FACTOR**:

'"""'"' "'""'":4'*

5)

TENDON I!IEPECTIO!I CO!1)IENT.,: ~PQG~

A 8))Ã A GG C

wa&xGP Sur u r~Eu~ci

~rr c rdgc~7 (1)

COtlDITIOil (2)

~ (3)

(4 PRHSSIJRH GAIJGE "TRESSr.tJG rnD LOW I'1 CEI,L AT'B Pressure Force*

Strain

. Force**

Strain Force**

( si)

(1bs)x/~(u in/in)

( 1bsgrwd (u in/in) () bs) lj Rw'I vosI rIO!>

inches 6

CO!I IE;> rS I'tlITIhL:

EI 0

~ ~

(Z'e~o Vga o

p~~

o nr Zg LIFTOFF:

5-rO. 5-2 S yf 5'. t

/

7~8 ys-7s yl/. z pi-3$'oy.o m A 3 ~~~a '

PyO 757 8 PP

~

~'/'7.5 W /I J

/!5 7%T~

7//,2.

~~7~

70$ 0 a- '/z" 5/o.~

252 4

+PE. 2 3

5 g DECR!'.AS IIIG:

200(l

~55 7 tZ 5 O Z5-G). 5

//'/'ECltHAS It!G:

0 0

P

/j 3- ~J

) ~

, ~

'IO'I'I S:

(

)

Ram area to be used to calcu3ate ram force in column 7'o:

Fore>>

=

v-p

~

o~Z ~i r2,74 V'.Ga53e Pressure (PRIG) 3

(**)

I.oad Cell. I'actor to be use(1 to calculate fnrre in column 4b:

See httacI>>o1'>>t 1

(***) St ressi>>g Ro:l Gage I'actor to be>>se<1 to ralrul ate force in ro~l i>> col>>!n>>

strr s in@

ro<I gage factor x ("tr ~in Initial Strain R a

  • >g) CO'll)I,ETNI) BY: G I)5TI'.: QQ~ZY5+ DATA SllFET )) nITR: l2 /lJ PP.IInoI) wo.: 5'3 2) JJYDttAULIC JACJ< NO.: /C 7 S>~ 4'~ RAJ1 hREA: PT-27.2:l0 .TJJLY l903.TENDOJJ SJJRVEILLhNCE .illIt1 STAC Js TllICKt1 FSS: I-oem'/ Ccdg -I' 3) IIYORIIUU3c PUtIP wo.-. 7P~~/g PRI'.R,URI'. UIKIUR IIo., CIQ 0 CI Iform 4) r.OAD CELL FACTOR**: STRL. SING POD GhGE FACTOR~**: P. ZC'4') vpwnow )IIsprcp)o!I cowwwwvr>: ~e~Z~~ 4+Re/ ~ ocl c o ~/ ca~ I+ c inc.6 Ca~% mi ~C ) ( 5'c ~~< ~<>< K C >~~Qw. ~y</ Cede SPY sr-" (1) COtJD IT IOI J (2) PRESCitJRE GAJJGJ'. Pressure Force* ( si) ( lbs)) i'ceo (3). GTRJ'.SS I WG POD o Strain Force** (u in/in) ( 1 bs /lice C) Rh'1 POS ITIO!J inches (YJ LnhD CEr.r. QZ~II Strain Force** (u in/in) (] bs)~rocpo c~ COJJ'1 J N'J'S rtllTIhL: 0 I~ ~ ~ 0 ~z 0 zZ 7>E. S. Z <4ou~~4 >.g rs., c.Z ItJCRLPASI I'JG: LIFTOFl': 2000 2s57 i2 4 ~ 2535 >3 I) 503. / 'Z i/0'-/o g g g-z c 5DG'.2. -ld ~3 cy'p, 6 Z-Fp'I FTOFl': DECRL'A~iI 1'JG: $07 772. gpss 2 /pe f Z/ 2 7/> 788; 769'/ 7' -z J' 5o.5 DECRJ ASItJG: DEC R L'ASItlG: 200JJ 2<$ $ l2 & ZS>.g 'J3 /7 Q7. 3 2- "y~ Wo'I'II (*) Ram area to be used tn calculate ram force in column 2o: Force = 4- ~SSt~7/g [Gage Pressure (PSIG) j (**) Load Cell Factor to be used to calculate fore'n colu)nn 4J>: See httaclunent I (***).Stressing Rot Ciagq Factor to he used to calculate force in ro~l i>> coluInn 3b: stressing roct gage factor x ( itrain Initial.Sitrain Rea<ling) CO'll'LETJ'.D DY: PT-2 7. 2: I!) ':ATA SttPHT 1 JtJLY 1903 TENDOlf StJRVP.ILMNCP. I) DaTI:: /Z/ling TPNDOW IIO.:. svo-z Pg Stilt t STACti TflICKtJPSS: /~ +id 3) IfYDRAULIC Ptf>1P NO.: ~~~/(Qg . PRES. URI'. GNUGE NO.: ~g PO / dP 4) r.OAD CELI. FACTOR**: STRESSING POD GAGF. FACTOR'**: g. 2 PO / 5 ) TEHDDN INNpNOTIDN COIplNNT5: ~~+ rrz (l. ) COlJD IT!0'l rc so~ (2) ()- (ft PRESSlfRE GAUGE . STRESSrllG ROD f.OAD CELL ~a. IzT Pressure Force* Strain Force** Stra.in Force** ( si) ( lhs))(~ (u in/in) ( 1bs)l'I'aof2(u in/in) ( lbs) r> Rh'1 POSITIO!f inches G CONft ENTS lf1TIWL: fl Z'w 4yzAucr- " Z-'/ G. Z5 5. 7,)z s 25-P.s AF/~ Z-W I WCRL'ASING: 4 00'.f LIFTOPP: LIFTOFl'C) ~t'z 55 go roy, P 3Vgg 7z'/. f) @~A'- '//s 2 8'SO 7'. 0 y7 )'P'5/, f.IFTOFF: S~vn I <g O 0 a~f'/f g 7yp( 7/7 Df CRLPASING: <AC z5<y ~ly g r/y" t)f,"CRI'.ASIllG: 200() r,qr S~C / P g zoo. fZS DECRL'A'INC: NOTII nzrVP.: 78>Z/Sg (z) 1)am cree to Ize used to calculate ram force in column 2o: I'ores = f2 I 1~1DP ~X [Gage Pressure (PSIG) j (**) t.oad Cell Factor to be used to calculate fore in column ftb: See )))ttacl>>nent (*'*) Stressing Rot Gage Factor tn be usef1 to calculate force in rod in column 31): stressing ro~l gafle factor x (".train Initial Strain Renfling) CO'1Pf ETt:.tl DY: PT-27.2:I'J 'i'),.p DATA SIIFHT l.7IJLY l903.TENDOII SIJRVEILLANCE t ) DATE: 782 / 7 TEIIDON I'IO ~: & ~ II)II STACK Tll'ICKIIPRS: //
    2) IIYnttAuLIC ABACI< NO.:
    Qt/'- '2 RAt1 KOREA:
    3) IIYDRAUL<c PUrtP No.: 7
    /f~/g . PRES..URR GAUDS No.: <POPO WW c'Pdg 4) LOAI) CI'.LL FACTOR**: /t(/ g STRE. SING POD G)l,GE FACTOR***: g.g 46 5 ) TENDON ZIISRECTION COtVIEN'l'.,: ~err</oAt t) E'tt Z
    r. ~
    ooot/ oMr I<IM 5 v ~c-e mfr 8 7 w~ 4c'PA wr /'~ o~ 7 u 8 r (I ) COWDI TIOII (2)
    PRE, IJRE GAIJGE Pressure Force*
    ( si) ( Ihs) ooo (3) 4 ".TRESSrNG ROD r.owD cEr.r,R Strain Force** Strain Force** (u in/in) ( I bs)Y/~o( u in/in) ( ]bs) RA'1 POS ITION incl>rs ci COrC 4I;Nr. ItJITIWL: <I 0 I/2/-A' o Co 0 /r INCRL'ASING: ItJCIILPASING: LIFTOFF: OIJ'3 z~g.g 'Z p7 2'/ //O. 2 3 ~Y S/O. r</ A g- /'rg'pre 753 P 7 7g 7<<.r Z-P// '.IFTOFF: S~~ i gy~-o ~~ 7Or. 9'"". i)gs-gy 7/'g Z. I) 35'll + 7'. 6 S DECRL'ASING: <<4' 2 <O)t' rVI~ ///g DIJCRI AS IttG: 200tt zYF. (2$'s7.l /'0 DECRL'AS IHG: d D 0 I> HO'I'I (*) Ram area to be used to calculate ram force in column 2o: Force = p. fthm/O./8 ~/ [Gage Pressure (PSIG) j (**) t.oad Cell. Factor to be used to calculate fnrc ~ in col.u<nn 4b: See Attacbtn<'nt 1 ( *
    • )
    )trussing Ro l Gage Factor tn be used to cat cu1 ate force in rod in col.utnn 3b: stressing ro<I gaqe factor x ( strain - Initial Strain Rea<lin<I) r Y 4 l) Dr TE: Dl))Th, SIIFET 1 - JIJLY 1903.TE.IDOI1 SURVEILLANCE c 2 7/ TEIID011 Ilo~: 7 5 . II)H sT>lcl'll'tcKIIERE: /Ic c78 2) IIYDRI)>UtIC Ji)>CI( HO. s /P 3 ~~~-/2-RhI1 ))),REh: cub 3) (g STRESSING RnD Ln~n cELL Fj tP Strain Force** Strain Force** cg (u in/in) (1bs)p'/md(u in/in) ( ]bs) (l) CONDITION (2) P RESSi IlRE GI)).tJGF. b) Pressure Force* ( si) (I RVI POS ITI0!I inches hs) -s-o ) 0 A/I4 l-7 III IT I))>L: 0 ~Ye nay ~~$ 3 ) IIYDRIIUD>c PIlrIP Mo.: 7F ct /77/5 PREB..URI'. CRUDE Mo.: /gd C/ . ~A STRESSING ROD GAGE FACTOR~*+: 5) TFMDON INSPECTION CO>INERT.,: ~C'/vc/>cc ~1 0cc/ Ccp ~ Efu " u~ l COW>IEN ra !HCREAS IHG: Z55. 7 7/ zs-~g <~62 /~A LIFTOFP: X+pP I) < /0 /+ 6 4>'< 95 7 >"< 7i"7.'2 "7z~ /)) '%f4 Fy>~>> 0 fCPqp(1<<c) @ODD H'S. 5 5 ( Z 2 -o" LIFTOFF: Sn'< JI p g/p 8>'G T/Q. $ $5 pO "6 7/7 s~~ l) ~ 4'0 H~ ~~~2 ~ ~<'II 2F. 4 /A / i5 DECREASING: Dl CREASIIIG: DECREASING: 200()
    zsp,
    / z. / ZQP', 7 /'- '/I/ Z5yy 5 op4 /- 7 IIOTKB: In<teal.>train R along) CD'IPI ETRI) BY: . ~ l)VPF.: (*) Ram area to be used to calculate ram force in column 2o: Porc~ = P. FS AV~Vg {Gage Pressure (PSIG)3 (**) I.oad Cell Factor to be used to calcul.ate fore ~ in column 4h: See P ttachment l (**~) Stress!>>g Ao:I Gage Pactor to be use<1 to calculate force in roil i>> coI.urn>> 3b: stressing rof1 gage factor x (Strain C 4 1 PT-27 2:10 naTn sttrt;T l -,7tjLY lgn3.TrL>>nott stjRvFILL>NCF. I) nhTt;: l)/-/7 f~. THtlnoM tto.: 7+ . Itltt GTAct; TttlcKttrLss: +~IT(lc g-Py AL: /p vh"
    2) ItYDINULIC JACt< NO.: / J- >Ot/ 4'2 RMt ))LRrh.:
    z+ z rrWr4 3 ) IIYDRhULIC PUIIP NO.: r>>s ~~~Is PRES..URR GhllOI'. IIO.: t>>) Irt ir+ 4) LOhD CI'.LL PhCTOR>>>>: A/ A RTRERRII>>G POD GhGE PRCTOR>>>>*: A 5) TEIIDott INRphcT)o!I cDtl!IEN't.: ~Wc/rs/ Acre>>4 r'cwst/~5 r>>r esp>>>>sc. c>>>>>>Z/ /c/~ S ZCs 7 o 7C< f c sprf s>>rs>>rP (l) COlln ITIOI 1 (2) (3) PRESSt)RE Gh,tlcrL ~TRl'.SSI WG Ron lil } hh hB'ressure Force* Strain Force** ( si) ( Ihs) xv43oo(u in/in) ( 1 bs) r.o~n crLLL St,ra,in Force** (u in/in) (]bs) Rn't POSIrtntt inches G COt 1'lF'1'1" I11ITIKL: ItlCRLPASIHG: I1tCttLASIHG: (1 ludo 200'3 400.'1 O
    a. F.X 2s"5". 7 3/~
    4 2 t/ z-%z" re acCc2 g gf-d4'P rrc>>rc >>ss >>P t.'I FTOFt': 0 29tO 4< i) 29'44S 29& > Z~E A /2 2 "4S 4/gJ/A' Q~ S~c4) 54sr~ Bc gW 4'f-P~'g-
    r. M~ S~g LIFTOFF ~st) ggtfo 8<C gggu
    /ac 0 /2F'. 0 LIFTOFF's) E/24P 34. 4 /4/'c-/ " z) goy z.~u 5 7 5". f jv/8 <ca s/ gF~A gg,~ gC;gpss 4'0-~y'S/ Slit fuSCr/ CZIPWj>>+E C P M SS ~y WC~AS 2+Cf LIF/-OPt u ~/!sC E~WZ~Z 58 BFCt Bh&Btf~: 4!R+ l.4P/ u4G=F: I 756d r.)5'/do 5 3o.f ~ Ot:eVVa.awe-. ~1H-Zi~roZr:.) g6~o
    2. ~go 552
    ~ 2. l)t CttLPASIHG: ao O n 2>5 ~ '/- 'Ãs " 4/N>>>> 4srsss ri 4!c4, r cM) 0 s I IIOTR ~: (*) Ram area to be used to calculate ram fnrce in column 2o: 1'nrct. = O~/47 P/Z79+ (Gage Pressure (PS to) ] ( '*) t.oaL1 Ce ll Factor to l>e used to calculate fnrc: ~ in col.utn>> I 13: Se>> ht tacti!)u'>>t 1 ('~~) Stressi>>g Ro:1 Gage Factor tn be>>sert to calculate force in roEl i>> col un>>,th: stressinq roti gaqe
    factor, x
    ( 3train Initial Strain R at'llntl) chil't ETRI) IIY: ~ l)>>r! I:: I4!$4~(3. PT-27.2:10 DhTh SllHHT 1 .71)LY 1903.TEl'JDOlt St)RVEILMNCF.
    ~(l7-3-:"':
    7& >>,.: ~l'L /
    2) ttYDtthULIC JhCt< NO.: g7-5&d /g Rhll WRHh:
    3 ) IIYDRI<<UC,<<C P!I><<P NO.: 4<<L~f PRHR."URR GWIIOR tlO.: ~tv grA' ) f OAD CELL FhCTOR**: . TRESS IWG POD CAGF. FACTOR>> **: g . 5 ) TFNDON <<NRPRCT<<O!<<COIINI'.NT.,: a 4p' c~c d Cr'/'A (1) COtlDITIOH It)ITIWL: (2) PRESSt)RE Ght)GElil b) Pressure Force* ( >si) (lt)s) 0 (3) STRESSIWG ROD Strain Force** (u in/in) (lbs) 4 r.OWD CEr.t. ~n)i Stra in Force** (u in/in) ( I bs) RW'1 POSI rto!t inches ti CON'll;N'lNS It<CREhSING: ItJCttEhSING: ZA:7 4Z 5g 25@.Z / LIFTOFF: S +5'00 A>> g gg 7$ pvg gpg 6 )r
    • I'2t 'C'2 (
    9~j I -~E LIFTOFF +t) 5 LIFTOFF: DECREhSING: DECRI'.hSItlG: DECREhSINC: +500 4!)0V 2000 7D/.6 ii g lF.g / 'lip pre.P
    a. <<0 3
    5//. Z. 255 7 /~$ 0 254-4 A v/g" WO't'1)S: (*) Ram area to be used to calculate ram force in column 2o: Porc<<.' O. /PS+ O, (7. 7~'Y LGage Pressure (PSIG) 3 (**) l oall Ce 1 l. Factor to l>e used to ca lcula tr. force in cot utnn <<1 I): Ser ht t loll<<<<)<<uit 1, ("**) Stressing Rot Gaqr. Factor to be use<<1 to calculate force in r <<1 i>> col um>> stres. inq rod gaqe factor. x (Strain - tnitial. Stra.in tt a lin<<ll CO'l l't.ET!'.1) llY: ovr!'.: 44/2./(g$ .':.C.."..
    s 'r~
    I P7-27 ')10 DATA, StlEET 1 JULY 1903.TENDOIJ SURVEILLWNCF. ~t i gr)) 1) DATE: TENDON NO.: SllIrt STACIi TllICKtJESS: // ~lp "Wa C
    2) tlYDRAULrc JAcK No.:
    3-MO-/2 BArl AREA: >q r A-X?-4 $< I~S-4) fuoAD CI'LL FACTOR~*: STRLSSING POD GAGE FACTOR***. ~ / 5) TFNDON INSPECTIOIJ Cnr))II'.NTS: ~/-. g~ 4 CccA . -Z,, ~r.-;! ps'/ ~du ~. ld.~, 4C.Z uu4 owe.r7~/1~, 5&/ riL/~r r c. v~rr Q 4 rj~7~0'CAP g ~ OOI crAi'~i'0> (1) CotIDITIOl'J'2) PRE . URE GAUGE ttt"1 Pressure Force* ( si) ( lhs k(~o 3) 4 r> r TRES. ING I',OD I;OWD, Cl'.l l RVI POSJTIO'I ae Strain Force** Stra. in Force** ~ inches (u in/in) ( Ibs)L/~ (u in/in) ( lbs)x'rd~.' CQM' l'.O'I'S IIJ ITIi': ~ t) G 'F"~ A'C r' 2] 5) D 5o p<) ppz7 3 ItJCREASING: 200'3 7 m~3/ P gpss, L/ $ J ~O 5/9'. 7 '7 H~ 5 5 ~g. tr w -au +'/@ Ag.g ><YO LIFTOFF: )J ?.J I 7o5:5 9 7< 7-%" dd X:~,~ LI 7Z~ S '2>~~ 74/0. 5 y.z' <o. 2. INCREASING: 4I)0.') g/d, 5 2:.5 z6 ., t/ I Fm g 2@7. 7 ?- Yp'I FTOFI': DECREASING: 5 //' i>0 "<<~ 4/7. 8' 5/ g Xi/6 ~ Q/ >rlY./ ~~8 GO 2. .7- ~< 8&4.Z~/oP~>> DECBI'.ASItJG: DECREASING: 2000 </0. b ZS'/'m e- .q // 75 ZSg. / -s-7 t2-1w 258.4 9ggd 5/6. / 0 o g 3.0f~/ 773. g uo'fl //:~l:6 ( ~ ) nam area to be used to calcu).sta ram force in column 2b i parce = ~lz. g~ 7 + /2 75 x LGage Pressure (PRIG)3 (**) I.oad C..11 Factor to he used to calcu'1ate force in colulnn 4li: See Attaclvn<<it 1 (* *) Stressing Bo:1 Gage Factor to be used to" calculate force in roil in cnt tvnn ll>: stressing rod gage factor. x (Strain Initial Strain )tear)inil) CO'IVI,HTI'.D BY: I' ~ r s S R r / I' IP '-'"'..':. PT-27'. 2: 10, DATA StlHHT l,7tJfY l903.THNDOIJ SIJRVHILMNCH l/4 S)tl lkt STACI( TtlICKIJHSS: /0 l) DATV-y/- c'-EJ THNDON NO.- 8) rvrrr7////g PRES. URR G))UGR NO.) 7I09d /V/4 RTRNBSING ROO 0)!GR PBCTOR'**: D /9.7 W 2) ltYDRAUIIC JACtc: NO 3 ) IIYDRAULIC PtP1P NO.: Ci CON'II;O'I'S (3) Si STRHS.i I NG POD LOAD CHLL< RVI POS ITIO!1 Stra in Force** Stra in Force** inchrs (u in/in) ( I bs)rtoo>(u in/in) ( I bs)<~~ (1) COt<DITION (2) PRES. IJRH GAIJGH b) Pressure Force* ( si) ( 1bs)xlooo 4) LOAD CI".Ll, Fh,CTOR 5) TENGGN INspROTIG!I co)I))R)I'ps: /6'~d p~ Zc pot iepg c'a dr prow Si r)re +r c'c'c'~ s gi. r ZZow. JE/ + er J r ~ ~ =-- A ~ g~~A7 ~NG~. IIJITIKL: Zc~~ Y~~ ) I IPC ItHASI NG: IWCRL'ASING: LIFTOFF: t) 0 4cJO'.I Si// 6 Z O-//// <i~. r /i/'l 200'3 249. 2 LIFTOFF +t)% >gad 7z7./ 34 50 2 .0 nrem z/g LIFTOFF: I 2) 5 3 /0 ~r 1+5 + gc/gg .~3.'8' yz G o. 9 7" DHCRLPASING: DECRI'.ASI tJG: DHCRHh,SING: 4f)00 200II g/P.> 2 O Fg / ~ r/ 251 9 AP 2 I'.OPI:".: oPcr=sO~E16 0JR 7~/0( (*) Ram area to be u ed to calculate ram force in column 2o: [GacJe Pr essure (Pg IG) ] (~~) I.oact C..ll Factor to he used to calculatr. fnrce in column nlrb: Sier. httartiinr>>t l (***)Strrssi>>g Ro:l Gage Fartor tn be >>seel to rale:ulate force in roil i>> ctol i+i>> lb: stressing rocl gage factor x (Str tin Initial Sitrain It allinil) CO'IPI.BTRI) BY: ~ ))VPP: II-2/gg- 1) DATF.: /I-)6-5 2 2) IlYDRAUfIC JACK NO.: 3 ) IIYDRAULIC PtltIP NO.: 4 ) {.OA,D CELI, FACTOR**: ~C 2. T97~<rP RAtl AREA: PRESSURE GAUGl JJO.. ~ 0 'PQ V ~ r 't'i'-'tv': PT-27. 2: 10 DATA SIIFET 1 JULY 1903.TENDOtJ SIJRUFILI WNCF. -;... /Rr vsmoos tio.:.~20 milli svncs rnrcsnsss: // 5) TENDON INSPECTION COIPII".NTS: y~rt~ 7 /0/t-(1) COtJDITION ItJITIA,L: Z/=<d2 NM > (2) PRESSIJRE GA,IJGE b) Pressure Force* ( si) (Ibs)/{(ooO (3) 5 TRES., ING 'non r.non CEI. RW I POSITIO!J lm Strain Force** Stra.in Force** (u in/in) ( Ibsen/>w(u in/in) ( Jbs)2fvod20 'nchr.s 0 COII'II'.NTS LAr /d/'/' oA/f~gvsa /~ s /Je c s /vcv:r tuv 4f c r s s. 8/f . EE y de/ cf/7 H//v~ A'f rsdRA r h f f~ y /tV&//f'd2~ INCREASING: IHCREASING: 2000 I.IFTOFF: /) LIFTOFF +{'fr, LIFTOFF: /) 2.
    52. /0 39 ///
    472 6 /r ~r7.' par'ECRLASING: DECRI'.ASItJG: DECREASIttG: vl!Jn/J 200{I 5/{J, s Rw5 $ I /. / ><K.7 lZ1! 25 7.F Ar/ 3'OTR (*) Rnm area to l>e used to calculnte ram force in'olumn 2'o: Force = ~rs fd.s 0 It7/.2V [Gage Pressure (PSIG)] (**) t,oatl Ce11 Factor to toe used to ca1culatr. fnrc ~ in co1ufnn flies: Ser. Attact>>nf nt l (*"*) Stressing Rol Glgr. Factor to be usefl to cate:ulate force in roll in col unn Il): stressing rod gage factor. x (Strain Initiai Strain tteavtinft) 7 CO'II2I.ETEI) ttYt ~ ~
    • L.
    I 'L ~ ~ ,c]. r ~. ~ (... ~ ~ \\ >... - PT-27 ~ 2:10 DATA SIIHET l JULY 1903.TENDOll SlJRVEILMNCF. P /rP l-
    2) llYDRAUIIC JACK NO..
    A3 - $60-lQ RAt1 AREA: ~~7 ~sr/ r rr 4) lOAD CELL FACTOR**: jll/g STRESSING ()OD GWGF. FACTOR'**: 0 f 9'9'P' ) TEMooN IMEpEOTIo!I co!NIENT.: ~I'r rrrr ZAP m orrr/ c r cr/r 7 r'rr-Sr~c. cYnvcc. rr /rQ 0')2l{(% re' Jrd d~qrP gled.Pf% r rr)jrYOu g PE) Ec g ~u Z g O Cf g 4r)~lr (1) CONDITION IVITIWL: !'g. c eo /z'p lj 0 NIP zoo 0 /g rb 0 (2) (3} 4 C) PRES. URE GA{JGE TRESSING PnD LOAD CELr Rh'1 POS ITIO!1 pc Pressure Force* Strain Force** Stri.in Force** inches ( )si) (Ihs)V)ooo (u in/in) ( lbs))toce(u in/in) (]l)s)xgoi COh1<1I'. N ~1'g INCREASING: 2000 rl ZS-e. 7 Z g7 259.d. /1 /rg y- '/jc </'c. < =2. <~ 7 st+.@ gt'A 3 - 'Yrc" LIFTOFI': i ) 2 5 Y'(o , y a <'/7'9$ ~ 'JJ'c-/ g AVE g~z~ 3~/~ 7a g - 'O/!~. SroO 7~~. r i >t7 ~ - "/g" LIFTOFF: 2) 59 Fo <y r.J <V'x5 C ng gyp'" fg g +/ DECRl)ASING: DVCREASIllG: DECRVASING: 4(W0 2000 ~pc. P Z5 f'/ 5d g. O. Nr/g z~C. 7 0 O C qZ/A' s-2. p >/8 f/ NOTE (*) Ram area to be used to calcu).ite ram force in column 2o: fGage Pressure (P)IG)] (**) l.oad Cell Factor to t)e used to ca lculite forr'e in col.u!nn (""') Stressi>>g Ro:1 Gage Pictor to be >>sed to rilculate force in stressinq rod gage factor x (Striin Initial Strain Rea!1 i ~ C0'1l'LETED DY: Pcrcc = d. li"5'4 < !P <27'f 8'): See ht t nch!n>>n t 1 rod in colunn Jl): nVI'P.:. I/ ~ ~ e PT-27. 2: 10 "";~ s DATA SIIEET 1 JULY 1903.TENDOIJ SIJRVF ILL)INCF. <Pr 1) DATE: //-/7-$ TENDON NO.: ~/>~ .SIIItt STACt; TitICKIJFSS: //- '</jan
    2) llYDIIAUfIC JACK NO. ~0HZ:
    Rhtt hREhz PRES"..URt'. GhtiGE NO.: 0 Oe4 4) r.OAD CELL FACTOR'*: STRESSIHG POD GAGE FACTOR***z 0, <f FAT 5) TPNDOM <MSPNCT<ON COMMDNTT: ~/ c I r y J c ver. ~iC6 ~Ce CC)rsa r 7 /p~ 4br g J ~ 5c/v,/. ~wc-e u-reI~r r. (1) COIJDITION (2) PRE.. IJRE GAIJGE 'lit b) Pressure Force+ ( isi) ( Ihs hO<'f)o (3) STRESS I WG POD t OWD CEL Strain Force** Stra,in Force** ( u in/in) ( I hs)gIoPa( u in/in) ( l bs)XI<zz) <tm RA't POS IT IO!J inches I) COII' I NTS IIIITIAL: Ze~a A~C.) INCREASING: ItJCREASING: LIFTOFF: I J 2) LlFTOFF +I LIFTOFF: DECREASING: 2co) 0 7- ~Fr'<5-. 7. (yo g zan.z u/A Fp 25'P~ 5/7 Y 4'/8 2 ~~~ '7 / w/A 7'/'p'7Zr P/20 <," ~ 75'32 <lO g g OO 5/t. Z A///~ DECREAS IIJG: DECREASING: 200II z< 5,7 /3 zg 2<'5; z ~/jf o o Worl;S: (*) Nam area to be used to calculate ram force in column Zb: Porc. = 0 ~Pl. + ()~ l2>r/ X [Gage Pressure (PStG)j (**) I.oa<t Ce11 Factor to he used to calculate forre in col,uinn 015: See Attarl)in<>>t I (**').Stressi>>g Ro1 I age Factor to he use> col >>n>> stressing rorl gafte factor. x (Strain Initia1.Strain Ron><I) CO'IP lsETEl) BY: us I I'.: /r-2-/-E7 4 2// u 4) J.ohD CELL FACTOR+*: s 5 ~t PT-27 ~ 2e 10 DATh SllEET l - JIJLY 1983.TENDOJJ St)RVEILtANCE "Pr'ENDON tJO a / Z7 ~. SJJItt STACK TllICKJJESS: L,<, 9: g Z ~p p- " C' P~P CP fJ Il 2 ) IJYDRAULIC JACK NO a /C' 5'2 Rhtl WREh s y.; ".. d STRESS IHG ROD GAGE FACTOR*+*~ 0 7 5) TPNDON INRPRCTION COIINRNT. s ~mmefsr/ 3 seel gal Pdslf C 4's MPro~ . A'/ 7 ) 0~4to r f0/'4 1 COWDITIOH 2 PRESS l)RE (a Pressure ( si) Rh'l POSITIO!J inches 3 Gh!JGE STRESS IN!I ROD ~ LORD JELL se Force~ 'train Force" ~ Ctrain Force~~ (1bs)O>>> (u in/in)'. ( Ibs)ceo (u in/in) (]bs) icoe COhtf4I".NTS ItJITIAL: z <~GAL HCREhSING: IWCREhSIHG: 0 54 p>5/m Ar 7 er r fwcW 0!u 2 t)0'3 4<)00 8u 4'r~~A W r.IFTOFF: LIFTOFF +C)IL LIFTOFF! loeJ Cr~~
    Arm, Pb,r,g)
    DECREhSING: DECREASItJG: 4!)0O 2000 DECREhSIHG: IIOTI'..: (s> Rem.area tO De uaed tc CalCulete ram fcrCe ln COlumn 2'O: POrCe = O. ~9/e rf~ >2 7V X [Gimme Pressure (PRIG)] (**) Load Ceps Factor to be useful to calculate fnrre in colulnn 4li~ See Wttactv'1 fit (***)Stressi>>g Rol Gage Factor to be usefl to calrulate force in roti i>> col u'n>> )b: stressinf) rofl gage factor. x (Strain - Initial Strain R aflinfl) CO1PLRTRII BY: ~ D5TR: // 2) LPGA (I..(, PT-27 ':10 DATA SIIFET 1 JIJLY 1903.TENDOtl SURVEII LhNCE ~ ~ t) Dt>TN: /7-5 /csoz TENDON NO.: /5 5 /f SIII)I STACK TIIICKtlESS: /- j~ 2) IIYDRAUIIC JACK NO.: /PE >OP-/2. RA)I hREA: 3 ) IIYDRhULIC PIJHP NO.: 7 ~ ~gE 7A, PRES. URI; GhUGE NO.: I/sr' ) TPNDON It>5 PI:CTIQN CQtt>ICNT.": /C'+o A OOO/ ,r e 4 HTo cr oo s7'c'o ) o or Sg -2. FACTOR~**- O. 2 OO V X 5'//P/jlk ocr ed~4 cocor ~ Qorccoro/woe c'I) COWDITIOII (2) (3) (4 PRE.. I)RE GAIJGE TRI'.S., I tIG ROD LOAD CRLL ~et~> Pressure Force* Strain Force~* Strain Force** ( si) ( Ihs)4/DA (u in/in) ( Ibs)J(/Og(u in/in) ( 1bs) zth'I POSITIO!I inches I) CO) 1' I"I'I" It)ITIhLz (zero g.Ca~ -Pd. IWCRLASING: I) +) ~~/~ 2000 0 o m 9 /i-2<5.7 's S, i -~/u" IflCRLPASING z 4<)0'.) I/ ~ztz.s z <o z. z~zz 5-oz g- 'ly 8s ~ lJ~" 'z 7P '/ 7zzg'~"'5'H 7 >/8' ZOO 7/ >Zg 3 Z3 / 7>)cp y ~/g v- 'Fig" LIFTOFF: >'~~ ~ ggog 9. 37( $ 1 r/ Z'zo) 'T'o 7)'c', / 7z2) Z7rV 7y' ~/4 ~- /i 40') 0 5/a, >- 2509 50/ 8 o DECREAS If)G: 200() z~5;V rZZ< zP-7. 7 e/A s-Ypg'ECRL'AS INC: NOT> 0 o ~/'A 3-/z" c".m 'alculate ram force in column 2o: Forci. = i 0'~~ ~~~ (*) Ram area to be used to [Gai3e Pressure (PS IG) ] (**) I,oad Cell Factor to he (*"*) Stressing Ro:l Gage Fac stres" in@ roil gage fac used to calculate fore ~ in col i>tnn 4)3: See ht tact)tns'nt I tor to be i)seal to calci) late force in roil it> col.ivnn tor x (Str ~in Initial Strain It aslinfl) CO'I l'l.l'.Tl'.I) BY: I>vvv.: 7 77/ZS PT-27.2:10 DATh St]FET 1 - JIJLY 1903.TI'.Nnptt SIJRVF.ILLWWCF. i) DISTR: >/2tr/t3 TFt]Dote tto.: I g 0 // .illItl GTACI( Ttt?CKtlFSS: // rj'g
    2) I]YDIthULIc Jhcti Ho.: f 5 gg-/P Rhtt WRI'.h:
    3) IIYDRRULic PU'IP No.: 7gZ+/<'///
    PRER,URR onhor'. No.: 5I - Z. ~W y r/'oct'~iA..., 0 2 cc/ 5 ) TFNDON I NR PROT(O!I COIPIEN'Pn: ~~ Crea~ mesc/ ~ C c W es~&7 'C ri/e'4 AFCB. (L) COWDITIOII (2) PRESS]JR].'GhlJGI'. Pressure Force* ( si) ( lb s )4/04'0 (3)- (/1 STR]'.S S IrIG ROD r,own CI".r.L nn Strain Force** Strain Force** (u in/in) (~lhs)/Ccd(u in/in) (lhs) Rhett POS IT I 0!I inches Ci COh1'I I tTsi ItlITIWL /I ~ // Z7o 2~.s /A z-"/c pro. p zcz < <oc, z. /A) Z-3h" LIE'TOFF-S+~/ y 207 g 5 'fg U >.r, t. <g o.J><~'/'I'. Z go s .> ~ z- /'/'~r~I-p. 7.-y.o ~ISZFZ 7S 1. / /(/ /l 3-/4 Z~..lz sf.r LIPTOPP: 720.7 ~</8 2/.0 A-%(,'F.CRL'hS ING.. c]!)n 1 /I 7/d. ~ L5 & 2-p//). y' >/f DEC RI'.AS IIIG: DrCltLPAS ING: 2 0t]tI /z7i 2A.~ z - '/'/~" 0 o o ~/8 z-'h" IIO'I'F nnTF.: +27/PJ (*) Ram area to be u ed to calcu]ate ram force in column 2o: Porc>> [Gage Pressure (PSIG)] (**) r.oad Cell Factor to be used to calculate fore ~ in col.u(nn c]I>: See ht tac])rn( nt 1 (***) Stressing Rol Gage Factor to be use<] to calculate force in ro(] in column ]b: stressing rot] gage factor. x (Strain - Initial,Sitrain Iten(ling) r".0'll'l.l'.TID BY: APPENDIX D FORCE VS TIME CURVES Qbert, ICommonweaIth J, 850 FIGURE COMPARISON OF PREDICTED AHD MEASURED TENDON FORCES IHCLUDIHG R ETEHSIOHIHG FOR TENDON NO. 13 . Wftt&f~lftftflN%1Nfiffffffffff PREVIOUS SURVEILLANCE LIFT OFF 800 0 RIG CK.O 0 RT CK 0 OF R 750 IIIu O X O 700 I-URVE LAN L (2) 16%o RELAX. WITH RT 650 (1) E.S.R. WITH RT I II IIIIIIIIIIIm 95%o X (2) 600
    X
    'X OO .1 w 1.4 W OX IU IL' W I 2.0 2.5 OX W D ~ gg I w I C1 1 4.5 W ' X W IL'U Cl I I- ' R 4E0 I-CU X a: UII-w UI lE T LIFT 0 ~ I ~ I-gg gg CC W P) I FF VALU ',"i O ,I I ~r IU mf I- 'U ~ III I n 95% X (1) IIIIIIIIIIIIII E.S. R. WITHOUT RT CI ~ 9 6 12.0 13.6 1S.6 17.6 22.6 27.6 32.6 37.6 42.6
    12. 6
    850 F IGUR E COMPARISON OF PREDICTED-AND MEASURED TENDON FORCES INCLUDING R ET EHSIOHIHG F OR T END OH NO. 18 MtffHNftfttNRfffmfff Nlffill 0 PREVIOUS LI SURV FT OF EILL F ANCE 800 ORIGINAL LOCK OFF VALUE RT LOCK OFF VALUE 750 W O Ã CI x zoo I-650 SURVEILLANCELIFT OFF (2) I6% RELAX. WITH RT IIIIIIIIIIIIIIIII i (I) E S.R. WITH RT I I I I I IIII IIIIIIII 95% X (2) 600 OOX I-0 WU 'X W D CC W 1 I 2.0 2.5 WUX W D 1 gg I 4.5 IIIIIIIIIIIIII ~ -WUX s W CL'l 95% X (I) IY X 'X O X WI-T LI I I-FT OF "fI I-VALUE I- 'Y I, ~r W u) [ f I-W C1 I- 'c I-P Wi C1 H IIIP IL W lL W 1 O P 9 d 12 0 13 d 12.6 15.d 17.d 22.6 27.6 32.6 37.6 42.6 'F "t 850 FIGURE COMPARISON OF PREDICTED AND MEASURED TENDON FORCES INCLUDIHG R ET ENSIOHIHG FOR TEHDOH NO. 35 ttMfNTUfNtlN-ftffNtlNffmllllfffffl PREVIOUS SURVEILLAHCE LIFT OFF 800 D R 750 O r. 700 D I-RT LOCK OFF VALUE ORIGINAL LOCK OFF U II II0 IIL IIJUK J IIJ 650 600 RT TOF 7 IL'I-2:0Q lw J.f.I 1.4 LUE F VA 0 WUX W O W I I U 'X IJ.' 2.0 2.5 III UX W D 4.5 a a gg W I pC ~ an WP& 0 I an JL X WI-wl t 13.6 12.6 9.6 12.0 (I) E.S.R. WITH RT II II II IIIIIIIIIIII (2) 16% RELAX. WITH RT lflllllllllfill 95% X (I) I III I IIII II III I I 95% X (2) I-i K a. ~r IIJ IL I I- 'Y Ct I cc I As W I cv I-JL tC W ~ ' 15.6 17.6 22.6 27.6 32.6 37.6 42.6 850 FIGURE COMPARISON OF PREDICTED ~ AHD MEASURED TENDON FORCES INCLUDINGRETENSIONING FOR TENDOH NO. 36 l~lttNlNtmfNNtttttttftltHlt PREVIOUS SURVEILLANCE LIFT OFF 800 RT LOCK 0 LUE 750 W LI X O 700 WI-0 0 OFF LUE SURV IL CE N A FT 0 FF (1) E.S.R. WITH RT 650 RT LIFT OFF VALUE (2) 16% RELAX WITH RT 600 X I/I W ~ ~ I-OO j X I-Z 0 WuX W D lUuz lU (L' I I W II <<Pl Z lU ELD IL W 0 I IY K lg tUI-w I-W K I, C Ul ~ vs [ l W i OI C4 I- ' I I ~ ~ ~ ~ I ~ I IIIIII 95% X (I) IIIIIIIIIIIIIII 95% X (2) 1.4 2.0 2.5 4.5 9.6 'I2.0 13.6 I5.6 12.6 17.6 22.6 27.6 32.6 37.6 42.6 850 800 IL R 750 CI CI 700 I-0RI GINAL LOCK OF F VALUE RT LOCK OFF VALUE IL IL O IIL IUU 'X IU FIGURE COMPARISON OF PREDICTED AHD MEASURED TEHDOH FORCES INCLUDINGRETEHSIOHIHG FOR TEHDOH HO. 40 ffACtt&tfitfNNfNtNlftttttltNtNl PREVIOUS SURVEILLANCE LIFT OFF (I) E.S.R. WITH RT I IllI I I I I I I IIIIII (2) 16% RELAX. WITH RT 650 600 X OO ~ I-, XI-O WUX UJ IL' IU UX IU IL' IU I U, X UJ D. tUU 'X W D U-'IJ UX I iD U III IL W , O v RT I OXrO I-CL' IL WI-W Wa P I-tL UJ T OFF LU O E I-- JL UJ>. I Ill L I I l CV IIIIIIIIIIIIIII 95% X ('I) I IIIIIIIIIIIIIII 95% X (2) I-CI Pl 1.4 2.0 2.5 4.5 9.6 12.0 13.6 12.6 HSTRIICTIOH TIMF. AFTFR COHTAIHMFHTWAI.L CO 15.6 17.6 22.6 27.6 32.6 37.6 42.6 (YEARS) 850 FIGURE COMPARISOH OF PR EDICTED AND MEASURED TENDOH FORCES INCLUDIHG RETEHSIOHIHG FOR TEHDOH HO. 51 1ftUlttNIM-tll-.N1ttm~ttNtHtttltitt PREVIOUS SURVEILLANCE LIFT OFF 800 RT LOCK OFF VALUE v. 750 III U X C) 700 IIII-650 RT LOCK OFF VALUE SURVEILLANCE LIFT OFF Ijl UX (1) E.S.R. WITH RT I I I I IIIIIIIIIIIII (2) 16% RELAX. WITH RT 95% X (1) E.S.R. WITHOUT RT 95% X (2) 600 X W I-z. O X I '. X I O WUX W D WUX W O I 1 I 1 W ' z W D. zl:c +we J Ie I I-Ij: X X I III-W . I-W . >- I ~ I-I- Ij: X gg gg W j ~ Pl a..I RT LIFT OFF VALUE ~ I-f C W m[ L QP P ~ I W I ~I I- 'L' W Ml CV 2.0 2.5 4.5 6 '12.0 13.6 15.6 12.6 17.6 22.6 27.6 32.6 37.6 42.6 l 850 F IGUR E COMPARISON OF PREDICTED ~ AND MEASURED TEHDON FORCES IHCLUDIHGR ETENSIOHING FOR TENDOH NO. 53 1tWf~ffftttffttftllmtmtittttfttflfll ~ PREVIOUS SURVEILLANCE LIFT OFF 800 Y 750 W0 X CI x 700 Cl I-a CK 0 LO F F UE RT E LOCK OFF VALU URVEILLAHCELIFT OFF (2) 16/o RELAX. WITH RT IIIIIIIIIIIIIIIII 650 600 a/I X O Cl
    I W lI 1.4 WUX lU CCD IY lU I
    2.0 2.5 W0X W D I w 1 4.5 .- WUX W a/l 9.6 '12.0 E.S. R. WITHOUT RT 955 X (1) RT X I 0 X WI-w lU I ( ~ T OFF III I-W LIF I I-VALUE CI ~ I-I IL' CC W l Cg ~ ~t IU CI I- 'C CC 'U ~ an ' C4 CI 13.6 15.6 17,6 22.6 27.6 32.6 37.6 42.6 12.6 ~ ~. ~ ~ ~ ~ r ra ~ ~ r eo r ~ raa ~ aa ~ ~ ~ ~ 850 FIGURE COMPARISON OF PREDICTED AND MEASURED TENDON FORCES INCLUDING R ETENSIONIHG FOR TEHDOH HO. 60 tttt51t@tNtÃtitNtttttttttllttt PREVIOUS SURVEILLANCE LIFT OFF 800 750 O 700 , CI I-0 Rl CK OFF LO VALU LOC 0 IL a IL OI-I IL .I w J Z (I) E.S.R. WITH RT I I I I I I I II IIII I I II (2) 16% RELAX. WITH RT 650 600 l.l 1.4 WuZ IU lL' t 1 ZO W I 2.0 2.5 tUuZ IU lL' I I IL. I WI" 4.5 TIME AFTER UJ ~V "Z ) J 4 Q ~ V1 s (g . w 0-C) I-CL'K Z0 'Z ItlI-tU RT LIF I II t> TOF ALUE I s F V lll 0 I-- lL' IL IU 0 w I". l-t I t I o' I I I I IIIIIIIIII 95% X (1) IIIIIIIIIIIIIII 95% X (2) 9.6 '12.0 13.6 15.6 )7.6 22.6 21.6 32.6 37.6 42.6 12.6 CONTAINMENTWALL CO)INSTRUCTION (YEARS) r I N a 850 FIGURE COMPARISON OF PREDICTED. AHD MEASURED TEHDON FORCES INCLUDINGRETENSIOHIHG FOR TEHDOH NO. 62 ttMfftftflfWIfffftfNNff Nffflfffffmf ~ PREVIOUS SURVEILLANCE LIFT OFF 800 RT LOCK OFF VALUE A 750 IIIuA Or O 700 Q III 650 ORIGINAL LOCK OFF VALUE SURVEILLANCE LIFT OFF --WuX 'I) E.S.R. WITH RT ~ 'o e ~ ~ ~ ~ ~ ~'e ~ ~ ~ ~ e ~ e (2) 169o RELAX. WITH RT 9Sro X (1) 95'Pe X (2) E.S.R. WITHOUT RT 600 XI-X ! O I IIIuX Ijl D an IjjuX ljjCL'e Ij> I I I ulUX Ilj CC ' !IIP CC ~ 4 W an RT Q I-X WI-Ilj !a! I I-IY CC III I I I I-Ijj I-CC lL Ijj LIFT OFF VALUE C I uj f gg ~ ~I III I >- I o a Cel I- 'L CL Ilj ~ 20 2.S 9.6 12.0 '13.6 ~ 12.6 4.5 15.d 17.d 22.6 27.6 32.6 37.6 42.6 ~ee > ~ ~ ~ ~e-~ r >ee e~ ~ ~ a ~ ~ ~ ~ ~ e~ ew ~ ~ ~ r na >rara ~ aw'r anal ra> o ~ rara 850 FIGURE COMPARISON OF PREDICTED AHD MEASURED TEHDON FORCES INCLUDING R ETEHSIOHIHG FOR TENDON HO. 75 ~1ÃtflNf5%5fftttttttttfltl ~ PREVIOUS SURVEILLANCE LIFT OFF 800 ILL O Ili hC 750 lY CI 2:O CIz 700 I 0 RIGI AL N 0 0 F E CK 0 0 F VA UE VJUZ Ul K Oill (2) 'I6% RELAX'ITH RT I I I I IlII IIIIIIIII (I) E.S.R. WITH RT 650 600 a I. oOI 2: I O EUU 2'. Iil lCD llJUX lil tLD QJ I UX UJ Iil U 2: EU LUUX I ul IY'll I X X O T LI I I-FT0 I' 0 ALU I-CL ul I I-IL ~, C Iij i ~L I-I (g I + i QJ I >- ((HIIIIIIIIIII 95% X (2) IIIIIIIIIIIIIII gS/ X (I) 1 ~ 4 2.0 2.S TIME AFTER COHTAIHMENT 9.6 12.0 13.6 'IS.6 I7.6 22.6 27.6 32.6 37.6 42.6 12.6 WALLCOHSTRUCTIOH (YEARS) 850 FIGUR E COMPARISON OF PREDICTED AHD MEASURED TENDON FORCES INCLUDINGRETENSIOHING FOR TENDOH NO. 76 .... ttrttttltt. Eltlttttaa ~ PREVIOUS SURVEILLANCE LIFT OFF 800 0-750 WU OQ 700 I-650 600 X W CCI- 'X OO I WXW 1.4 RT LOCK OFF VALUE ORIGINAL LOCK OFF VALUE SURVEILLANCE LIFT OFF O'X WuX IU D W I 2.0 2.5 WOX W D X wt-w IU ' X IU IL'T LIFT OFF VALUE ~ e I-r IL'U X0 I-IL' IU.I W W I- 'L' W ~ I-IL IU I-CL'L W rl t e CC e 1 IU IL IU e/I P W W ~ C1 W I )-! I o'n. e ' r 22.6 27.6 32.6 37.6 42.6 4.5 9.6 120 136 156 I76 12.6 ve ~ >r s red n r nashua ~ ~ ~ ~ >reer ~ era ~ ~ r naervneervens ~ rerr ~ nra (2) 16% RELAX WITH RT (1) E.S.R. WITH RT I I I I I I I II II I I I I I I 95% X (2) IIIIIIIIIIIIIII 95% X (1) E.S.R. WITHOUT RT 850 FIGURE COMPARISON OF PREDICTED AND MEASURED TENDON FORCES INCLUDING R ET EHSIONING FOR TEHDOH NO. 93 .. tttNltttllt.thlhtMtNlllmt PREVIOUS SURVEILLANCE LIFT OFF 800 750 Wu OCO 'K O x 700 I ORIGIN K OFF VALUE L LOC .RT LOCK OFF VALUE SURVEILLANCELIFT OFF (2) 16% RELAX. WITH RT 650 -w (1) E.S.R. WITH RT 95% X (2) u u t lullIIIII 95% X (1) I I I I IIII I I II IIII 600 xOQ
    Iw l-I 1.4 0
    'O wu'X w lL D 2.0 2.5 wu X, w D W' Z w ~ ~ ~ ~ ~ &% ~ % t Ag ~ ~ ~ ~ ~ W RT )I I I 0 I-X cg WI-w W I LIFT OFF VALUE I 'w. ~I O I-I g a. w 0-IA I ~' I-r P w IoI I- ' ~ j cv I- ' ~ Cl 9.6 12.0 13.6 15.6 17.6 22.6 27,6 32.6 37.6 42.6 12.6 ~Al~ lit ~ A E.S.R. WITHOUT RT 850 FIGURE COMPARISON OF PREDICTED AND MEASURED TENDON FORCES INCLUDINGRETENSIOHIHG FOR TENDON NO. 116 ~ PREVIOUS SURVEILLANCE LIFT OFF 800 750 LJ O X O Cl 700 I- - RT LOCK OFF VALUE ORIGINAL LOCK OFF VALUE IL IL OI-LL tUUX LU 600 RT LIFT OFF VALUE zI-X0 LUUX UJ D IL'U IUUX LL: IL' IU WUX Ul tLD O , LU ItL X 'X O I-an ~ IIC X( IL I-I W IU IYi I-CL' W I. 0 I-- IL' IL-W I-J J oL C4 I ce. I W I CV (1) E.S.R. WITH RT II I I I III I I I III I I I (2) 16'%o RELAX WITH RT IIIIIIIIIIIIIII 95% X (1) i ~ ~ ~ ~ I ~ ~ ~ ~ ~ 95%o X (2) I-IL ~ IL' W ~ CI. 2.0 2.5 15.6 17.6 22.6 27.6 32.6 37.6 42.6 (YFARaa'i 4.5 9.6 12.0 13.6 12.6 TI)4F. AFTFR rANTAINI4FIJTwJLI I rnlJ~TRIIrTInN 850 FIGURE COMPARISON OF PREDICTED AND MEASURED TENDON FORCES INCLUDINGRETENSIOHIHG FOR TENDON HO. 120 . tttttlttttt. tltttttttt 4 PREVIOUS SURVEILLANCE LIFT OFF 800 750 ILI O X CI Cl 700 Uj I ORIG N A OC OF UE AL RT LOCK OF.,F VALUE IL II0I-IL IUU 'X IU IY (1) E.S.R. WITH RT RTLIF OFF U E 650 600 X X00'X e l-I 1.4 Z 0 WVX LU D lY IU I W0X W ILD 2.0 2.5 95%s X (1) 4 4 rrlWl4 ND (2) 16% RELAX. WITH RT X wt w WI I ttltttlllllllt( 95% X (2) ~ WuX LU CC'-[ W I-W ~ Ct. I- ' ~ W ~ llsrs I-LU 0 I-r W w LU I IL W Ilr I W Ir I oI cps I O l 9.6 12.0 13.6 15.6 17.6 22.6 27.6 32.6 37.6 42.6 ~ 12.6 4.5 ville a even rnssv s ssss sean. >>I a s ~ r no Irons sr vsnss liie s nrem 850 FIGURE COMPARISON OF PREDICTED-AHD MEASURED TENDOH FORCES INCLUDING RETENSIOHIHG FOR TEHDOH NO. 125 tffffffltffffff . thNtlMffM PREVIOUS SURVEILLANCE LIFT OFF 800 0 0 F AL R 750 III O X O 700 I-650 0 IGIN C 0 U VE E C IF OFF (I) ESR. WITH RT 95% X (I) flllllfllllllll (2) 16% RELAX WITH RT ffff ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ E.S. R. WITHOUT RT 95% X (2) IFT OFF VALUE 600 r ~ CI-r .. o', O I-r0 WUr W CC W I WUr W CL' W ff 1 I LlrrO I-r WI-I w W j p I-Cff'. IL' nl Ir . I-IL W I O I-i. CL i. C-ff W 0-w[ ~ff r IY ~ W r I oI ~ CV I-C5 ~ 2.0 2.5 4.5 9.6 12.0 13.6 15.6 17.6 22.6 27.6 32.6 37.6 42.6 12.6 ~ ~ ff ~ ~ ff ~ ~, g ~ ~ II 'I I 850 FIGURE COMPARISON OF PREDI AHD MEASURED TEHDOH CES INCLUDINGRETENSIOHIHG FOR TENDON NO. 128 0 PREVIOUS SURVEILLANCE LIFT OFF 800 750 OlL O X O CIx 700 I-650 ORIGINAL LOCK OFF VALUE RT LOCK OFF VALUE ll UO IL lU0Z lU CDIll (1) E.S.R WITH RT ffHmflffflfffl (2) 16% RELAX WITH RT I II IIIIIl1 I U I 95% X (1) lllllllllllltl 95% X (2) RTLIFT OF F VALUE 600 1.4 x IK0 lU V': IU lU t IU ~ u ~ IU f 2.0 2.5 lU lU I-C 'X I-; lU I-lU 0 4.5 9.6 I2,0 I3.6 I5.6 17.6 12.6 TIME AFTER COHTAINMEHTWALLCONSTRUCTIO AR$J I-- C-Ul an I C7-I- 'L'U I-R Ul Cl Pl C lU O P 22.6 27.6 32.6 37.6 42.6 piflie I S 850 'FIGURE COMPARISON OF PREDICTED AND MEASURED TENDON FORCES INCLUDING RETEHSIOHING FOR TENDOH HO. 133 .. ttlfffflItffff . ffffffffffff&tlNlff PREVIOUS SURVEILLANCE I IFT OFF 750 IJJU ILC O IJ X O X 700 IJJ I ORIGINAL LOCK OFF VALUE RT LOCK OFF VALUE NNNI~ SURVEILLANCE LIFT OFF 650 600 ill W I-X OOX 1.4 TI-X O ff WUX LLJ W I WUX W 2.0 2.5 (2) 16% RELAX. WITH RT ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ (1) E.S.R. WITH RT ttttttttttttltftl 95% X (2) I IIIIIIIIIIIIII 95% X (I) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I E.S. R. WITHOUT RT -WUX t-w LL'l 'X X WUX W CCD RT LIFT OFF VALUE "I I CC W ~ ~ ~ i. g e W. ~ L P I- 'L' W ~ CI. ff ~ LLL ff I- ' ~ EV I-r Lg P W ~ I I o'e. I-LL' 0 I-NX (g W Lll l p tr'. 1. O 22.6 27.6 32.6 37.6 42.6 l 4.5 9.6 12.0 13.6 I5.6 17.6 'I 2.6 TIMF AFTFR (.AIJTAIHMFHTWAI I. CONSTRIICTIOH (YFARS) 850 F IGUR E COMPARISOH OF PREDICTED AND MEASURED TENDON FORCES INCLUDING R ETEHSIOHIHG FOR TENDOH HO. 133 tttttlltttlt hNltattttt 4 PREVIOUS SURVEILLANCE LIFT OFF 750 IJI LI DCOIL O x 700 IJJ I ORIGINAL LOCK 0 FF VALUE RT LOCK OFF VALUE IINNNImNNIII SURVEILLANCE LIFT OFF (2) 16% RELAX. WITH RT ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 650 600 0 Z I
    - X O
    WUX W D IL'U I WVX IU a I a IU ' X IU ILD ~ ~n Ul lllP IL a W O . IUVX )3 MI I-. IL'-I W UJ IL W a W a O RT LIFT OFF VALUE I-r IL 'U lU 0- 'n L gg ~' I O IN I-UJ Ca (1) E.S.R. WITH RT ttftttttttttltN 95% X (2) E.S.R. WITHOUT RT 1.4 2.0 2.5 4.5 9.6 I2.0 13.6 15.6 17.6 22.6 12.6 TIJIL hPTPP CA'IJThINIJFIIT Whl I CAIISTRII(.TIA)lIYFARS) 27.6 32.6 37.6 42.6 850 FIGURE COMPARISON OF PRED1CTED. AHD MEASURED TENDON FORCES INCLUDING R ET EH 5 IONING fOR TENDOH HO. 155 1lMf~lftNlftif fffmfffflfftlfllf ~ PREVIOUS SURVEILLANCE LIFT OFF a00-In IL R 750 UIu IX OIL X CI x 700 650 ORIGIHAL LOCK OFF VALUE LUE IUu RT LOCK OFF VA IIIIImm0Itm~m>Ittz RVEILLAHCELIFT OFF e RT LIFT OF LUE-(I) E.S.R. WITH RT IIIIIIIIIIIIIIIIII (2) 16% RELAX. WITH RT fltilllllllllll 95% X (1) IIIIIIIIIIIIII 95% X (2) 4k e ~ ~ e ~ e e e e e e ~ E.S. R. WITHOUT RT 600 OO IW e 1.4 X I X e Q WuX W IL D W I I 2.0 2.5 WUX IU I I I I W. uX IU D. J + an O I-tL X g IU w W 9.6 12.0 13.6 15.6 17.6 12.6 4.5 t ~ e ~ ~ ~ ~ ~rn r neer e ~ ~ ~ ~ ere ~ r ~ e ~ ~ ~ ~ rneep pne ~ I venal lapr l np'a I- ' ~ I CL CV CC a. ~r W w[ l L ~t P W I I Ial ~ e O 22.6 27.6 32.6 37.6 42.6 \\ 850 FIGURE COMPARISON OF PREDICTED AND MEASURED TENDOH FORCES IHCLUDIHG R ETEHSIONING FOR TENDON NO. 160 f~lfJTDIEfNW11lffffiffff Nf PREVIOUS SURVEILLANCE LIFT OFF P 800 750 X O Clz 700 I-650 ORIGINAL LOCK OFF VALUE 0 0 UE IL U O I U WuX J IU CCO Vl (1) E.S.R. WITH RT i+11+i lIIIIIiiI II (2) 16% RELAX. WITH RT illlilllllllll 95% X (1) 600 OOX 1 ~ 4 I I J O WU 'X CU D 2.0 2.5 W O lU ~ CU j Pl l W I u: X I UJ (g I D ~ 4.5 TIME AFTER COt(TAltIM CL tU WuX lU CC JW qUr lU D tL CU X Or WI-Ul TO RT LIF I-CU I IL' 12.0 9.6 13.6 15.6 17.6 12.6 CTIOH (YEARS TRIJ HT WAI.L COHS ALUE O I-- CC L CC,'a. lU ~L I-lU I-IX W CI Pl 22.6 27.6 32.6 37.6 42.6 95% X (2) Attachment B i aov