ML17255A718
| ML17255A718 | |
| Person / Time | |
|---|---|
| Site: | Ginna |
| Issue date: | 01/31/1984 |
| From: | Demoss G, Fulton J, Herr J GILBERT/COMMONWEALTH, INC. (FORMERLY GILBERT ASSOCIAT |
| To: | |
| Shared Package | |
| ML17255A717 | List: |
| References | |
| GAI-2512, NUDOCS 8403290188 | |
| Download: ML17255A718 (147) | |
Text
GAI REPORT NO. 2512
- JANUARY, 1984'OBERT E
GINNA NUCLEAR POWER STATION CONTAINMENT VESSEL TENDONS 1983 SURVEILLANCE FINAL REPORT PREPARED FOR:
ROCHESTER GAS AND ELECTRIC COMPANY WRITTEN BY:
G ~ T. DEMOSS/J.
F.
FULTO REVIEWED BY:
J C
HERMs" APPROVED BY:
C.
CHEN 1
p/
PREPARED BY:
GILBERT/COMMONWEALTH READING, PENNSYLVANIA
',8403290i88.'84032b
~I
'DR ADOCK 05000244',
P
':PDR Qbert /commonwealth
TABLE OF CONTENTS SECTION TITLE PAGE PREFACE
1.0 INTRODUCTION
2.0 TENDON FORCES 2.1 2.2 2.3 2.4 2.5 3.0 4.0 Lift Off Forces Average Tendon Force Acceptance Criteria Comparison with Predicted Forces Future Need for Tendon Retensioning CONCLUSIONS REFERENCES TABLES Table 1
Tendon Selection for 1983 Surveillance Table 2 Measured and Predicted Tendon Forces APPENDICES Appendix A-Appendix B-Appendix C-Appendix D Tendon Surveillance Program Equipment Calibration DATA SHEET 1 Surveillance Force Data Force vs Time Curves Qbett
/Commonwcatth
PREFACE The second tendon surveillance after tendon retensioning of the R. E. Ginna Nuclear Power Plant containment structure was performed during July and November of 1983.
The report contained herein constitutes the final report for that surveillance.
Qberc /Commonwealth
0
1.0 INTRODUCTION
The 1983 surveillance of containment vessel tendons for the R. E. Ginna Nuclear Power Station was performed during July and November.
This was the second surveillance performed after 123 of the tendons (out of a total of 160 tendons) had been retensioned in June 1980.
A representative sample of 18 tendons was selected.
The list of selected
- tendons, and the reasons for their selection, is included as Table 1.
The procedure used for the surveillance is included in Appendix A.
During the surveillance it was found that the stressing rod coupler would not thread onto tendon 8'133, so tendon 876 was selected as a substitute.
The reasons for its selection were the availability of an existing force prediction calculation and force-vs-time curve, and the fact that it is adjacent to tendon 875 which was damaged following its surveillance inspection.
2.0 TENDON FORCES 2.1, Lift Off Forces The forces obtained from two calibrated measurement systems are reported in Appendix B.
One system uses the gauge pressures of the stressing ram as input into the calibration equation.
Force (kips)
~ 0.896
+ 0.1274 x Gauge Pressure(psig)
This equation resulted from a linear regression fit-of the force-gauge pressure data obtained during the calibration of the pressure gauge and stressing ram as one unit.
Qbert /Commonwealth
The second measurement system consists of the calibrated strain gaged stressing rod, which measures the force in the tendon directly.
The calibration equation for this system is Force (kips)
= 0.2004 x Strain (micro-inches/inch)
The above equation was used during July 1983 prior to the accident involving tendon 875.
That accident also damaged the stressing rod, requiring the fabrication and calibration of a new rod.
The calibration formula for the new rod, used for all tendon testing performed in November 1983 is Force (kips)
=.1997 x Strain (micro-inches/inch)
The Data Sheets for each tendon (see Appendix C) indicate which constant was used Eor that tendon.
From the completed data records in Appendix C (Data Sheet 1), both measurement systems obtained tendon forces that were generally in good agreement at all increasing and decreasing pressure levels indicating that confirming force data was obtained.
At lift off, the agreement in forces was excellent.
The official tendon forces are considered to be the lift ofE values measured just prior to applying the 6X force increment and using the strain gaged stressing rod results.
These forces are presented in column (1) of Table 2.
2.2 Avera e Tendon Force From column (1) of Table 2, the average force for the 18 tendon sample is 709 kips.
The sample includes four tendons (35, 36, 116 and 120) that were retensioned in May of 1969, as part of a 23 tendon group.
These tendons were not retensioned in June 1980 with the remaining 137 tendons in the containment.
As expected, the lift off forces for 35, 36, 116 and 120 were lower than the Gitbert ICommonweaIth
remaining sample tendons.
Therefore, to make use of the forces from the 18 sample tendons in order to obtain the expected average tendon" force for all 160 tendons in the containment, a weighted average should be constructed.
This was done, resulting in the expected average tendon force of 713 kips reported in Table 2.
The formula for calculating the weighted average is'.
137 (Flave)
+ 23 (F2ave)
Weighted Ave. =
160 where:
Flave
= average force of 14 tendons from June 1980 retensioning F2ave
= average force of 4 tendons from May 1969 retensioning 160
= total tendons in Ginna containment structure Following surveillance inspection of tendon
- 875, an accident occuired 'causing shims to be dislodged and some tendon wires to be broken.
The tendon was repaired by, first, detensioning, removing the broken wires, and then retensioning.
The result of the repair is that tendon f75 was restored with a tendon force of 531 kips.
An additional weighted average of 711 kips has been provided in Table 2 to reflect the "as left" force in tendon f75.
The formula for calculating this additional weighted average is:
136 (Flave)
+ 23 (F2ave)
+ F75 Weighted Ave.
160 where.'lave
= average force of 13 tendons from June 1980 retensioning F2ave
= average force of 4 tendons from May 1969 retensioning F75
= force in tendon f75 after repair 160
= total number of tendons QbeteiComnonwealth
2 '
Acce tance Criteria In the Ginna Technical Specification, Section 4.4.4.2 provides the acceptance criterion for the lift off forces.
The criterion requires that the average stress of the sample tendons not be less than 144,000 psi, which is equivalent to 636 kips.
The 636 kip value represents the minimum required average tendon force,for the tendons.
Actually, considering that in this surveillance (or possibly any surveillance) the tendon sample includes tendons that were not retensioned in June
- 1980, the weighted average of the sample forces (rather than the absolute average) should be compared to the 636 kip requirement.
The "as-found" weighted average of 713 kips exceeds the minimum requirement of 636 ki'ps by 12.1X.
The "as-left" (after Tendon 875 repair) weighted average of 711 kips exceeds the minimum requirement by 11.8X.
2.4 Com arison with Predicted Forces In order to determine if the tendons are experiencing an abnormal rate of force loss with time, the measured lift off force for each sample tendon is compared with the force predicted for the tendon.
The predicted forces were provided to RG&E prior to the start of the surveillance in References 1 and 2.
This information included force-versus-time history curves for all sample tendons involved in the surveillance, along with a table containing the forces from these curves which apply for this specific surveillance.
These predicted forces are shown in column (2) and column (3) of Table 2.
Also, for each of the 18 surveillance
- tendons, the force-versus-time history curve that was included in References 1
and 2 are provided herein in Appendix D.
Two sets of predicted forces are presented, which are denoted as ESR WITH RT and 16X RELAX. WITH RT.
The difference in the two sets of forces is due to different stress relaxation properties used for the tendon wires.
These properties result from the Gilbert /Commonwealth
evaluation of the stress relaxation testing performed at Lehigh University.
The method for establishing the stress relaxation values is summarized below.
A detailed report on this work has been issued (3).
In one case, the individual Effective Stress Relaxation (ESR) values of the tendons determined from the June 1980 lift off tests were used.
These are the values of stress relaxation which individual tendons had to exhibit in order for the predicted and measured forces to be equal in June 1980, after deducting other known losses.
The ESR values were then reduced by the factors developed from the Lehigh restressed wire tests to take into account the fact that the tendons were retensioned in June 1980.
These factors significantly reduce the ESR values
- and, consequently, result in higher values of predicted tendon force.
This effect can be seen from the figures in Appendix D where, for information, curves noted as ESR WITHOUT RT have been included in some figures.
These curves are comparable with the curves marked ESR WITH RT, the only difference being whether the retensioning effect on stress relaxation has been included.
In the second
- case, a stress relaxation curve developed from the Lehigh tests on both the unrestressed and the restressed wires was used.
The basis for this curve is the following.
From the test results of the sample wires (prior to restressing) for Tendon 76 (heat 830091) and Tendon 51 (heat 819477),
90o F stress relaxation curves were constructed by linear interpolation between the 68 F
and 104o F test curves.
The 90 F temperature was selected as an average value for the 85 F to 95o F range which the tendons are expected to have experienced during most of their existence in the containment.
This resulted in one curve for heat 830091, with a 16.7X stress relaxation value at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />, and one curve for heat 819477, with a 14.2X stress relaxation value at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.
The time of 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> was selected since the June 1980 lift off tests occurred at approximately 100,000 after GRert /Commonwealth
original tensioning in 1969.
In these tests, the average ESR value was approximately 15X for each of the three heats tested.
Therefore, since this value was within the 14.2Z and 16.7X values described
- above, 15X at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> was selected to establish the one stress relaxation curve to be used for all the tendons for future force predictions.
This curve was determined by scaling the 16.7X curve for heat 830091 to 15X at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.
The 16.7X curve was selected over the 14.2X curve to establish the shape of the 15X curve because the 16.7X curve was based on longer-time data; consequently, its shape was established more accurately out to 40 years.
The resulting curve with 15X at 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> exhibits a 40 year relaxation of 15.9X; therefore, it is referred to as the 16X RELAXATION case in Table 2 and in the figures in Appendix D.
Finally, the same factors discussed above to account for the retensioning effect (to reduce relaxation) were applied to the 16X curve, and this is noted as 16X RELAX. WITH RT in the table and figures.
The two relaxation cases described above were in effect for the July 1983 surveillance as part of the task to determine if one
- curve, namely 16X RELAX. WITH RT, could be used for all the tendons to predict forces which'would be in reasonable agreement with those measured.
The measured lift off forces appearing in column (1) of Table 2
are also indicated on the curves in Appendix D by a circled dot.
A comparison of the lift off forces with the two predicted
- curves, denoted as (1) and (2), generally shows good agreement.
The actual percent differences for the surveillance tendons are shown in columns (4) and (5) of Table 2.
From these results, the forces for 9 of the 18 tendons exceed the predicted values.
For all but one of the remaining 9 tendons, the amounts by which the measured forces are less than predicted are small and well within the 5X tolerance allowed, indicating that no abnormal force losses have occurred.
The one exception is tendon 8125 which is 5.3X below Qbert ICoemonwcalth
the prediction based on Effective Stress Relaxation.
- However, a
review of the force prediction calculations indicated that the Effective Stress Relaxation for this tendon, was much lower than for other tendons, resulting in a high predicted force using this method.
Consequently, the force prediction for tendon 8125 based on 16X RELAX. is believed to be more realistic, and the measured force is only 2.0X below this value.
Considering all the tendons involved in the surveillance, a comparison of the results between column (4) and column (5) indicates that the 16X RELAXATION case generally agrees better with the measured forces than does the ESR case.
Therefore, there appears to be sufficient justification to restrict future surveillance tendon force predictions to the case of 16X relaxation, accounting for the retensioning effect.
2.5 Future Need for Tendon Retensionin In order to determine the need for future tendon retensioning, it is necessary to compare the stress relaxation experienced at the 1983 surveillance with that predicted in Figure 5 of Reference 3.
This comparison has been done for the tendons retensioned in May 1969 where the 11X actual stress relaxation compares favorably with the 11.2X stress relaxation read from the 1000 hour0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> curve in Figure 5 at 124,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.
For the tendons retensioned in June
- 1980, the 5.4X actual stress relaxation also compares favorably with the 6.2X stress relaxation read from the 11 year curve in Figure 5 at 27,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.
From the 1000 hour0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> curve in Figure 5 of Reference 3, the average stress relaxation for the group of 23 tendons which were retensioned in May 1969 (1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> after original tensioning) is 12.7X at 350,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (estimated plant life of 40 years).
Applying this relaxation percentage loss to the average tendon force of 758 for these 23 tendons at retensioning produces an estimated average tendon force of 662 at the assumed plant life of 40 years.
QberL ICoaunonwealth
The average stress relaxation for the group of 137 tendons retensioned in June 1980 can be read from the ll year curve in Figure 5 (above) as 10.3X at 253,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (approx.
29 years after retensioning).
The average tendon force for this group at retensioning was 760 Applying the stress relaxation percentage loss to the average retensioning force produces an estimated average tendon force of 682 at the 40 year plant life.
In order to account for Tendon 875, which was restored to a tendon force of 531 following the accident mentioned in Section 2.2, a
value for stress relaxation of 10X has been read from the 11 year curve in Figure 5 at 233,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (approx.
25.5 years after retensioning).
The effect of this stress relaxation would be to reduce the estimated tendon force for this tendon to 478k at the 40 year plant life.
In order to compare the above.tendon forces with the design requirements, a weighted average tendon force at the anticipated plant life of 40 years has been constructed as follows'.
Ave. tendon force g 40 years 23(662)
+ 136(682)
+ 478 160
= 678k The Ginna Technical Specification, Section 4.4.4.2 requires that the average stress in the containment vessel tendons be not less than 144,000 psi, which equates to an average tendon force of 636k.
Since the predicted average tendon force of 678 at 40 year plant life exceeds the required minimum average tendon force of 636 by 42 (6.6X) it can be concluded that no additional tendon retensioning will be required for the remainder of the life of the plant.
Qbert IComnenwealth
3.0 CONCLUSION
S The results of the completed tendon surveillance, in which 18 sample tendons have been lift off tested, indicate that the forces in the tendons are being maintained at the levels expected, and no abnormal force losses have occurred.
In fact, the agreement between the actual and predicted tendon forces is better than that which is generally experienced on other containments.
Based on the forces measured in the sample
- tendons, the average force level of the tendons in the containment is 711 kips, and this exceeds the minimum required value of 636 kips appearing in the Ginna Technical Specification by 11.8X.
Based on the results of this surveillance, it is recommended for future surveillances that the predicted tendon force calculations be based on a 40 year wire relaxation of 16X, applicable to all
- tendons, and multiplied by factors to account for the retensioning effect.
The information necessary to implement this recommendation is in Reference 3.
From the results of this surveillance and a comparison of actual stress relaxation with that predicted, no future retensioning of tendons should be required for the remainder of the expected plant life.
4.0 REFERENCES
1.
Letter:
J.
F. Fulton (G/C) to C. A. Forbes (RG&E), dated July 18, 1983.
(13N1-GR-T4289) 2.
Letter.'J.
F. Fulton (G/C) to C. A. Forbes (RGSE), dated July 20, 1983.
(13Nl-GR-T4295)
Qbert
/Commonwealth
3.
GAI Report No. 2499, "Stress Relaxation Pro erties of Retensioned Wires", December, 1983.
Qbert /Commonwealth Tendon 8
GINNA TENDONS FOR 1983 SURVEILLANCE Heat
$P Reason for Selection From July 1981 Surveillance 13 19477 (51)
Load Cell 36 51 53 62 93 10355 (150) 39377 19477 (51) 19477 (51) 21504 39377 Retensioned at 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> (Largest Percent Loss)
Third Largest, Percent Loss Load Cell Second Largest Percent Loss Load Cell 116 125 133 155 Remaining Tendons 18 35 40 60 120 128 160 Unspecified 30091 (76) 39377 19477 (51)
'0091 (76) 10355 (150) 30091 (76) 21504 30091 (76)
Unspecified 30091 (76) 19477 (51)
Retensioned at 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> (Smallest Percent Loss)
Largest Percent Loss Load Cell Smallest Percent Loss Largest ESR from this heat Retensioned at 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> Arbitrary from Heat 30091 Arbitrary from Heat 21504 16X ESR from this heat Retensioned at 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> Smallest ESR from this heat Arbitrary from Heat 19477 ESR = Effective Stress Relaxation as of June 1980 (prior to retensioning)
(
) = Tendon 8 of wire for relaxation tests Summary by Heat 8:
5 tendons from 19477 (51) 2 tendons from 21504 5 tendons from 30091 (76) 2 tendons from 39377 2 tendons from 10355 (150) 2 tendons from unspecified heat TABLE 1
TENDON SELECTION FOR 1983 SURVEILLANCE Qbert /~alth TENDON NO.
LIFT OFF FORCES (KIPS)
PREDICTED ESR 16X RELAX.
MEASURED WITH RT WITH RT MEAS-PRED PRED ESR 16X RELAX.
(3)
(4)
(5) 13 730 693 711 5.3 F 7 18 35-"
36::
727 662 664 703 661 686 721 650 661 3.4 0.2 3 ~ 2 0.8 1.8 0.5 40 731 714 711 2.4 2.8 51 709 718 712
-1.3
-0.4 731 697 711 4.8 2.8 60 711 712 707
-0.1 0.6 62 715 723 720
-0.7 75 723 705 709 2.5 2.0 76 700 695 704 0.7
-0.6 93 706 702 711 0.6
-0.7 116:"
693 660 656 5.0 5.6 120~
680 693 661
-1.9 2.9 125 702 741 716 5 ~ 3
-2.0 128 155 160 709 745 721 716 709 711 703 703 709
-1.0 5.1 1.4 0.9 6.0 1.7 Ave.
Wt. Ave.(1)
Wt. Ave.(2) 709 713 711 702 699 2.5(3) 2.0(3)
="Retensioned in May 1969 (1) Weighted average using inspection value of 723K for Tendon 875.
(2) Weighted average using value of 531K for Tendon 875 as repaired.
(3) Average of the absolute values.
TABLE 2 MEASURED AND PREDICTED TENDON FORCES Qbert ICommonwealth APPENDIX A TENDON SURVEILLANCE PROGRAM Qbert /Commonwealth
ROCHESTER GAS AND ELECTRIC CORPORATZO GINNA STATION
~(,
CONTROLLED COPY NUBBER QfgNA STATl<
UNIT 4'1 COMPLETKt DATE:-
TlME:-
PROCEDURE NO ~
PT-27. 2 REV.
NO.
4 TENDON SURVEILLANCE PROGRAM FOLLOWING RE-TENSIONING TECHNICAL REVIEW PORC REVIEW DATE QC REVZEW PLAART SU INTEN NT QF.p l 9 1983 EFFECTIVE DATE QA~~
NON-QA CATEGORY 1.0 REVIKVED BY:
THIS PROCEDURE CONTAINS 18 PA GES
PT-27.2=1 PT-27 2
TENDON SURVEILLANCE PROGRAM FOLLONING RE-TENSIONING PURPOSE:
1 ~ 2 2 ~ 8 To provide th e instructions necessary to pe rform a tendon lift-offsurveillance after the re-tensioning program has been completed to verify that the tendon forces are within Technical Specification limits.
To obtain data needed to continue the investigation into the larger than predicted tendon losses.
1 TEST REQUIREMENTS:
2.1 To measure l,ift-offforces in eighteen (18) selected tendons including the four (4) tendons with load cells.
2.2 To compare lift-offforces with those predicted My applying
~factors developed from the retensioned wire tests at Lehigh University, to retensioned wire stress relaxation property curves.
2 '
2.F 1 2.3 '
To compare the two force measuring systems:
Strain gaged stressing rod.
Pressure gauge and effective ram area.
2 ~ 4 To test the 6> overstress effect.
2 ~ 5 ACCEPTANCE CRITERIA:
2'.1 The measured lift-offforce of each tendon will be evaluated in accordance with the present "Ginna Technical Specifications".
2.5
~ 2 Any tendon having a lift-offforce less than '3-6 GUTS (636 kips)'ill be considered not acceptable.
2 ~ 5.3 Tendons on each side of all unacceptable tendons will be surveyed according to the procedures of 2. 5.4 and 2. 5. 5.
They shall be sequenced next after the unacceptable tendon with the lowest numbered tendon being first.
2.5
~ 4 If both adjacent tendons have lift off forces greater than 8 ~ 6 GUTS (636 kips) and the average is greater than 636 kips, the group will be considered as meeting the specifications (comments wil'1 be included in the surveillance report on this tendon)
~
PT-27.2= 2 2 ~ 5.5 only one adjacent tendon has a liftoff force gr ater than 8.6 GUTS (63'6. kips) but the average of all three is greater than 636 kips the group will be considered as meeting the specifications'.5.6 If both adjacent tendons have liftoff forces less than 8.6 GUTS (636 kips) or either average in 2. 5.4 or 2 ~ 5
~ 5 is less than 636 kips, the group will be considered to not meet the specifications'.5 7
All tendons evaluated as unacceptable will be retensioned to 8.7 GUTS at the end of the surveillance.
2.6 2.6.1 2 6.2 2.6.3 2 ~ 6.4 The tendon selectidn process will:
Verify that tendon force losses have stabilized.
Survey enough tendons to extend present data base.
Include all four tendons with load cells.
Include four (4) tendons retensioned at 1888 hours0.0219 days <br />0.524 hours <br />0.00312 weeks <br />7.18384e-4 months <br /> after initial stressing, two (2) from the July 1981 Surveillance and two (2) additional tendons.
2.6. 5 Include ten (18) tendons from the July 1981 Surveillance and two (2) additional tendons.
2.6 6
Include eight (8) tendons that were not tested during the July. 1981 Surveillance, which are from representative wire heats and had displayed a wide range of percent force loss at the June 1988 Retensioning Program.
3.8 REPERENCES F 1 3
2 Gilbert Associates Inc.
(GAI) June, 1981 Tendon Surveillance Program (Rev. 1).
Ginna Technical Specifications
<< Section 4.4.4.
INITIALCONDITIONS:
4.1 4.2 4.3 Plant may be in any phase of operation.
Pressure gauges have been calibrated.
Hydraulic ram area has been calculated.
4 PT-27 2:3 4 ~ 4 pydraulic pump and ram are functional and ready for op ration C'.d.
4.5 Stressing rod and strain indicator have been calibrated.
C'.>. P.
4.6 Load cells have been calibrated.
C 4'.7 All tendons to be stressed will be in'spected for brok~e wires and corrosion prior to liftoff.
C. CP. r.
4.8 4.9 4.18 4'l Containment structure has been inspected for cracks, spallin~g etc..
j Test personnel have been qualified in accordance with A-l.18 Q cc C
Notify QC fcfr assignment of inspection personnel.
Test personnel shall be present during all phases of tendon surveillance and related set-up/take-down activities.
0
5.8 'RECAUTIONS
5 1
5 2
5 '
Observe all RG&E safety rules and regulations.
Do not exceed 6568 psi gauge pressure for jack and tendons.
Whenever hydraulic pump is operating, the reservoir vent valve must be open.
5 '
Do not extend ram more than
- 8. inches.
6.8 INSTRUCTIONS
NOTE:
The tendon surveillance sequence is presented in attached Table 2.
6 '
Pill in line 1-4 on the data sheet
( sample attached) and record comments from the visual inspection on line 5.
6.2 Hove assembled hydraulic jack to position for coupling the anchor head and place the pump in a convenient location for operation.
6.2.1 6.2 2
Carefully thread stressing adaptor onto tendon anchor head.
NOTE:
Leave a minimum of one thread and maximum of three threads on tendon anchor exposed below the lower edge of the stressing adaptor.
I Place jack assembly on tendon base plate.
6.2.3 Center jack chair carefully over tendon head and thread stressing rod into stressing adaptor ensuring full engagement.
NOTE:
Leave a maximum of thread on stressing rod exposed above the top edge of the stressing ad'aptor.
6 ' '
6 ~ 2.5 6.3 Inspect for approximately equal circumferential clearance between stressing rod and jack assembly.
Center compression shims and tighten jack rod nut at top (ram) end of jack being careful not to damage strain gaged area and the electrical connector on top of the jack rod.
Make the appropriate strain gage connections and check for malfunctions.
6.4 6 ~ 4.1 6 4.2 Before attaching hoses to jack for the first tendon, check pump and hoses by performing the following:
Set valves to pump position.
Discharge Valve "OPEN".
Vent Valve "OPEN" ~
Start pump and Gauge Valve "OPEN" at the same time depress the ball valve.
Pump.slowly to fillhose with oil until it comes'ut of the hose free of bubbles.
6.4.4 Release ball valve and start pumping again.
Continue pumping; hose will become stiff; gauge pressure will rise rapidly to approximately 2888 psig and then hold constant.
6 '
Reduce pressure to "8" psig and connect hoses to jack, suction hose to top of ram and'ischarge hose to bottom of ram.
6.6 Record all initial readings in the appropriate columns on
'h data sheet.
6.7 6.7.1 6'.2 Start pump and increase pressure to 2. 888 psi.
Record stressing rod reading in column 3a on data sheet.
Record load cell reading in column 4'a on the data sheet if tendon has load cell.
6.7.3 Record ram position in inches in column 5 on data sheet.
- 6.7.4 Calculate and record force values for the stressing
- rod, pressure gauge and load cell.
6.8 Increase pressure up to 4.888 psi and hold.
~
~
PT-27.2:5 6 ~ 8.1 Inspect for leakage of. hydraulic fluid and note if leakage i
is excessive.
6 ~ 8.2 Record stressing rod and load cell (if tendon has load cell),~
readings in the appropriat columns on the data sheet.
6.,8. 3 6 '
6.18 6'8.1 Calculate and record force for the stressing rod, pressure gauge and load cell.
Increase pressure until a 8.835 (I/32) inch thick feeler
'h can be inserted. into the shim stack at two equally, spaced positions around the shi'm stack.
1 Reduce ram pressure 1888 psi or until the feeler shims cannot~
be removed.
Increase pressure until both feeler shims canl be removed.
Note in the comment section if there is a large difference "in the load at which each feeler shim can be
~
removed.
This is defined as lift-off.
Record the pressure gauge reading on the data sheet in column 2a 6'8 '
Record the stressing rod reading on the data sheet in column 3a 0 6.18 3
Record the load cell reading for load cell tendons in column 4a 6 18.4 6.18.5 6'1 Record the ram position in column 5 of the data sheet.
Calculate and record force values.
Stress each tendon an additional 6% over recorded lift-off pressure.
6 ~ll~ 1 Record computed 6% overstress pressure on data sheet in column 2a.
6 ~ll~ 2 6 ~ll~ 3 Increase pressure to computed 6% over stressing pressure and record stressing rod reading, load cell reading anc ram position on the data sheet.
Place two.835 (1/32) inch thick feeler shims in the ship pack and reduce ram pressure to approximately 2988 psi.
6.11 '
Slowly increase pressure until the feeler shims can be withdraw from shim stack.
This is defined as lift-off. Record loac cell, pressure
- gauge, strain gage and ram position on dat-sheet.
6.11.5 Calculate and record force values on data sheet.
PT-27 ':6 6 ~ll~ 6 Ensure permanently installed shims are properly aligned under tendon head as pressure is reduced.
6.12 6.12.1 Decrease pressure to approximately 4,808 psi.
Record stressing rod reading, load cell and ram position on the data sheet.
6'2.2 6
13 6 13 ~ 1 6.13 '
6'4 6.14.1
'6. 14. 2 Record stressing rod reading, load cell reading and ram position on the data sheet.
Re>>check alignment of permanently installed shims
~ If shims need adjustment, re-perform liftoff, as determined in step 6.1i.5.
os nntil shims can be moved easily by hand, then r peat. steps 6.12 through 6.14.2.
Do not exceed 6568 PSI.
NOTE:
Calculate and record force values on data sheet.
Decrease pressure to'approximately
- 2. 888 psi.
Record stressing rod reading, load cell reading and ram position on the data sheet.
Calculate and record force values on the data sheet.
Decrease pressure until all load is removed from jack rod.
6'5 Remove jack assembly from tendon.
6'5 '
6'5 '
6.15 '
6'5 4 6.16 6'7 Disconnect strain gage equipment.
Unthread stressing rod from coupler.
Remove jack chair and stressing rod assembly.
Remove adapter from tendon head.
Record any comments concerning lift-offon the data sheet.
Move to next tendon.
COMPLETED BY:
DATE COMPLETED: /I SHIFT SUPERVISOR:
RESULTS 5: TEST REVIEH-DATE
~
~
~
~
ATTACHMENT 1 INDIVIDUALLOAD CELL FACTORS PT-27 2: 7 013)
Force
~ 722.4 8.15137
(/~ Load Cell Reading) 053 )
Force
~ 51. 6 8. 1561 (Load Cell Reading) 093)
Force
= 48.6 - 8.1495 (Load Cell Reading) f133)
Force
= 26. 9 - 8. 1413 (L'oad Cell Reading)
0
PT-27.2 8
TABLE 1 TENDON SELECTION Tendon 4
Heat Reason for Selection From July 1981 Surveillance Jg2
~125
/133 jl55 19477 (51 )
10355,.39377 (158) 19477 (51) 19477 (51) 21584 39377 Unspecified.
38891 (76) 39377 19477 (51)
Load Cell Retensioned at 1888 hours0.0219 days <br />0.524 hours <br />0.00312 weeks <br />7.18384e-4 months <br /> (Largest Percent Loss)
Third Largest Percent Loss Load Cell Second Largest Percent Loss Load Cell-Retensioned at 1888 hours0.0219 days <br />0.524 hours <br />0.00312 weeks <br />7.18384e-4 months <br /> (Smallest Percent Loss)
Largest, Percent Loss Load Cell Smallest Percent Loss Remaining Tendons i 18 428 75 135 (128 J68
)168 38891 (76) 38091 (76)
'8891 (76) 18355 (158)
Unspecified 38891 (76)
~
21584 19477 (51)
Largest ESR from this heat Smallest ESR from this heat 16%
ESR from this h'eat Retensioned at 1800 hours0.0208 days <br />0.5 hours <br />0.00298 weeks <br />6.849e-4 months <br /> Retensioned at 1888 hours0.0219 days <br />0.524 hours <br />0.00312 weeks <br />7.18384e-4 months <br /> Arbitrary from Heat 38091 Arbitrary from Heat 21504.
Arbitrary from Heat 19477 ESR = Effective Stress Relaxation as of June 1980 (prior to retensioning)
(
) ~ Tendon
~ of wire for relaxation tests
~
~
4 aa TABLE 2 TENDON SURVEILLANCE SEQUENCE PT-27.2:9 Sequence Number a
2 3
4 5
6 7
8 9
18 11 12 13 14 as 16 17 18 Tendon Number 155 160 13*
18 35 36 4Q sa53*
68 62 75 93*
116 128 125 128 133*
- Load Cell Tendon
APPENDIX B EQUIPMENT CALIBRATION G4lbett /CommonweaIth
1983 Tendon Surveillance (Ginna Station)
Linear Regression Calibration E uations 1
Tension Rod Force (Kips)'
0.2004 x Strain Stressin Ram Force (Kips) = 0.896
+ 0.1274 x Gage Pressure Load Cells No. 13:
No. 53:
No. 93:
Force (Kips) = 4.94
+ 0.15125 x Strain Force (Kips) = -1.95
+ 0.1525 x Strain Force (Kips) = 3.12
+ 0 '5106 x Strain No.
133:
Force (Kips) '= 3.42
+ 0 '5155 x Strain
Subject FRITZ ENGINEERING LABORATORY Lehigh University Calibration of Tension Link Load Cell 200.83.783.1 Sheet.......l.....of....l......
D,te 7/12/83 p ~
C.H.
R.ST Attn:
C. B. Forbes P.O.
352-44 Rochester Gas
& Electric Corporation 89 East Avenue Rochester, NY 14644 Appraveagp...>!A~
Director-Operations Indicator 8 035074 Switch Box ft 034917 (connected)
Gage Factor
~ 2.00 Shield Connected to Ground on Indicator Load
~(ki s) 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 400 First Run (11 )
+
248
+
494
+
746
+
994
+ 1246
+ 1492
+ 1748
+ 1990
+ 2242
+ 2490
+ 2746
+ 2988
+ 3238
+ 3490
+ 3738
+ 2000 Second Run (1I")
+
244
+
495
+
746
+
994
+ 1242
+ 1492
+ 1744
+ 1990
+ 2238
+ 2488
+ 2746
+ 2990
+ 3244
+ 3490
+ 3741
+ 1998 Average Run (0")
+
246
+
495
+
746
+
994
+ 1244
+ 1492
+ 1746
+ 1990
+ 2240
+ 2489
+ 2746
+ 2989
+ 3241
+ 3490
+ 3740
+ 1999
CERTIFICATE of CALIBRATION INSTRUMENT
~'ISHA1 0-3>D Jk ST~tklM I'nlblc'1~@
SERIAL NUMBER c9 z dym DUE STANDARD USED AI IiVIT I ALS As-Is Calibration Corrective Action Calibration S tan dar d Inst. Output=
Standard ts I
Inst. Output
.v'.
~ 4
/ ~
C I
~
e3 g
-t $ CC7 Cj.
~ /K'i'7
~ /9~) ~
~29
~ c-
~~vss u 3wf7
+3>
Calibration Procedure Used:
EAc
~
z Jc) J REMARKS:
- ~i>H.~r p 3 g g>g,+~7j=g 7/Agdvcl~ ~(Sr'viPP'c'~lit/4 crP~c~
~~vi7 Mc Dad 5, g -g >l~ JZ"i'yl7 c~ ~~,
JHOW~
< +~+8 fC <g)gi WHS JP// //gal'( gyp p 7
REFERENCES:
1200 BLH Model Manual Pages 5-15 to 5-16, Paragraph 5-65, Subparagraphs 1 to 43.
P-350A Instruction Manual, Pages 3-6.
Section 2.0 SPECIFICATIONS, Paragraphs 2 ~ 1 to 2.16.
Operating and Service Manual - 625 Precision Calibrator, Page 3-1,Section III, Paragraphs 3-1 through 3-20.
)
9 /.~~
oui~~
.ROCHESTER GAS ANO ELECTRIC CORPORATION ENG.
DEPT.
STATION:
/e 4~~
J ~mer5Z~
cc
/~E ~
~ A ~ 1)
DATE: 7/g p/
PAD I
OF lc~srom A~/
5frszw
. / G/cc
(~~) (cps)
Cu E~ Gree Er~r
&ys).
Ev~i /
v Ic 00
> ndO
~(n g rirg o
[y =
O. 72 g 8 O. z 2 76A.
'/
257. 5 Po.
/Z 7gF 7oZ. 5
/-
9'.
7
- 0. /
0.
O./
-o.g II riO P v~o0
'pa i
I g/. F
/27 I
/zg~ /
2<~ 7 K/
-o.
(~
- 0~ '/
- 0. 'I r..q pp 7DQ. 0 70/ 2.
I I
I I
~
~
i I
~
I
~
I I
~
I
~
~
I
~
0 I
0
~
I I
C I
I '
I I
~
I I
~
I
~
~
I
~
~
I
~
I
~
~
~
I
~
I
~
~
~
~
I
~
~
f
~
I C
I I
I I
I I
i
~
~
~
~
~
~
~
~
~
~
~
~
~
I I
~
I I
I I
~
I I
I
~
I
~
I i
~
I I
I
~
~
~
~
I I
I I
~ - I 0
~
~
0 I
~
~
I I I I
I I
I f
I
~
I I
\\
~
I
~
I I
I
~
~
~,
0 I
I 0
I 0
I
~
I C
~
I I
I I
~
0 I
I I
~
I I
I
~
I I
~
I 74'{.'~
O
~fWd 1 I
I I
I I
I I
~
I I
I
~
I I i I i I
I I
I I
I
~
0 I I:
I I
~
f I
I i I
I I
~
I I
I
~
I I
~
I I
I I
~
0 I
~
I I
I I
I I
~
I I
~
I
~
I ll'
~
I I
I 0
I
~
I I
I
~
~
~
I I
~
~
i I
~
~
~
i
~
I
~
I I
~
~
C C
I
~
~
0 0
~
~
I I
~
I I
I I
I
~
I I
~
~
0 I
f
~
I 0
I
~
~
I I
I
~
I
~
0
~ 0 I
~
~
I
~
0 I
0
~
I
~
~
I I
I I
I
~
~
~
I I
~
I
~
~
I I
I
~
~
I
~
I I
I
~
I I
~
I
~
~
I 1
~
I
~
I
~
~
~
~
i
~
~
~
0 I
~
~
I I
I
~
~
I 0
I
~
frf IV2VZ 4 Ov IC ~
~ v z*
Vd
+V
~ ff!
Xrl 0lf I0 40 10 f(g Ovr C/(J v I
C I
I I
I
~
I
~
~
I
~
~
I f i I
I I
I
~
I I
I
~
I I
I
~
~
~
~
I 0
~
~
0
~
~
I 0
~
I II, I
I
~
I I
~
I
~
I 0
~
0
~
0 I
~
~
I I
~
I
~
~
~
I
f
I
~
I I,
~
~
I s
~
I
~
I I
~
I I
I I
~,
t I
~
I 4
I
~
4 I
~
I 4
~
~
4 I
4
~
~;,
~
I
~ '
~
4
~
~
~
i I
i I
I I
I
~
I I
I I
I
~
~
~
4 I
~
I
~
~
1 C
~
4 I
s s
i <<s s
I I
~
I I
~
I I
~
I
~
I I
~
~
I I
s I
~
~
~
I I
I
~
I I
I I
~
4
~
~
I
~
I I
I I
I 4
~
I
~
I
~
4
~
~
~
4 I
I I
~
t I
I
~
I
~
I 1
I
~
I
~
I I
I I
~
I 4
~
I 4
~
~
~
I I
~
I 4
I
~
I '
~
I I
4 I
~ '
~
t 4
I
~
I I
I
~
~
I I
I 1
I 4
I I
I I
t I
~
~
~
I I
I
~
I I
~
4 I
~
I
~
I I
4
~
~
I I
~
I I
I I
~
I I
~
I
~
I
~
~
~
I
~
I 4
I I
I I
I
~
I I
~
~
~
I
~
~
cu
/pP
~
~
~
4, 4
~
I
~
~
4
~
I I
~
I s
~
I I
I
~
~
~
~
4 I
I
~
~
I '
~
~
I
~
I
~
~
4 I
~
~
4 4
I
~
I
~
~
I I
~
~
~
~
I
~
4
~
4 I
I
~
I I
~
4 I
4 I
I
~
I I
I I
~
~
~
I
~
~
I I
I
~
I I
~
I
~
4 4
~
I
~
~
i I
I I
~
C I
~
~
~
~
~
~
~
~
I
~
4
~
I I
I
~
~ r 4
4 I
~
I
~
I I
~
4 4
~
I 4
I I
~
I I,
~
~
~
I I
~
4 I
I I
~
I
~
I
~
~
~
4
~
I
~
I I
~ '
~
~
~
I 4
I
~
I I
I
~
t I '
I I
~
I I
~
~
I I
I I
I
~
~
~
I I
I I
~
~
I 4
C I
s I
~
I I
I
~
4
~
s
~
s
~
I
~
~
~
~
4
~ I, I
I I
I I
~
~
I
~
you Xj z*
tCO
<<C.'V
~C
? ess Qpo X~
O+
Y.
~
4 s
i I
I I
I I
I I
I I
I I
I
~
t
~
~
~
I
~
~
I
~
~
I I
i
~
I
~
~
I
~
~
I I
~
~
I
~
I '
1, I
~
~
~
~
~
~
I I
~
~
~
I
/
~
~
I
~
I
~
~
~
~
~
~
~
I
~
I I
~
I
~
I I
~
~
I
~
4 I
~
s I
I I
4
~
~
~
I I
I I
I
~
I 0
~at<<4
~
~
~
4 I
~
I 4
s /
4
1
ROCHESTER GAS AND ELECTRIC CORPORATION
- ENG, DEPT.
STATION:
g ~~~A l e Jc~
5ur~ei b~~~c~
l'P I7 DATE:
PyZ7/Py PAGE /
OF'y MADE BY: Q g ~~Qg~C CK~
~r
~,
~
I) ~
~
~
F CP"i) gOQ oo e~
- vr24 ZD
-0'/ o'7
"/Pu~
/ ewSzcm Pod s+z~i~ P~~l )
8'ed/ ~ /c7'~Z r
/C'o,./'/
ore~
('a-,~~.. )
(goo@ x sin~in)
SiWnn'AELA>7/>~ (4cxO cu44A..1S) i
> ~
~ 'I c>o d'c-dP
.r7op
'7g l) /J F00 0
'gz 7d 0'7 Q
-r 4V'r ed'O Zo Vd z,'/'f 29od Z
O
/5 7'f
/ 9'00 Z Z7D ZE'7 g/ Es zs S'-
S 3/5. 'V 9PO. g O'Yb. 1 5og. g Cent; 7 7op'. p
/o 00
-V os
/ s-uy
-yg PZ
-SZ 4V'
- 2. 0
/7 FF Sprees r Or)
".g ng f/r'pg g
'c gg
-geol
-zo wo z
cy 205 '/
Z "/'Z Z zs FF
/, 7 222o 2<28 2/ ~'f 7/I', Z 7y.
1 od. 0
D ROCHESTER GAS ANO EI.ECTRIC CORPORATION ENG.
DEPT.
STATION: g g~
~ a
~ 33 DATE:
7/g7//so FADE /
0F /
JOB:
g ~ g~ f~~~ $g~
~
QgE 7.
MADE BY: p g ~pg~~g CK:
~
~
r
~,
. Y'5FEW cd'/4877oz>
(2 old cddL b,.(3)
I o cc4L
'ci~~row iYo~l'7 r are
~
F'fee(W
~ Fd/gg cw ~.)
'/~'/.) /A'/ s)
/PUrJ /
Ic 00 7.ado oo
'?nd P FFI ry Eiq po e'oo c Egret v I Z Er.
c./
/4 C'4 Za ~/0 vZ t7 P7/
/z ro s- '/
/Woo r'2 VO g gr s/e5 Po-'l 3'o. C/
sod'. >
oC. 4 Ip'Z. P (So
~ 7
/ i /.
F's 4.F 7/3-3
'774. 7 5o2-0
'd.
J z/V' 2.
u./
- p. 7
- o. 7
/
-o. 4 FQ 7
O. /
/oo p Ic o0
.ooir
)
E PO ergo p p /rF r ( r9fj
/(~
(n 4 go<'/
p gc/
gy gg i S(.
i p'7f p gzo r ZL p C
/t/
/3 )j.
g/F ~
Py(
(.
5-Z 3r Cn/.
~t/.
1 c./
0 ~ '/
O.
.7
/.2
~
~
I~tCI.i.
c'I
~
~
I I
I
~ I
~ I ~
~
i
~
1 I
I I
I I
C
~
I I
~
l
~
r
, L084'Ks4 Cgli8~8rzu~
wing 7rjp I
~
~
~ r.. ~
~ )
I
~
~
I r
I r
~
~
I I
~
I r
e j I
r r
~
r
~
r r
~
I t
I I
~
r
~
~
~I I
I f
~I-I r
(H --- --
~
~
~
~
I I
~
~
l
~
I"%
~
~
~
~
~
~
~
~
I.ccV'ade C'gZiiPc A'TrOz~-
- '"jPun/ '2.
I I
I
~ '
~
~
I
~
I ~
I
.fad.
I
~
t.'"
1 I
~
~
h
~
~
't
~ l
~ ~
~
~
~
I I
~ ~
~ ( ~
~ ~
~
~.goo L
1 I
I
~
~
~
I
~
~
4 I r
~
~
>>P I I
W
~
~
~
~ ~
It I I~
I I
~'
~
~
I
~
~
W gpss' "i
. "'t I
>>L>>
~
~--
~
~ ~
Il I
~'
Pod; I
~
~
~
~
g $+0
~
~
~ ~
I I
~ I
~
~
~
I
~
I
'1' I
I
~
~
I
~
~
~
r
~ ~
~
I ~
h ~
I a
~
I
~ t-
"00 I ~
ROCHESTER GAS ANO ELECTRIC CORPORATION ENQ.
OEPT.
STATION:
g/~~g S crru'g Z-Ewmce'a
~ 13 DATE: ~rzp/gp pAGE (
cpy MAOE SV: ~ g ~g<g+5'K:
I T
CP"r)
SrWM 8 Ca</ C~ZZ 5draim (~ 'rciT)
, /e.Zr g
gap'.ol 7P~S/VM /Pop-.(
't ure~
C's-,~. )
(gOny g ~PEA ).
CZgr<~h'7rcrzi Golly C$~4 W. ~~)
E r
/ <~"-vari Ec A
~+i~.r~ C~
8 8CEPi~y IC7gr&8 1c-do
-2 It'Od
~o p y
- z9'oQ
~uoa
-is7C
>>//2 Z
-~/g zo 5 C'0
-g7/
oo f)
76
/S.o o
-3<dd VD d
-g205
/2 go
/6 zW tz./@
zo 0d z ~ z<
2549'/7 T
Z 60 29'6'S'OF SIC7 Swwr=
/z.g'. 7
/ps.
9 Z93'. 7 Jog. 2-76'. J VY5 5
py. g
<00 0
-7/6 V5 72 c/gg
-o 0
/o 00
/s-un
~a 0
!! o i)
I" ro I
-7 OP
/zz<
/6 45 2c X5 12 <Z
/ s-90 s'~r=
/ZZ-Z
/S'Y. F c8.6
".n oo
/7 pr ~r
'l< ig 0 00'"
~ r g n
-z/~ P 7 l7
- 2. g C/5
-r6'c7 Z
-r/7d g7 o 5 V( 5-I 28'/2 3/0'7 3/ 4o
~/QZ. P.
9'8/. f ago 7
@if Y zambo Nr cA~cw:
rove. L /Cc o Yg~
f'.
+l~tj4 ~~A 0-
/bCC /Py 0
corn cs.cc -Yg</
~ r-
ROCHESTER GAS ANO ELECTRIC CORPORATION ENG.
DEPT.
STATION: g g~~~+
ie-4~~
'J ~~er SZ~-c~-
OATE:
7/Z7/P7 P~GE / 0F/
. E/6i jgzs S cr-4 000
- 74. Z
,.7 9'. 2
- g. 7 I 5 00 7 nOO oO
'7pP
~r 1Cp g fear~ g.
~/q Od q"00 C
1Z 9o ZogO ae'<
zoo 7
DF q>7z 12/ C' VLF 2$'~7 v /s'2 F~. 9 std. 7 4o 7 vs~ s
/'2. 5 cps.O
/ps.d 2~s
~
3'07. 7
@ZAN. 7 O. 2 D,/
02 Or j =,2dOg CK)
/ /r 0 P Ic 00 7.000
~) Pd rrgg 0 ge r) ig
!jnP,'i
~p pp r'
ref~
iz ss 7.9 r7 tl/ g/
12 s-Z.
/~'P0
/
/Z 7/gP 77 C
/z.z. 2
/P
'oj
~ 4
<3-/
~rl. 0
- l. 9
/ZZ-jP/. P o$ ', 7 4'S.
5 yS/ 7 0.2 n.
- o. 2
j'l
~
~
t
~
~
t
~
I
~
~
JQ.
t t
~
~
I I
'I I
~ ~
~
~
~
t I
~ ~
I
~
~
t t
~
~
~
~
~t t
--god-I
~
~
t I
~
~
~
~
I t
I
~ ~
I
~
~ t ~
I
~
/
~
h
~
~
$H:--
~
~
~
~
~
~
~
.t.%i
~
~
0 4 I
I
%i imp
'j t
I
.3oo
~
~
~ '
~
~
~ "
~
~
~ ~
(
~
~
~
I
~
I t
t 1
~
t t t
goP
-roP
"--0 '
0
~
~ ~
4
~
P I
~
~
4
~
~
I E'
I l
~
I I
~ l.-
~ ~
~
I I
~
1 4
~ I
~
~
4 I
4 I
I
~
I'
~
4
~
P
~
4
~
~
~
4
~
I
- QO.
I f
~
".- ~
~". --. i..
I
~ 4 I
I 1
P
~
I
~
4 I
~
4 4
V
\\ ~
(.+
r I.
~
~
~
1
~
~
~
I I
4 P
~
I I
~
~
I
~
~ I 4
~
~
IP.
I
)
~
~
L
~
P 1 ~ - -- ~
~
~
4 ~
I
-E I
~
4
~
I t
~
I
~
I
~
I
~
~
~ I 4
~
~
I
~
I I
I 4
~
~
~
~
P
~
~
. ~
I I
~
~ 4
~
4 l
4
--god 4
PV I
~
I
I
ROCHESTER GAS ANO ELECTRIC CORPORATION ENG.
OEPT.
STATION:
Z>riviEL~~ce FP gg OG ~ 15 DATE 7/Z~/ y FAG
(
OF (
L.C.
MAOE BY: g g +pgg~<"
CX:
T Zc'r(ar('7rczz C(oaa E."~ ~ ~i)
Cr'"/)
i e'w<roia End
/P844i~g IC 7 IrW/
/P~'ro~ /err;/
't ur C~
)
C 2opvx 57/P>J
-~/gr 2.
oO
-9g /Z oo r~
-~/d 50 l~o rJ
.O D rI'3'Z 7~+
0 52o
~
>.Z.
/ Z <'/'
lW S/
5/t+r-p'/~'. z.
lWK. F Zso. 7
~c do
".n r~ y 8 7/
-z4 7z zo '//
r s-6C~
a/'s.
F 7g-T r7 g (00 0
-// C'n
-77 z
-2 6 2.
V~ n n
-Zo?.f
/PS+ 9
/CD3 37r 2 9i 7'/
v.Z d5 2<ZO.
zz s-c gazoo Qr//. f wu/- ~/
-oO
/o rI0
".rI lI g
!(ry.4 r) l/w q~ r) t'F) 0 E,I
~ g'J FrI
- Vali.'
/EI r'~/
-'r 2 7'/
zo ~K
-/4Z 9
-//
8'7g 0 Z ~oZ gg rg rZ V'4 r 6.-E 2n <6 2 8'/
~r2/
"// Il'2 I
g@po
/ 2 V~f l G 77 2/ ~/~
0 2r2a/v9'r<
r=-
qg.
(r,'Z/.5
/ / i/
2'~-Cr.
'7 r's.
7-z7f.
~r V7~i
~d/. d b 7rI. /
7C/. 7 Zoo Cr'lr.<rrr( CEZL HlJ
0
~
~
ROCHESTER GAS ANO ELECTRIC CORPORATION
- ENG, OEPT.
STATION: g grLrrtr'~
./-e-4o~- J.~~er dd~-c=
- IQ-7.:
IA ~ 'l3 DATE:
f/g/gJ PAD
/ OF/
~
L.C.
MABE BY: g g +P$gr-5'K:
A E ~
r P
f/8$'S'o8p c~L/
Sfrnrm
(~ ~-)
Tdr Sruti Iodl
/
- - 5'r'r~r~ r Force
(~,4) (@ps)
C l~'rCOrCe
- r. ~pr Ct'y S)
CGIE-r'FS p~c~g VSr>-<5 gzo 8'o Z.
.Err>
1 V
pi'. z r.s I
f7. 0 l 3Z. I o.
S'j i Qpo Prl oo oC IndO'Cr' or 0 il'O c000
~fr) g iz 6/
Zo 9'/
Zz F'I-'
of 775 Z-0 r'7 yZ S/
/S ~5 9 2 C'~
2-S 70 r s-4 gs-0 0 iVKb r"So. 7 777-7 v r'/.9 c.o ~-. 0
<7/. I 250. 5 s//. 7 7Z. 0 5o9.7-5'70. 2
- o. /
-p-3 0.6 r=pggb (piP) = Z 22 p O.yg// ('X~A'r~)
X Or p', Z oo Y(X)
(V 2,l
/0OP i ~00
.~~06
~<00
?Pr ic n0
- jnP.
-',~c t y r (":'fg
/437 g~ e(
haft 2r'r'f 32 ZY
'/I "S'Z F6~ o
/Z g4 i <'U 1 c //
2/9s 7~i yo
$ 8'2 /
/'i/. V wc~ 7 7/<
~ Z
<a/. 0 yr,'~. P 70/. 2 (z 9./
250.3 5@7,2
-0. 6
-0. 2 p'ogca (<rp/) = z. g2 Ho. I</o C"7jp+p~)
x
~. Q&gl'de+
.<ACE= 3,/2 f"O. /Sj'A CSrRarm)
l,f
/
p 1'
I
~
~
I
~
~
~
I I
I
~
~
I
~
I I
~
~
I I
~
I
~
I
~
I I
I I
I
~
I I
I
~
I I
~
I I
I
~
I I
I I
I
~
I
~
I I
~
I
~
~
~
I
~
I
~
I
~
~
~
I
~
I
~
I I
I
~
~
I
~ ',
i I
I I
I
~
I I
I I
~
I I
t
~
~
~
I
~
I
~
~
I I
I I
i !'
~
i I
~
~
I I!
I I
I
~
'I, I
I I
~
I
~
I
~
I
~
~
I
~
I
~
I
~
I I
I
~
~
! i I
i I
I
~
I I
I
~
I
~
I ~,
~
~
~
~
I
~
I I
~
I I
~
~
~
I I
~
I I
~
i
~
I I
I I
~
I I
I I
I I I
t I i I
~
I
~
~
I I
~
~
I I
~
~
~
~
I I
I
~
~
~
~
I I
I I
~
I
~
~
I I
~
I
~
i I
~
~
cv 75
~
I I
I I '
I ll
~
I I
I
~
I I
~
I I
~
I
~
I
~
I
~
I I
I
~
I I
it
~
I I
I
~
I
~
I I
I I
I
~
~
~
~
~
~
~
~
I I
I
~
I I
~
~
~
I
~
I I
I
~
I I
~
~
~,,
I
~
I I
I
~
I ii
~
I
~
I I
I
~
I
~
I
~
I I
I I
~
~
~
I I
~ r I
~
~
I
~
I i
I i
I I
I I
~
I
~
I..
I
~
I I
~
~
I I
~
I I
~
~
~
I
~
I I
~
I 1
I I
~
~,
I Ir V
o PO
)C!
V6
+V
)Od I
~
~
I I
I
~
I I
~
I I
I I
~
~
I I
~
I I
I
~
~
I I
~
I
>C g OilY
~
~
~
~
~
~
I
~
I
~
~
~
a I
I i
I a
I
~
I I
a
~
a
~
a
~
~
a
~
I
~
~
~
~
I I
i i
I a
a
~
a I
~
I
~
~
1
~
I I
1 a l I
I
~
I I
~
~
I I
a
~
I
~
I I
I
~
I
~
I I
I
~
I I
~
I I
I
~
I I
I a
I I
I
~
I I
~
a I
I I
~
~
~
I I
~
~
I I
a I
I I
I i
I I
~
~
I I
I t
I I I
~
a
~
~
I
~
I I
l
~
I I
I I
~
I I
I I
I I
I I
I a
~
~
I I
a
~
I I
I I
~
~
~
I I
a a
1
~
I a
~
I I
i 1
I
~
I
~
~
I I
R I
I i
~
R
~
I
~
I
~
I I
I I
1 I
1 I
~
R,
~
i a
I 1
1 I
I I
~
~,
I I
~
I I
I I
~
I I
~
I I
I a
t I
I I
I a
~
a
~
I I
I
~
~
I
~
I I
~
a a
i I
I a
I a
a
~
I I
I
~
~
I I
I
~
I a
I I
a I
I
~
I I
~
~
~
I
~
~
~
~
I I
a R
I I
~
a
~
I I
I a
I I
I I
I '
~
~
~
1 I
I
~
I
~
I
~
I I
I a
~
I
~
a
~
I I
I I
~
I a
I I
~
~
~
I I
/
I I
~
a i
I a
~
I
~
I
~
I
~
~
~
I a
I
~
~
I
~
I
! i I
I a
I t
a
~
I a
~
~
~
a
~
C
~
~
I I
I
~
I I
I
~
a a
a I
I a
~
I
/
I a
'I a
1 I
I
~
I
~
I
~
a a
~
I
~
a
~
~
~
I
~
~
I I
I I
I
~
~
~
~
I a
I
~
I I
a I
~
I a
ZV qPJ
<15 t g 1
~ci zv
~L Oy
~
I I
I
~
~
I
~
a
~
~
a
~
~
1
~
~
~
ROCHESTER GAS ANO ELECTRIC CORPORATION ENG.
OEPT.
STATION:
G/~~g
/ g~J ~
Jerry'gl l L<<~Ce !'5' g MAO'V:
~ g PPg/~r cK' C
/V
~ G ~ 1J DATE:
~)~p/gg PAGE )
OF/
~
~ V I
~
E F ~
P Ci "/)
l-cow/ C'cD PiFFF~ (~,'iA )
geo Ji~g, I
E
+0g oo c~
J~C'0 caO d
'7c d 0
".y pp eOO 0 c/ ~p o/
-qz of 3'"r 72
-3'Y>
-7/o l
-Z7o 0
~ f$'g (
-/vi<
-Pa /
-V FC IZ 22-
/DZ V'os/
2'/5 /
2 9//
z~oo~
VZ0Z
'27 f2'
/$ 7f WZ24 Z.s 7/
qcf. f
/52.1 1E/.
/~
7 v/ 6
~ z.
v~./
5o7, 7 los&
~g nCI rp g t7 r)
-L-,/I,I P
-c
~ err
-'/7 2'/
-.? 9r?4 S 20
-~ Or. <
6'/0 l2 /E go6Z 5 7Z.
/Z 9 7 lb 7Y
/
7'6 2Z 2.5 s 3/- 7
I
~
d 1
ROCIIESTER GAS AND ELECTRIC CORPORATION ENG.
OEPT.
STATION: gg~~+
P/e-4~ f'ail/~-C
-- rig-Z..
+A ~ 13 GATE:
P /g/jy PAGE /
OF /
MAOE BY: g g
+g/QPg $'K:
~
~
F Ysf<N cgz b748770u (fold ctu Ad/)
E
~
F I
E
~
C,o/P CcL/
s/i~.~
l~~~-)
I QOO IZZ 2-go I
gd5 000 I
8'V'b 7C~~/PM
/I PO/
5frulm:For cc
(~.Q) (ty )
0~
/Peri 1
(t)
/52. 0
/ s'/-6 C l~Ric~
8z~r Cry S)
/3'.Z (i
PF'.E
/dms
/. 2 0'- s
-O. Z I
> ado tnd
/J
~c pg
!!Ir cg <o d
<oo 0 e Prg cr
/62
~/
gp I/
gSOF iz ~Q 25"3' qcgO
'Z5/. 7 7 b,2 gyes~
c eye/p
%0 7..2 7~g, //
<oy.4 O. 7
-o. <
-o. g
-o. '/
- 0. <
- o. I
+PA CN P+//~ ~ f, /0 7 0 /5/g C/7H//PFEJ/
Y (x')
(V) 2.
5
/odp
/ ~DO
.woe
'J.> Pd 6'/o
/z 1E
/GPF gdgZ
@77
/S 5'7
/~-7</
ISY 7
'25/, 7 A,'/
0's. /
/
7-7
/5. 7
-0. T
- o. /
zvzo l
/gab 75, 7 7/.
"ic'
!jnt' fc',r 3 P
PE Jw zpcj
~:oq "7C'/
/22
~
Zc I 7
~r74
< r..'/
< ~r,/
57/. f
/// s,
//'Y2 T A~./
-o. 7
-o.F "0,
I
~
I
~
~
I
~
I I
~
I I
I I
I 1 '
i I
~
I I
~
I
~
~
~
~
I I
\\
~
~
s 1
I I
I I
I i f
I I
I
~
I
~
I I
~
I
~
~
I
~
S
~
t I I
~
~
~
1
~
I
~
I
~
I '
I
\\
~
I
~
I I
I
~
~
I I
~
~
~
I 1
~
~
I I
I f
~
I I
I I
I I
C i
I
~
~
I f
~
I I 'I s '
I
~
I
~
I
~
I I
I I
~
I I
I I
I
~
~
~
I
~
I I
I I
~
I I
I I
~
I I
I I
~
I I
i I
I I i
~
I
~
I
~
I I
~
I I
I I
I I
t
~
1 1
1 I
~
\\
I
~
I '
I I
~
I I
~
I
~
~
I
~
1 I
I 1
~
~
I I
I
~
~
I I
~
s I
1 I
~
~
I
'I
~
I
~
I I
~
~
I 1
~
~
~
~ '
I
~
~
~
~
I I
~
I I
I
~
~
I I
~
I I;
~
~
I
~
~
I
~
~
~
I I
I I
~
I
~
I I
I I
~
~
I s
I
~
I s
I I
I I
f I
~
I I
I I
I
~
I
~
I I
I I
I I
I I
~
I I
~
I I
~
I I
I
~
I
~
~
I
~
I '
1 I
~
I I
I
~
I I
I I
~
700 O
r 500 I '
i I
I
~
I I
~
I
~
~
~
I I
I
~
I I
~
I
~
~
I I
~
I I
~
~
I I
I I
~
~
I
~
I
~
~
I
~
~
~
1 I
~
I I
I I
~
I
~
I I
I I
~
~
I
~
~
I 1
I
~
I I
~
I I
~
~
~
~
I
~
I I
~
s
~
~
~
~
1 I
~
~
~
I
~
~
I I
I I,
I I
~
I I
~
I
~
~
~
~
I
~
I I
~
~
~
V I '
~
I I
I I
I
~
I
~
~
~
~
I I
~
I I
I xj Cf Ci r V 4g X Z Ctf sf s
,'~
~
I
~
s I
1
~
~
I I
I s
1
~
~
t
~
~
~
'I I
I
'I
~
I
~
~
~
I I
I I
~
I
~
I I
I I
I
~
I
~
I od 740
~
I I
IA tP very',g ggsrr lr7r) i ti r f.,:.. /
~
I
I I
I II; I
I
~ '
~
I I
I
~
I
~
I I
I I
~
I I
1
~
I I
I
~
I
~
I
~
~
I
~
~,
~
J
~
~
I I
~
~
I
~
I
~
~
~
I I
~
~
I
~ '
~
~
I I
~
I '
~
~
~
~
~
I I
~
I
~
I I
I I
I
~
i
~
\\
~
~
~
I I
~
I
~
~
I I
a I
~
~
I
~
~
~
I goo I
~
I I
I I
~
I I
I I
I I
I I
~
I I
I '
I I
I
~
~
~
~
I I
~
~
~
I I
I I
I I
~
~
I
~
I
~
I
~
~
I I
I
~
I
~
~
I I
~
I
~
I
~
i I
I
~
I a
I
~
I I
~
I
~
~
I, I
~
I I
I
~
I I
~
~
I
~
~
~
I
~
I I
I I
I
~
~
I
~
~
I I
~
I 1
I I
~
I
~
I I
~
~
I i
~
I
~
I
~
~
I
~
~
~
~
I
~
~
I
~
I 1
I
~
I 1
I
~
~
~
~
~
~
I
~
~
I
~
~
I I
I 1
I
~
~
V
$P 0.
I I
I I
~
I
~
I I
I I
I
~
I I
I i
~
I I
~
I
~
~
~
I
~
~
I
~
I
~
~
~
I
~
~
o 11 (gal KS zI
~o ZII C
I
~
\\
I
~
I
~
~
~
I I
I I
I
~
I
~
1
~
I
~
~
~
I I
I
~
~
~
Og I
~
~
~
~
~
~
IIJJ JC 0
January 24, 1984 Gilbert Associates, Inc.
P.O.
Box 1498
- Reading, Pennsylvania 19603 Attention:
Mr. J. F. Fulton BE:
1983 Tendon Surveillance
Dear Jim:
Attached herewith is one (1) copy of the calibration data and material certification reports for the new stressing rod.
During our telephone conversation yesterday, I stated that the calculated "stressing rod gage factor" is 0.1997.
This value was used to determine the stressing rod force for the tendons tested subsequent to the accident involving tendon 75.
The calibration equation for the pressure gauge system was assumed to remain constant.
If you have any questions, please contact me.
Very truly yours, Clyde A. Forbes Structural Engineering CAF:mkv Enclosure xc:
R. E. Smith T. R. Weis D. R. Campbell (GAI)
File/EWR 51900 13N1-RG-L0624
WHEELOCK, LOVEJOY - METALSOURCE LABORATORYCERTIFICATION REPORT CUSTOMER Teledyne Engineering Services DATE 10/6/83 ADDRESS 130 Second Ave ~
- Waltham, Ma.
02254 ORDER NO. '2806 GRADE 4150 F
HT RT INVOICE NO. 17288 SPECIFICATION MILI SOURCE Standard Steel I
SIZE HEAT NO.
10-1 /2" R d.
LVB5 681 MN.
P.
S.
SIL.
~ 47 F 00
.019
.08
.22 CR.
~ 72 MO.
.16
~SIZ TENSILE STRENGTH ELASTIC LIMIT
% ELONG IN RED. OF AREA HARDNESS 311 WHEELOCK, LOVEJOY - METALSOURCE BY Carol Gob skas STATE OF Mas s.
COUNTY OF Middlesex SWORN TO ANDSUBSCRIBED BEFORE ME, A NOTARYPUBLIC, THIS DAYOF 19 NOTARY PUBLIC MYCOMMISSION EXPIRES
rva7 c
WHEELOCK, LOVEJOY - METALSOURCE LABORATORYCERTIFICATION REPORT CUSTOMER TELEDYNE ENGINEERING SERVICES DATE Sept ember 28, 1983 ADDRESS 130 Second Street
- Waltham, HA 02254 ORDER NO.
E2806 Part 1 of 2
- GRADE,
00-17287 S P EC IF I CATION MILLSOURCE Republic SIZE HEAT NO.
5-1/4 RD 6071414
.43 MN.
S.
SIL.
~ 82
. 007
. 024
~ 20 Nl.
~ 22
.92 MO.
.26 SIZE
-1/4 RD TENSILE STRENGTH 126,500 ELASTIC LIMIT 98,000
% ELONG IN 18.0 RED. OF AREA 58.1 HARDNESS 285 WHEELOCK, LOVEJOY - METALSOURCE BY Caro yn H. Sharon STATE OF Mass.
COUNTY OF Middlesex j SWORN TO ANDSUBSCRIBED BEFORE ME, A NOTARY PUBLIC, THIS DAYOF 19 NOTARY PUBLIC MYCOMMISSION EXPIRES
Rochester Gas
& Electric Corporation 89 East Avenue Rochester, NY 14644 Attn:
Mr. C. B. Forbes Indicator II 035074 Gage Factor
= 2.00 P.O.
BZ-36613 FRITZ ENGINEERING LABORATORY Lehigh University Calibration of Tension Link Load Cell 200.83.783.1 sheet....l......of...2........
pete 11 83 E.M.
CrH.
Approved........
Director-Operations Load
~(ki s) 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 400 0
First Run (v")
0
+
244
+
496
+
746
+
988
+ 1236
+ 1488
+ 1746
+ 2000
+ 2240
+ 2500,
+ 2748
+ 2996
+ 3248
+ 3500
+ 3750
+ 1990 Second Run (11")
0
+
248
+'94
+
760
+
990
+ 1240
+ 1498
+ 1742
+ 1994
+ 2246
+ 2494
+ 2750
+ 2994
+ 3250
+ 3498
+ 3762
+ 2000 Average Run (u")
+
246
+
495
+
753
+ '989
+ 1238
+ 1493
+ 1744
+ 1997
+ 2243
+ 2497
+ 2749
+ 2995
+ 3249
+ 3499
+ 3756
+ 1995 0
Note:
Switch box used on previous calibration was not available
t
Rochester Gas
& Electric Corporation 89 East Avenue Rochester, NY 14644 Attn:
Mr. C.
B. Forbes P.
0.
BZ-36613 FRITZ ENGINEERING LABORATORY Lehigh University Calibration of Tension Link Load Cell 200 ~ 83 t 783 e 1 t
2
....of..
2 Party C. H.
Approved....... F...:
Directo -Operations I
I l
2.-
Lh-I I
~
l
+I+
I 2
2
~I-I::
I-
.J L.I r"
gl-I
'!',I
+jl 1
g:-r
'E ih I
i I
I s
1 Li I
2
'Jp I
I I. I "'
.} L 1
I
~
- IZl.j:
- I J rI gj 2
I I
1" II I'
1 I
1 I"I I
N 4
I
~Q~
2'+M Tt lj O'I jhow
-(- -i-}
I I
!-I-;a Li I"I I
2 I
0+
je i
~ W
~
~
I 1
I
~
I
~ !
I
'I'!
~
~
I
.I I,,
1 I
I II" l I' 1
'.I '
I 2
I I
I I
1
~
I I
~ I
.'I"I, '.
I 2-I*"-
2 }-I'r'
- -I 2
}
I 2
} [I
..2.1' I
I 1
-la~-i
~
~
..LI I:
I l-}-t j-
~
I
~
I I
~
1 1 !'I I
~
I
~
I"I !
~
I L,,
2
~
2'I 'O'I
~
~I I
I
-t--
I I
I I
I
~
I I
2 I'1 I
I I ;;--
I-'150
. !~i10
-I++I In-I-'-
I l"I'1 I
~
I
~
I I
~
I IV I
t 1
~
I 25
. I-I.
I-r2.
0 I
I-!-,
j-
- I I
~
!'j-2-1I-
- ,.)30 I
- 35
APPENDIX C DATA SHEET 1
SURVEILLANCE FORCE DATA II Qbert ICenmonwcalth
DATA Sl IEL'T I PT-27 ':IO JIJLY 19O3.TEWDOII SIJRVEILLWNCE I ) DATI:
/2 ~/9 TEhlDOM tlO.:
2)
IIYDItAUf.IC JACK hIO.: gd 5'-/2-an>>
AREA:
3 ) IIYDRAULIC PIJt1P NO.: ~F7/f 474
~/
4) r.OAD CELL FACTOR**:
PRES. URE GAUGE nO.:
OO PO JAILl~ ~ uS ital/Alg4.r)
STRLSSIIAG POD GAGE FACTOR" *:
4 -2 4')
TENDQN iIIEPEGTio!I co!IIIINT.: ~r/ /6& +c'>/// //
aaP c<~A Tfow (I)
COttDITIOII IllITIAL:
Ze ra 8c'C IWCRLASIhIG:
(2)
PRESSIJRE GAIJGH Pressure Force*
( si)
(1hs)t'/@do RA'I POSITIO!1 inches (3)'g STRESSIWG POD r.non CEr.r, I
~h
~~~I+>
S tra in Force**
Stra.in Force**
(u in/in)
( Ibs)j'Add(u in/in) (]bs)f/oatJ 6
Cot I'IE;IrS IWCRL'ASIhIG:
Fr'!>. 5 25'0 3/pjg2 5/268!'yV'7 ',
2->
LIFTOFF:
Dr;cREASING:
DEC ItEA5ItlG:
OOr 5
zV HOT I ":
nTP!:.: g/ggg~
(*)
Ram area to be used to calcul ate ram force in column 2o:
Force
= ~ $ 5 t C /271k
[Gage Pressure (P~>IG) 3
(**)
I.oad C.ll Factor to he used to calculate fore
~ in column 4l~:
See Attact>>nent I
(***) Stress i>>g Ro I Gage Factor to be usetl to calculat>>
force in rod in col ulnn JI>:
stressinq ro;I <gage factor x (Str ~in Initial Strain Iteailin~l)
CO'IP liETI',I) BY:
)
., ~ g.<~F3 TFJJDOM JJO
'-"')
-'t PT-27. 2: I!J DATA St!Et:.T 1 -,JtlLY 1903.THWDOJJ StjRVF.ILMMCF.
/ F SJJItl STACK TIJICKtJF,SS:
III
/'/4 (3)
(q STRESSING POD J.nhD CF.I L Strain Force**
Stra.in Force**
(u in/in)
( l.bshe/-"N (u in/in)
( J bs) 0
<<)
COtJD ITIOi'J (2)
PREGSJJRE GAJJGE Pressure Force*
( si)
( Ibs)g/ddt R h51 POS ITIot J inches I JJ ITIAL:
0
~ a (geeO
<df"CCE~ C~
zS 0
nr' IWCREASIiJG:
- 2) JJYDtthULIC JACJ< NO.: A 3 WO /2-RA)1 AREA:
- 3) JJYDRAULIc Ptl)1P No.: 787/f4/A, PRl s. URE GAUGr; nn.: oat ~
tabor 5)
TENDQN 2NRPEOTIDN coIINENTr: ~i. ~a em
~e'O'Z, oM cour
~,r <
~~srke
- re84 r
COWJF.NrS IWCREASING:
LIFTOFF:
$<~
'p>tZ.
LIFTOFF
+C)c I IFTOFF: >4~ t J //rr E.
C>~02 tr s-7WOJ~~~ 7Z7. /
go >0 77~.7 ggyo
)
- 7 ~
pj's<:>7)'/gi 2- %~"
DECREA."ING:
n!Jnz
~
a I/
~ l0. 5 Z@do QZ/
0 2-
~/
DECRl ASItJG:
DFCREA'rrJG:
tt 2
z NOTII: (*)
(**)
(1E**)
ate ram force in column 2o:
force Ram area to be used to calcul
[Gage Pressure (PRIG)]
Load C.. 1 l Factor to be ))sed t rttr essiog Ro:1 Gage Factor to stressing rod gafle factor.
x
(
o calculate fore
~ in coluinn 4b:
See -httacl)tnt nt 1
be i)seri to calculate force in roil io col.i@no Jb:
S t r') in In it ia 1
.Si t ra in R atl i or})
co'IPI.ETEII DYi:
~
l)aTP): 7gP~l
PT-27. 2: 10 nnTn SIIFI;T l JIJLY l903.Trwnort sIJRvt'.ILLnwCF.
l) OIITE:
7/257&7 TFtlDOt<
tIO.:
rr
. IIII'I SThCI TIIICKIJFSS:
/'grx
- 2) IIYDIthUfIc JncK wo.:
A 3 5~4
/2 Rhw nRrn:
- 3) IIYDRIIur.zc Pllrlr Noc t 7V+r)7+
. PRER."vRR orruoE Ho.:
r3I3~lr)
Ocr Y
5)
TENDON XIISPECTION COIIIIENT.: /8v~cr A
rrCI7 rr cccrA Cc cr r vrv @rrrVvc A~ccc'
~
Ee (1)
COtJD IT IOI'I (2)
(3)
(it PRES~i IJRE GhIJGF.
STRrsllItJG ron LORD CFLL Pressure Force*
Strain Force**
Strain Force**
( si)
(1bs)N'idC4'u in/in)
( Ibs)q/Pd<(u in/in)
( 1bs)
Rn'I POSITIO!I inches I)
CO11'I I;IJTS IttITI))iL:
r>
XZ/0 ~ ACgmCA 0
ic)
"'gloo' WCRLPnS IHG:
IWCI<L'hSING:
LIFTOFF:
2s5.7 l 2 p2.
z 5 37 Ko~
Af/A'5X<
At 7 LIFTOFF:
Sf/~
~
6)'7 0 Pe~ t s/5 0 nrCRFnSIwG:
C'5l. r) gz Pr.~>>>>
C3F'J.
0N
)
$ 5)l'
.6 Ar/4 p7cp 'r DIJCRI hSItJG:
200(I DEC ItLPhS IWG:
o
~g
/
IIOTI
(*)
Ram area to be use(1 to calcul ate ram force in col.umn 2o; Forci.
= O,ggg 7 ~-l~ ~Y~
LGai3e Pressure (P"3IG)]
(**)
I.oad Cell Factor to be used to calculate forre in collat)nn 4h:
See httacl>)nent l
(*~*).Stressi>>g Rol Gage Factor tn be i)scil to calrulnte force in roil i>> col.urn>> 3b:
stressinq ro7~I) 2 TEIIDOti NO.:
2 )
IIYDRAUfIC JACIC )JO.:
iP J 5 ~/'i/ -/Z RAt1 AREA:
PT-27 ':1IJ
';III'IJLY 1903.TE)JDOtt SIJRVFILLANCF.
//
SIIIt1 STACI( TIIICKtJFSS:
9 P5 3 ) IIYDR/2UL)c PU/IP No 2 i c F 7 2)'/C7//
PRER.",URR G/I)ICE tin.:
023 TIP 22rt'1 /
2.2 5)
TEND0N INRppcT)GN cotpll'rNT.: ~co ooo
/L <4'ctl
/ov 12 c o o/vo/r/ / cv vtv.
o svvr'vv/C 2
or/re Iv/3 /vdo
//roc < cod/or, Dc I or oo/
2 coc /
r /'///
(1)
COWDITIOI'I (2)
PRESSIJRE GAIJGF.
(a)
(b)
Pressure Force*
( si)
(1bs)
(3)
(4 STRI'.SS I t)G ROD r.non CEr.r.
IW
~ca Yb~
Strain Force**
Stra in Force*~
/'
I' I "I RA',I POS ITIO)J inchr. s ri cot)') Ev r s ItJCRLiXSI IVG:
200g IWCREAS IIJG i 4)JI).'J LIFTOFF) 4'i i~~ p goy,
/.
gQ>~ / /gc 77iZ 33)
@<X/'.IF'I'OFI'I) t.
I IFTOFF:
gk~b (t) c / gu p2 I)'07 ye
//
/) U 1) z/o k t=~.r so/))> ~~'// Al./
/t/ /I DECRLPASIVCi 5/0 /
qz 50(, (
y'/
DECRL'AS It)G:
0 o
UO'I'I
(
)
Ram area to be used to calculate ram force in column 2o:
Forci' c
~ or v I t iI2 7~ +
LGage Pressure (PS3IG)j
(**)
[ oad Cel l Factor to he irised to calculatr fore
~ in coluinn 4>>:
See Attao>><<mt
(***) Sitressi>>g Rol Gage Factor tn be use~I to calculate force in rod ii) col>>In>>
J))i stressing roil gage factor x (Str;iin Initial Strain Iheailing) co'11'r.l'.Tvn BY:
~
t)%'I'I'.: 78/+g
I) I>I>TI:: ~/'Z. I ~
- 2) llYDRAULIC JACK NO.:
DATA SllFET 1
TFNDON NO.:
g-574'/2 RI>>I >II>ri>>:
r PT-27.2:10
',)
I JlJLY 1903.THNDOJJ SURVFILLXNCF.
I/
SllItl STACK TllICKtJFSS: / 2
~f/g 3 ) JlYDRAULIC PlP1P NO.:
7 7 7 4
~w
~a~'/')
TFNDON IWSl rCTION COrVJENr.":
7/Z5 PR>.S.",UII>..
G>>ua>: r>n.:
O ~~6 STRESS! HG POD GAGF. FACTOR***: g. g.~O 9 vo 5 tv'.SEa c~ I,r e 8ufTo~ A'c~/ r"curn.
c:~
o (1)
COWDI rIO'J (2)
(3)
(
PRES. l)RH GAl)GF.
TRJ'.S. I >JG ROD LOAD CF'.LL T>
hT ThT Pressure Force*
Stra in Jorce**
Stra.in Force**
( sl)
(Ibs)xjuoo(u in/in)
( IbsQsooo(u in/in) () bs)
PQS ITIOt J inches t)
CON'1 J'.I JTS IHCRLASII'JG:
INCREASING:
LIFTOFF:
5.25'(5 eiO. I>
nr'EC REA., ING:
DECREAS I tJG:
DECREASING:
~/O.C 9
gX 5I>7.'/
~ /l
>~~7
-L 5
/>g, /V n
~
/f 0
C>
0 IIO'I'I I: (*)
Ram area to be used to calcu) ate ram force in column 2n:
Forci.
= g gN + /Z>P W LGage Pressure (PS IG) ]
(**)
Load Cell Factor to J>e
>>seel to calculate fnrr. ~ in coluinn 4h:
See Attach>nn>>t 1
(*'.*) Stressi>>g Rol Gage Factor to t~e used to calrul ate force in roil i>> col.u>nn 'll>:
stressing rod gage factor x (Strain -'nitiaL.".train Reading)
>'.I>'IPI.I:Tl:.I> I>Y:
~ ~
I>>YTI'.: / ~JR
1)
D!ITE:
7/Z7/P $
PT-27
~ 2: 1I)
DATh, SIIEL'T 1 -.TIJLY 1983.TENDOII SURVE ILMNCE reer'FADOW tlO.:
5 l f>IIIII STACK TllICKtlFSS: // f/4
~ I
~,>>
~ ~ >>
..5
~ I s
- 2) IIYDuAuLIC VAC!C WO.:
r %45-gZ RAII WREA:
PRES. URE GAUGE tID.: D + 2 +
- ~)) h'/
)'rm
/Pd P 4)
LOAD CELL FACTOR**:
'"""'"' "'""'":4'*
5)
TENDON I!IEPECTIO!I CO!1)IENT.,: ~PQG~
A 8))Ã A GG C
wa&xGP Sur u r~Eu~ci
~rr c rdgc~7 (1)
COtlDITIOil (2)
~ (3)
(4 PRHSSIJRH GAIJGE "TRESSr.tJG rnD LOW I'1 CEI,L AT'B Pressure Force*
Strain
. Force**
Strain Force**
( si)
(1bs)x/~(u in/in)
( 1bsgrwd (u in/in) () bs) lj Rw'I vosI rIO!>
inches 6
CO!I IE;> rS I'tlITIhL:
EI 0
~ ~
(Z'e~o Vga o
p~~
o nr Zg LIFTOFF:
5-rO. 5-2 S yf 5'. t
/
7~8 ys-7s yl/. z pi-3$'oy.o m A 3 ~~~a '
PyO 757 8 PP
~
~'/'7.5 W /I J
/!5 7%T~
7//,2.
~~7~
70$ 0 a- '/z" 5/o.~
252 4
+PE. 2 3
5 g DECR!'.AS IIIG:
200(l
~55 7 tZ 5 O Z5-G). 5
//'/'ECltHAS It!G:
0 0
P
/j 3- ~J
) ~
, ~
'IO'I'I S:
(
)
Ram area to be used to calcu3ate ram force in column 7'o:
Fore>>
=
v-p
~
o~Z ~i r2,74 V'.Ga53e Pressure (PRIG) 3
(**)
I.oad Cell. I'actor to be use(1 to calculate fnrre in column 4b:
See httacI>>o1'>>t 1
(***) St ressi>>g Ro:l Gage I'actor to be>>se<1 to ralrul ate force in ro~l i>> col>>!n>>
strr s in@
ro<I gage factor x ("tr ~in Initial Strain R a
- 2) IIYnttAuLIC ABACI< NO.:
- 3) IIYDRAUL<c PUrtP No.: 7
- r. ~
- PRE, IJRE GAIJGE Pressure Force*
- )
- zsp,
- 2) ItYDINULIC JACt< NO.: / J- >Ot/ 4'2 RMt ))LRrh.:
- a. F.X 2s"5". 7 3/~
- r. M~ S~g LIFTOFF ~st) ggtfo 8<C gggu
- 2. ~go 552
- factor, x
- ~(l7-3-:"':
- 2) ttYDtthULIC JhCt< NO.: g7-5&d /g Rhll WRHh:
- I'2t 'C'2 (
- a. <<0 3
- s 'r~
- 2) tlYDRAULrc JAcK No.:
- 52. /0 39 ///
- L.
- 2) llYDRAUIIC JACK NO..
- 2) llYDIIAUfIC JACK NO. ~0HZ:
- Arm, Pb,r,g)
- 2) I]YDIthULIc Jhcti Ho.: f 5 gg-/P Rhtt WRI'.h:
- 3) IIYDRRULic PU'IP No.: 7gZ+/<'///
- X
- 12. 6
- I W lI 1.4 WUX lU CCD IY lU I
- Iw l-I 1.4 0
- - X O