ML20072C889

From kanterella
Revision as of 17:12, 22 May 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Public Version of Revised Emergency Plan Implementing Procedures,Including Procedures FNP-0-EIP-15 Re Emergency Drills & FNP-0-EIP-4 Re Chemistry & Health Physics Support to Emergency Plan
ML20072C889
Person / Time
Site: Farley  Southern Nuclear icon.png
Issue date: 02/02/1983
From:
ALABAMA POWER CO.
To:
Shared Package
ML20072C884 List:
References
PROC-830202-01, NUDOCS 8303100410
Download: ML20072C889 (148)


Text

=c-;

w- v- -

. mwm 1

f..

b, V

.VOL. 14 FNP-0-EIP-15 i January 18, 1983 Revision 7 A

FARL.7 NUCLEAR PLANT 3,

EMERGENCY PLAN IMPLEMENTING PROCEDUPE FNP-0-EIP-15 i-S A

F E

T I

Y EMERGENCY DRILLS R

E l A l T i E

l D
I .
1 l Approved:
l N

b$. w W Plant Manager 1

Date Issued: 2-2. 83 List-o f-E ffective-Page Page Rev. #

1-5 7 Fig. 1 7 DOCUMENT CONTROL CONTROLLED COPY ig\ Diskette EIP-2 DO NOT REPRODUCE copy NO. O'I i 8303100410 830302 PDR ADOCK 05000348
PDR L, - - --

_ - - - - _ _ . - - _ -- - - ~ - - - -.. - --

Y 1 l

~

[

"VOL. 14 FNP-0-EIP-15 l E l N l C I - ') EMERGENCY DRILLS  !

(-%,;  !

e i; 1.0 Purpose r:

y' This procedure provides instructions and describes responsibilities for conducting emergency plan drills and testing communications networks.

1 2.0 References Joseph M. Farley Nuclear Plant Emergency Plan.

3.0 General

. 3.1 Announced preplanned drills simulating emergencies will be conducted to:

4 3.1.1 Determine the effectiveness of the FNP emergency organization in handling emergencies.

3.1.2 Evaluate communication and action support with offsite agencies.

3.1.3 Evaluate the interface with and response

(~~} of the company emergency organization.

%J 3.1.4 Test the adequacy of timing and contents o f the EIP 's .

3.1.5 Test the emergency equipment. <

l 3.1.6 Keep affected personnel aware of their role in the plan.

3.2 The scenarios for use in these drills will be

, written and include the following elements:

3.2.1 The basic objective l 3.2.2 The date, time, place (s) and participating organizations.

3.2.3 The simulated event 4 3.2.4 A time schedule of real and simulated

- events.

Rev. 7 U[

1 I

gs .n.7..ap-wesr wv . x~:a -  :.4 w, , ~ . - ---c .=.;;.~- ~ ,~ . - - - - - - - -m

f

! , VOL. 14 FNP-0-EIP-15

'.t

']

i /"' 3.2.5 A narrative summary describing conduct l (,,}/ of the drill.

g 3.3 Each emergency alarm or announcement shall be considered valid unless an announcement is made to the contrary.

3.4 Each individual at the Farley Nuclear Plant shall participate in emergency plan drills unless specifically exempted by the Plant Manager.

3.5 The Plant Manager shall evaluate the plant p operating status and ascertain that the drill will not adversely affect plant operations or equipment or the health and safety of the general public.

3.6 Audit observers shall be stationed at various

? locations to observe each individuals' ability to perform his assigned emergency function.

3.7 All drills shall be coordinated with the shift supervisor to the extent necessary to prevent an adverse effect on plant operations.

3.8 Required drills listed in 4.3 may be conducted in the course of the same exercise.

4.0 Responsibilities (See Figure 1) 4.1 As directed by the Plant Manager, the Training Superintendent will coordinate the scheduling and conduct of drills. He will be provided with technical assistance from the Sector Supervisor -

Environmental Monitoring and Emergency Planning.

The Training Superintendent will be responsible for the following general elements of drills:

I 4.1.1 Scenario development 4.1.2 Audit Observer assignments 4.1.3 Drill execution 4.1.4 Post drill critiques 4.1.5 Emergency Plan training for APCO employees Rev. 7 G

J

'I 2 t

<i i m-l 2 @ 7.;. .< -~=wec wcM" mairM " x;t4 , , V ~ K kWsf D'4%~~~~~~:> ;2's

--,z.,,

i VOL. 14 FNP-0-EIP-15 t

i s

4.1.6 Scheduling of Emergency Plan training

[N x for non-APCO personnel.

I- 4.2 The Sector Supervisor - Environmental and Emergency Planning will provide the following assistance to the Training Superintendent as requested:

t 4.2.1 Technical assistance for scenario development l

1 4.2.2 Drill audit observer personnel  !

l) 4.2.3 Personnel as instructors for. Emergency Plan training for APCO and non-APCO employees.

4.3 The Training Superintendent will plan offsite agency participation via the Superintendent Regulatory and Procedure Control who conducts liason with such agencies.

5.0 Procedure 5.1 Testing of the Plant Emergency Alarm shall be as follows:

5.1.1 Operations will be responsible for scheduling and performing the weekly

{~ sounding of the Plant Emergency Alarm.

, 5.1.2 All alarm tests shall be preceded by announcing over the plant public address system that the alarm is to be sounded.

5.1.3 All alarm tests shall be concluded when the completion of the test is announced over the plant public address systen.

L 5.2 Unannounced communications checks shall be conducted as follows:

u 5.2.1 Communications checks will be performed monthly with all locations which are part of the Emergency Notification 7

Network by the Operations Group.

. 5.2.2 The EOF /TSC/OSC intercom system will be tested at least annually by the Operations f Group.

Rev. 7 l,'

l 3

4

--wyr rew m m w w wen.- . -- vs.;- x r. - 7 m e o e: - w as;4.X m asn-~-a;5-c.~+  ;-

i s

,' VOL. 14 FNP-0-EIP-15 Communications checks and verification

~

I 5.2.3 l (~,/ of phone numbers with all other organizations listed in EIP-8 will be performed quarterly

~

a by the Chemistry and Health Physics y Group.

l

5.2.4 Radio communication equipment for Radiation L Monitoring Team communications will be tested at least annually by the Security
. Group.

F t

5.3 The following Emergency Plan drills shall be conducted in the periodicity specified below.

f Required drills may be conducted concurrently in L the same exercise.

L

$ 5.3.1 Annual Radiation Emergency Exercise L

L Announced exercises simulating radiation L emergencies will be held at least annually.

f These scenarios will be varied from exercise to exercise such that all major elements of the plan and emergency organizations are exercised at least once every 5 years. These exercises will be preplanned and will involve the

/3 active participation of local, state and federal agencies.

(_,/

One (1) exercise may be started between 6 P.M. and midnight and another between midnight and 6 A.M. once every six(6) years. One (1) exercise may be performed every six years which is unannounced, except as required for effective coordination with the management of the various agencies and for the evauation of the health and safety of the general public.

5.3.2 Fire Drills

a. Fire Drills will be conducted with fire brigade members as required by the plants technical specifications.

I

b. Fire Drills will be conducted annually which will involve the Dothan Fire Department.

5.3.3 Medical Emergency Drills f-~x A medical emergency drill will be conducted

() annually which will involve ambulance and offsite medical treatment facility participation.

Rev. 7 4

ggrem .rrra-seMz5 w N m am;e aspMg>.9iw&cW"~9 M

, VOL. 14. FNP-0-EIP-15 5.3.4 Radiological Monitoring Drills

%-[U]

Radiological monitoring drills will be conducted annually which will include initiating onsite and offsite radiological monitoring of vegetation, soil, water, and air.

5.3.5 Health Physics Drills i Health Physics drills will be conducted semi-annually which will involve response

[

to simulated elevated airborne and liquid samples and direct radiation j; measurements in the plant environment.

1 Sampling of the reactor coolant system

- including using the post-accident sampling system will be conducted annually.

5.4 At thS conclusion of the drill the Emergency Director shall announce that the drill has been terminated.

5.5 Appropriate local, state, and federal agencies will be advised of major drills in advance to allow their observation or participation. All Q observing or participating agencies will be V requested to provide comments on drill evaluation to the Training Superintendent.

5.6 Upon drill termination, the Training Superintendent will conduct a post drill critique with the drill observers. Equipment, procedure, performance, training, drill, etc. deficiencies will be summarized in a written critique format. Comments received from offsite agencies will be incorporated in this critique. The critique will be presented to the Assistant Plant Manager by the Training Superintendent for review and finalization. Upon completion of this review and finalization, the

{ critique will be forwarded to the Plant Manager for review. The Assistant Plant Manager may assign items from the critique to appropriate Superintendents for action.

5.7 The Training Superintendent will track drill

l participation by individuals who fill the Emergency

.j Director, Operations Manager, Maintenance Manager,

,4 Technical Manager and Health Physics Manager roles. Participation in each role will be rotated.

t a Rev. 7 1,

, -_ - . - - mw - - -

, - , . - - - _ - .- eve . . - - - - - w

., FNP-G-EIP-15 L

m Figure 1 Emergency Plan Drill Organization Plant Manager Superintendent -

Regulatory and -- - -- T**i"i"I '- -- - Sector Supervisor -

Procedure Control Superintendent Eav. Mon. & Em. Planning; i

O i

i Drill Observers i

1 i

i i

3 I

i Figure 1 Rev. 7 t

t -!

k

! \

)

lb ti

- ~ - ~~-n ~ ew - ---- - ~,m - .

t - -

- -. n.-v- -- w .

-~ '-

._. . - .-._.. . . . . .. .. .-. - - . . - . - - - - . .X ~ ^ ~ L =

l> . .

i ' O VOLUME 14 FNP-0-EIP-4

'! January 31, 1983 Revision 10 1

FARLEY NUCLEAR PLANT

EMERGENCY PLAN IMPLEMENTING PROCEDURE FNP-0-EIP-4 5

, g A

F E

T Y

CHEMISTRY AND HEALTH PHYSICS SUPPORT TO THE EMERGENCY PLAN 1

0 L A

T E

D Approved:

)). ) b Plant Manager Y

Date Issued: .7 P J List-of-Effective-Pages Page Rev.

1 8 2,3 to 4,6,7 9 5,8,9 5 Fig. 1,2,3 6 App. 1 pg. 1,2 6 DOCUMENT CONTROL Diskette EIP-4 CONTROttED COPY DO NOT P.EPRODUCE COPY NO. Olld

I VOI. 14 FNP-0-EIP-4 l.

(m CHEMISTRY AND HEALTH PHYSICS j () SUPPORT TO THE EMERGENCY PLAN i

j 1.0 Purpose i

This procedure delineates the responsibilities of the Chemistry and Health Physics group .riring emergency j conditions.

! 2.0 References I

t 2.1 Joseph M. Farley Nuclear Plant Emergency Plan.

i 2.2 FNP-0-EIP-10, Evacuation and Personnel Accounta-j bility.

l 2.3 FNP-0-EIP-11, Handling of Injured Personnel.

2.4 FNP-0-EIP-13, Fire Emergencies.

2.5 FNP-0-EIP-14, Re-entry Procedures.

2.6 FNP-0-RCP-25, Chemistry and Health Physics Activities During a Radiological Accident (Short Term).

. (O,) 2.7 FNP-0-RCP-26, Radiological Surveys and Monitoring 2.8 FNP-1,2-RCP-372, Sampling Radiological Process Streams for Analysis 2.9 FNP-1,2-RCP-708, Sampling Points for Potential

Radiological Effluents 2.10 FNP-0-RCP-714, Preparation of Liquid Samples for Gross Beta-Gamma Determination 2.11 FNP-0-RCP-723, Measurement of Primary to Secondary Leakage Rate 2.12 FNP-0-RCP-728, Operation and Calibration of Multichannel Anlyzer Systems 2.13 FNP-0-RCP-730, Operation and Calibration of Gas Flow Proportional Counting Systems

.; 2.14 FNP-0-RCP-732, Operation of the Plant Vent Stack Monitoring System 2.15 FNP-0-RCP-741, Operation and Calibration of the Whole Body Counter i

O Rev. 8 1

~ e - - ~ ~- e

- - _ _. _ _.___A_._ . . _ . _ _ . _ . _ . . . _ . . . __..._. ___

, VOL. 14 FNP-0-EIP-4

, i

N 2.16 FNP-0-RCP-743, Bioassay Sampling and Anal:/ sis (d 2.17 FNP-0-RCP-744, Operation and Calibration of the i

Harchaw TLD Reader - Models 2000A and B 3.0 General 3.1 Chemistry and Health Physics support during emergencies shall consist of but is not limited to the following actions:

3.1.1 Provide personnel for Radiation Monitoring Teams for monitoring in the plant, in the environment (onsite and offsite) and at the Southeast Alabama Medical Center (SAMC).

3.1.2 If necessary, perform sampling, moi.ltoring, chemical analysis and isotopic analysis activities delineated in RCP-25.

3.1.3 Provide environmental monitoring data to the Emergency Director.

3.1.4 Assist in planning re-entry and recovery activities to aid in minimizing personnel

~T exposures.

{d 3.2 All C & HP shift personnel will report to the Southeast corner of the Control Room if the plant emergency alarm is sounded.

3.3 All C & HP. Group administrative personnel on site shall report to the Service Building auditorium in accordance with EIP-10 in the event of a general evacuation.

3.4 The on-call Health Physics Manager shal] report to the TSC when notified by the Emergency Director.

3.5 When directed by the Health Physics Manager, the on call Environmental Supervisor shall report to the Emergency Operations Facility and prepare the EOF for emergency use according to section 4.5.

3.6 Chemistry and Health Physics support to emergency preparedness includes the assignment of the Environmental and Emergency Planning Sector Supervisor to the additional responsibilities of Emergency Planning Coordinator.

(' 3.7 The responsibilities of the Emergency Planning Coordinator include but are not limited to the following:

2 Rev. 10

..---.-....--..-a--..-- -- .- - -.

VOL'. 14 FNP-0-EIP-4 i lT 3.7.1 Technical assistance and liaison to the Training Superintendent (Emergency Plan

\--

training for APCO employee is the responsibility

of the Training Superintendent).

3.7.2 The annual review of the Emergency Plan and the implementing procedures.

3.7.3 Incorporating changes and updates to the Emergency Plan and implementing procedures.

3.7.4 Technical and monitoring assistance for drills.

, 3.7.5 For maintaining a status of emergency

systems and equipment.

1

! 3.7.6 For maintaining emergency supplies at

,' adequate levels.

4.0 Procedure 4.1 The Health Physics Manager shall:

4.1.1 Ensure C & HP Group accountability per EIP-10.

4.1.2 Dispatch Health Physics technicians to 4

provide radiation monitoring of personnel in the assembly areas. Record type and level of radiation found by Health Physics personnel in the assembly areas and if needed have dosimetry issued to personnel in the affected areas. Notify E.D. if initiation of protective actions

' is needed (i.e.: respiratory protection, evacuation).

NOTE: Should conditions change during any phase of the accident that could possibly expose personnel in the assembly areas to radiation hazards, monitoring of those areas should be performed as soon as possible.

4 4.1.3 Implement RCP-25, if appropriate. l 4.1.4 Provide HP coverage when searching for l

. missing pers'onnel at the direction of the Emergency Director. l Rev. 10 3

[

VOL. 14 FNP-0-EIP-4 i

t

~T; 4.1.5 Initiate recall of off-duty C & HP

{ (\_/ personnel as necessary.

i l 4.1.6 Provide the Emergency Director with i

information concerning plant status and environmental monitoring data and concerning

, any radiological incident.

4.1.7 Assign available personnel to specific Radiation Monitoring Teams (RMT).

Maintain communications with environm&ntal RMT's via the radio located in the

,. Technical Support Center (TSC). When the EOF has been manned and the Emergency Director has turned over offsite coordination to the Recovery Manager, the HP Manager will turn over control of RMT's to the Environmental Supervisor at the EOF.

4.l.8 Assist the Emergency Director by planning

. the activities of and giving instructions to members of the Radiation Monitoring <

Team (s).

4.1.9 Assist the Emergency Director and other groups in planning re-entry and recovery activities to minimize personnel exposures.

(

4.1.10 Evaluate the relocation of a'ccess control as necessary for re-entry.

4.1.11 Provide supervision for personnel,^ area, and equipment decontamination during an accident to prevent / limit the spread of contamination.

Decontamination will be initiated if practicable:

a. Inside the Radiation Controlled Area (RCA) when radioactive contamination for personnel and equipment reach 1000 and 5000 dpm/100cm 2 , respectively.
b. Outside the RCA when radioactive contamination for personnel and equipment reach 200 and 500 dpm/100cm 2

, respectively.

~

4.1.12 Provide for offsite analysis of radiological samples as appropriate.

Rev. 9 4

VOL. 14 FNP-0-EIP-4 t

/\

fb i 4.1.13 If conditions warrant, provide for i sampling and analysis of site drinking i water for radioactive contamination. If 3

site drinking water is found to exceed the limits specified in 10CFR20, Appendix

! B, Table 1 column 2, the Health Physics Manager shall order the quarantining and 7

posting of the affected water outlet.

' Posting will be performed by the Health Physics Foreman or his designee.

4.1.14 If a person is to be exposed to airborne radioactive iodine such that he would exceed 2,000 MPC-hrs, consider issuing potassium iodide as a thyroid blocking agent. Instructions and considerations for use are listed in Figure 3. In all cases, considerations should be given to self contained breathing

' full face respirators with lodine canisters and iodine blocking agents (KI) to minimize thyroid dose. Such consideration should take into account the added time required to accomplish a task due to the

/~ limitations of the protective equipment.

\ If, however, iodine concentrations are known, every effort should be taken to limit thyroid dose to no more than 125 Rem for operation of emergency equipment or activities intended to mitigate the emergency. Since man can live without a thyroid, no upper limit is placed on a thyroid dose for life saving activities.

4.1.15 Determine the severity of core damage based on the gamma dose rate inside containment per Appendix 1.

4.2 A Radiation Monitoring Team assigned to monitor in the plant or at assembly areas shall:

4.2.1 Comply with'EIP-10 in providing support during evacuations.

4.2.2 Comply with EIP-11 in providing support to injured personnel.

s Rev. 10 O

d 5

n- .- .

. - _ . . . . w.

VOL. 14 FNP-0-EIP-4 4.4.2 Ensure that the ventilation system (g/

registers in the Radiation Casualty /Decontami-nation Area are closed if high levels of contamination are involved.

4.4.3 Keep the doctor informed of radiation and contamination levels.

4.4.4 Monitor the patient when directed by the doctor.

4.4.5 Ensure all body excreta and excised tissue from patient are placed in appropriately labeled and sealed containers.

4.4.6 Provide decontamination information to doctor as requested. ,

4.4.7 If patient must be transferred to surgery or elsewhere in the hospital, advise f

doctor as to the radiological precautions necessary during and after transfer.

4.4.8 After the patient has left the Radiation Casualty / Decontamination Area, survey personnel, equipment and the Radiation Casualty / Decontamination Area. Direct

\' decontamination efforts to return the area to normal use.

4.4.9 Survey ambulance personnel, ambulance, equipment, receiving area and path of the casualty and direct decontamination e fforts , if necessary.

4.4.10 Collect and prepare all bioassay samples, smears and waste containers for transportation to the plant. Post and label containers and area as appropriate.

4.4.11 Sample the run-off in the holdup tank for analysis at the plant. Based on the analysis the Health Physics Manager shall inform SAMC to hold the contents for drumming or to release the contents to the sanitary sewer system.

4.4.12 Obtain personnel monitoring devices and appropriate information from hospital personnel.

4.4.13 Document all survey data and record all s actions in the logbook.

Rev. 9 6

. _ . _ . . _ . _ , _ . - _ _ _ _ . _ . . - ~ . . . . ._ _ . _ _ _.

V9L. 14 FNP-0-EIP-4 4.4.14 Maintain communications with Emergency 0 Director or Health Physics Manager.

4.5 The on call Environmental Supervisor will prepare the Emergency Operations Facility for use by:

4.5.1 Opening the emergency storage area (Room 118) and installing the status boards in the Cotamunication, Monitoring, Conference and Command Area (Room 106).

4.5.2 Prepare communications equipment in the Dose Assessment Room (Room 115) and in the Communcations, Monitoring, Conference and Command Area (Room 106).

4.5.3 Initialize the Analytical Data Management System (ADMS) computer terminals in the following locations and priority:

4.5.3.1 Dose Assessment Room (Room 115).

4.5.3.2 Monitoring and Conference Area (Room 106) 4.5.3.3 NRC Staff Area (Room 105) 4.5.3.4 Other designated areas 4.5.4 Convert designated room labels to indicate emergency / drill areas.

Rev. 9 O

7

VOL. 14 FNP-0-EIP-4 i

I l

'r*~~N RADIATION MONITORING TEAM CHECKLIST: ENVIRONMENTAL l

(/

The senior Chemistry & Health-Physics Technician on the team shall be responsible for completing the checklist and returning it to the Health Physics Manager. Refer to Figure 1 for predesigned monitoring points.

The Environmental Radiation Monitoring Team (onsite and offsite) shall:

Initials A. Obtain RMT kit from CSC. Don necessary protective clothing and emergency equipment B. Pick up monitoring equipment (i.e. G.M.

Instrument, Exposure Rate Instrument, and Air Sampler) necessary for environmental survey. Check operability of equipment.

C. Verify operation of vehicle two-way radio prior to exit from site.

D. If the two-way radio is non-operational or if the vehicle is not equipped with a radio,

~

k'_)T pick up a transceiver from PAP.

Check operability.

E. Perform surveys and document survey data on CHP Form 242 " Health Physics Survey Record".

Assign a sequential survey number and record this number along with the location in the bound log book in the EMT kit. Report locations per instructions on Figure 2.

F. Label all samples with sample time, flow rates, location, date, etc.

G. Relay survey results to TSC.

H. Maintain two-way radio in the ON position and report data to TSC.

I. If requested to replace filters at environ-mental air sampling station, record totalizer reading and insure flow rate is 1b cubic feet / minute.

K. If replacing environmental"TLD's, record TLD serial number, sector, date and time

(s TLD placed or removed.

b Rev. 5 8

,_  % a m. -Ww e me--*w-e +=e s * - * * * * - ~ * " " * * * * * * *

--,--**o-

- . - - - - . . ~ - - - _ - - . - - . = . - - - . . .

VOL. 14 FNP-0-EIP-4 r"x RADIATION MONITORING TEAM CHECKLIST: HOSPITAL The senior Chemistry & Health Physics T chnician on the team shall be responsible for completing the checklist and returning it to the Health Physics Manager.

The Radiation Monitoring Team at the Hospital shall:

!l Initials

>! A. Detain ambulance personnel and vehicles

.; until surveying is completed.

B. Close the ventilation system in the Radiation Casualty / Decontamination area, if high levels of contamination create the potential for

airborne activity.

C. Insure that drain systems are aligned to a holding tank and isolated from the Dothan Sewer System.

D. Maintain a log of personnel who enter the affected area.

f- E. Ensure that Personnel Monitoring Dosimeters (x) (PMD's) are distributed as necessary.

(Insure dosimeters are zeroed or record issue readings.)

F. Insure excreta and/or excised tissue are placed in appropriately labeled and sealed containers.

G. Provide the doctor with monitoring and decontamination data. Monitor patient when directed by doctor.

H. Survey all personnel, equipment and affected areas prior to release.

I. Direct all decontamination efforts.

J. Collect all PMD's, log readings from dosimetern and insure the names are on TLD's.

K. Sample holding tank for analysis at plant.

L. Maintain communication with Emergency Director or Health Physics Manager.

Rev. 5 9

.- . _ _ - -. - - . - _ ~ - - - - - - - - - - - - - - - - - - - - - -

FNP-0-EIP-4

1 N %g g NNW NNE

, . _ y K --

hg

+

k,_

+ C

\ \ l Q '" NE igl) l UW

+ '*G' -

} i e

s .,

t ,

o l

- t . i +

. f' .

M \

t unu + \ 1 1 -

ENE

\ '

l > >

  1. ^

+;

I -j I "C7""

X _

au, Q

y a n n h g

( -

l /QW 39 $ \\

^ ^

gf! ,

Ib _\

f W [{

")' /llGs + [ T -

t ' ': I \

/ !\

- 8 .- ~

\-

-1 4

, , ,. j < 8 - , - - -?

WSW  ;,

f / %s p" g

/

4

\

.\

N j'e xa=

H/ESE bg f

/

w' ~v. \ 1 ,

\c p -

2 \.. ./

S I

['" . K. I

@ p"',

N .\

e

~

L_.

S,SW e[} /

\

\

SSE

.O.,',*..,.u-......-

O'- .fi;.'r'.T,;',0..-'.~.,, ,

S "u ' . ~ . '

.'".".. '-..' T., ".".". .

  • l'*J~.:"".. ., ,,'""."-l:' '

ga y.ca u .. . . . . . . -

\ PREDESIGNATED MONITORING POINTS hint Location Descripete=t hint toestion Desertation Folnt t.ocation Desert?tten A e+1 Met tower J ESE-1 Intate Structore T WSW-1 Bend of read

$ !INE 0 Reed intersection K SE-% Disenarge Scrivet are U W5W-4 Cate at AL95 C 'et- 1 TLD etation L SE+0 5trean crossing V WSW+5 Gate at AL1%

g *~- D ME+5 Road intersection M S t t +'s Road intersection W WSW-0 Bend of road DE-% End of road M Pond dam X 'ww-5

- Cate at AL15

[ E DE+0 56%

5+1 End of field road Y NW+1 'corth site at AL95 J' F C t+%

Road intersettien Acad intersection F

R 5 5'=+h Serv. water st ruct. Z 'ew+0 Send af road 1 E+% Sarge slip $ SW-1 Road intersection AA NNW-5 Compten Three Figure 1 Rev. 6

'._.,p",.

.~ ..w . q,.:--; . .l;-* .

g1 %;. . -..--e..

...n  ;,. .

. \. . .,'~'..'

., .\ )e.\. i .

,,.)e . .":..:-r-  :.;. . ..\ ,[.. ~

" A. .

- sx- .. ~ 4,-- . . . - .;.. .f

p. ,.

. m

~.

,,, . '. p'~.._-. ..n. s.

. i '- - ~* q,. 4

,.,.*'u'-~..-

.; ./

,w a, N,o  :<-  :,

(.~

. -im *; .-

.  %.~a n '

.,A> .a  : ,

/'s.,"). ., r

. .J - s p= -

\--

4. ..

o

\ M.

.nyw

.4 . r( ~ .

go A. l'l

  • t y NNE . I,,;,.*n .: . . . a.-.. . ,

'.f r ~. ,

_ ._ r. q ". g ..A

~-

- ^ -

.7 ;%,'  % 9. ' 'J . ,- .

,' . .,y,-

  • z. , 4., ,:

, . . .~

'"i p

,s*< qp. <-.

e -

j

==. p. .A s.

-\ ? - .

- .ii . v. .;::. - s 1

.{Tia c - ,

1%se,;'*;;vy*Q' ,. ,r, . p gf~ *i 7'

.. ar 4 -

~1 j ** . . ' ' .y 'a '

~ g *

- .,f. 'r~ . _ ,

-i

,_,,,)t - f

~ s. , ,

y, .

, W.

. i

p ~,..,,,,.c,.+ yyr, ,. f+

' g-==. a e.. ,<* . ; /:

v, >

l- .-

. 5s , /

,. , f. .-.N gg .. M l*'

7 h- }.u; ; /..

gs m t._$

, ,=~' r

),."p- C.,'l__--f

'. ,pN i

J

.\ 7 . . ,N

' / . $. ,,.at2 J. '

i ,

{~~ - 5 ,,, ,. , Q,i'

- w' j% ,(l,*r, c, 2- -

x, .j ' '..s.x_ j -

-=g , g r

.c g +:. m:.... p=.,: w- % -. , :

a.

W- ; ; ....

. .-. . q.A

. u . p. a

_ . %e.

h. .N, . , . p...,_m. . . ' , . = . . r.- r . .,. k.m. -3 1 . * -_5_ -

, . . . -. . s .- .s ~~ i

. .\s< ., ~ ::.2.. . ~'d,. .,.

I;:V. r,,.% A.9'_.

~'

'.  ?

. V.

4< "'... H

. . Q,. .

%..+ ~n I N V --

t,- e- /. .

g i .8..u8~4'l W,N W . :s  !.. D Y.. ,..  ; ,. .

.M' ,e.  ;.W, - .-

..' .N,g a t. ::.

s . , i.

,. .M eENE s.

' h .s:< ~..$. fs :- -K s.

s-. 2 -

[ NYr IM.g...M

  1. , 2 .e .  : x

, . 9.. 2 di 3 ,, g_

~

. ,d. /. ,,. \ ,, [a._.. qh #y -

i b e. ic - .

'-'. * g ' ,_ ' % ,. C'.8:= I 'x -" " " , ,

.' 7_ ' g j.y ,

\..i 9*% s.

WNi$'i$W$5:k...d::, 'N.'>w$hhqq/@/ HW N' b, p' Y hlY

" ~ ~

E4-- ' W TIOv. '. 9 'ja8 M 7 --46 4-5 -4 e-13 3 2

.3 - r. 4 ;* 5 - O d"~ ~l - -8 ' - 9 fr10 E <

,1 -2

...'%'. W 1!;..l
"'

MLdg4J ~

'T l'" J ,A / ld.. +

v

e. . ==. .1 :ep .:q::=:%. w.?" a _ w p -

r M .

't -~/,p'. ' rg<.i' (. ' y 2 I :! d

!- i:*il N :.h ' ' e h .,.' h

.i ; _. T =-.--

'MS- Y - f , 3.L'.)k,,[n-

.! ., y j ;, ,, f. ,

  • n'

' [

A;Ms.M.=-C,2.",_pr.e@~,;-

Sp' e-

~

t ,,,.- p. % c

s . ..=-- o.

.:S -

3 ,_ p . e .4 ,; ,e . - .e

@= m..p fsi r_-

,,,_ n,. ~,~

[ .v W - J..

ss, s

p %j.

~

y

. . -"- q/{

e

?,j N' a,

( 'b l *-

,,;"A r, .: y

. ., t 5,' .y -,,. s .

. 'N

r ' ( . .,,, E i

'A_ e-y,N.g. . sty .s._+. a m.4 _ ,-[. e A . x:  :.

d r. -

/ -

2 w. ..SE, wi ' v',q..

3,s, N s,... r'

. - . . . ._ ,  : .m

% g,, . 3,.p.--., .-

- q:v 4. . .

.;.: S ,,. v

.: ,.,-;gg.g. c,x

,s. ,f t- y.,..., g g .. s .c ,, _;

w, : , .. .. -. . .n%.. . - ,,7,.a y. _.x; .r.:.

. .. ,,..c., s. .._.' .s s s - , .,

. . =- ,p:==. -~ y .,/_- ~.. ..a s w.p.

.-7. ,- ~

..x s 3. .3 ..

, 4.. .:. p<.4...L. ,. -.-

-~

m.s c.;, : .c

_: ,/ i r.

.. . .n ,

s ..s. e . t,- - % -.e...:s.

c.,,,.,,, n

.... .j

~ .,-.

. \c . 3 :,. .. ,. ... ,. y ;. . . .'. u. ,,

. ~ - .

, . .,._. ,g , ._:.m.,

2 f_J,,.

~ , ,

..s . . , - - .

,s. ,

.- .,._ n , g. . .-., ...<.:-

,e e

.+;. .rm,

.. .,. 4

.K". . x. , /. _r .f,: n.

.;-.u.-~. ..__ &; n n&. ../ w ~- / ,.' ySE

... .- ,,._ ..a-

, +  ;:: ,a.,

o .:-. x. .:, .

7:5*,i[~ - h k *! '. ' ". Sb

^

,. k- 'v" 2.,w.:_y

, u..  % , .'. .'~

g, '~'W ,
r :. - ~.

, i ..>.r.

' f,l.~~;"W. .u...u.

."'~~'P w = c? !' , p; M .N .= %. ,c.s"T~

- - l-- \:,'

a - :A e -. .. >

'~~h ~

Q, , . ' ~ *~~ ~ A

-? 'I :Y'f'f f K",: 5 9 ,. i ,

    • R*!(.." .;.

+ w .. .,; .  ; .- . .

/a[a. wig

~

g,, .

i. <.". . -

r \ g: ' ,. ' 1 SSW

_.;. ,.. . . w . ':: q l t '.....!

,i/r .N

7'.%. . .

_u,.. ..u. . zu.

u

,I. ~

..?~.' 1.

u 1- . un

\ q,, _,......'...'..m.....

4. . -

w w a ,.e a. s S .'

--- ! - \m-x .s .- -

- . . . .m:.u.

. u -. .. n u .

. .u.. t

. .a au-

.c..,

<. .;~ . ,,,-,s .N. .,"

_ ~---.~' .2 N'r./3.3

. &, #:s_;;;;

p' ,.i. y s p$ t t .

i.sa ami ess a u. m o. 9 -

s . * %apaarecer 8NT C7 M 4,,,

, n A2282. uw:xm.n

=a

-. . ~=: -

,.a, s

.. ,.;. ., ~ , .

r w.nuncrw rssu PREDESIGNATD MCNITORING ?0!'ITS I

n -- o ..: : a :. u - - ..- 3. . , . :,:3 -o.. . ,

.  :-a un :ci.:um .

. c.. . , 3 m .. .:3,.. 1

s -: nau .: 2 r.- t e:: p . n cas l I- h b a.1 .-:a rza; .n  ;; v.:- bu ;::nsun-.i j

/] ;, M M3C .  ! .Ta-! i a: *::ane: mi P . 30-4 S:e:see n:a .: .?;- i L::: ;::a r s ee:.n .)

(,/ ' alm 0 ; a: c3e i

! IH-+ 'res: I N : ?. a .-- .. .3t . 1..: a .:n s 5-1 lut? hua a: C)) ;f ': i- M Lsa: u:arsutin i*: 0.dar htes u 4 71  :: a;,; 3

. g.... . d

.. ....de 8 h . .. .% .)

,.- ,Q([gbij g u al.15 Figure 2 Rev. 6

- , _ . . ~ . - . , - . .. --~ . .. - .-

FNP-0-F.IP-4

~n j .'.gh MOW PCTASSIUM 10040E WORMS Certam forms of indsne help ynur thyroad sland work right. Most people set the iodme chev need from fnnds. Like ir.dized salt or THYRO.8 LOCK * "l$ne'"* '"d '* " ~ '""~ ""'d "" '""" * *"*"' '

N m IO M in a radiation emers:ency. radioactive iodine may be relemmed in the air. Thsa matenal may he breathed or ewallawed. It mar l (seerevestee M1) *" # d * *" * * * " ***"**d" I 3 g babiy not ghnw itself far years. Children are moet likely to have thyroid damare.

If you take potassium iodide. it will fillup your thyroid riand.

This reducea the enance that harmful radioactive iodine will

.. TAKE POTASSIUM IODIDE ONLY WHEN PUBLIC '"t'r th' th Po'd 7 3!**d-

-HEALTH OFFICIALS TELL YOU. IN A RAI IATION EMEROENCY. RADIOACTIVE IODINE CotsLD BE WHO SNCULO NOT TAME PCTASSIUM ICCIDE RELEASED INTO THE AIX. POfASSIUM IODIDE (A The oniv p.3 pie who enuld nouske patar tum iodide are paa:W.

FORM OF IODINE) CAN HELP PROTECT YOU. , "h* k** 'h" an allergie to iodide You may take pr.tasaim iodide even if you are takmg medicznes for a thymd problem tsar 17 YOU ARE TOLD TO TAKE THIS MIDICINE. TAKE IT example. a thvrned hormone or antithyroid druss. Prernant and ONE TIME EVERY 24 HOURS. DO NOT TAKE IT MORE ""'** * ** * '" *"d h*h'** *"d #h'Id" "'? *I'* **k' 'hi* d'"8-OFTEN. STORE WILL NOT HELP YOU AND MAY IN-CREASE THE RISK OF SIDE EFTECTS. DO NOT TAKE HOW ANO WHEN TO TAME PQTASSIUM ICOt0E i

THIS DRUC 17 YOU KNOW YOU ARE AILERGIC TO Y******" * '* * **'""* " *""'b'**'"'

IODIDE. lSEE SIDE EFFECTS BELOWJ ,

public h.'elth officista teil you. You should take nne dnac hours. More ws0 not help you because the thvenid can " hold" on.

ly limited amounts of indine. Larrer doaea wiu increeaa the riak of side effects. You will probably he told ant in take the druz for more than 10 days.

INDICATIONS SIDE EFFECTS THYROID BLOCK!No IN A RADIATION EMERGENCY U ually. side effnets of potassium indide happen when people ONLY.

take harnar do ea far a long time. Yau should he carefut not to CIRECTIONS FOR USE take more than t! e recommended do=e or take it for longer thari hs Jae only as directed by State or localpublic health authorities you are in told.

- Side effects are unlikeiy because of thelow dose and the short time you will he taking the druz.

the event of a radistfon emergency. -

OCgg. ..

Possible side effects include skin rashes. swelling of the salivary Tableta: glanda. and " iodism 3 metallic taste. burnmc mouth and thrnat.

ADULTS AND CHILDREN 1 YEAR OF son teeth and gums. symptoms of a heed cold, and sometime.

AGE OR OLDER: One (11 tablet once a stomach upset a-d dia:-hear.

day. Crush for tma!! children.

BABIES UNDER 1 YEAR OF AGE: A few pancie have an allerrie reaction with more sennus symp.

One. half (1/2) tablet once a day. Cnash tom. Thea. rnuld be rever and joint pains. or sweiling nt parts of first. the face and hady and at timea **ver= ehnrtness of breath requir.

ing immediate medical attention.

Solution: ADULTS AND CHILDREN 1 YEAR OF AGE OR OLDER: Add 6 drops to one- Taking indide mav rarelv cause overactivity of the thyreid hat! glass of liquid and drink each day. gland. undersetmtv of the thyroid efand. or enlarrement of the thyro'd riano iroiteri.

dASIES UNDER 1 YEAR OF AGE:

Add 3 drope to a small amount of IIquid once a day. WH AT TO 00 IF SIDE EFFECTS CCOUR

-roe c?f dosage forma: Take for 10 days unless directed otherwise If the <ide effects are severe nr if you nave an ailergic reaction.

by State or local public health authorities. acnp takmr pnta. ium incide. Then. if pn=<ible. call a doctor ne public hesith .iuchnnte far instructmns.

Store et controlled room temperature between IS' and 30*C(59' to 86'D. Keep contamer tighdy closed and protect froc:ILIh t. HOW SUPPUED Do not use the solution ifit appears browmsh in the nozzle of the Mde. THYRO BLOCKW TABLETS ePotasetum Iodide. U.S.P.1 bot.

tiea afenrrame tablet 14 taniee= ;'In rsNDP 0037 6472 e pnea**ium 003 Each white. round. score intiide.

WARNING Pausalem iodida should not be used by people alfert ic to iodide. THYRO.RI.OCKM SOLUTION iPntasaium Indide Solution.

U.S.P s .'.n mt i a fl. oz.> lizht r,<,etant. mes.ured.denn di. pen,,nc Keep out or the reach of children. In case of overdose or allerg:e teaction, contact a physician or the puhuc health authenty. units iNDC 0037 42.'7 2Ae. Each drop contains 21 me potassium iodide.

~

DESCRIPTION wALLAct LAscearcmES Each THYRO BLOCKW TABLET contains 130 mg of 0* 'S'ea n' caarEAwatLAct. mc O.ocassiam iodice.

ach drop of THYRO B LOCK" SOLUTION contains 21 =g of potassium iodida._

cw icm3-v ,

C:aaeury. New Je sev CPS 17 3soe in r3 l _ _ ._ . . . - - .

. - - - - - Figure 3

___ _ .Rev. 6 .. _

FNP-0-EIP-4 7.

=m -4 - -.es=- a;4m= a* em <>

I. APPENDIX 1

}

The graph on Sheet 2 of this Appendix shows the gamma

, dose rates inside containment as a function of time after the'following:

Case 1: 100% Core Melt (100% of noble gas and i 25% of iodine core inventory is released into the containment and is available for leakage to the environment.)

Case 2: 10% Core Melt (approximates total cladding j i failur~e with 10% of noble gas and 2.5%

of iodine core inventory released.)

Case 3: 1.0% Core Melt-or 10% Cladding Failure (1.0% of noble gases and 0.25% of iodine core inventory released.)

Note that these plots are for volumes above the operating deck EL. 155'-0". All assumptions made to plot the graph are the same as those given in the FSAR for LOCA analysis.

(One of these assumptions is one train of containment 1 O- spray and one train of containment coolers is operating.

Two trains of containment spray were considered in a separate analysis. Assuming both trains are operating would effeccively double the removal rate of the elemen-tal and particulate forms of iodine. However, due to the limit of spray removal credit allowed by the NRC (DF=100), the sprays would be " cut-off" in half the time.

This effect would be seen in the first 30 minutes after shutdown, but is negligible in th'e graph due to the presence of noble gases. Thus, justification of using the FSAR LOCA anlaysis as guidelines for this analysis.)

6 Appendix 1 Page 1 of 2 Rev.6

i J

t 1

i 04

  • ~

l u

.A y  : 'r ==.  : .-- ..

r --  :  : ' _-  : . 7- . _ .

5*

7.Do 02 g _..: ::  ; -

r;_ --: pa- 11

.;r -~ -

rx gc4

.f _f. _ _ _

= _ _ .-

~ , .

5.Do 02 p..f__

c. w >

.._ .e.. . _ . _ . ..__

O. n W 4 g

. _ ._ __ _ ._ _ _. .o '

l, / ,/ /._ . ._

..._.f._

/ / /

! / / .

1.Do 02

..%  ;.= _ .. .:_

f".

--- -- ~ ---

7.Do 01 4 -_ -

a._ >._.

J,.~.._....=_= _.___

,i..... ,1_.._. 5.Do 01 I / / s ~ '

'j

~I~

Z

~ ~

/ ..__._

/ L__.. / ?_1_- I

_ 3.00 01

/ __/ /

.L_ .l _

.- _-_.7 ' /

s ..-

,/

i .. .

m

.> / / /

I / '

2: n 1. 00 01 h g r rx'r- jg. _

%. __.__ _ _ _ _ 1 gr . . . _ _g{t
.y g:r .--

@t _lE._._..7.0o ..._. _ _

_ .00- e yj L.- ;m -

y 4 9, c, y.-. __L -n 3_.

g......-a. __ . . . . _

9 5.Do 00 v i lL4 / / t. .. _

/__ _ . '

L.-_ .',% 3. 00 00 n W

..-_%li/

n n

--_-_ P. . /

l -- ? 'l /

..-- u 1/_ '/

@3 x

/ _p------

i /

---== c

/ 2:n- g-._

i t=.:;

1.0a 00 7.00-01 w

m w

m 1

_ r- r'r

- ,I l l.;44 w ._

J a_. .

j__

l. .._ . . . _ .

.a C

.u  : --/' [.

t......_

p

. . _. .. 1 4 5.00-01 -c

> t ) I _ ._1 ..[_. w k.-l'___

/ L '

_ l / - __.__.. ._-. 3.De-01 5 l ,. .- -. .

l_ . .. . _.__ .. . _.. . _._

/ / /

/r u <: v; w n 1.00-01

-(- 7 u. u  % . t v.

G e u C C

., u C

u G C C

. r-C C C r;

G u

C; 2

C C C C  :

Cd u G t', G G G G C C Cd C; e i e  : I' ec o c c o c t;

c tw g

t, q'

t; oe ea c a

c e

e; a e e ta e i e q

t. c c a a c:

c s ta q ta c

qc c3 cc cc ta c c3 c u d r4 uj d 6 i d d a d 6 J ry uj q q q ui 6 J u

dr a u-J i u - ed uJ c4

~

( 2noH / PPM ) auamu1eauo3 apisul aseg as60 c PD

. . _ _ _ _ _ . _ _ . _. . . _ ~

~ _ _ - _ . ._: _ _ . . _ _ . ..______ _ -

l

. ,m

{J VOL. 14 FNP-0-EIP-9 l

. February 1, 1983 Revision 11 FARLEY NUCLEAR PLANT EMERGENCY PLAN IMPLEMENTING PROCEDURE FNP-0-EIP-9 3

A F

E T

Y RADIATION EXPOSURE ESTIMATION AND CLASSIFICATION OF EMERGENCIES

. R E

L A

T E

Approved:

N.

Plant Manager W

Date Issued:  ?-c -f 3 Implementation Date 2 [?

List of Effective Pages Page Rev.

1-8 10 DOCUMENT CONTROL Tab 1 pp 1,3 8 CONTROLLED COPY Tab 1 pg. 2 11 DO NOT REPRODUCE Tab 1 pg. 4 9 Tab 2 pp 1-7 8 COPY NO.0 4 3 Tab 3 pg 1 10 Tab A-G pgs. 2 15 11 Tab A pp 1,3-7, 11 9 List of Effective Pages cont Tab A pp 8-10,12-14 8 Page Rev.

Tab B pp 1,3-7, 11 9 Tab E pp 1,3-7, 11 9 Tab B pp 8-10,12-14 8 Tab E pp 8-10,12-14 8 Tab C pp 1,3-7, 11 9 Tab F pp 1,3-7, 11 9 Tab C pp 8-10,12-14 8 Tab F pp 8-10,12-14 8 Tab D pp 1,3-7, 11 9 Tab G pp 1,3-7, 11 9 (A) Tab

~

D pp 8-10,12-14 8 Tab G pp 8-10,12-14 8 Diskette EIP-6

VOL. 14 FNP-0-EIP-9 l

l /

7 (qs l RADIATION EXPOSURE ESTIMATION 3yo CLASSIFICATION OF EMERGENCIES 1.0 Purpose To provide a method for rapid projection of estimated offsite radiation exposures as a result of a release of radioactive material, to provide the basis for classifying emergencies based on plant conditions and automatic or manual dose calculations, and to provide guidance for determining protective action recommendaticas.

2.0 References 2.1 Joseph M. Farley Nuclear Plant Emergency Plan 2.2 FNP-0-RCP-25, C&HP Activities During a Radiological Accident 2.3 FNP-0-EIP-4, Chemistry and Health Physics Support to the Emergency Plan 2.4 FNP-0-M-007, Emergency Dose Calculation Method

(-s_

2.5 FNP-0-M-Oll, Offsite Dose Calculation Manual l 2.6 FNP-0-EIP-29, Long Term Dose Assessment 2.7 EPA " Manual of Protective Action Guides and Protective Actions for Nuclear Incidents" 2.8 NUREG-0654, " Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants" 3.0 General 3.1 This procedure provides criteria for the classification of an emergency based on plant status and radiological hazards, i.e. d.r_ct radiation and inhalation hazards which may reault from the passage of a cloud of radioactive material released from the plant. NOTE: Assessment of radioactive liquid releases will be made using the Offsite Dose Calculation Manual.

3.2 Release time is defined as the projected release time, i.e., the period of time from the initiation of the release to the projected termination of the release.

Os 1 Rev. 10

VOL. 14 FNP-0-EIP-9 (h 3.3 The direction of the wind as read from the control room recorder is the direction from which the wind is blowing. The downwind direction is 1800 from the wind direction.

3.4 Protective action recommendation guidance is provided to aid in astablishing protective action recommendations. The Emergency Director will exercise his own judgement in establishing protective action recommendations.

4.0 Procedure Various plant emergency operating procedures refer to EIP-9 for classification of the emergency. The Analytical Data Management System (ADMS) recognizes emergencies and initiates emergency dose calculations when it receives two consecutive polls above the alarm level from one of the following sets of monitors. The emergency organization should utilize automatic dose assessment in preference to manual dose assessment whenever possible to avoid unnecessary conservatism.

A. Any two of RE 15A, RE 15B, RE 15C.

B. Any two of RE 60A, RE 60B, RE 60C, RE 60D.

C. Any one monitor from A in combination with any one monitor from B.

D. Any combination of RE 29B with RE 14, RE 21 or RE 22.

4.1 Automatic Dose Assessment 4.1.1 If the initiating event produces high enough radiation levels to start automatic dose assessment, the ADMS terminal in the TSC will generate CRT and hardopy messages. Otherwise the Emergency Director should direct a counting room i technician to initiate automatic dose I assessment. From that point, the TSC  !

ADMS Terminal will generate 15 minute ,

dose updates unless the terminal is being utilized for other functions.

Therefore, during an emergency the ADMS Terminal in the TSC will not be used for any function other than the 15 minute '

dose rate updates without approval of the Emergency Director or the Technical Manager.

2 Rev. 10

i L VOL. 14' FNP-0-EIP-9

~T The ADMS will generate whole body and

[\ l' 4.1.2 b thyroid doses at the site boundary and plume centroid positions for the ground level plume and the elevated plume.

Note that these two plumes may not overlap. For the purpose of emergency classification,.only the ground level plume at the site boundary should be considered. While other values may be useful for dose assessment in the surrounding countryside, the ground level plume at if the site boundary serves as the reference for classification.

4.1.3 Determine classification level and +

protective action recommendation from paragraph 4.3 4.2 Manual Dose Assessment 4.2.1 Obtain meteorological information on wind speed, wind direction, and atmospheric stability (AT) from plant meteorological instruments using Tab 1.

4.2.2 If at least one value for wind speed,

(

N one value for wind direction, and one value for atmospheric stability are not available from 4.2.1 above, obtain this l

information from the following offsite sources in the order listed until all information needed is obtained:

4.2.2.1 Dothan Flight Service 4.2.2.2 National Weather Bureau-Montgomery 4.2.2.3 National Weather Bureau -Birmingham 4.2.2.4 Great Southern Paper Company (windspeed and wind direction only).

NOTE: Refer to Tab 2 for specific instructions.

4.2.3 Once the atmospheric stability class has been determined per 4.2.1 or 4.2.2, l determine dose rates, projected doses, projected plume boundaries, and projected O .

3 Rev. 10

j i

VOL. 14' -FNP-0-EIP-9 l

[~)

- (_/

plume arrival times for plant releases by using the appropriate tab listed below:

Atmospheric Stability Class Tab A A B B C C D D E. E F F G G 4.3 Emergency Classification and Protective Action Recommendations Based on Dose Projections 4.3.1 General Emergency 4.3.1.1 Criteria: Based on lower limit of projected individual .

exposure at site boundary.

5 rem whole body exposure, or 10 rem thyroid exposure

/ 'T 4.3.1.2 Offsite Protective Action

'\ms/ Recommendation Guidance:

Shelter or evacuate (see NOTE in step 4.3.3.3) the population in exposure areas projected at

> 5 rem whole body or > 10 rem

., thyroid. Implement control of food and water supplies pending sampling and analysis.

NOTE: E"acuation recommendations should specify evacuation distance (s) of 2 miles, 5 miles or 10 miles and specific evacuation zones. Wind variability should be considered -

when selecting width  :

of evacuation zone.

Consider sheltering rather than evacuation if projected time of exposure is less than three(3) hours or less than twice i

[)

\s

. the time required for evacuation (see 4.6).

4 4 Rev. 10

t

). VOL. 14 FNP-0-EIP-9

'! 4.3.1.3 Refer to EIP-19, General

(V) . Emergency.

4.3.2 Site Area Emergency l 4.3.2.1 Criteria: Based on lower limit of projected individual exposure at site boundary.

1.0 rem whols sdy exposure, or 2.5 rem thyroid exposure 4.3.2.2 Offsite Protective Action Recommendation Guidance: In exposure areas projected at >

1 rem whole body or > 2.5 rem thyroid, recommend teat population be alerted to listen for possible future protective action recommendations. Consider control of food and water supplies pending sampling and analysis.

4.3.2.3 Refer to EIP-18, Site Area

-~ Emergency.

'-' 4.3.3 Alert 4.3.3.1 Criteria: 1 mr/hr at site boundary.

4.3.3.2 Offsite Protective Action Recommendation Guidance:

Dispatch Radiation Monitoring Teams and initiate intensified environmental sampling program.

4.3.3.3 Refer to EIP-12, Alert 4.4 Emergency Classification and Protective Action Recommendations Based on Plant Condition.

< 4.4.1 Refer to Tab 3 for general criteria for i classifying plant conditions. Refer to the indicated EIP for the exact criteria *:

. EIP-17, Notification of Unusual Event EIP-12, Alert l

O 5 Rev. 10

__.._-._u...m._ , , _ - . _.-__u . . . - - - _ __., - _ . - - - . . - .- ~

. VOL. 14 FNP-0-EIP-9 f3

. ( ,) EIP-18, Site Area Emergency EIP-19, General Emergency 4.4.2 The following offsite protective action recommendation guidance should be used for the General Emergency Plant conditions indicated.

4.4.2.1 Loss of physical control of the facility: Consider 2 mile precautirnary evacuation.

4.4.2.2 Other plant conditions that make release of large amounts of radioactivity in a short time period possible, e.g. any core melt situation.

a. For major core damage sequences where significant releases from containment are not yet taking place and large amounts of fission products are not yet in the containment
atmosphere, consider 2 (r"N) - mile precautionary evacuation.

Consider 5 mile downwind evacuation (450 to 900 sector) for large amounts of fission products (greater than 8,000 R/hr on RE-27 A or B Containment High Range Monitors immediately following shutdown). If over one hour since reactor shutdown, refer to 1% Core Melt Curve in EIP-29 Figurc 9.

Recommend sheltering in other parts of the plume exposure Emergency Planning Zone under this circumstance. ,

b. For major core damage sequences where significant releases from containment are not yet taking place and containment failure sequence is possible but not imminent and large amounts of fission products (j'N

( in addition to noble gases are in the containment 6 Rev. 10

VOL. 14 FNP-0-EIP-9

~

LJ atmosphere, (greater than 80,000 R/hr on RE-2 7 A or B Containment High Range Monitor immediately -

following shutdown). If over one hour since reactor shutdown, refer to the 10% Core Melt Curve in EIP-29 Figure 9.

Consider precautionary evacuation to 5 miles and 10 mile downwind evacuation (450 to 900 sector).

c. For major core damage sequences where large amounts of fission products other than noble gases are in the containment atmosphere and containment failure is judged imminent, recommend shelter for those areas where evacuation p cannot be completed before transport of is radioactive cloud to that location.

4.5 Continue to monitor automatic dose calculations per step 4.1; otherwise repeat step 4.2 as necessary. Repeat steps 4.3 and 4.4 as necessary every hour, following any significant change in release rate. if sample results indicate a significant c.Tnge in dose factors (refer to RCP-25) or until the release or plant condition is terminated.

4.6 Evacuation Time Estimates The Tables below can be used to assist in evacuation time estimates when no partial evacuation has occurred inside the 10 mile EPZ and the entire population in a sector is to be evacuated.

O 7 Rev. 10

, . _ _ - - - - .-. - -- - .... - - - - . l 1

l

" VOL. 14 FNP-0-EIP-9 i

I~V 100% Evaluation Time Estimates for EPZ Areas (includes 15 minute notification time).

Foul Weather EPZ Area Workday Nighttime Weekend Workday 2 miles All Sectors 75 min 70 min 70 min 85 min 5 miles 180-2700 80 min 75 min 75 min 95 min 5 miles 270-3600 85 min 80 min 80 min 95 min 5 miles 000-1800~ 85 min 75 min 75 min 95 min 10 miles 180-2700 150 min 85 min 85 min 205 min 4' 10 miles 270-3600 95 min 85 min 85 min 115 min 10 miles 000-0900 85 min 75 min 80 min 85 min 10 miles 090-1800 95 min 75 min 75 min 95 min 10 miles All Sectors 150 min' 85 min 85 min 205 min 4 90% Evacuation Time Estimates for EPZ Areas (includes 15 minute notification time).

2 miles All Sectors ~0 min 65 min 65 min 75 min 5 miles 180-2700 70 min 65 min 65 min 75 min O 5 miles 270-3600 5 miles 000-1800 75 min 75 min 70 min 65 min 65 min 60 min 75 min 75 min 10 miles 180-2700 100. min 75 min 75 min 130 min 10 miles 270-3600 85 min 75 min 75 min 100 min 10 miles 000-0900 65 min 65 min 65 min 65 min 10 miles 090-1800 75 min 65 min 65 min 75 min 10 miles All Sectors 100 min .75 min 75 min 130 min I

l i

i

/

8 Rev. 10 l_

l l . - _ _ _ .

i-j i-

$l

FNP-0-EIP-9 it
f i

55 4

1 l

l 4

,1 9

1.

I i

i l'

i TAB 1 i

PLANT METEOROLOGICAL TOWER INFORMATION Tab 1 Page 1 of 4 Gen. Rev. 8

' - ~

T- * . _ _: .: - . -_.  : _ .. - .__,:- ._ -- . . . . - __

n- . . . > , ,-g - + ~

+n .~n =

i FNP-0-EIP-9  !

-(u_/

n )- TAB 1 PLANT METEOROLOGICAL TOWER INFORMATI^N Obtain the following meterological information from the Counting Room or from the control room met recorder and l enter-data on CHP Form 112, Meteorological Information -

Farley Meteorology Tower (Figure 1).

1. Average wind speed over the last 15 minutes (three of the smallest time divisions on the recorder paper) at the 35 ft. elevation in mph (if 35 ft. reading is not available, record a one minute average wind speed for 150 ft. elevation).

NOTE: Recorder reading is 0 to 100% of full scale range. Ranges are: 35' elevation: 0-25 mph 150' elevation: 0-50 mph

2. Average wind direction over the last 15 minutes (three of the smallest time divisions on the recorder paper) at the 35 ft. elevation (if 35 ft. reading is not available, record wind direction for 150 ft. elevation).

From the wind direction, determine the downwind direction by:

(') A. Adding 180* if the wind direction is <180*

B. Subracting 180* if the wind direction is >180 NOTE: 0* and 360* are the same; 180 and 540* are the same. Each division on the wind direction scale on the recorder is 6*.

3. Delta temperature (AT) for Channel 1 and Channel 2 in
  • F. Determine the stability class for each channel from the information below.

AT (*F) Stability Class

<-1.74 A

-1.74 to -1.56 B l -1.56 to -1.38 C

-1.38 to -0.46 D

-0.46 to 1.38 E 1.38 to 3.6 F

>3.6 G If the two channels do not indicate the same stability class, use the most conservative channel (class closest to G) for dose assessment calculations. If only one channel is available, use the available value to determine CI the stability class.

Tab 1 Page 2 of'4 Rev. 11

_ . . . - _ . . - . - . _ ~ . . . . - . . - . . - . . .- . . . - _ . . . . . . . _

, ,,+...:..,. ~. -. . .. - . . . . - . - - - . - - - - - - - ~ - - - - - ~ . - , - . -

! FNP-0-EIP-9 1

i 4. From the stability class determined in paragraph (3),

refer to the appropriate Tab as listed below:

f I

Atmospheric i Stability Class Tab

-l A A

,; B B C C

D D 4

E E i F F ,

G G 4

t

)

4 h

i.

J-t J

i s

k f

l. '

Tab 1 Page 3 of 4 Gen. Rev. 8

~~- -

--_..____.____.._.._:..-_...z..._..:....-. . _ _ - _,.._::_,___-_-_,-. _.

-~=--. -- - - -- -,. _ . .-

FIGURE I METEOROLOGY INFORMATION FARLEY METEOROLOGY 70hT.R

.,x CDate Time CENTRAL Performed by:

1 O Wind Speed Determination:

i Recorder value (% of full scale): ( ) 35' [0-25 mph) Preferred

( ) 150' [0-50 mph) Alternate Wind speed mph 0 Windd2rection(W.D.) (from which the wind is blowing)

(6' per chart divison)

( ) + 180* (if W.D. <180')

( ) 35' ( ) 150'

( ) - 180* (if W.D. >180') Preferred Alternate Downwind direction: (wind direction plus/minus 180*)

,l 0 6 Temperature (200' minus 35') - Channel 1 'F ATemperature (200' minus 35') - Channel 2 'F 0 Stability Class for dose assessment (use most conservative class-closest to G):

() aT(*F) Channel 1 Channel 2 ,

<-1.74 () A () A

-1.74 to -1.56 () B () B

-1.56 to -1.38 () C () C

-1.38 to -0.46 () D () D

-0.46 to 1.38 () E () E 1.38 to 3.6 () F () F

>3.6 () G () G FOR INFORMATION ONLY:

A. Meteorological instrument elevations are given with respect to the met tower base slab at 182' MSL B. Plant vent releases are at elevation 299' MSL C. Steam jet air ejector releases are at elevation 272' MSL.

D. Steam generator atmospheric / safety relief valve releases are at elevation 214' MSL.

CHP Form 112 November 1981 j Figure 1 Tab 1 Page 4 of 4 Gen. Rev. 9

~ ~~ ~

- . . _ . . - . . _ l ' ' ~ ~_.__._______..i__..._. _ _ _ . . ..__l i

FNP-0-EIP-9

j i
. t i

l i

i TAB 2 METEOROLOGICAL INFORMATION OFFSITE SOURCES 1

Tab 2 Page 1 of 7 Gen. Rev. 8 1 -. -. . - . . . . . .

FNP-0-EIP-9

[] TAB 2 QJ METEOROLOGICAL INFORMATION OFFSITE SOURCES If either wind speed, wind direction, or atmospheric stability is not available from the plant meteorology tower, backup information can be obtained from Dothan Flight Service (Great Southern Paper Company also has wind speed and wind direction), National Weather Bureau - Montgomery, and National Weather Bureau - Birmingham (See EIP-8). Dothan Flight Service is the preferable source. If information is requested from either Montgomery or Birmingham, request data for Zone 15.

Request the following information and record on CHP Form 113, Meteorology Information - Offsite Sources (Figure 2A).

a 1. Wind speed in knots or mph (if plant wind speed is not available).

2. Wind direction in degrees or compass point (if plant wind direction is not available). If wind direction'is given as a compass point, use the following information to convert to degrees:

Compass Point Degrees N......................... 0*

NNE...................... 22*

NE....................... 45*

i: ENE...................... 67*

E........................ 90*

.; ESE..................... 112*

SE...................... 135*

SSE..................... 157 S....................... 180*

SSW..................... 202*

SW...................... 225 WSW..................... 247*

W....................... 270*

WNW..................... 292 NW...................... 315 NNW..................... 337*

I

3. From the wind direction, determine the downwind direction by:

A. Adding 180 if the wind direction is <180*

B. Subtracting 180* if the wind direction is >180*

i 0

' (_) Tab 2 Page 2 of 7 Gen. Rev. 8

ci

FNP-0-EIP-9 i

i

4. Cloud cover at FNP in percent or tenths (i.e. 40% =

l ((%_,/ 4/10) (if plant atmospheric stability is not available).

If the information is to-be obtained from the Weather j Bureau, ask for information for Zone 15.

NOTE: If cloud cover is given for more than one elevation, i sum the individual cloud covers. l l 5. Cloud ceiling height at FNP in feet (if plant atmospheric l stability is not available). If the information is to be obtained from the Weathor Bureau, ask for information for Zone 15.

', NOTE: If cloud cover is given for more than one elevation, utilize the lowest ceiling height.

6. If the atmospheric stability class can not be determined
due to the plant meterological tower's AT not being

! available, determine the stability class as follows:

f A. Determine Net Radiation Index (NRI) as follows:

I 1. For Daytime or Nighttime, if % cloud cover is 100% (10/10) and ceiling height is 17,000 ft., set NRI = 0 and go to step B.

2. For nighttime (one hour before sunset to one

/ hour after sunrise)

a. If % cloud cover 140% (14/10) set NRI =

-2 and go to step B.

b. If % cloud cover >40% (>4/10) set NRI =

-1 and go to step B.

3. For Daytime

,! a.

' Determine Insolation Class Number (ICN) from Figure 2B.

b. If % cloud cover i 50% (15/10), set NRI '

= ICN and go to step B.

l i

c. If % cloud cover >50% (>5/10), modify the ICN value as follows:

(1) If ceiling height is <7,000 ft.,

subtract 2.

(2) If ceiling height is >7,000 ft. hut l <16,000'ft., subtract 1.

O Tab 2 Page 3 of 7 l Gen. Rev. 8 l

~s _ . . . - . -

~

. , . ~ . - - . , - . - _ - , . . - - . . . . . - . . . , . . . _ . . _ _ , . _ _ _ , _ _ _ _ _ _ _ _ _ , _ - _ _

! FNP-0-EIP-9 e

'1

_( 3) If % cloud cover is 100% (10/10),

. \v subtract 1-again.

I (4) If Modified ICN value is <1, set

!f Modified ICN = 1.

i j'j -(5) Set NRI = Modified ICN and go to step B.

B. Using the Net Radiation Index obtained in Step A i

and the existing wind speed, determine stability

class from Figure 2C, Turner Stability Class as a Function of Net Radiation and Wind Speed.

4.

15 i .l

i

! }.

il

!. i
i

., 1 i

l l

I O Tab 2 Page 4 of 7 Gen. Rev. 8 l

- - - - y,,,.ay -p ,.-#y..- y--.y. ..y , y - #.97y-w- 7-.----

a- . .. ~ .

a . - . . . - . : -- . .

FNP-0-EIP-9 FIGURE 2A METEOROLOGICAL INFORMATION

.OFFSITE SOURCES A

V O Date Time CENTRAL Performed by:

0 Data _obtained from: () Dothan Flight Service

() National Weather Bureau, Montgomery (Zone 15)

() National Weather Bureau, Birmingham (Zone 15)

() Great Southern Paper Company a Wind speed: knots x 1.1516 = mph O

  • Wind direction or (From which wind is blowing)

(compass point) (degrees)

Downwind direction (Wind direction plus/minus 180*)

(degrees)

  • Compass Point Degrees
  • Compass Point Degrees N................ 0 /360* S.....s......". 4... 180*

NNE................ 22* SSW................ 202*

i NE.................~.45* SW. . . . . . . . . . . . . . . . . 225 '

ENE................'.67* WSW................ 247*

, E.................. 90* W.................. 270*

ESE............... 112* WNW................ 292*

SE................ 135* NW................. 315*

SSE............... 157* NNW................ 337*

O Percent cloud cover:  % or /10 (sum if >1 cover given) p D Cloud ceiling height: ft. (minimum if >l given)

\j O Determine Net Radiation (NRI) from criteria below: NRI

( ) Night **: Cloud Cover Cloud Ceiling Height NRI 100% (10/10) <7,000 ft. 0 100% (10/10) >7,000 ft. -1

>40 to 99% (>4/10 Not Applicable -1 to 9.9/10)

-<40% (<4/10)

~ Not Applicable -2

( ) Day ***

Insolation Class Number (ICN) for DAYTIME ONLY (Figure 2B):

Cloud Ceiling Use Insolation Class Cloud Cover Height Number (ICN) Fig. 2B NRI 100% <7,000 ft. No 0 100% I7,000 to 16,000 ft. Yes ****ICN minus 2 100% >16,000 ft. Yes ****ICN minus 1

>50% to 99% <7,000 ft. Yes ****ICN minus 2

>50% to 99% >7,000 to 16,000 ft. Yes

        • ICN minus 1

>50% to 99% >16,000 ft. Yes ICN

<50%

Not Applicable Yes ICN O Stability Class from Figure 2C:  ; refer to Tab with<the same stability class letter. '

    • Night-one hour before sunset to one hour after sunrise
      • Day-one hour after sunrise to one hour before sunset

,Q ****If result value <1, set NRI = 1.

\v' Tab 2 Page 5 of 7 Gen. Rev. 8 i-

s FNP-0-EIP-9 E8aEBE888 8888EO CSI GG gG w G GG GG s G GG GG

[- 456addd6dM4464d N (J N N N - - ca m *w a * - a dd6 d4.ENr . .

(%()l .

)

[

~f I

=t.J S .Q

.. . - . . . . . _ .-- . - - - -- .xn- ai--- 4

's b. .f:1 5$ Cb $

=3 se u

=1.e

, L ~,*

. . _ _ . _ . _. mC ._

-c g OJ ro DJ - -

. .i .o-

_. . . .L ':

O'

r. ..,

g .. O.

.  ;..J .

0 .. .,..i . ~,: ?_

, 2 a..

x. "-

276 aJ. 3 7 $

a . ,

.e t W aj O I 41 z 3* , ,1 , e L L 9n ML W

.a jq Q

r0

~

c._ t r0 0J -

_1 g g

. .1, 8 L *::

5 2

.P'

- b

- c U

e &

2 UL v6 0 Q

4 U U1 hh C __ pt

] - - - -

f f _ _ .__

o

~ ;3

. +i .

0 x 4

- 1. L d

~

C

-o c l, <c.

j[ AE

., , me d u< C L l0 ** 0 C C - Z A* el

~ . . - - - - - -- - g. L OJ r0 oj -

h, 11

-L;

~

A, 1b

, ,: alm

. . . i . I . .  : a G G G r3 53 G fi G t1 G G G G G G G C2 G G G G G G G G G G G G G . .G G G G C2 C C G G

. . . . . . . . . . . G G G G G G G G G -

"#1.,W e .?3 .,

  • r m N. 74 O 03 b E3 kr) *r (T) N .* G . . . . . . .

N N N N N - - - - - -* ~ a .* - c3 C3 6 C 'r) . v (T) (J ~

Tab 2 j O)' PaEa 6 o "' '

\.-- THIE OF DAY Gen. Rev.'7l8 1

+ . - _ . . - . - . - - . ~ .. . . :- :.- . ~^ ^~

~ ^

~ :.-

FNP-0-EIP-9

. FIGURE 2C TURNER STABILITY CLASS AS A FUNCTION OF NET RADIATION INDEX AND WIND SPEED I Wind Speed Wind Speed NET RADIATION INDEX (mEh ) (knots) 4 3 2 1 0 -1 -2 j, 0 -

1.6 0-1 A A B C D F G 1.7 -

3.9 2-3 A B B C D F G i

4.0 -

6.2 4-5 A B C D D E F 6.3 -

7.4 6 B B C D D E F 7.5 -

8.5 7 B B C D D D E 8.6 -

10.8 8-9 B C C D D D E 10.9 - 12.0 10-11 C C D D D D E ,

i 4

2 12.1 - 13.1 12 C C D D D D D I

>13.2 >12 C D D D D D D F

l-T I I' Figure 2C Tab 2 I Page 7 of 7 1

Gen. Rev. 8 7 _ __ . _

FNP-0-EIP-9 '

l TAB 3

\ ***'"2***"' .gm. s:-r utzs zxnctsc- mzxA:. mme

~xr.r:c e .T:-

rti?-ty) ,,,,..% re,,-191 !*-le)

With Twel Damage and

", ",*****1 *

  • nee at trat==at 30 spe Leanase 'Jith CDff Ptses'.) 27 *
.Y.E (Daisolatanle) peig of Rupture of a coscrol rod housing, {,*t g ,,j t

inside CDff or out- Outside C5fT wita

'MS V 11C2ItcAI' outside CS!T with * * ** IE' I"** ** 'I*

g g 3 ,,,3,,,g, f allure or outside and aC3 ectivity CDff with 10 gen 3/G toch spec limit

..m a taa.mma Vith ICC3 Astiration gf mg ,g.gg or >10spo leaa with With 1457 and ECCS break outside C"MI Activatiot With LOCA and potent-Clad dannge indicate < ECS 4 7 > H* and tal loss of C5f!

DEG1ADE2 CCRZ Core 410*T subcooled by RCS Activity increasing or coge intes. er vien loss

'p300 uC1/gn 1-131 exit camp. >7100 F sf C5f! intes. and Equivelant potential 14CA 710 times radiolos- l ital.T.S. escaeded ei Projected offatte Projected offsite either 8-14. 1-11. ei dose 1.0 tem V.S. or does > 3 Ren W.3. or 10 tem Thyroid M tadiological tech spec t-23.offscale(sample 2.3 tem *hyroid limit onceeded confirmed) or laA/hi

m. <<.,ow.,

$NT A&tas, tau $4accada Act.aal or laminant iminant tasaavar of Loss of physical or unauthorised entry threat of saeotage planc sentrol of 31 ant 3 noth traina of AC er LO5F and losa of all 1487 and loss of all

._.99 y g,p all diaeels diesels for 413 min diesels for >13 min or loss of both traint or lose A.C. or of 13Aua.

min. b1dg. of Auz. bids. DC for l M t-. i o

,fM3 indica-,, Loes of all HC3 an a s r > 13

    • ""****** **** "D** ***"*' ***
  • aee av aaw*t"- m to an extent requir.

in CSD or a signifi-

.m -t,y go, ,,,,4 , cant transtant in prog.

Fission product >300uC1/guwithLOCAl activity in 10$ >300 and potential loss +

JJ ecs ac tytr Exceeds Tech spec > 300 uC1/ra I-131 uci/en with potent- of CtMT intes, or limit Equivals4a tal lose of RC3 or toes of CDf! intes.

CDff intes. 6 ootential LOCA Loss of functions of either AFW.KER.

Ett ECUT**EN' FAC.'lR2 SW.CCW or failure of #eluiredtoachieve g3 SSPS to initiate 6 complate trip laadvertant loading Twel damage wits Twel dansse with 8 of fuel causing F, either 1-1. 1-11 projected dose

"* *t" er' to exceed tech 1-12. or 1-13A or 1 Res W.3. or StAcm"** ' c A*iG

- spec limit 3 reading offscale 2.3 Ram Thyroid Aoy of the follovirq iar thquase >CBE hithquake > $5E.

which affect the sit,e, .ornado strikts gg,,,3gg3 ,,,, ,g,,,

W "vi' M 1*INCI!$ tarthquase f ac., Surricane winds 1 ,,,3 , y y 4 Tornado near 113 sph. Unusual basta Burricane river level affecting

..... so .. *,.:.. . . . . , . * - . .

Any of the following ant of the following Any of the following on ette or 41 mile affecting ope. air- with the plant not in free site affecting craf t crasa, toxic gas, t"33* aircraf t crash.

s toxic or flam. gas into ope.: aircraft crash, flama. gas, or fire

] toxic gas, amp./ fire. potent. aff ect. ICCS pr effect vital areas. A

- sces..sec .- m i

"- .. r*-eier-?. 1??e-.

CDC intes. T.S. Limit '

exceeded. Lose of forced flow =3 locoe. ICCS ac.

"' "**

  • e'*s cuated. Safety or PCRV Rod ejection at Evacuation of Control fail to close(pes or 5/Cl power

. . . . ..n --..... sm l Tab 3 /?aze 1 of 1 / Gen. Rev.101

l FNP-0-EIP-9 STABILITY CLASS A TAB A STABILITY CLASS A DOSE ASSESSMENT O

O Tab A Page 1 of 15 Gen. Rev. 9

i FNP-0-EIP-9 TAT 3 A

) STABILITY CLASS A STABILITY CLASS A DOSE ASSESSMENT I. Source Term Calculation A. Plant Vent Stack Release

1. Enter the flowrate in cfm from the plant vent stack flow recorder (Located next to RE-14 in Control Room) on Figure A-8, Stability Class A Dose Assessment or by using the following information if the recorder is not operating:
a. One aux. b1dg. f an . . . . . . . . . . . 7 5 , 0 0 0 c fm
b. One aux. bldg. fan & RE-025 tripped . . . . . .. . . . . . . . . . . . . . 7 9, 0 0 0 c fm
c. Two aux. bldg. fans . . . . . . . . . 15 0, 0 0 0 c fm Two aux. bldg. fans &

RE-025 tripped............ 154,000 cfm

2. Have the Counting Room Technician poll the High Range Vent Stack Monitor (R-29B) for noble gas and iodine concentration per FNP-0-RCP '/32, s If R-29B is not operable, have the Counting Room Technician obtain a vent stack sample from the Vent Stack Post Accident Sampling Station (located next to R-21/22). Values will be reported in pCi/ml.
3. Noble Gas Enter on Figure A-8 the pCi/ml for noble gas and the noble gas dose factor from Figure A-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use a noble gas dose factor of 2.4E+02.

4. Iodine Entar on Figure A-8 the pCi/ml for iodine and the infant iodine dose factor from Figure A-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use an infant l iodine dose factor of 6.0E+05.

b Tab A l Page 2 of 15 l Rev. 10

-~ . _ . .

I FNP-0-EIP-9 4

p B. Steam Generator atmospheric relief and/or safety release.

1. Determine the flow from the atmospheric reliefs and/or safety reliefs as follows:
a. Obtain the current pressure (psig) and loop TAVG(*F) readings for each steam generator of the affected unit. Record values on Figure A-4.
b. Determine the flow in pounds mass per hour (lbm/hr) that is possible from a safety / atmospheric relief valve by using Figure A-5. The value obtained is the flow that will be discharged from each safety or atmospheric relief valve that is open.
c. Determine the number of valves that are open for each steam generator using the data below:

Pressure of Steam Gen. (psig) Valves Open

<1035 0 T035-1075 1 1075-1089 0 1089-1102 1102-1116 1116-1129 2

3 4

5

>1129 6 NOTE: If a relief or safety is stuck open l or if reliefs are being utilized l

for cooldown, the above table does not apply and operator knowledge of plant condition must be used.

( -

\

V Tab A Page 3 of 15 Gen. Rev. 9

_ _ . _ _ _ _ . _ _ _ . . _ .-- . -~_ ._

e_..______ -. _ - . -

FNP-0-EIP-9 l

! d. Determine the total flow in cfm from

(~ ')s

, each generator by multiplying the flow TIEE/hr) times number of valves o; pen L times the specific volume for eaca

generator,
e. Determine the total flow of the release in cfm from all generators by summing the values obtained for each generator l per I.B.l.e.

NOTE: If the R-60 monitors are operable and indicate that not all generators are releasing contaminated effluent, sum only the flow from generators with contaminated effluent.

' f. Record this value on Figure A-4 and on Figure A-8 for :oth iodine and noble gas.

2. Determine the effluent concentration in pCi/ml either by)using (a OR (b)RCP-25 below:and by performing
a. Obtain the readings from R60A, R60B, I

S R60C and R60D and contact the counting s 1 room for conversion of the readings to pCi/ml usingthe

1. Record RCP-25 same pC1App /ml value onendix M, Figure Figure A-8 for both noble gas and iodine.

Determine the noble gas and infant iodine dose factors using Figure A-3 and record on Figure A-8. On Figure A-3 the

" Elapsed Time Since Shutdown (Hours)"

applies to the reactor.

b. Obtain a grab sample and analyze for noble gas and iodine. Record concentrations on Figure A-8. Obtain dose factors from the counting room or, if not available, determine the noble gas and infant iodine dose factors using Figure A-1 and record on Figure A-8.

C. Steam jet air ejector release

1. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below:

Tab A Page 4 of 15 Gen. Rev. 9

~ - - - - -- -

l FNP-0-EIP-9 i l 4

ex a. Obtain the reading from R15A, R15B or

i

{) RISC and contact(whichever is closest t~le counting roomtoformid-scale) convers ion l of the reading to pCi/ml using RCP-25, Appendix L, (Figures 2-A,B for R15A -

Figure 3 for R15B & RISC). Record the same pCi/ml value on Figure A-8 for both noble gas and iodine. Determine the noble gas and infant iodine dose factors it and record on Figure A-8 as follows:

(1) Use Figure A-2 if the SJAE filters are g service.

(2) Use Figure A-3 if the SJAE filters 4 are not p service.

, b. Obtain a grab sample and analyze for 3 noble gas and iodine. Record concentrations on Ficure A-8. Obtain dose factors from

the c6unting room or, if not available, determine the noble gas and infant iodine dose factors from Figure A-1 and record on Figure A-8.

II. Determine the source term for each active effluent path em for noble gas and iodine by,using the following equation (y and the values entered on Figure A-8:

[flowrate (cfm)] { conc. (pCi/ml)] (dose factor] =[ source term]

III. Determine the total noble gas source term on Figure A-8

,,- by summing the nob.Le gas source terms calculated for each active effluent path.

IV. Determine the total iodine source term on Figure A-8 by summing the iodine source terms calculated for each active effluent path.

V. Enter the total noble g_as source term, total iodine source term, and the wind speed in mph in the appropriate boxes on Figure A-8. Determine the dose rate in mrem /hr at the site boundary from noble gas and from iodine by using the following equation:

otal Source Term 0 2 = mrem /hr at site boundary (S.B.)

WndSpeed, mph.]_/ Q VI. If the projected noble gas or iodine dose rate >l mrem /hr, proceed to step VII; if not, the estimated whole body or thyroid dose'does not meet the minimum criteria for classifying the emergency according to Tab A Page 5 of 15 Gen. Rev. 9

FNP-0-EIP-9

,x paragraph 4.2 in the main body of this procedure and no further calculations are required at this time. Go to 4 [J'l

's step XIV.

o VII. Determine the estimated repair time or release duration in hours and record on Figure A-8. Use 14 hours1.62037e-4 days <br />0.00389 hours <br />2.314815e-5 weeks <br />5.327e-6 months <br /> if this value is unknown.

NOTE: If major changes in dose rate occur, it may be desirable to define repair time as the time from when dose rate calculation data was obtained to the projected termination of the release, then add the dose received to that time (determined

! by earlier dose rate projections) to the projected

dose to obtain total pro]ected dose, this methodology

.l

will be used at the discretion of the Emergency i Director.

VIII Determine the projected whole body dose in Rem at the site boundary using the following equation and record

~

j on Figure A-8:

. Dose = ose rate, mrlEA ffelease/ repair E Rem (Rem) " te boundary urf L time, hr 1000mRe Whole Body (x NOTE: If repair time is based on dose rate calculation time instead of release initiation time, add dose received to projected dose.

IX. Determine the projected thyroid dose from iodine in Rem at the site boundary by using the following equation and record on Elgure A-8:

Dose I se rate, mrem /felease/ repair f Rem (Rem) 2 = ite boundary L time, hr. (1990 mR thyroid NOTE: If repair time is based on dose rate calculation time instead of release initiation time, add dose received to projected dose.

X. Determine the total thyroid dose in Rem by summing the results from steps VIII and IX.

XI. Determine the classification of the emergency using the values from steps VIII and X and comparing them to the criteria of paragraph 4.2 in the main body of this procedure.

Tab A Page 6 of 15 Gen. Rev. 9

..,-www.e.. . . we... .ep=-e. <w e- .-==.-.v. . =, . e e-* -.e ...-eee . . . ~ . , . _ . *-

7-FNP-0-EIP-9 I

XII. Determine the affected downwind areas in the 10-mile

- I_s emergency planning zone (EPZ) by placing Figure A-6,

\s) " Relative Dose Rate Plume Boundary For Stability Class 1 A" on the 10-mile EPZ map.and by orienting the ?lume 1

centerline on the downwind direction vector. Tae lines on Fipre A-6 are isodose / isodose rate lines. The j dose / dose rate values on each of the lines can be i obtained by multiplying the values by the site boundary

, dose / dose rate. The value at the intersection of the

10 mile arc and the plume centerline times the site

! boundary centerline dose / dose rate gives the dose / dose rate at that point. Mark the centerline on the map with a grease pencil and record the date, time, and l stability class to aid in projecting accumulated doses and affected areas.

XIII Determine the arrival times in minutes for the site I boundary, and each mile arc out to 10 miles or to where j the dose rate <1 mrem /hr using Fi p re A-7 " Arrival Time 4 versus Wind Speed." Convert to clock time using time of release initiation, time of major release rate  !

change or time of wind direction change (as appropriate) and record data on Figure A-8.

XIV. Refer to step 4.4 in the main body of this procedure.

O

' V k
l -

('/)

s_ Tab A Page 7 of 15 Gen. Rev. 9 1 .

FNP-0-EIP-9 FIGURE A-1 FAILED R R

, DoseFcetersversusTime ISOTOPIC EffluentActivity 1E06 .

Z A

- l * ' '

6.0E05

' M* ME W.W ?)

5 ~ j.{1.9E05 , ---- _

gg g g I_  ! I L ' ' l l _.

rhY

/ ,

' l ll l, l l y

1E05 3 _

,, E $ I 6 ,( i l l l , t 4 4 1' e i i i i i i i i i d ','

2 I I II ' .

III I $ E i

.! LEOL C I 7 E....' ' '

1'i 5e ,' , , , i,,,i,,, -

g =i i i l i i iii1.

b B l ll l III 2

? ,

a E IE02 Z Z .

J . . . 6 4 4 ,

lf l'llllj'lll 4 g 2.4E02 2

K s i i liiiiiic i j .,

E N A 1E02 3 m N ,x . .

5 4 E I l t t 1 0 '

t iMt i 6 i i I 4 i f i

3 E I ! ' I ! ' ' ' ' ' ' ' ' EE 2

l l ll u 'l 3.0E01 j -

E lE01 %  ;; '

1 '4 8 12 ' 18 '3 24 Figure A-1 '

l Elcosed Tim Since Shutdem Geurs) Tab ^

L Page 8 of 15 l Gen. Rev. 8 i i

FNP-0-EIP-9 FIGURE A-2 O riittoruet DoseFcetersversusTi:e

+

l GrossEffluentActivity ForFilteredIodinee s

LEOS _

~

:' ' ' ,  : l l

, 5 - i

', 4 i i < i i ii E l l l 1 I I i I

' 3 2

EI l -

iI I I I I I II

. i , ,

u i,,,,

l 2 1.08E04 1. 2E04 3 -

! I .n ' I I I I l\ gag' gyg gg igo4  :'#~l l l l lII I I I I I i i

- EEE IHl.T EE g .- . . . . . , , , . , , . , ,

. .- i i i , e i i . . . . ..

d f~E I il l l I i i i l i i1 g  ; E IIl I 'II I i i I

,, E_ . l- l lll lll

's =

=

l 1E033 '

'e  : ,

p - ,

i,ii,iiii

- ,- i . l l g iiiiiiiii

"E I i l II I I "' l I I 3 3= 2.1E02 l

5

.,11 i ' l l .-

ll

~hN d 5 N

N A 1E02 3 x

,  :: , ?x ,%

i

' ' ' ' ' 'N '''''''

5~ I I i ' u t 6 lh I i i i t i iil i 4 *E I lill I N '

3* I i

' ' I I i i i

'lE E

! 2- 2.95E01 - -

L g a ~

1E01 N l

'g '4 'g g y 3 g Figure A-2 f

  • ^

Elepsed Time Since Shutdevn bes) Page 9 c:. 15 Gen. Rev. 8

FNP-0-EIP-9 FIGURE A-3 O FAILEDFUEL DeseFcetersversusTi=e L; CrossEffluentActivity ForUnfilteredIcdines 1E06 -

._ ! b, i . . . , , i , .

, , i . . ... ,,. ,

fs 5

_ M i , 6 , ,  ! e e e ie i e 6 i

- 1, I i ,

Q l 1 l l 1 l l 8' 8 8 8 8

! l l ll l llj 1.8E05 g g g g pyg (1.04E05 i 5 - Qjl l l l l l l l l l l l l l l l t I IGDE .O.1.T RAE

_ < 1EOS --_ __

r !

M , 0 8 . 6 0 8 6 ,jp e e t e

.. m 4 g 6 i e , i l e i e i , e t i . .

I 3 ' ' '

' ' I I ' ' ' I I 3

L 2 .:

.I I I I i 11  ! ll

- E 8 g

=

8 1E0A u

E 0 [a Z

, i + ,,,.i,i....

g i i i i iii i ii, i i i i i i i 3_ ,1 6 IIII ll lIIiili 1 l s

y 2  ;

~

b k 1E03 ~

7 3 E

)g 5-4N ' ' ' ' '

I I I i i

iiiit i l iI I i 3 _a_ E!

gj

-~

u. 6 i

=

o ,

g gl gg 3 1.lE02

~

E P

c8 2-$-[-

~

lE02 5 llIl l

__--- ~

m -  % _.,

N '''''''J ' ' '

5

~s]- ( l ( 4 l 4 5 t l t 4 ijl l

~

I } I i 1 1N I l l l l : 2.lE01 3 -

2 l ll !il l l ~I I ' ' ', ' ' ' f l i

!U393

Ei

~

lE01 '

3

'I '4 'S 12 18 '23 ' 24 Figure A-3 Elepsed Time Since Shutdenn (Heers) Tab A Page 10 of 15 Gen. Rev. 8

. . , , . ._.-e . . = = - .

,, /

( ') FI -4 ('"

V STEAtt ATtt0SPilERI FETY RELIE1* VALVE FLOW CALCULATION Sill'ET

~

7t 3-hr SG Press (pisg) No. Valves Open TAVC(*F) SPECIFIC VOLUtiE . min-lba j $1035 0 1035-1075 1 550 .505 1075-1089 2 500 .522 1089-1102 3

  • 450 ~

.526 1102-1116 4 400 .522 1116-1129 5 350 .508

>l129 6 300 .490 250 -

.467 212 .447 i

Loop cfm cfm Unit Press. TAVG lb P,'5r 8 Valves SpeciflC per per j Date/ Time SG (psig) (F ) (Fig A-5) X open X volume = SG Unit Remarks l

A X X = XXXXXXXXXX 11 X X .= XXXXXXXXXX C X X = XXX :XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX > sum of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX l l

X = XXXXXXXXXX A_ _X l 11 X X = XXXXXXXXX l l

C X X = XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 4 sum of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXiiX'iXXXXXXXXXXXXXXXXXXXXXXXXXXXXX )

A X X = XXXXXXXXXX 11 X X = XXXXXXXXXX C X X = XXXXXXXXXX ,

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 'r---> sum of cfm per SG i@

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX &

n~sm A I

8a3g e A

ihh"2>

t

1 i

1 FNP-0-EIP-9 STEAM PRESSURE (psig) 8 8 m

8 8 e o o o o e o o N e4 o o o o o o o o o 4.4 e e4 e4 e.4 e4 m CO h. @ O 4 M N Q e~4 p._,_  ! .t , .,. ....,. e4

. , . .. ... .. . . . i,. .. ..,. ,t.1 .. . ,...,.

. . . . . ,,. . .. ., m ,. .I.

i e .

) - .. . .

_ p : .. ..,. _ .... , .... ,. . . t . . . . 3. . .. .. ,...

t ,

_ _ . . . . . . . . . . . . .. r - - .. . . ,' -

t . . . . . - .., 20 0 00S l v . _ . . , . . . .. .. . .4 _-...;....___. . ., _ i . t.... , . _. a ..p e

. . . i .;. _3 . .

., - . - 4.., ,

u.....m.. .. . .... %:..

i

___......y-.........,.......,.._._.......;..........._.._.e....._,___.+_y

. . . . . _ . . . . . ., ...,_....m

{

. . . . . ~ . _ . . . .

. ....... .. ., - ..... . _..a ... ._ ...._. .........

...._ _ . . . . . . . . _ . . . . _ _ ._ . _ . _ _ _ _ . _ . .m. 3 - 000'SL1 l

_ . _ . _ . . . . .-..,_..........._........_...._.._.....,............e.

...._...._._...._..._....2_.-

_ . . , . _ _ . _ _ _ _ . . .._.._._..... __.000*ogy .

_...._............_.____....J,

...........__._._.........t..__ ......_ - .- ._.. _ , 000*gg9 ._

. ... .._ ...._ . . .._. .s.....__...__--..

__ _ . _ .. .._= _. - ..._ _

_...s._-......

.. ._._.__._...,_..............___..._..M.

_ _. _.. . . . _ .. _ . . . - .._._ . ...-... - _ _ , _ ._ . -.4 __ -

- - oco'stg

_ . . . . . . . . . _ _ . . .. . . . . . m_.....

~ _ .... .. . ......... ___ _ 4

_ _ _ . _ . . .. ._ .. .. ._.... _ ._.... ....~_ _ __;

. . _ _ . . . . _ . . . _ u.__. -....

g ._--....

. . . . _ . .__..:...._... . . _ . . . . _ _ _ . _ . . - i.

g -

. _ . . _ _ . _ _ . . ~ _-. . .. ..___ ._. . ._. _. . _. . .... __.y _..

. . .. _ . . _ 4

.r . . . _ . _ . . . . . . . . . . . _ _.__,.

_ . . . _. ._. _ -- 0 ,5 r - _- _.

__......____._._____4 -

(. . ... .. --

~

w ~_ _...... . _ .. . _ _ .. . .. ___ _.

non., c ma m ._

x . _ _ _ _._.._....__. . . _ . . ... _ .. .. _ _ _ . . . . . . .

... ..._..__. .. . ....._ .~,

___.. ...._ __.___..- . [ 00g*gLZ e

w _ . . . . . . _ _ _ . _ .- .- .- . . .. ._. .. ._ _ . . _ . . . . . . . . _ _ _ . .... . .n, g.sjg s

g . _ . . . . . . _ . . . _ . . _ . .__ . . . _ . _ . _ . _ . . . . . . . ->

v

, . . . . - . . . _ . . . . _...s. . . . . .... . . . . - _ _ ,.. .....__ ...._.-._._._ _. .. _ _

g _. _ _ . . . _ _ _ . . _ . . . _ _ - . _ . _ _ _ . _ .

_..____. Ooo*ogg,

=_. ._

w ..___. .. _ ._ __ .. _ . .. ._ .._.

. . _ . ._ _ _ _. . J

. _ _ . _ _ . . 000,SZZ %

3 _-- .. _ . __- =.... _ ...__ . . . . . _ . _ - . . . . .._ _ ._a z a -- _ . _ . . .

. . _ _ . _ . . . _ _ __ . _.. o 4 _ .

. . . . _ . _ . . . . . . . _ . _ . . _ . . . . . _ _ . . a 3, . . . . . . . .

._....____._...._.3......

w F-

a g m - _ . . . . . . _ . - _ . - - _ _

- M

_ .._ .. ... ._._. 4 a.

- 000,gLT I O __ ... *_..* ' . - . . - .-_..'_~_~~'

~~ ~

_-.~.~.~~'"

  • ~ --- -

. . . ' ~ . ' _ - ' . ' . . .' " =

mJ i u.

000'OST

<z wa

=

ezm = , _ . _ _ . . _ _

_ _ . . _ - - 000'SZI u<.x

. _ _ . . . . _ . m.._.. __ _

2 _ _ _ _ . . . _ .. ._. .. .. ... _. _ _ .. _ _ _ . ._ ._._.- . _ . _ _ . . . . . . . _ . .

n.

s

.= . . _ . . . _ . _ . . . _ _ . _ __

. _ _ . . _ _ . . . . . . . . . -_a

_ _ _ . . . . . . = -

.._r.__..

. _ . _ . . . 000,5L

. ._=_..._....._=_..._... --

._ooo*O5

_ . _ . . _ . - - - _ . . . _ . . . _ . . . _ . . _ _ . . . . . . . . . . ,i

..._.. .. . . _ _ _m, g o o

  • g g

.__..._=.._..... . . _ . _ _ . _ . . . . . . . _ . _ . . _ _ _ . _ . _ _ _ -

s ..... _ _ _ _ _ . . . . . . . . _ . . . . . _..._ . u

% . _ . .. . . ,.... 6., ., . . . - . . ._ . 6 _ a ;..

9,..._.

s

/ p-

. . ,.....__..., .._ n .....g..._.p..._...y__,.. ,

Figure A -5 g _ __ y ,-- . - p _.  ; - .. .p. 9 . m,. l_ _.L. ... } -

g Tab A G

e o to o a o G o o o m o m o G o a o e o a o u o a o a o Page 12of15; v N, .i os m r. o n v n N

  • n4 . m. Gen.Rev. 8 -

(STsd) 3EISSHd h'V3.T.S

FNP-0-EIP-9 FIGURE A-6 Relative Des. Rate Plum. Boundary For etability cles O mixing height = 4104ft.

A t

s 8.. 3 sust

. 351

4. .

1 981 e

1 81 8

2. .

y

.. tn

_ Li

\ \

B l l

.% l  !

- Li

-2 . .

31

- at 81

~4. -

get 51 Figure A-6 3081 Tab A saggi Page 13 Of ,.

S1 cen. Rev. 8 4 ..

/

FNP-0-EIP-9 Figure A-7 (T TRAVEL TIME (MINUTES) VERSUS WIND SPEED (MPH)

\

Wind Distance (Miles)

Speed (MPl!) sb 1 2 3 4 5 6 7 8 9 10 l 1 47.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0 480.0 540.0 600.0 2 23.5 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.jj 270.0 300.0 3 15.7 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 4 11.8 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150.0 5 9.4 12.0 24.0 36.0 48.0 60.0 72.0 -84.0 96.0 108.0 120.0 6 7.8 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 7 6.7 8.6 17.1 25.7 34.3 42.9 51.4 60.0 68.6 77.1 85.7 8 5.9 7.5 15.0 22.5 30.0 37.5 45.0 52.5 60.0 67.5 75.0 9 5.2 6.7 13.3 20.0 26.7 33.3 40.0 46.7 53.3 60.0 66.7 10 4.7 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 11 4.3 5.5 10.9 16.4 21.8 '27.3 32.7 38.2 43.6 49.1 54.5 12 , 3. 9 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 rh

( ) 13 3.6 4.6 9.2 13.8 18.5 23.1 27.7 32.3 36.9 41.5 46.2 14 3.4 4.3 8.6 12.9 17.1 21.4 25.7 30.0 34.3 38.6. 42.9 15 3.1 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 16 2.9 3.8 7.5 11.3 15.0 18.8 22.5 26.3 30.0 33.8 37.5 17 2.8 3.5 7.1 10.6 14.1 17.6 21.2 24.7 28.2 31.8 35.3 18 2.6 3.3 6.7 10.0 13.3 16.7 20.0 23.3 26.7 30.0 33.3 19 2.5 3.2 6.3 9.5 12.6 15.8 18.9 22.1 25.3 28.4 31.6 20 2.4 3.0 6.0 9.0 11.0 , 15.0 18.0 22.0 24.0 27.0 30.0 21 2.2 2.9 5.7 8.6 11.4 14.3 17.1 20.0 22.9 25.7 28.6

^

22 2.1 2.7 5.5 8.2 10.9 13.6 16.4 19.1 21.8 24.5 27.3

23 2.0 2.6 5.2 7.8 10.4 13.0 15.7 18.3 20.9 23.5 26.1 24 2.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 i 25 1.9 2.4 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26 1.8 2.3 4.6 6.9 9.2 11.5 13.8 16.2 18.5 20.8 23.1 Figure A-7 Tab A

/T Page 14 of 15 ks _s/ Gen. Rev. 8 y , - , - - - - . - -

FNP-0 -9

\__. / K._./

l

} FIGURE A-8 STAISILITY CLASS DOSE ASSESSMENT Date Time CENTRAL STANDARD  ;

WIND SPEED DOSE RATE RELEASE REM WHOLE  ;

FLOW CONC DOSE SOURCE (MPil) in MREM /hr TIME BODY <

m PLANT VENT (CFM) (pci/ml) FACTOR TERM X/Q (Use 14 hrs if value unknown)

$ STACK X X = X I . 23E-4 = X + 1000 = 1 d

a STEAM CEN. X X ~

X1 .23E-4 = X 1000

l i $ STEAM JET 1.05E+3 X X = XI.23E-4 = X + 1000 = j l @ AIR EJECT = XI.23E-4 = X 1000 =

l l OTi!ER: X X 1 f f'

TOTAL REM TOTAL NOBLE GAS DOSE RATE W110LE BODY f'

i AT SITE BOUNDARY PLANT VENT ,

j l

m STACK X X = XI.23E-M = X 1000 =

I

.y

$ STEAM GEN. X X = X1.23E-M = X 1000 =

I S STEAM JET AIR EJECT 1.0SE+3 X X = X1.23E-M = X 1000 =

OTifER: X X = X1.23E-M = X + 1000 =

TOiAL IODINE TOTAL REM DOSE RATE IODINE AT SITE BOUNDARY Emergency classification:

() GENERAL (>5 Rem Whole Body OR >10 Rem Thyroid)

() SITE AREA (>l Rem Whole Body OR >2.5 Rem Thyroid) TOTAL DOSE

() ALERT (>lmRem/hr Noble Gas or Iodine at Site Boundary) TO THYROID IN REM CALCULATE ARRIVAL TIMES AT SITE BOUNDARY AND EACH MILE ARC OUT TO 10 MILES OR TO A LOCATION < 1 mrem /hr.(USE FIGURES 6 & 7)

DATA BASED ON RELEASE /CIIANGE OCCURING AT CENTRAL STANDARD TIME ON (DATE). PERFORMED BY SITE BOUNDARY 1 mi. 2 mi. 3 mi. 4mi. 5 mi. 6 mi. 7 mi. 8 mi. 9 mi. 10 mi. Tab A Page 15 of 15 Gen. Rev.11

_ . . . . . __._.._.;.2- =.z_=.-- - - -

, FNP-0-EIP-9 l

STABILITY CLASS B B

TAB B STABILITY CLASS B DOSE ASSESSMENT O

O Tab B Page 1 of 15 Gen. Rev. 9

______-._m. _ _ _ _ _ _ _ _ _ _

FNP-0-EIP-9 f

TAB B b) STABILITY CLASS B V

! STABILITY CLASS B DOSE ASSESSMENT I. Source Term Calculation i A. Plant Vent Stack Release 7,

1. Enter the flowrate in cfm from the plant vent J stack flow recorder (Located next to RE-14 in Control Room) on Figure A-8, Stability Class A Dose Assessment or by using the following information if the recorder is not operating:
a. One aux. bldg. fan........... 75,000 cfm
b. One aux. b1dg. fan & RE-025

, tripped................... 79,000 cfm

c. Two aux. bldg. fans......... 150,000 cfm Two aux. bldg. fans &

RE-026 tripped............ 154,000 cfm

2. Have the Counting Room Technician poll the High Range Vent Stack Monitor (R 29B) for noble gas and iodine concentration per FNP-0-RCP-732.

If R-29B is not operable, have the Counting Room Technician obtain a vent stack sample f}

\_- from the Vent Stack Post Accident Sampling Station (located next to R-21/22). Values will be reported in pCi/ml.

3. Noble Gas Enter on Figure B-8 the pCi/ml for noble gas and the noble gas dose factor from Figure B-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use a noble gas dose-factor of 2.4E+02.

4. Iodine Enter on Figure B-8 the pCi/ml for iodine and the infant iodine dose factor from Figure B-1. The " Elapsed Time Since Shutdown (Hours)"

applfas to the reactor. If the release is

, from a waste gas decay tank, uJe an infant iodine dose factor of 6.0E+05. i i

l Tab B I Page 2 of 15 Rev. 10

FNP-0-EIP-9 i

i m j' ) B. Steam Generator atmospheric relief and/or safety s release.

I 1. Determine the flow from the atmospheric

.- reliefs and/or safety reliefs as follows:

a. Obtain the current pressure (psig) and

[h' loop TAVG(*F) readings for each steam generator of the affected unit. Record 3 values on Figure B-4.

b. Determine the flow in pounds mass per

. hour (lbm/hr) that is possible from a safety / atmospheric relief valve by using Figure B-5. The value obtained is the flow that will be discharged from each safety or atmospheric relief valve that is open.

c. Determine the number of valves that are open for each steam generator using the data below:

Pressure of Steam Gen. (psig) Valves Open

$1035 0

1035-1075 1 0 1075-1089 1089-1102 1102-1116 2

3 4

1116-1129 5

>1129 6 NOTE: If a relief or safety is stuck open or if 2eliefs are being utilized for couldown, the above table does not apply and operator knowledge of plant condition must be used.

.i Tab B Page 3 of 15 Gen. Rev. 9

FNP-0-EIP-9

d. Determine the total flow in cfm from

/~~ each generator by multiplying the flow (m,T/ (lbm/hr) times number of valves open times the specific volume for each generator.

e. Determine the total flow of the release in cfm from all generators by summing the values obtained for each generator per I.B.l.e.

NOTE: If the R-60 monitors are operable and indicate that not all generators are releasing contaminated effluent, sum only the flow from generators with contaminated effluent.

f. Record this value on Figure B-4 and on Figure B-8 for both iodine and noble gas.
2. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below:
a. Obtain the readings from R60A, R60B, R60C and R60D and contact the counting room for conversion of the readings to O' pCi/ml using RCP-25 Appendix M, Figure
1. Record the same pCi/ml value on Figure B-8 for both noble gas and iodine.

Determine the noble gas and infant iodine dose factors using Figure B-3 and record on Figure B-8. On Figure B-3 the

" Elapsed Time Since Shutdown (Hours)"

applies to the reactor.

b. Obtain a grab sample and analyze for noble gas and iodine. Record concentrations on Figure B-8. Obtain dose factors from the counting room or, if not available, determine the noble gas and infant iodine dose factors using Figure B-1 and record on Figure B-8.

C. Steam jet air ejector release

1. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below:

V Tab B Page 4 of 15 Gen. Rev. 9

FNP-0-EIP-9

a. Obtain the reading from R15A, R15B or O RISC (whichever is closest to mid-scale) and contact the counting room for conversion of the reading to pCi/ml using RCP-25, Appendix L, (Figures 2-A,B for R15A -

Figure 3 for RISB & RISC). Record the same pCi/ml value on Figure B-8 for both noble gas and iodine. Determine the noble gas and infaqi iodine dose factors and record on Figure B-8 ae follows:

(b) Use Figure B-2 if the SJAE filters are in service.

(2) Use Figure B-3 if the SJAE filters are not in service,

b. Obtain a grab sample and analy7e for noble gas and iodine. Record concentrations on Figure B-8. Obtain dose factors from the counting room or, if not available, determine the noble gas and infant iodine dose factors from Figure B-1 and record on Figure B-8.

II. Determine the source term for each active effluent path for noble gas and iodine by using the following equation O and the values entered on Figure B-8:

[flowcate (cfm)] [ conc. (pCi/ml)) (dose factor] =[ source term]

III. Determine the total noble gas source term on Figure B-8 by summing the noble gas source terms calculated for each active effluent path.

IV. Determine the total iodine source term on Figure B-8 by summing the iodine source terms calculated for each active effluent path.

V. Enter the total noble gas source term, total iodine source term, and the wind speed in mph in the appropriate boxes on Figure B-8. Determine the dose rate in mrem /hr at the site boundary from noble gas and from iodine by using the following equation:

tal source Term 01 = mrem /hr at site boundary (S.B.)

Wind Speed, mph __ Q VI. If the projected noble gas or iodine dose rate >l mrem /hr, proceed to step VII; if not, the estimated whole body or thyroid dose does not meet the minimum criteria for classifying the emergency according to Tab B Page 5 of 15 Gen. Rev. 9

FNP-0-EIP-9 paragraph 4.2 in the main body of this procedure and no

/'~} further calculations are required at this time. Go to

\s / step XIV.

VII. Determine the estimated repair time or release duration in hours and record on Figure B-8. Use 14 hours1.62037e-4 days <br />0.00389 hours <br />2.314815e-5 weeks <br />5.327e-6 months <br /> if this value is unknown.

NOTE: If major changes in dose rate occur, it may be desirable to define repair time as the time from when dose rate calculation data was obtained to the projected termination of the release, then add the dose received to that time (detennined by earlier dose rate projections) to the projected dose to obtain total projected dose, this methodology will be used at the discretion of the Emergency Director.

, VIII Determine the projected whole body dose in Rem at the site boundary using the following equation and record on Figure B-8:

Dose = ose rate, mrem elease/ repair 1 Rem (Rem) site boundary time, hr . 000mR m Whole Body NOTE: If repair time is based on dose rate calculation

((mh / time instead of release initiation time, add dose received to projected dose.

IX. Determine the projected thyroid dose from iodine in Rem at the site boundary by using the following equation and record on Figure B-8:

Dose I mrem Eelease/ repair Rem \

(Rem) 2 = Dose rate,

'te boundary hr time, hr. 1000 mReg/

thyroid NOTE: If repair time is based on dose rate calculation time instead of release initiation time, add dose received to projected dose.

X. Determine the total thyroid dose in Rem by summing the results from steps VIII and IX.

XI. Determine the classification of the emergency using the values from steps VIII and X and comparing them to the criteria of paragraph 4.2 in the main body of this procedure.

V Tab B Page 6 of 15

Gen. Rev. 9 1

FNP-0-EIP-9 XII. Determine the affected downwind areas in the 10-mile

/~ emergency planning zone (EPZ) by placing Figure B-6, k ,h) " Relative De=0 Rate Plu te Boundary For Stability Class A" on the 10-mile EPZ map and by orienting the plume centerline on the downwind direction vector. The lines on Figure B-6 are isodose / isodose rate lines. The dose / dose rate values on each of the lines can be obtained by multiplying the values by the site boundary dose / dose rate. The val.ue at the intersection of the 10 mile arc and the plume centerline times the site boundary centerline dose / dose rate gives the dose / dose rate at that point. Mark the centerline on the map with a grease pencil and record the date, time, and stability class to aid in projecting accumulated doses and affected areas.

XIII Determine the arrival times in minutes for the site '

boundary, and each mile arc out to 10 miles or to where the dose rate <1 mrem /hr using Figure B-7 " Arrival Time versus Wind Speed." Convert to clock time using time of release initiation, time of major release rate change or time of wind direction change (as appropriate) and record data on Figure B-8.

XIV. Refer to step 4.4 in the main body of this procedure.

O Tab B Page 7 of 15 Gen. Rev. 9

-v

-._.-..: .. . . ..-...-....-..-.--.--..:...=----...-.---.-.

FNP-0-EIP-9 FIGURE B-1 FAILED FLE O

Dee Fceters versus Time ISOTOPIC EffluentActivity 1E06 _ -

,;., 6.0E05 M.

  • EEE DEW

. ; , . . ,n.

5

{l.9E05 l!ii gg,g g i _

i iyA- . , , I i

{ ,, / bd '~~~ T l lll\l l l l 1l

'Ef. ~

' t. 1EOS .

5

. - 4

~E ' ' ' '

_E l '

l l ' ,

4 I , I l 1 l { l j Id I il ll l ll l ll E ,

d

.! lE0L ~

5

=

O Y s

f := : ; ;-: ; . :

i ie i e a i i , , e e , i , i e i i

$ 3-! I I ' ' ' ' I I I I I ' I ! I ' '

1 6

2 L e ll ll ll l l l l l l ll l l l h

HIE 02~

3 E

. . , , . . . . i , , , , . .

j 57 , , ,,,,,,,,,,,,,

g 4 ] ]. g 2.4E02 i. p g i ; ; 9 i , , ,,; ; , ;

2 K s l II Il i lil l- I j g.

E N 1E02

-- '\ -

= '

. ~ .x

'N ' ' ' ' ' ' ' ' '

5 4 B t t I i I i t Al i e  ! I e a i e i i i i i i l i l I I T. ' ' ' I

  • _gE 3 _ 51 ,

j l 2 l lll l j l lll l l' l' 3

i E l l

1E01 3

1 '4 1 '12 18 3 24 Figure B-1 Elcesed Time Since Shutdown Oicers) ras B Pag.e 8 of 15 Cen. Rev, 8

FNP-0-EIP-9 E55 Dose Feeters versu Ti=e GrossEffluentActivity F0rFilteredIodines 1EOS _

, . ,, . , , , .i

~ ' ' ' ' '

5 -, , \

s \ "

oe . i e E I I I I I 1 El i l ll l l 2 g gg 3 3 2

1.08E04 1.2E04 -

a '

s# L I 8 ' I IIII M E E.W BIE 1E04

~

I!!!  ! I b ' I I I I I I I I I

MS ELU ETE i . - e i i i i e i i , i i i d iE '

I i iii l i i I ! '

I t g iEl '

ll ,

Il l l ll l l l l ll l l l b3 >

=

=

$ IE03 3 g -. , + , i 1  : '

, ;,;;;l l l l l ;

.i. .- . . . ., , , , , .

j *E I I i i i i i ii

' I' '

l '

' l l l Il 3 3* 2.3E02

,h 2 I I U U  !  ! / III g, x 3 E N

l N 1E02 ~ 'N x_

.' , , , , ?x.

,,w  ;

' ' ' ' N ' ' ' ' ' ' ' ' '

5 ~E 4

i i i I i i f i IN i iiiiiiiii 3

EI I II I I I II II M I I I bg 2}ll B

=

c ll l l 2.95E01 # -

' ' '/

lE01 E -

'I '4 'S '12 18 ' 3 24

o. Elepsed Ti.= Since htdevn Cicurs)

Figure B-2 ras 3 Page 9 o:.15 ;,

Gen. Rev. 8 i

g-

= -

. . - - . . . . ..- .-. . - .~ -

FNP-0-EIP-9 ^

'l --

FIGURE B-3 '>

i FAILEDFlE \

ll .

u DoesFactersversusTim Grea Effluent Activity

~

For(WilteredIcdines 1E06 _ '

=

~ ' ' ' '

5 u e t i ,'i e' ,'6 i,'

4 g , g ,

3 2 ( 1.04E05 [

l 1.8E05 g gg e l l i l I, I IlIl m)E EU Eri 1E05 _ __

i I i . , . ,

. 5 ~= . . .' , ,' ,

JJ 'Ee i i ii

' l l 2

II I! II

- g .

i =

~

' lE04 O 5' C

4 g 3 B l i i '

i " I l ' I I b E A l 1

l '

ll l 2

I

- _5 P -

g LEO.1 ~

$ U,  ! l

. ..;i , , ,

5 I 4

~8 ' ' ' ' ' '

g 3 E l i '

' I i i! I '

i n

' ' f 8 ' '

l j l l 3 2- l -

1.lE02 i

S  :

l lE02 - __

5 , ?f x , ,

I. -

1 4 5

~E g

I t i i N

l l ',

1 i 1

I 6 I l l l t I i 2.1501 3

2 l lii '

I ' ' ' ' i l !EI@E

. 5 1E01 M

'l '4 11 12 '15 3 24 O Figure 3-3 Eleceed '

Tim Since Shutdenn (Heurs) Tab B l Page 10 of 15 IGen. Rev. 8 l

_,_ n. ... w .. --- . -- ~ - - - - - - - - - - - . - , ~ - -- ---

p, , - - -w, - . - w,-----

e ,

f i FIGU 4 i i I \d STEAM ATt0SPilEltIC ETY RELIElf* VALVE -

l' f FLOW CALCULATION SilEET I i i fL3-hF

, SG Press (pisg) No. Valves Open TAVG(*F) SPECIFIC VOLUt!E min-lbst}

<1035 0 1035-1075 1 550 .505

1075-1089 2 500 .522 1089-1102 3 450 .526 1102-1116 _4 400 .522 1116-1129 5 350 .508

>l129 6 300 .490

> _ 250 .467 212 .447

~

Loop cfes cfm Unit. Press. TAVG lb m/hr # valves specific per per Date/ Time SG (psiB) ( F) ( Fi g B - 5) X open X volume = SG Unit Remarks A X X =_. XXXXXXXXXX 11 X X s= XXXXXXXXXX C X X + XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' '

> sum of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX A X X = XXXXXXXXXX

!! X X = XXXXXXXXXX C X X = XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

> sum of cfia per SG XXXXXXXXXXXXXXXXXXXXXXXYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXZXXXXXXX, A X X = XXXXXXXXXX 11 X X = XXXXXXXXXX C X X = XXXXXXXXXX y XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX '. ) _

sum of cfm per SG  ?

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX m

?

ame n k5*j U a 6-

?

?

4 P,, =

  • c; Li ,

FNP-0-EIP-9 STEAM PRESSURE (psig) 8 o n

o o o o o o o e o o e o.< o o o N M e o o o n .t.<

. < < .-< e a r e c .o x n o

N o

( )I p, i , 1

{... ,l ,_ .,; . 3, ,.:, .,.. .L ,, ._. , . .4 , i , . . . . ; . I .i'I , . 060009 s _ . _

p_., ., . j . . ,4.e ., 4. . .4.. , .. .p. . y,

,_ .., 4. . 3 ._.v 5. 9,.,...

g.,. __

.. .. ..._..... . . . . . .i.... .. : .. _ .. .. ._.;. . . r.*. ~. r .r. . . ...p . + .- -4,

. 4.. . , .:...: . . . s.+_t_..

. ... .... ...,.,..,...4 . . .__. + _m,

-....1.. _..- .

. . . . . .. ; . . . , .. .. . - c . . . . a  :

. . ~ . . . ..._ .... ..

._~.. .. _.. ._ _. 000,SL1 __

... _ _ ..__..._......_....._...._._....__..._.............._.......3-

. . . _ . ___..oco'osy

=.._._._....._.....__,...

. _ . - . . . . . _ _ . . . . . _ _ . . _ . . . . ..._.....2.._...~._... .

__._.=___.. 000*ggy

. - _._. . . ...:_..._....._a_.._

_ . . ..a._...._.c..

_ . _ _ ...... _....... _ . . .. . - __ .30C"3d

.___._..- .... m--coo,gLc m . __._..._.._._;._._.

m._.__.._.... _...

__. _ -----4

. _ _ . _ _ . . . _ . ..__ _u. ._...-

g _ _ _ . . . _ . _ _ . .._..:........__ . . _. .. . _ . . _ . _ _ _ . ..

.a

.. 0a0 c -

n.

_ _.. _ - - _ . __. . .._ __ .~4 -

_ _ . . _- - 000,ggc i,

. _ . . ~

. - =

... __ . . . . _ , . . I L

. . . _ _ _ . . . . . . _ _ . _....____..,..__.._..._____..,,,,,,3,.

..._ ___ ___._ ....._.__ - .*c o . _ . _ - _- ... . __.__. . . .. _ _ _ . _ . _ _ _ _ - . . . _ . . . . .

u x . . . _ _ . . . . . . . . . . . . . .

_ _ . _ _ . . _ _ _ - o00,gtg .

...._ _ _. _ _ _ . _ _. _ q a w _ _ . .

._.-._..._............___._..s....- . ..... _. -

o

, p. _

. . . _ . . . . . . _ _ . . . . . . . . . . . . _ . . . - .- ._._ . . . _ . . . _ . . _ . . . _ _ . . .~,

us . . . . _ _ . . . _ . . . . _ . . _. .__. _ _ -- . . . _

y%

_ - . - - -..-.--.---_...._..a-

. ._.- 000,0EZ '

w w

_ _. _ .a 000,SZZ <

p. -

-. _.._._._..___.._._.._.a.=...

_ . . _ ._ __ _ __ _ ~_..__ ._._a 2

_ _ _ . _ . = . . . . . . _ _.- ___ ._ o p - . . . . . . . . . _ _ . .

_s u

m . . . . ..... _ _.. . _.__._ _ - _ _ . _ . . . .

. _ . . . . a w g

< . . _ _ - . . . _ _ . = __ _. .___.=._. .

... 2 $

a.

- 000,SLT d-

, = . _ _ _ _ _ _ _ . __

a .=_

.__._.___=...m.-

eJ - .. . . . . . _ . . _ . . _

u. - _ -

. . . . . . . ~ . . . . . . . . . . . . _ . _ - _ _ . 000'ogI so _ _ . . . . . _ _ . . _ _ . . . .

=

~-

w :-) _ - -

__...~.._ . . . . . . . . . . . _ . . >

x - - _ _ _ _ . _ _ _ . _

o .z Qg - --- _

- _ _- 000'SZI

n. y .- . .. _ .. _ _

- -.._ _ _- . . . . _ . . . . . . . _ . _ . . . . ._.._..._._.._.g___ _m

._ .. __. ._3 ..- .. . _ - _. _.

_~._._

_ .. _ .. _. .. ._ _. . _ . _- __ O

. .- _~._ ....__ . .- _ .. . . _ _ _._ _ . . _ _ _ _ - _ . _ .

_._.s._ - - _ _ . _.._. _..-- __-.._...._...

...ogo'og

. _ . .__~_... . . . _ . _ ...._ ._.

._~.......... . . _.._ . . .. . . _ . _ . . _ . . . . . _ . _t .000'SZ ._-

s

)

_ ~ . . _ . . ..

. . . _. .,._._ ..m...__..

__ .- _ . 4_-

=

=

j  ;.. .

. . . . . . . . . . m.. .... .._ .. .. .

Fisun B-5

.: .;._I .. p.1 N. s p .

p. - 4 . q p.s.a. . p.a .p .)._a 4 - p p : .....y... n p i -
G o n o a o G o o. e to o o o G Tab 3

, c3 v

o m

G o o o G o C o m o G o Page 120fl0 a

- 4 N

w

.e s m CD r. ra - o v m N m

.e m . Gen.Rev. 8 C (STsd) 3EISS3Ed hY31S 4

t

. f. ,

FNP-0-EIP-9 FIGURE B-6 Relative Dee. Rate Plume Boundary Q' For etability class B mixing height = 4104ft.

, l (t

6..

4.. Emm M

f

. m

2. .

3 1 31 I

in j I a \ \

g O Li

' Es2 L;  ;

8 I j

. tx4  ;

Is.81

-2., at -

% mi ,

at ami ett

-4. .

M1 .

st

! Figure B-6 [

st Tab B Page'13 of 15

-6 . .

Gen. Rev. 8 TMt

/

FNP-0 EIP-9 Figure B-7 O TRAVEL TIME (MINUTES) VERSUS WIND SPEED (MPH)

Wind Distance (Miles)

Speed (MPH) sb 1 2 3 4 5 6 7 8 9 10 1 47.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0 480.0 540.0 600.0 2 23.5 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0 3 15.7 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 4 11.8 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150.0 5 9.4 12.0 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0 120.C 6 7.8 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.C

/ 6.7- 8.6 17.1 25.7 34.3 42.9 51.4 60.0 68.6 77.1 85.7

~

8 5.9 7.5 ' 15.0 22.5 30.0" 37.5 45.0 52.5 60.0 67.5 75.0 9 5.2 6.7 13.3 20.0 26.7 33.3 40.0 46.7 53.3 60.0 66.7 10 4.7 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.C 11 4.3

  • 5.5 10.9 16.4 21.8 27.3 32.7 38.2 43.6 49.1 54.5 i

12 3.9 - 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 13 3.6 4.6 9.2 13.8 18.5 23.1 27.7 32.3 36.9 41.5 46.'

14 3.4 4.3 8.6 12.9 17.1 21.4 25.7 30.0 34.3 38.6 42.9 15 3.1 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 16 2.9 3.8 7.5 11.3 15.0 18.8 22.5 26.3 30.0 33.8 37.5 17 2.8 3.5 7.1 10.6 14.1 17.6 21.2 24.7 28.2 31.8 35.3 18 2.6 3.3 6.7 10.0 13.3 16.7 20.0 23.3 26.7 30.0 33.3 19 2.5 3.2 6.3 9.5 12.6 15.8 18.9 22.1 25.3 28.4 31.6 20 2.4 3.0 6.0 9.0 12.0 15.0 18.0 22.0 24.0 27.0' 30.C 21 2.2 2.9 5.7 8.6 11.4 14.3 17.1 20.0 22.9 25.7 28.6 22 2.1 2.7 5.5 8 -. 2 10.9 13.6 16.4 19.1 21.8 24.5 27.3 23 .0 2.6 5.2 7.1 10.4 13.0 15.7 18.3 20.9 23.5 26.1 24 2.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.C 25 1.9 2.4 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.C 26 1.8 2.3 4.6 6.9 9.2 11.5 13.8 ab.2 18.5 20.8 23.'

Figure B-7 Tab B Page 14 Of 15 Gen. Rev. 8

- . _~ -_ .. - . - -

r

\ O FNP-0 I D'3 -

  • FIGURE B- 8 STABILITY CLASS DOSE ASSESSMENT Date Time CENTRAL STANDARD WIND SPEED DOSE RATE RELEASE REM WHOLE
  • FLOW CONC DOSE SOURCE (MPH) in MREM /hr TIME BODY un PLANT VENT (CFM) (pCi/ml) FACTOR TERM X/Q (Use 14 hrs if value unknown) ' * ' '

STACK X X = X8 .94E-6 = X 1000 = - -

U j a STEAM GEN. X X =

X8 & E=6+ = X + 1000 =

$ STEAM JET

@ AIR EJECT 1.05E+3 X X =

X8_94E-6+ = X + 1000 =

OTiiER: X X = X8.94E-6+ = x + 1000 =

TOTAL NOBLE TOTAL REN GAS DOSE RATE WHOLE BODY AT SITE BOUNDARY PLANT VENT v3 STACK X X = X8.94E-6+ = x + 1000 =

$ STEAM GEN. X X = X8.94E-6+ = x + 1000 =

S STEAM JET AIR EJECT 1.05E+3 X X = X8.94E-6+ = x + 1000 =

OTilER: X X = X8.94E-6+ = x + 1000 =

TOTAL IODINE TOTAL REM DOSE RAfE . IODINE AT SITE BOUNDARY Emergency classification:

() GENERAL (15 Rem Whole Body OR 110 Rem Thyroid)

() SITE AREA (21 Rem Whole Body OR >2.5 Rem Thyroid) TOTAL DOSE

() ALERT (llmRem/hr Noble Gas or Iodine at Site Boundary) TO THYROID IN REM CALCULATE ARRIVAL TIMES AT SITE BOUNDARY AND EACll MILE ARC OUT TO 10 MILES OR TO A LOCATION < 1 mrem /hr.(USE FIGURES 6 & 7)

DATA BASED ON RELEASE / CHANGE OCCURING AT CENTRAL STANDARD TIME ON (DATE). PERFORMED BY SITE BOUNDARY l mi. 2 mi. 3 mi. 4mi. 5 mi. 6 mi. 7 mi. 8 mi. 9 mi. 10 mi. Tab B

Page 15 of 15 Gen. Rev. Il

r FNP-0-EIP-9 STABILITY CLASS C l

l l 1 i 0

TAB C STABILITY CLASS C DOSE ASSESSMENT O

l O

Tab C Page 1 of 15 Gen. Rev. 9

FNP-0-EIP-9 O TAB C STABILITY CLASS C

, STUBILITY CLASS C DOSE ASSESSMENT I. Source Term Calculation A. Plant Vent Stack Release

1. Enter the flowrate in cfm from the plant vent stack flow recorder (Located next to RE-14 in Control Room) on Figure A-8, Stability Class A Dose Assessment or by using the following information if the recorder is not operating:
a. One aux. bldg. fan........... 75,000 cfm
b. One aux. bldg. fan & RE-025 tripped................... 79,000 cfm
c. Two aux. bldg. fans......... 150,000 cfm Two aux. bldg. fans &

RE-025 tripped............ 154,000 cfm

2. Have the Counting Room Technician poll the High Range Vent Stack Monitcr (R-29B) for noble gas and iodine concentration per FNP-0-RCP-732.

If R-29B is not operable, have the Counting O. Room Technician obtain a vent stack sample from the Vent Stack Post Accident Sampling Station (located next to R-21/22). Values will be' reported in pCi/ml.

3. Noble Gas Enter on Figure C-8 the pCi/ml for noble gas and the noble gas dose factor from Figure C-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use a noble gas dose factor of 2.4E+02.

4. Iodine Enter on Figure C-8 the pCi/ml for iodine and the infant iodine dose factor from Figure C-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use an infant iodine dose factor of 6.0E+05.

O Tab C Page 2 of 15 Rev. 10

~

, FNP-0-EIP-9 t

s B. Steam Generator atmospheric relief and/or safety release.

l. Determine the flow from the atmospheric reliefs and/or safety reliefs as follows:
a. Obtain the current pressure (psig) and.

loop TAVG(*F) readings for each steam generator of the affected unit. Record values on Figure C-4.

b. Determine the flow in pounds mass per hour (lbm/hr) that is possible from a safety / atmospheric relief valve by using Figure C-5. The value obtained is the flow that will be discharged from each safety or atmospheric relief valve that is open.
c. Determine the number of valves that are open for each steam generator using the data below:

Pressure of Steam Gen. (psig) Valves Open

$1035 0 0 1035-1075 1075-1089 1089-1102 1

2 3

1102-1116 4 1116-1129 5

>1129 6 NOTE: If a relief or safety is stuck open or if reliefs are being utilized for cooldown, the above table does not apply and operator knowledge of plant condition must be used.

l O Tab C Page 3 of 15 Gen. Rev. 9 i

* " " '* O *'

  • N M$W4$#

l FNP-0-EIP-9

/"' d. Determine the. total flow in cfm from

,, ( ,T/ each generator by multiplying the flow (lbm/hr) times number of valves open times the specific volume for each generator.

. e. Determine the total flow of the release in cfm from all generators by summing the values obtained for each generator per I.B.l.e.

NOTE: If the R-60 monitors are operable and indicate that not all generators

, are releasing contaminated effluent, sum only the flow from generators with contaminated effluent.

f. Record this value on Figure C-4 and on Figure C-8 for both iodine and noble gas.
2. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below:
a. Obtain the readings from R60A, R60B, R60C and R60D and contact the counting 1 room for conversion of the readings to pCi/ml using RCP-25 Appendix M, Figure

, 1. Record the same pCi/ml value on Figure C-8 for both noble gas and iodine.

Determine the noble gas and infant iodine dose factors using Figure C-3 and

record on Figure C-8.' On Figure C-3 the

" Elapsed Time Since Shutdown (Hours)"

applies to the reactor.

i

b. Obtain a grab sample and analyze for
noble gas and iodine. Record concentrations on Figure C-8. Obtain dose factors from

, the counting room or, if not available,

] determine the noble gas and infant iodine dose factors using Figure C-1 and

record on Figure C-8.

j C. Steam jet air ejector release

1. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below:

Tab C Page 4 of 15 Gen. Rev. 9

~ ~ , _ _ . . . _ _ _ ,, - ._

FNP-0-EIP-9 O a. Obtain the reading from R15A, R15B or RISC (whichever is closest to mid-scale) and contact the counting room for conversion of the reading to pCi/ml using RCP-25, Appendix L, (Figures 2-A,B for R15A -

Figure 3 for R15B & R15C). Record the same pCi/ml value on Figure C-8 for both noble gas and iodine. Determine the t

noble gas and infant iodine dose factors and record on Figure C-8 as follows:

(1) Use Figure C-2 if the SJAE filters are in service.

(2) Use Figure C-3 if the SJAE filters are not in service.

b. Obtain a grab sample and analyze for noble gas and iodine. Record concentrations on Figure C-8. Obtain dose factors from the counting room or, if not available, deternine the noble gas and infant iodine dose factors from Figure C-1 and record on Figure C-8.

II. Determine the source term for each active effluent path O for noble gas and iodine by using the following equation and the values entered on Figure C-8:

[flowrate (cfm)] [ conc. (pCi/ml)] [ dose factor] =[ source term]

III. Determine the total noble gas source term on Figure C-8 by summing the noble gas source terms calculated for each active effluent path.

1 1 IV. Determine the total iodine source term on Figure C-8 by summing the iodina source terms calculated for each active effluent path.

V. Enter the total noble Las source term, total iodine source term, and the wind speed in mph in the appropriate i boxes on Figure C-8. Determine the dose rate in mrem /hr at the site boundary from noble gas and from iodine by using the following equation:

Total Source Ter]m 01 = mrem /hr at site boundary (S.B.)

Wind Speed, mph _/ Q VI. If the projected noble gas or iodine dose rate >l mrem /hr, proceed to step VII; if not, the estimated whole body or thyroid dose does not meet the minimum criteria for classifying the emergency according to Tab C Page 5 of 15 Gen. Rev. 9

)! FNP-0-EIP-9 i

ll (~~ paragraph 4.2 in the main body of this procedure.and no ,

!' further calculations are required at this time. Go to i step XIV.

VII. Determine the estimated repair time or release duration in hours and record on Figure C-8. Use 14 hours1.62037e-4 days <br />0.00389 hours <br />2.314815e-5 weeks <br />5.327e-6 months <br /> if

', this value is unknown.

NOTE: If major changes in dose rate occur, it may be desirable to define repair time as the time from when dose rate calculation data was obtained to the projected termination of the release, then add the dose received to that time (determined by earlier dose rate projections) to the projected dose to obtain total projected dose, this methodology will be used at the discretion of the Emergency Director.

VIII Determine the projected whole body dose in Rem at the site boundary using the following equation and record on Figure C-8:

Dose = Dose rate, (Rem) 'te boundary mrem Release / repair time, hr 1000mR RemW]

Whole Body

( NOTE: If repair time is based on dose rate calculation time instead of release initiation time, add dose received to projected dose.

4 4

IX. Determine the projected thyroid dose from iodine in Rem at the site boundary by using the following equation and record on Figure C-8:

Dose I mRe]m elease/ repair 1 Rem (Rem) 2 = Dose rate, te boundary hu time, hr. 00mRg]

thyroid NOTE: If repair time is based on dose rate calculation time instead of release initiation time, add dose received to projected dose.

X. Determine the total thyroid dose in Rem by summing the results from steps VIII and IX.

XI. Determine the classification of the emergency using the values from steps VIII an' X a:.d comparing them to the

, criteria of paragraph 4..? in the main body of this

, procedure.

? .

l .

lO Tab C Page 6 of 15 l

l Gen. Rev. 9 i

l

~

FNP-0-EIP-9 f'}

XII. Determine the affected downwind areas in the 10-mile l s _- emergency planning zone. (EPZ) by placing Figure C-6, i

" Relative Dose Rate Plume Boundary For Stability Class  ;

A" on the 10-mile EPZ map and by orienting the plume i centerline on the downwind direction vector. The lines 4

on Figure C-6 are isodose / isodose rate lines. The dose / dose rate values on each of the lines can be obtained by multiplying the values by the site boundary dose / dose rate. The value at the intersection of the 10 mile arc and the plume centerline times the site boundary centerline dose / dose rate gives the dose / dose rate at that point. Mark the centerline on the map with a grease pencil and record the date, time, and stability class to aid in projecting accumulated doses and affected areas.

XIII Determine the arrival times in minutes for the site boundary, and each mile arc cut to 10 miles or to where the dose rate <1 mrem /hr using Figure C-7 " Arrival Time versus Wind Speed." Convert to clock time using time of release initiation, time of major release rate change or time of wind direction change (as appropriate) and record data on Figure C-8.

XIV. Refer to step 4.4 in the main body of this procedure.

~

l

O Tab C Page 7 of 15 Gen. Rev. 9

I FNP-0-EIP-9 l 1

FIGURE C-1 FAILED RJEl.

  1. - ((

DoseFactersversusTime

4. ,

ISOTOPIC EffluentActivity l

1E06 _

6.

-s-T -----

. . 'OE05T. =lms nm um t y 1p mamu um

i 9E0'W ~

g

/

m m l < l s l l 1 l l

i 'p r "

1EOS I -- -

~ ' ' ' ' ' '

5 E ' ' " '

1 . 4 i E ~

I I n "

l \

l l d

2 , ,

4 d

8 5 .

1E0/.c-5 i 4

.. $ 3 E " ' I I I ' ' 'I I '

b 2

B l .

II i lil1 e a 1 a 1E02 2 -

5 4 g 2.4E02 lll' flllll K '

II I II Ii s N N s N lE02 _

m

- e .N i e . i 5

-' ' ' 'N ' ' ' ' ''''

E ' " ' '

4 3

E l r ' i ' , $' 1 I i !T,' ' ' ' ' ' -_' ' '_i ' !EE GA!E 2 3.0E01 -

l 1 l l ' '

1E01 2 -

1 '4 11 W' 2' 23 24 Figure C-1 I

Elcesed Tim Since Shutdein bre) ra c  ;

Page 8 of 15 Gen. Rev. 8 (

-== =,.v r N. y -w- mc.---mg e , m----e---y ---+e---+w ew-y-e----ay.------ ---w.,-.c --*--w,.--

_., . --w e_--.es -m--w-_ . u ee-_

FNP-0-EIP-9 FIGURE C-2

Fall.ED RE DeseFcetersversusTi=e GmsEffluentActivity ForFilteredIcdines LEOS _

~ ' ' ' ' ' ' ' '

5 4* ' '

~3

' I I I I E I 1 1 I I I I 2 , ,, , , ,

u r ,

2 1.2E04 -

=

m 1.08E04 E- I IIll mE N.W .UE 1E04

  1. !!!!i

! !  ! ! II I l I I i

. . . i,.,

mE E1U .UE

- - . e i ..,,. . . . . . . , ,

- t t ie i i ie i 6 6 e e i . i d iE I I I I i i i i i i t f h5' l l l l l l l l l l l l l .

E l l l 2_ .

E!

=

=

$ 1E03 3 -

'e . . .

1  : : ,  : ,  : ; ; ,

e

  • l ' 8 f i i I i i t i l iit jE I I I I I I I i l I i l i

$ 3 2.3E02 I I l l l l l lD

) 2y l l '- l l d E N

.N U N

}1E02 b, l , w . . . ,

- . . , , 6 N . . . i , . , i . . . ... ,

' ' ' ' ' ' 'N' ' ' ' ' ' I ' ' '

5* ' ' I ' ' ' I I ' I I I I I ' I I I I 4- 5 l l 3 __

l l l l l l l l l l TW ' ' I l l 1 ,g g 2 2.95E01 -

s 1

i 1E01 - I -

'I '4 'S '12 15 'a 14 Figure C-2 Elepsed iT me Since htdein bes) ras C Page 9 of 15 Gen. Rev. 8 -,

-ummisi eimi -mm- um

l

.FNP-0-EIP-9 '

0

FIGURE C-3 -

j FAILED FUB.

3 DoseFcetersversusTime  !

Grc88EffluentActivity ForUnfilteredIcdines

-1E06 _ _.

- i 1 . , , , . , . , , , ,

5 g , , , , , , j , , ,

4 g I n i l 6-  : i e i l 4E 5 l l 1.8E05 3 gg 2 , ,

a s_s ! l l ll l l l l l 1E05 _. ~'

1-l l l l l EEE' BU NE

- . i , , , .

' . 5 ~e a i i ,' ,' ,e

_E I I l ? l l 1 5 2 E l lIIIL II g .

8 =

' 1E0A ~

Q 5-~

C 8 '

4 i i 4

y 3_E i l i I I I i l i i

.h 2 E

E I II IIIIIII f

  • e g 1E03 ~

3

)8 5~

4 ' ' " ' 'I i i i ' -

352 8 h 8

' I I ' ' I I '

3 2 L 1

l lll ll -

b f .1E02 lE02 - N _ . _

ll '-

,,\. ,  % .

5-~ ' ' ' 'N '

i E h $ ,h l i 1 I i l 0 0 0 t i 0 '

_5 I l l I hl l I i i l 2.1E01 I l l l l Il l Nii'8 ,

I I $ 3H,E 9.!iEE

!. 15 j l l- =, l .. j lE01 4I pU '4 3 12 3 3 24 Figure C-3 Eicpa d Time Since h tdewn b ra) rad c Page 10 of 13 Gen. Rev. 8 l

l . . - _ . _ - . _ . . . - . .- - - -

l

p wwe FNP-0-EIP-9 i

( .

FIGURE c-3 FAILEDFUEL OcaF:ctersvrse;Tio GrcssEffluentActivity FcrUnfilteredIcdines 1E06 _ _

__U . . , . . .

5 i , , , . . , , , , , s , , s , e i , , i i 4 __@yt I i I i 3~ i i I i i i i I ( 8- *

  • 8 8 2

l l l ,

Il l l l l l 1.8E05 g g,g gy.g g i

'  !)(1.04E05 -

l l l l 1lIliIIIIIIIll I ISDE !OlT.E 1EOS - '. .

i

=_=.- ~

5 ~e e iiiil i ii4 ', ' . ' ' i i 4_ E i i i l l

,ie e i e i o  !

l l l l l l l. I I 1 l I l ! l i i

$ l 2wl IIIl l l l l l l l l l 1IIIIII i

f 5

  • i lEOt = .

Z Ry 5- ~y l ' ' ' ' ' '

e i e i . i i e i . i '. i e i i . . . e

'y M i l I i l i I I I l I ! I i i i I i l I i l I l

=

f 2 53 HIIIIIIIIIIIIlIilili! l!II

=

7 5 h 1EO.'l ~

3 -i 5, m - . . . . . . . . . . . . . . . . . . . ,

b . i e i e i i e ! e i i i iie i . i e i i e j

}E I I I I I i t i i i 1 -l e i i : ! I I I I 1 i i

".; IIIIIII IIIIIiliIII S 2 e- El ' ' .lE02 1 ,

E t IE02 ^l l l l l

~

_ - . . . .N , . i

. . . . i

_e4 i e i i , ,Ni i i , i e i e i i 4_E t i i i 6 i i t

., Q l IliIl l l l l 1lih

~

I i i l i

'I 2.1201 ]

I I ssI rg.sg

~H -

lE01 - '

3 '4 '3 'l ' li 2' 24

3:: 'cec, Time .:.c . ee S . ..m ccun E rs) n ame c-:

rad c Phge 10 of 15 Gen. Rev. 8

, , , , .m. w,- * * . = = - - - " * * * * * * * * ' * * " ~

v

~

FIGU 4 TY RELIEP VALVE STEAM ATHOSPilERIC/ > '

FLOW CALCULATION SilEET '

Tt3-h r]

SG Press (png) No. Valves Open TAVG(*F) SPECIFIC VOLUME l;nin-lbal

<1035 0 1035-1075 1 550 .505 1075-1089 2 500 .522 1089-1102 * "-

3 450 ,

~

.526 1102-1116 4 400 .522 1116-1129 5 350 .508

>1129 6 300 .490 250 . .467 ,

212 .447 Loop cfm cfm Unit Press. TAVG lb m/hr # valves specific per per '.

1) ate / Time SG (Mg) (*F) (Fig C-5) X open X volume = SG Unit. Remarks A X X = XXXXXXXXXX 11 X X_ .= XXXXXXXXXX

_ C. .

X X =

XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX > .

sme of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX A X X = XXXXXXXXXX 11 X X = XXXXXXXXXX C X X = XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX sum of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX A X X = XXXXXXXXXX X X = XXXXXXXXXX

_11 .i C X X = XXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX '. 3 sme of cfia per SG ,

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX p R D'C;2 ' G P W "U &

E' ; " 2 ; -

S i

F$P*0-EIP-9 STE.ui PRESSURE (psig) 8 8 8 8 e o o e o e o a n ~ - 8 e

.o o o o o o o

- - - - . ~ .a n < n m o (m) b r_tir:?1

,__. .., 4. . . L . p.,;.'.pp.!q

_. ..,....r..._......,..............p..... q.! .. p [.14.y.T..

.m,

.i . . ...l  : J.:.d p.p !cq.'_.E . .

..;.i... . , . . , . . F.... . . . , .y uf _.pT ee

.44...,

...;...... . ., _ u ...; . . . . . . . . ._t...........

. t . : .. _y

_.-_..........__._.........,.......e...._.__._........_............'....._.._.,___...+__.L--

000'SL7

. _ . . . . . . _ _ . . . . . . . . . . _ . . . . . . . . _ _ . . _. .. .. .. .. _ . . . . _ . . . ~ . _ . . . . . _.

........c....__._.....__._.__ . . ...._ .. --

._ .;_. __.s 000*ogy

. . _ _ _ . ...._... ._ m .... ... . . . . - _ . . . . _ . .

_ . .._~........_..w_.._....

~ . . . . - - -

.._.._-._-..___..J

.a.._.

..s...__, ._

y ooo*ggy t_ _ . . .

.u . ._. _ . - . . _

. . .. .__......_..;...._.._-.-...._...._i---

_ . . . .. _. . . . . . . . . . __. ---- ___-. 002 43P .

. . . . _ - . . _ _ _ . . _ _ . _ _ . _ . ~ . _ . _ . _ . - _ . .

_t W . . . . . _ . . . . _ _ _ _ . _ . - _ _ _ . _._ . . . -

ogo,g4g 4

. .. _._._. .-. .........+ _..._..... _

m - .

w --

000,05C E .._ - _ .- .. .. .._. . _ _ _ ._.__. .._ _._

0. .._ _ ._.. ... . _ __.._._ _ ... _a

_ . _ _- .q 2 _____ .._

o _ _ . ___ _. .

.u__._-

~ -

- _.; 000,SEC r< -- _ - . . a -

. . . _ - - = _ _a

. _ . - _ - - . . . . _ . . _ . . . . - - m~, s W .. . . _ _ . _ . . .

^

a . _ _ . . . ._ _

. =_ ...._ -- .

. . ..... . .._._ _,... _..__... ... .. _..__. . 3.u x ___

.( __.. .

_ . . . . . . _ . . . . _ . . . _ _ _ . _ _ . . . . _ . . . _ _ . 000,gtg g ,,

. .. _ _.... .. _. . _ _ . .._.~._ __._._ .

_ __4 o 3g w _ _- _ . .. .. __ _.. .__ .__._ ... ._ . . . . _ . . . . _ . . . . . . _ _ . . . . . . . . . -- - -

m . . . _ . . . . . . . . . _ _ . . . . _ _ _ _ _ _ . .

f ,,,

(s,

, ~.__..._......._.._

j g . . . _ _ . _ . _ . . _ . . . _ .. - -

._=._.._.

. . _ . . . . .. ._ .._...___ _....C00'0SZ'.

. _ . _ _. -_._y, w g

w

...._. ..__ _._ -- .. . .. . _ _ . _ _ . - 000,SZZ D' 3 - _ _ . _ _ . . . . . _ . . . . . ..__.__._.. ...__._.._._4 m

- _ _ . . . . . _ . _ . _ . . . _ . _ . . _ _ _ _ _ . _ o 4

y, _._............._-__:_._...._..,

. . . . . . _ . _ . - a

. . . _ _ . . . . . . . = - - -

u 3

m

.. - . _ . _ .._. _ _ _ . . . t

< . . . . _ . _ _ = -_. . . . _ _ _ _ . . . .

4 <

a. - - -

- 000,5LT 2

. _ - . . _ . . _ . . -\...

= - - _ _ . -._ -. . _-. - _

y _ ._

e,gog _

5

= _ . _ .

---_.._-..__...___._....._-_.-__...........-...-----.-.__--___0000ST ma .

____._.__a

.e3, z. . _ _ _ . _ -

. . . . . . . _ _ .- _ - . . . . . 000'SZT ex

u. Z

_.__ .._..... __ . _ .__. 20000I

_ . .. . _ .. . =._ ~._.__

. . _ . , . . . ____. . - - - . . _ . _ _ . _ . . . . . _ _ . . -_ _s

-000'S4

.___ _4

. . _ . _ . . . . . . _ _ _ . _ _ _ . ~

= - - -

3.ooo*qg

. ... .. ___.. . _ . . . . . - =

(-

_ ... _ . . . . .2._._ ......_____.._..__4

_ . . . . . . ._ .. ..._. _ . _=__. .___ .._._. _ .. _ ._ ....

__, 000'SZ s .. . _ _ _ _ . _ _ . -

n . . _ . . . . . _ . . . . . , _ .

f s.s j _ . _ .

p . . - ,....

,--p ....~._.-m, . .., .. ... . .

.-p_ p t....._._..,...y...,...,.p;,.-..

, .. . ; -  : ._p

.q- IFigure C-5 O o M o O o G o o o s o a G Tab C ca o a o c3 a a o v m N *-* G o

cs o o o

ea o m

a .o Page l.,of e b_

-

  • C3 r. CD v N -t 4 - Gen.Rev. n e (STsd) HnSSH d HVU.S

FNP-0-EIP-9 FIGURE C-6 Relative Dess Rate Plume Boundary For etability class C mixing height = 4104ft.

11 x

8.. 8 l

e

- ~

y 4..

G e

Emmi 3

Last

2. .

a mi s I g

m t, s t ,

, 1 32

. l i

, i  ; _1 at I

-2. .

at -

81 LPW1 31

, seal Gi

-4. .

si O/%

' Figure C-6 i Tab C i St Page 13 of 15 Gen. Rev. 8

-6 . .

mi

,w -

.- . . . . . . . - - . . . ~ . . . . . - . - - . - . - . - - - . . - . . - . 2- -.

FNP-0-EIP-9 Figure C-7

, [" TRAVEI. TIME (MINUTES) VERSUS WIND SPEED (MPH)'

1 Wind Distance (Miles)

Speed i

(MPH) sb 1 2 3 4 5 6 7 8 9 10

~

1 47.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0 480.0 540.0 600.0 2 23.5 30.0 60.0 90.0 120.0 150.0 180.t 210.0 240.0 270.0 300.0 3 15.7 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 4 11.8 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150.0

-i 5 9.4 12.0 24.0 36.0 48.0 60.0- 72.0 84.0 96.0 108.0 120.0 6 7.8 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 7 6.7 8.6 17.1 25.7 34.3 42.9 51.4 60.0 68.6 77.1 85.7 i

8 5.9- 7.5 ' 15.0 22.5 30.0 37.5 45.0 52.5 60.0 67.5 75.0 1 9 5.2 6.7 13.3 20.0 26.7 33.3 40.0 46.7 51.3 60.0 66.7 10 4.7 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 11 4.3 ' 5.5 10.9 16.4 21.8 27.3 32.7 38.2 43.6 49.1 54.5 12 3.9 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 O 13 3.6 4.6 9.2 13.8 18.5 23.1 27.7 32.3 36.9 45.0 41.5 50.0 46.2, 14 3.4 4.3 8.6 12.9 17.1 21.4 25.7 30.0 34.3 38.6 42.9l 15 3.1 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 16 2.9 3.8 7.5 11.3 15.0 18.8 22.5 26.3 30.0 33.8 37.5 17 2.8 3.5 7.1 10.6 14.1 17.6 21.2 24.7 28.2 31.8 35.3 18 2.6 3.3 6.7 10.0 13.3 16.7 20.0 23.3 26.7 30.0 33.3 19 2.5 3.2 6.3 9.5 12.6 15.8 18.9 22.1 25.3 28.4 31.6 20 2. 4 . 3.0 6.0 9.0 12.0 15.0 18.0 22.0 24.0 27.0 30.0 21 2.2 2.9 5.7 8.6 11.4 14.3 17.1 20.0 22.9 25.7 28.6 22 2.1 2.7 5.5 8.2 10.9 13.6 16.4 19.1 21.8 24.5 27.3 23 2.0 2.6 5.2 7.8 10.4 13.0 15.7 18.3 20.9 23.5 26.1 24 2.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25 .0 l25 1.9 2.4 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 2'.0 26 1.8 2.3 4.6 6.9 9.2 11.5 13.8 16.2 18.5 20.8 23.1 Figure C-7 s Tab C

( Page 14 of 15 Gen. Rev. 8 i

~

. _ ____TT1?_ L1_ TT_ ' --.~~ ~ ~ ? ~~ . l -- ,n,._ ,

/O [' FNP-0-ET ^ %

h V \ V j FIGURE C-8 Date Time STABILITY CLASS DOSE ASSESSMENT CENTRAL STANDARD WIND SPEED DOSE RATE RELEASE REM WHOLE FLOW CONC DOSE SOURCE (MPil) in MREM /hr TIME BODY m PLANT VENT (CFM) (pCi/ml) FACTOR TERM X/Q (Use 14 hrs if value unknown)

$ STACK X X = X2.71E-5+ = -

X  ;+ 1000 =

d

._ STEAM GEN. X X = X'.7]E-5+

z = X + 1000 =

$ STEAM JET O AIR EJECT 1.05E+3 X X = X2. 71E-5+ = X + 1000 = ,

OTHER: X X = = X + 1000 =

X2.71R-5+ j i

TOTAL NOBLE TOTAL REN l GAS DOSE RATE WHOLE BODY {

AT SITE BOUNDARY

, PLANT VENT ,

l m STACK X X = X2.71E-5+ = X + 1000 =

U '

$ STEAM GEN. X X = X2.71E-5+ = X + 1000 =

S STEAM JET i AIR EJECT 1.05E+3 X X = X2.71E-5+ = X + 1000 -

OTliER: X X = X2.71E-5+ = X + 1000 = l f

i TOTAL IODINE TOTAL REM f

[ DOSE RATE IODINE  !

AT SITE BOUNDARY j Emergency classification: I

( )' GENERAL (15 Rem Whole Body 0,R 110 Rem Thyroid) f

() SITE AREA (11 Rem Whole Body OR 12.5 Rem Thyroid) TOTAL DOSE

() ALERT (llmRem/hr Noble Gas or Iodine at Site Boundary) TO THYROID  ;

IN REM i

CALCULATE ARRIVAL TIMES AT SITE BOUNDARY AND EACH MILE ARC OUT TO 10 MILES 06: TO A LOCATION < 1 mrem /hr.(USE FIGURES 6 & 7) l t

DATA BASED ON RELEASE /Cl!ANGE OCCURING AT CENTRAL STANDARD TIME ON (DATE). PERFORMED BY l

1 SITE BOUNDARY I mi. 2 mi. 3 mi. 4mi. 5 mi. 6 mi. 7 mi. 8 mi. 9 mi. 10 mi.

Tab C l Page 15 of 15  !

Gen. Rev. 11 ,

t FNP-0-EIP-9 STABILITY CLASS D

.I f

i

?

TAB D STABILITY CLASS D DOSE ASSESSMENT l

O lO Tab D l- Page 1 of 15 Gen. Rev. 9 4

FNP-0-EIP-9 9' STABILITY CLASS D TAB D STABILITY CLASS D DOSE ASSESSMENT I. Source Term Calculation A. Plant Vent Stack Release

1. Enter the flowrate in cfm from the plant vent stack flow recorder (Located next to RE-14 in Control Room) on Figure A-8, Stability Class A Dose Assessment or by using the following information if the recorder is not operating:
a. One aux. bldg. fan........... 75,000 cfm
b. One aux. bldg. fan & RE-025 tripped................... 79,000 cfm
c. Two aux. bldg. fans......... 150,000 cfm Two aux. bldg. fans &

RE 025 tripped............ 154,000 cfm

2. Have the Counting Room Technician poll the High Range Vent Stack Monitor (R-29B) for noble gas and iodine concentration per FNP-0-RCP-732.

9 If R-29B is not operable, have the Counting Room Technician obtain a vent stack sample from the Vent Stack Post Accident Sampling Station (located next to R-21/22). Values will be reported in pCi/ml.

3. Noble Gas Enter on Figure D-8 the pCi/ml for noble gas and the noble gas dose factor from Figure D-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use a noble gas dose factor of 2.4E+02.

4. Iodine Enter on Figure D-8 the pCi/ml for iodine and the infant iodine dose factor from Figure D-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use an infant iodine dose factor of 6.0E+05.

O Tab D Page 2 of 15 Rev. 10

FNP-0-EIP-9 O B. Steam Generator atmospheric relief and/or safety release.

1. Determine the flow from the atmospheric reliefs and/or safety reliefs as follows:
a. Obtain the current pressure (psig) and loop TAVG(*F) readings for each steam generator oi the affected unit. Record values on Figure D-4.
b. Letermine the flow in pounds mass per hour (lbm/hr) that is possible from a safety / atmospheric relief valve by using Figure D-5. The value obtained is the flow that will be discharged from each safety or atmospheric relief valve-tXit

, is open.

c. Determine the number of valves that are open for each steam generator using the data below:

Pressure of Steam Gen. (psig) Valves Open

<1035 0 O 1035-1075 1075-1089 1089-1102 1

2 3

1102-1116 4 1116-1129 5

>1129 6 NOTE: If a relief or safety is stuck open  ;

or if reliefs are being utilized for cooldown, the above table does not apply and operator knowledge of plant condition must be used.

O Tab D Page 3 of 15 Gen. Rev. 9

-l FNP-0-EIP-9 q d.

r Determine the total flow in cfm from

(\~/ '

each generator by multiplying the flow .

(1bm/hr) times number of valves open times the specific volume for each generator.  ;

e. Determine the total flow of the release in cfm from all generators by summing

. the values obtained for each generator per I.B.1.e.

b, NOTE: If the R-60 monitors are operable and indicate that not all generators are releasing contaminated effluent, sum only the flow from generators with contaminated effluent.

' .' f. Record this value on Figure D-4 and on Figure D-8 for both iodine and noble gas.
2. Determine the effluent concentration in f

pCi/ml by using RCP-25 and by performing either (a) OR (b) below:

a. Obtain the readings from R60A, R60B, R60C and R60D and contact the counting room for conversion of the readings to pCi/ml using RCP-25 Appendix M, Figure
1. Record the same pCi/ml value on Figure D-8 for both noble gas and iodine.

4 Determine the noble gas and infant iodine dose factors using Figure D-3 and record on Figure D-8. On Figure D-3 the

" Elapsed Time Since Shutdown (Hours)"

applies to the reactor.

i

b. Obtain a grab sample and analyze for
noble gas and iodine. Record concentrations on Figure D-8. Obtain dose factors from the counting room or, if not available, determine the noble gas and infant iodine dose factors using Figure D-1 and record on Figure D-8.

C. Steam jet air ejector release

1. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below:

(D U

Tab D Page 4 of 15 Gen. Rev. 9

l FNP-0-EIP-9

/~' a. Obtain the reading from R15A, R15B or l

( ,)s RISC (whichever is closest to mid-scale) and contact the counting room for conve cion of the reading to pCi/ml using RCP-25, Appendix L, (Figures 2-A,B for R15A -

Figure 3 for R15B & RISC) . Record the same pCi/ml value on Figure D-8 for both noble gas and iodine. Determine the noble gas and infant iodine dose factors and record on Figure D-8 as follows:

(1) Use Figure D-2 if the SJAE filters are in service.

(2) Use Figure D-3 if the SJAE filters are not in service.

b. Obtain a grab sample and analyze for noble gas and iodine. Record concentrations on Figure D-8. Obtain dose factors from the counting room or, if not available, determine the noble gas and infant iodine dose factors from Figure D-1 and record on Figure D-8.

II. Determine the source term for each active effluent path for noble gas and iodine by using the following equation and the values entered on Figure D-8:

[flowrate (cfm)] [ conc. (pCi/ml)] [ dose factor] =[ source term]

III. Determine the total noble gas source term on Figure D-8 by summing the noble gas source terms calculated for each active effluent path.

l IV. Determine the total iodine source term on Figure D-8 by I summing the iodine source terms calculated for each active effluent path.

V. Enter the total noble gas source term, total iodine source term, and the wind speed in mph in the appropriate boxes on Figure D-8. Determine the dose rate in mrem /hr at the site boundary from noble gas and from iodine by using the following equation:

Total Source Term 01 = mrem /hr at site boundary (S.B.) l ind Speed, mph Q  !

1 VI. If the projected noble gas or iodine dose rate >l mrem /hr, proceed to step VII; if not, the estimated whole body or thyroid dose does not meet the minimum criteria for classifying the emergency according to Tab D Page 5 of 15 Gen. Rev. 9

~

FNP-0-EIP-9 9 paragraph 4.2 in the main body of this procedure and no further calculations are required at this time. Go to step XIV.

VII. Determine the estimated repair time or release duration in hours and record on Figure D-8. Use 14 hours1.62037e-4 days <br />0.00389 hours <br />2.314815e-5 weeks <br />5.327e-6 months <br /> if this value is unknown.

NOTE: If major changes in dose rate occur, it may be desirable to define repair time as the time from when dose rate calculation data was obtained to the projected termination of the release, then add the dose received to that time (determined by earlier dose rate projections) to the projected dose to obtain total projected dose, this methodology will be used at the discretion of the Emergency Director.

VIII Determine the projected whole body dose in Rem at the site boundary using the following equation and record on Figure D-8:

Dose = Dose rate, mrem Release / repair 1 Rem (Rem) site boundary hr time, hr 1000 mrem Whole Body NOTE: If repair time is based on dose rate calculation time instead of release initiation time, add

dose received to projected dose.

l IX. Determine the projected thyroid dose from iodine in Rem at the site boundary by using the following equation and record on Figure D-8:

Dose I = Dose rate, mrem delease/ repair 1 Rem ~'

(Rem) 2 = te boundary hr_/ time, hr. 1000 mR.e_

thyroid NOTE: If repair time is based on dose rate calculation time instead of release initiation time, add dose received to projected dose.

X. Determine the total thyroid dose in Rem by summing the results from steps VIII and IX.

. XI. Determine the classification of the emergency using the values from steps VIII and X and comparing them to the i criteria of paragraph 4.2 in the main body of this procedure.

Tab D Page 6 of 15 Gen. Rev. 9 n __.... _ _..________ . . . . . _ . .

. : ~- .-

~

a c;;

4; FNP-0-EIP-9 p,

l'\m)'

XII. Determine the affected downwind areas in the 10-mile emergency planning zone (EPZ) by placing Figure D-6,

" Relative Dose Rate Plume Boundary For Stability Class

, A" on the 10-mile EPZ map and by orienting the plume centerline on the downwind direction vector. The lines on Figure D-6 are isodose / isodose rate lines. The

. dose / dose rate values on each of the lines can be

, obtained by multiplying the values by the site boundary dose / dose rate. The value at the intersection of the 10 mile arc and the plume centerline times the site boundary centerline .iose/ dose rate gives the dose / dose rate at that point. Mark t he centerline. on the map .

with a grease pencil and record the date, time, and stability class to aid in projecting accumulated doses and affecte'd areas.

XIII Determine the arrival times in minutes for the site boundary, and each mile arc out to 10 miles or to where

, Lthe dose rate <1 mrem /hr using Figure D-7 " Arrival Time versus Wind Speed." Convert to clock time-using time of release initiation, time of major release rate change or time of wind direction change (as appropriate) and record data on Figure D-8.

XIV. Refer to step 4.4 in the main body of this procedure.

O

, i

\

l' t

f. 4

() Tab D l

Page 7 of 15 l Gen. Rev. 9 s

~ '

\

FNP-0-EIP-9 FIGURE D-1

& FAILEDFUEL i ( -

DoseFcetcesversueTime ISOTOPIC EffluentActivity )

e e l 1E06 l 6.'0E05mk 2 . - . . . il . . .

. . m ME DF!Yi .UIE l I ! I ' ' -' '

P ~ur r l 9E05 , , i t p;,.',,4 i . . .t IGDESIBU.UTE

'., 5 i ' " '

cM7iTTF 'l Wid"CI I I '

l l l 'i g7 IE05 I .

2 . . . : i . . . *

- , , . .+ . . . , .

3 E ' '

+- 4 N- I l l

l e l l l 3 2_s 3

1 ii i iI t ' 1EOL --  !

2

- , , i . . , , . . ..

- . . i 6 6 i . . . , 6 .. ...

4 m .ie i l i i e i i ,i 3

E I l 1 l l l 1 I; j l 1; l l l l

' l l g 2 5

II III II

,L i '

1E02h 3 E-

c. .

., i.....i 5 , , , , , , , , , ,

j , ,,

g 4 _ g 2.4E02 N

j j. j , , , ; , , ,

} 3 's s A K l 'l I' I ll l l 1 I I l-l 1I

=

I lE02 h .

, .x 5

i- 4 E ' ' '  ! ' ' ' ' '' '

E ' ' ' '

' ' ' I ' ' ' ' ' IE E 3 ' '

2 9 ll i l I li i lill l ' '3 .0E01 y-l  !

3, 1 l

lE01 -

'l '4 'S 12 '1f1 23 24 Figure D-1 Elcond Ti.= Since Shutdc.n Geurs) ras o a Page 3 of 15 I ,

Gen. Rev. 8

! " ~

' ~._ _ . _ . _ _ -_ _

+ > .

I *t f '

f_

j .

s

. FNP-0-EIP-9 r

8 FIGURE D-2 Y Fall.ED RE.

DeeeFcetersversuaTi=e L -

GroseEffluentActivity FcrFilteredIcdines 1E05 _

. . l l . l . . .

- . . . . . . . . . . i 5 , , , , , , , u , ,

' _5E- 1 i i i i i i i i !

2 i 1 I I II II l ll 4 i i i 2

1.08E04 1.2E04 -

Ei -

l l 3- l l IamE DF.T ,UE 1E04 I !!  ! l ! 0' I I I I I I I I
-, , 1025 ml.T .UE j
  • - a , a t ,,,. .i.6 . . . . .

.- i . . . . . . . . . . . . .

. .- 4 l e i e e 4  : :.i d 75 l 1 I I I I I I lI '

I I i '

I t f i5L U ,

l l l l l l l l I l l 2

' l' l lll ll

% E! I m

=2 81E03 3 1  : ;

...: .i....

,a

- ,- i i  ! l ,

i i i .,,ii .,

j_ ,E I I i ,

ll t i l i iiiit i I . .

I I .

3 3* 2.3E02 -

b

,- l l l  ! I ll . llll

' si N d 5

~

\

N

  • 1E02 U A J =

- 4

. , .'s .A i . . . , ,

5 ~a '

, i l 'I I I 4 1 I lNt i i i t i I I i 1 5 l l l l l l l I l l D I I I lg gg ,

P i ia i :-

2=E 2.95E01 -

E

.=. .

1E01 /~, ,

Figured 2 Elcpsed Time Since Shutdewn h rs)

Page 9 or. la. '

Gen. Rev. S ,

FNP-0-EIP-9 ~

4.

{

FIGURE D-3 FAILEDFUEL i

! Do Facters veram Time GroseEffluentActivity o -

ForUnfilteredIcdines 4

1E06 _ _

i i i . . e . ,O 1 -

  1. , . . . , , 4 .

W I l l 8 6 6

. , I ,

.t ..

3

l 2 r 1. 4E05 -,

I 1.8E053 gg

!; - 7 l L lI DDES. .U.1.T RATE i LEOS _ _

O' 8'8 0  ! t t i t  !

. 5 'm i i , ,

3 5 '-

1 I i

', ,E 1 '

I I I

'E -

' I E j

' lE0A - - i

)

, - , . . . . . i ......

jE i i i 4 4 { 4 i i j 3 E '

l '

I l 1 'l i I 6 g l ll l l 2

~

P 5 -

5 ,

1E03 ~ '

3 E

,i. -

1 j m i e i '

i 1 6 6 i~' e i i i e g f_8 3

I I L I '

I I i i i I l l l l

} 2 ELI I I g l.lE02 j l -

1E02 _

N ,  % - i. . . , .

- . t i e .N e i.1 . . . . . , . . . .

E 6 i 8 l Nm ii4 l  ! I i 6 t i 4 ~

3 E I ~1 i i i l i 2.1E01 l 2 B '

l il I I ' ' 'f '

E @3 O ' " " " "

Figure D-3 Elepsed Ti.= Since Shutdown Olcers) rad o Page 10 of 15 Gen. Rev. 8

FIGU 4 STElli ATt10SPIIERIC/S 'ETYRELIE(VALVE FLOW CALCllLATION SilEET Jit3-hr-SG Press (pisg) No. Valves Open TAVG(*F) SPECIFIC VOLUttE min-lhe

$1035 0 1035-1075 1 550 .505 1075-1089 2 500 .522 1089-1102 * '

3 450 ~

.526 1102-1816 4 400 .522 1116-1129 5 350 .508

>1;29 6 300 .490 250 -

.467 212 .447 Loop cfm cfm Unit Press. TAVG lb m/hr i valves specific per per Date/ Time SG (gg) ("F) (Fig D-5) X open X volume = SG Unit. Remarks A X X = XXXXXXXXXX 11 X X = XXXXXXXXXX Cl X X '=

XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX m m YX ) sum of cfm per SG XxxxxXxXXxXxxXXXXXxxXXxxXxXXXXXXXXxXXxxXXXXXXXxXXXXXXXXXXXXXXXXxxXXXXxXXXXXXXXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX A X X = xxxxxxxxxX 11 X X = XXXXXXXXXX C X X = XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX > ,

sum of cfm per SG XXXXXXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX A X X = XXXXXXXXXX Il X X = XXXXXXXXXX C X X = XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX '. ) __

sum of cfm per SG h xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXxxXxxxxxxxxxxxxXxxXxxxxxxXxxxxxxxxxxxxxxxxX a

! y D' U ? b t

i

. 2 "2 l g ; o ;; y

? 8. a!

"'C L!

$NP-0-EIP-9

' STEAM PRESSURE (psig) 1 8, 8 8 8 8 e o o o

- .a.< ~

c -

-e 8 o e

8 8 e .o, 8 o

- . os r. e n m u 8 (m) !_s,...,.l i L.j ,.s.,.l.f, F , ..,e x ,j p. ,.J.{. .l.J [.1,..[.l 4 . r - -- r--

,t,,,.i.I. I

- . .. , 200029

,. ... ; ..... . _.J... '--

, 7. ...,.q..,_........,...g..,........3....

p......,.

g. ..

.....p._..,..a...i.., .

._.4..,........... .._u.........._t...y.,.....g.,... . . . , . . . .

...t........._ .... .._._ _. ,. m,

._.._....._.._._...._.4...._...,...:......,.

..._..,.3._ 000'S47

._i..._..._ . ._._.

_ _ . . . . . . . . ~ . _ . . . . . . . . . . . . . . . . . - . . . .

. . . . . _ _ . . . _ _ . . . _ . . . . . _ . _ _ . . . . _ __ ._ . .: .._.: _ 0 00 ' o g y

. . . . _ . . . _ . . _ . . . _ _ . . . . ._ _...u....._ _ .

. . . .___,...__........_..__...._._...J

._._.....a....___._....._ - i

.........5.......... ,.

000,ggy

. _._. . . . . . . . . . _ ._........4._--.... .. _ ___

. . . . . . . ..._. _._ - 00EG3F

_._.. ._ .g

~l- ogo,qLg

. . . . 4.. _ . . . . ..__.

_ ..._ . _. .... . . _ r. .. . -..:.. .. ... ..... .. - - 4

. _ _ . . _ _ . . . .._w__._..._.._.. . _ _ _ . _ . . . _ . . _

w . _.

2._...

.__ _ ... ._. . . _ _ _ . _ . . . . . . .. 000 05C

_ . _ _ . . . ~ . . . _ . . . . . . _ . . . . . _ . . -

_ _ _ . . . . . - .a

. _. ._q

. _._.. _ __....._. .. .,. _ .._. _,. _ 000,SZC

.,.._f____.

r.< . .

. . . . . . . .. . _.._._..__.....v.-..

._._4

. ..... _ . . ... __ . .. .___ . _. w

,,,,,,23 r o _ _ . _ . . _ . _ . _ _ . . . . #*

x_ _ . . . . . _ . . . . . . . . . _ . . - -

. . . . . . .. .__ .. _ .. .-_.._. ._____ _. _T. 0 0 0 , g L g 3 syw . . ._ . ._._.

- ._. -. .. .. _.. . . . . . . _ . . . . . ,.a.,

4 M ... _..._...._.. ... .._... .. ......__.. .

. _ . . . . . . . ~ _ _

,(%./. _ _ ._ _ .. _ _

. _.. .... . .._.._ _... 000*0gg, w

.._. ._..., r

.c w . _ . . . . . .

.._.. ._...._.__._.J 3 _ . _ _ . .

_..... . . a 000,SZZ *E

,,3 o

_ _ . _2 3 -._.. ... _ _.. _._.__..

_ _ _. ..._... ...... u.

_ . . _ . . . . . . . - - --.; 6000.2 m

. . _ . _ . . . . . . . =

....._._._ ._..___. .. ___. .,. m mc a, .

_. __- _ _ . . = . . . . _ _ . _ _ ...

_ _ 000,g(I z a

mi .J

=__..._ . _ . . . . _ . .

... . .__._ _=. _._ _a e.u _ _ . . . . . - _ _ _.__ _ . _ . . . . ~ . _ _ _ _ . . . .

. . . . _ . . . . . . . . . . _ _.... _...ooo*ogI

= _ _ . _ _ . _ . . _

_ . ......._.........___J-wa J

az _ _ _ _ _ . _ _

o y gg3 8m X -

.=._

u. 2< __ . _._. _ . . . _ - ..... .._._

_ . . . . _ . . _ - =-. .

...a_..._...

_ ~ ._._--. ._=.. - - . . _ . _ . _ . . _ _

. . . . _ EaBEL,

_ .._ _ ._. _ _ _ _ . _ . . . _ _ . . . . . . . _ _ _ . _._____s

- ._ o00 ' g/

000'05

_ _ . . _ -_._._...a._._....

- _ . . _ _ _ . . . . . . . . _ . _ . . . . . . . _ . _ . . . _ . . _ _ . . . . _ _ 000*gg

p. t . _ . ._.. .

.... ..._......._._.___.a

_.,.._.,..._.._.._.n.,_;......p.g.......2... .. _ _,...

. .. . . ,...... 7p 3_,.p _ L'..

. . _ . . i_a .a

( p . p. .

Figure D-5

, .-e , -., ,

p _. , ~1- 4-G M M s U Tab D m

o o G o

e a e o o o s o e o G v m o G o e o m o o o Page 12o.,la.

-e

- m m a2 n. :o e v m N .-4

- .N e - Gen.Rev. 8 ,

disd) .nnssm Wy3J.s

FNP-O'EIP-9 FIGURE D-6 Relative Dese Rate Plume Beundary For etcbility c1ces O mixing heigh ~t = 4104ft.

6..

m

4. .

3 3 ,

2- - 1851 8 .mst 1N 7

j S , _1 i LS1 0

0 -

OI*I  : L33 t

, L21 Int h h AS .21 mei

-2. .

31 -

sett 31 41

-4. . .

1O l

v

~

Figure D-6 l

Tab D 85 Page 13 of 15 Gen. Rev. 8 [

7Ns

FNP-0-EIP-9

, ,_ Figure D-7

./ TRAVEL TIME (MINUTES) VERSUS WIND SPEED (MPH)

. ! O)

't I

.i Wind Distance (Miles)

't

] Speed (MPH) sb 1 2 3 4 5 6 7 8 9 10 l

1 47.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0 480.0 540.0 600.0 2 23.5 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0 3 15.7 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 t

'! 4 11.8 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 15 0.0 ,

i

5 9.4- 12.0 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0 120.0

!! 6 7.8 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 t

i 7 6.7 8.6 17.1 25.7 34.3 42.9 51.4 60.0 68.6 77.1 85.7 2

ji ,

8 5.9 7.5

  • 15.0 22.5 30.0' 37.5 45.0 52.5 60.0 67.5 75.0 9 5.2 6.7 13.3 20.0 26.7 33.3 40.0 46.7 53.3 60.0 66.7  !

f 10 4.7 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0

11 4.3 - ' 5.5 10.9 16.4 21.8 27.3 32.7 38.2 43.6 49.1 54.5
j 12 3.9 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 ff s_/

13 3.6 4.6 9.2 13.8 18.5 23.1 27.7 32.3 36.9 41.5 46.2 14 3.4 4.3 8.6 12.9 17.1 21.4 25.7 30.0 34.3 38.6 42.9 4

15 3.1 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0

,{ 16 2.9 3.8 7.5 11.3 15.0 18.8 22.5 26.3 30.0 33.8 37.5 17 2.8 3.5 7.1 10.6 14.1 17.6 21.2 24.7 28.2 31.8 35.3 18 2.6 3.3 6.7 10.0 13.3 16.7 20.0 23.3 26.7 30.0 33.3 19 2.5 3.2 6.3 9.5 12.6 15.8 18.9 22.1 25.3 28.4 31.6

, 20 2.4 . 3.0 6.0 9.0 12.0 15.0 18.0 22.0 24.0 27.0 30.0 l 21 2.2 2.9 5.7 8.6 11.4 14.3 17.1 20.0 22.9 25.7 23.6 22 2.1 2.7 5.5 8.2 10.9 13.6 16.4 19.1 21.8 24.5 27.3 23 2.0 2.6 5.2 7.8 10.4 13.0 15.7 18.3 20.9 23.5 26.1 j 24 2.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25 .0 25 1.9 2.4 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 2a.0 26 1.8 2.3 4.6 6.9 9.2 11.5 13.8 16.2 18.5 20.8 23.1 s Figure D-7

[-s i Tab D

\s / Page 14 of 15 Gen. Rev. 8

A ^') l;

)

\ .) FNP-0-[O FIGURE D-8 STABILITY CLASS DOf.E ASSESSMENT Date Time CENTRAL STANDARD ,

s  :

WIND SPEED DOSE RATE RELEASE REM WHOLE FLOW CONC DOSE SOURCE in MREM /hr TIME BODY f;

(MPH)

,m PLANT VENT (CFM) (pCi/ml) FACTOR TERM X/Q (Use 14 hrs if value unknown) l N STACK X X = X8.41E-5+ = X + 1000 = '-

' ' " 2 'a 1 i

d i a STEAM GEN. X X = X8.41E-5+ = X + 1000 =

, $ STEAM JET

) O AIR EJECT 1.05Et3 X X = X8.41E-5+ = X + 1000 =

OTHER: X X = X8.41E-5+ = X + 1000 =

TOTAL NOBI5 TOTAL REN j GAS DOSE RATE '

WHOLE BODY AT SITE BOUNDARY  !

PLANT VENT . -(

  • m STALK X X = X8.41E-5+ = X + 1000 = ,
  • N l

' 5 STEAM GEN. X X = X8.41E-5+ = X + 1000 = I 1 S STEAM JET AIR EJECT 1.05E+3 X X = X8.41E-5+ = X + 1000 = .j i

1000

OTilER: X X = X8.41E-5 X TOTAL IODINE TOTAL REN  !

DOSE RATE IODINE '

AT SITE BOUNDARY i  ;

Emergency classification:

. () GENERAL (15 Rem Whole Body OR 110 Rem Thyroid)

() SITE AREA (11 Rem Whole Body OR >2.5 Rem Thyroid) TOTAL DOSE

. () ALERT (llmRem/hr Noble Gas or Iodine at Site Boundary) TO THYROID IN REM f f

' I CALCULATE ARRIVAL TIMES AT SITE BOUNDARY AND EACH MILE ARC OUT TO 10 MILES OR TO A LOCATION < 1 mrem /hr.(USE FIGURES 6 & 7) l DATA BASED ON RELEASE /CIIANGE OCCURING AT CENTRAL STANDARD TIME ON (DATE). PERFORMED BY  !

SITE BOUNP.'aY 1 mi. 2 mi. 3 mi. 4mi. 5 mi. 6 mi. 7 mi. 8 mi. 9 mi. 10 mi. Tab D '

Page 15 of 15 Gen. Rev. Il i

I

. . . . . . _ . .. . ~ _ . _

FNP-0-EIP-9 t

STABILITY CLASS E s

TAB E STABILITY CLASS E DOSE ASSESSMENT O

O Tab E Page 1 of 15 Gen. Rev. 9-

~-

j FNP-0-EIP-9 i

O TAB E b STABILITY CLASS E l STABILITY CLASS E DOSE ASSESSMENT i

l-I. Source Term Calculation A. Plant Vent Stack Release

1. Enter the flowrate.in cfm from the plant vent

! stack flow recorder (Located next to RE-14 in

Control Room) on Figure A-8, Stability Class l A Dose Assessment or by using the following I information if the recorder is not operating

i f a.

b.

One aux. bldg. fan........... 75,000 One aux. bldg. fan & RE-025 cfm

+

tripped................... 79,000 cfm

c. Two aux. bldg. fans......... 150,000 cfm
Two aux. bldg. fans &

I PE-025 tripled............ 154,000 cfm

2. Have the Counting Room Technician poll the

! High Range Vent Stack Monitor (R-29B) for j noble gas and iodine concentration per FNP-0-RCP-732.

! If R-29B is not operable, have the Counting I\ Room Technician obtain a vent stack sample

- from the Vent Stack Post Accident Sampling Station (located next to R-21/22). Values 4

I will be reported in pCi/ml.

I 3. Noble Gas Enter on Figure E-8 the pCi/ml for noble gas and the noble gas dose factor from Figure E-1. The " Elapsed Time Since Shutdown (Hours)"

,- applies to the reactor. If the release is j from a waste gas decay tank, use a noble gas

dose factor of 2.4E+02.
4. Iodine Enter on Figure E-8 the pCi/ml for iodine and the infant iodine dose factor from Figure E-1. The " Elapsed Time Since Shutdown (Hours)"

, applies to the reactor. If the release is a

from a waste gas decay tank,'use an infant iodine dose factor of 6.0E+05.

iO e Tab E Page 2 of 15 Rev. 10

- _ . . . --. . - . - - - - - , ~ --. . . . .

..s ,. - . --4

i i

~

FNP-0-EIP-9 l

i

'\

! V B. Steam Generator atmospheric relief and/or safety i release.

'; 1. Determine the flow from the atmospheric reliefs and/or safety reliefs as follows:

1

! a. Obtain the current pressure (psig) and 3

loop TAVG(*F) readings for each steam i generator of the affected unit. Record

l. values on Figure E-4.
, b. Determine the flow in pound.s mass per hour (lbm/hr) that is possible from a t safety / atmospheric relief vclve by using Figure E-5. The value obtained is the
flow that will be discharged from each j safety or atmospheric relief valve that I

, is open.

"l c. Determine the number of valves that are

,l open for each steam generator using the data below:

'! Pressure of Steam Gen. (psig) Valves Open j

$1035 0 1035-1075 1 J 1075-1089 2 1089-1102 3 1102-1116 4 1116-1129 5

>1129 6 NOTE: If a relief or safet)( is stuck open or if reliefs are being utilized for cooldown, the above table does not apply and operator knowledge of plant condition must be used.

h i

\

3 (O

Tab E Page 3 of 15 Gen. Rev. 9

,4. .,, . , , , , .. .-m. a_ . , _ _ _ _ -.

.-_-..-.-~..--

(-.-.--.-..- . . - . -

i

', FNP-0-EIP-9 i

t

d. Determine che total flow in cfm from

. each generator by multiplying the flow a

(1bm/hr) times number of valves open l times the specific volume for each
? generator.

=  !

e. Determine the total flow of the release J i in cfm from all generators by summing F  ; the values obtained for each generator
per I.B.1.e.

L c NOTE: If the R-60 monitors are operable and indicate that not all generators are releasing contaminated effluent, sum only the flow from generators m with contaminated effluent.

i

! f. Record this value on Figure E-4 and on Figure E-8 for both iodine and noble t- gas.

2. Determine the effluent concentration in p pCi/ml by using RCP-25 and by performing either (a) OR (b) below:

4 a. Obtain the readings from R60A, R60B, R60C and R60D e.nd contact tha counting

' room for conversion of the readings to pCi/ml using RCP-25 Appendix M, Figure l

1. Record the same pCi/ml value on k e Figure E-8 for both noble gas and iodine.

1 Determine the noble gas and infant y

iodine dose factor using Figure E-3 and record on Figure E-8. On Figure E-3 the

" Elapsed Time Since Shutdown (Hours)"

applies to the reactor. ~

b. Obtain a grab sample and analyze for noble gas and iodine. Record concentrations on Figure E-8. Obtain dose factors from
the counting room or, if not ava.lable, a determine the noble gas and infant 7

iodine dose factors using Figure E-1 and record on Figure E-8.

_- C. Steam jet air ejector release r

~

1. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below: "

E Tab E Page 4 of 15 s Gen. Rev. 9 r

-~.mmv,m m

.n-,m -,m--n --. . - . - - ..

_-- mumm mum

y r-N .. - - . _ - .

L FNP-0-EIP-9 F

a. Obtain the reading from R15A, RISB or RISC (whichever is closest to mid-ccale)

~

and contact the counting room for conversion y

of the reading to pCi/ml using RCP-25, . .

Appendix L, (Figures 2-A,B for R15A -

Figure 3 for R15B & RISC) . Record the same pCi/ml value on Figure E-8 for both i

noble gas and iodine. Determine the noble gas and infant iodine dose factors and record on Figure E-8 as followc:

I L

,f (1) Use Figure E-2 if the SJAE filters are in service.

(2) Use Figure E-3 if the SJAE filters are not in service.

b. Obtain a grab sample and analyze for F ncble gas and iodine. Record concentrations

- i on Figure E-8. Obtain dose factors from T the counting roca or, if not available,

[ determine the noble gas and infant

" iodine dose factors from Figure E-1 and record on Figure E-8.

7 II. Determine the source term for each active effluent path b O for noble gas and iodine by using the following equation and the values entered on Figure E-8:

[ [flowrate (cfm)] [ conc. (pCi/ml)] [ dose factor] =[ source term) 5 III. Determine the total noble gas source term on Figure E-8 by summing the noble gas source terms calculated for

- each active effluent path, r

p IV. Determine the total iodine source term on Figure E-8 by

_. summing the iodine source terms calculated for each E

=

active effluent path.

s

(, V. Enter the total nobl_e gas source term, total iodine x

  • source term, and the wind speed in mph in the appropriate boxes on Figure E-8. Determine the dose rate in mrem /hr

=r at the site boundary from noble gas and from iodine by using the following equation: 1 w

b Total Source Term 01 = mrem /hr at site beundary (S.B.)

g ind Speed, mph Q VI. If the projected noble gas or iodine dose rate >l E mrem /hr, proceed to step VII; if not, the estimated

, whole body or thyroid dose does not meet the minimum E criteria for classifying the emergency according to IE i

Tab E

[ Page 5 of 15 9 Gen. Rev. 9

?

E _ _ ~ . . . _ - - _ . . . _ _ . _ _._ _.._ _

, FNP-0-EIP-9 E ~

F '

paragraph 4.2 in the main body of this procedure and no E further calculations are required at this time. Go to step XIV.

h VII. Latermine the estimated repair time or release duration

?

in hours and record on Figure E-8. Use 14 haurs if K . this value is unknown.

F '

- NOTE: If major changes in dose rate occur, it may be desirable to define repair time as the time from E

when dose rate calculation data was obtained to the projected termination of the release, then add the dose received to that time (determined by earlier dose rate projections) to the projected

dose to obtain total projected dose, this methodology c will be used at the discretion of the Emergency

[

~

Director.

i VIII Determine the projected whole body dose in Rem at the i site boundary using the following equation and record f; on Figure E-8:

E Dose = Dose rate, mrem Release / repair 1 Rem (Rem) site boundary hr time, hr 1000 mrem E Whole

. Body E NOTE: If repair time is based on dose rate calculation

. time instead of release initiation time, add dose received to projected dose.

b IX. Determine the projected thyroid dose from iodine in Rem

_ at the site boundary by using the following equation and record on Figure E-8:

Dose I mrem Release / repair 1 Rem (Rem) 2 = Dose rate, site boundary hr time, hr. 1000 mrem g thyroid 1

_' NOTE: If repair time is bar.ed on dose rate calculation I

time instead of release initiation time, add dose received to projected dose.

X. Determine the total thyroid dose in Rem by summing the i results from steps VIII and IX.

XI. Determine the classification of tne emergency using the

! values from steps VIIi and X and comparing them to the

, criteria of paragraph 4.2 in the main body of this a procedure.

E w ,

Tab E k Page 6 of 15

_ Gen. Rev. 9

FNP-0-EIP-9 i

XII. Determine the affected downwind areas in the 10-mile i ( x- w') emergency planning zone (EPZ) by placing Figure E-6,

" Relative Dose Rate Plume Boundary For Stability Class A" on the 10-mile EPZ map and by orienting the plume centerline.on the downwind direction vector. The lines on Figure E-6 are isodose / isodose rate lines. The dose / dose rate values on each of the lines can be obtained by multiplying the values by the site boundary dose / dose rate. The value at the intersection of the 10 mile arc and the plume centerline time- the site boundary centerline dose / dose rate gives s.'e dose / dose rate at that point. Mark the centerline o.4 the map with a grease pencil and record the date, time, and stability class to aid in projecting accumulated doses and affected areas.

XIII Determine the arrival times in minutes for the site boundary, and each mile arc out to 10 miles or to where the dose rate <1 mrem /hr using Figure E-7 " Arrival Time versus Wind Speed." Convert to clock time using time of release initiation, time of major release -rate change or time of wind direction change (as appropriate) and record data on Figure E-8.

l XIV. Refer to step 4.4 in the main body of this procedure.

A U

1 O Tab E Page 7 of 15 Gen. Rev. 9

WP-0-EIP-9

~

. FIGURE E-1 1

) .

Fall.ED RE l

l Do Fecters versus Tim ISOTOPIC EffluentActivity 1E06 Z 6.0E05 1 ' ' I f T T *9,E05 , ,

i e , i i e e ie e EDE 131.T E tBi l# ~

l '

l ll 8 '

. ie '

i N Ws r l ,

l 'l

, 'V

1E05 $ -

=

' - - ' ~- '

- 5E 4 I ' ' '

')' 30 I I ' ' '

2 2

1 I F II I E -

O E 8 1E0I --

_= , . . . . . . .

53 4

e g

e g , , 4 g 4

,'- g g 3 m i i i i i i i iii h B \ l ,

!l l1 l l l 2

i' 8

~1i E g1E022 3 5

' - - - - - + - - - '

l 3

lld '

4 g 2.4E02 lll'll'l ,

2 lK I I III IL i lIiiI' j ,

=

\ s

~

1E02 'N -

l

! E N. ~ , . , .

- , s , , .,,. . ,

3 ,_

4 E 6 I I u

! I h. _ , a 6 t : i a ! :

3 mil- i eii! i T. ,

- ' ' ' 1 m E rA s 2

l l 1 I

l l l l l 3.0E01 j' -

, 5 -

l 1E01 3 '

O ' 4 ' '2 = 'a 24 Figure E-1 Elcond Tim Sines Shutdewn Getrs) ras E Fage 8 of 13i

_ Gen. Rev. 8 i

FNP-0-EIP-9 O. FARED RE.

FIGURE E-2 OceeFcetersversusTi=e GreesEffluentActivity ForFilteredIcdines 1EOS _

Z , . ,  : ,

..';.i,',i 5 , s , , , ,, , , , , , ,

E i I I l I i i i i I E I I I I I I I II 2

t l l ,

1 ii!

l 2 1.2E04 -

1.08E04 n

Ei _

i 1 I I III ME DEN EE lE04 II!!!!!!!I!I I I I I I I I 25 IJll.T EE g . - , , , , , , . ,,,,.,,

d ;mi i u i i i i , i; iit i i ii g  ; E l' l Ll i I' Ie III i i iI

@x [E

'=

. I l- ll lll a

=

81E03 3 s _

. c .

p - , , , ,, ,,,.,,,.,.,,,

  • == c
  • 6 4 1 3 3 I l I t i l I i i4 4 g a i i  ! I i i i i i i i i i I' II II
E. ( 2.3E02 I

I 3 3 f.s\ l /

y 1 l l ll ll

. m d b s 'N 1E02 3 '

Z , l dx' ; . . .

_ , , , , 6 N , , ,i..i,,,,,.. .

5 ~E i I (

4 I i lhI 1 I I I t iI I 3~E I I I I i l l II W' '

-I i j!M @S 2- 2.95E01 -

Ei M -

1E01 '

O ' ' * * 'a ' u .

' FigureE-2 Elcosed Time Since Shutdein bes) ' Tab E

, Page 9 et, la,

[ Gen.Rev.8

FNP-0-EIP-9 '

1 e

('

FIGURE E-3 FAILEDFUB.

Doe.FcetersversusTime l

n GroseEffluentActivity ForUnfilteredIcdines

! 1E06 _ -

4 - .

= t , , i , 6 . 4 i 5 4

~u e i e i '

6 s g q , ,

, ,. , , a 3

g 1.042.05 l l l '

2 l.8E05] gg 1E05 _

M d I i i ii l i

i I I mg.ull.T NE

-'8 t i I

  • t i I 1 9

- 5~a a i , l <

,'l e

ii.i

} 3 B '

I I i d

s Ii l-2 g

' i s 8 1E0A r '

. l 5"

4 i g E I I I ! I I I l t 3l I

~

h lL ,

l l l 2

5

=

lE03 C i C , ,

. - , , ,. . , 4 .

.-'s t t $ t it i e i 4 e s # I i

j 4 m i , 6 i i ,_# 6 e i 6 i , i a

__E I I I I I I i i i i i i i I l

"8 ' ' l;

'll 'I

' ll l l l

! I 2- 1.1E02 d E 5

1E02 & ~I I I I' E 'k , ,

i

~*

5a i e i .' ', N i i e i e i i

~

E I l 6 i  ! I '%I i l t i i 2.1E01 2

ll l ll l lll 8

' ' ' ' ' i IOI@3 5

1E01 i O 'I

'4 11 12 ' 18 '3 ' 24 Figure E-3 '

Elepsed Tim Since h tdcrn Oicure) ras E i Page 10 of 15-Gen. Rev. 3  !

. ... L : " :_ _ _ - -

I

()

x

}

() FIGU STEAM ATHOSPilERIC/

4 TY RELIEF VALVE

'~'

j FLOW CALCULATION Sl!EET f 3t -hF SG Pres s (pug} No. Valves Open TAVG(*F) SPECIFIC VOLUME . min-lbn

<1035 0 1035-1075 1 550 .505 1075-1089 2 . 500 .522 1089-1102 '

3

  • l 450 '

.526 1102-1116 4 j 400 .522 1116-1129 5 350 .508

>l129 6 300 .490 250 -

.467

'i 212 .447 .

Loop cfm cfm Unit Press. TAVG lb m/hr # valves specific per per ,

Date/ Time SG (psig) (*F) (FILE-5 ) X open X volume = SG Unit Remarks A X X = XXXXXXXXXX 11 _ X X .= XXXXXXXXXX C X X = mmmX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX > l sum of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX A X X = XXXXXXXXXX lt X X = XXXXXXXXXX C X X = XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX > sum of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXn m XXXXXXXXXXXXXXXXXXXXXXXXXXX A X X = nnnmX 11 X X = XXXXXXXXXX

! L C X X = XXXXXXXXXX y XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

) sum of cfm per SG ig XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX f,

' R a' O :2. A

a 1
#2 O I.5' = "' 2 a O$ I .

b- . __ . _. . -- -- .-

r.

=

FNP-0-EIP-9 5 e o STEAM PRESSURE (psig) -

8 e o

M o 8 o e O

o o o e o e o e4 O O O O O O O

.-< ~ N.<

. .-. .O-< cn m e c O L u .e M u o p._,_p,...l...,e .. ._ . _...l.g. s,.

g... I.,. g.

7 ,.r ,.g r,. . .. .,1,.,.

.!'4 c<

20CUS m.

4...,._.,_. y.. .., .. ..... ,. .

3... . . . .. .

.... .; .. 3 .i , .  ; . , a. .....i . . . . .. .

. ....;_ r. + .1, .

. .._.. . . 4.

_._2.,...

.. . ... . . . ..s

-._..-_......_4.._..p......._._.....4.. .

g t....

r ... .c ...+..__. _, s -

_ _ __.__.. a- ._ 000'541

. . =-

w  ;:

000*ogy

.. . ... .__..... .__....___ ....._._ _.. ._ _ __ - e__

, 000,ggy -.

__ --......_- _._._ . . . . . . . . . . . . _ +

- _ _ . . - . _ _ . _ _ .- . . . . . . . . - . ._......_....:_._.__.. . _ . . . . . ... .. . . . . ._. _ _ , _. .._ _ . _ . 0 0 Zu,,3 P m

. . _ . . _ _ . . . . . , _ . _ . . _ _ . . . . _ . . . . . . . _ . .._.__- m W --- . _ . . . . _ _ _ . . . . . .

m .._....._-

o - . . . . _ _ . . _ . . .

....__...._.a.

_ . . ogo*gLc  :::

m ....._.__.______.4 m --

.__j

_ _ . _ _ . _ _ _ _._ . _ . - _._..-.=._...._.._

F . .

.___.______.__ m Q. . . . . . . . . . . _ _

. . . . _ . _...___a _

..._... _.... . _ _ _ _ 4 o -.____ _ - _ -

000, SIC r.< - .

. _ _ _ .. .__ ._.__. ._ .= . _

.__._4 =_

....... _ =_.._

s

. . . . . . _ . . . . . . . . . _ . . _ . . . . _ . . _ . . _ . _ . . . _ _ . _ _ . .. ,,. .nu~.,,,,3 _ .c.__  :

o m, .- _ .

x

_. Ooo,g4g

. . _ . 3 -

$y _ _ _ _ _ . . . _ ......__..._._.

_ . . _ ..___ ....__....._......_____._..___4 a r -

E. g __

m - . . . . . . . . _ . . . . . . . . . . _ .

_ ... . __.. . ._....._ _ .. _ .._ _ . .. _._ 0 0 0 ' O SI ' -

= _ _ . . . . . _ . . . . . . _ _ . ___ _ ..

g - ,-

g

.c w . __. .. ._ _ . .

000.StZ 0:

3 - _ . . . . . _ _ . _ _ _ . _ . . . . . . _ . . . . . . .

x g _ . _ _ . _ . . . . . . . _._.........__.___._....._.____._._a o

y . . . . _.. .._____ . . _ ___ _ ._....... .

_ . . _ . . . . . . _ . . . _ .  : a

u. _

H . . _ _ . ... . . . _ . _ _ . . . . . ~ . . -

. _ . . . . . _ _ _ . _ . . . .  ; a m

. . . . . _ . 1

. _ . . . _ _ _ . . _ . . _ . . . . a -5 m

c. - - 000,SZT

..__..__..._....a a.

=

M p _ . _ _ _ . . . _

?j

_. 000'ogI _-

=

w3 _ . _ -

=

. . _ _ __..__ _ .. . . . . . . . . _ _ _ __a _

x, _= . . _ . . _ _ _ . _ . _ _ . . . -

000,SZT '

.x _ _ . _ _ _ , _ . _ . . . _ . . . . _ . . _ . _ . -

=

.a

u. g w

_ _ _ . . . . . . . _ . _ . _ _ _ . - _ _ . . _ . . . _ . . _ . _ u, -

=_ . _

. . . . _ _ . . .__._....__. ._-_--....---_____l

=

...._ _ ._.._.___.._ ooo*g4

=

e- . . . _ _ . . _ _ _ _ . .

m _. . . . _ . . . . . ...__.... ._._ _ _.

_ _ . . . . . . _ _ _ . . . . . . . .. _.______- . 000'og :_

r

............___f w .. -..... .. ... -

q- _._..-.__.....:...

4 .

m . . . . _ . .. .

i 000'SZ "^

_ . .. . . . . . . s . .. . . . _ _.. . -........_.4.. ._.__.i_.,.q..

p . p. p . r  ;% p

-_ ; . ;ap . . . . . . ..p . 7 . p _ L. . Fiaurec-5 5

- i .:

t< ,

, c c o o

n a o G o G e c o a o G e G U Tab E

  • m N o ca m

o a o a o a o u o l Page l_.,or.la. r

-r e ,* - .4

-e Q o r. O m ae m N m i 5 t Gen.Rev. 8 (STsd) anssn a m 2.Is a E

!=

W

. . . .-. .m ..

.~_~

FNP-0-EIP-9 FIGURE E-6 Relative Do . Rate Plume Boundary  !

. g[

( For stebility olces E mixing height = 4104ft.

8.. m 4 .

"( ..~

2. .

ak 1

_ ggg

' &aul Lat at i _

i 3 ,.

t - Es4

~

1 Lal I j tus -  ; Amt

~M

-2. .

an '

-4 . . ,

O ..

Figure E-6 T

Pa8e 13 of 15 g8 Gen. Rev. 3

-6 . .

7Ns

~ ~ ~ ~ ~

~L_JL_-__--- _ J. ^~___. - ~~~~L^'~~'"'~~ .


r---- _ _ , _ _ _ _ _ _ _ _ . _ __. . _ . e ..

l FNP-0-EIP-9 7 ~3 Figure E-7 TRAVEL TIME (MINUTES) VERSUS WIND SPEED (MPH)

Wind Distance (Miles)

Speed (MPH) sh 1 2 3 4 5 6 7 8 9 10 1 47.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0 480.0 540.0 600.0 2 23.5 30.0 60.0 90.0 120.0 150.0 160.0 210.0 240.0 270.0 300.0 3 15.7 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 l 4 11.8 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150. 0 5 9.4 12.0 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0 120.0 6 7.8 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 7 6.7 8.6 17.1 25.7 34.3 ,

42.9 51.4 60.0 68.6 77.1 85.7 8 5.9 7.5 15.0 22.5 30.0 ' 37.5 45.0 52.5 60.0 67.5 75.0 9 5.2 6.7 13.3 20.0 26.7 33.3 40.0 46.7 53.3 60.0 66.7 10 4.7 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 11 4.3 5.5 10.9 16.4 21.8 '27.3 32.7 38.2 43.6 49.1 54.5 12 3.9 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

("'T

\' / 13 3.6 4.6 9.2 13.8 18.5 23.1 27.7 32.3 36.9 41.5 46.2 14 3.4 4.3 8.6 12.9 17.1 21.4 25.7 30.0 34.3 38.6 42.9

, 15 3.1 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 16 2.9 3.8 7.5 11.3 15.0 18.8 , 22.5 26.3 30.0 33.8 37.5 17 2.8 3.5 7.1 10.6 14.1 17.6 21.2 24.7 28.2 31.8 35.3 18 2.6 3.3 6.7 10.0 13.3 16.7 20.0 23.3 26.7 30.0 33.3 19 2.5 3.2 6.3 9.5 12.6 15.8 18.9 22.1 25.3 28.4 31.6 20 2.4 3.0 6.0 9.0 11.0 . 15.0 18.0 22.0 24.0 27.0 30.0 21 2.2 2.9 5.7 8.6 11.4 14.3 17.1 20.0 22.9 25.7 28.6 22 2.1 2.7 5.5 8.2 10.9 13.6 16.4 19.1 21.8 24.5 27.3 23 2.0 2.6 5.2 7.8 10.4 13.0 15.7 18.3 20.9 ~ 23.5 26.1 2.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

{ 24 l 25 1.9 2.4 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 i 26 1.8 2.3 4.6 6.9 9.2 11.5 13.8 16.2 18.5 20.8 23.1 Figure E-7 h Tab E

.) Page 14 of 15 Gen. Rev. 8 gs- p h e c. 9 e- ..,a + h *6 m 66- %M e r *E*'-"*e ehhhwe=M *wW eP m- a' w g y4O e e- we '*&

t

'; FNP I N l l h 4 t-FIGURE E -8 +

STAfsILITY CLASS DOSE ASSESSMENT Date Time CENTRAL STANDARD  ?-

t WIND SPEED DOSE RATE RELEASE REM WHOLE i FLOW CONC DOSE SOURCE (MPH) in MREM /hr TIME BODY  ;'

+ w PLANT VENT (CFM) (pci/ml) FACTOR TERM X/Q (Use 14 hrs if value unknown) j d STACK X X = XI.44E-4+ = .

_. X '

1000 - 3' 8 i a STEAM CEN. X X = XI.44E-4+ = X -+ 1000 = .

1:

j $ STEAM JET .

O AIR EJECT 1.05E+3 X X = XI.44E-4+ = X + 1000 = I:

l OTHER: X X = XI.44E-4+ = X + 1000 =

,. . j' I!

TOTAL NOBLE TOTAL REM I GAS DOSE RATE WHOLE BODY '!.

AT SITE BOUNDARY il 1-PLANT VENT ,

f m STACK X X = XI.44E-4+ = X + 1000 - ,,

5 STEAM GEN. X X = XI.44E-4+ = X + 1000 =  !,

S STEAM JET l AIR EJECT 1.05E+3 X X = XI.44E-4 = X 1000 = j.

,, t, .

OTHER: X X = XI.44E -

X 1000 = [.

f i

l.

} TOTAL IODINE TOTAL REM I' l DOSE RATE IODINE

,1 AT SITE BOUNDARY Emergency classification:

() GENERAL (15 Rem Whole Body OR 110 Rem Thyroid)

() SITE AREA (11 Rem Whole Body OR 12.5 Rem Thyroid) TOTAL DOSE

! () ALERT (>1 mrem /hr Noble Gas or Iodine at Site Boundary)

  • TO THYROID i

IN REM l-CALCULATE ARRIVAL TIMES AT SITE BOUNDARY AND EACH MILE ARC OUT TO 10 MILES OR TO A LOCATION < 1 mrem /hr.(USE FIGURES 6 & 7) .{'

CENTRAL STANDARD TIME ON

'l:

DATA BASED ON RELEASE / CHANGE OCCURING AT (DATE). PERFORMED BY i.

i t SITE BOUNDARY l mi. 2 mi. 3 mi. 4mi. 5 mi. 6 mi. 7 mi. 8 mi. 9 mi. 10 mi. Tab E ,

Page 15 of 15 li Cen. Rev.11

FNP-0-EIP-9 '

STABILITY CLASS F TAB F STABILITY CLASS F DOSE ASSESSMENT i

l i

i i

O Tab F Page 1 of 15 Gen. Rev. 9

{

Y . - , - _

- ~

_ . . - . . _ - . . - ~ . . . . . . . . . . - . . - - - . . . . - . . . - . . . . - - . . .

.i l l FNP-0-EIP-9 t TAB F '

, s) STABILITY CLASS F

! STABILITY CLASS F DOSE ASSESSMENT I. Source Term Calculation A. Plant Vent Stack Release

1. Enter the flowrate in cfm from the plant vent I

stack flow recorder (Located next to RE-14 in Control. Room) on Figure A-8, Stability Class A Dose Assessment or by using the following

, L, information if the recorder is not operating:

a. One aux. bldg. fan........... 75,000 cfm i' b. One aux. bldg. fan & RE-025 tripped................... 79,000 cfm

, c. Two aux. bldg. fans......... 150,000 cfm l Two aux. bldg. fans &

RE-025 tripped............ 154,000 cfm

2. Have the Counting Room Technician poll the High Range Vent Stack Monitor (R-29B) for noble gas and iodine concentration per FNP-0-RCP-732.

/~'N If R-29B is not operable, have the Counting

. (s-) Room Technician obtain a vent stack sample from the Vent Stack Post Accident Sampling Station (located next to R-21/22). Values will be reported in pCi/ml.

3. Noble Gas Enter on Figure F-8 the pCi/ml for noble gas and the noble gas dose factor from Figure F-1. The " Elapsed Time Since Shutdswn (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use a noble gas dose factor of 2.4E+02.

4. Iodine Enter on Figure F-8 the pCi/ml for lodine and the infant iodine dose factor from Figure F-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use an infant iodine dose factor of 6.0E+05.

i Tab F Page 2 of 15 Rev. 10

.7.--

t FNP-0-EIP-9 e

f lp O B. Steam Generator atmospheric relief and/or safety 2

release.

I

! 1. Determine the flow from the atmospheric reliefs and/or safety reliefs as follows:

a. Obtain the current pressure (psig) and loop TAVG('F) readings for each steam generator of the affected unit. Record values on Figure F-4.
b. Determine the flow in pounds mass per

' hour (lbm/hr) that is possible from a safety / atmospheric relief valve by using Figure F-5. The value obtained is the i' flow that will be discharged from each safety or atmospheric relief valve that is open.

c. Determine the number of valves that are I open for each steam generator using the data below:

i Pressure of Steam Gen. (psig) Valves Open

<1035 0

! O T035-1075 1075-1089 1089-1102 1

2 3

1102-1116 4 1116-1129 5

>1129 6 NOfZ: If r. relief or safety is stuck open or if reliefs are being utilized for cooldown, the above table does not apply and operator knowledge of plant condition must be used.

l Tab F )

Page 3 of 15 Gen. Rev. 9

- _- j

. FNP-0-EIP-9 I i

l Determine the total flow in cfm from f~/ d.

8

)

(_, each generator by multiplying the flow (1bm/hr) times number of valves open j times the specific volume for each I

, generator.

t

' e. Determine the total flow of the release j in cfm from all generators by summing

., the values obtained for each generator i per I.B.1.e.

NOTE: If the R-60 monitors are operable

and indicate that not all generators l are releasing contaminated effluent,

! sum only the flow from generators

with contaminated effluent.
f. Record this value on Figure F-4 and on
Figure F-8 for both iodine and noble
gas.

I 2. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below:

a. Obtain the readings from R60A, R60B, p/ s R60C and R60D and contact the counting s, room for convereion of the readings to pCi/ml using RCP-25 Appendix M, Figure
1. Record the same pCi/ml value on i

Figure F-8 for both noble gas and iodine.

Determine the noble gas and infant iodine dose factors using Figure F-3 and record ou Figure F-8. On Figure F-3 the

" Elapsed Time Since Shutdown (Hours)"

i applies to the reactor.

b. Obtain a grab sample and analyze for noble gas and iodine. Record concentrations on Figure F-8. Obtain dose factors from the counting room or, if not available, determine the noble gas and infant
iodine dose factors using Figure F-1 and i

',' record on Figure F-8.

, C. Steam jet air ejector release

1. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below:

Tab F Page 4 of 15 Gen. Rev. 9 i

i n.-- -.- - - . . - - - - - ,- - - .--- - - - - - - - - - - - - ~ ~

._-- . ~ . . - . . - . .. . . - . . . . - - . . .

l FNP-0-EIP-9 *

a. Obtain the reading from R15A, RISB or RISC (whichever is closest to mid-scale) and contact the counting room for conversion -

of the reading to pCi/ml using RCP-25, Appendix L, (Figures 2-A,B for R15A -

Figure 3 for R15B & RISC) . Record the same pCi/ml value on Figure F-8 for both ,

noble gas 'and iodine. Determine the noble gas and infant iodine dose factors and record'on Figure F-8 as follows: ,-

(1) Use Figure F-2 if the SJAE filters are in service.

(2) Use Figure F-3 if the SJAE filters

, s are not in service.

b. Obtain a grab sample and analyze for noble gas and iodine. Record concentrations. &

on Figure F-8. Obtain dose factors from the counting room or, if not available, '

determine the noble gas and infant i iodine dose factors from Figure F-1 and record on Figure F-8.

II. Determine the source term for each active effluent path '

for noble gas and iodine by using the following equation O and the values entered on Figure F-8:

i

[flowrate (cfm)] (conc. (pCi/ml)] (dose factor] =[ source term]

III. Determine the total noble gas source term on Figure F-8 by summing the noble gas source terms calculated for each active effluent path. ,

IV. Determine the total iodine source term on Figure F-8 by '

summing the iodine source terms calculated for each active effluent path, V. Enter the total noble Las source term, total iodine source term, and the wind speed in mph in the appropriate boxes on Figure F-8. Determine the dose rate in mrem /hr at the site boundary from noble gas and from iodine by using the following equation:

Total Source Term 01 = mrem /hr at site boundary (S.B.)

ind Speed, mph Q VI. If the projected noble gas or iodine dose rate 31 mrem /hr, proceed to step VII; if not, the estimated ,

whole body or thyroid dose does not meet the minimum t criteria for classifying the emergency according to O Tab F -

Page 5 of 15 ,

Gen. Rev. 9

/p 2_ __ _ _ . I

FNP-0-EIP-9 a

I ir parcgraph 4.2 in the main body of this procedure and no further calculations are required at this time. Go to step XIV.

r

$ VII. Determine the estimated repair time or release duration

  • in hours and record on Figure F-8. Use 14 hours1.62037e-4 days <br />0.00389 hours <br />2.314815e-5 weeks <br />5.327e-6 months <br /> if this value is unknown.

r '

, NOTE: If major changes in dose rate occur, it may be E desirable to define repair time as the time from when dose rate calculation data was obtained to the projected termination of the release, then

- add the dose received to that time (determined

k. by earlier dose rate projections) to the projected dose to obtain total projected dose, this methodology will be used at the discretion of the Emergency Director.

i '

VIII Determine the projected whole body dose in Rem at the site boundary using the following equation and record on Figure F-8:

D Dose = Dose rate, mrem Release / repair 1 Rem 1 (Rem) site boundary hr time, hr 1000 mrem Whole c Body NOTE: If repair time is based on dose rate calculation time instead of release initiation time, add

_ dose received to projected dose.

[ IX. Determine the projected thyroid dose from iodine in Rem at thi site boundary by using the following equation and record on Figure F-8:

- i Dose I mrem Release / repair 1 Rem (Rem) 2 = site Doseboundary rate, hr time, hr. 1000 mrem 7

thyroid

? NOTE: If repair time is based on dose rate calculation time instead of release' initiation time, add

dose received to projected dose.

1 X. Determine the total thyroid dose in Rem by summing the i results from steps VIII and IX.

E XI. Determin' the classif1 'ation of the emergency using the values fr.;m steps VIII und X and comparing them to the B criteria of paragraph 4.1 in the main body of this procedure.

?

)

i Tab F Page 6 of 15

, Gen. Rev. 9 y _ _ . _.__. .. _ _ __ ._ _ . ,

FNP-0-EIP-9 XII. Determine the affected downwind areas in the 10-mile O emergency planning zone (EPZ) by placing Figure F-6,

" Relative Dose Rate Plume Boundary For Stability Class A" on the 10-mile EPZ map and by orienting the plume centerline on the downwind direction vector. The lines on Figure F-6 are isodose / isodose rate lines. The dose / dose rate values on each of the lines can be obtained by multiplying the values by the site boundary dose / dose rate. The value at the intersection of the 10 mile arc and the plume centerline times the site boundary centerline dose / dose rate gives the dose / dose rate at that point. Mark the centerline on the map with a grease pencil and record the date, time, and stability class to aid in projecting accumulated doses and affected areas.

XIII Determine the arrival times in minutes for the site boundary, and each mile arc out to 10 miles or to where the dose rate <1 mrem /hr using Figure F-7 " Arrival Time versus Wind Speed." convert to clock time using time of release initiation, time of major release rate change or time of wind direction change (as appropriate) and record data on Figure F-8.

XIV. Refer to step 4.4 in the main body of this procedure.

O O Tab F Page 7 of 15 Gen. Rev. 9 m-- mumm- m m

. . . . - - _ . - . - . ~. -. . : : . - . .-. . .- . . . . - - . ~ --. - -

^^

7 FNP-0-EIP-9 .

FIGURE F-1 FAILED RlEL DoseFactersversusTime

. ISOTOPIC EffluentActivity 1E06 -

' 6.0E05 g 25 DF.!W MIE f $ g 1.9EO,5 , C ,,,,,,,,,; g ,g gg s E l

_M i -_ L _ ' ' ' t i t

i 1E05 3-

}{ /'

I

~' t I

1 I

t , ,

']' {_m. 3' i l i l

i ,

e i i d ll ll

  • 2 g N 5 -.

' l.EOL -- 5

_5 , . i , , ,

5#

4

) g 3 5 l ll ll 1 'l il l I i t i I -

E 3 2 g

'  ! I III IIII 8

1::

a E l 1E02 -"*

= t t 8

  • it ie -

't m 4 4 6 4 4 4 e ( i4 e 6 ( 4 4 I e ( e ,e e e 4

F .4E02 2 fll f' ll'llll'l ,

)*K 's ll I .

I lllli i 3 N s s

-- "\

l 1E02 m l

_= , .

x ~

5

- '- ' ' ' - - ~ ' ' '

E ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

4 3

ei!u i i i i i i i i r,' -

aas ras i

2 Bl '

I I I ,

I '

3.0E01 -

i 5

! =5 1E01 3 V

1 '4 il 2 3 24 Figure F-1 ,

Elcosed Ti.n Since Shutdc.n Odeurs) Tab F 6

l Fage 8 of 15 Cen. Rev. 3 h

_ . . . = .

,, ., ,m -- - - - - -.

FNP-0-EIP-9 9 s FAILED FLE FIGURE F-2 OceeFcctersversusTime CrcssEffluentactivity ForFilteredIcdinss lE05 _ _ ,

. . i

- , , i , ,,,.i, . , ,

aume 'l l l l , , j i l I e , _ t, I I l l 5 . , , j ,  ; ; , , , ,,,,,,,,ii, 0

d I i l i i i i iiiI i i I I ! I 1 2

5 l l l l l l l l l l l I I I l

, i g j , , ; 3 ,

2 1.2E04 -

= 1.08E04

=

s I ii' l l l1 '

I

' I i ! ii i Icms nym nig 1304 uT III IIl 1liI I I I I i l ! I i i

- IDE S Ell.i Eis g  ; i ; ; -i , ,  ; :

. .- i i iii,iii iiiiii,,,,. ,

d ~E l l 1 l 1 1 I l l l l l l l I 1  !

! l ?

f 5l l l l l l l l l 1 l l l l l l l l l I i L ~S 7 _s a

! .I Il llllI'IllIlllI i

=

1' = '

$ 1E03_U _.

'e  : . , ,

1 - , , ,,,,,i,,,,, i , , , , ,

e "" i I ' ! I I I I i l I I * ' I I i ' I I I

E I ! I I i I ! i l i i i i i i i i ! I i !

{ 5 1 I I I I I i I I I i 3 3

,_2,3to, I I I i !

8 , -- I i l l l llll l l l l l -I l !l 8 =

=.x N l w = sN 2 1E02 U a  :

's x -

_ . , , , , ,x , . , , ,

. ='"* f ( i i l I I  ! i 1 e 6 , i i i l I l 1 i fE i l l l l l I ! l I INI '

l 8 I I i f I 5'

rd I l l l l I l l l l i l i  !

i i .

, nj g gg j

i l , i

llllllllll l I ' ' '

l i 2.ntar s 'J

=

5

' l .

O

s s

! Fisure F-2 Elcpsed Ti=e Since Shutdein bro' i :2'o F

! Page 9 c:. 15 i Cen. Rev. 3  !

_______z_._.,__.__.. --.

FNP-0-EIP-9 ' i l

1 l

4 FIGURE F-3 Y FAIIB FUEL DoseFactersversusTim GrossEffluentActivity ForUnfilteredIodines 1E06 _ i

~ '

5 m I i i e i

. i ,

e

, 4 g , , , i. 3 , 3 3

1.04E05 1, l 1.8E05 3 g gg 2 , ,

l l l l lI '

lI Imus an gnE i 1E05 _ _

=-

. 5. . ,' t 1'E 2

E E  :

I I I u II I i i, II d =~

' 1E0A 5'

4 g 3 E '

l I i '

I I ii

.h ., B I I I ll ll t' ' E. -

1E03 ~

5

' ' ' ' ' ' ' ' ' 't 4

~E t 8 8 o t t i  ! I I t i i 4

]

E i i l I I I I I i i I l l

} 1. E02 1E02 & ~ '

,N

_- , . .x ii,i. .. . . . . .

l B i

! I'A t t 1 $ t 6 t i j 45 3 -

I I I hl I I i r 2.lE01 2

ll K il K -

f I ' ' '

' f i i E bb l --

1E01 ~

'I 4 3 12 la ' II 24 Figure F-3 l Eleceed

' Time Since S'utdewn n Geurs) rad F I Paga 10 of 15' Gen. Rev. 3

, . - - - - - - - ,,,---m- - - - -- -r-- ,ee- . , , - -e-- --,,,.---,-,--w,,,--,,mm_-sa -

c., i

. FIC 4 .

STEAN ATMOSPIIERIC/ SAFETY RELIEF VALVE

, FLOW CALCULATION SHEET 3

i Yt -hr~

SG Press (pisg), No. Valves Open TAVG(*F) SPECIFIC VOLUME min-lbh r

<1035 0 I035-1075 1 550 .505 1075-1089 2 , 500 .t .522 1089-1102 3 450 . .526 1102-1116 4 400 .522 t 1116-1129 5 350 .508

>1129 6 300 .490 t i 250 467 l 212 .447 l

Loop cfm cfm .

t Unit Press. TAVG lb m/hr # valves specific per par Date/ Time SG (psig) ( F) (Fig F-5) X open X volume = SG Unit Remarks f

i

, A X X = m Y m YXX ,

4  ;

i B X X = YYYY m m C X X h YYY m Y M  ;

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXY m YYYYY m '

> sum of cfm per SG l' XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXY m m YYYYYYXXXXXXXXXXXXXXXXXXXXXX I A X X = m xYYY m i I i B X X = XXYYYY m Y  ;

1 C X X = XXXXXXXXXX  :

> sum of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYYYY m YXXXX  !-

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYYYY m YYYY m m XXXXy m m m YXXXX  ;

A X X = m Y m XXX [

B X X = YY m yyYYX ,

1 C X X = YY M YYYYY i XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX > sum of cfm per SG E +

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 7 O

i (O Da M

P W "2 l 7 if:-"'2 a

.t Ort, eq ,

    • $ t sk

. - -.__. - .._..-_. .- . _.---- . -- _.\

l l

\

l

. 1 FNP_0-EIP-9 l l

STEAM PRESSURE (psig) 8 8 8 8 o o o o o o o e 1

,m .< .r m n 8e o o o o o o o o o o

/ \

< .-< < m e a r~. e e .x m n o (v) gs p._,_

-.p_. . y. ._l..,.. . 3. ., ._p.. , ..

. .. . .e.

, e . . t.-. .,.

3, . .

. . s,..

r,...... . ,.. . .'4.

, . - g ,

. . . _ g .i . , . s , .f. .. . . . .. . . y, . .... g.

i

. .. .,r, 7. , . \.g.

M.

. y 20gges .

.. . .. .. . , . >, . t. . . ..a- . ' . .. :7. .c _.

. . __ _.-.__4_..

+

.:. F p ..-* -

._ . ._ .:.. .: . . . . . c, _ i._ ...m.. . . _ . . . . . . ,. . . 4 ...:..+_y

..__.._.....44..

. . . _ . . _ . . . . . . . . . _ . . . . . . . . . . .. ..__. ... . _ _ . , . _ . . .._.n_.._...:.._.,

000,S41

. . _ . . . . .. _.. .... ............. _ ._ _... _ _._... .-.._ w.. ..._....- __. _ . . . . _ . . . _

.. z.

000*ogy

..........w...__.......__..___~._...]

. . . _ _ . _ _ . . . . ._. _ _ .._. _ . . . . . . . _ . . . . - . . ~ _ . ,.

_. - _ . ........_. _ .. _ __ ..__. 000,ggy

._.__..._.s..._.. ._ . . . _ _ _ _ _ .

-- _ _ _ . __.._ . ~ _ . _. _ .. _ --- . _ . _ _._

_.._s._............

i W - - . . . . . _ . _ . . . . . .

__._.___4 -

_ ooo,g4g

. . . . . . . __4 w _ ..__

.__ - _ __ _ _ .. _ ...000,OSC . . . _ .

.. 4

_..___.----_.H

..__.~t 000, SCC :

r -- -. -;__...._____..

. .__.._______a  !

l

-. . ~ . . _ . . . _ -

. . . ... . . . . . .. _.. . . . ~ _ _ _.

. _ _ . _ . . . _ . . = _._..n.on33-cs ..s

_= - _._-_

s u.

.x 000,g4g g m w3g _ _ _ _ . . . . _ . . _ . . . . . . . . . . . . _ . .

_.._.____4

. ,,3, f.

- - - - _ _ . . . _ . . . . _ . . _ . . . _ . . - _ _ _ . . . _ = - - - .....___.._.._....- s m . . _ . . . . . _ . - . . . .

(%, ,

. . . . . , _ . ~ . _ , . . . -_,_ 000'053~

g

.w_...._.......

_ _ _ . . . = . . __... .. _

3 w

y.

000 SEE m2

. . . _ . . . . . .._ .. . _a

.c

......_._._......_=_.

- _ . . _ _ _ . . _ o 3, --_._...._......__.__.._...._.-.s._..

u.

9

. _ _ . __ ..... . . . ... . ..__.  ; a m

. . _ . . ._-_.__....~ _...__......... . . . . . .

m; - m a, _ _ . _ _ . _ _._ - -- _ .

. . . . . _ . _ . . . _ . . . . 4

- 000,SLT Z

.. _ . _ _ _ -- . . . _ . . . . . . . _ _- -=

3 . _ . . _ . _ . . _ . - ._.__.

n .a

.J _. .

w u. ...a.__

. - . . . . _ _ _..._ _.-.. +_...- =_. - ~ 00 z __. ... _ _ ._ _ .

w3 m=

w a

. . . . . . . .._..._- --- _ 000,SEI

~x _ _ _

wg _

. . ._ _ _ . = . _ . . .. .. ._ _.... ..._. ... _ . . _

_ . . _ _ . ~

_. .. -- _a 000*g4

_...._.._..______._.___.a,

. . . ~ . . . . . . . _ _ _

. . . . . . _ . . . . .=._.. _ _

. . . . _ . . . . . _ . _ . _ . . . . ._ _ _ . .._._. _ .l,

_ . . . . _ . . . _ _ _ _ = 4000*og

. . . . . . . . . .=. f

_...__._...._e.____ . = _ _ ... ._ .._._._. ...._ _._ ... .._

. . . . . . . . . ._.....___._,._._........_.... _ . _ . . . . _ . . . .. ..---._.=.

-- ,000,SE

..____...._...____.._..-.....;__.,_a_.

), ..a

-_;p.........,..,_.-,.._..

ys/ _ . _ , ..p. .-. . , . . . = . . . . _-. -. . . . - _ . .

..+. :-p . . ., . . _ . .y .. . . . , . 7:. l l. . '

_ . . . _m p ,_._p ;2._ i.-  ; o_p- t<

yigure p-3 G o M o G o G o C o G o G G Tab r e o a o e o G u s c Page '12ofl a.

v m N .-* G m o o o

e a o s - (D r O v m N M

- - lG en . ., ev . 8 .

(S;sd) mmss3s w3J.s

.- - ..- -._ - _ = = - - = - _ - - -- -- .-

FNP-0-EIP-9 FIGURE F-6 Relative Dee. Rate Plume Bounder 7 (nj For etability cice. F mixing height = 4104ft.

6..

l

?<

4 _

4

~

~

O 2. .

a S al

- Eg

- ------ C - - - -

h6.1  : 3,a N--

% g,g N

3  % 8.s

' ~

~Ob

-2.. as '

S1

-4. .

~

O .

Figure F-6 Tab F Et Page 13 of 15 Gen.'Rev. g

-6 "

34

__ . . - . .~ - - - - . . - - - - -

FNP-0-EIP-9 Figure F-7

TRAVEL TIME (MINUTES) VERSUS WIND SPEED (MPH) -

Wind Distance (Miles)

Speed (HPH) sb 1 2 3 4 5 6 7 8 9 10 i 1 47.0 60.0 120.0 180.0 243.0 300.0 360.0 420.0 480.0 540.0 600.0 2 23.5 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0

, 3 15.7 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 4 11.8 15.0 30.0 45.0 60.0 75.0 99.0 105.0 120.0 135.0 150.0 5 9.4 12.0 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0 120.0 6 7.8 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

7 6.7 8.6 17.1 25.7 34.3 42.3 31.4 60.0 38.6 77.1 85.7

- ; 8 5.9 7.5 15.0 22.5 30.0 ~,, 37.5 45.0 52.5 60.0 67.5 25.0

! 9 5.2 6.7 13.3 20.0 26.7 33.3 40.0 46.7 53.3 60.0 66.7 10 4.7 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 11 4.3 5.5 10.9 16.4 21.8 '27.3 32.7 38.2 43.6 49.1 54.5 12 3.9 5.0 10.0 15.0 20.0 25.0 30.0 40.0 9 13 3.6 4.6 9.2 13.8 18.5 23.1 27.7 35.0 32.3 36.9 45.0 41.5 50.0 46.2

, 14 3.4 4.3 8.6 12.9 17.1 21.4 25.7 30.0 34.3 38.6 42.9 15 3.1 4.0 8.0 12.0 16.0 20.0 24.e 28.0 32.0 36.0 40.0 16 2.9 3.6 7.5 11.3 15.0 18.8 22.5 26.3 30.0 33.8 37.5 17 2.8 3.5 7.1 10.6 14.1 17.6 21.2 24.7 28.2 31.8 35.3 18 2.6 3.3 6.7 10.0 13.3 16.7 20.0 23.3 26.7 30.0 33.3 19 2.5 3.2 6.3 9.5 12.6 15.8 18.9 22.1 25.3 28.4 31.6 20 2.4 3.0 6.0 9.0 11.0 . 15.0 18.0 22.0 24.0 27.0 30.0 21 2.2 2.9 5.7 8.6 11.4 14.3 17.1 20.0 22.9 25.7 28.6 22 2.1 2.7 5.5 8.2 10.9 13.6 16.4 19.1 21.8 24.5 27.3 23 2.0 2.6 5.2 7.8 10.4 13.0 15.7 18.3 20.9 23.5 26.1 i 24 2.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 I

j 25 1.9 2.4 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0

! 26 1.8 2.3 4.6 6.9 9.2 11.5 13.8 16.2 18.5 20.8 23.1 i

I Figure F-7 9 Tab F Page 14 of 15 Gen. Rev. 8

,,3

( i i } FNP 9 v l Ed  !

l i FIGURE F -8  ;

i STABILITY CLASS DOSE ASSESSMENT Date Time CENTRAL STANDARD  !

! i

WIND SPEED DOSE RATE RELEASE REN WHOLE }

FLOW CONC DOSE SOURCE (MPil) in mREN/hr TIME BODY m PLANT VENT (CFM) (pCi/ml) FACTOR TERM X/Q (Use 14 hrs if value unknown)

$ STACK X X = X2.78E-4+ = X + I C3 =

. 'l d I a STEAM GEN. X X = v2.78E-4+ = X + 1000 =  !

$ STEAM JET i

$ AIR EJECT 1.05E+3 X X = X 2. 78 E-4+ = X + 1000 =

i~

OTIIER: _ :: X = X 2,78 E-4 = X + 1000 =

I TOTAL NOBLE TOTAL REM GAS DOSE RATE WHOLE BODY AT SITE BOUNDARY PLANT VENT m STACK X X = X 2. 78 E-4 = X + 1000 =

$ +

$ STEAM GEN. X X = X 2. 78 E-4+ = X + 1000 = ,

S STEAM JET AIR EJECT 1.05E+3 X X = X 2. 78E-4 = X 1000 = j OTilER: X X = X 2. 78 E-4 = X .+ 1000 = ,

i TOTAL IODINE TOTAL REM DOSE RATE IODINE }

AT SITE BOUNDARY l Emergency classificat. ion: i

() GENERAL (15 Rer Whole Body OR 110 Rem Thyroid)

() SITE AREA (11 Rem Whole Body OR >2.5 Rem Thyroid) TOTAL DOSE

() ALERT (11 mrem /hr Noble Gas or Iodine at Site Boundary) TO THYROID r IN REN ,

CALCULATE ARRIVAL TIMES AT SITE BOUNDARY AND EACll MILE ARC OUT TO 10 MILES OR TO A LOCATION < 1 mrem /hr.(USE FIGURES 6 & 7) j DATA BASED ON RELEASE /CIIANGE OCCURING AT CENTRAL STANDARD TIME ON (DATE). PERFORMED BY SITE BOUNDARY I mi. 2 mi. 3 mi. 4mi. 5 mi. 6 mi. 7 mi. 8 mi. 9 mi. 10 mi. Tab F  ;

Page 15 of 15  ;

Gen. Rev.11

.:- .= . .. . ....:..- ..- ... .. - - - - -

iI e

FNP-0-EIP-9

-l i STABILITY CLASS G

-r ii f

f i

j '

4 9

TAB G STABILITY CLASS G DOSE ASSESSMENT I

4 .

l I

Tab G Page 1 of 15 Gen. Rev. 9

_ __ ~ ... . . . , . ~ . . . , . . . . - - .

f FNP-0-EIP-9

{ TAB G j STABILITY CLASS G 1

STABILITY CLASS G DOSE ASSESSMENT i I. Source Term Calculation

} A. Plant Vent Stack Release i

1. Enter the flowrate in cfm from the plant vent stack flow recorder (Located next to RE-14 in

! Control Room) on Figure A-8, Stability Class

} A Dose Assessment or by using the following

{ information if the recorder is not operating:

a. One aux. bldg. fan........... 75,000 cfm
b. One aux. b1dg. fan & RE-025
tripped................... 79,000 cfm 8
c. Two aux. bldg. fans......... 150,000 cfm I Two aux. bldg. fans &

RE-025 tripped............ 154,000 cfm

! 2. Have the Counting Room Technician poll the High Range Vent Stack Monitor (R-29B) for noble gas and iodine concentration per FNP-0-RCP-732.

If R-29B is not operable, have the Counting Room Technician obtain a vent stack sample from the Vent Stack Post Accident Sampling

' Station (located next to R-21/22). Values

, will be reported in pCi/ml.

, 3. Noble Gas Enter on Figure G-8 the pCi/ml for noble gas and the noble gas dose factor from Figure G-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use a noble gas dose factor of 2.4E+02.

4. Iodine Enter on Figure G-8 the pCi/ml for iodine and

, the infant iodine dose factor from Figure G-1. The " Elapsed Time Since Shutdown (Hours)"

applies to the reactor. If the release is from a waste gas decay tank, use an infant l

iodine dose factor of 6.0E+05.

O Tab G Page 2 of 15 Rev. 10

.m.

. _ _ . . . _ _ _ . _ _ _ . . _ . . _ . ~ _ _ _ _ _ . . ._ . . _ _ _ . _ . . . . _ . ~ _ .

7.____._.._

FNP-0-EIP-9 i B. Steam Generator atmospheric relief and/or safety release.

1. Determine the flow from the atmospheric reliefs and/or safety reliefs as follows:
a. Obtain the current pressure (psig) and i

loop TAVG(*F) readings for each steam generat Record valuesDn Figure

(.or G-4.affected unit.

of the

b. Detennine the flow in pounds mass per

-i hour (lbm/hr) that is possible from a safety / atmospheric relief valve by using Finure G-5. The value obtained is the flow that will be discharged from each safety or atmospheric relief valve that is open.

c. Determine the number of valves that are open for each steam generator using the data beloiT:

Pressure of Steam Gen. (psig) Valves Open

<1035 0 T035-1075 O- -

1075-1089 1

2 1089-1102 3 1102-1116 4 1116-1129 5

>1129 6 NOTE: If a relief or safety is stuck open or if reliefs are being utilized for cooldown, the above table does not apply and operator knowledge of l plant condition must be used.

1 O

Tab G Page 3 of 15 Gen. Rev. 9

e .

FNP-0-EIP-9 i

!g i

W

d. Determine the total flow in cfm from each generator by multiplying the flow (lbm/hr) times number of valves open times the specific volume for each generator.
e. Determine the total flow of the release in cfm from all generators by summing the values obtained for each generator

, per I.3.1.e.

i j NOTE: If the R-60 monitors are operable

, and indicate that not all generators are releasing contaminated effluent, sum only the flow from generators with contaminated effluent.

l f. Record this value on Figure G-4 and on i Figure G-8 for both iodine and noble j gas.

2. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing
either (a) OR (b) below
a. Obtain the readings from R60A, R60P, f .

R60C and R60D and contact the counting room for conversation of the readings to

! pCi/ml usf.ng RCP-25 Appendix M, Figure l 1. Record the same pCi/ml value on 4

Figure G-8 for both noble gas and iodine.

! Determir.e the noble gas and infant iodine dose factors using Figure G-3 and t record on Figure G-8. On Figure G-3 the l " Elapsed Time Since Shutdown (Hourn)"

, applies to the reactor.

b. Obtain a grab sample and analyze for noble gas and iodine. Record concentrations on Figure G-8. Obtain dose factors from the counting room or, if not available, determine the noble gas and infant iodine dose factors using Figure G-1 and record on Figure G-8.

C. Steam jet air ejector release

1. Determine the effluent concentration in pCi/ml by using RCP-25 and by performing either (a) OR (b) below:

O Tab G Page 4 of 15 Gen. Rev. 9

-m mmmmum m

.m__....__ _ _ _ _ . . . _ . _ _ .__:..___..-.- .;___ - - - -

! FNP-0-EIP-9 i

l

a. Obtain'the reading from R15A, R15B or 4

O RISC-(whichever is closest to mid-scale) and contact the counting room for conversion of the reading to pCi/ml using RCP-25,

Appendix
L, (Figures 2-A,B for R15A -
Figure 3 for R15B & RISC). Record the 1 same pCi/ml value on Figure G-8 for both j- noble gas and iodine. Determine the
l noble gas and infant-iodine dose factors-

{~ and record on Figure G-8 as follows:

1 (1)

Use Figure G-2 if the SJAE filters 1

are _in service.

i j

.' (2) Use Figure G-3 if the SJAE filters )

are not in service. )

I b. Obtain a grab sample and analyze for

'l 1

noble gas and iodine. Record concentrations on Figure G-8. Obtain dose factors from the counting room or, if not available, determine the noble gas and infant iodine dose factors from Figure G-1 and record on Figure G-8. ,

f! II. Determine the source term for each active effluent path

! for noble gas and iodine by using the following equation

and the values entered on Figure G-8

)

.' [flowrate (cfm)] [ conc. (pci/ml)] [ dose factor] =[ source term]

i l III. Determine the total noble gas source term on Figure G-8

. by summing the noble gas source terms calculated for 3 each active effluent path.

IV. Determine the total iodine source term on Figure G-8 by

summing the iodine source terms calculated for each active effluent path.

J i

V. Enter the total noble gas source term, total iodine source term, and the wind speed in mph in the appropriate boxes on Figure G-8. Determine the dose rate in' mrem /hr at the site boundary from noble gas and from iodine by using the following equation:

i Total Source Term 01 = mrem /hr at site boundary (S.E.)

Wind Speed, mph

, Q VI. If the projected noble gas or iodine dose rate >l mrem /hr, proceed to step VII; if not, the estimated whole body or thyroid ~ dose does not neet the minimum criteria for classifying the emergency according to

Tab G Page 5 of 15

, Gen. Rev. 9 1

'~. . . . . . - . . . ~ - - - . . ..

, , , - ~ , . , -

n--- . , . . , . . , . -

_.- --~ . . . . . . .

-- - . .- : =. - - ^ - - - - = -

j

! FNP-0-EIP-9 l

( -

paragraph 4.2 in the main body of this procedure and no i-( '

further calculations are required at this time. Go to step XIV.

I VII. Determine the estimated repair time or release duration l in hours and record on Figure G-8. Use 14 hours1.62037e-4 days <br />0.00389 hours <br />2.314815e-5 weeks <br />5.327e-6 months <br /> if this value is unknown.

NOTE: If major changes in dose rate occur, it may be desirable to define repair time as the time from when dose rate calculation data was obtained to the projected termination of the releaseF then add the dose received to that time (determined

by earlier dose rate projections) to the projected 1 dose to obtain total projected dose, this methodology will be used at the discretion of the Emergency Director.

VIII Determine the projected whole body dose in Rem at the

.; site boundary using the following equation and record on Figure G-8:

Dose = Dose rate, mrem Release / repair 3) 1 Rem (Rem) 'te boundary h time, hr J 1000mR Whole Body 1 () NOTE
If repair time is based on dose rate calculation time instead of release initiation time, add j dose received to projected dose.

IX. Determine the projected thyroid dose from iodine in Rem

. at the site boundary by using the following equation and record on Figure G-8:

Dose I mrem Eelease/ repair 1 Rem ]

(Rem) 2 = Dose rate, te boundary h time, hr. 1000 mR W l thyroid NOTE: If repair time is based on dose rate calculation time instead of release initiation time, add

, dose received to projected dose.

X. Determine the total thyroid dose in Rem by summing the results from steps VIII and IX.

XI. Determine the classification of the emergency using the values from steps VIII and X and comparing them to the criteria of paragraph 4.2 in the main body of this procedure.

d O Tab G Page 6 of 15 Gen. Rev. 9 4

..-...w-.- .. . ...- - .. . - . - . . . . . . . - .. ... .- .- .-

FNP-0-EIP-9 XII.. Determine the affected downwind areas in the 10-mile

~

emergency planning zone (EPZ) by placing Figure G-6,

" Relative Dose Rate Plume Boundary For Stability Class A" on the 10-mile EPZ map and by orienting the plume centerline on the downwind direction vector. The lines on Figure G-6 are isodose / isodose rate lines. The dose / dose rate values on each of the lines can be obtained by multiplying the values by the site boundary dose / dose rate. The value at the intersection of the 10 mile arc and the plume centerline times the site boundary centerline dose / dose rate gives the dose / dose rate at that point. Mark the centerline on the map with a grease pencil and record the date, time, and stability class to aid in projecting accumulated doses and affected areas.

XIII Determine the arrival times in minutes for the site boundary, and each mile arc out to 10 miles or to where the dose rate <1 mrem /hr using Figure G-7 " Arrival Time versus Wind Speed." Convert to clock time using time of release initiation, time of major release rate change or time of wind direction change (as appropriate) and record data on Figure G-8.

XIV. Refer to step 4.4 in the main body of this procedure.

O i

I i

O Tab G Page 7 of 15 Gen. Rev. 9 j

- . - - . - - . . ~ . .. .. - . .-- . - . . .:.=_- .- . ..- .

f^

1 FNP-0-EIP-9 FIGURE G-1 FAILEDRR f' DosefcetersversusIin 1 ISOTOPIC EffluentActivity i i 1E06 _

6.0E05 Q '

, .  ; : ' ' ~-

, . ,, . . m EEE DF).W EE

'M,'

M yg;~~ W;,,

+ 5 "'" ( 1.9E05

~

r --

,  ; g gy gg  ;

i ,

-l

, , 1 y

1E05 I -

o , ,5 . , , ,- i , i i i i il

'. 3-=E 2 m, I II I I g  !!!

' IEOL 3^m 4

i , 1 it , i e ,

i i ,t 6 ,i j 3 E l 1 l I l l I l 1 l i iI

.h 2 3 IIi l I i l IIII

.= m

=

a =

HIE 022 1

3 E . , , . .

j 5

E -2.4E02 i
;.; tll;';;;;>-

liKJ l  ! II I i l ll l

},BE '

s N g IE02 2 -

E , , x . ,

5 4 m i e i ,' i e i A .' ..i ie i 3E I ' ' I I l ' I ' I I I ' ' EE 2

$l l ll ll l l l l l l 3.0E01 lE01 I

1 '4 8 Y a O

13 24

Figure G -1 Elcpsed Time Since Shutdc.n Geurs) Tab G Fage 8 or la.

Gen. Rev. 8 k _ _ _ .. . _ . . . _ . . . _. .

---_--__-_---_a- ---__ - - - - - - , , w -- +- ,o-m, -.,,,,m ,,7,_--,,,,v,--,, .-.,o w ,,- ---,,,,-pm,w.p,y-e-y

- ,.es,-

77-,,y--,

FNP-0-EIP-9 FIGURE G-2 O FARED FUB. l DoseFcetersversusTime j

, GrossEffluentActivity ForFilteredIcdines i LEOS _

i 5 E"

,' l l . .l . l l . l . l u , , , , , ,,,,

0 E l l t 1 I I I i i I E l l l l l l l l 2 g g g g , , ,

. 2 1.08E04 1.2E04 -

  • l l ' ' I 1III DDE DFM ?R 1E04

@# I  !  !!!I '

l I I I I I ' '

, , HDE E1U R.E

. . . i , ,,, , , , . . . .

.- - . . . 4 ,

i . # . . . . .

. - I  ! I I i i . t d IE I I I I t 'I i f k E li' l l l l l l l l l l 2l, l l l lll y -

s =

$ 1E03 I -

h -- '

1 . , , l l l . ,l l l l l . .,,

, A .-i . i, ' ,,ie i i i , i . ,,,

t jE i i l i i i i  ! I I I iii g 3 5 2.3E02 II I I !

h 2 II' I I l ll ' lll w

Ex-E!

I1E02 2 - '\ -

3 .!E

. N ,

. . . .x . i . . .

  • ' ' ' ' ' ' ~

S ~E i i i l I

, il itNI t t I i i i i i i l 5l l l l l l l l l l l l M ' ' I I IJg g 2ll

=

l l l l l l ' 2.95E01 j'-

i a

=

1E01

'l '4 'S '12' '18 3 14 Figure G-2 t*b Elepsed Ti= Since Shutdein bes) Page 9 c:. 15 l

Gen. Rev. 8

- . . . , . , _ _ g p-- --,.mm er,yy-, -. ,y er--o-,or,se ,-e

FNP-0-E1P-9 9 FIGURE G-3 FAILEDFUEL DeseFcetcreversusTime CressEffluentActi.fity ForUnfilteredIcdines

.. 1E06 _

f

- i , . . i i , ,

! , , , , , , , i

=

E t e i i i i i i e 6 i i i 4 i i i . i .

3 3

N h I I l l l l l l l l l. l 0 8 1 4 I

-1*04E05 l l l l- l l l l l l l 1. 8E0 5 %

2

, , , + gDE DFM Mij LEOS _. ,

Tl lII II IIIIIII!I II!I ! ____, EDE Mlli TdTE 3' _

- i , , , . . i 5

~E ! i I e i ! I I i i i '. i i i i i i i i i i 4  !

3- ' I ' I ' I I I I I I I I I I ' I ! I ' !

a ,_sillill il liiiiiiiii i !i s

g i

lEOL s

G- b

-~

3 hk l i l i i i i , , , ,

f 5-  ! l I I i ! I I i l l ! I I I I i l I l 1 I I f 3

t , e it!Ill!Illilli
ll i i !iiil f 'E I I bl

~

kIE01 3 E

.g  !!,;;;.:,,;,

E' 8 I I I I I I I I I I I ! i I l i ; i ! ! l i I 3_ d ' ' ' ' '

l l l l l l l l l l il ! I I l l { '

2- [ g t.:Ec:

j ,  ;  ;

l l l l' i 1  ! I LEO: 3/lN -l '

I  !

x s

. - x ,

?m . . , , . ,x. , , , , , , ,

__a i i i i i i i i N i . i 2 l
i  :.:Eo1

]

25 . l l l i l l l l t, i

i j 'I i ,

i 1 iy'mn g.s G' i leo 1 = I Il I

i i g '3 1 3 'a a a a Elecsed Time Since Shutdenn Weers) N[5$~

Page 10 of 23

, Gen. Rev. 3

-m.a m.mmmmmmmm ma mmmmmmmmm mmummum-mm m i i

FIL G-4 .

STEAM ATMOSPHERIC / SAFETY RELIEF VALVE FLOW CALCULATION SIIEET Ti3-hr SG Press (pisg)~ No. Valves Open TAVG(*F) SPECIFIC VOLUME min-lba

<1035 0 1035-1075 1 550 .505 1075-1089 2 500 .522 1089-1102 3 450 .526 1102-1116 4 400 .522 1116-1129 5 350 .508

>1129 6 300 .490 250 .467 212 .447 Loop cfm cfm t

Unit Press. TAVG lb m/hr # valves specific per per Date/ Time SG (psig) (*F) (Fig G-5) X open X volume = SG Unit Remarks A X X = YYYYYYXXXX 4

l B X X = XXY m m Y C X X = YY m YYYYX

XXXXXXXXXYYY m XXXXXXXXXXXXXY m vY m m m m m m Y M M Y m m m YY '

) sum of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYYYYYYXXXXXXXXXXXYY (YXXXXXXXXXYrY m m XXXXXXXXXXXXX

A X X = XXXXXXXXXX t B X X = XXXXXXXXXX X X = XXXXXXXXXX C.

, , XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYYYYYYYYYYYYYYYYYYYXXXYYYYYYYY '

> sum of cfm per SG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYYYYYYYXXXXX m YYYYYXXXXXXXXXXXXXXXXXXXXXXXXXXX A X X = XXXXXXXXXX B _.

X X = XXXXXXXXXX i

C X X = XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYY m YYYYXXXXXXXYYYYYYXXXXX XXXXXXXXXXXXXXXXXXX'O:XXXXXXXXXXXXXXXXXYYYmXXXXXXXXYmYYYYYYYXXXXXXXXyYYYYYmyY cmYmmymmmXXXXXXXXXXXX

> sum of cfm per SG

{

a oe-3 n?  ?

8aaf E

j' h 2 Io

.  :  ?

m #1

/N s

F P-0-EIP-9 STEAM PRESSURE (psig) 8* 8 o o o o e o o o e o o s'l N c o o e o o o o o o 4 - m e r. e n o,

. n n a p., p..,. . ... . ... v .e., .. ,.4 :,.,.i., .

9, - .

. .s._4..._a_

y... . _g.. .. , .-, .. ..f.. ..

. ,. . . . .q . p. ,. . . ,

. . . . .. 6 . . : . . , . . , .. .i. . .i

. .s. .

. .,. . ., v...,....,..q__.

e4

__4 0000.,9

.,_m_......,......_,....!..._..._. ., _ ,.

. t.... ..

.._3. ,. ... . _1 ,

___......___.........__.._.._....__...._.._,...___...._r_-000'SL7

_i . . _ _ _ _ _ . . _ . . _

__.... .. . .. ._ _--. 000'057

.._.__..._=._..-._.._.)

z.

..._.. _ . _ . . . . . . ._ . _. . . _ . . . . .__...._1.._.....- _ . . . . ., ooo,ggy ,

._.. -.~... ......_..._._.--..__.m.....___

. . ._. . ._ .. .._ .. ._. -.. _. .. . __ __. .~_ ._. _ __._-___..._-

_ . . . . .s._....._.. ...._..

. . ... ..:. ._ ... ... ._... . . _. ._.. . . _ . . 2.._.... . _ _ _ . _ _ _.t.

' 00=,m3.

w P

_ . .._ ..... _ ._._ ._ ._ ___q m _.-

a . . . . . _ _ . . _ _ . . . _ . .

000,gLg m __.

. _ _ . . . . _ . _ - . . . . . _ _ . ._.. .._ .. _ _= . . _ - ..__. _ .

_ -- 4 g -- . _ . . . . . . . . . . _ . _ -

w

- ~~

.__j x -- _ _. _ _ . . . . . _ _ . . _ ~ _ . _. .- _. _ . _ _ . . . . . . . . . . . .

c. . . _ . . ......._z_... . . _ . . . . .

. _m .. _..... _ J.000'OSE a x - . .

... _ -. H o .___. .

._ - - _ ..__._ . . . ..__. . ._ _.; 000,SZEi

, r.< __

._____.a i

= _

_ _ . . . . _ _ . _ . . . . _ . . _ . . . _ _ _ . ....._...._.._.~_. . _ . . . . .

a. y,,,,3 .a 3c .

o n,,,

x -

n

.c -_-_._.-_.__..._-.-...__._-..._........._...._.-.-......._..__.._._...._.a-y _ _ _ . _ _ _ .

. . . . _ _._.-..__-.._.._q 000'SLZ a o,

'm -

. . . __ ._. .._... . s,

._._.._..__.__1

_.-2.Ooo'0SZ' g

..........___.._._.__.m._...

y _ _ . . . _ . . . . -

__...__ _ . . . _ . . _ _ . . _ .c 3 -

. . . . . _ . . . _ .. . _._.. _._ . ._.____.. . ._. ._ _. _.,.. .., 0 0 0 , S Z Z %

. _ _ . . . . ._.._ .____._a 'm

_. o a

, u.

u u@g r.n . . . . _ . . . _ _ . _

,i a,

000,SLI x

.y _ . . .

- _ ._ .._....._...___a- --

O ..'.-*'.~ * '* * ~

eJ _

- _ _ _ . ' * ~ . _ ~ ~ ~ _ ~ ~ ~ _ ~ ~ ~ . . _ . . . . . . . . . _ - _~_ _. .. ~ . . _ ~ ~ . ~ . " . " . _ _ ~ _

o i u.

._ _. . __ . _. _ ._ ___ .__ _._ _. . . _ . . . . _ _ _ . _ . .__... ... . . - _ . . _ . . ._ _ . . . _ _ .000'OSI

= _ _ - ._ _ _ . .. . . _ _ _ . . _ _ . -. . . - _ _ - - _ . _ .__. ..__ __ _. ._ .. ._ _. _. .._.... _. .. .

w3 . . _ _ . . . _ _ _ _ _ _ . . . . _ . . . . . __

__- w

.x - _ _ _ . _ _ . _ _ _

.3,.,

g __

r s_ -_

. . . _ . . _ . -. _ _ _ _ _ 000'SZI

__c . . . .

u. x __

20220I

... ____ _ _ . _ . . . . . _ i

. _ _ _ _ ~ - _ . _ _ . _ _

000'sL

..___-. _ _ . _ _ _ _ _ - - - . . _ _ . . . . . _ .. . . . _ . . . . _ . _ . . _e_ 000'05

__.=

1

. ~ _ _ . .

........._.....___4 000'SZ O__._._._...........__......___.__._._....._......_.ia'_..___

p a- ,.._..,._..-_.._,__;...........e.._..._....,..___.i,

__y , - , - g_ p_ ,; ._ _ 4 , . .. , . g. 7{ ....

igure 5 G o n o 0 o o a 3 o G o o G Tab G a o o o o o a o u o a o o o o Page 12o fim_ ,

v M N m G m C2 r. Q C v

-e e e-4 m M N c-t Gen.Rev. 5 e (3Tsd) aunssIua hv31s

_ ~ . _ _ . -

FNP-0-EIP-9 Figure G-7

(', TRAVEL TIME (MINUTES) VERSUS VIND SPEED (MPH)

^O Wind Distance (Miles)

Speed (MPH) sb 1 2 3 4 5 6 7 8 9 10 1 47.0 60.0 120.0 180.0 -240.0 300.0 360.0 420.0 480.0 540.0 600.0 2 23.5 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0 3 15.7 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 4 11.8 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.'0 135.0 150.0 5 9.4 12.0 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0 120.0 6 7.8 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 7 6.7 8.6 17.1 25.7 34.3 42.9 51.4 60.0 68.6 77.1 85.7 8 5.9 7.5 15.0 22.5 30.0 37.5 45.0 52.5 60.0 67.5 75.0 9 5.2 6.7 13.3 20.0 -26.7 33.3 40.0 46.7 53.3 60.0 66.7 10 4.7 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 11 4.3 5.5 10.9 16.4 21.8 '27.3 32.7 38.2 43.6 49.1 34.5 12 3.9 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

) 13 3.6 4.6 9.2 13.8 18.5 23.1 27.7 32.3 36.9 41.5 46.2 14 3.4 4.3 8.6 12.9 17.1 21.4 25.7 30.0 34.3 38.6 a2.9 15 3.1 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 16 2.9 3.8 7.5 11.3 15.0 18.8 22.5 26.3 30.0 33.8 37.5 17 2.8 3.5 7.1 10.6 14.1 17.6 21.2 24.7 28.2 31.8 35.3 18 2.6 3.3 6.7 10.0 13.3 16.7 20.0 23.3. 26.7 30.0 33.3 19 2.5 3.2 6.3 9.5 12.6 15.8 18.9 22.1 25.3 28.4 31.6 20 2.4 3.0 6.0 9.0 11.0 . 15.0 18.0 22.0 24.0 27.0 30.0 21 2.2 2.9 5.7 8.6 11.4 14.3 17.1 20.0 22.9 25.7 28.6 22 2.1 2.7 5.5 8.2 10.9 13.6 16.4 19.1 21.8 24.5 27.3 )

23 2.0 2.6 5.2 7.8 10.4 13.0 15.7 18.3 20.9 23.5 26.1

. 24 2.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 s

25 1.9 2.4. 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26 1.8 2.3 4.6 6.9 9.2 11.5 13.8 16.2 18.5 20.8 23.1 i

Figure G-7 Tab G h

\__/

Page 14 of 15 Gen. Rev. 8

.-- -- -~ ~

O (j b\-

A._) FNP-04, g 9 I

l FIGURE C-8 STAHILITY CLASS DOSE ASSESSMENT Time Date CENTRAL STANDARD.

WIND SPEED DOSE RATE RELEASE REM W10LE FLOW CONC DOSE SOURCE (HPH) in MREM /hr TIME BODY

!m PLANT VENT (CFM) (pci/ml) FACTOR TERM X/Q (Use 14 hrs if value unknown) l d STACK X X = X4.77E-4+ = X ~+ 1000 =

id f a STEAM GEN. X X = X4.77E-4+ = X. + 1000 =

$ STEAM JET O AIR EJECT 1.05E+3 X X = X 4. 7 7 E-4+ = X + 1000 =

OTilER: X X = X4. 7 7E-4t = X 1000 =

TOTAL NOBLE TOTAL REM GAS DOSE RATE MiOLE BODY I-AT SITE BOUNDARY PLANT VENT ,

m STACK X X = X 4. 77 E-4 = X 1000 =

sa

  • 4

$ STEAM GEN. X X = X 4. 7 7 E-4 = X + 1000 =

' S STEAM JET  !

AIR EJECT 1.05E+3 X X = X 4. 77 E-4t = X 1000 =

OTilER: X X = X 4. 7 7E-4t = X + 1000 = f:

TOTAL IODINE TOTAL REM DOSE RATE IODINE AT SITE BOUNDARY Emergency classification:

() GENERAL (35 Rem Whole Body OR 310 Rem Thyroid) .

() SITE AREA (31 Rem Whole Body OR 32.5 Rem Thyroid) TOTAL DOSE

() ALERT (llmRem/hr Noble Gas or Iodine at Site Boundary) TO THYROID

- IN REM i

[I CALCULATE ARRIVAL TIMES AT SITE BOUNDARY AND EACil MILE ARC OUT TO 10 MILES OR TO A LOCATION < 1 mrem /hr.(USE FIGURES 6 & 7)

DATA BASED ON RELEASE /CIIANGE OCCURING AT CENTRAL STANDARD TIME ON (DATE). PERFORMED BY j.

i SITE BOUNDARY l mi. 2 mi. 3 mi. 4mi. 5 mi. 6 mi. 7 mi. 8 mi. 9 mi. 10 mi.

Tab C Page 15 of 15 Cen. Rev. 11

,