ML20205A310

From kanterella
Jump to navigation Jump to search
Analysis of Capsule Z from Alabama Power Co Jm Farley Unit 2 Reactor Vessel Radiation Surveillance Program
ML20205A310
Person / Time
Site: Farley Southern Nuclear icon.png
Issue date: 02/28/1999
From: Lott R, Perock J, Terek E
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20205A291 List:
References
WCAP-15171, WCAP-15171-R, WCAP-15171-R00, NUDOCS 9903300356
Download: ML20205A310 (258)


Text

y::;fWc g( ?hF gf.& " # ~& f l

  • .shv%%wn%8(dtis2R

' h. ..

I q

n%f k.khb ,

. ti; >.. , ,.l ':'

i f

l .

v:. w, ,t+.g.*:.

l': >.f ,J %_Q.

.N :

e b, f&q  : h'hh ?Q y e;'Q t .f; 3.5cg% ff w A.M Q &g^QdQfs.l

  • ! ~ 1:.+ "

=^ Wg:l .Q;@ygf 3 f:*f '-: ? -~ -

h. f4%Q * * ':
h. .

h:4f. $l; WY hY)'. . )ke;l'AN:.%{Ql44.fhpjf.f:. _ ...._ .' ' ll3_; b , c;* '.[ l~) . .f. ~ @[:S;Sby{. ,..

l

. QM,fk ' 8 "; hh , . .}i. . % $f' ' ] :);,.0 ' < , , , ':. ." [ .g;l ., , , -'j : . ,y[:j .g.%).;f.'n:0 , , . (.4:{g:fy.. - , 1 . r . I .. ~ .f, - ' lN), ::.:. .,- .  ? b. ~- 1 * <F . r 1% u  : > : ;. . \; %

  • ha

,b:}:

+ , . .. + .
. . <

.. ;;h. _ - y.., a . '%{ /:Si  ; :. ., .,@hMM:"Ff,;- . ' -l - $j gi$f $$w$p@4; jpgfy ..; . ., 3 ,b , . .. J. %p, J y . " . " : < . . ,,.r. .,i.y -.g}nQ:n$.9:w-,3. ,. . ..it'W.4,n:k k - .e ec.e,.a' , 7. ,m. , ; .1.g,::p:u, ,g .n .% . ., g >.,, ; . .p , , .g' . - 4 4 p .p..'.. %  % 3 :i . + . ,- q. '. ; . py. . .-c.,; 3 :;< W- ,;n. e . '.

  1. t, Y. ,s.e. -

? Dp,P44 M,, f.f'g- ,Yg5@l;M$gify[3N'ie' ltQ,PQ ;.) f j! Q 'i $+Q ~ , dj%47 .in ' * ' Q.g/.i . ( lI g 8:  : 1. :  :. . ) ., j, . %59.5 d . t~!f - K4 n . ., v .: :z. - , r..s$luY .W irO 9 9. iJ < . ,' ' ~

'- }fn:.y:l9y *

.;5 .c - . ?p;; h HEN M-Y $  : 'It (l y s .o f :c,. t -r  ? m  ? )  %.c - 8 N,._h " $/ '3p' t$ /y{w/"'gp'n, .s. y ,g O ? > '-f $ - lb f.h, "?. ' gg,., h: - f sikp:::h t, y )$ {} L, :Q V A - fn  : t j q _. . . + , . . . .. s. s 1.(hk V. E ',,,. e a* ...lY; w; f.3/47 - 1:. 7 :. , .. g f ' .; [ f. j , .. .  : . . . . . . - . . . .- 1 ~ 9903300356 990319  ; .. PDR ADOCK 05000364 p PDR 4- e - * ' y_.

f. .... . . ,. ,
FT . _ ---; -- -

= - - - - - - - - - .. m ?p . o4 M"F863 s5+ v 13 ., -w r a w,s%y@e J~Wg. e t ,,.m ~ c, 'oq q sV y;4. c.% ' t y:o,: O + m,'_,nc g;9p4 ' ;, q( i! . * ' 7> _ .. , ?wfy4 - * , ' h z'h, h ad % h. ,  %- i -; o. ~ nv ' ],m y' i g _; ' Y ' yl, ,.. fi - _jf g r. ~ ,4 7 s

  1. r Q? ~ <

f. ~ ' %M. e 6 c.. y ' .< 4, , y - e $> p ). A% 3 4gw s . . ~ .nf 9y . p > s <s, * ;m Y - 4& f,%. 3 3 ; . . . g ge c'-% yar i6 M.g s Westi * ' n ww.aghouse, ww Non j s/reprietary - + ; ~ Class 3; o3 , < ym -%a., 6 -e m m.ea h o% w.,.h a .e. , %vg,m e,er 1.1 : p g sp\ t < L; . , n .. y ; , , ., . ., ur ;13 q, y ,>} ..t ;, nr* u :%'<, #11'i , _ ows ' la;

a- py,__

O pm: ,.9 i MN

  • p + K% + ' 'b : w.k'_W m ; l t-

+~;-l'" m', ' N ' ?;! . , i f,' ,, ,Ny Q?t 4 ' t '%W%Y y G G O+, / . o>.e g '& r r y; 5 ' hp ., , g . .p g, ( i. 'M ,' ') ,, i v,,.f;~:d!w' ~{ y: W[',U g ~ _* m&. a i . . - OT' fr J2 )" , a 4 ;; nre ,

n. yg

. 4 n '; en j 3W , .~.,T 4 41'g#p! . ( .% 3

s.

yf', 1 % ,J 1 / . 3 + 14.t ic n.e . Q .95.x . Mik;' j - ( d [.,, 3 3 - & s s. ,s . , . k s.. . . .Q's . -; kh kl3 . l5l7l' ' ' q w:L - kk I m [ h(; p' 'f - M -Q '. r J-( w am: x+ ) e Q TT 9 ' i ,f.; x; ,5,n,_ "i 7i wn 74 l) 'I t t fV% i ' C .L% Y egy,n i20) p# ,k w4' h ((h.. n y. 1 t.* 'N,, , h,,y , . ' _4" Y f ' ; [' t s, L t x .1-jg' .-^ 4 4 w [ -,g n' mc .q / s gN o , .. : ) . . s, n t 4 i : e, Q. g,q! y- ~ # me m.. ]w i < .4, 43 4 ,- 1 i w 4,7 > . i n ,jm ma (Jp 9 sa hes'N, +w ^ r :nrgnw . ' s :: a 1 p,. -s ux* ^~ .> ,s . y. a t s ,- ~ , ..s. m

  • e -~ p

'.! & w' ' > "das Q ; lf' .. "i '"

S' n~ V
yM t , r r' ,

l kNK ~^ l; l ' 4 Wl, Q"a ,_*s' gL +y -( we . 3 yy , s' 4 4 x .1

s . .
g 3

- - p." ebs - 8 s n3 '4 y i nv 'h.' AT  : W, .W d ux z - &e..l.hll > Nj I h &j  :  % s ' 0 m!:f ' + ul yl; 1_ 's ?-Q R.') *4 1 4 Nw nhslyss'i M 6 M h ym ysuls3Zsffom?s a ""k .dF i .,dd ClOMv wbM

  • l rOk

,] ! A,' ' '% O^

  1. w WP g . '
e j , -

I bb. +, x, f , w. .e ~ .. ,-_g . . . . . y.. n . GI Q - y l ' W E -,' f ,l As YQ w' %= "- ,,, ' *r. f q k'" .~.' ;m . :_ y Qw . _';)

a v' ;W },, .. . . , {- g

..f 4 , "c ea.. /. . . " , <% ,

p L
0 W j) D_% ^Oc3-. . .. ,

( Q, f u % & y: d^i G * , . s. ,

. l .
  • Vf. ( Y,Q; av pfl '

. m .

  • N, .,c

,Nll7 )# ~ Uni.t&Reac,t,brNass_ y..s I ,t k -TM l 4 . Qf ,y - j n jg . > L 1n'a & M. . 4 j 4 L- 1 d Y,- , - 4 4 4 /d,(j [; ?Q# , (^ic{ kr ' g-' \ ^; i. F j g Na).-3 n " ' e. e)n <p[ s o H-

t. [

d, . . ,adistia,  ; ~ 3 y 9 , -nis,hn,..o.silli.E s. 'n.,_, " $cen iw.M{y . . +;. mc m,n c a . m , - ,a- . J4rogramh, r n m . m. ~

n. <

ef .l[ ~ s . ApL.4 gA. , Y_W w , .. C - ,y ~ ; + $r%d .h;$em-',N ; ._ s y ' -g 3+1 o

  • n w p  :# : ( ,' .z-  ; ,

m - - 'f & ~Q\ .g ,o

j,.l s_ 4 p , , i "s d; i , iL y

,.. ') * ( 9 g'- 1 j , r.f u , '

  • g 8 '

y 4 . -; f y %; ' v+ . g 3, r 3,5, [9 n , e , u, . s m .,j, l.'(-' . 4 i

  • 1

^ ' 9  % - .- y > y 4 }'  % y _f -. h,s..) I J 7, ,4, $ , w 4 < s

g, , .,
  • , jb OY,y - >

dh, q <h' e n ~ m .. hlr Q li ;~M,M.-;g' ^> " N. ),-  : , x /M ; , 'rm , yp [g ; , l ' ^ ay v ti .s d[Q wgfQQ ll jY W s ;j.y n'~" l L" & \

  • c; s ., . m, n.< p :3 gip: _c q 3;y;p, y" s,,, ' ,,*,, , ,' ,>fW ,, ,, ,

wA,n..M+yJ.' #W E h,1 3., y i s ,f.s h7 f - g e +, m 4 ju  %, #, r .~r. .v %<.3,' o.h , , 3 4g. Gw aq; p ', . y W*  ?'"s LR' %;a a t ' ; e_ W m.f..yp A_ , _,j i :n . w  % - % < u .j, t ,!{~z ~ p,(u,pib * ,'e kd'[9(; . ,< , n I' W. "A c - 1 M ; ji , Q@@Yt b;MM Wnl? e lEte r.g y ,h S y s't e m s' ' W-gs-s

h. y cV

.. 4 '{ '- _i, L g M smo ,,1 Tf ' ' 99077003 %. 990J19 M rDR ADUCM 0 % O W :A ' -

  • p fh f DW Ij sy[

.Vm(s' 3 .r c

m. = %,^'..sn s ' A' x- a a., .a a' 9*, 4 +-/ < ~

V A L g i 1 - . ,a. e WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-15171 Analysis of Capsule Z from the Alabama Power Company Joseph M. Farley Unit 2 Reactor Vessel Radiation Surveillance Program E. Terek J. D. Perock R. G Lott Februaq 1999 Approved: D. M. Trombola, Manager Mechanical Systems Integration Approved: . C. H. Boyd, Manager V Equipment & Materials Technology l Westinghouse Electric Company Energy Systems P.O. Box 355 Pittsburgh, PA 15230-0355 @1999 Westinghouse Electric Company All Rights Reserved J.M.Farley Unit 2 Capsule Z iii TABLE OF CONTENTS LIST OF TABLES. . .. ... .. .. . . .. . . . . . . ,. .. .. iv LIST OF FIGUP.ES. . . . . . . . . . . . . . . . . . ..sii PREFACE . . . . . . . . . . . . . . . . . . . .. .. . .. ix EXECUTIVE

SUMMARY

(OR) ABSTRACT.. . . ., . . . . . . . . . ...x 1

SUMMARY

OF RESULTS. . . ... ... . . . . . . . . . 1-1 2 INTRODUCTION . . .... . . . . . . .. . . . .2-1 3 BACKGROUND.. . . . . . . . . . . .. . . . ~ .1 4 DESCRIPTION OF PROGRAM . . . . . . . . . . . . . . . . .. . . . . 4-1 5 TESTING OF SPECIMENS FROM CAPSULE Z... .. .. .. .. . . . 5-1 5.1 OVERVIEW..... . . . . . . . . . . . .. . . . . . 5-1 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS . . .. . . . . . . . . . . . . 5-3 5.3 TENSILE TEST RESULTS.. . . . . . . . . .. . . . . . .. . . . . . . 5-5 5.4 1/2T COMPACT TENSION SPECIMEN TESTS.. . . . . . . . . . .. . . . 5-5 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY . . . . . . . , , . . . . . . . .. . 6-1

6.1 INTRODUCTION

. .. .. . . . . . . . . . . . . .. . . . . . . . . . 6- 1 6.2 DISCRETE ORDINATES ANALYSIS., . . . . .. .. . . . . . .6-2 6.3 NEUTRON DOSIMETRY . .. . . .. . .... ... . . . 6-5 6.4 PROJECTIONS OF REACTOR VESSEL EXPOSURE . .. . . . 6-8 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE. .. . . . . . . . .. 7-1 8 REFERbNCES.. . . . . . . . . . . . . . . . . . . . . . . . . .. .. . 8-1

. APPENDIX A - LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS . . . . . . .. . . A-0 APPENDIX B CHARPY V-NOTCH SHIFT RESILTS FOR EACF4 CAPSULE HAND-DRAWN VS. HYPERBOLIC TANGENT CURVE-FTITING METHOD (CVGRAPGH, VERSION 4.1)... ... . .. .. .. . . . . . . . .. . .. . B-0 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TANGENT CURVE-FITTING METHOD.. . . . . . . .. . . . C-0 APPENDIX D J. M. FARLEY UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY ANALYSIS ..... . . . . . . . .. . . . ... . .. . . . .. D-0 l-J.M.Farley Unit 2 Capsule Z Lm

iv 1

LIST OFTABLES l Table 4-1 Chemical Composition (wt %) of the J. M. Farley Unit 2 Reactor Vessel Surveillance

' Materials .. . .. .. . . .. . .. . . . . . ... . . . . . . . . . .. . . . . . . . . . . . . . 4-3

- Table 4-2 Heat Treatment of the J. M. Farley Unit 2 Reactor Vessel Surveillance Material ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......... 4-4

. Table 51 Charpy V-Notch Data for the J. M. Farley Unit 2 Intermediate Shell Plate B7212-1  ;

2 Irradiated to a Fluence of 5.28 x 10 n/cm (E.> 1.0 MeV) I (Longitudinal Orientation) . . .. ..... . . .. .... . . . . . . . . . ......5-6 Table 5-2 Charpy V-notch Data for the J. M. Farley Unit 2 Intermediate Shell Plate B7212-1 2

Irradiated to a Fluence of 5.28 x 10 n/cm (E> 1.0 MeV) -

(Transverse Orientation).. . . . . . . . . ...: ....... .. . . 5-7 I Table 5-3 Charpy V-notch Data for the J. M. Farley Unit 2 Surveillance Weld Metal 2

Irradiated to a Flance of 5.28 x 10 n/cm (E> 1.0 MeV) . ... . . . .. .... ... 5-8 Table 5-4 Charpy V-notch Data for the J. M. Farley Unit 2 Heat-Affected-Zone Material Irradiated to a Fluence of 5.28 x 10 n/cm'(E> 1.0 MeV).. . .. . . ... ... . . 5-9 Table 5-5 Instrumented Charpy Impact Test Results for the J. M. Farley Unit 2 Intermediate Shell 2

Plate B7212-1 Irradiated to a Fluence of 5.28 x 10 n/cm (E> 1.0 MeV)

(Longitudinal Orientation)'.. ... ....... . .. .. .. .......... ..... . .. .. . . . . . .. 5-10 l

Table 5-6 Instrumented Charpy Impact Test Results for the J. M. Farley Unit 2 Intermediate Shell 2

Plate B7212-1 Irradiated to a Fluence of 5.28 x 10 n/cm (E> 1.0 MeV) l (Fransverse Orientation).. . . . . . . . . . . . . ...................................... .5-11 l

Table 5-7 Instrumented Charpy Impact Test Results for the J. M. Farley Unit 2 Surveillance 2

Weld Metal Irradiated to a Fluence of 5.28 x 10'? n/cm (E> 1.0MeV) . .. . .... .. ... .. 5-12 )

Table 5-8 Instrumented Charpy Impact Test Results for the 3. M. Farley Unit 2 Heat-Affecte( Tone 2

(HAZ) Metal Irradiated to a Fluence of 5.28 x 10 n/cm (E> 1.0MeV) .... . ... .. . 5-13  :

2 Table 5-9 Effect of Irradiation to 5.28 x 10 n/cm (E> 1.0 MeV) on the Notch Toughness  ;

Properties of the J. M. Farley Unit 2 Reactor Vessel Surveillance Materials..... ..... . 5-14 Table 5-10 Comparison of the J. M. Farley Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Prediction s ................. .. ........ ... .. .. .. . .. . ..... .. .. . .. ........ ..... . .. .... 5- 15 J.M.Farley Unit 2 Capsule Z

r v

LIST OF TABLES (Cont.)

Table 5-11 Tensile Properties of the J. M. Farley Unit 2 Reactor Vessel Surveillance 2

Materials Irradiated to 5.28 x 10" n/cm (E> 1.0MeV).. . .5-16 Table 6-1 Calculated Fast Neutron Exposure Rates and Iron Atom Displacement Rates at the Surveillance Capsule Center.... . . . . . . . . .. . . . 6-12 Table 6-2 Calculated Azimuthal Variation of Fast Neutron Exposure Rates and Iron Atom Displacement Rates at the Reactor Vessel Clad / Base Metal Interface. . 6-14 Table 6-3 Relative Radial Distribution of $(F) 1.0 MeV) within the Reactor VesselWall . . . . . . . . . . . . . . . . . 6-16 ,

Table 6-4 Relative Radial Distribution of $(E> 0.1 MeV) within the Reactor VesselWall . . .. . . . . ... . . .6-17 Table 6-5 Relative Radial Distribution of dpa/sec within the Reactor Vessel Wall.. , . .6-18 Table 6-6 Neclear Parameters used in the Evaluation ofNeutron Sensors .. . . .... ..6-19 Table 6-7 Monthly Thermal Generation During the First Twelve Feel Cycles of the Farley Unit 2 Reactor ......... . . . . . . . . . . . . .. . . . . 6-20 Table 6-8 Measured Sensor Activities and Reaction Rates

- Surveillance Capsule 0. . . . . . . . .. . . . ... 6-22

- Surveillance Capsule W . . .. . . . . . . . . . . . . . . 6-23

- Surveillance Capsule X .. .. . . . . . . . . . . .. . . . . .. . .. . 6-24

- Surveillance Capsule Z.. .. . . .... . . . . .. . .6-25 Table 6-9 Summary ofNeutron Dosimetry Results Surveillance Capsules U, W, X and Z.. . . . 6-26 i

Table 5-10 Cornparison of Measured, Calculated and Best Estimate Acaction Rates at the Surveillance Capsule Center... . . . . . . . . . . .6-27 Table 6-11 Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsules

- Capsule U. . . . .. . .. . . .. .. . 6-29

- Capsule W. . . . . . . . . . . . . .. ... . . . . . . . 6-30

- Capsule X.. . . .. ... .. .. .. . . . . . . . . .. . . .. 6-31  ;

- Capsule Z . . . . . .. . . . . ... . . . . . . .. . 6-32 l Table 6-12 Comparison of Calculated and Best Estimate Integrated Neutron

.1.xposure of Farley Unit 2 Surveillance Capsule U, W, X and Z.. . . . . . 6-33 Table 6-13 Azimuthal Variations of the Neutron Exposure Projections on the Reactor Vessel l Clad / Base Metal Interface at Core Midplane., .. .. .. . . . . 6-34 j

l.M.Farley Unit 2 Capsule Z l

vi LIST OFTABLES (Cont.)

Table 6-14 Neutron Exposure Values within the Farley Unit 2 Reactor Vessel., .. . . . 6-3 6 Table 6-15 Updated Lead Factors for the J. M. Farley Unit 2 Surveillance Capsules.. . . . . . 6-3 8 i

Table 7-1 J. M. Farley Unit 2 Reactor Vessel Surveillance Capsule Withdrawal Schedule . . . . . . .. .. . . . . . ., ,,7 1 6

1 i .

I l

i l

J. M.Farley Una 2 Capsule Z t

i i

t

p J l

vu l

l

)

LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the J. M. Farley Unit 2 Reactor Vessel.. . . . . . . . . .4-5 Figure 4-2 Capsule Z Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters.. . .. .. . . . . . . .4-6 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Longitudinal Orientation) .... . . . . .5-17 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Longitudinal Orientation).. .5-18 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intennediate Shell Plate B7212-1 (Longitudinal Orientation) . . . .5-19 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Transverse Orientation)... . . .. .. 5-20 J i

Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Transverse Orientation) . . 5-21 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for J. M. Farley Unit 2 Reactor VesselIntermediate Shell Plate B7212-1 (Transverse Orientation).. . . . 5-22 )

Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Weld Metal ... .. . . . . . . . . . . . . . . . . . . . . . .5-23 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for J. M. Farley Unit 2 4 Reactor Vessel Weld Metal . .. . .5-24

)

Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for J. M J5rley Unit 2 Reactor Vessel Weld Metal . . . . . . . . . .. . . . .5-25 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for J. M. Farley Unit 2 Reactor Vessel I Heat-Affected-Zone Material.. . . . .. . . . . . . . 5-26 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Heat-Affected-Zone Material.. . . . .. ..5-27 l

Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for J. M. Farley Unit 2 Reactor Vessel l Heat-Affected-Zone Material.. . ... . . . . . .. .5-28 Figure 5-13 Charpy Impact Specimen Fracture Surfaces for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Longitudinal Orientation) . . .. . . 5-29 J.M. Farley Unit 2 Capsule Z

viii LIST OF FIGURES (Cont.)

Figure 5-14 Charpy Impact Specimen Frawre Surfaces for J. M. Farley Unit 2 Reactor VesselIntermediate Shell Plate B7212-1 (Transverse Orientation). . . . . . . . . 5-30 Figure 5-15 Charpy Impact f wunen Fracture Surfaces for J. M. Farley Unit 2 Reactor VesselWeld Meud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for J. M. Farley Unit 2 Reactor Vessel Heat-Affected-Zone Metal . . . . . . ... .. . . . . . . . . 5 -3 2 -

Figure 5-17 Tensile Properties for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Longitudinal Orientation). . . . . . . . . . . .. .. .. . . 5-33 , ;

I

- Figure 5-18 Tensile Properties for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell l Plate B7212-1 (Transverse Orientation).. . . . .. . . . . . . . . . . . . . . . .. 5-34 Figure 5-19 Tensile Properties for J. M. Farley Unit 2 Reactor Vessel Weld Metal... . ... ... ... . 5-35 Figure 5-20 Fractured Tersile Specimens from J. M. Farley Unit 2 Reactor Vessel l Intermediate Shell Plate B7212-1 (Longitudinal Orientation)... . . . . . . . . . . . . . . . 5 -3 6 Figure 5-21 Fractured Ten.sile Specimens from J. M. Farley Unit 2 Reactor Vessel Intermediate Nhell Plate B7212-1 (Transserse Orientation) . . .. . . ... . . .. . . . . 5-37 Figure 5-22 Fractured Tensile Specimens from J. M. Farley Unit 2 Reactor Vessel Weld Metal . . . . .

. . . . . . . . . . . . . . . . . . . .. . . . . . . . ... . . . . . . . . . 5-38 l

l Figure 5-23 Engineering Stress-Strain Curves for Intermediate Shell Plate B7212-1 Tensile Specimens CLl6, CLl7 and CL18 (Longitudinal Orientation) .. . . . . . . . . .. . 5-39 l Figure 5-24 Engineering Stress-Strain Curve for Intermediate Shell Plate B7212-1 Tensile Specimen CT16, CT17 and CT18 (Transverse Orientation) .. .... . .. . . . . 5-40 Figure 5-25 Engmeering Stress-Strain Curves for Weld Metal Tensile Specimens -

CW16, CW17 and CW18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-41 Figure 6-1 Plan View of a Dual Reactor Vessel Surveillatee Capsule.. .. .. .. ... .. 6 11 J.M.Fuley Unn 2 Capule Z

7 ix PREFACE This report has been technically reviewed and verified by:

Reviewer-Sections 1 through 5,7,8, Appendices A, B and C T. J. Laubham Section 6 S. L. Anderson , O pfh o n o N l

1 l

l J.M.Farley Umt 2 Capule Z

X EXECUTIVE

SUMMARY

The purpose of this report is to document the results of the testing of surveillance capsule Z from the J.

M. Farley Unit 2 reactor vessel. Capsule Z was removed at 13.24 EFPY and post irradiation mechanical tests of the Charpy V-notch and tensile specimens was performed, along with a fluence evaluation. The peak clad base / metal vessel fluence after 13.24 EFPY of plant operation was 1.75 x 10 1 9 n/cm2. A brief

. summary of the Charpy V-notch specimen testing and fluence evaluation results can be found in Section I while the detailed results can be found in Sections 5 and 6. These results indicate that the measured 30 ft-lb shifts are less than the Regulatory Guide 1.99, Revision 2, predictions and all beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation. The updated

, surveillance capsule withdrawal schedule can be found in Section 7 and indicates that the remaining surveillance capsules are standby. A surveillance program credibility evaluation can be found in Appendix D. This evaluation indicates that the J. M. Farley Unit 2 surveillance program plate (Intermediate Shell B7212-1) data is not credible and that the surveillance weld metal data (Heat #

BOLA)is credible.

l l

I' l

l I

i e

i

. J. M. Farley Unn 2 Capsule Z

1-1 i

1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance capsule Z, the fourth capsule to be removed from the J. M. Farley Unit 2 reactor pressure vessel, led to the following conclusions:

The Charpy V-notch data presented in WCAP-8956 DI

, WCAP-10425t21

, WCAP-11438W, and j

WCAP-12471H were based on hand-fit Charpy curves using engineeringjudgment. However, the

{

results presented in this report are based on a re-plot of all capsule data using CVGRAPM, Version i 4.1. which is a hyperbolic tangent curve-fitting program. Appendix B presents a comparison of the l Charpy V-Notch test results for each capsule based on hand fit vs. hyperbolic tangent fit.

Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data. {

)

  • 1 Fluence projections for future operation were based on the assumption that the exposure rates averaged l over Cycle 9 through 12 (low-leakage loadmg pattem) would continue to be applicable throughout plant life.

The capsule received an average fast neutron fluence (E> 1.0 MeV) of 5.28 x 10 n/cm2 after 13.24 effective full power years (EFPY) of plant operation.

Irradiation of the reactor vessel intermediate shell plate B7212-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major rolling direction (Longitudinal 2

orientation), to 5.28 x 10 n/cm (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 199.5 F and a ") ft-lb transition temperature increase of 198.4 F. T n results in an irradiPd 30 ft-lb transitinn temperature of l' '.6 F and c. inadiated 50 ft-lb tra ,a tempvrature a# ?'t.6 F for the longitudinal oriented specimens.

Irradiation of the reactor vessel intermediate shell plata B7212-1 Charpy specimens, oriented v;ith

! the longitudinal axis of the specimen perpendicular to the major rolling direction ofde plate

!- (Transverse orientation), to 5.28 x 10 n/cm2 '?,> 1.0 MeV) resulted in a 30 ft-lb ttansition temperature increase of 196.I'F and a 50 ft-lb transition temperature increase of 198.4 F. This results in an irradiated 30 ft-lb transition temperature of I88.2 F and an irradiated 50 ft-lb l transition temperature of 231.6'F for transverse oriented specimens.

l l .

Irradiation of the weld metal Charpy specimens to 5.28 x 10 n/cm2 (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 10.0 F and a 50 ft-lb transition temperature increase of l 14.2'F. This results in an irradiated 30 ft-lb transition temperature of-24.7 F and an irradiated 50 ft-lb transition temperature of-1.4'F.

Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 5.28 x 10 n/cm 2 (E> 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 142.6*F and a 50 ft-lb transition temperature increase of 113.6*F. This results in an irradiated 30 ft-lb transition temperature of-32.8'F and an irradiated 50 ft-lb transition temperature of-3.2 F.

1. M. Farley Unr.' Capside Z

1-2 The average upper shelf energy of the intermediate shell plate B7212-1 (Longitudinal orientation) resulted in an average energy decrease of 36 ft-Ib after irradiation to 5.28 x 10 n/cm2 (E> 1.0 MeV). This results in an irradiated average upper shelf energy of 94 ft-lb for the longitudinal oriented specimens.

The average uppcr shelf energy of the intermediate shell plate B7212-1 (Transverse orientation) resulted in an average energy decrease of 27 ft-lb after irradiation to 5.28 x 10 n/cm2 (E> 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 68 ft-lb for the transverse oriented specimens The average upper shelf energy of the weld metal Charpy specimens resulted an average energy decrease of 11 ft-lb after irradiation to 5.28 x 10 n/cm2 (E> 1.0 MeV). hence, this results in an irradiated average upper shelf energy of 133 ft-lb for the weld metal specimens. ,

The average upper shelf eneasy of the weld HAZ metal Charpy specimens resulted in an average 2

energy decrease of 32 ft-lb after irradiation to 5.28 x 10 n/cm (E> 1.0MeV). This results in an irradiated average upper shelf energy of 126 ft-lb for the weld HAZ metal.

. A comparison of the J. M. Farley Unit 2 reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 2DI predictions led to the following conclusions:

The measured 30 ft-lb shift in transition temperature of the transverse oriented surveillance  !

plate material contamed in capsule X is in good agreement with the Regulatory Guide 1.99, Revision 2, prediction (i.e. within 5 F of the predicted 30 ft-lb shift) The measured 30 ft-lb shift in transition temperature values of all other surveillance results are less than the -

Regulatory Guide 1.99, Revision 2, predictions.

The measured percent decrease in upper shelf energy (USE) of the capsule U surveillance plate material is in good agreement with the Regulatory Guide 1.99, Resision 2, prediction (i.e. within 1 or 2 percent of the predicted USE). The measured percent decrease in upper shelf energy for all other surveillance materials is less than the Regulatory Guide 1.99, Rmision 2, predictions.

J.M.Farley Unit 2 Capsule Z

I 1-3 The calculated and best estimate end-of-license (36 EFPY) neutron fluence (E> 1.0 MeV) at the core inidplane for the J. M. Tarley Unit 2 reactor vessel using the Regulatory Guide 1.99, Revision 2 attenuation formula (ie. Equation # 3 in the guide) is as follows: >

2 Calculated: Vessel inner radius * = 4.28 x 10" n/cm Vessel 1/4 thickness = 2.67 x 10"n/cm2 Vessel 3/4 thickness = 1.04 x 10"n/cm2 j Best E#imate: Vessel inner radius * = 3.71 x 10" n/cm2 Vessel 1/4 thickness = 2.31 x 10"n/cm2 Vessel 3/4 thickness = 8.99 x 10" n/cm2

  • Clad / base metalinterface

=. The credibility evaluation of the J. M. Farley Unit 2 surveillance program presented in Appendix D of this report indicates that the surveillance results for intermediate shell plate B7212-1 are not credible and the surveillance results for the weld metal are credible.

  • All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant ,

operation and are expected to maintain an upper shelf energy greater than 50 ft-lb throughout the I life of the vessel (36 EFPY) as required by 10Cl R50, Appendix G M.

The calculated and best estimate end. >f-license renewal (54 EFPY) neutron fluence (E > 1.0 MeV) I at the core midplane for the J. M. Far.ey Unit 2 reactor vessel using the Regulatory Guide 1.99, Revision 2 attenuation formula (ie. Equation # 3 in the guide) is as follows:

i Calculated: Vessel inner radius * = 6.29 x 10" n/cm2  ;

Vessel 1/4 thickness = 3.92 x 10*n/cm2 Vessel 3/4 thickness = 1.52 x 10" n/cm2 Best Estimate: Vessel inner radius * = 5.44 x 10" n/cm2 Vessel 1/4 thickness = 3.39 x 10"n/cm2 Vessel 3/4 thickness = 1.32 x 10" n/cm2

  • Clad / base metalinterface e All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are expected to maintain an upper shelf energy greater than 50 ft-lb through a life extension of the vessel (i.e. through 54 EFPY) as required by 10CFR50, Appendix GW J.M.Farley Unn 2 Capsule Z

r.-

l 2-1 2- INTRODUCTION

- . This report presents the results of the examination of Capsule Z, the fourth capsule removed from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the Alabama Power Company J. M. Farley Unit 2 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the J. M. Farley Unit 2 reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Company. A description of the suiveillance program and the preirradiation mechanical properties of the reactor vessel materials is presented in WCAP-8956,

" Alabama Power Company Joseph M. Farley Nuclear Plant Unit No. 2 Reactor Vessel Radiation Surveillance Program"3. The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-73. " Standard Recommended Practice for Surveillance Tests for Nuclear Rr. actor Vessels"l7l. Capsule Z was removed from the reactor after 13.24 EFPY of exposure and shipped to the V estinghouse Tcience and Technology Center Hot Cell Facility, where the postirradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

The Charpy V-notch data presented in WCAr -8956"1, WCAP-10425 t21

, WCAP-11438D3, and

- WCAP-12471H3 were based on hand-f' n Charpy curves using engineeringjudgment. However, the results presented in this report are based on n re plot of all capsule data using CVGRAPH, Version 4.1, which is a hyperbolic tangent curve-fitting prc gam. Appendix B presents a comparison of the Charpy V-Notch test results for each capsule be.1 on hasid fit vs. hyperbolic tangent fit. Appendix C presents the CVORAPH, Version 4.1, Chrtpy V-notch plots and the program input data.

This report summarizes the testing of and the post-irradiation data obtained from surveillance capsule Z removed from the Alabama Power Company J. M. Farley Unit 2 reactor vessel and discusses the analysis of the data.

I J. M. Farley Unit 2 Capsule Z

a 3-1

.3 - BACKGROUND-The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low alloy, ferritic pressure vessel steels such as SA533 Grade B Class I plate (base material of the J. M.

Farley Unit 2 reactor pressure vessel beltline) are well documented in the literature. Generally, low alloy

~ ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation. '

A method for ensuring the integrity of reactor pressure vessels has been presented in " Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure

' m Vessel Code . The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTum).

RTsm is defined as the greater of either the drop weight nil ductility transition temperature (NDTT per M

. ASTM E-208 ) or the temperature 60 Fless than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major rolling direction of the plate. The RTuor foa given material is used to index that material to a reference stress intensity

- factor curve (Kucurve) which appears in Appendix G to the ASME Code m . The Kucurve is a lower

. bound of dynamic, crack arrest, and static fracture toughness results obtained from several heats of pressure vessel steel, When a given material is indexed to the Kuc urve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.

RTum and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor surveillance program, such l as the J. M. Farley Unit 2 reactor ves'sel radiation surveillance programN, in which a surveillance capsule is periodically rermved from the operating nuclear reactor and the encapsulated specimens tested. The increase in the av: rage Charpy V-notch 30 ft-lb temperature (ARTsur) due to irradiation is added to the initial RTum, along with a margin (M) to cover uncertainties, to adjust the RTum (ART) for radiation embrittlement. This ART (RTum initial + M + ARTum) is used to index the material to the Ku curve and, in tum, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

1 i

. J.M. Farley Unit 2 Capsule Z l

i l

4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the J. M. Farley Unit 2 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant start-up. The six capsules were positioned in the reactor vessel between the neutron pads and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core. The capsules contain specimens made from intermediate shell plate B7212-1 (Heat No. C7466-1), weld metal fabricated with W-inch E8018C3 weld filler wire heat number BOLA, which is identical to that used in the actual fabrication of the intermediate shell longitudinal weld seam 19-923B.

Capsule Z was removed after 13.24 effective full power years (EFP' iant operation. This capsule contained Charpy V-notch, tensile, and %T-CT fracture mechanic erb is made from intermediate shell plate B7212-1 and msnual arc weld metal identical intermed. %ngitudinal weld seam 19-923B. In addition, this capsule contained Charpy V-notch specimens fron we weld Heat-Affect:d-Zone (HAZ) of intermediate shell plate B7212-1.

Test material obtained from intermediate shell plate B7212-1 (after the thermal heat treatment and forming of the plate) was taken at least one plate thickness from m quenched ends of the plate. All test specimens were machined from the % and % thickness locations of the plate after performing a simulated post-weld stress-relieving treatment on the test material. Specimens from weld metal and heat-affected-zone metal were machined from a stress-relieved weldmentjoining intermediate shell plate B7212-1 and intermediate shell plate B7203-1. All heat-affected-zone specimens were obtained from the weld heat-affected-zone of intermediate shell plate B7212-1.

I Charpy V-notch impact specimens from intermediate shell plate B7212-1 were machined both in the longitudinal orientation (longitudinal axis of the specimen parallel to the major rolling direction) and

, transverse orientation (longitudinal axis of the specimen perpendicular to the major rolling direction).

l The core region weld Charpy impact specimens were machined from the weldment such that the long

dimension of each Charpy specimen was perpendicular to the weld direction. The notch of the weld I

metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Tensile specimens from intermediate shell plate B7212-1 were machined in both the longitudinal and transverse or,entation. Tensile specimens from the weld metal were oriented with the long dimension of the specimen perpendicular to the weld direction.

Compact tensnn tes t specimens from plate B7212-1 were machined in both the longitudinal and

~

transverse orienotioas. Compact tension test specimens from the weld metal were machined perpendicular to the weld direction with the notch oriented in the direction of the weld. All specimens were fatigue precracked according te ASTM E399.

The chemical composition and heat treatm:nt of the surveillance material is presented in Tables 4-1 through 4-2. The chemical analysis reported in Table 4-1 was obtained from unirradiated material used in the surveillance programWand from irradiated capsule W specimensm J. M.Farley Unit 2 Capsule Z

4-2 Capsule Z contained dosimeter wires of pure copper, iron, nickel, and aluminum-0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium shielded dosimeters of neptunium 23 23 (Np ') and uranium (U a) were placed in the capsule to measure the integrated flux at specific neutron energy levels.

The capsule contained thermal monitors made from two low-melting-point eutectic alloys and sealed in Pyrex tubes.' Tnese thermal monitors were used to def'me the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are as follows:

2.5% Ag,97.5% Pb Melting Point: 579 F (304'C) 1.75% Ag,0.75% Sn,97.5% Pb Melting Point: 590*F(310 C)

The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in capsule Z is shown in Figure 4-2.

1 1

l 1

1. M. Farley Unt. 'Z

E 4-3 i

Table 41 Chemical Composition (wt %) of the J. M. Farley Unit 2 Reactor Vessel Surveillance j Materials l

Plate B72121 Weld Metal j Element Unirradiated Data Capsule W S Unirradiated Data  !

Capsule WS)

C 0.21 0.224 <0.086 0.139 Mn 1.30 1.38 0.95 0.91 I P 0.018 0.008 0.0N 0.006 S 0.016 0.016 0.014 0.013 Si 0.24 0.208 0.34 0.291 Ni 0.60 0.59 0.90 0.88 Mo '0.49 0.49 0.23 0.243 Cr 0.15(*) 0.153 <0.01 0 27 Cu 0.20 0.186 0.03 0.026 Al 0.M --

0.003 --

Co 0.027 0.005 0.010 0.005 V 0.003(') <0.002 0.006 0.003 Sn 0.011(*) --

0.002 --

N2 0.006(*) --

0.007 --

Notes.

a. Chemical Analysis by Westinghouse.
b. Chemical Analysis by Westinghouse on irradiated Charpy specimens CL-34 and CW-41 removed from Capsule-W.
c. 'Ihis weld was fabricated by CE, Inc. by a manual metal are process with % inch E8018C3 weld filler wire heat number BOLA. This weld is identical to that used for intermediate shell weld seam 19-923B.

l l

l J.M.Farley Unit 2 Capsule Z

r 4-4 I i

I l

Table 4-2 Heat Treatment of the J. M. Farley Unit 2 Reactor Vessel Surveillance Materiallll Material Temperature ('F) Time (hrs.) Coolant Surveillance Program Test Austenitizing: 4 Water-quenched 1550/1650 -

Plate B7212 Tempered: 1225 1 25 4 / . Cooled -

Stress Relief: 18 Furnace Cooled to 1150 25 600*F Weldment 1150 i 25 13 Furnace Cooled

]

I I

I J

J. M. Farley Unit 2 Capsule Z  ;

I l

l L _

1 1

4-5 0*

. U REACTOR VESSEL Z

4 CORE BARREL

- NEUTRON PAD Y

x _

270* 30

~

V

~

7 l

l

. 180*

I Figure 4-1 Arrangement of Surveillance Capsules in the J. M. Farley Unit 2 Reactor Vessel J.M. Farley Unit 2 Capsule Z

- . ~

i i

i l

4 i

SPECIMEN CODE:

CT - PLATE B7212-1 (TRANSVERSE ORIENTATION)

CL - PLATE B7212-1 (LONGITUDINAL ORIENTATION)

CW - CORE REGION WELD METAL i CH - HEAT-AFFECTED-ZONE METAL I

COMPACT COMPACT COMPACT COMPACT BEND BAR TENS 8LES TENSION TENSION CHARPY CHARPY CHARPY TENSION TENSION f

CHARPY1 CWie Cwe0 CHOO CW57 CH57 CWS4 CHS4 CW81 CHE CTS CW17 CW24 CW23 CW22 CW21 CWIS CHOS CWOG CHO6 CWS3 CHS3 CL24 CL23 -

CL22 CL21 CWBO M CWis CWes CHOS CWO6 CH06 CWS2 CHS2 CW79 C%

A i I

l Cu 3

lg l A1. 15%Co Cu l l1 I j 8 I Fe Fe uLl8 3U i 579'F r"1 M M 590*F 1 MONITOR 'i ll 1 : Al .15%Co (Cd) MONITOR t il l I

. lla l_ I N1

! h 11 i C C@

\

TO TOP OF VESSEL  !

Figure 4-2 (

00 l

l l

== J. M. Farley Unit 2 Capsule Z

4-6 l

I l

CAPSULE Z

ppEn*h CWD Np237 M8 gggute 0 U2M coasPACT conspACT CHARPY DOSnAETER TENSILE CHARPY CHARPY CHARPY CHARPY CHARPY TENSION TENSION TENSILES CW78 CH75 CL18 CT90 CLSD CT87 CL87 CT54 CLa4 CT81 CLS1 CTFS CL78 CT18

( cwn cHn nos cur cTse cLas cros cLas cTas cosa cTeo cLeo cTn cLn cT 4 cTas cua cut cT17 cw7s cH7s l cus cTes etas cTes esas cTea E cTre cL7s cT7s cus cTis

' a 411ll3g lI l:l Al .155Co Cu a

g gge~ Al .15%Co lI li I ll ll8

  • Tts 18 g ll l www Fe  ;;, gg l, WWW MMO ..Al .155Co (Cd) MM 1 1I ' 579'F l b -Al .155Co (Cd) g 8I I MONITOR 18 i t i ,,

g i g !! !!!

n I

! . 1; i IlI ni m

kiER REGION OF VESSEL -

l

! TO BOTTOM OF VESSEL pule Z Diagram Showing the Location IPecimens,ThermalMonitors,and Dosimeters cC 33DDM 4 1

L

1 l

~l 5-1 l 5 TESTING OF SPECIMENS FROM CAPSULE Z 5.1 OVERVIEW -

^

The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed in the Remote Metallographic Facility (RMF) at the Westinghouse Science and Technology Center. Testing was performed in accordance with 10CFR50, Appendices GMI and HUS, ASTM Specification E185-8200, and Westinghouse Procedure RMF 8402, Revision 2 as modified by Westinghouse RMF Procedures 8102, Revision 1, and 8103, Revision 1.

Upon receipt of the capsule at the hot cell laboratory, the specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-8956'" No discrepancies were found.

Examination of the two low-melting point 579 F (304*C) and 590 F (310 C) eutectic alloys indicated no melting of either type of thermal monitor. Based on this examination, the maximum temperature to which the test specimens were exposed was less than 579 F (304 C).

The Charpy impact tests were performed per ASTM Specification E23-93an2i and RMF Procedure 8103, Revision 1, on a Tinius-Olsen Model 74,358J machine. The tup (striker) of the Charpy impact test machine is instrumented with a GRC 930-I instrumentation system, feeding information into an IBM compatible computer. With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy (Eo). From the load-time curve (Appendix A), the load of general yielding (Poy), the time to general yielding (toy), the maximum load (Pu), and the time to maximum load (tu) can be determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture

' load (Pr), and the load at which fast fracture terminated is identified as the arrest load (PA ) Ib0 000I8y at maximum load (Eu) was determined by comparing the energy-time record and the load-time record.

The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (E p) is the difference between the total energy to fracture (Eo) and the energy at maximum load (Eu).

The yield stress (cy) was calculated from the three-point bend formula having the following expression:

G=(Por*L) / [B * (W-a)2

  • C] (1)

, where: L_ = distance between the specimen supports in the impact machine B = the width of the specimen measured parallel to the notch W= height of the specimen, measured perpendicularly to the notch a = notch depth J.M.Farley Unit 2 Capsule Z

f 5-2 q i

The constant C is dependent on the notch flank angle (4), notch root radius (p) and the type ofloading  !

(i.e., pure bending or three-point bending). In three-point bending, for a Charpy specimen in which 4= 45 and p = 0.010 inch, Equation 1 is valid with C = 1.21. Therefore, (for L = 4W),

i c7,=(Par*L) /[B * (W-a)2 *l.21] = (3.33 *Por

  • W) /[R * (W - a)2 ] (2)

For the Charpy specimen, B = 0.394 inch, W = 0.394 inch and a = 0.079 inch. Equation 2 then reduces to:

cry =33.3 *Po7 (3) where ey is in units of psi and Pay is in units ofIbs. The flow stress was calculated from the average of the yield and maxunum loads, also using the three-point bend formula.

The symbol A in columns 4,5, and 6 of Tables 5-5 through 5-8 is the cross-section area under the notch of the Charpy specimens:

A = B * (W - a) = 0.1241 sq.in. (4)

Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM Specification A370-921 "I The lateral expansion was measured using a dial gage rig similar to that shown in the same specification.

Tensile tests were performed on a 20,000-pound Instron, split-console test machine (Model 1115) per ASTM Specification E8-93t al and E21-921 "I, and RMF Procedure 8102, Revision 1. All pull rods, grips, and pins were made ofInconel 718. The upper pull rod was connected through a universaljoint to improve axiality ofloading. The tests were conducted at a constant crosshead speed of 0.05 inches per minute throughout the test.

Extension measurements were made with a linear variable displacement transducer extensometer. The extensometer knife edges were spring-loaded to the specimen and operated through specimen failure. The extensometer gage length was 1.00 inch. The extensometer is rated as Class B-2 per ASTM E83-93MI Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 9-inch hot zone. All tests were conducted in air. Because of the difficulty in remotely attaching a .

thermocouple directly to the specimen, the following procedure was used to monitor specimen temperatures. Chromel-Alumel thermocouples were positioned at the center and at each end of the gage section of a dummy specimen and in each tensile machine griper. In the test configuration, with a slight -

load on the specimen, a plot of specimen temperature versus upper and lower tensile machine griper and I controller temperatures was developed over the range from room temperature to 550 F. During the actual testing, the grip temperatures were used to obtain desired specimen temperatures. Experiments have i indicated that this method is accurate to 2*F.

l l

J.M. Farley Urdt 2 Capsule Z 1

5-3 The yield load, ultimate load, fracture load, total elongation, and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength, and fracture strength were calculated using the original cross-sectional area. The fmal diameter and fmal gage length were determined from post-fracture photographs. The fracture area used to calculate the fracture stress (tme stress at fracture) and percent reduction in area was computed using the final diameter measurement.

5.2 CHARPY V-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in capsule Z, 2

which received a fluence of 5.28 x 10" n/cm (E> 1.0 MeV) in 13.24 EFPY of operation, are presented in Tables 5-1 through 5-8 and are compared with umrradiated resultsN as shown in Figures 5-1 through 5-12.

The transition temperature increases and upper shelf energy decreases for the capsule Z materials are smnmarized in Table 5-9. These results led to the following conclusions:

Irradiation of the reactor vessel intermediate shell plate B7212-1 Charpy epecimens, oriented with the longitudinal axis of the specimen parallel to the major rolling direction (Longitudinal 2

orientation), to 5.28 x 10" n/cm (E> 1.0MeV) resulted in a 30 ft-Ib transition temperature increase of 199.5'F and a 50 ft-lb transition temperature increase of 198.4 F. This results in an irradiated 30 ft-lb transition temperature of 177.6 F and an irradiated 50 ft-Ib transition temperature of 208.6*F for the longitudinal oriented specimens.

Irradiation of the reactor vessel intermediate shell plate B7212-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major rolling direction of the plate (Transverse orientation), to 5.28 x 10" n/cm2 (E> 1.0 MeV) resulted in a 30 ft lb transition temperature increase of 196.l'F and a 50 ft-Ib transition temperature increase of 198.4*F. This results in an inadiated 30 ft-lb transition temperature of 188.2 F and an irradiated 50 ft lb transition temperature of 231.6 F for transverse oriented specimens.

Irradiation of the weld metal Charpy specimens to 5.28 x 10" n/cm2 (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 10.0 F and a 50 ft-lb transition temperature increase of 14.2*F. This results in an irradiated 30 ft-lb transition temperature of-24.7 F and an irradiated 50 ft-lb transition temperature of-1.4'F.

Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 5.28 x 10" r/cm2 (E> 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 142.6*F and a 50 ft-lb transition temperature increase of 113.6'F. This results in an irradiated 30 ft-lb transition temperature of-32.8*F and an irradiated 50 ft-lb transition temperature of-3.2 F.

J.M.Farley Unit 2 Capsule Z

5-4 e

The average upper shelf energy of the intermediate shell plate B7212-1 (Longitudinal orientation) resulted in an average energy decrease of 36 ft-lb after irradiation to 5.28 x 10" n/cm 2 (E > 1.0 MeV). This results in an irradiated average upper shelf energy of 94 ft-lb for the longitudinal oriented specimens.

He average upper shelf energy of the intermediate shell plate B7212-1 (Transverse orientation) resulted in an average energy decrease of 27 ft-lb after irradiation to 5.28 x 10" n/cm 2 (E> 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 68 ft-lb for the transverse oriented specimens.

The average upper shelf energy of the weld metal Charpy specimens resulted an average energy 2

decrease of 11 ft-lb after irradiation to 5.28 x 10" n/cm (E> 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 133 ft-lb for the weld metal specimens.

The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average 2

energy decrease of 32 ft-lb after irradiation to 5.28 x 10" n/cm (E> 1.0MeV). This results in an irradiated average upper shelf energy of 126 ft-lb for the weld HAZ metal.

A comparison of the J. M. Farley Unit 2 reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 2[5j predictions (See Table 5-10) led to the following conclusions:

The measured 30 ft-lb shift in transition temperature of the transverse oriented surveillance plate material contamed in capsule X is in good agreement with the Regulatory Guide 1.99, Revision 2, prediction (i.e. within 5'F of the predicted 30 ft-lb shift). The measured 30 ft-lb shift in transition temperature values of all other surveillance results are less than the Regulatory Guide 1.99, Revision 2, predictions.

. He measured percent decrease in upper shelf energy (USE) of the capsule U surveillance plate material is in good agreement with the Regulatory Guide 1.99, Revision 2, prediction (i.e. within 1 or 2 percent of the predicted USE). The measured percent decrease in upper shelf energy for all other surveillance materials is less than the Regulatory Guide 1.99, Revision 2, predictions.

The fracture appearance of each irradiated Charpy specimen from the various surveillance capsule Z materials is shown in Figures 5-13 through 5-16 and show .m increasingly ductile or tougher appearance -

with increasing test temperature.

All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are expected to maintain an upper shelf energy of no less than 50 ft-lb throughout the life of the vessel (36 EFPY) as required by 10CFR50, Appendix Gl 'l The load-time records for individual instrumented Charpy specimen tests are shown in Appendix A.

The Charpy V-notch data presented in WCAP-8956l u, WCAP-10425t21, WCAP-11438t31and WCAP-12471%ere based on hand-fit Charpy curves using engineering judgment. However, the results J.M.Farley Unit 2 Capsule Z

5-5 presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1. which is a hyperbolic tangent curve-fitting program. Appendix B presents a comparison of the Charpy V-Notch te1 results for each capsule based on hand fit vs. hyperbolic tangent fit. Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data. 1 Appendix D of this report contains a credibility evaluation of the surveillance data from the J. M. Farley Unit 2 reactor vessel surveillance program. This evaluation indicates that the surveillance results for intermediate shell plate B7212-1 are not credible and the surveillance results for the weld metal are credible.-

5.3 TENSILE TEST RESULTS ~

The results of the tensile tests performed on the various materials contained in capsule Z irradiated to 2

5.28 x 10" n/cm (E> 1.0 MeV) are pr:sented in Table 5-11 and are compared with umrradiated results tu as shown in Figures 5-17 through 5-19.

The results of the tensile tests performed on the intermediate shell plate B7212-1 (longitudinal orientation) 2 indicated that irradiation to 5.28 x 10 n/cm (E> 1.0 MeV) caused approximately a 25 ksi increase in the 0.2 percent offset yield strength and approxunately a 15 to 20 ksi increase in the ultimate tensile strength when compared to umrradiated datalU (Figure 5-17)c The results of the tensile tests performed on the intermediate shell plate B7212-1 (transverse orientation) 2 indicated that irradiation to 5.28 x 10" n/cm (E> 1.0 MeV) caused an approximate increase of 30 ksi in the 0.2 percent offset yield strength and approxunately a 20 ksi increase in the ultimate tensile strength when compared to unitradiated datatil(Figure 5-18).

The results of the tensile tests performed on the surve91ance weld metal indicated that irradiation to 2

5.28 x 10" n/cm (E> 1.0 MeV) caused approxunately a 8 ksi increase in the 0.2 percent offset yield strength and approximately a 5 to 8 ksi increase in the ultimate tensile strength when compared to unitradiated datal4(Figure 5-19).

The fractured tensile specimens for the intermediate shell plate B7212-1 material are shown in Figures 5-20 and 5-21, while the fractured tensile specimens for the surveillance weld metal are shown in Figure 5-22.

The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-25.

5.4 1/2T COMPACTTENSION SPECIMEN TESTS Per the surveillance capsule testing contract, the %T Compact Tension Specimens were not tested and are being stored at the Westinghouse Science and Technology Center Hot Cell facility.

J.M.Farley Unit 2 Capsule Z

5-6 '

\

Table 51 Charpy V-notch Data for the J. M. Farley Unit 2 Intermediate Shell Plate B7212-1 2

Irradiated to a Fluence of 5.28 x 10" n/cm (E> 1.0 MeV)

(Longitudinal Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number. F C ft-lbs Joules mils mm  %

CL81 0 -18 5 7 0 0.000 2 CL80 72 22 21 28 11 0.279 5 CL90 125 52 17 23 5 0.127 10 CL79 150 66 20 27 12 0.305 20 CL77 175 79 28 38 18 0.457 25 CL84 190 88 39 53 27 0.686 35 CL85 200 93 25 34 16 0.406 30 CL86 210 99 60 81 40 1.016 60 CL78 225 107 60 81 41 1.041 60

. CL83 250 121 74 100 52 1.321 80 CL89 275 135 94 127 64 1.626 90 CL8/ 300 149 90 122 63 1.600 100 CL82 350 177 91 123 64 1.626 100 CL76 400 204 96 130 67 1.702 100 1 CL88 450 232 98 133 65 1.651 100 J

J. M. Farley Unit 2 Capsule Z

5-7 Table 5-2 Charpy V-notch Data for the J. M. Farley Unit 2 Intennediate Shell Plate B7212-1 9 2 Irradiated to a Fluence of 5.28 x 10" n/cm (E> 1.0 MeV)

(1Yansverse Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-Ibs Joules mits mm  %

CT84 0 -18 6. 8 2 0.051 2

. CT87 72 22 4 5 0 0.000 10 CT90 125 52 17 23 7 0.178 10 CT83 150 66 22 30 15 0.381 15 C177 175 79 28 38 22 0.559 20 CT80 190 88 31 42 22 0.559 35 Cf89 200 93 18 24 14 0.356 30 CT88 200 93 25 34 19 0.483 35 CT79 210 99 44 60 30 0.762 45 CT82 225 107 61 83 44 1.118 80 CT81 250 121 56 76 45 1.143 80 CT86 275 135 64 87 43 1.092 100 CT78 300 149 76 103 55 1.397 100 CT76 350 177 69 94 52 1.321 100 CT85 400 204 62 84 50 1.270 100 J. M Fa rley Unit 2 Capsule Z

i.

5-8 Table 5-3 Charpy V-notch Data for the J. M. Farley Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 5.28 x 10" n/cm' (E> 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-Ibs Joules mils mm c/c CW81 -100 -73 4 5 0 0.000 5 CW88 -60 -51 7 9 1 0.025 10 J

L CW76 -30 -34 10 14 7 0.178 15 l CW78 -6 -21 13 18 10 0.254 20 CW89 0 -18 72 98 52 1.321 30 l CW90 5 -15 86 117 58 1.473 40 f O V79 15 -9 57 77 42 1.067 50 l

i O V85 15 -9 77 104 55 1.397 45 CW83 25 -4 86 117 62 1.575 65 CW87 30 -1 91 123 63 1.600 75 1

O V77 50 10 88 119 61 1.549 80 CW86 100 38 105 142 78 1.981 90 CW84 150 66 123 167 84 2.134 100 CW80 195 91 151 205 81 2.057 100 CW82 250 121 124 168 85 2.159 100 I

I l

I J. M. Farley Unit 2 Capsule Z t

1 L _

5-9 Table 5-4 Charpy V-notch Data for the J. M. Farley Unit 2 Heat Affected Zone Material 2

Irradiated to a Fluence of 5.28 x 10" n/cm (E> 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft.lbs Joules mils mm  %

CH90 -100 -73 8 11 2 0.051 5 CH82 -60 -51 16 22 5 0.127 20 CH77 -30 -34 20 27 9 0.229 15 CH83 -20 -29 68 92 46 1.168 40 CH86 -15 -26 68 92 40 1.016 45 CH85 -10 -23 8 11 4 0.102 25 CH76 -10 -23 42 57 26 0.660 20 CH78 0 -18 44 60 25 0.635 25 CH87 0 -18 70 95 43 1.092 50 CH80 10 -12 7 9 1 0.025 10 CH89 25 -4 130 176 90 2.286 100 CH88 50 10 68 92 40 1.016 55 CH84 100 38 122 165 87 2.210 100

CH79 150 66 115 156 88 2.235 100 l

l CH81 195 91 140 190 79 2.007 100 I

l l

J. M. Farky Unit 2 Capsule Z

0 1 s 5

- w o s er i) s 9 9 4 7 0 2 6 2 4 7 0 1 9 6 6 l

t k 8 4 4 3 4 4 3 4 4 3 4 4 3 3 3 1

F S ( 1 1 1 1 1 1 1 1 1 1 1 1 1 Y

d b l S i) s 9 2 8 1 1 9 0 7 0 2 4 8 0 2 3 e S 4 3 3 3 2 3 2 3 2 2 2 2 2 2 i I Ik 8 Y $

( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 b

t A s

e P

r d h

)

0 0 0 0 0 0 0

8 3 5

3 3

7 7

0 6 A /A A A 1

- r a t 6 4 7 0 4 4 / / /

A A( 2 4 2

1 I 1 2 1 2 N N N N 2

7 B P r ,

A A A A e t s c t

) 1 1 4 9 8 7 6 3 5 9 1 t

a a d ht( 6 5 3 2 1 1 0 2 3 6 7 / / / /

a F rF a 6 5 4 2 4 6 1 5 5 4 8 l

P oL 2 4 4 4 4 4 4 4 4 3 2 N N N N I

I c .

h o .x )

S t e a , ce 4 2 3 3 8 2 2 2 0 1 2 0 1 3 1 t e )n a o iM m T, ,ms (

1 0

2 0

2 0

2 0

3 0

5 0

2 0

5 0

5 0

5 0

5 0

5 0

5 0

5 0

5 0

i i t T det a mn r e u x P 9 6 8 2 3 4 5 5 3 2 2 7 e r i

) 9 9 8 a d b 6 5 1 0 5 3 5 4 2 8 0 2 4 9 6 I

t nO l Me( a I 6

2 6

4 5

4 3

4 4

4 6

4 2

4 7

4 7

4 5

4 7

4 6

4 5

4 4

4 4

4 2 an l t i i

nd o y Ut u i t

i c )c e d se 3 1

7 1

7 1

7 1

7 1

7 1

7 1

7 1

7 1

7 7 7 7 7 7 y g 1 1 1 1 1 1 e n imle m ( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l

r o TiY aL F)(

.V Me d d l

e a o

v cb

) 1 6

7 6

7 3

0 2

6 3

2 7

6 9

9 2 9 1 3

6 1

2 9

3 8

7 9

5 7

9 J .M 6 2 1 9 9 8 8 7 9 6 7 8 7 6 6 i

Y L P O 2 4 4 3 3 3 3 3 3 3 3 3 3 3 3 e0 h1t rE o( .

f p A 2 1 0 9 3 1 4 0 7 o 9 5 2 9 0 7 r f, 2

s 1 9 6 8 7 7 3 4 5 6 2 0 0 4 6 l

t m s e P E -

1 2 2 3 5 5 5 5 5 u

se /cn ig r

' e n )

Rt s1

'0 E 'n I x .

A 6 7 2 3 7 4 4 8 3 2 e d /

e h a / 2 4 4 2 5 3 9 u 2 7 7 7 6 4 3 2 3 2 2 3 2 Tx8 t

l t

iz ft - ME 1 2 2 2 2 2 2 2 2 2

a. (

c2 u a5 p r o

f y mo I e N p A r / 0 9 7 1 5 4 1 3 3 6 7 5 3 3 9 .

yc a n 4 6 3 6 2 1 0 8 8 9 5 2 3 7 8 pn h E 1 1 1 2 3 2 4 4 5 7 7 7 7 7 r e C a u l h

C F y y a p g .

d o r r n 5 1 7 0 8 9 5 0 0 4 4 0 1 6 8 tet ha n e E 2 1 2 2 3 2 6 6 7 9 9 9 9 9 nd CE Z e e e mta l u

ui s p

rd p t a t s )

2 5 0 5 0 0 0 5 0 5 0 0 0 0 C a _

s nrr e mF 0 7 2 5 7 9 0 1 2 5 7 0 5 0 5 I I T eT(* 1 1 1 1 2 2 2 2 2 3 3 4 4 2 it n

5- U y

5 e 0 le e lp .

1 0 9 7 4 5 6 8 3 9 7 2 6 8 r l o 8 8 9 7 7 8 8 8 7 8 8 8 8 7 8 a b

a mN a

L L L L L L L L L L L L L L L F.

T S C C C C C C C C C C C C C C C M.

J

1 1

- S w S i) 7 5 o er ks 1 0 9 6 6 3 1 7 4 5 8 9 5 3 l 0 5 3 3 3 3 3 3 3 4 2 3 3 3 3 F t S ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y

d SS i ) 0 3 t

c S s 0 1 9 0 6 6 6 1 2 9 7 3 3 i e k ( 0 5 3 3 2 3 2 2 2 3 1 2 2 2 2 Y r t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S

t A s

e P ) 2 1 4 2 0 3 6 A A A A r d 5 9 9 9 3 a b I(

1

- r 0 7 0 6 5 9 7 3 6 3 2 / / / /

2 9 9 8 2

1 A oL 1 2 2 N N N N 2

7

  • B t

e t s c t

a a d b P

r

) 5 1

5 0

3 5

9 8

0 1

7 2

7 9

3 4

1 4

0 4

1 9 A A A A _

a 0 5 2 2 / / / /

F rF am( I 1 3 9 0 2 4 2 l

P I 3 1 4 4 4 4 3 4 4 4 3 N N N N l

l

  • e h o )

S t x

c 4 2 3 3 8 4 4 0 7 9 3 2 8 7 0 e e a use 1 1 2 2 3 3 2 2 4 4 4 4 4 4 4 t

i a )n imMt T

m( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d o ei t mta r

u e n x P ) 7 5 3 9 0 2 e

1 1 6 9 2 5 0 2 4 t a d b 2 1 5 8 2 8 9 5 2 1 5 2 2 1 8 nr i a I( 0 5 3 2 I

O MoL 3 1 4 4 3

4 2

4 1

4 0

4 4

4 7

4 1

4 4

4 5

4 4

4 2

4 2 e t s i

n r y o

Uv es t e

t c )c d s e 5

1 1

1 7

1 7

1 7

1 7

1 7

1 7 7 1

7 1

7 7 7 7 7 yn e imle m 0 0 0 0 1 1 1 1 1 1 a i

( 0 0 0 0 0 0 0 0 0 0 0 l

rY T Y aI '

F. )(

MeV d l

e d

a o

y ch t

) 5 1

5 0

0 9

4 3

0 6

8 9

0 8

1 9

8 9

0 4

0 7

4 8

2 0

9 9

2 8

J M i Y L P ( 0 3

5 1

9 3

9 3

8 3

8 3

7 3

7 3

7 3

9 3

3 3

8 3

8 3

6 3

6 3

e0 hI t

rE o( .

p A f 2 1 6 7 2 3 1 7 2 5 3 5 3 5 7 s 2 or /, 2 2 0 1 4 5 6 8 3 0 5 3 6 7 7 l

t m s P E 1 1 1 1 2 2 3 4 3 3 u /c ieg s n e r e

' n )

Rt s1

'0 E n 8

i x.

A 3 7 2 6 8 0 9 0 2 e d e h

/

a / 6 2 1 0 5 3 4 5 0 2 6 0 MEu 2 7 7 7 5 8 0 6

_ Tx8 t

l l

r -

a I

f t

1 1 1 2 2 1 1 2 2 1

(

c2 m a5 p r o

_ f y

. I moe N p r A/ 8 2 7 7 5 0 5 1 4 1 1 5 2 6 9 yc a n 4 3 3 7 2 5 4 0 5 9 5 1 1 5 9 pn h E 1 1 2 2 1 2 3 4 4 5 6. 5 4 r e C a u hl F

. C a y y p g d o r r o 6 4 7 2 8 1 8 5 4 1 6 4 6 9 2 tet ha ne E 1 2 2 3 1 2 4 6 5 6 7 6 6 nd CE Z e e e mta ui lus rd . p p

t a t s

m F 2 5 0 5 0 0 0 0 5 0 5 0 0 0 C a

s nrr e T T e ( *) 0 7 2 1

5 1

7 1

9 1

0 2

0 2

1 2

2 2

5 2

7 2

0 3

5 3

0 4 2 I I i t

n 6- U y

5 e 4 7 0 3 / 0 8 9 9 2 1 6 8 6 5 ler l

e lp o

8 8 9 8 y 8 8 8 7 8 8 8 7 / 8 F a

b mN a T T T T l T T T 1 T T T 1 I T

a I

S C C C C C C C C C C C C C C C M.

J

2 _

1 s -

5 w

o s e

)

1

  • 0 0 2 0 9 9 8 5 9 r ks i

2 1 3 3 _

l t 7 0 " 1 3 3 3 2 2 3 2 2 1 1 1 F S ( 1 1 1 1 1 1 1 1 1 1 1 1 1 y

d S l s i) 2 1

  • 0 9 0 3 9 9 1 8 6 0 3 e s s 0 2 8 i e k Y r (

7 1 " 1 1

1 1 1 2

1 1

1 1

1 2

1 1

1 1

1 1

1 9 0 1

t S

t s P )

4 -

e r

  • 2 9 8 8 8 4 0

9 5 8 A A A -

r da b I( 0 0 2 3 4 5 0 8

" 5 0 8 5 0 2 7 / / /

6 1 1 7 A oL 1 1 1 1 1 N N N r ,

l P 6 t

a t s c t

a a d b

)

5 3

3

  • 5 1

2 7

7 7

5 4

3 6

5 3

1 0

6 6

6 3 A A A e F rF a I( 1 0 " 3 8 6 0 5 7 7 6 8 / / /

M oL 2 3 3 3 3 4 3 3 3 3 2 N N N d

l e

W to . )

c e xa u e s 1 3 5 1

  • 6 1

0 7

0 7

7 9 9 6

9 0 6 /

9 6

4 8

7 8

8 6

e mMt m "

1 c i 0 0 0 0 0 0 0 0 0 C 0 0 0 0 n T (

l a

l i

e u v x.P ) 1 6 $ 9 0 6 1 1 2 6 5 0 3 8 r a d bI 6 3

  • 1 5 0 5 9 8 6 6 8 8 5 -

u a ( 0 " 3 2 1

S MoL 1 2 3 3 4 3

4 1

4 1

4 1

4 2

4 1

4 9

3 8

3 8

3 7

3 2

t i

n o y U i c )c t

e d se 2 5 6 7 7 7 7 7 7 7 7 7 7 7 y 1 1 "* 1 1 1 1 iml m 1 1 1 1 1 1 1 1 e i e 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(

l r T Y a

F)

.V Me d d l

e aoPcb I(

y ) 3 5

6 3

  • 5 1

0 6

4 0

0 8

3 6

0 6

0 2

3 3

4 9

0 9

6 3

8 8

J .M "

i 1 0 3 5 6 6 5 5 6 5 4 2 9 0 Y L 2 3 3 3 3 3 3 3 3 3 3 3 2 3 e0 h1 t

rE o( .

f p A

  • 9 2 6 0 s 2 og r

5 1

0 3 "

2 7 6 2

1 8 6 1 9 4

2 6

0 5

5 2

4 9

5 4

3 l

t m s e P F 3 1 3 3 4 4 5 6 8 7 n

u se /cn ig o r i e t c

R" n )

0 E 'ni n t

s 1 d / x.A a / 7 6 5 3 1 1 7 4 2 9 2 1 8 6 5 u e e b u 2 1 1 9 0 0 0 0 9 4 5 6 f

Tx8 i l

z l.

f t ME 1 1 3 3 3 2 3 3 3 3 2 3 3 2 l

a a

m(

t c2 m a5 p f r o

r e

I moe N y p A r / 2 6 5 0 2 9 0 2 3 9 5 0 6 8 t

u p ,

yc a o 3 5 7 0 8 9 5 2 9 3 0 4 9 1 2 9 pn h E 1 5 6 4 6 6 7 7 8 9 9 m r e C 1 o

a u c hl F o C a y y p g t

d r r 5 3 e

o a e F, 4 7 0 3 2 6 7 7 6 1 8 0 1 4 u tet h n 1 1 7 8 5 7 8 9 8 2 5 2 CE 1 1 1 1 d nd e e d Z mta e e ui dr l u

s rd a t p 0 o p t

s 0 0 c a s F 0 nrr 0 5 0 T

e m e *) 0 1 6 6- 0 5 5 1

5 1

5 2

0 3

0 5 0 5 9 5 e r

C I I T( - 1 1 1 2 t

2 it o n 7- n U y

5 e 1 8 6 8 9 0 9 5 a le e l p 3 7 7 6 4 0 2 t l o

. 8 8 7 7 8 9 7 8 8 8 7 8 8 8 8 a r a

b mN W W W W W V W W W W V V V D a

C C C C O W W F.

h S C C C C C O C C O O '

" M.

J

3 1

- s 5 w o s e i) 0 4 4 9 1 5 9 2 7 7 r ks 6 3 8 3 3 l

t 3 5 4 4 5 1 4 4 4 0 4 4 3 3 3 1

F S ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r

d S U 9 7 8 2 3 0 e ss s 5 4 9 7 7 3 8 2 l

2 4 3 4 4 2

e k( 1 4 3 3 0 3 3 2 2 2 iY r t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S

t )

l a s d D e

r a O 0 0 0 8

4 8

3 0 6 1 A 0 A A A t

e r A A 0 0 6 0 / 0 / / /

1 4 5 7 9 M AI P N N N N

)

Z . P r

A t s c t

) 2 6

0 6

6 3

8 3 7 7 5 8 8 A 9 A A A 3 3 5 H Fa ra d b 9 8 0 1

/ 4 /

8 8 3 / /

F ae( 9 4 I

( 4 5 3 3 2 3 e l 3 4 4 3 4 3 4 4 4 3 N 4 N N N n

. o Z- t o )

d x. c 7 2 2 7 1 6 1 2 5 2 2 e a usen 1 8 7 8 e 1 2 2 4 5 5 5 5 t

c e

imMt T (

- 0 0 0 0 0 1

0 0 0 0 1

0 5

0 5

0 6

0 6

0 6

0 f

f A- u

x. P t

a ) 9 0 1 6 9 5 4 4 7 8 7 8 7 6 7

_ e a da Ib 2 6 1 7 6 6 0 9 5 2 7 5 0 0 4 9 8 5 6 7 4 7 4 6 2 6 H Me( 5 4 3 3 3 4 4 4 4 3 4 4 4 3 4 4 4 4 4 l

_ 2 t

i n o y U t t

e d se c )c 6 7 7 7 7 6 7 7 7 6 7 7 7 7 7 y 1 1 1 1 1 1 1 iml m 1 1 1 1 1 1 1 1

e e 0 0 0 0 0 0 0 0 0 0 0 i

( 0 0 0 0

_ l r T Y a

_ F)

.V Me d d l

e a cb (

y ) 2 6

7 1

6 3

2 6

6 0

7 5

8 5 2

5 8

8 5 0

6 0

8 1 3 J .M 1 1 5 6 5 i' eP I 8 4 1 2 3 4 2 0 1 2 1 0 8 6 6

_ l 3 4 4 4 4 3 4 4 4 3 4 4 3 3 3

_ e0 hl t

rF a f o( .

p A 6 6 0 8 0 9 4 6 7 4 5 7 o 2 7 r /,

2 1 s 2 5 9 2 0 3 9 1 2 0 0 6 2 1 t

m s P E 3 3 1 3 2 8 3 6 6 8 l

u c e s/ ig e n r e

n )

R t 0 E n 2

x .

A s1 d /b i

a / 9 2 1 0 8 3 6 6 0 9 1 0 8 1 0 e

MEu e 3 7 7 2 4 4 3 4 4 4 1 0 1 Tx8 i l

z l f

t

- 2 2 3 2 2 2 2 2 2 3 3 3 t

c2 a (

a5 m r

p f o y I

moe N rp A 4 9 1 8 8 4 8 4 4 7 8 2 6 7

. a n /

2 6 4 4 3 5 6 6 4 2 yc h E 6 1 1 5 5 6 3 3 5 0 4 8 2 1 pn C 5. 1 5 9 9 1 r e a u hl F

. C a y y p g d o r r o 8 6 0 8 8 2 4 0 0 8 2 5 0 8 7 tet ha n e E 1 2 6 6 4 4 7 3 1 6 2 1

1 1

4 1

nd CE Z e e e mta l u

ui s rd p p

t a t s 0 0 0 0 5 0 0 0 0 5 a s m F nrr *)

e 0 6- 2 0 0 0 5 0 0 C T Te ( 1 3- -

1 1

1

- 1 2 5 5 9 2 I I - 1 1 1 t

i n

8- U y

5 le 0 2 7 3 6 5 6 e e p 9 8 7 8 7 0 9 8 4 9 1 l r

l o 8 8 8 7 7 8 8 8 8 8 7 8 a b

a mN a H H H H H H H H H H H H H H H F T S C C C C C C C C C C C C C C C M.

J

T 6 7 1 2 _

"n A 3

- 2- 1 3

i o _

4 t

)

1 pb _

- r I d _

5 o -t e s s f t a a b ( i 4 8 3 3

6 2

E e ht de A ra d 9 6 S a

r 1 1 L

y e r ed r gh r

I d

n v ga o

eS a ba er nl 2 E u l

d E s e e S i b

i t

n eF gt t

a U ) e y r

U a r

a i d 0 5 4 8 r o

1 u a a 3 9 4 5 f 1 t a m y e r 1 1 1 s

r v 5 e ge t

e i n e p l

r A U u d a F

a l a

v n

a mr e t 8- t s

. d t a _

4 e 5 s M . F)

T A

8 9

4 8

2 4

6 3 i x

5

, t e se t 9 1 f

- eh J

  • 1 1 1

1 e 5 s g

( oi e r ht ,

h h h

f t *h ut u

d g

n 2

5

)

weh e

o l t

- a r t

a 6 6 4 2 i

i z s e

e e g t

s f e i 8 1 r r n u

l e 0 p d 0 3 1 3 it ht a - - g i i

t 5e m r r

2 2 u v r e I s i

F ly ha e

p gT l t

e l

a te u

o r

a r n e o d s

e (

e s ms r

P vi t t e t r s t

o e nh s Ai s a 8 s s ( t s n i

2 2 6 e e ,

e a d

a 0 3 5 6 t y

t y

s n r e n r r r 1 3 1 1

1 p p e u h -

T mt a i

g n r r U a a i r u h h c e pe o C C p T e e s m e

h 7 4 5 4 ht ht yt c T 0 8 )

pt t F) A 1 9 2 6 f o 0 f o r s a e

  • ("

' 1 o 2 1 2 1 s -

1 h

N l s t a

r re t

n d 5 t n Ch c e

ht t e u t d

e io p a n iop l

l a e a

n a a t a 3 6 a r t L re 2 5 1 a7 o a o i 5 t

- t f

e ee l

p d 1 2 0- 5 a a i a 2 d 5 d

)

Ve mm 5 e h

r 2 h -

e4, ht e l u r a ht M 3 T h t 5 h

vf y o e

g on d g1 -

g g st 0 e u5 u r ai s r t o s o e n s e

1

> e v n a i

d a

6 2 0 3 1

r ht e r ht r

e n E

( A px a

r r

1 7 2

3 2- 1 1 i t

g i u t e gd i

2 E i

n - f i f a r e m U eF e e se t

c s v r e v r v t

/l na u e c (s u c

a s i e n "0 ter ) T 5

9 1

0 6 et h op t

r ht e ht e m

a F A 6 2 "s c i 1

xM *

(

9 1 1 9 0 1 4 1 me a r m

o a e 2 ps r s r 8 e 2 c

") er f i d ht f 8- r b ut d 5 o 5 an I t

- a r d

t e

6 2 7 a

e o r t a

e r

8 F 1 .

ol l 8 t i e

f

( e p ia d

7 7 8 8 4 2 eC u e u

E n.o".

nv 0 3 me a r 1 1 2

3

- l x l Miy or h ai vd n a v T Sgre gr i

t u e gT e aS e e e An n i

dl e ar n o ht p h p t r o e a s ei d s s ei f r s v i t

t e

a aAf a pi es t l r e A sn 9 7 4 de o d de nh I

f V a ida 1 9

7- 4 5 7 n1 n e

n r a r s Z o r r r 2 3 - t e e t t c c o T i r

n

- - 1

- ieC de deh p f

ds ge i i f f e p l u

s e U s t u p f ae a s f a p i i o e i

f h C ER "eg n "e "eg nd g t 2 a

g t

=

r o 1 i l

a 2 1

- ar a r re n n .

2 e U v n 9- i l 1 l l

a l e e e in r l e 2 l

e 2 1

t a e v v pf i y 5 e e t Aig v" l

b e

a t

M a

h 7 S. B . g r

e te

)

a n o

h S.

7 B )s.

r e n e a ra t

M d

l e

M Z

e A Ap e

" ud l

F.

e r

a -

T t t A I

nl PL ( I nP T(

l W 1 I a

b. c M.

J

5-15 I

Table 5-10 Comparison of the J. M. Farley Unit 2 Surveillance Material 30 ft-Ib Transition Temperature Shifts .:nd Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions i

30 ft-Ib Transition Upper Shelf Energy Temperature Shift Decrease Material Capsule Fluence Predicted Measured Predicted Measured (x 10" n/cm') (*F) ") (*F) *) (%) ) (%)")

Intermediate Shell U 0.644 131.1 104.4 26 28 Plate B7212-1 )

, W l.85 174.3 167.3 34 22 )

(Longitudinal) X 3.19 195.2 164.4 38 26

  • 1 Z 5.28 210.1 199.5 43 28 Intermediate Shell U 0.644 131.1 12?.1 26 27 Plate B7212-1 W l.85 174.3 168.9 34 20 (Transverse) X 3.19 195.2 200.3 38 27 2 5.28 210.1 196.1 43 28 Weld Metal U 0.644 36.1 0.0(d) 17 8 W l.85 48.0 6.7 22 0 X 3.19 53.7 0.0(d) 25 0 Z 5.28 57.8 10.0 28 8 HAZ Metal U 0.644 --

9.8.9 --

30 W l.85 --

147.7 --

20 X 3.19 -- 109.6 --

19 Z 5.28 --

142.6 --

20 Notes:

(a) Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and mckel of the surveillance wterial.

~

(b) Calculated using measured Charpy data plotted using CVGRAPH, Version 4.1 (See Appendix C)

(c) Values are based on the defmition of upper shelf energy given in ASTM E185-82.

(d) The actual measured capsule U and capsule X ARTer values are -28.7*F and -15.34"F respectively. l This physically should not occur, therefore for conservatism a value of zero wdl be reporte !

1. M. Farley Unit 2 Capsule Z

n o a c re) i .

t 8 7 7 8 7 55 5 uA% 6 5 3 4 3 4 4 7 7 7 de n( i

) R Ve 6

M n o

1 0 l i 5

- 1 tata) o g%

4 6 1 0 1 1 6 73 9 -

> 1 7 2 8 8 6 2 1 E T n( l o 2 1 1 1 1 1 2 2

(

  • E m

/c n n

" mio r t )

0 1 f i

o a g n%( 9 3 5 9 9 8 5

0 39 9 0 8 0 0 5 3 9 x n o 1 1 1 8 Ul E 2

5 t

o ,

d eh r t e u g) t a t n s i 7

6 5 3 9 7 5 1 2 1 1 i

d c a ekr ( 7 8 8 5 5 9 8 8 1 5 4 2 0 a r t 5 5 5 ,

r r

F S I

l s

i a ei s

)

r r t

e u(k 7 7 5 7 7 8 7 6 2 a t c ss 7 0 5 4 1 9 3 8 4 M a 3 0 3 8 9 8 0 9 9 e F r e r t

2 2 1 1 1 1 2 1 1 c S n

l a

l i e r

e v ud a p) 6 9 2 0 0 8 6 6 6 r t i 7 1 2 7 0 1 6 5 4 u c S aL ok(

r 3 4 4 4 4 4 2 2 2 l

e F s

s e

V teh s 03 075 70 t

r a g) 5 5 1 t

o c i mnek r i

1 1 6 6 5 1 0 0 5 6 3 0 5 2 a l t

t

( 1 1 1 1 1 1 9 8 8 e US R

2 t

i d n l eh U i

i ) 2 7 y Y -. s .

4 1

3 1 0 5 4 6 e c k 1 5 9 9 4 9 6 2 l

r %i( t 9 9 8 9 8 8 7 7 6 F

a 2 0

S M. p J t 0 0 0 h

e s e m F) e* 0 0 5 3 5 7 0 50 5 0 0 2 01 5 5 t T T( 2 3 5 2 5 f

o

h. e re l

6 7 8 6 7 8 6 7 8 pb

+ mm 1 L L L 1 1 1 T T T 1 1 1 WWW 1 1 Z

h SN a u C C C C C C C C C ley -

e s l

i s p a

n C .

e T 3 )

l 3-2 it i

n - a e5 ) n 1

1 i

r t

e5 in a 0 i 8 d t

a 0 s e l

a U y

- e de 8 u id 8 r t e

5 t a t e 8 e v M l e

r e mBig mB s a l

b M r e ea no t

r e

e na t

d l

F.

a t t a r e T InM(

L I n Pl T

( W M.

J e

5-17 INTERMEDIATE SHELL PLATE B7212-1(LONGITUDINAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 131:10 on 12-21-1998 Results Curve Fluence ISE d-ISE LSE d-USE T o 30 d-T o 30 T o 50 d-T o 50 1 0 219 0 13 0 0 -2139 0 1024 0 2 0 219 0 94 -36 E47 104 2 14024 130 3 0 219 0 102 -28 1454 1673 18148 17524 4 0 2.19 0 96 -34 14148 16438 186M 17522 5 0 219 0 94 -36 IT7f1 19931 20&57 19033 300 l m 250

.c Ta x 200 N

u 6 150 C o R c or N n[ c. . n 100 , ,,c> -

- . = ,

> v1 o ,, 4 So n >g ir a ki k -

o a

- .Au.sf i ) i

-300 -200 - 100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Igend 10 2 CF- 30 4^ 5v Data Set (s) Plotted Curve Plant Capsule Mateiis! Ori. Heatl 1 FA2 UNIPR PMTE SA5331 LT 1R212-1 2 FA2 U PMTE SA533B1 LT B7212-1 3 FA2 W PMTE SA533B1 LT 10212-1 4 FA2 X PMTE SA533B1 i.T IT/212-1 5 FA2 Z PLATE SA533B1 LT 10 212-1 Figure 5-1 Charpy V Notch Impact Energy vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B72121 (Longitudinal Orientation)

J. M. Farley Uret 2 Capsule Z

5-18 }

l INTERMEDIATE SHELL PLATE B7212-1 (LONGITUDINAL)

CVCRAPH 4l Hyperbolic Tangent Curve Printed at 1652f6 on 12-21-1998 Results Curve Fluence USE d-USE T o LE35 d-T o LE35 )

1 0 90f6 0 1.64 0 2 0 85.02 -5E3 12P.15 12051 3 0 85.83 -4 31 16736 165.92 4 0 70.41 -2024 183.03 18129 5 0 66E3 -24.02 212 3 210f4 200 i

<n O 150 E

a M

100 g (o=, -

b p'1W_ " "

-: F "

,j!{

a 50 uy n '

o 3 _

2

- A -

1 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F i Curve igend 1C 2 C) 30 4^ 5-

~

Data Set (s) Plotted Curve Plant Capsule Material Ort Heatl 1 FA2 UNIRR PLATE SA533B1 LT IT/212-1 2 FA2 U PLATE SA53381 LT IT/212-1 I 3 FA2 W PLATE SA533B1 LT B7212-1 4 FA2 X PIATE SA53381 LT B7212-1 5 FA2 Z PLATE SA533B1 LT IT/212-1 j Figure 5-2 Charpy V. Notch Lateral Expansion vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Longitudinal Orientation)

J. M. Farley Unit 2 Capsule Z

5-19 INTERMEDIATE SHELL PLATE B7212-1(LONGITUDINAL)

CVCRAPH 41 Hyperbolic Tangent Curve Printed at 142439 on 12-21-1996 Paults Curve Fluence T o 50x Shear d-T o 50x Shear 1 0 397/ 0 2 0 15029 110.91 3 0 18 & 43 149.06 4 0 19828 15 & 9 5 0 209.06 169.68 100 o //

80 e',l'/

,2 < //

e '

W c

=

ll 60 /<

N , J C a d M 0 /' //

b 40 ?g1 A c o/ ,/ ,,

07 ,:  ?/ l l

20 og o

/

1

/ v d_- A j o i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve igend 1C 2 C) 30 4^ 5-Data Set (s) Plotted Curve Plant Capsule Material Ori. Heatl i FA2 UNIRR PLATE SA533B1 LT Ir/212-1 2 FA2 U PLATE SA533B1 LT B7212-1 3 FA2 I PLATE SA533B1 LT B7212-1 4- FA2 X PLATE SA533B1 LT Ir/212-1 5 FA2 Z PLATE SA533B1 LT Ir/212-1 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Longitudinal Orientation)

}. M. Farley Unit 2 Capsu'e Z

l 1

5-20 l

l INTERMEDIATE SHELL PLATE B7212-1(TRANSVERSE)

CVGRAPil 4J Hyperbolic Tangent Curve Printed at 132401 on 12-21-1996 Results Curve Fluence ISE d-ISE USE d-USE T o 30 d-T o 30 T o 50 d-T e 50 1 0 P.19 0 95 0 -7S2 0 3119 0 2 0 2J9 0 69 -26 115J4 123R 180.71 14731 3 0 P.19 0 76 -19 160.95 168B8 21829 185.09 4 0 2J9 0 69 -26 192.33 20026 221.74 138.55 5 0 P.19 0 60 -27 18823 196J5 231E2 198.42 300 a m 250 -

S kam A

ce L.e 150 0

c N a 100 - e -

Z < "

o

~#

e .

O v D

-300 -200 J!#W

-100 0 100 200 300 400 500 600 Temperature in Degrees F Curve igend IC 20 -

30 4^ 5-Data Set (s) Plotted Curve Plant Capsule Material Ori. Heall 1 FA2 UNIRR PLATE SA533B1 TL B7212-1 2 FA2 U PLATE SA533B1 TL B?212-1 3 FA2 Y PLATE SA533B1 TL 1R212-1 4 FA2 X PLATE SA533B1 TL IU212-1 5 FA2 Z PLATE SA533B1 TL B7212-1 i

Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212 1 (Transverse Orientation)

J.M.Farley Unit 2 Capsule Z

F

\'

5-21 INTERMEDIATE SHELL PLATE B7212-1(TRANSVERSE)

CVCRAPH 4J Hyperbolic Tangent Curve Printed at 140718 on 12-21-Ital l

Results l , _ , _ Curve fluence USE d-USE T o ID5 d-TeIED l 1 0 7235 0 2723 0

! 2 0 6&48 -336 146.53 11929 3 0 6854 -18 18P.16 15410 4 0 6145 -939 214.41 18717 5 0 5333 -1921 22559 19835 ro O 150 a

x i 100 2 a 5

a 5o

/?bb55'l"^8 4(' "

/4 U , l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve legend it 2C 30 4^ Su Data Set (s) Plotted Curve Plant Capsule Material Ori. Heatl _

1 FA2 UNIRR PLATE SA53381 TL B7212-1 2 FA2 U PLATE SA533B1 TL B7212-1 3 FA2 i PLATE SA533B1 TL B7212-1 4 FA2 X PLATE SA533B1 TL B7212-1 5 FA2 Z PLATE SA533B1 TL B7212-1 i

Figure 5 5 Charpy V-Notch Lateral Expansion vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Transverse Orientation) l J. M. Farley Unit 2 Capsule Z

5-22 INTERMEDIATE SHELL PLATE B7212-1(TRANSVERSE)

CVCRAPH 4J Hyperbolic Tangent Curve Printed at 143451 on 12-21-1998 1 Results Curve Fluence T o 50x Shear d-T o 50x Shar _

1 0 49fa 0 2 0 15964 109.96 3 0 199.68 150 4 0 202.96 15328 5 0 20053 15934 100 $

  • O f[- ,

% f  ?

a ,

j/

O o 5 60

/

/o

.ed I C /

8 o /8 .

40 o/o h j (

4 o! 2 .

o/ og 0 / il 20 0 / "/v

/

U

,h v,l s __.see / _./_ -

/

U l 1 i 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve igend Ic 2C 10 4^ 5-Data Set (s) Plotted

_ Curve Plant Capsule Material Ori. ic.atl 1 FA2 UNIRR PLATE SA53381 TL B7212-1 2 FA2 U PLATE SA533B1 TL M212-1 3 FA2 Y PLATE SA533B1 TL B7212-1 4 FA2 X PLATE SA533B1 TL IT/212-1 5 FA2 Z PLATE SA533B1 TL M212-1 i

Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for J. M. Farley Um; , Reactor Vessel Intermediate Shell Plate B7212-1 (Transverse Orientat. ion)

J.M. Farley Unit 2 Capsule Z

5-23 SURVEILLANCE PROGRAM WELD METAL CVGRAPfl 4j Hyperbolic Tangent Cum Printed at 1143:31 on 12-21-1998 Results Curve Fluence ISE d-ISE USE d-USE To30 d-T o 30 T o 50 d-T o 50 1 0 239 0 14 4 0 -34E9 0 -15.55 0 2 0 239 0 132 -12 -614 -28.7 -2637 -1131 3 0 2.19 0 0 -2799 144 6f9 -356 IL99 4 0 219 0 150 6 -50.03 -1534 -1732 -226 5 0 2.19 0 133 - 11 -24fi5 10.03 -L43 1412

. 30u u) 250 o

I a

x 200 a

t:t0 4 o_e e 2 a 150 - o -

w a

E. &r&

,1; o

,o 100 o Z

> o<

o a,)

50 r ; \

p f o j xA , ,v o )

i  !

-300 -200 -100 0 100 200 300 400 500 800 Temperature in Degrees F Cune legend Ic 2C 30 4^ 5-Data Set (s) Plotted ,

Cune Plant Capsule Waterial Ori. HeatJ l 1 FA2 UNIRR WELD BOLA 2 FA2 U WELD BOLA l

3 FA2 W WELD BOLA 4 FA2 X WELD BOLA 5 FA2 Z TELD BOLA Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Weld Metal J. M.Farley Urdt 2 Capsule Z

I i

5-24 l

SURVIELLANCE PROGRAM WELD METAL  !

CVGRAPH 4j Hyperbolic Tangent Curve Printed at 17D4d0 on 12-21-1998 Results Curve Fluence USE d-USE T o II35 d-T o LE35 1 0 92.34 0 -2104 0 2 0 9t47 -36 -442 -21D1 3 0 85.75 - 6 58 -1168 436 4 0 8177 -857 -293 -636 5 0 803 -IL73 .47 2257 200 '

en O 150 2,

x w 100 o

._ m m a a.y- '- g y e - r= : -

4 o O v

ce 2 a 50 < .,

o l'

__. 4 *-

ol ,

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Imgend Ic 2C 30 4^ 5-Data Set (s) Plotted Curve Plant Capsule Material Ori. Heatl 1 FA2 UNIRR TD BOLA

, (

2 FA2 U if1D BOLA 3 FA2 i WE BOLA l

4 4 FA2 X WELD BOLA 5 FA2 Z fB BOLA I

1 I

l Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for J. M. Farley Unit 2 Reactor l Vessel Weld Metal J. M. Farley Unit 2 Capsule Z l

1 5-25 I SURVEILLANCE PROGRAM WELD METAL CVCRAPH 4J Hyperbolic Tangent Curve Printed at 17:15:15 on 12-21-1998 Results Curve Fluence T o 50x Shear d-T o 50x Shear 1 0 -15 0 2 0 -1125 3.75 3 0 151 16El 4 0 -8.9 6.09 5 0 15.93 30.93 g

. 100- p- -

O ',e, ,

et u m -

CC r%

n eo J o yl c

o '

O '

fy 40 .

A f e.,

f l

I 20 /

ofe"/

! 1 D

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Iqend IC 20 30 4^ Sv Data Set (s) Plotted Curve Plant Capsule Material 0-i. Heatl 1 FA2 UNIPR TEli BOLA 2 FA2 U TD BOIA 3 FA2 Y VD BOIA 4 FA2 X NE BOIA 5 FA2 Z YM BOIA l

Figure 5-9 Charpy V-Notch Percent Shear vs Temperature for J. M. Farley Unit 2 Reactor Vessel Weld Metal l

J. M. Farley Unit 2 Capsule Z

I 5-26 HEAT AFFECTED ZONE CVGRAPH 4J Hyperbolic Tangent Curve Printed at 152242 on 12-21-1998 Results Curve Fluence ISE d-ISE USE d-USE T o 30 d-T o 30 T o 50 d-T o 50 1 0 219 0 158 0 -175.37 0 -116.81 0 2 0 219 0 111 -47 -7E45 98S1 -4457 7224 3 0 219 0 126 -32 -2768 14729 -1622 10018 4 0 2J9 0 128 -30 -65.79 10937 -39S 76S1 5 0 219 0 126 -2 -32.76 142f1 - 116 113 S 4 300 m 25o

,Q T

a g 200 o a h U U bf) _ e g 150 gf a

_ id%" -

e 100 .

z , 3 D /-k 'o

/r L .,  :

/odk, o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve legend Ic 20 30 4^ 5-Data Set (s) Plotted ,

Curve Plant Capsule Waterial Ori. Heatl 1 FA2 UNIRR HEAT AFFD ZONE E7212-1 2 FA2 U HEAT AFFD ZONE B/212-1 SIDE OF WELD I 3 FA2 W HEAT AFFD 20NE B7212-1 SIDE OF WELD 4 FA2 i HEAT AFFD ZONE B7212-1 SIDE OF WELD 5 FA2 Z BEAT AFFD ZONE B7212-1 SIDE OF WELD Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Heat Affected Zone Material J. M. Farley Unit 2 Capsule Z

5-27 l

HEAT AFFECTED ZONE CVCRAPH 41 Ilyperbolic Tangent Curve Printed at Tn43 s 12-22-1998 lbsults Curve Fluence USE d-USE To155 d-TeIES

I O B72 0 -1111 5 0 2 0 8827 S4 -5935 5139 3 0 85.49 -133 -20Z/ 90.96 4 0 84 51 -235 -3&76 74.49 5 0 8537 -1.75 5.1 11636 200 m

.O 150 a

M 0gn go._ n <

100 o g i

, g -_

$p p

o

~c:

g 6 j o s,,f _

a 50

/g', ,-

1 a'

/

h' ",

o Ad a ,

l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve legend Ic 2C -

30 4^ 5-Data Set (s) Pldted Curve Plant Capsule Material Ori. Heall 1 FA2 UNIRR HEAT AFFD ZONE B7212-1 SIDE OF YELD 2 FA2 U HEAT AFFD ZONE B7212-1 SIDE OF TELD 3 FA2 i HEAT AFFD ZONE 1r/212-1 SIDE OF TELD 4 FA2 X HEAT AFFD ZONE B7212-1 SIDE OF TELD 5 FA2 Z HEAT AFFD ZONE B7212-1 SIDE OF TELD Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Heat Affected Zone Material  ;

l l

I l J.M.Farley Unit 2 Capsule Z 1

t

l

)

5-28 l i

HEAT AFFECTED ZONE l CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09487/ on 12-22-1998 Results Curve Fluence T o 50x Shear d-T e 50x Shear s 1 0 -67D3 0

  1. 2 0 -2&l2 383 3 0 -1125 55.78 4 0 -15 52.03 5 0 15 S 3 82.96

__ ._ ~, .

100 g, g

/

, [ .

so g {j o o i

.c -

cn ev

=  !

.> S l n c ,

O O O o .1 y <o

( i, <

w

,/  !

  • / i 4 / -

o J b 'l i ,

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve legend i c- 20- 3^ 4^ 5-Data Set (s) Plotted Curve Plant Capsule Material Ori. Ileatl 1 FA2 UNIRR HEAT AFFD ZONE B7212-1 SIDE OF TE l 2 FA2 U HEAT AFFD ZONE B7212-1 SIDE Of YE 3 FA2 i HEAT AFFD ZONE 10212-1 SIDE OF YE 4 .FA2 X HEAT AFFD 20NE B7212-1 SIDE OF TE 5 FA2 Z HEAT AFFD ZONE B7212-1 SIDE OF YM Figure 512 Charpy V-Notch Percent Shear vs. Temperature for J. M. Farley Unit 2 Reactor Vessel Heat Affected Zone Material J. M. Farley Unit 2 Capsule Z

5-29  !

i E!Q/;6 md ' z ; ! h, g @(.j k L

-- o

. * ~.-~

~}i ;, ,.

V j-lg%; .eM 3,;}y:,J-M 3.p.7I

'&M P

?

~

5.

tbl:h}k$}-

Q. ~

fp,WuiQl bd ,,rHQ1 .- 'Vd :s dWw 'Q%y%

[pg;,ff  ; P- -

%lS

% W dl"l*Q)? ?L;% ' . =

  • Al' Us v  ? e y;w e Y <' ..
  • La ,,

"r r*tegr c%  :.,;r-1, ,a 9 :P P ,f >.' sfM, k T;;;.My%

~.  ::

7-' .

g -. !#.,y24n, w AQlmq ,.

." %;; ??

~ eg  %:f.yg;y%f.

, L 9 y.y .

e($i.vg~ . f TS$nN4 %y6ds 2 6 s , , . . .

t CL81 CL80 CL90 CL79 CL77 WW I'$D ' Yj&;bl '% Ef5 wW&

sif& &SW f%4#f

' i hf&&' L h?h$$ $ql3I'W~

4 p 44f .

Q$f?~ i +K L M jM

[ j -

l

?c; !Q b ,,

y t ~

y$.

.f

, t.l,;*.$r ?! '

  • C M  !
  • ' ~. x g  ;

%n e  %

~ ~- . > 4~ ..

w . -, l , , - 5tx CL84 CL85 CL86 CL78 CL83 it{ ",T.C m

~~; f. s R Obbd*u j)g $ $ k! [.? }fjf k IS a E}..Ql,c ji(M$1 i Q

M

[0m:_? $e ."!:&$

{: l{ gj. 4y .

g

  • 1 h!AW1 ) ; L;;g

} Y JM Al  ;(' #Es?,/&

s1 i h 5 1 @w,yd g -

r l CL89 CL87 CL82 CL76 CL88 ,

Figure 513 Charpy Impact Specimen Fracture Surfaces for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 (Longitudinal Orientation)

J. M.Farley Unit 2 Capsule Z

1 5-30 j l

1

)

v.~. , -~ <-

r/= ,: -. x 1< %m, '

i. Rg;h,g?ia b :p  %,, M. -M/

e p..

2 5.?m'_'C 61 W' g~.

( . y i, Tje&pc-an

y gl{ifTVi T

h ty ,w.i f.l5j,_d d

[n[:As":g;;~- - {a:.f4.kVY $fQhdih:,: (!!!,[O[66]$;:

pd@# p ~<(( 4 *CJ

[t is^%BS pf"w* * -

'  ?

..o p. gagget , . .

m .

b, %%;;79t

{g nW ;a C (n; c

' ]YN::Ts k

E[e:s.u,;[af5 fI .

ysy

,-y%. .. ., > g=%;,:.

~s; s n.

,.g qg&y;g 5 { h -

  • CT84 CT87 CT90 CT83 CT77

%#i;;7 .% b :M :-[ W7Q%%C~ t&;ph p pg d s k ,p ~ ,

! C

y. r r

l - -

I s .. I

+

W" f M$2  ;:s

~^

.f  ??;

=

%QQ

.a c .,e

^

y g.l j;i, "r

.. . p- .*

re-CT80 CT89 CT88 CT79 CT82

%rMM p [ $$ny~r .h y:g g i I:c.f T Q,@ .a p  :

S. Qm,g

,. jg/ '

gy g!; um 4-I

~

  • e  %:TT4):. .

% En-

t L[4_f%.:t

%g w}:3gSq;;t i 4. '

pudsku bA Ca "  %%Aw v~myr T T

  • nrL h kYh-A b, c i l f,. I YID

[CEL [ ft kkQ. s CT81 CT86 CT78 CT76 CT85 l Figure 514 Charpy impact Specimen Fracture Surfaces for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212 1 (Transverse Orientation)

J. M.Farley Unit 2 Capsule Z

5-31 i

> fwn:,Q. . $,aQ

l: isyth 1)l  ?  ; hi;[a.yy

. gy (Y $ l,,-&y$Ln p #;, +[? ,

' :.StM.

,, ~,

i her.CJ < 9 *, n ir p v r

y. . ,Y"e-,-.

Ye e-S s -

Bha %a.;f 1

E. sw,a e epa $J l i

{bNAI:p;. E8 M . . ,e yejlk (bsuyMNhd [ ,] f

' h

.- e w; .. p' g  ;

4W]3G+ g e4 L Aucts [ - j f bs%' b k'lh555 Y , Y-

  • w, h tl V ^"%r,?5 5*;  !

?ng' = buga -p: l

[l ?;,GwlfM{

l

~

s;jy:17%:

ll' f*

.. Wy% -

t

[_ _ _ .  !

CW81 CW88 CW76 CW78 CW89 Q;%. L M: i wydpW. afg>g+..)

e-i ibixat g YQy9y&s -.&%7 MM?shn 4 NH3 Agg[M g 7f h . ~ hIl k h k

y^ sksNNpg +N N j -  ! 4 i 4

h  ;

i w g$g 95 --

S'] ..

CW90 CW79 CW85 CW83 CW87

-=

V+,l$35 " hV;,idn N, Q ,

., W.

> bMio j![f). fi Q; & W;r*=l *

r-= ' + -

by &y g. .; [.

u  ; &v ','

4

{g. c' G.

r r

k):

s .-

}.nghga n 7f :j;u m ,.

y.,

o ~ g .__,v... . . 9 w t; b_ ; a pg d,e n x gi4 ??&V p W r. ut+ [:: [ WQ;.

f 2.

<cs ,f ed; lied.

CW77 CW86 CW84 CW80 CW82 l

I

- Figure 5-15 Charpy Impact Specimen Fracture Surfaces for J. M. Farley Unit 2 Reactor Vessel Weld Metal J.M. Fa-ley Unit 2 Capsule Z

r i 5-32

f+ <c.,y#p s

.. p ga

, w rgT,sfy

. c. ,f

(.

"g 3. 1 m L, g<

- {g!c3 8y , y . . ,,p

g. g 4 ,,

%! g n;rj!\%'-

4 V w..A '[:

y%y . ti .,3; M. (esgi&c 2i . yac y[ wg.

-  ?

s g_

ys,.; y '

T:RO

~,. w I.

?

l  :

L -

&$,, gig

2} a g a.m. n.an .

qJ ,i

-A $, ~S s, . , m.r 'f i i  :: 5 ,eu r ~n p;pg .-

p..f'y.

.c p..;

i a ^

.. J CH90 CH82 ' CH77 CH83 CH86

'&.. ,p.4 q

y y.

_f${?t; T 0 [U;Qf.s tm T-f

{" 9A%g kki& i $l&svgjj' ?

C5

~{t* 3,,M.y: a A p;-p:4..M. ..g Lp

.x ji.th

.'g.

- i .

% % A. -

.m p

V t

.. wn < ea;;gr > g l ppyr.; <

f,cj b.

. .: u ap

.1 .- c;

, adE -

{

A sgg). # 1 5

kwrW?$ _

+

"d

-e . . .

CH85 CH76 CH78 CH87 CH80 g l -

l."Z,Q 4 a 27.u

/?

Am-N E*

ik1 F y y ~ z &) $ xk @ ~

auw-5 gl <

. $$kf$

W h $? ? ~ b.

e, e

b::%

y'a y .mn

- ,yy%m:

gmy ?;

%jf1  : p  %.

k' lh3:Q %26 $[?:: 0$. . .

CH89 W$ CH88 M$$&

CH84 CH79 CH81 i

Figure 5-16 Charpy Impact Specimen Fracture Surfaces for J. M. Farley Unit 2 Reactor Vessel Heat-Affected Zone Metal J.M.Farley Unit 2 Capsule Z

I 5-33 l (*C)

! 0 50 100 150 200 250 300 120 l I I I I I l-800 11 0 -

A A l ULTIMATE TENSILE STRENGTH A I 100 - -

700

~

6 O~e c A e- 600

. $ 80 -

0.2% Y:5LD STRENGTH y 70 -

O -

500 w 60 -

O 400 50 -

00 40 LEGEND:

oo OUNIRRADIATID 19 2 0 l

AeulRRADIATED TO A FLUENCE OF 5.28 X 10 nlcm (E>1.0MeV) AT 550 F l

80 -

REDUCTION IN AREA 70 g

l g 60 "N, xg i p 50 -

l 3

l p 40 -

,  % 30 2 LONGATION l 20 -

'N 5  :

10 -

a- &

i

' UNIFORM ELONGATION 0 I I I I I O 100 200 300 400 500 600 TEMPERATURE (*D Figure 5-17 Tensile Properties for J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212 1 (Longitudinal Orientation)

J. M. Farley Unit 2 Capsule Z L _.

5-34 i

(*O O 50 100 150 203 250 300 120 l A I I I I I l- 800 l

l 11 0 -

g 100 -

6 ULTIMATE TENSILE STRENGTH -

700 0

g 90 -

M /,- 600 ,

s 80 -

!h .

y 70 - 0 0.2% YlELD STRENGTH 500 g 0- o .

m 60 -

400 50 -

300 LEGEND:

oOD UNIRRADIATED 19 2 0 AeulRRADIATED TO A FLUENCE OF 5.28 X 10 nlcm (E>1.0MeV) AT 550 F 80 -

70 -

REcucTION IN AREA j

- 60 -

O- _o 50

  • e:

d 40 -

k 30 -

TOTAL ELONGATION ,

@ o-20 -

g -O 10 a -

A UNIFORM ELONGATION 0 I I I I l 0 100 200 300 400 500 600 TEMPERATURE. (*D Figure 518 Tensile Properties for J. M. Farley Unit 2 Reactor VesselIntermediate Shell Plate B7212-1 (Transverse Orientation)

J. M. Farley Unit 2 Capsule Z

5-35

(*C) 0 50 100 15a 200 250 300 4 120

,  ;  ;  ;  ;  ; i-800 11 0 i-100 -

700 90 J N ULTIMATE TENSILE STRENGTH -

600 Ui N

, d5 80 -e 6s ,y2

--A o g

$ 70 0% -

500 M 60 - 0 'o 0- 400 50 02% YlELD STRENGTH 40 LEGEND:

ao D UNIRRADIATED A e a IRRADIATED TO A FLUENCE OF 5.28 X 10 n/cm (E>1.0MeV) AT 550 F 80 - REDUCTION IN AREA e-0-0 0

  • 70 o

- 60 -

g 50 -

8 a

p 40 -

o

. I 30 -

se TOTAL ELONGATION

_g g.

UNIFORM ELONGATION 10 4 A- b 0 l I I I I O 100 200 300 400 500 600 TEMPERATURE (*F)

Figure 5-19 Tensile Pn>perties for J. M. Farley Unit 2 Reactor Vessel Eld Metal J. M. Farley Ur.it 2 Capsule Z

l. . .

5-36 l

l

's J 4 ,.;.

s9 l 1 1A - li z ' . ', *-

i ., 4 5 -

2 g 9 ) 1 u. -

" J,dt)dddd%1d!!MOME2 *

. &oyW

.~

E<

"' :' l3.

s4I x _m. e y ev te%r..aagga,uxna.>v . .equ:f-- uL w:4 s.

s .. %a w g+4 ;..;n;ue;;.

m M!W,v.%

,,.t

n .'aw ,qse

/. ':  ;.

cwer~ ,

, w~ ;fn 3;: ?hh$kb5k5lk&d" [pf;p'%;\..lkQh%? Y5 k Qi%dagBLf&fubig&21s&h?N @k Specimen CL16

.I I

^ c l

'2

!  ! -l y 4 .

kh 3 4 3 , E. 1s p te o n

  • p#

E 9 1 ' 1 .2 3 .

4 5 E- 7 5 bMS dda .

b W D Sa.h!d . CL @ [ i.3 ,l I..I y

k. M d % % i?a 6 % " % :t L , A 6mcM..d*M$$ .V,'I5  %,

LL ,'

E.M&.

n +? -

((1Ah 'hbdS5$$ !.

$$'wwwaMi.>a%a'.::

, v un A didDO24t/TCU ,kNh[

m .. .: ~ a ..

Specimen CL17 8 9 -

1 0 3 ? e

}l e,

,~ IJc. Cg* Y?

B 9 1 2 3 4 *E 7 i I*I h:ddr,I14tI hj.tk r.hf Mr .k l$1 --

e .,.+:.- ..

% b f ^n,,y ' l,[vdse.:P.Ir4 NJ-iWY, 3

w=e #%

1,6.

,, . g 37%W.:jd@p.

p u' n n a TOY.!,. 7 w "eny M Q

(pp%,&:.

Kas, b.;;,uns. e. . j"&r~:im"2

'2%-M .

. - b '

+g&a'v5]V.k;b;;"i y 'h env m% d,,4 W~ ..Mk,$t

,l OL+ be; ^a:(  %.az';} M ?'d+

Specimen CL18 '

Figure 5-20 Fractured Tensile Specimens fmm J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212 1 (Longitudina! Orientation)

J.M.Farley Unit 2 Ca,sule Z

i 1

5-37

I i  ; q g3

. .o , . , , , -

c . , s 3

. c. - 3

3. s w 1.

w <.aD3e +v ,2 e, <

e-3

- .-e 3 4

- t 5tM t[r rr Ia lT*S A e Ir 9 '

W*',J .

(

l

. s.g ; } [ #, .,

. _ . - n .

. .g n+ peg g'

premp3..

m~ ,-. r ~_ ~

- .~

r.

JN+ ,'.'~

[.y .,.,. ;2.N.,$hdu?

t . ~; 5 , .'

W g , .

. . . . .  ; y; e,. m n.7 9 .h W! ,Y f" "h"

?f- . r*Q L' } \ .Fv l

Specimen CT16 j

, , ,. m .m

}'

ro.c305F

^{

e' e n

.e

, 2 3 4 5  : , . lV,,.: ~

. . 3 y

udMid hlhlrh!dibaMdMO}n l N, ~

e We ' . g VM % L-Q c. % n > + )

u L.

p ;; + . w.

(4eb2,2. .. + w , q, , ' , . ,.a_#

a?

. , , , , . . _F aw. = ;rs , +a #. ~; yn, . . n . , ,

, . ' . ' . '~r. _a

.s.,. e; + 3 < )..7 d. ,+j;;.

i

r. ' ,j a. w m , y(

v et - db Ak t. J5 's-

. ,hhvat 3 c> a n. ..=Y-- -

Specimen CT17 c t 's *

g. ar M

9 ) 2 3 b d Y

pit N.}dd.!hJddddMde gb

.% V

(.;'*,*, I..

+ +

k j9

'W 3, _ G

.?. Y.l4....+llP  ?

rs.,.-.

l ,

m :,,,, 2*1w-y*" ,.

g- 1 ;.

[1, e a m '

,Lg,e e er ,e ..

y + e sn. -

..- _ .n . .

'e ~' 1

=s 6, ' .

y .: " , b,=, .n.,

f.

e 3 . .

y A

gdifM &.$?w y 48r4-

%,.e. m. ,o .w _.. . ,. s ~hs g c.*' M iy e swe . ,--

ipr ,. . +*"*-C" Specimen CT18

- Figure 5-21 Fractured Tensile Specimens from J. M. Farley Unit 2 Reactor Vessel Intermediate Shell Plate B7212-1 ('IYansverse Orientation)

J. M.Farley Unit 2 Capsule Z

5-38

-._ --- 1 4 t e i

.h.

i e , 4 e a .

. ., l.,,,s L.6,  ! lJ ,i,,.e, ,' ,,
m. -.

p...,.

-  ; . _ m

( ;i.' .. ,

& d. = y Nf' s s,.- .

y

,- p .

g i.-

. . . . :n . -- -- -

g, c e .

s

.. 3 4 ;

a-

- , , :. u s .s . -

34 s jW

=. e .

& < -, ,. ,  :- , -n-

, Il sS,f I, . .f I4 .$ gI [. I- 5'

.wa:n .m.

.+.._

--- ~~w - sh s

-

  • fa hh, , . ,

m n . , mk g, .. s #. 2 .,

d in

[gg.pT...,M_,ian...w,.:

y - z w ~2 % w t.@ :;,...,

s o r:9.

w#9;~

,:; 7._..

,y0; , .. ,

p.k

,1 y . q ' . p T, ,,

p;.

w =sp c as_i-

~. w a..a.u  ;

n a .m,', . n r w, a.

~ a :. - .

Specimen CW17 ]

i , , ,

3 e I c .a 4 . a r31IM! Jh}Md64  !  ! dul4N I' M c.

  • 1

. 1 1

~ . ~:s ., .m . . .,m. ,,

s.

.. , ,n . . . , .

wY sc c

q:wc.o .w v .s.w,a.  %. wrce n

w .3." ,,

m cn s -,

m . ;c .. .

\

),,"Q;j%.fIu 5kfd. lq,7 i y:-

4

,,,n h":..44T:;a

& 2,.-.wo y;,w ' i .;o M y? ~L g p. g m n y a 'g;y z.:';g

.M.w.e+rcw;y@n.,w,,.g

.. 4 --

L,*w,a

, s

&g &f u j _:~m;w~

,: b.. u ;m.,

? .,3' y.. ,, i d4T{ v  ;.s:M . tJ b($* jyiMR-g' 04 *%

?

fh J l,s, nwg:rnyg;*recow

.,aw.r.~ w._w- esw,l-d%)lmue'*si. n.a u- -

Specimen CW18 Figure 5-22 Fractured Tensile Specimens from J. M. Farley Unit 2 Reactor Vessel Weld Metal J. M. Farley Unit 2 Caosule Z

~

5-39 SPECIMEN CL 16 110 1

  • il l s0j '

I "I g 60 3

$ 50 1 aco r

  • ai 30 0

20y 10 I I

'o o c.os o1 o.is c2 c.2s o.3 1 STRAIN, IN/IN SPECIMEN CL 17 I

' 120 j

110 -

100 4 g 80 i

- D 3co F 2 .0 E

  • r.o .

a 30 -

20 10 0

0 0 06 0.1 0.15 02 025 0.3 STRAIN. INRN 120 116

! Ico .

I I

go -

a ,o .

t ,, ex. se u

[ ..

sso r 20 -

10 0 6 06 S.1 0 18 02 02S 43 STRam. peus Figure 5-23 Engineering Stress-Strain Curves for Intermediate Shell Plate B72121 Tensile Specimens CL16, CL17 and CL18 (Longitudinal Orientation) l l

l J. M.Farley Unit 2 Capsule Z l

l

5-40 I

SPECIMEN CT 16 i 120 +,

90 y

! .5a01; 30]

20j 10j t

0 . _ _ . _ _ _ _

0 0.06 0.1 0.15 02 0.25 0.3 STRAIN. INAN ,

SPECIMEN CT 17 120 3 110 4

.0 ,

70 ,

250 F h so .

50

.0 30 -

20 10 0

0 0.05 01 0.15 02 0.25 0$

STRAIN, SulN SPEC. MEN CT 10 f 110 3 so .

D 78 1 .

g e0 i ss0 r g 50 4

= .0 J 30 20 10 -

0 0 0 06 0.1 0.15 0.2 0 15 0.3 STRAIN, INAN Figure 5-24 Engineering Stress-Strain Curves for Intermediate Shell Plate B72121 Tensile Specimens CT16, CT17 and CT18 ('IYansverse Orientation)  ;

1

). M.Farley Unit 2 Capsule Z

m' 5-41 SPECIMEN CW 16 100 l

to -

.0,r* f toi U ' e0 '

W .0 1 E

N" 25 F 30 -

20 -

,0 l i

a 1

0 0.06 0.1 0 15 0.2 0 25 0.3

. -N. - 1 SPEOMEN CW17 h

100 )

-1 i

" ![

70 2 l l

!g N 5 g 100 F

,, .0 .

30 1

20 I 1C -

0 0 0.06 0.1 0.15 0.2 0 25 03 STRAIN, INAN ies <

eo <

m.

59 <

l t*'

l l --, ..

sso r i

"- i a<

t  !

. ,.. l

. ,, .. . u .= u l m .

Figun 5 25 Engineering Stass-Strain Curves for Weld Metal Tensile Specimens  !

CW16, CW17 and CW18 l i

l J. M.Farley Unit 2 Capsule Z

6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

Knowledge of the neutron emironment within the reactor vessel and surveillance capsule geometry is required as an integral part of LWR reactor vessel surveillance programs for two reasons. First, in order to interpret the neutron radiation induced material property changes observed in the test specimens, the neutron emironment (energy spectrum, flux, fluence) to which the test specimens were exposed must be known. Second, in order to relate the changes obse:Ted in the test specimens to the present and future condition of the reactor vessel, a relationship must be established between the neutron environment at various positions within the reactor vessel and that experienced by the test specimens. The former requirement is normally met by employing a combination of rigorous analytical techniques and measurements obtained with passive neutron flux monitors contained in each of the sun'eillance capsules.

The latter information is generally derived solely from analysis.

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for development of damage trend curves as well as for the implementation of trend curve data to assess vessel condition. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations r.nd positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves as well as to a more accurate evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy depe .nt damage function for data correlation, ASTM Standard Practice E853, " Analysis and Interpretation of Light-Water Reactor Sun eitlance Results," recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a data base for future reference. The energy dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693, " Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom." The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, " Radiation Embrittlement of Reactor Vessel Materials."

This section provides the results of the neutron dosimetry evaluations performed in conjunction with the analysis of test specimens contained in surveillance Capsules U, W, X, and Z which were withdrawn during the first, fourth, sixth, and twelfth fuel cycles, respectively. This evaluation is based on current state-of- 3 the-art methodology and nuclear data including neutron transport and dosimetry cross-section libraries I derived from the ENDF/B-VI data base. This report provides a consistent up-to-date neutron exposure data base for use in evaluating the material properties of the Farley Unit 2 reactor vessel. 1 In each capsule dosimetry evaluation, fast neutron exposure parameters in terms of neutron fluence (E > 1.0 MeV), neutron fluence (E > 0.1 MeV), and iron atom displacements (dpa) are established for the capsule irradiation history. The analytical formalism relating the measured capsule exposure to the exposure of the vessel wall is described and used to project the integrated exposure of the vessel wall.

Also, uncertainties associated with the derived exposure parameters at the surveillance capsules and with the projected exposure of the reactor vessel are provided. I 1

l l

J.M.Farley Unit 2 Capsule Z

6-2 6.2 Discrets Ordinites Anlysis A plan view of the reactor geometry at the core midplane is shown in Figure 4-1 Six irradiaJon capsules attached to the neutron pads are included in the reactor design to constitute the reactor vessel surveillance program. The capsules are located at azimuthal angles of 107 ,110 ,287 ,290 ,340 , and 343 relative to the core cardinal axis as shown in Figure 4-1.

A plan view of a dual surveillance capsule holder attached to the neutron pad is shown in Figure 6-1. The stainless steel specimen containers are 1.182 by 1-inch and approximately 56 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the central 5 feet of the 12-foot high reactor core.

From a neutronic standpoint, the surveillance capsules and associated support structures are significant. -

The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the neutron pad and the reactor vessel. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

In performing the fast neutron exposure evaluations for the surveillance capsules and reactor vessel, two distinct sets of transport calculations were carried out. The first, a single computation in the conventional forward mode, was used primarily to obtain relative neutron energy distributions throughout the reactor l

geometry as well as to establish relative radial distributions of exposure parameters {$(E > 1.0 MeV),

4(E > 0.1 MeV), and dpa/sec} through the vessel wall. The neutron spectral information was required for  ;

the interpretation of neutron dosimetry withdrawn from the surveillance capsule as well as for the determination of exposure parameter ratios, i.e., [dpa/sec]/[$(E > 1.0 MeV)], within the reactor vessel geometry. The relative radial gradient information was required to permit the projection of measured exposure parameters to locations interior to the reactor vessel wall, i.e., the %T and %T locations.

The second set of calculations consisted of a series of adjoint analyses relating the fast neutron flux, 4(E > 1.0 MeV), at surveillance capsule positions and at several azimuthal locations on the reactor vessel inner radius to neutron source distributions within the reactor core. The source importance functions generated from these adjoint analyses provided the basis for all absolute exposure calculations and comparison with measurement. These importance functions, when combined with fuel cycle specific neutron source distributions, yielded absolute predictions of neutron exposure at the locations ofinterest for each cycle ofirradiation. They also established the means to perform similar predictions and dosimetry evaluations for all rubsequent fuel cycles. It is import to note that the cycle specific neutron source distributions utilized in these analyses included not only ., c.ial variations of fission rates within -

the reactor core but also accounted for the effects of varying neutron yield per fission and fission spectrum introduced by the build-up of plutonium as the burnup ofindividual fuel assemblies increased.

The absolute cycle-specific data from the adjoint evaluations together with the relative neutron energy spectra and radial distribution information from the reference forward calculation provided the means to:

1. Evaluate neutron dosimetry obtained from surveillance capsules,
2. Relate dosimetry results to key locations at the inner radius and through the thickness of the reactor vessel wall, J. M.Farley Unit 2 Capsule Z m

t 6-3 4

3, . Enable a direct comparison of analytical prediction with measurement, and i j

4. Establish a mechanism for projection of reactor vessel exposure as the design of each new fuel )

j cycle evolvec.

The forward transport calculation for the reactor model summarized in Figures 4-1 and 6-1 was carried out in r,0 geometry using the DORT two-dimensional discrete ordinates code Version 3.1 1"3and the BUGLE-96 cross-section library l"1. The BUGLE-96 library is a 47 energy group ENDF/B-VI based data set produced specifically for light water reactor applications. In these analyses, anisotropic scattering was treated with a P3expansion of the scattering cross sections and the angular discretization was modeled with an Se order of angular quadrature.

The core power distribution utilized in the reference forward transport calculation was derived from j statistical studies oflong-term operation of Westinghouse 3-loop plants. Inherent in the development of -l this reference core power distribution is the use of an out-in fuel management strategy, i.e., fresh fuel on the core periphery. Furthermore, for the peripheral fuel assemblies, the neutron source was increased by

a 2e margin derived from the statistical evaluation of plant-to-plant and cycle-to-cycle variations in peripheral power. Since it is unlikely that any single reactor would exhibit power levels on the core l - periphery at the nominal +2e value for a large number of fuel cycles, the use of this reference distribution l
is expected to yield somewhat conservative results.
l. All adjoint calculations were also carried out using an Sg order of angular quadrature and the P 3 cross-

! section approximation from the BUGLE-96 library. Adjoint source locations were chosen at several azimuthal locations along the reactor vessel inner radius as well as at the geometric center of each l surveillance capsule. Again, these calculations were run in r,0 geometry to provide neutron source '

( distribution importance functions for the exposure parameter ofinterest, in this case 4(E > 1.0 MeV).

Having the importance functions and appropriate core source distributions, the response ofinterest could

{ be calculated as:

R(r,9) = l l l1(r,9,E) S(r,9,E) r dr dedE r 0 E where:

R(r,0) = $(E > 1.0 MeV) at radius r and azimuthal angle 0.

I(r,0,E)= Adjoint source importance function at radius r, azimuthal angle 0, and neutron source energy E.

S(r,0,E)= Neutron source strength at core location r,0, and energy E.

'Althorgh the adjoint importance functions used in this analysis were based on a response function defined by the threshold neutron flux $(E > 1.0 MeV), prior calculations!"1 have shown that, while the implementation oflow leakage loading patterns significantly impacts both the magnitude and spatial J distribution of the neutron field, changes in the relative neutron energy spectrum are of second order.

Y

. J. M. Fadey Urdt 2 Capsule Z -

6-4 Thus, for a given location, the ratio of[dpa/sec]/[4(E > 1.0 MeV)] is insensitive to changing core source distributions. In the application of these adjoint importance functions to the Farley Unit 2 reactor, therefore, the iron atom displacement rates (dpa/sec) and the neutron flux $(E > 0

  • MeV) were computed on a cycle-specific basis by using [dpa/sec]/[$(E > 1.0 MeV)] and [$(E > 0.1 MeV)]/[$(E > 1.0 MeV)]

ratios from the forward analysis in conjunction with the cycle specific $(E > 1.0 MeV) solutions from the individual adjoint evaluations.

The reactor core power distributions used in the plant specific adjoint calculations were taken from fuel cycle design data for the first twelve operating cycles of Farley Unit 212mougu2j Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-5. The data listed in these tables establish the means for absolute comparisons of analysis and measurement for the Capsules U, W, X, and Z irradiation periods and provide the means to correlate dosimetry results with the '

corresponding exposure of the reactor vessel wall.

In Table 6-1, the calculated exposure parameters [$(E > 1.0 MeV), $(E > 0.1 MeV), and dpa/sec] are given at the geometric center of the two azimuthally symmetric surveillance capsule positions (17 and 20 ) for both the reference and the plant specific core power distributions. The plant-specific data, based on the adjoint transport analysis, are meant to establish the absolute comparison of measurement with analysis. The reference data derived from the forward calculation are provided as a conservative exposure evaluation against which plant specific fluence calculations can be compared. Similar data are given in Table 6-2 for the reactor vessel inner radius. Again, the three pertinent exposure parameters are listed for the reference and Cycles 1 to 12 plant specific power distributions.

It is important to note that the data for the vessel inner radius were taken at the clad / base metal interface, and, thus, represent the maximum predicted exposure levels of the vessel plates and welds.

Radial gradient information applicable to $(E > 1.0 MeV), $(E > 0.1 MeV), and dpa/sec is given in Tables 6-3,6-4, and 6-5, respectively. The data, obtained from the reference forward neutron transport calculation, are presented on a relative basis for each exposure parameter at several azimuthal locations.

Exposure distributions through the vessel wall may be obtained by normalizing the calculated or projected exposure at the vessel inner radius to the gradient data listed in Tables 6-3 through 6-5.

For example, the neutron flux $(E > 1.0 MeV) at the %T depth in the reactor vessel wall along the 0 azimuth is given by:

pyy(0 ) = p(199.95,0 ) F(204.95,0 ) -

1 I

where:  !

~

l I

$%T(0 ) = Projected neutron flux at the %T position on the 0 azimuth.

$(199.95,0 ) = Projected or calculated neutron flux at the vessel inner radius on the 0 azimuth.

F(204.95,0 ) = Ratio of the neutron flux at the %T position to the flux at the vessel inner radius for the 0 azimuth. This data is obtaiaed from Table 6-3.

J. M. Farley Unit 2 Capsule Z

e 6-5 Similar expressions apply for exposure parameters expressed in terms of $(E > 0.1 MeV) and dpa/sec where the attenuation function F is obtained from Tables 6-4 and 6-5, respectively.

6.3 Neutron Dosimetry The passive neutron sensors included in the Farley Unit 2 surveillance program are listed in Table 6-6.

Also given in Table 6-6 are the primary nuclear reactions and associated nuclear constants that were used in the evaluation of the neutron energy spectrum within the surveillance capsules and in the subsequent determination of the various exposure parameters ofinterest [$(E > 1.0 MeV), $(E > 0.1 MeV), dpa/sec].

The relative locations of the neutron sensors within the capsules are shown in Figure 4-2. The iron, nickel, copper, and cobalt-aluminum monitors,'in wire form, were placed in holes drilled in spacers at .

several axial levels within the capsules. The cadmium shielded uranium and neptunium fission monitors were accommodated within the dosimeter block located near the center of the capsule.

. The use of passive monitors such as those listed in Table 6-6 does not yield a direct measure of the' energy dependent neutron flux at the point ofinterest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are ofinterest:

  • The measured specific activity of each monitor,
  • The physical characteristics of each monitor,-
  • The operating history of the reactor, e The energy response of each monitor, and
  • The neutron energy spectrum at the monitor location.

Me specific activity of each of the neutron monitors was determined using established ASTM procedures * *"'"*"1. Following sample preparation and weighing, the activity of each monitor was determined by means of a lithium-drifted germanium, Ge(Li), gamma spectrometer. The irradiation history of the Farley Unit 2 reactor was obtained from Southe'rn Nuclear Company personnelp2j and data reported in NUREG-0020, " Licensed Openting Reactors Status Summary Report," for the Cycles 1 to 12 operating periods.' The irradiation haiory applicable to the exposure of Capsules U, W, X, and Z is given in Table 6-7.

Having 6, neasured specific activities, the physical characteristics of the sensors, and the operating history. 2 the reactor, re.ction rates referenced to full-power operation were determined from the following equation:

A R=

No F Y E Cj [1-e**9][e**]

P4 J. M.Farley Unit 2 Capade Z i _

6-6

)

where:

i

.R =

Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pg(rps/ nucleus).

A =

Measured specific activity (dps/gm).

No- = Number of target element atoms per gram of sensor.

F = Weight fraction of the target isotope in the sensor material.

Y =

Number of product atoms produced per reaction.

.Pj w Average core power level during irradiation period j (MW).

P,,, ~ = Maximum or reference power level of the reactor (MW).

C3 =-

Calculated ratio of $(E > 1.0 MeV) during irradiation period j to the time weighted average

$(E > 1.0 MeV) over the entire irradiation period.

A- =

Decay constant of the product isotope (1/sec).

t; ' = Length ofirradiation period j (sec).

=

. t, Decay time following irradiation period j (sec).

and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio [P]/[Pg]

3 accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The '

ratio C;, which can be calculated for each fuel cycle using the adjoint transport technology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle.. For a single cycle irradiation, C 3

is normally taken to be l'0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional C; term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another. ,

' For the irradiation history of Capsules U, W, X, and Z the flux level term in the reaction rate calculations was set to 1.0 for Capsule U only. Measured and saturated reaction product specific activities as well as the derived full power reaction rates are listed in Table 6-8. The reaction rates of the23:U sensors provided in Table 6-8 include corrections for2nU impurities, plutonium build-in, and gamma ray induced fissions. Corrections for gamma ray induced fissions were also included in the reaction rates for the 2nNp sensors as well.

J. M. Farley Unit 2 Capsule Z

6-7 Values of key fast neutron exposure parameters were derived from the measured reaction rates using the FERRET least squares adjustment codel '81. The FERIET approach used the measured reaction rate data, sensor reaction cross-sections, and a calculated trial spectrum as input and proceeded to adjust the group fluxes from the trial spectrum to produce a best fit (in a least squares sense) within the constraints of the parameter uncertainties. The best estimate exposure parameters, along with the associated uncertainties, were then obtained from the best estimate spectrum.

In the FERRET evaluations, a log-normal least squares algorithm weights both the a priori values and the measured data in accordance with the assigned uncertainties and correlations. In general, the measured 3

values,f, are linearly related to the flux,4, by some response matrix. A-  !

ff = [ My p'* ,

s where i indexes the measured values belonging to a single data set s, g designates the energy group, and ce delineates spectra that may be simultaneously adjusted. For example, Ri = s[ a,, $, \

i relates a set of measured reaction rates, R , to a single spectrum, $,, by the multi-group reaction cross- j section, og,. The log-normal approach automatically accounts for the physical constraint of positive l

fluxes, even with large assigned uncertainties.

j In the least squares adjustment, the continuous quantities (i.e., neutron spectra and cross-sections) were approximated in a multi-group format consisting of 53 energy groups. The trial input spectrum was converted to the FERRET 53 group structure using the SAND-Il code". This procedure was carried out by first expanding the 47 group calculated spectrum into the SAND-II 620 group structure using a SPLINE interpolation procedure in regions where group boundaries do not coincide. The 620 point spectrum was then re-collapsed into the group structure used in FERRET.

The sensor set reaction cross-sections, obtained from the ENDF/B-VI dosimetry fileN, were also collapsed into the 53 energy group structure using the SAND-II code. In this instance, the trial spectrum, as expanded to 620 groups, was employed as a weighting function in the cross-section collapsing j procedure. Reaction cross-section uncertainties in the form of a 53x53 covariance matrix for each sensor I reaction were also constructed from the information contained on the ENDF/B-VI data files. These matrices included energy group to energy group uncertainty correlations for each of the individual l

reactions. However, correlations between cross-sections for different sensor reactions were v.at included.

The omission of this additional uncertainty information does not significantly impact the re. t , c 'he

~

adjustment.

Due to the importance of providing a trial spectrum that exhibits a relative energy distribution closa the actual spectrum at the sensor set locations, the neutron spectrum input to the FERRET evaluation was taken from the center of the surveillance capsule modeled in the reference forward transport calculation.

While the 53 x53 group covariance matrices applicable to the sensor reaction cross-sections were developed from the ENDF/B-VI data files, the covariance matrix for the input trial spectrum was constructed from the following relation:

J.M.Farley Unit 2 Capsule Z

n  ;

6-8

~

Afu. = R' + R, R,. P,,

where R. specifies an overall fractional normalization uncertainty (i.e., complete conelation) for the set of values. The fractional uncertainties, R,, specify additional random uncertainties for group g that are correlated with a correlation matrix given by: 4 P,. = [1- 9]6,. + 0 e*

1 I

where:

. H = (g-f J' 2 y' he first term in the correlation matrix equation specifies purely random uncenainties, while the second term describes short range correlations over a group range y (0 specifies the strength of the latter term).

The value of 6 is I when g = g' and 0 otherwise. For the trial spectrum used in the current evaluations, a short range correlation ofy = 6 groups was used. His choice implies that neighboring groups are strongly corre!ated when 0 is close to 1. Strong long"-range correlations (or anti-correlations) werejustified based on information presented by R. E. Maerker' 3. The uncertainties associated with the measured reaction rates included both statistical (counting) and systematic components. The systematic component of the

[ overall uncertainty accounts for counter efficiency, counter calibrations, irradiation history corrections, and corrections for competing reactions in the individual sensors.

Results of the FERRET evaluation of the Capsules U, W, X, and Z dosimetry are given in Table 6-9. The data sununarized in this table include fast neutron exposure evaluations in terms of @(E > 1.0 MeV),

@(E > 0.1 MeV), and dpa. In general, excellent results were achieved in the fits of the best estunate spectra to the individual measured reaction rates. The measured, calculated and best estunate reaction rates for each reaction are given in Table 6-10. An exanunation of Table 6-10 shows that, in all cases, the reaction rates calculated with the best estunate spectra match the measured reaction rates to better than 7%.

The best estimate spectra from the least squares evaluation is given in Table 6-11 in the FERRET 53 energy group structure.

In Table 6 12, absolute comparisons of the best estunate and calculated fluence at the center of Capsules U, .

2

' W, X, and Z are presented. The results for the Capsules U, W, X, and Z dosimetry evaluation [BE/C ratio of 0.87 for @(E > 1.0 MeV)] are consistent with results obtamed from similar evaluations of dosimetry from other reactors using methodologies based on ENDF/B-VI cross-sections. . I 1

6.4 Projections of Reactor Vessel Exposure The best estunate exposure of the Farley Unit 2 reactor vessel was developed using a combination of absolute plant specific transport calculations and all available plant specific measurement data. In the case of Farley Unit 2, the measurement data base contains measurements from the surveillance capsules discussed in this report. j J.M.Farley Urdt 2 Capsule Z

6-9 Combining this measurement data base with the plant-specific calculations, the best estimate vessel exposure is obtained from the following relationship:

& BestEEL = K @c u where:

$3 s.t. = The best estimcte fast neutron exposure at the location ofinterest.

K= ' The plant specific best estimate / calculation (BE/C) bias factor derived from the surveillance capsule dosimetry data.

$cae. = The absolute calculated fast neutron exposure at the location ofinterest.

The approach defined in the above equation is based on the premise that the measurement data represent the most accurate plant-specific information available at the locations of the dosimetry; and, further that the use of the measurement data on a plant-specific basis essentially removes biases present in the analytical approach and mitigates the uncertainties that would result from the use of analysis alone.

That is, at the measurement points the uncertainty in the best estimate exposure is daminat~i by the uncertainties in the measurement process. At locations within the reactor vessel wall, additional uncertainty is incurred due to the analytically determined relative ratios among the various measurement points and

- locations within the reactor vessel wall.

For Farley Unit 2, the derived plant specific bias factors were 0.87,0.92,0.91 for @(E > 1.0 MeV),

@(E > 0.1 MeV), and dpa, respectively. Bias factors of this magnitude developed with BUGLE-96 are

- fully consistent with experience using the ENDF/B-VI based cross-section library.

- The use of the bias factors derived from the measurement data base acts to remove plant-specific biases associated with the definition of the core source, actual versus assumed reactor dimensions, and operational variations in water density within the reactor. As a result, the overall uncertainty in the best estimate exposure projections within the vessel wall depends on the individual uncertainties in the measurement process, the uncertainty in the dosimetry location, and, in the uncertainty in the calculated ratio of the neutron exposure at the point ofinterest to that at the measurement location.

The uncertainty in the derived neutron flux for an individual measurement is obtained directly from the results of a least squares evaluation of dosimetry data. The least squares approach combines individual uncertainty in the calculated neutron energy spectrum, the uncertainties in dosimetry cross-sections, and the -

uncertainties in measured foil specific activities to produce a net uncertainty in the derived neutron flux at 4

l the measurement point. The associated uncertainty in the plant specific bias factor, K, derived from the BE/C data base, in turn, depends on the total number of available measurements as well as on the uncertamty of each measurement.

In developing the overall uncertamty associated with the reactor vessel exposure, the positioning L

uncertamties for dosimetry are taken from parametric studies of sensor position performed as part a series of analytical sensitivity studies included in the qualification of the methodology. The uncertainties in the exposure ratios relatmg riacime*y results to positions within the vessel wall are again based on the analytical sensitivity studies of the vessel thickness tolerance, downcomer water density variations, and vessel inner radius tolerance. Thus, this portion of the overall uncertainty is controlled entirely by J.M.Farley Una 2 Capsule Z

6-10 dimensional tolerances associated with the reactor dcsign and by the operational characteristics of the

' i reactor. i The net uncertainty in the bias factor, K, is combined with the uncertainty from the analytical sensitivity study to define the overall fluence uncertainty at the reactor 3 essel wall. In the case of Farley Unit 2, the derived uncertainties in the bias factor, K, and the additional uncertainty from the analytical sensitisity

. studies combine to yield a net uncertainty of 12 %

Based on this best estimate approach, neutron exposure projections at key locations on the reactor vessel inner radius are given in Table 6-13; furthennore, calculated neutron exposure projections are also provided for comparison purposes Along with the current (13.24 EFPY) exposure, projections are also provided for exposure periods of 20 EFPY,36 EFPY, and 54 EFPY. Projections for future operation were based on the assumption that the Cycles 9 through 12 exposure rates based on low leakage fuel management would continue to be applicable throughout plant life.

In the derivation of best estimate and calculated exposure gradients within the reactor vessel wall for the Farley Unit 2 reactor vessel, exposure projections to 20,36, and 54 EFPY were also employed. Data based on both a @(E > 1.0 MeV) slope and a plant-specific dpa slope tiuough the vessel wall are provided in Table 6-14. -

In order to assess RTmyr versus fluence curves, dpa equivalent fast neutron fluence levels for the %T and

%T positions were defined by the relations:

dpa

$(%T) - +(OT)OT)gra((%T) and $(%T) - #(OT) gra(%T) gra(OT)

Using this approach results in the dpa equivalent fluence values listed in Table 6-14.

In Table 6-15, updated lead factors are listed for each of the Farley Unit 2 surveillance capsules.

I 1

l l

J.M.Farley Unit 2 Capsule Z

6-11 Figure 6-1 Plan View of a Dual Reactor Vessel Surveillance Capsule l

l (7YPICAu Co 17 20 '

. g\

73.31 in.

3)

}'s f//}V///////>//A [,

A n k\ xNEUTMON n ,N-h I

N'%N PA%D J. M. Farley Unit 2 Capsule Z L_______ -- _------ -

6-12 Table 61 Calculated Fast Neutron Exposure Rates and Iron Atom j Displacement Rates at the Surveillance Capsule Center 2

$(E > 1.0 MeV)(n/cm -sec)

Cycle No. 17' 20' Reference 2.31 E+11 2.00E+11 1 1.92E+11 1.66E+11 2 2.01E+11 1.73E+11 3 1.82E+11 1.55E+11 4 1.50E+11 1.30E+11 5 1.45E+11 1.25E+11 6 1.34E+11 1.18E+11 .

7 1.41E+11 1.26E+11 8 1.33E+11 1.17E+11 9 1.23E+11 1.09E+11 10 1.33E+11 1.18E+11 11 1.20E+11 1.01E+11 12 1.20E+11 1.07E+11 2

$(E > 0.1 MeV) (n/cm -sec)

Cycle No. 17* 20' Reference 1.13E+12 9.37E+11 1 9.40E+11 7.80E+11 2 9.81E+11 8.10E+11 3 8.89E+11 7.27E+11 4 7.34E+11 6.11 E+11 5 7.09E+11 5.88E+11 6 6.54E+11 5.54E+11 7 6.89E+11 5.90E+11 8 6.49E+11 5.48E+11 9 6.02E+11 5.10E+11 ,

10 6.52E+11 5.55E+11 11 5.85E+11 4.74E+11 12 5.89E+11 5.01E+11 .

J. M.Farley Wit 2 Capsule Z

l 6-13 {

l Table 6-1 Cont'd j Calculated Fast Neutron Exposure Rates and Iron Atom l

i. Displacement Rates at the Surveillance Capsule Center Iron Atom Displacement Rate (dpa/sec)

Cycle No. 17 20 Reference 4.67E-10 3.94E-10 1 3.88E-10 3.28E-10 2 4.05E-10 3.41E-10 3 3.67E-10 3.06E-10

  • - f 4 3.03E-10 2.57E-10 l 5 2.93E-10 2.47E-10 l 6 2.70E-10 2.33E-10 7 2.85E-10 2.48E-10 ,

8 2.68E-10 2.30E-10 l 9 2.49E-10 2.15E-10 l 10 2.69E-10 2.33E-10 11 2.42E-10 1.99E-10

12. 2.43E-10 2.11 E-10

)

l l

.e L

J. M. Farley Unit 2 Capeu'.e Z L

1 t-

i 6-14 Table 6-2 Calculated Azimuthal Variation of Fast Neutron Exposure Rates and Iron Atom Displacement Rates at the Reactor Vessel Clad / Base Metal Interface '

2

$(E > 1.0 MeV)(n/cm -sec)

Cycle No. 0 15* 30* 45 Refemnce 6.92E+10 3.84E+10 2.81 E+10 1.89E+10 1 5.80E+10 3.23E+10 2.38E+10 1.65E+10 2 6.06E+10 3.37E+10 2.47E+10 1.71E+10 3 5.54E+10 3.06E+10 2.05E+10 1.27E+10 4 4.43E+10 2.52E+10 1.80E+10 1.29E+10 5 4.09E+10 2.44E+10 1.73E+10 1.14E+10 -

6 3.64E+10 2.24E+10 1.73E+10 1.21E+10 7 3.93E+10 2.37E+10 1.86E+10 1.27E+10 8 3.60E+10 2.23E+10 1.71E+10 1.23E+10 9 3.35E+10 2.07E+10 1.63E+10 1.20E+10 10 3.52E+10 2.23E+10 1.73E+10 1.25E+10 11 4.27E+10 2.07E+10 1.49E+10 1.16E+10 12 2.97E+10 2.01 E+10 1.50E+10 1.07E+10 2

$(E > 0.1 MeV) (n/cm -sec)

Cycle No. O' 15 30' 45' Reference 1.81 E+11 9.35E+10 6.07E+10 4.03E+10 1 1.51E+11 7.86E+10 5.13E+10 3.51 E+10 2 1.58E+11 8.20E+10 5.33E+10 3.63E+10 3 1.44E+11 7.46E+10 4.41 E+10 2.71 E+10 4 1.16E+11 6.14E+10 3.87E+10 2.76E+10 5 1.07E+11 5.93E+10 3.73E+10 2.42E+10 6 9.51E+10 5.47E+10 3.73E+10 2.59E+10 7 1.03E+11 5.76E+10 4.00E+10 2.70E+10 8 9.39E+10 5.43E+10 3.68E+10 2.62E+10 9 8.75E+10 5.05E+10 3.52E+10 2.55E+10 10 9.18E+10 5.44E+10 3.73E+10 2.65E+10 ,

11 1.11E+11 5.04E+10 3.20E+10 2.48E+10 12 7.76E+10 4.88E+10 3.24E+10 2.29E+10 J. M. Farley Unit 2 Capsule Z '

6-15 Table 6-2 Cont'd Calculated Azimuthal Variation of Fast Neutron Exposure Rates and Iron Atom Displacement Rates at the Reactor Vessel Clad / Base Metal Interface Iron Atom Displacement Rate (dpa/sec)

Cycle No. 0' 15' 3f 45 Reference 1.10E-10 6.06E-11 4.32E-11 2.93E-11 )

1- 9.23E-11 5.09E-11 3.65E-11 2.55E-11 2 9.64E-11 5.31E-11 3.79E-11 2.64E-11 3 8.81 E-11 4.83E-11 3.14E-11 1.97E-11 '

4 7.04E-11 3.97E-11 2.76E-11 2.00E-11

. 5 6.51E-11 3.84E-11 2.65E-11 1.76E-11 6 5.80E-11 3.54E-! 1 2.66E-11 1.88E-11 7 6.26E-11 3.73E-11 2.85E-11 1.95E-11 8 5.73E-11 3.51E-11 2.62E-11 1.91E-11 9 5.34E-11 3.27E-11 2.51E-11 1.85E-11 10 5.60E-11 3.52E-11 2.66E-11 1.93 E-11 11 6.80E-11 3.26E-11 2.28E-11 1.80E-11 12 4.73E-11 3.16E-11 2.31 E-11 1.66E-11 l

i e

i J. M. Farley Unit 2 Capsule Z L_

1 i

6-16 Tabla 6-3 Relative Radial Distribution of 4(E > 1.0 MeV) within the Reactor Vessel Wall RADIUS AZIMUTHAL ANGLE (cm) 0 15* 30* 45*

199.95 1.000 1.000 1.000 1.000 200.54 0.961 0.962 0.96? 0.963 .

201.72 0.861- 0.863- 0.864 0.868 202.89 0.754 0.760 0.758 0.765 204.07 0.653 0.661 0.658 0.667 204.95- 0.585 0.595 0.591 0.601 205.25 0.562 0.573 0.568 0.578 206.42- 0.482 0.494 0.488 0.499 l 207.60 0.412 0.424 0.417 0.429-208.78 0.351 0.364 0.356 0.368 209.95 0.299 0.311 0.304 0.315 211.13 0.254 0.266 0.258 0.269 212.30 0.215 0.227 0.219 0.229 213.48 0.182 0.193 0.186 0.195 214.66 0.153 0.164 0.157 0.166-214.95 0.147 0.158 0.151 0.159 215.83 0.129 0.139 ' O.132 0.141 217.01 0.107 0.118 0.111 0.119 218.19 0.089 0.099 0.093 0.100 219.36 0.071 0.083 0.076 0.084 ~

219.95 0.068 0.080 0.073 0.081-Note: Base MetalInner Radius = 199.95 cm Base Metal.%T = 204.95 cm Base Metal %T = 209.95 cm Base Metal %T = 214.95 cm Base Metal Outer Radius = 219.95 cm l

I l

i J. M.Farley Unit 2 Capsule Z I

6-17 Table 6-4 f f

i .-

Relative Radial Distribution of $(E > 0.1 MeV) {

within the Reactor Vessel Wall RADIUS AZIMUTHAL ANGLE (cm) 0' 15 30 45 199.95 1.000 1.000 1.000 1.000 200.54 .1.005 1.011 1.007 1.011 i 201.72 0.982 0.995 0.989 0.998 202.89 0.940 0.961 0.951 0.965 t -

204.07 0.891 0.919 0.904 0.923 1 204.95 0.852 0.885 '0.867 0.839 m I 205.25 0.839 0.873 0.855 0.878

'206.42 0.786 0.825 0.804 0.830 207.60 0.733 0.776 0.753 0.781 208.78 0.681 0.728 0.703 0.733 l

209.95 0.630 0.680 0.655 0.686 211.13 0.581 0.633 0.607 0.639 212.30 0.533 0.586 0.561 0.593 213.48 0.486 0.540 0.516 0.548 214.66 0.441 0.496 0.472 0.505 l 214.95 0.430 0.485 0.462 0.494 215.83 0.397 0.452 0.430 0.462 -

217.01 0.353 0.408 0.388 0.420 218.19 0.308 0.365 0.347 0.380 219.36- 0.261 0.321 0.307 0.340 219.95 0.251 0.312 0.298 0.332 Note: Base MetalInner Radius = 199.95 cm Base Metal %T = 204.95 cm Base Metal %T = 209.95 cm Base Metal %T = 214.95 cm Base Metal Outer Radius = 219.95 cm e

J. M.Farley Unit 2' Capsule Z

)

6-18 Table 6-5

+

Relative Radial Distribution of dpa/sec '

within the Reactor Vessel Wall l I

RADIUS AZIMUTHAL ANGLE (cm) 0' 15* 30' 45' l 199.95 1.000 1.000 1.000 1.000 (

200.54 0.968 0.971 0.967 0.969 201.72 0.889 0.897 0.885 0.889 202.89 0.805 0.821 0.798 0.804 204.07 0.725 0.747 0.715 0.724 - -

204.95 0.670 0.695 0.659 0.668  !

205.25 0.651 0.678 0.640 0.650 206.42 0.584 0.615 0.572 0.583 207.60 0.524 0.558 0.511 0.523 208.78 0.470 0.506 0.456 0.469 209.95 0.421 0.458 0.408 0.421 211.13 0.376 0.414 0.364 0.377 )

212.30 0.336 0.374 0.325 0.338 213.48 0.299 0.337 0.290 0.303 214.66 0.265 0.303 0.258 0.271 214.95 0.258 0.295 0.251 0.264 215.83 0.234 0.272 0.229 0.242 217.01 0.205 0.242 0.203 0.216 218.19 0.177 0.214 0.178 0.191 219.36 0.149 0.188 0.156 0.170 219.95 0.143 0.183 0.151 0.166 Note: Base MetalInner Radius = 199.95 cm Base Metal %T = 204.95 cm Base Metal %T = 209.95 cm Base Metal %T = 214.95 cm Base Metal Outer Radius = 219.95 cm 1

J. M.Farley Unit 2 Capsule Z I l

1

_~

P 6-19 Table 6-6 Nuclear Parameters used in the Evaluation of Neutron Sensors Target Fission Monitor Reaction of Atom Response Product Yield Material Interest Fraction Range Half-life Qg Copper Cu (n,a) 0.6917 E > 4.7 MeV 5.271 y j Iron "Fe (n,p) 0.0585 E > 1.0 MeV 312.1 d

'8

. Nickel Ni (n,p) 0.6808 E > 1.0 MeV 70.88 d 23:

Uranium-238 0 (n,f) 1.0000 E > 0.4 MeV 30.07 y 6.02 Neptunium-237 23'Np (n,f) 1.0000 E > 0,08 MeV 30.07 y 6.17 Cobalt-Al "Co (n,y) 0.0015 non-threshold 5.271 y 23:

Note: U and 2Np monitors are cadmium shielded.

1 1

. e e

I l

l J. M. Farley Unit 2 Capsule Z l .,

L.

6-20 Table 6 Monthly Thermal Generation During the First Twelve Fuel Cycles of the Farley Unit 2 Reactor -

(Reference Power of 2775 MWt)

Thermal Thermal Thermal Generat. Generat. Generat.

Ygg . Month (MW-hr) Ysm Mnalh (MW-br) YsE Meath IMW-hr) 1981 5 49210 1984 9 944645 1988 1 1971889 1981 6 369436 1984 10 1813687 1988 2 1806542 1981 7 118595 1984 11 1906767 1988 3 1973062

-1981 8 1830227 1984 12 1771677 1988 4 1906960

-1981 9 1837261 1985 1 '239473 1988 5 1973062 1981 10 1948774 1985 2 0 1988 6 1904396 ,

1981 11 1818795 1985 3 368968 1988 7 1973019 1981 12 1912506 1985 4 1861582 1988 8 1973083 1982 1 1707819 1985 5 1925137 1988 9 1767980 1982 2 10186 1985 6 1865725 1988 10 1975740 1982 3 1541170 1985 7 1769634 1988 11 1690586 1982 4 1855620 1985 8 1739953 1988 12 1938045 1982 5 1913932 1985 9 1867238 1989 1 1967158 1982 6 1836202 1985 10 1943516 1989 2 1687171 1982 7 1925451 1985 11 1874503 1989 3 1516400 1982 8 1963933 1985 12 1962073 1989 4 0 1982 9 1814278 1986 1 1798238 1989 5 172773 1982 10 1387 % 5 1986 2 1755415 1989 6 1786822 1982 11 0 1986 3 1945120 1989 7 1864633 1982 12 1572848 1986 4 239320 1989 8 1971608 1983 1 1967195 1986 5 396193 1989 9 1456223 1983 2 1778710 N.5 6 1744613 1989 10 1848890 1983 3 1969863 1986 7 1625000 1989 11 1815074 1983 4 1899797 1986 8 1865663 1989 12 1971879 1983 5 1970049 1986 9 1871967 1990 1 19703 %

1983 6 1905327 1986 10 1966262 1990 2 1631313 1983 7 1960067 1986 11 1905245 1990 3 1971205 1983 8- 1966925 1986 12 1970404 1990 4 1694856 1983 9 937869 1987 1 789042 1990 5 1168621 1983 10 163398 1987 2 1756640 1990 6 1907902 , l 1983 11 1479567 1987 3 1839164 1990 7 1970982 1983 12 1917263 1987 4 1873088 1990 8 1970095 1984 1 1711893 1987 5 1972677 1990 9 1907101 1984 2 1845593 1987 6 1771494 1990 10 755300 1984 3 1895910 1987 7 1970667 1990 11 0 1984 4 1845190 1987 8 1782971 1990 12 0 1984 5 1950480 1987 9 1909196 1991 1 1459221 1984 6 1909440 1987 10 119759 1991 2 1744114 1984 7 1968023 1987 11 0 1991 3 1971550 1984 8 1951599 1987 12 240584 1991 4 1237745 J. M. Farley Unit 2 Capsule Z

o-21 Table 6-7 Cont'd I

Monthly Thermal Generation During the First Twelve Fuel Cycles

- of the Farley Unit 2 Reactor l (Reference Power of 2775 MWt) I Thermal Thermal Thermal Generat. Generat. Generat.

Yru Month (MW-hr) - Ygg Month (MW-hr) Xejg Month (MW-hr) 1991- 5 1 % 5554 1994 9 1909440 1998 1 .1972558 l 1991 6 1905656 1994 10 1975737 1998 2 1782144 1991 7 1966074 1994 11 1905343 1998 3 1715128 l -

1991 8 1874009 1994 12 1709587 1991 9 1901630 1995 1 1728025 I 1991 10 1973717 1995 2 1742523 1991 11 1784506 1995 3 555111 1991~ 12 1971598 1995 4 .76112 1992 1 1853267 1995 .5 493007

~1992 ' 2 1845792 1995 6 880008 1992' 3 367169 1995 7 1896021 l

1992- 4 0 1995 8' 1865019 l 1992 5 513304 1995 9 1909440 1992 6 1783981 1995 10 1776999

]

l l 1992 7 1877441 1995 11 1772332  !

l 1992 8- 1 % 5981 1995 12 1939487 1992- 9 ,1779781 1996 ~l 1867751 1992 :10 1742799 1996- 2 1809698 1992 11 1890054 1996 3 1832081 1992 12 1952058 1996 4 1895146 1993 1 1879525 1996 5 1880613 i l1993 2 1114049 1996 6 1907027 l' 1993 '3 1936119 1996 7 1973088 1993- -4 1885890 1996 8 1972155 1993' 5 1902839 1996 9 1891141-1993 6 1889227- 1996 10 696495 1993 .7 1906713 1996 11 0  ;

1993 8 1952573 1996 12 749110 1 1993 9 1433273 1997 1 1972929 1993: 10 0 1097 2 1688502 1993 11 0 ">97 3 1973088 l 1993 12 11041 % 1997 4 1906788 1994. 1 1953209 1997 5 1971338  ;

1994 2 1772701- 1997 6 1909440 - J 1994 3 1 % 2548 1997 7 1973008 1994 4 1893222~ 1997 8 1971815

-1994 3 1 % 3755 1997 9 1909440 1994' 6' 1903898 1997 10 1975501 1994: 7 1973017 1997 11 1908804 '

1994 8: 1881896_ 1997_ 12 1951236

J. M. Farley Urut 2 Capsule Z

6-22 Table 6-8 Measured Sensor Activities and Reaction Rates Surveillance Capsule U

! Measured Saturated Reaction '

Activity Activity Rate ,

Reaction Location (dos /cm) (dos /em) (ros/ atom) 63 Cu (n,ct) "Co Top 6.42E+04 5.50E+05 8.39E-17 -

Middle 6.47E+04 5.54E+0.C 8.46E-17 Bottom 6.79E+04 5.82E+05 8.87E-17 De (n,p) shin Top 1.68E+06 5.68E+06 9.00E-15 Midd'e 1.62E+06 5.48E+06 8.68E-15 I Dottom 1.71E+06 5.78E+06 9.17E-15 5s Ni (n.p) 5sCo Top 5.17E+06 8.64E+07 1.24E-14 Middle 4.84E+06 8.09E+07 1.16E-14 Bottom 5.29E+06 8.84E+07 1.27E-14 59 Co (n,7) Co Top 1.36E+07 1.17E+08 7.60E-12 Middle 1.42E+07 1.22E+08 7.94E-12 Bottom 1.40E+07 1.20E+08 7.83E-12 3'Co (n,7) 6 Co(Cd) Top 7.76E+06 6.65E+07 4.34E-12 Middle 8.09E+06 6.93E+07 4.52E-12 Bottom 7.82E+06 6.70E+07 4.37E-12 238 U (n,f) 137Cs (Cd) Middle 2.29E+05 9.65E+06 6.34E-14 -

235 Including U,239 PU, and7-fission correClions 5.32E-14 237 337 Np(e7 Cs (Cd) Middle 2.15E+06 9.06E+07 5.78E-13 Including 7-fission correction 5.74E-13 J.M. Farley Ur.it 2 Capsule Z i

6-23 Table 6-8 Cont'd 1 Measured Sensor Activities and Reaction Rates Surveillance Capsule W Measured Saturated Reaction i Activity Activity Rate I

~

Reaction Location (dps/em) (dos /em) (rus/ atom) 63 Cu (n,a) 6 Co Top 1.53E+05 4.52E405 6.89E-17 Middle 1.55E+05 4.57E+05 6.98E-17 Bottom 1.69E+05 4.99E+05 7.61E-17 De (n,p) Nn Top 2.11E+06 4.58E+06 7.27E-15 Middle 2.05E+06 4.4fE+06 7.06E-15 Bottom 2.19E+06 4.76E+06 7.54E-15 5s Ni (n,p) 5sCo Top 7.28E+06 7.21E+07 1.03E-14 Middle 6.91E+06 6.84E+07 9.79E-15 Bottom 8.04E+06 7.96E+07 1.14E-14 3'Co (n,y) 6 Co- Top 2.77E+07 8.17E+07 5.33E-12 Middle 2.92E+07 8.62E+07 5.62E-12 Bottom 2.78E+07 8.20E+07 5.35E-12 59 Co (n,y) e Co (Cd) Top 1.56E+07 4.60E+07 3.00E-12 Middle 1.64E+07 4.84E+07 3.16E-12 Bottom 1.62E+07 4.78E+07 3.12E-12 23s

. U (n,f) 337Cs (Cd)l Middle 5.70E+05 7.01E+06 4.60E-14 235 Including U,239 Pu, and7-fission corrections 3.67E-14

, 237 Np (n,f) '37Cs'(Cd) Middle 5.54E+06 6.81E+07 4.35E-13 Including 7-fission correction 4.32E-13 l

i 1

J.M. Fatley Unit 2 Capsule Z  !

l k

6-24 j Table 6-8 Cont'd Measured Sensor Activities and Reaction Rates Surveillance Capsule X Measured Saturated Reaction Activity Activity Rate Reaction Location (dos /em) (dos /cm) (ros/ atom) 63 Cu (n,a) "Co Top 2.27E+05 4.73E+05 7.21E-17 .

Middle 2.21E+05 4.60E+05 7.02E Bottom 2.33E+05 4.85E+05 7.40E-17 De (n,p) Nn Top 2.85E+06 4.52E+06 7.17E-15 Middle 2.80E+06 4.44E+06 7.05E-15 Bottom 2.95E+06 4.68E+06 7.42E-15 5s Ni(n.p) 58Co Top 3.24E+07 7.33E+07 1.05E-14 Middle 3.07E+07 6.95E+07 9.94E-15 Bottom 3.34E+07 7.56E+07 1.08E-14 59 Co (n,y)"Co Top 4.90E+07 1.02E+08 6.66E-12 Middle 5.09E+07 1.06E+08 6.91E-12 Bottom 5.06E+07 1.05E+08 6.87E-12 59 Co (n,y) "Co (Cd) Top 2.90E+07 6.04E+07 3.94E-12 Middle 2.76E+07 5.75E+07 3.75E-12 Bottom 2.75E+07 5.73E+07 3.74E-12 Bottom 2.67E+07 5.56E+07 3.63E-12 No fission monitors present in the capsule.

l l

I J.M_ Farley Unit 2 Capsule Z i

6-25 l

Table 6-8 Cont'd Measured Sensor Activities and Reaction Rates Surveillance Capsule Z Measured Saturate d Reaction Activity Activity Rate Reaction Location (dos /gm) (dos /em) (ros/ atom) 63 Cu (n,(x) 6 Co Top 2.90E+05 4.78E+05 7.29E-17 Middle 2.81E+05 4.63E+05 7.06E l. Bottom 3.00E+05 4.94E+05 7.54E-17 De (n,p) % Top 2.17E+06 4.82E+06 7.64E-15

Middle 2.06E+06 4.57E+06 7.25E-15 Bottom 2.21E+06 4.91E+06 7.78E-15 ss Ni (n,p) 5sCo Top 7.13E+06 7.58E+07 1.09E-14 L Middle 6.86E+06 7.29E+07 1.04E-14 Bottom 7.42E+06 7.89E+07 1.13E-14 1

i 59 Co (n,y) "Co Top 4.37E+07 - 7.20E+07 4.70E-12 Middle 4.49E+07 7.40E+07 4.83E-12 Bottom 4.30E+07 - 7.09E+07 4.62E-12 59 Co (n,y)' Co (Cd) -Top - 2.41E+07 3.97E+07 2.59E-12 Middle 2.52E+07 - 4.15E+07 - 2.71E-12 Bottom 2.42E+07 3.99E+07 2.60E-12 23s U (n,f) 337Cs (Cd) Middle .

2.12E+06 8.62E+05 5.66E-14 235

! Including U, 239Pu, and y-fission corrections 3.89E-14 I-237 Np (n,f) I37Cs (Cd) Middle 1.12E+07 l

4.55E+07 2.90E-13 Including 7-fission correction 2.89E-13 237 The reaction rate for Np (n,f) 337Cs for Capsule Z was not used in the FERRET least squares 237 evaluation due to the inconsistency of the Np (n,f) 337Cs measurement relative to the 3-loop neutron pad plant data base'.

'I E. P. Lippincott, " Westinghouse Surveillance Capsule Neutron Fluence Reevaluation," Westinghouse

' Electric Company, WCAP-14044, April 1994.

J.M. Farley Unit 2 Capsule Z t

l L _

6-26 Table 6-9 Summary of Neutron Dosimetry Results Surveillance Capsules U, W, X, and Z Best Estimate Flux and Fluence for Capsule U Flux Fluence 2 2 Ouantitv In/cm -sec1 Ouantity In/sm J Uncertainty

$ (E > 1.0 MeV) 1.66E+11 $ (E > 1.0 MeV) 5.58E+18 7%

$ (E > 0.1 MeV) 8.95E+11 @ (E > 0.1 MeV) 3.00E+19 16 %

. $ (E < 0.414 eV) 1.34E+11 @ (E < 0.414 eV) 4.48E+18 29 %

dpa/sec 3.60E-10 dpa 1.21E-02 11 % ,

Best Estimate Flux and Fluence for Capsule W Flux Fluence Ouantity 2 2 In/cm -sec1 Ouantity In/cm 1 Uncertainty

$ (E > 1.0 MeV) 1.27E+11 & (E > 1.0 MeV) 1.51E+19 7%

$ (E > 0.1 MeV) 6.47E+11 @ (E > 0.1 MeV) 7.73E+19 16 %

$ (E < 0.414 eV) 9.27E+10 $ (E < 0.414 eV) 1.11E+19 29 %

dpa/see 2.66E-10 dpa 3.17E-02 11 %

Best Estimate Flux and Fluence for Capsule X Flux Fluence Ouantity - 2 In/cm -secl Ouantity IDicnd Uncertainty j

$ (E > 1.0 MeV) 1.29E+11 @ (E > 1.0 MeV) 2.50E+19 12 %

$ (E > 0.1 MeV) 6.74E+11 @ (E > 0.1 MeV) 1.ME+20 24 %

. $ (E < 0.414 eV) 1.19E+11 & (E < 0.414 eV) 2.30E+19 28 %

dpa/sec 2.75E-10 dpa 5.32E-02 18 %

Best Estimate Flux and Fluence for Capsule Z ,

Flux Fluence 2 2 Quantity In/cm -seci Ouantity Ip/_q.rp] Uncertainty

$ (E > 1.0 MeV) 1.26E+11 @ (E > 1.0 MeV) 5.28E+19 10%

$ (E > 0.1 MeV) 5.01E+11 @ (E > 0.1 MeV) 2.47E+20 21 %

- 4 (E < 0.414 eV) 8.27E+10 @ (E < 0.414 eV) 3.45E+19 29 %

dpa/sec 2.51E-10 dpa 1.05E-01 15 % l J.M.Farley Unit 2 Capsule Z

1 6-27 Table 6-10 Comparison of Measured, Calculated, and Best Estimate Reaction Rates at the Surveillance Capsule Center Surveillance Capsule U j Best Reaction Measured Calculated Estimate BE / Meas BE/ Calc Meas /Cale

Cu (n,a) 8.57E-17 8.19E-17 8.34E-17 0.97 1.02 1.05

- "Fe (n,p) . 8 95E-15 1.00E-14 9.00E-15 1.01 0.90 0.90 "Ni (n,p) 1.22E-14 1.43E-14 .1.27E-14 1.04 0.89 0.85 23:

0 (n,f)(Cd) 5.32E-14 5.80E-14 5.02E-14 0.94 0.87 0.92 237 Np (n,f)(Cd) 5.75E-13 6.21E-13 5.65E-13 0.98 0.91 0.93 "Co (n,y) 7.79E-12 6.12E-12 7.74E-12 0.99 1.26 1.27 "Co (n,y) (Cd) - 4.41E-12 4.71E-12 4.43E-12 1.00 0.94 0.94 Surveillance Capsule W Best Reaction - Measured Calculated Estimate BE / Meas BE/ Calc Meas / Calc l

'3 Cu (n,n) 7.16E-17 7.22E-17 7.04E 0.98 0.98 0.99 i "Fe (n,p) 7.29E-15 8.55E-15 7.42E-15 1.02 0.87 0.85 "Ni (n,p) 1.05E-14 1.21E-14 1.04E-14 0.99 0.86 0.87 23:

]

U (n,f)(Cd) 3.67E-14 4.77E-14 3.92E-14 1.07 0.82 0.77 23'Np (n,f) (Cd) ~ 4.32E-13 4.90E-13 4.20E-13 0.97 0.86 0.88 .

"Co (n,y) 5.44E-12 4.51E-12 5.40E-12 0.99 1.20 1.21

! "Co (n,y)(Cd) 3.09E-12 3.48E-12 3.llE-12 1.01 0.89 0.89 )

= l

1. M. Farley Unit 2 Capsule Z

6-28 )

Table 6-10 Cont'd Comparison of Measured, Calculated, and Best Estimate Reaction Rates at the Surveillance Capsule Center Surveillance Capsule X BS11 Reaction Measured Calculated Estimate BE / Meas BE/ Cale Meas / Calc 63 Cu (n,(x) 7.21E-17 7.02E-17 7.04E-17 0.98 1.00 1.03 ,

"Fe (n,p) 7.21E-15 8.61E-15 7.42E-15 1.03 0.86 0.84 5s Ni (n.p) 1.94E-14 1.23E-14 1.04E-14 1.00 0.85 0.85 23s U (n,f)(Cd) 237 Np (n,f)(Cd) 59 CO (n,y) 6.81E-12 5.25E-12 6.76E-12 0.99 1.29 1.30 59 Co (n,y)(Cd) 3.76E-12 4.04E-12 3.78E-12 1.01 0.94 0.93 Surveillance Capsule Z Br_t1 Reaction Measured Calculated Estimate BE / Meas BE/ Calc Meas / Calc 63 Cu (r,(x) 7.30E-17 5.89E-17 7.19E-17 0.98 1.22 1.24 Sie (n.p) 7.56E-15 6.97E-15 7.70E-15 1.02 1.10 1.08 5s Ni(n,p) 1.09E-14 9.85E-15 1.07E-14 0.98 1.09 1.11 23s U (n f)(Cd) 3.89E-14 3.89E-14 4.00E-14 1.03 1.03 1.00 237 Np (n,f)(Cd) 59 Co (n,y) 4.72E-12 3.67E-12 4.68E-12 0.99 1.28 1.29 59 Co (n,y)(Cd) _ 2.63E-12 2.84E-12 2.65E-12 1.01 0.93 0.93 J. M.Farley Unit 2 Capsule Z

6-29 Table 6-11 Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsules Capsule U Energy Flux Energy Flux 2 2 Grouc # (MeV) (n/cm -sec) Grouc # JMeV) (n/cm -sec) 1 1.73E+01 1.13E+07 28 9.12E-03 3.96E+10 2 1.49E+01 2.42E+07 29 5.53E-03 4.08E+10 3 1.35E+01 8.97E+07 30 3.36E-03 1.32E+10

. 4 1.16E+01 2.45E+08 31 2.84E-03 1.29E+10

.5 1.00E+01 5.52E+08 32 2.40E-03 1.28E+10 6 8.61E+00 9.54E+08 33 2.04E-03 3.84E+10 7 7.41E+00 2.27E+09 34 1.23E-03 3.91E+10 8 6.07E+00 3.42E+09 35 7.49E-04 3.79E+10 9 4.97E+00 7.05E+09 36 4.54E-04 2.79E+10 10 3.68E+00 8.48E+09 37 2.75E-04 3.14E+10 11 2.87E+00 1.67E+10 38 1.67E-04 3.21E+10 12 2.23E+00 2.38E+10 39 1.01E-04 3.37E+10 13 1.74S+00 3.42E+10 40 6.14E-05 3.39E+10

14 1.35E+00 4.10E+10 41 3.73E-05 3.30E+10 15 1.llE+00 8.11E+10 42 2.26E-05 3.15E+10 i 16 8.21E-01 9.14E+10 43 1.37E-05 3.00E+10 17 6.39E-01 1.11E+11 44 8.32E-06 2.77E+10 18 4.98E-01 7.44E+10 45 5.04E-06 2.42E+10 19 3.88E-01 1.24E+11 46 3.06E-06 2.18E+10 20 3.02E-01 1.23E+11 47 1.86E-06 1.93E+10 21 1.83E-01 1.36E+11 48 1.13E-06 1.12E+10 22 1.11E-01 7.74E+10 49 6.83E-07 1.33E+10 23 6.74E-02 7.66E+10 50 4.14E-07 2.13E+10 l 24 4.09E-02 3.73E+10 51 2.51E-07 2.19E+10 25 2.55E-02 4.72E+10 52 1.52E-07 2.18E+10

~

26 1.99E.02 1.87E+10 53 9.24E-08 6.87E+10 I l 27 1.50E4)2 3.58E+10 Note: Tabulated energy levels represent the upper energy in each group.

I J.M. Farley Unit 2 Capsule Z

6-30 Table 6-11 Cont'd Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsules L

l Capsule W Energy Flux Energy Flux 2

Group # (MeV) (n/cm -sec) Group # (MeV) (n/cm 2,3ec) 1 1.73E+01 9.42E+06 28 9.12E-03 2.84E+10 '

2 1.49E+01 2.03E+07 29 5.53E-03 2.93E+10 3 1.35E+01 7.52E+07- 30 3.36E-03 9.43E+09 4 1.16E+01 2.06E+08 31 2.84E-03 9.19E+09 .

5 1.00E+01 4.65E+08 32 2.40E-03 9.06E+09 I 6 8.61E+00 8.04E+08 33 2.04E-03 2.72E+10 7 7.41E+00 1.92E+09 34 1.23E-03 2.75E+10 8 6.07E+00 2.90E+09 35 7.49E-04 2.68E+10 9 4.97E+00 5.90E+09 36 4.54E-04 1.99E+10 10 3.68E+00 6.87E+09 37 2.75E-04 2.19E+10 11 2.87E+00 1.33E+10 38 1.67E-04 2.25E+10 12 2.23E+00 1.81E+10 39 1.01E-04 2.37E+10 13 1.74E+00 2.55E+10 40 6.14E-05 2.38E+10 14 1.35E+00 3.03E+10 41 3.73E-05 2.30E+10 15 1.llE+00 5.89E+10 42 2.26E-05 2.20E+10 16 8.21E-01 6.57E+10 43 1.37E-05 2.10E+10 17 639E-01 7.89E+10 44 8.32E-06 1.93E+10 18 4.98E-01 5.30E+10 45 5.04E-06 1.69E+10 19 3.88E-01 8.82E+10 46 3.06E-06 1.52E+10 20 3.02E-01 8.75E+10 47 1.86E-06 1.35E+10 21 1.83E-01 9.72E+10 48 1.13E-06 7.83E+09 22 1.llE-01 5.53E+10 49 6.83E-07 9.26E+09 23 6.74E-02 5 F E+10 50 4.14E-07 1.48E+10 24 4.09E-02 2. E+10 51 2.51E-07 1.52E+10 25 2.55E-02 3.38E+10 52 1.52E-07 1.51E+10 26 1.99E-02 1.34E+10 53 9.24E-08 4.76E+10 27 1.50E-02 2.57E+10 Note: Tabulated energy levels represent the upper energy in each group.

l l

1. n ruwy unit 2 c.p.ui.z l

1 E- . _

6-31 Table 6-11 Cont'd Best Estimate Neu:ron Energy Spectrum at the Center of Surveillance Capsules Capsule X Energy Flux Energy Flux 2 2 Grouc # (MeV) (n/cm -sec) Group # _(hicV.1 _(n/cm ,3,c) 1 1.73E+01 9.43E+06 28 9.12E-03 3.19E+10 2 1.49E+01 2.03E+07 29 5.53E-03 3.31E+10 3 1.35E+01 7.58E+07 30 3.36E-03 1.07E+10

, 4 1.16E+01 2.08E+08 31 2.84E-03 1.05E+10 5' l.00E+01 4.68E+08 32 2.40E-03 1.05E+10 6 8.61E+00 8.07E+08 33 2.04E-03 3.16E+10 7 7.41E+00 1.91E+09 34 - 1.23E-03 3.24E+10 8 6.07E+00 2.86E+09 35 7.49E-04 3.15E+10 9 4.97E+00 5.86E+09 36 4.54E-04 2.33E+10 10 3.68E+00 6.92E+09 37 2.75E-04 2.63E+10 11 2.87E+00 1.34E+10 38 1.67E-04 2.75E+10 12 2.23E+00 1.85E+10 39 1.01E-04 2.84E+10 13 1.74E+00 2.61E+10 40 6.14E-05 2.84E+10 14 1.35E+00 - 3.10E+10 41 3.73E-05 2.76E+10 15 1.11E+00 6.06E+10 42 2.26E-05 2.62E+10 ,

16 8.21E-01 6.79E+10 43 1.37E-05 2.49E+10 1 17 6.39E-01 8.21E+10 44 8.32E-06 2.30E+10 18 4.98E-01 5.52E+10 45 5.04E-06 2.01E+10  !

19 3.88E-01 9.20E+10 46 3.06E-06 1.81E+10 20 3.02E-01 9.21E+10 47 1.86E-06 1.60E+10 21 1.83E-01 1.03E+11 48 1.13E-06 9.29E+09 22 1.11E-01 5.92E+10 49 6.83E-07 1.12E+10 23 6.74E-02 5.93E+10 50 4.14E-07 1.81E+10 24 4.09E-02 2.91E+10 51 2.51E-07 1.89E+10 25 2.55E-02 3.73E+10 52 1.52E-07 1.90E+10

~26 1.99E-02 1.49E+10 - 53 9.24E-08 6.28E+10 27 1.50E 2.87E+10 Note Tabulated energy levels represent the upper energy in each group.

J. M.Farley Unit 2 Capsule Z -

i;

6-32 l

Table 6-11 Cont'd Best Estimate Neutron Energy Spcctrum at the Center of Surveillance Capsules Capsule Z -

Energy Flux Energy Flux 2

Group # .(MeV) (n/cm -sec) Groun # (MeV) (n/cm2,3,c) 1 1.73E+01 8.91E+06 28 9.12E-03 2.49E+10 ~

2 1.49E+01 1.94E+07 29 5.53E-03 2.58E+10 3 1.35E+01 7.34E+07 30 3.36E-03 8.31E+09 4 1.16E+01 2.04E+08 31 2.84E-03 8.10E+09 ,

5 1.00E+01 4.68E+08 32 2.40E-03 7.98E+09 6 8.61E+00 8.22E+08 33 2.04E-03 2.39E+10 l 7 7.41E+00 1.99E+09 ,

34 1.23E-03 2.41E+10 8 6.07E+00 3.02E+09 35 7.49E-04 2.34E+10 9- 4.97E+00 6.17E+09 36 4.54E-04 1.73E+10 10 3.68E+00 7.17E+09 37 2.75E-04 1.89E+10 11 2.87E+00 1.37E+10 38 1.67E-04 1.91E+10 12 2.23E+00 1.85E+10 39 1.01E-04 2.NE+10 13 1.74E+00 2.55E+10 40 6.14E-05 2.05E+10 14 1.35E+00 2.95E+10 41 3.73E-05 2.00E+10

.15 1.11E+00 5.59E+10 42 2.26E-05 1.92E+10 16 8.21E-01 6.09E+10 43 - 1.37E-05 1.84E+10 17 6.39E-01 7.17E+10 44 8.32E-06 1.70E+10 18 4.98E-01 4.74E+10 45 5.N E-06 1 ME+10 19 3.88E-01 7.77E+10 46 3.06E-% 1.34E+10 20 3.02E-01 7.64E+10 47 1.86E-06 1.19E+10 21 1.83E-01 8.43E+10 48 1.13E-06 6.95E+09 22 1 llE-01 4.78E+10 49 6.83E-07 8.23E+09 23 6.74E-02 4.73E+10 50 4.14E-07 1.31E+10 24 4.09E-02 2.32E+10 51 2.51E-07 1.36E+10 25 2.55E-02 2.94E+10 52 1.52E-07 1.35E+10 26 1.99E 1.17E+10 53 9.24E-08 4.25E+10 27 1.50E-02 2.25E+10 Note: Tabulated energy levels represent the upper energy in each group.

J. M. Farley Unit 2 Capsule Z

- 6-33 Table 6-12 Comparison of Calculated and Best Estimate Integrated Neutron Exposure of Farley Unit 2 Surveillance Capsules U, W, X, and Z CAPSULE U l

Calculated Best Estimate - BE/C 2 '

@(E > 1.0 MeV) [n/cm ] 6.44E+18 5.58E+18 0.87 2

$(E > 0.1 MeV) [n/cm ] 3.15E+19 3.00E+19 0.95

'dpa 1.30E-02 1.21E-02 0.93 CAPSULE W Calculated Best Estimate BE/C l 2

@(E > 1.0 MeV) [n/cm ] 1.85E+19 1.51E+19 0.81 2

$(E > 0.1 MeV) [n/cm ] 8.70E+19 7.73E+19 0.89 dpa 3.66E-02 3.17E-02 0.87 CAPSULE X Calculated Jest Estimate JQC 4 2

4(E > 1.0 MeV) [n/cm ] 3.19E+19 2.50E+19 0.78 2

@(E > 0.1 MeV) [n/cm ] 1.56E+20 1.31E+20 0.84 dpa 6.45E-02 5.32E-02 0.83 CAPSULE Z Calculated Best Estimate BE/C 2

$(E > 1.0 MeV) [n/cm ] 5.28E+19 5 28E+19 'l.00

- 2

@(E > 0.1 MeV) [n/cm ] 2.48E+20 2.47E+20 1.00 i dpa.- 1.04E-01 1.05E-01 1.01 AVERAGE BE/C RATIOS

.BELC 2

f @(E > 1.0 MeV) [n/cm ] 0.87 l 2

@(E > 0.1 MeV) [n/cm ] 0.92 I dpa 0.91 1

1.M.Farley Unit 2 Capsuk Z f.

L -.

I 6-34 I

Table 6-13 Azimuthal Variations of the Neutron Exposure Projections on the Reactor Vessel Clad / Base Metal Interface at the Core Midplane Best Estimate 13.24 EPFY 2

Q d 30 l*l 41

~

1 E>1.0 MeV (n/cm ) 1.51E+19 8.83E+18 6.55E+18 4.59E+18 2

E>0.1 MeV (n/cm ) 4.18E+19 2.28E+19 1.50E+19 1.04E+19 dpa 2.52E-02 1.46E-02 1.05E-02 7.43E-03 ,

20 EFPY 2

E>1.0 MeV (n/cm ) 2.36E+19 1.27E+19 9.48E+18 6.75E+18 2

E>0.1 MeV (n/cm ) 5.99E+19 3.28E+19 2.17E+19 1.53E+19 I dpa 3.60E-02 2.10E-02 1.52E-02 1.09E-02 36 EFPY 2

E>1.0 MeV (n/cm ) 3.71E+19 2.19E+19 1.64E+19 1.19E+19 2

E>0.1 MeV (n/cm ) 1.03E+20 5.65E+19 3.75E+19 2.68E+19 dpa 6.18E-02 3.61E-02 2.64E-02 1.92E-02 54 EFPY 2

E>1.0 MeV (n/cm ) 5.44E+19 3.21E+19 2.42E+19 1.76E+19 2

E>0.1 MeV (n/cm ) 1.51E+20 8.31E+19 5.54E+19 3.98E+19 dpa 9.07E-02 5.31E-02 3.89E-02 2.85E-02 Note:

a)' Maximum neutron exposure projection reported for 15' and 30' vessel location representing the

  • octant containing the 15' neutron pad span.

J.M.Farley Unit 2 Capsule Z l

_ 6-35

' Table 6-13, cont'd Azimuthal Variatians of the Neutron Exposure Projections on the Reactor Vessel Clad / Base Metal Interface at the Core Midplane Calculated

'l l

13.24 EPFY 2

D' d d 45'

_ )

' E>1.0 MeV (n/cm ) 1.75E+19 - 1.02E+19 7.56E+18 5.30E+18 2

E>0.1 MeV (n/cm ) 4.56E+19 2.48E+19 1.63E+19 l.13E+19 dpa 2.78E 1.61E-02 1.16E-02 8.21E-03 20 EFPY 2

! E>1.0 MeV (n/cm ) 2.50E+19 1.47E+19 1.10E+19 7.80E+18 2

E>0.1 MeV (n/cm ) 6.52E+19 3.57E+19 2.36E+19 1.66E+19 l -' dpa 3.98E-02 2.31E-02 1.68E-02 1.21E-02 l-1 36 EFPY 2

E>l.0 MeV (n/cm ) 4.28E+19 2.52E+19 1.90E+19 1.37E+19 ,

2 '

E>0.1 MeV (n/cm ) 1.12E+20 6.15E+19 4.09E+19 2.92E+19 dpa 6.82E-02 3.98E-02 2.91E-02 2.12E-02 54 EFPY 2

E>1.0 MeV (n/cm ) 6.29E+19 3.71E+19 2.80E+19 2.04E+19 2

E>0.1 MeV (n/cm ) 1.64E+20 9.05E+19 6.03E+19 4.34E+19 dpa 1.00E-01 5.86E-02 4.30E-02 3.15E-02 i

Note:

a) Maximum neutron exposure projection reported for 15' and 30 vessel location representing the octant containing the 15* neutron pad span.

I J.M.Farley Unit 2 Capsule Z

6-36 Table 6-14 Neutron Exposure Values within the Farley Unit 2 Reactor Vessel 2

Best Estimate Fluence (n/cm ) Based on E > 1.0 MeV Slope 20 EFPY E d 30otal 43 Surface 2.16E+19 1.27E+19 9.48E+18 6.75E+18 '

1/4 T 1.27E+19 7.63E+18 5.66E+18 4.%E+18 3/4 T 6.46E+18 4.00E+18 2.95E+18 2.13E+18

- 36 EFPY Surface 3.71E+19 2.19E+19 1.64E+19 1.19E+19 1/4 T 2.17E+19 1.31E+19 9.81E+18 7.13E+18 3/4 T 1.llE+19 6.89E+18 5.11E+18 3.74E+18 54 EFPY Surface 5.44E+19 3.21E+19 2.42E+19 1.7CE+19 1/4 T 3.18E+19 1.93E+19 1.45E+19 1.06E+19 3/4 T 1.63E+19 1.01E+19 7.54E+18 5.55E+18 2

Best Estimate Fluence (n/cm ) Based on dpa Slope 20 EFPY E d 30 tal 4_go Surface 2.16E+19 1.27E+19 9.48E+18 6.75E+18 1/4 T 1.45E+19 S.72E+18 6.31E+18 4.52E+18 3/4 T 9.11E+18 5.63E+18 3.95E+18 2.85E+18 36 EFPY Surface 3.71E+19 2.19E+19 1.64E+19 1.19E+19 1/4 T 2.48E+19 1.50E+19 1.09E+19 7.94E+18 3/4 T 1.56E+19 9.68E+18 6.84E+18 5.00E+18 54 EFPY Surface 5.44E+19 3.21E+19 2.42E+19 1.76E+19 '

1/4 T *"+19 2.21E+19 1.61E+19 1.18E+19 3/4 r r,+19 1.42E+19 1.01E+19 + 7.43E+18 Note:

a) Maximum neutron exposure proyction reported for 15* and 30' vessel location representing the octant containing the 15' neutron pad span.

i J.M. Farley Unit 2 Capsule Z l

l I

J

6-37 Table 6-14, cont'd l Neutron Exposure Values within the j Farley Unit 2 Reactor Vessel i

2 Calculated Fluence (n/cm ) Based on E > 1.0 MeV Slope l

20 EFPY E d l 30 '1 4_5 Surface 2.50E+19 1.47E+19 1.10E+19 7.80E+18 1/4 T 1.46E+19 8.81E+18 6.54E+18 4.69E+18 3/4 T 7.47E+18 4.63E+18 3.41E+18 2.46E+18 36 EFPY Surface 4.28E+19 2.52E+19 1.90E+19 1.37E+19 1/4T 2.51E+19 - 1.52E+19 1.13E+19 8.23E+18 3/4 T 1.28E+19 7.96E+18 5.90E+18 4.32E+18 l

54 EFPY Surface 6.29E+19 3.71E+19 2.80E+19 2.04E+19 1/4 T 3.68E+19 2.23E+19 1.67E+19 1.22E+19 3/4 T 1.88E+19 1.17E+19 8.71E+18 6.41E+18 2

Calculated Fluence (n/cm ) Based on dpa Slope 20 EFPY Z 15etal 30*I'l 41*

Surface 2.50E+19 1.47E+19 1.10E+19 7.80E+18 1/4 T 1.67E+19 1.01E+19 7.29E+18 5.22E+18 3/4 T 1.05E+19 6.50E+18 4.56E+18 3.29E+18 36 EFPY

. Surface 4.28E+19 2.52E+19 1.90E+19 1.37E+19 1/4 T 2.87E+19 1.73E+19 1.26E+19 9.17E+18 3/4 T 1.80E+19 1.12E+19 7.90E+18 5.78E+18 54 EFPY Surface 6.29E+19 3.71E+19 2.80E+19 2.04E+19 1/4 T 4.21E+19 2.55E+19 1.86E+19 1.36E+19 3/4 T 2.65E+19 1.65E+19 1.17E+19 8.58E+18 Note:

a) Maximum neutron exposure projection reported for 15' and 30' vessel location representing the octant containing the 15' neutron pad span.

' J. M. Farley Unit 2 Capsule Z l

L

l 6-38 k

Table 6-15 1 Updated Lead Factors for the J. M. Farley Unit 2 Surveillance Capsules Capsule Lead Factor I 3.31 U *F Wlbl 2.86 xIc1 3.41 -

zIdl 3.03 V Iel 3.47 .

ytel 3.03

[a] - Withdrawn at the end of Cycle 1.

[b] - Withdrawn at the end of Cycle 4.

[c] - Withdrawn at the end of Cycle 6.

[d] - Withdrawn at the end of Cycle 12.

[e] - Not withdrawn; on standby.

The surveillance capsule lead factor is defined by:

l qSuntil lance Capsule Calculated qCladIBase MetalInterface Axia! Peak Calculated where @ is the neutron fluence (E > 1.0 MeV) at the time of the capsule withdrawal. In the case of the standby capsules, the neutron fluence is at the time of the latest withdrawn capsule.

I l

l J. M.Farley UWt 2 Capsule Z 1

I l l

7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule meets the requirements ofASTM El85-82 and is recommended for future capsules to be renioved from the J. M. Farley Unit 2 reactor vessel. This recommended removal schedule is applicable to 36 EFPY of operation.

Table 7-1 J. M. Farley Unit 2 Reactor Vessel Surveillance Capsule Withdrawal Schedule Removal Time Fluence Capsule Location Lead Factor (*) (n/cm',E>1.0 MeV)(

(EFPY)*

I U 343' 3.31 1.10 6.44 x 10"(c)

W I10' 2.86 3.97 1.85 x 10"(c)

X 287 3.41 6.41 3.I9 x 10"(c)

\

Z 340 3.03 13.24 5.28 x 10"(c,d)

V 107' 3.47 Standby (e)

Y 290' 3.03 Standby (e) (

l Notes:

(a) Updated in Capsule Z dosimetry analysis, see Section 6 of this report.

(b) Effective Full Power Years (EFPY) from plant startup.

(c) Plant specific evaluation.

(d) This fluence is not less than once or greater than twice the peak end oflicense (36 EFPY) fluence of 4.28 x 10" n/cm 2, (e) Capsules V and Y will reach a fluence of 6.29 x 10"(E > 1.0 MeV), the 54 EFPY peak vessel fluence at approximately 13.8 and 16.2 EFPY, respectively. Per ASTM E185-82, these capsules

. may be held without testing following withdrawal.

I l

l f

J. M. Farley Unit 2 Capsule Z

84 L

8 REFERENCES'

1. WCAP-8956, Alabama Power CompanyJosephM FarleyNuclearPlant Unit No. 2 Reactor Vessel Radiation Surveillance Pmgram, J. A. Davidson, et. al., August,1977.
2. WCAP-10425, Analysis ofCapsule Ufrom the Alabama Power CompanyJoseph M Farley Unit 2 Reactor Vessel Radiation Surveillance Pmgram, M. K. Kunka, et. al., October,1983.

3 WCAP-11438, Analysis ofCapsule Wfmm the Alabama fower CompanyJosephM Farley Unit 2 Reactor Vessel Radiation Surveillance Program, R. P. Shogan, et. al., April,1987 4.' WCAP-l2471, Analysis ofCapsule Xfmm the Alabama Power CompanyJoseph M Farley Unit 2 Reactor Vessel Radiation Surveillance Pmgram, E. Terek, et. al., December,1989.

'5. Regulatory Guide 1.99, Revision 2, May 1988, Radiation Embrittlement ofReactor VesselMaterials.

6. Code of Federal Regulations,10CFR50, Appendix Q Fracture Toughness Requirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
7. ASTM E185-73, American National Standard N146, American National Standards Institute, Standard RecommendedPracticefor Surveillance Testsfor Nuclear Reactor Vessels.
8. .Section XI of the ASME Boiler and Pressure Vessel Code, Appendix Q Fracture Toughness Criteria forProtection Against Failure.

L l

9. ~ ASTM E208, Standant TestMethodfor Conducting Dmp-Weight Test to Determinc Nil-Ductility l Transition Temperature ofFerritic Steels, in ASTM Standards, Section 3, American Society for Testmg and Materials, Philadelphia, PA.

1 10.' Code of Federal Regulations,10CFR50, Appendix H, Reactor VesselMaterial Surveillance Program i Requirements, U.S. Nuclear Regulatory Commission, Washington, D.C.  !

11. ASTM E185-82, Annual Book ofASTM Standards, Section 12, Volume 12.02, StandantPracticefor Conducting Surveillance Testsfor Light-Water CooledNuclear Power Reactor Vessels.
12. ASTM E23-93a, Standant TestMethodsforNotched Barimpact Testing ofMetallicMaterials, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.
13. ASTM A370-92, Standant TestMethods andDepnitionsforMechanical Testing ofSeelPmducts, in i . ASTM S*.andards, Section 3, American Society for Testmg and Materials, Philadelphia, PA,1993.
14. ASTM E8-93, Standani TestMethodsfor Tension Testing ofMetallicMaterials, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.
15. ASTM E21-92, Standani TestMethodsfor Elevated Temperature Tension Tests ofMetallic Materials, in ASTM Standards, Section 3, American Society for Testmg and Materials, Philadelphia, PA,1993.

l l J.M.Fadey Unit 2 Capsule Z

+ .

8-2

16. ASTM E83-93, StandardPracticefor Verifcation and Classifcation ofErtensometers, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.
17. RSICC Computer Code Collection CCC-650, DOORS 3.1, One, Two- and Thme-Dimensional Discrete Onlinates Neutmn/ Photon Transport Code System, August 1996.

I8. RSICC Data Librany Collection DLC-185, BUGLE-96, Coupled 47 Neutron. 20 Gamma-Ray Gmup Cmss Section Library Derivedfmm ENDF/B-VIfor LWR Shielding and Pressure Vessel Dosimetry Applications, March 1996.

19. E. Macrker, et al., Accountingfor Changmg Souwe Distributions in Light Water Reactor Surveillance Dosimetry Analysis, Nuclear Science and Engineering, Volume 94, Pages 291-308,1986.
20. The Nuclear Design ofthe Joseph M Farley Unit 2 Power Plant - Cycle 1, WCAP-9710, May 1980.

[E Proprietary Class 2]

21. The Nuclear Design and Core Management ofthe Joseph M Farley Unit ? Power Plant - Cycle 2, WCAP-10187, September 1982. [E Proprietary Clas:: 2]
22. The Nuclear Design and Com Management ofthe Joseph M Farley Unit 2 Power Plant - Cycle 3, WCAP-10410, September 1983. M Proprietary Class 2]
23. The Nuclear Design and Com Management ofthe Joseph M Farley Unit 2 Power Plant - Cycle 4, WCAP-10674, November 1984. [E Proprietary Class 2]

24, The Nuclear Design and Core Management ofthe Joseph M Farley Unit 2 Power Plant - Cycle 5, WCAP-11150, June 1986. [E Proprietary Class 2]

25. The Nuclear Design and Core Management ofthe Joseph M Farley Unit 2 Power Plant - Cycle 7, WCAP-11542, Rev.1, November 1987. [E Proprietary Class 2]
26. The Nuclear Design and Core Management ofthe Joseph M Farley Unit 2 Power Plant - Cycle 7, WCAP-12193, March 1989. M Proprietary Class 2]
27. The Nuclear Design and Com Management ofthe Joseph M Farley Unit 2 Power Plant - Cycle 8,
  • 1 WCAP-12704, Rev.1, November 1990. [E Proprietary Class 2]
28. The Nuclear Design and Com Management ofthe Joseph M Far:ey Unit 2 Power Plant - Cycle 9, WCAP-13201, March 1992. [E Proprietary Class 2]
29. The Nuclear Design and Core Management ofthe Joseph M Farley Unit 2 Power Plant - Cycle 10, WCAP-13842, Rev.1, December 1993. [E Proprietary Class 2]
30. The Nuclear Design and Com Management ofthe Joseph M Farley Unit 2 Power Plant - Cycle il, WCAP-14318, Rev.1, May 1995. [E Proprietary Class 2]

J. M. Farley Unit 2 Capsule Z . l

p 8-3

31. The Nuclear Design and Core Management ofthe Joseph M. Farley Unit 2 Power Plant - Cycle 12, l WCAP-14789, Rev. O, December 1996. [W Proprietary Class 2]

l:

32. The Nuclear Design and Com Management ofthe Joseph M. Farley Unit 2 Power Plant - Cycle 13,

' WCAP-15035, Rev. O, April 1998. [W Proprietary Class 2]

l

. 33. Southern Nuclear Company (R. W. Clouse) transmittal to Westmghouse (L Perock) containing selected

) Farley Unit 2 operating plant history data, December 15,1998.

34. ASTM Designation E482-89 (Re-approved 1996), Standani Guidefor Application ofNeutmn TransportMethodsfor Reactor WsselSurveillance, in ASTM Standards, Section 12, American Society for Testmg and Materials, Philadelphia, PA,1998.

l 35. ASTM Designation E560-84 (Re-approved 1996), StandaniRecommendedPracticefor Extrapolating Reactor Vessel Surveillance Dosimetry Results, in ASTM Standards, Section 12, American Society for Testmg and Materials, Philadelphia, PA,1998.

36. ASTM Designation E693-94, Standant Practicefor Characterizing Neutwn Exposums in Iron and Low Alloy Steels in Terms ofDisplacementsper Atom (dpa), in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1998.

l l 37. ASTM Designation E706-87 (Re-approved 1994), StandaniMasterMatrixfor Light. Water Reactor l Pussum Vessel Surveillance Standani, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1998.

38. ASTM Designation E853-87 (Re-approved 1995), StandantPracticefor Analysis andInterpntation oflight-Water Reactor Surveillance Results, in ASTM Standards, Section 12, American Society for

_ Testmg and Materials, Philadelphia, PA,1998.

i

39. ASTM Designation E261-98, StandantPracticefor Determining Neutmn Fluence Rate, Fluence, and

, Spectra by Radioactivation Techniques, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.

40. ASTM Designation E262-97, StandaniMethodfor Determining ThermalNeutwn Reaction and Fluence Rates by Radioactivation Techniques, in ASTM Standards, Section 12, American Society for l Testing and Materials, Philadelphia, PA,1998. '

l l -

41. ASTM Designation E263-93, StandantMethodforMeasuring Fast-Neutwn Reaction Rates by l _ Radioactivation offmn, in ASTM Standards, Section 12, American Society for Testing and Materials, l Philadelphia, PA,1998.

- 42. ASTM Designation E264-92 (Re-approved 1996), StandardMethodforMeasuring Fast-Neutmn

- Reaction Rates by Radioactivation ofNickel, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1998.

1.M.Farley Unn 2 Capoule Z f\

8-4

43. ASTM Designation E481-97, Standard Methodfor Measuring Neutron-Fluence Rate by Radioactivation of Cobalt and Silver, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1998.
44. ASTM Designation E523-92 (Re-approved 1996), Standard Test Methodfor Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1998.
45. ASTM Designation E704-96, Standard Test Methodfor Measuring Reaction Rates by Radioactivation of Uranium-238, in ASTM Standards, Section 12, American Society for Testing and

~

Materials, Philadelphia, PA,1998.

46. ASTM Designation E705-96, Standard Test Methodfor Measuring Reaction Rates by Radioactivation ofNeptunium-237,in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1998.
47. ASTM Designation E1005-97, Standard Test Methodfor Application and Analysis ofRadiometric MonitorsforReactor VesselSurveillance,in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1998.
48. A. Nmittroth, FERRETData Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.
49. N. McElroy, S. Berg and T. Crocket, A Computer-Automated Iterative Method ofNeutron Fl:a Spectra Determined by Foil Activation, AFWL-TR-7-41, Vol. I-IV, Air Force Weapons Laboratory, Kirkland AFB, NM, July 1967.
50. RSIC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Se: tion Compendium", July 1994.
51. EPRI-NP-2188, Development and Demonstration of an Advanced Methodologyfor LWR Dosimetry Applications, R. E. Maerker, et al.,1981.

J.M. Farley Unit 2 Capsule 7 ryl  !

A-0 i

APPENDIX A LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS i .

l i

i j

l l

l J.M.Farley Unn 2 Capsule Z

1 A

3 f

F r A - t 2 r 7

4 d a 4 a S t

9 7

L o e r

w w e r e t u

C u rd u a g c t

c t co nd a r

a aL a F

r r Ft s o )F e t

s a

t sr ar e MLmi u r l

t t

F FA mB (

W p d L

a o P p

P g Mia s GMF a x t m

u t o oo l l m U iIIiIII e ee i

x a  : hTmm i i T -

M -

- y M t gMp t t -

P -

- o ,,

e

Il1IiIIIiII i m

T n

y i o

n ge t

iRo g

, e n W R oN f

u n e o g d ia t

a a p o

i t

i o r

. L iPn e

r re Wd Y l

e u u i

v  % t c ct

. - aa r r y = FF g o l1IIIIllI '

P p

\

l

= = W,W

=

A i

x d

n e

p p

A

4

/

_., - __-_ _ - _-~..- _ _,.,__.,_ _.--_ _ _

l8 s . . . . . . .

a e i i e

.i . i i

J.9 .i . . .i e i

i 9 . . . . ae . . . . iu . . . si . . . s . . . . s . .

J r

n

. 4. . . . s.. . . 6 . . i. .... i i e i . .i s O .i i i . .i s. . i i

....a.... .. 6...s ...s.. 4... ....i....a ...

l 6 I i 3 i i 3 i i i e e i

i i

- ..y...a.... i i. . . . .i i i .

4........ 6... ....

F a b e . ...i....s....u.. . . . i i e . i . i i e

i. e i

..a....u..

i e

i i

5...s.....s.. 4...s....

e i i i .

6...a....

i e

i i

- - .i _ . -._ - - - _ _i e

8 a i i e r ~ . - - e i

l 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 BDO .

g Time (msec)

Figure A.1 Specimen CL81

. - _ _ _ . - _ _ = - _ _ _ _ _ _

8 i i i i i e . .

i. i, i.

i i. . . i.

4... 6...

.a. ...,.....,...s....u.. i e i i e

,, i . . . i i . .i a

e i i e i e i i

e i

. r.

v 3

.a.....u...i...s....s..

i i .

i e e

4...s...

.i e 6...a.....

i e i . . .i . i e i .

. . .a....u...t...s....u.. 4 ..s... 6...a....

)

6 'e i 'e i 'e i

i i 'e i i e i e i i i

.a......s....s.......4....s.....s....i e

i i e e i e

i i

li i e i i i . . i 0.00 0.60 120 1.80 2.40 3DO 3.60 420 4B0 5.40 6.00 Trne (msec)

Figure A.2 SpecimenCL80

, 8 i . .

i 8 i i i e

.e i i

. i

. ..e i i .

i 4....a....s....s.,....

i . .

i i

i i

, 8 i e i i i

....i....w..

i i 6...

. 3 4,...,....,.... . .

j . . .

i i e.

i i i . . . .

4...a...s...s....u...u.. 6... .....

6 ' ' ' ' '

i . . . . .

.. .i... 4....a....s.... .

.... ...u..

e 6...i......

i i e i i . i i

.i 8

i A_. .. ~8 ..e _ .._-..__ --_- __

i I i l i 6

ODO 0.60 120 1.80 2.40 3.00 3.60 420 420 5.40 6.00 Trne (msec)

Figure A. 3 Specimen CL90

- A-2

7,.,mm.-,.w.v---,%-w..w..y,.,--,u_.~..- - - - . m ..

4

8 y . . . . . . . .

i s e i e i e i i e i e i . . i i i s. . .i i e i i i p . 3 'i----'---'e---#----'--'--'----'-'-d----

i i

~

i e i i m i i

.i i i e Q

w i i e i i i e i

i i

.a....s...s...s....s..

i i 4...s... 6...a....

a e i 4 .e .i i.

i i

i a

i i i i . i. i. i i

* . .. .a....s...A... ....s.. 4... ... 6...a....

6 i i

e e

i i

i i

e i

i e e.

i i

i i e i i e i i

. f

. .. .a....s...s...s....s..

i 4...s... 6...a....

i e i i e e i e e i e . .

f gi i i .i .i .i i i 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00

.l Trne (msec)

Figure A. 4 Specimen CL79 r_--_ - - - , . _ - , . -

l 8 e e i i e i i e i t i e i i e i i I i

i i i e i

! . . 3. a . . . .es...s...s....s .

i 4...s... 6...a....

i

;i i e i e i i i i t

m i i e i a e i i e i i i i i e i e w i i

... .2....s...i ...s....s..

4...s....

g u i i i .

6...a....

. i j i e i e i i e i i

e

. . . .i i i e i 1

4

. ... a....s...s...s....s.. 4...s... 6...a....

4 6 i e

i i

e i

i e

i i

i e i i i e i e i .i

...la....s...S...s... 6.. 4...

i i i

... 6...a....

i e i i i e i i i i e i i 4 i i g g e i i i e e i e 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne (msec) i Figure A. 5 Specimen CL77 '

eveeenwmenems _ ww. . , .

.s.

8 I

i e i e i i i i

. . i e i i e i e m

..3'....'s...&...s'...'..4.....'B....6...J=...

I i i

e e

i i

6 i e i

i e

e i

e j i i e i e i e i i

w . ..,

....s...s...s....s.. 4...s... 6...s....

. i' i e i

.e i

i . .I i e a i i i e i i e i 4

. ...s ....s.. 5...s....s.. 4...s... 6...a....

- 6 i i e i

i i

e e

i i

i i

i e

i e i i .

e i i

. ...a ...s...$...s ...s . 4... ... 6...a....

e i i i i i e i i e4 e e i e i e i

( g. i. i i e e i .

0.00 0.60 1 20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne (msec)

Figure A. 6 Specimen CL84 A.3 l

b yn,+..-..~.n..-,~n.n....~.---.... -,n-.--,, n

. 5 4 . B 4 5 i i i i e e i . .i

.e . .e . i .i .e i i

i

)

i n

_a.....s...s..

e

. i s....s..

e

.i 4.__s...

6...a

,i i

i i s i e a b

O i i e i e i i i

.a....s...$...a.....s..

i e

i i

4....

6...i e i i e i e .i .i V e . ..

i 6 . ae . . . . i s . . . s . . . si . . . . s. . . _ 4. . . . s.. . . 6 . . . a . . . .

i i e i . . .

i e i e e

.... ....i.... ...

- i n

L a.4..

....s...t.... . . .

6...a_...

e i g - Q, i i e

i i

. .e i

e i

i i

1 j 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00

  • Trne (msec)

Figure A. 7 Specunen CL85 r-8

-,.-- - w .. . , -

. i e i . i i . , ,

... ,o 3,. 4...a.. s... .... ...s .

i 6...

. . i . ......

m i .i . . . . i

e. -

a . ..e .

..i.... ....,... .... ... ..

. i .

e i

6... .....

t j= 1 i . . . e i

,e i i . i.

1 . .... .

, . . . .e .i

.... ... .. 6... .....

6 i4 4....a.___s.,... . ,

, . , , ,. , ,e ',.

. . . . . . i . .

...s... 4....a.......s.......s.

i i e.

i

.6.. 5.....

i e i i i . e. i g i i i e i e i i .

0.00 0.60 1 20 1.80 2.40 3.00 3.60 420 410 5.40 6.00 Trne (msec)

Figure A. 8 Speci nen CL86 8

i t I t i .

( i

., i 1 e

i i e i .

pg 3...'...s'....'....'..4....s'....'...a'....

i i

e i

i i

4 s

i i e 6

. i g .

... ....s..

e i i i...s....

i i

i

. .i

... ... ... 6...a.. .

I i 8 i e i 8 8 e l

i . i. i i i 8 w

i. . i i 3 i e i

. . . a A. . . 'u . . . s . . . s . . . . iu.._4...s...

i 6...a....

6 'M i i e

i e

i e

i e i i i i . e i i.

...a.. ......s_..s....s..

4....s...

6...a....

i i e i . i e.

i e i . e. . e.

g i i e i i e i  ;

0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne (msec)

Figure A. 9 Specunen CL78 A-4 9

(-..~,_-~,-.-,-,.-.--

8

. e i i i . .

,i i i i

e i e y, e i i .i .

i i i e i n ....i .... 4........ 6...a....

. ...i...s.....s.. i . .

m i e . . i. . .

a w

e i

. i i

. .. .s...i... 6..

n j i i

i. .

i i

4....s....

i 6...a....

. i.

. . e i i e

  • i

.... .. ......i...s....s.. 4...s... 6... ....

6 e

. i.

B i

e e

i e

e i .

e i . i . . . i. i.

...a....

g

. e.

...i...s....

i 6..

. 4....s....

i 6...a....

i i i . i. .

e e e 8 i e

. ___i _ e i 6

0.00 0 60 1 20 1.80 2.40 3.00 3.60 420 420 5.40 6.00 j Time (msec)

Figure A.10 Specimtn CL83 8 j

,i , .

.i .

r . i i . .i 3

i i i .e . . .i

... ...s... ...u...

i

,.. 4....e e i .

m . . . . . i . .

i,-

8

..i,..

4... ,....,i,... .... ... ... ....i i i i, ,

j i i e i

e. i.

-M .e .i .

c a 6

. ...i

... 4 i

...s...s..... .

i e ,

...s..

6...

L i . . . . . . .

y ...i... ... ...s.. .........s.. 6...i.....

i e i i . . . e i

{ i i e i i . i i e i .

- . i g i e m

i e 0

0 00 0.60 120 1.80 2.40 3.00 3.60 420 4.00 5.40 6.00 Trne (msec)

Figure A.11 Specimen CL89 TF9fsv% . . eses.ng, , , . .

8

. . i , . . .

, i . i i . .

6....e i

i ... i..

4.... ....s....s.....u...s..

i 1 . .

g . i

...s...

....s...

... ... ..... ).

j ,i i e i

.i .e

. ....i....s....s.....u...s.. 6...i .....

- 1 6 i . . . .

i e i

i e . . . i i i

....i.,..4... a... ....s.....

e i .

e

...i...

i 6...i.....

i i e.

g e i _. .i e i e i d

t ODO 0.60 120 1.80 2.40 3.00 3S0 420 4B0 5.40 6.00 Time (msec)

Figure A.12 Specimen CL87 l

t A-5 i

I J L a

rt 7.n----~.~.-.,,,,.-~--~_-,,._ . - - - - - -

t-

[ 8 3 . . . . . . . . .

. e i i  : e e i e .e . i

. . . .i i e i m

..__a....

...s....

...w.

. _4..___..... i 6...a....

i a e i e i w . ..e ..

_w...a....s.....s..4..........i

. .i . i t

i

. .i i . . . . a.

9 t J .

.f . i i e i l

i

....a.... ...t...s....u.. 4...

l 6 i ,

i

, .i e

i 6.._a.....

1 i . i i . . i .

...a._....i... e t...

i.

.__.s..

. i 4.... .

... 6...a_...

i

. i i.

i .i i .e

$- 8 i i 0D0 0.60 120 1.80 2.40 3.00 3.60 420 4.80 S.40 6DO

  • Time (msec)

Figure A.13 Specunen CL82 r - -'-'- - ~ - - --

1 t 8 i

)> e

. i . . . .

i ....a.__.,....e,...s,._..,u... ,... ... 6.

. _a.....

i m . . . . . . .

g . . .

j i

. ...s._...w... ....

6....

- i

...a..___.... ....s___.6..

t .

6...a 6 .

e

. 4....

i i

t

. e. .

. . . . . , ....c.._4_..

. .i . . . .

. ...a_... .. ... 6...a....

l i e i i .

e i . i. . i g l i e i i .i .i 000 0.60 120 1.00 2.40 3.00 3.60 420 4.80 S.40 6DO Time (msec)

Figure A.14 Specimen CL76

- we . . ....t. .. . .nwn e _ ._ a msmaews 8

. . l t

9 . . . .

. i e i . . . 9

....a..

m .

4._..a.

..s.... .

...u.__6...s___..

! g .g i i i .i I i 8

8

...u..

6... 4....a._..s....

t 6...

. t l .

- 4 . s_.__u..

a...s._.

6.. 6...i..__.

6 ...t... i e

0 e i .l . .i t

.i . i e i i e . .

,. .. 5...a... ... ... .... __6.._6...a.....

e e i . e .

1 r

t B $ e i. e. i g i e i . . . i ODO 0.60 120 120 2.40 3DO 3S0 420 420 S.40 6 00

, Time (msec)

Figure A.15 SpecimenCL88 A.6

.?

gie m.4 ..-w.~e,.-...-m,,,,.__.- __

_.-m.,,_,_.%__c 8

ji 0 . l 1 0

{ t . . .$ 1 e y .t . . . . .I .I i "t

m 5...

t 4....a...s_..

0 e .

....s...u..

I t 6...a.....

. I

} 8

., l l l m

v 8

p g

....a....a....s...

t .

...s... 6.__a.....

B 0 8 O 0 . . I.

...0 .a,...a....s...

2 I I I 1 - . . .... ...u..

6 6...0 t

6 i

...s.... ....a....s.... . .

.u..

6..

. r,..... ,

8 __

d

. f 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 '

Time (msec) l Figure A.16 Specunen CT84 tw~wn~w.~s .. . - .

_ . mm ue mwom.s.ne,ww . . me 8

. I I I I

. .O 0 1 . . .I .  ;

I I B t I . l . 0 l

.....a....a....a._..s....

....i_... ...

...s......

g ....8 ...a...a....s.. 0 0 t

..0I .....

1 0 l

.. .... .__u.. 6 8 8 e . . .

l 0 0 . . . I 3 . 0

$ t B B I 6 i

3

..a....a...a...s....

. .I .t . .I

.e

...s... 6...s.....

.t 8 I

....a....a....s....

i i

6.........

e e

-t

! 8 m.e _ m

- -m __

_m i

0.00 0.60 120 130 2.40 3.00 3.60 4.20 4.80 5.40 6.00 l Time (msec)

Figure A.17 Specimen CT87 w.wsvises - . _ , s . . . - . . . - . _ -

i

. .8 . . . . .

i. . . . . .

. 3. . .

...a....a....s....

....u...i...

6...

i

......a.___a,...s,.. .

i

...u___6....i i

. ...... i

  • 6

.s....a._..a....s....

e e i i

e i i e

6...s......

e i i. . . . .i . . i.

_s._..a....a...s... e.

i

.._u.. 6...a.....

. e. i. .

, 8 L__

i

.i

_ _e .

e

___ ,i ____e -.

I 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4fl0 5.40 6.00 1 Time (msec)

Figure A.18 Specimen CT90 i

A-7

4 l

l l

r,+ ,,

.r men.uw w w.. m.w m*. ~ ~ ~ ww, w,.we v-~~ :

l 8  !

e . e a e s e e e I 3 8 0 8 0 I i 1 0 1 j

8 4 4 9 4 8 . 8 9 1 8 8 6 8 I I I j i '

....s...a...a...s....e....%...s..

I t 6...s..... i i I i 4 6 0 0 2 m i 1 4 3 0 5 8 8 8 3

6 i 5 e i e t 4 0 i

)'-

L

3. . . s. . . . a. . . . J . . . s. . . . s. . . . . . % . . . .s .

6 9 i 0 1 8 0 6 . . . L, . . . . .

I 4 i

  • ~

0 1 0 I 4 0 t 4 j

'...s...a...a...s....s....%...s.. 6...s.....

4 6 4 I

0 B

0 I

I I

e 0 8 0 0 1

B 6 8 8

?

4 0 5

4 1 8 6 4 4 0

. ..t...a...a ..s... .... ...u.. 6...t..... .

I e B 6 8 8 0 5 0

, 0 9 0 0 1 4 5 0 9 b I 4 _--I _ .I ._ . I_ _-I 8 ~ . _ _ .I . _ -. _

8 I L

0.00 0.60 120 if9 2.40 3.00 3.60 420 420 5.40 6.00 l' .

Time (msec)

Figure A.19 Specimen CT83

~

I s g <

4 l

..3....a....a....s...........u..6....

g .

i

. . . . . . . . 1

.6....a,...a,...s....s.....,%...s..6... , ,

, , , . i . . .

5 8 9 0 8

- I t 4

.I 6

i 4....

...s.... .

6..

6.........

.l... .,...a,...a,...s.

...u.

6... .....

4 . 4 g ' ' ' '

N _' - _ '_ _' - -- _!

ODO 0.60 120 120 2.40 3.00 3E0 420 4.80 5.40 6.00 The ensec)

Figure A. 20 Specunen CT77

_ . . - - - _ , , , , MaedR1, i

I 4 5 5 8 6 #a 8 4 s 8 8 8 8' I a # 4 t i e i e e i e e i e i e i e . .

m

. 3 6....a....a.

i e i

..s....s.....%...w..

i e a

6...$.....

S .

)

e i e i e .

...s...u...s.....

e i

.s...a...a...,...

e e e e o e e e e e a s e e s , e i a e i . . . i g

.a...a...a...s....

1 i s

. a 4

...u..

6...a.....

. . . . . i

. ..4 A...a...a... ...s.... ...c.. 6...s.....

i e i e i i i e i e -i e e e e i e g i e i e i i

e e t' ODO 0.60 120 1.80 2.40 3PO 3.60 420 420 5.40 6.00 Timc(msec)

Figure A.21 Specunen CT80 A8 4

i

F-l l

l l

.-,.m n.n,sw n+..m snww _ m s.s,,..,.m, ..e : . m p.-

t 8 '

~

. 1 .

r 1 . . . 1 .

+

b I m

)

I

...a...a._..s........._

. . . .I

...u..

1 6...

fJ Q w g . . . 1 . . . . .

F

_...S....a...a....s....

. .I . I I

....u...u..

6..

l 6......

1 .

' . . . . .I . .

  • 1 0 I

..s....a....a._..s_..s.....u...u..

6...a..... j

  • 6 . . .f .

i .

e

\.. . . . . . i. . .

1 4.A.,...a....a.._.s.........u...s..6...A._....

e

\

g $ . m -

i

. O.00 0.50 1 20 1.80 2.40 3DO 3.60 420 420 S.40 6.00 l i

Time (msec) ep+

Figure A. 22 Specimen CT89 1

_ _ _ - , , - . , . ~ .m j

8 . . . . .

____ .. 4...

...s.___..__.u...u __6... ..... 3 3 '. ' ' 1

~ m . .' . . '. '. '. '. t 8 . . . . . .

, u j

i

...a.... ...s....s.....u...

.. 6...

< i . . . . . .

.. .i... 4.... .__s....s.....u...u...

6 . . . .

6...

P s '

.4'....'...a'...s.'...s.'_...'._..'u.__'6.._s......

8 .

\'

  • 0.00 0.60 120 1 80 2.40 3.00 3SO 420 4.80 5.40 6.00 Tkte (msec) i i 4

Figure A. 23 Specimen CT88

..= _

-8 i

m

.__3.......a._. _s....

1 .

6...

a

___a.... ....s._..s.___. .

j . .

. 6.........

. . . . , , , 4

.... ...a...a_..s_..s....u...u.. 6... .....

6 4 '

. i i

l

. . . s.

._a....s.__.s........u__.u...u...s,..__.

i t

8 O.00 OSO 120 1S0 2.40 3DO 3SO 420 4.80 5.40 6.00 '

Trne (msec) i Figure A. 24 Specimen CT79 i, I

i j.

i.

' A.9

1 E 8 3 . .

1 , ,

...w..

4....a....s...s.___

. 3. .. . . 6...i,.....

n . , , . . , , .

a w

. . . i . . . .

. .i . _ _ 4. . _ _ a. . . . s. . .. ....w.__6.

i....

.i... 4....a._..s.___...__

r

...u..

6...i._....

6 . . .

i

.. a 6.._6_..a......

rl . . . 4. . . . a. . _ _ s. . . . .... . .. ., .

I .

4 t

8 '

x. . . . . . .

O.00 0.60 1.20 1.80 2.40 3DO 3.60 4.20 420 5.40 6.00  ! ,

., Time (msec) , 5- I Figure A. 25 Specunon CT82

(-,--_--.. -

!, 8 i g . . .

....a._..s.

6_.

6...

a

.__a....s......__%...w.6....i.....

o4. . . 4 4..__a....s....

. . ...s.__6.........

...u..

4...a..__s.... .i.._...

.... 6_

f 0.00 Os0 1.20 1.80 2.40 an0 as0 4.20 4.80 5.40 sa0

, Tme (msec)

Figure A. 26 Specimen CT81

( 8

....a....s......_..w..6......_.

i ,, . . . . . . . .

g . . . . . . . .

I

....i._.. .

........s....s. . .

...u.. ...u...

6__ .....

6

..._4.... ...s,.__s.....u__.u.. ,. ,. .

6.__ .....

3 , . , . ,

__i.___4....a....s.___........u__.6,...i,____.

g _4 . . . .

!'

  • 0.00 0.60 1 20 120 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Trne (msec)

Figure A. 27 Specimen CT86 I

4 I

A-10

,._,.-m -__ _ - _ . . , _ _

8' . . . .

i

. . i I . 4 i 3 . . B B i i 9 E . . . . 9 e i

. 6...t.....

I

. . . . s . . 4 . . . .i _ 4 . . . s. . . . s . . . . s . . . i.

t i 4 i 1

,s 1 i i . e i .i e i i

a w

. .i . . , . . i 1

f l ..A.

4.__.a....s...s....s...i...

e i 5

t i

e i

i 1

6...a.....

1 e

9 i

)

1 0 . . i i I f 4 i

  • . ...A.. 4...a...s...s.... ... ..i....s.....

i 4 9 i 4 i e i f

. . i 3 4 i

. . . .I i e i

...t.. 4 .s.....

i

, .i e

..a._..s....s...... i. .

.. 6.

i

_6.

e e i

{ j e i e i .i i, e .

8 i

j l 0.00 0.60 1.20 1.80 2.40 3DO 3.60 420 420 5.40 6.00 1 Time (msec) l Figure A. 28 Specimen CT78 8 l i -

. . . . . & E q e a- e . . i l l  ; e i .i i e i e i . I e e i e e e i e i i

....s_. ...,...s....s...i... 6.. 6.....

t 4...a.

i .

i i . . , i i

,, e i i i . . . .

a w

i ., . ,, s.i . 4...a....,...s....

i e .

. .6...i......

. i. . i e i i . i e . . i i e i e i

~

5

...s... .

4...a....s...s....s...u...u...s......

i e

i i

i i i e i . i a

! . ...s...  :

i a

. . a. . . . . s. i

. . . s.,. . ... . s _ .s u . . 6 . . . t.. . . . . .

o e i e i . . . i 1 i i

f 6

i' 0.00 0 60 1 20 1.80 2.40 3.00 3.60 420 4B0 5.40 6.00 Time (msec)

Figure A. 29 Specimen CT76

-8 . . . ,

l . .

. . . . . e

. . i i . i ,

i, . . . . e i .

m

-i 4...a....s._.. . .

6.....

8 ... ..

. . e 6...i i

..._a.

. . . e

. . . . ., i i i i.

. i i . . i 6

.._i._ .

.4.... -....s....s.....s...u..

. i e

.6...i......

i i

. i. . . . i. . . .

t l.

...s.... .

....a...s...s_...s_.

i i

e

i. .

6..

6...a.....

e i

i 8 9 . . s. . . 3 8 -

6 ODO 020 120 120 2.40 3DO 3.60 420 420 5.40 6.00 Time (meec)

Figure A. 30 Specimen CT85 1

1 4

A.11 I- ,

i

1 i

I

y e . er.e.em.<,a- , v. wm -= w _ .- --
.cr=-

V l '

8 L1 217E1 T 029

. B B . . 4 4 1

. . i i i i .i 1 . . . i i . .i 4...s._.. .6...a.....

P .....a,....u...i...a.....u.. i .

,.,, . .i . . f. . .

' g ...

i . . . .i . . .

J. t ..a,_...s._i...s.....u..4..........u...s..... . .

j i i

.i

. . i e i ,

  • . . i i . 1

...u..

g- 4....s.... 6...a....

?

...a........i.... . . .

i

. . e. i. i

. . . i .

..a...... ...i.... .i ....u.. . 4.... .

.6...a..... i -

j

, 8 ~..___.i_ _. - _. . -

.i .

. f. .i 0.00 0.60 120 1.80 2.40 3.00 3.60 420 420 5.40 6.00 .

Tkne (msec)  !

Figure A. 31 Specimen CW81 p.h- ---.-- w.ne . . ep -

. __ , tnsp. .g W 8 L1 -8.36 T 3.43 j

t . . . .

, ....a,_... i ...i....

....u..

. .4.... .

... 6...a

. i

! m . . . . . i

, g i . . . . .

i

. .i .

i i

.7..a. ...i_...i....

c

....u..

=

3

.4... ...

6...a._...

if .i i i .

i

. . a. . . . . s . . . .i....s.....u..

6 ,

, .4....s....6...a.,....

...i....s. ...u.. .

. .. .... .4... .... .... 4 l

i .

i.

e

. ...s., i i

8 i .

0.00 OE0 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00  !

r. -

Time (mcec) l Figure A. 32 Specimen CW88 Data missing Figure A. 33 Specimen CW76 A.12

r 1

. , ~ . - . . . _ _ - . . ,

l

n. c.~.-.-.~,~

8 Li 104.43 T 1.16

) . . . . . .

1

(

i i i i . i i , i e i i e i i i i i i e . .i .

....a... .....s...s....w..

,s e

i i

i i

i e

e i

i 4...

e i

i ....s...a.....

i g .

i i i e i 6..

i 4...

i i

.,,,L,,,J,,,,

i u ..J,....'....s...J....

, . . i i

j i i .i i i

e i i

i .

j e

i i .i . i e i i e

..a.........s...s... 6.. 4... .... ...a....

f' 6 . ,'

e i

e i

i i

i I,. i e i e i 4

. 4.a ........s...s....w.. 4........ 6...a.... 1 e i i . e i e g l l l l l l l l

. _ m . _ _

l 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4SO 5.40 6.00  !

Trne (msec)

Figure A.34 Specunen CW78 1

t 8 Li 122.69 T 1.47 i e i e i i e i e i l i i e i i e i i e  ;

e i e i e e i i i  ;

....a.... . ..s... ....s.. 4... ... 6...a.... .

e e i . . e e

, 3 .i i e a e i a

i i 1 i e i i i e i e i w ..a...

i

. ..s... ....w.. 4........ 6 ...a....

i i e i e i e i e i i . . . . . e i i i i e i . . i e

- i 6

...a..... .

..s....s.i i

...u....i........

. e i 6...a....

e e i i . .i e.

i e . . . .

.a...a...... .5...i .... .. 4... ... 6...a.... i i e i e e i e

. i l

4 e. e.

t e e a g g e . . . . i I 0.00 OSO 1.20 1.80 2.40 3.00 3SO 420 420 5.40 6.00

}-

Trne(msec)

Figure A. 35 Specimen CW89 8 L1 2963 30 T 0.14 i i . . . . . . .

. i e i i i e i . . . i i- i e i i i e i e i e .

. ...s.... ...s...s... 6...i ... ... 6...a.... ,

e a i . e i i i .

m a

e e3 i i e e

i i e i i i i e l

w

. . . a . . . .dL . . s . . . s . . . . s..

e i 4... ... 6...a....

t i i e e]- i e i

i e i .e .i .e i e i i e e a e i e e

. ...a.... ...s... ....s.. 4........ 6...s....

. i l

6 i e

i e

i i

e e e i .

i e e

i e i e i e i i e

...a.....s i

..s...s....i... 4... .... ...a....

.. i i i e i i

, j i e i e i e i e g , i e g_ i e i e . ,i

" 0.00 OSO 120 1.80 2.40 3.00 3.60 420 420 5.40 6.00 l Trne (msec) l I

Figure A. 36 Specimer CW90 A-13

p.

._- ~ . _ _ _ _

8 L1 39.60 T 2.52 i i

! e i . . .i

.e . . .

e

....e ...s.' i i

3 .

....a.... ...u_. 4......__.6...a....

}- '3 i * ' ' ' ' '

m . .

e v

9

..a.'

i

. . .i i

...u..

4.........t...a.....

.i

'o f.. i . .

i j .i j .i . . . . .

. . . . . . .i .i

, 6

...a.....1 .

. i. . . . i _ . . s .

i

. i.

...u..

i 4.... .

....L...a....

.- t . . . i. 1

. g . . . . . .  !

...a... .

. ...i_.. .

.i i

. .i

...u..

. 4.... .

6...a..... .

8 -

. . i t

ODO 0.60 120 1.80 2.40 3DO 3.60 420 4.80 5.40 6.00 l .

Tore (msec)  ;

Figure A. 37 Specimen CW79 n .-

k 8 L1 27.19 7 4.59 .

. . . . t

.....I..... .......s,....,..

4....

I t . j

.._a..

1 . . .

, . . . . . . . t 8 1

. _a.....

....s.. _...u...

. .... ... . u . . . a.

6

-..a......___.

.6...a.

....a.

j

. . .u . . _ a.

g .

g . . . . .

t ODO 0.60 1 20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 l.

The (msec)

Figure A. 38 Specimen CW85 8 L1 625 T 4.83

....a..... . ... .... . ..... .. 4.... .

- 3

  • s s .

6 . .' .' . , ,' *

..a..... ....s..... ...a.....,..._,....a,....

6

......... . 4

...s.....u...

...a.... .

i

.._a....... .

...s........____.....,.

. . . a.

. . i i g . . . . . i . j ODO 0.60 120 1.80 2.40 3DO 3.60 420 4.80 5.40 6.00 Tone (msec)

Figure A. 39 Specimen CW83 I I

A-14

- - - - - - - - - _ - _ . - , . , ~ _--., -__x _

8 L1 93.78 T 3.43

}

e . I t i t t t . . . . I 9 .

.i

...t ...s....u.. .4.

i .

8 9 '

,; ....a....s i i B 1 4 8 9

4 4

...8.....

-- 3 * ' ' ' ' '

g 1 . , , . . .

8 1

j

..a._...

. ., ...i.,...s,_...,u.. . .... . ... 6...a.....

)

i . . . .

e

.6 . I I L 6 i -

, . ...a ... ....u.. .4.__s... 6...a.-

6 8 i

...s{...9 i ig p

8, i

8 8

8 i

i i

6 s

i i . 4 e i

.i....s....s.. . .e...s...

i e i

...a._...s i

i .-

i e i 6...i ....

i e i i e i i

, - s . ,

.. . .i i e

I 0.00 0.60 1.20 . 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00

- 4 Time (msec) j Figure A. 40 Specimen CW87 1

)

8 L1 116.58 T 0.02 i 1 . . . . . .

e i . . . .

i i i e e e i .i . . . . . . i.

....a ... ...i...s.... .. 4...s... 6...a_...

i i i i e i e i

^ ' ' ' ' ' '

g l 1 . 3 . . .

....'...s..... 4....

e . . .

..a... .. ... 6...a....

j i . . . i

. i . i i.

i. i .i

...a.... ...i- ...s....w.. i 4....

6...a._...

t i

6 i e

i i

e e

i i

i I 64 . e. . . I

. . .I t

...s.....i..I .e ...s....i...4....s.....i....a.....

i i f, 5 l 6 0 t  !

e . .t -

8 i i e

_e_ i l 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 l

Time (msec)

Figure A. 41 Specimen CW77 8 L1 885.55 T 2 09

, . . . . i. . . . .

....a.....s...-.. . .... .... ..

4...

_6.__a.....

g .

1

.a....

.s....

4...

i

- .. ... 6...s....

j '. ' 3 *. ' ' ' 8

.- .. ..s ...s.. 4_......._6...

6 .. . . a', . . . .s ' . d. ' ' '

3

__.a..... . ...i. . .s..... . ... .... . ...

6...

i l l l l l l l

,' t 8 .

l 0.00 0.60 120 1.80 2.40 3.00- 3.60 420 - 4.80 5.40 6.00  !

Tsne (meec) i Figure A. 42 Specimen CW86 i l>

l l A-15 I

P

\

l

-e e .u- .

- + . .

! 8 ' L1 27.19' T' 4.59

. e . s . .

i t . I i 8 i i e i i 4

i. i i . i i

....a..... .t ....t...,i.......'4........ .6...a.....

i i t e- e i .

m i . e e i .

a i

v

.. . i i i e i 1 .a....

1 . s...s... 6.. 4....... .6...a ...

e i i e

.e i- i e i

i i. .i e

i

. i i .i .i i e i e

...a.... ..s....i..__4...

i

.6...a.....

d i i i i e 0 i 1

, e i i e i . i e

)

i e i- e i i i e .

...a.....u...s...

i

..6..4.......

. e.

i

. e.

i e s

i .6...a.

i i i e i e .i .

8 i ODO 0.80' 120 -1.80 2.40 3.00 3.80 4.20 4 80 5.40 6.00 l .

Time (msec) i Figure A. 43 Specimen CW84 8 L1 3519.46 T -1.39 I e i i i

i e i i i .i ).

i . .i e i e i e

....a.... ...s...

m a-e i e

i 4....

e 6...a....

i i e

..s....,. ....u..

i E . .e i e i i

. . Ds. . . .. .. i e e 4... ....s....a....

i e i- i . . .i .i e i e i i a .i . e i . ..a.... ...i.. ....u...a........ 6...a.... )

a t- i i i e i i .t i e i e i. .e i

...a.....i. ...A...s...

t i a e i 6.

i 6...a....

i i i i e i . e i . i s i i i .

e . . .

8 i 1

0.00 0.60 120 1.80 2.40 3D0 ' 3.60 420 4.80 5.40 6.00 Time (msec)

Figure A. 44 Specimen CW80 8 L1 35.57 i ODO i i

. . i . .

....a_...u...

....s....s.. 4...__....

4 6...

. . . ..... 1

.- - i. i. i . . . i . . .

a

. i e . .

l

....i....s..4....i......s....a.....

e i

- . .i .i . .

...s.... ... ...s... 6..

6 .

i i

i B

4....

s

.6...a.....

0

. . i e i . -i

...a....

e.

i e i e

4.... ...

.6...a.....

e i g i i e. i e e i

  • 0.00 0.80- 1.20 1A0 2.40 3.00 3.80 420 4.80 5.40 6.00 l Time (meec)

Figure A.45 Specimen CW82 l

i l

A.16

l l

l 8

. i e a

i e i i i e i i e i i e i i e i e i i i i .

....a.... ...s...a....u..

! m 3 i

i e

i i

i

. 4....s....

. .i i

...a....

g a g .

i e

..a....w...s...s....w..

i e .e e e i e

i 4...s... 6...a.... .

e a e i t i 8 j

E

.i 6 1 i 8 e t l

0' i i i r

t 6

....a....

i i e

...e ...s....w..

i i i e 4...

i i

6...a....

i i e e.

i i i i . . i e i e t i 0 8 e i .i

...s...s,_..

t

. a

. ..a.... u.. 4.....__. 6...a....

i i o i i s e e i e i e i i . .

y ( i i

8 . .

i i e i a i

e. O.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00

! Trne (msec)

Figure A. 46 Specimen CH90

. - -ww.iwe. - - _

, v, e.c.v., -. . ww e-9 8 L1 -14.63 T 4.90 i t . . . . . . . . . l i e 4 e i 8 i i i i

3 ' ' ' ' ' ' '

i

'. '. B I e i i I

..a...s...s... .,i....i....a...I ... 6 ...a....

' i i 8 i 8 i i e m , i . . . .i . i i i E e

..a....

i . e i e i e i 4

...i...s.....s.. 4...s... 6 ...a....  !

i 6 e 6 i t 8 0 I I . i- 8 6 e i  !

i 0

.a.......a....,i ....s..

.i e i e i  !

' 4...s... 6 ...a....

4' 6 '. '. '. '. '.

'e 3 .i

.a....

. . . . . 'e. .i .

g e

i

. ...s....s_...w..

i e i

i 4...

e e

i i

... 6 e

e

...a....

i i

i

, 8 1 ~. - i

_ i. .-__e -

i i

E l.

0.00 DEO 120 1.80 2.40 3.00 3.60 420 430 5.40 6.00 l Time (msec)

Figure A. 47 Specimen CH82

---.n,.: . .

8 L1 18.76 T i 51 i . . . . i

, . . . . . I

, i . e. .i e i e . . 1 m

. 3 . a. . - .ui, .

..$...s.....'-.4.-..s..-.6...a.--..

g e

. . . .i . .i

'q . a . . .s .

..*...s.....w..

i 6...a.....

i 6

e 4....s....

6

.a..... .,

....s.,

.__.6...

. 6...a,....

i, i . .

i . . . . . .

. .. . .i . . .e....,....s.. 4........ 6...a ...

.....e . i i e i e a i l.

i e i e e 8 e i i i j

0.00 OSO 120 1.80 2.40 3.00 320 420 480 5.40 SD0 Tyne (msec)

Figure A.48 Specimen CH77 i-A-17

)

l 1

l ip ..e~w ~~e -w%e-w - m -. .wm

,ww.------.

8 L1 4600.69 T 0.56

, I l . 0 $ 1 0 5 1

e 1 6 0 1 I E 3 p , , , . .

c .

i...u_..s,...s,....,i...4..........,L...a,....

g i kI e 4 9 I . I w .. ...) .u...A...s...

6.. 4...s... 6...a_...

, s 9 8 9 0 0 0

' 5 I I I e t I 8 t e

1 I . 0 0 8 I I I

........ u...t... ..._u_.

4..._s...

6...a....

t 6 i i

I 1

1 9

8 I

t I I

5 i

1 4

8 j

i I . 0 0 0 t 1 I '

) ... ... .u...$...s 6..

l. i e

i 4....

6...s.... .

4 ' ' '

g i e i . a 7

i e I

0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 ,

g Time (msec)

Figure A. 49 Specimen CH83 7._. _ _ __ _ , _ _. __

8 L1 4505.94 T 0.89 i i '

i . .

, .t..u...,....,......u..

cI ., 4.... .

. m . , , . . .

3, -

a . i , , . . . , , .

..a,.. .., ...,._ s.....u.. . 4.... .

6...

i, j , , , . . . .

...u..

,. ...s.

, 6 ,-

4....

... 6........

i

....s.. 4....

...a.,.. 4, 6...a,....

N. w.

. e i . .

8 -

e

- i.

i 0.00 0.60 '120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

.a Figure A. 50 Specunen CH86 8 L1 20.86 T 0.98 i i

i e i e

. . i e . .i i . .

4 e . i e e . .i .

....a......u...s,_..s.... .6.. 4....s.... .6...a..__.

i s

, l n . I i . 0 0 t I I 1 . ,

e w 3 '

. . a' . _,..'u...A...s'....'s..4...'.....'6...a'.... ' l I

q I

I 8 1 I B B 1 8 5 l 5 0 8 0 0 $ G

. I I f I 8 I. f. I

..Ja....u...&..ee.....b.. 4....u.. 6...J ...

i 6 0 0

d 1

, 6, 4

t 8

8 9

0 0

4 5

I i t .

6...1

, B i 8 I

. ...a... ..(... 6.. 4...

l e

i i

6...s...

e e i

. i e

e e

i

. t i I I 8 5 0 0.00 0.60 120 1.80 2.40 3.00 3.00 420 4.80 5.40 SD0 Trne (msec)

Figure A. 51 Specimen CH85 A.18 1

l l

r

! 8 L1 8.34 T 2.38 i . . . , , . . .

  1. i .

i l i e

" i e i l e i . .i 3.

_1 . . . .'s . . . s' .' . . .'. . . .'s.. . 4 . . . .'..

i e e i

. . .'6 . . . a'. . . .

i s

n i .

.i i . .e i

[ u8

. e i i .

. ..s ....s...s.... ,....u.. 4...s... 6...a....

i i i i e i i 1 j , e i > a i

e i i

g e i i e l i i e .i .e 6

a..... ..

...s.....'....u..

e i i i

4...s i

6...a.....

i e.

i

. . . I i i. i e

. ...a ......s... '.... ..

, .i s

. e l

l s

e 4....s.... e 6...a....

i a

. . e '

. a. . . . i.

{ $ . l. i 5

  • 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 f Time (msec) l Figure A. 52 Specunen CH76 i

. - - ,. m ._, i 8 L1 14.58 T 3.34  !

I e

i i

e

. , , )

e.

i e i . . .

I .

i i

- i i i i i e i 1 ...3....s...t......... i i

i e

i i

.4....s...

6...

i e

e a

w i e i e . . . i F..ai ....s...s...a....u..

. i . .4....s .. 6...a....

i i i i e i e i i

.i i e i e e i i

i 1

. . . a. . . . .. s . . . s. . . a. . . . .. u . . .4...s... 6...a ...

6 i e . . . . .

i

e. <

i ;

j i i , a i i a 3 .. . .i . i . . s.s......s...

. . . i4 ... .4....s....

6...a....

i e

?k l-i i e i e i e i

8 f _!_

  • O.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00
Tyne (msec)

~

Figure A. 53 Specimen CH78 8 1 e . . e i . . . e i i i e . . . .

1 i

e

.:9.s...t...s.....u.......s...

i i . . .i i

6...a e i I

a i

...a....

i e a i i

i i

e e

e i

i 6...a.....

e l

i

...&...s.....u..

. 4.... .

., e.

...a... .u...

. . .e .i

....s.,....u.. 4....s...

. 6...a....

6- ., ie i .

i e e

i Li i

i

...a..

i e 43....a...s....

i i

...e ....s..

i 6...a..

i e

.i .i .i e i e

. g, i

_e __ __i e_ e . i. i.

m. - -

O.00 OSO 120 1.80 ' 2.40 3 00 3.60 420 4.80 5.40 SD0 Trne (msec)

Figure A. 54 Specimen CH87  !

l l

A-19 l

i

m.m.,._- ._ - - . _ , _ -, _ . ~ . _ _ __,

8 L1 45.73 T 0.55

> . . . . . . . . s f i i i i e i r

. i i . .i .i . i i I . I i i

...t...s....s..

i 4.......

e i 6...a....

i e i i e i .

y n i e i i a

w 3..

. i. . . .

e e i i

e i

i

.....s...A...s....i...

1 3 y i e

i .

i 4....s... i 6...a....

e i

[ 3 i i e i e t i . .i i i e . i x . . .. .....s...s...s....s.. 4...s... 6...a....

6 i i

i i

i i

i e

i e

i i i i e i e i i

. .. ..... ...s...s....s.. 4... ... 6...s.... -

i i a e e e i i ,

i . . . . i. . . .

. e i i A iA ___ m _ _ < _

i e e i m_m _ __ _i . _ _

l 0.00 ' O.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 .

g Time (msec)

Figure A. 55 Specunen CH80

_ _ , - _ . _ _ _ ~

8 i I i i e i i 8 i e e e i e i e i i i. . i e t

. . ...w.. 6...s....c.. 4...s... 6...a....

i e i i e h n e. .

i e i a e i i i e i

[ e I e . I

- w I e i i

..a.....s.

. ..A....s....c.. I t

i 4...s...

i i 6...a....

i a g i e . .

e i e. . i. .

i

. I e

....s.....s..

i, .

...a....s... 4...s... 6...a....

0 e i

i i i e i

i e i

i e

e e i i i e i i e .

. ...a.... ...s.. ....i... 4... ....i....a....

i e i i e . .

e i i .i

' h.

i i e i g f ' ' ' ' ' '

O.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 t Time (msec)

Figure A. 56 Specunen CH89

! 8 i i e i i i e

> . . . .i i i e e.

i

[ l e a i 8 e e i l

' ...s.3..s.. 6...s....w.. 4...s... 6...a....

I a t

i e i i i i e i i ,

e i e e -

I i ., i . . . . e i i v i

..a.....s...$ ..s....s i

i e

i i

e e

i i

i

. 4...s...

i i .i 6...a.....

. i i e i i e i

- i j ...a....s 6

..s....s

. i

...s i

. 4...s...

a e 6...a....

i 4

e i e i. .

. . . s . . 4.is...a...s....i.. . . . .

i e i i

j .

4...

r i i

... 6...a....

e e e i e i i I i e i i e i i

.i . .

s l e i . i e i ODO Ofc 120 1.80 2.40 3.00 3.60 420 4.80 5.40 SD0

' Trne (msec)

Figure A.57 Specimen CH88 l i

i A-20

.m emm -w .  ; e, . r -,, ~ w . m.4cm ..-w..

8

. s e t i e i , a f 8 i i t 4 i i i

. . I I

l I 8 1 4

...i ....i....t...s.... .. 4...s-.. 6...a....

I e  ! i i e i i m 9 . . I i g

g .

..a.....

. . .I .I 2 i

..t....s.....w..4....s....6...a.....

3 e i .

e .

. .i I . .i

. 6

...a..... i

...s,....u.. 4... ....u...a.....

i i . .

i . . . . .

t . . . . . . .

...u..

....a....u...a.,..

e

., i i

4....s.... 6...a....

. .I e . . . .

8 l . . .

. 0.00 0.60 1.20 1.80 2.40 3.00 3SO 4.20 4.80 5.40 6.00 Time (msec)

Figure A. 58 Specunen CH84 8 L1 4278 S4 T 0.63 3

i e i e i e i i s i i i e i , e i i 1 i .i .i i . .

....a

! m g i ....u...t....s.....c..

e i e i

4...s.... .6...a..

i e i

... 1 1

a S . ...a i

i e n i 4...s...

e I e 6...a....

"I i e ...A...s.....i..

a . t 4 i 8

r. i e i i i e i i a 4 - i .. e i e i i i i i

. ...a ....u.. s...s....u.. 4...s... 6...a.... l 6 i i

e i i i

i i

i e. i. e.

i i

4 I 8 i i 1 8 e . I

...a ....u...t.

s.....w..

i i

4...s...

.i .

6...a.....

I. g ,

i e i i __ . . . e.

l 0.00 OSO 1.20 1.80 2.40 3.00 3.60 4.20 420 5.40 6.00 Trne(msec) r j Figure A. 59 Specimen CH79 I 8 L1 4076.36 T 0.38

. 4 4 5 8

. .B .

i 1 . . . i. . . .

t i I 4 . f . t 4 i

t i

4

.a....u...a...s.....i...

i e i

i 4...s...

e 6...a....

).

l

= b .l . . a.....u.

...s....w..

4...s...

i. . .

6...a....

9 i e i e i 3 .

i

. . . i. . . . j g-

. .. .a....u...s.

n e

e i

e

.s....w...e ...s...

e s.

i

. I i i 6...a e

i

) i e i e i i e t

i. t t i 9 8 i i.

.. .a ...u...A... ..w..

4....s

. .. 6...a....

e i . . i e i . . i i i t

8 i i 0.00 OSO 1.20 120 2.40 3.00 3SO 4.20 420 5.40 6.00

, Tene (msec)

_ ._ _ . . _ _ _ _ _ . _ a Figure A. 60 Specimen CH81 A.21

r-B-0 APPENDIX B CHARPY V-NOTCH SHIFT RESULTS FOR EACH CAPSULE HAND-DRAWN VS. HYPERBOLIC TANGENT CURVE-FITTING METHOD (CVGRAPH VERSION 4.1)

NOTE:

The CVGRAPH Charpy V-notch results given in this Appendix were developed by fixing the lower and upper shelf energy values to those given on page C-1 of Appendix C to this report.

l l

l J.M. Farley Unit 2 Capsule Z

n B4 I

I TABLE B-1 Changes in Average 30 ft-Ib Temperatures for Intennediate Shell Plate B7212-1 (Longitudinal Orientation)

Hand Fit vs. CVGRAPH 4.1 Capsule

(

Unitradiated Hand Fit AT30 Unirradiated CVGRAPH AT30 Fit 1

U -23 F 120 F 133*F - 21.9 F 82.5 F 104,4"F l I

W -23 F 142 F 165*F - 21.9 F 145.4 F 167.3 F I l

X -23 F 157 F 180'F - 21.9 F 142.5 F 164.4*F l Z f

- 21.9 F 177.6 F 199.5 F i TABLE B-2 Changes in Average 50 ft-lb Temperatures for Intermediate Shell Plate B7212-1 (Longitudinal Orientation)

Hand Fit vs. CVGRAPH 4.1 1

l Capsule Unirradiated Hand Fit AT50 Unitradiated CVGRAPH AT50 I Fit U 8F 143'F 135 F 10.2 F 140.2*F 130.0 F W 8F 198 F 190'F 10.2 F 185.5 F 175.3 F X 8F 208 F 200*F 10.2*F 186.5'F 176.3 F Z 8F -- --

10.2*F 199.5'F 189.3 F J.M.Farley Unit 2 Capsule Z i ..

B-2 1

TABLE B-3 Changes in Average 35 mil Lateral Expansion Temperatures for Intermediate Shell

- Plate B7212-1 (Longitudinal Orientation)

Hand Fit vs. CVGRAPH 4.1 )

i l

Capsule Unirradiated Hand Fit Unirradiated CVGRAPH AT35 AT35 Fit U - 10 F ll8'F 128 F 1.6 F 122.2 F 120.6*F W - 10*F - 175 F 185'F 1.6 F 167.6'F 166.0 F ,

X - 10'F 175 F 185'F 1.6'F 183.0 F 181.4'F Z. - 10*F -- --

1.6'F 212.3'F 210.7*F TABLE B-4 Changes in Average Energy Absorption at Full Shear for Intermediate Shell Plate B7212-1 (Longitudinal Orientation)

Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AE Umrradiated CVGRAPH AE Fit U 130 ft-lb 94 ft-lb - 36 ft-lb 130 ft-lb 94 ft-lb - 36 ft-lb W 130 ft-lb 102 ft-lb - 28 ft-lb 130 ft-lb 102 ft-lb - 28 ft-lb X 130 ft-lb 94 ft-lb - 36 ft-lb 130 ft-lb 96 ft-lb - 34 ft-lb Z 130 ft-lb -- --

130 ft-lb 94 ft-lb - 36 ft-lb .

1.M.FarleyUnn 2 Cepoule Z

ps

. B-3 l ,

TABLE B-5 l Changes in Average 30 ft-lb Temperatures for Intermediate Shell '

Plate B7212-1 (Transverse Orientation)

' Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH AT30 AT30 Fit

!* U - 13*F 120*F 133 F - 7.9'F 115.1 F 123.0 F W'-

- 13'F 152 F 165'F - 7.9'F 161.0 F 168.9'F X - 13 F- 177 F 190 F - 7.9'F 192.3 F 200.2*F Z - 13 F -- --

- 7.9 F 188.2'F 196.l'F l

s TABLE B-6 i 1

' Changes in Average 50 ft-lb Temperatures for Intermediate Shell Plate B7212-1 (Transverse Orientation)

Hand Fit vs. CVGRAPH 4.1 1

Capsule . Umrradiated Hand Fit AT50 Unirradiated CVGRAPH AT50 Fit 1

U 8'F 143 F 135'F 33.2'F 180.7 F 147.5 F W- 8*F- 198'F 190 F 33.2*F 218.3 F 185.I'F X 8'F' 208'F 200*F 33.2*F 221.7*F 188.5'F -

Z S'F -- --

33.2*F 231.6'F 198.4'F i

- J.M.Farley Unn 2 Capsule Z l

( '

B-4 1

i l

TABLE B-7 i Changes in Average 35 mil Lateral Expansion Temperatures for Intennediate Shell Plate B7212-1 (Transverse Orientation) ,

Hand Fit vs. CVGRAPH 4.1 Capsule Umrradiated Hand Fit AT35 Unirradiated CVGRAPH AT35 Fit

^

U 32*F 160 F 128 F 27.2 F 146.5 F 119.3 F W 32*F 190'F 158*F 27.2 F 182.2 F 155.0'F ,

X 32 F 222 F 190 F 27.2 F 214.4 F 187.2 F Z 32 F -- --

27.2 F 225.6 F 198.4 F TABLE B-8 Changes in Average Energy Absorption at Full Shear for Intermediate Shell Plate B7212-1 (Transverse Orientation)

Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AE Umrradiated CVGRAPH AE Fit U 95 ft-lb 69 ft-lb - 26 ft-lb 95 ft-lb 69 ft-lb - 26 ft-lb W 95 ft-lb 76 ft-lb - 19 ft-lb 95 ft-lb 76 ft-lb - 19 ft-lb

- 1 X 95 ft-lb 69 ft-lb - 26 ft-lb 95 ft-lb 69 ft-lb - 26 ft-lb Z 95 ft-lb -- --

95 ft-lb 68 ft-lb - 27 ft-lb .

I I

l l

l i

l J.M. Farley Unit 2 Capsule Z '

B-5 TABLE B-9 Changes in Average 30 ft-lb Temperatures for the Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 l J

Capsule Unirradiated . Hand Fit Unirradiated CVGRAPH AT30 AT30 i Fit 1

- 1 U - 30 F__ - 20*F 10 F - 34.7*F - 63.4*F - 28.7 F W - 30*F -20 F 10*F - 34.7*F - 28.0 F 6.7'F I X - 30 F - 20 F 10'F - 34.7'F - 50.0 F - 15.3*F Z -30 F -- --

- 34.7*F - 24.7'F 10.0 F TABLE B-10  !

l Changes in Average 50 ft-lb Temperatures for the Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit Unirradiated CVGRAPH AT50 AT50 Fit

-U - l'F 9F 10*F - 15.6 F - 26.9 F - II .3'F W - l'F 9F 10 F - 15.6'F - 3.6 F 12.0 F X -1 F 9F 10 F - 15.6'F - 17.8 F - 2.2*F Z - l'F -- --

- 15.6 F - 1.4 F 14.2'F I

I J.M. Farley Unit 2 Capsule Z L

r 1 B-6 TABLE B-ll Changes in Average 35 mil Lateral Expansion Temperatures for the Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT35 Unirradiated CVGRAPH AT35 i Fit U - 20*F - 17 F 3F - 23.0'F - 44. l'F - 21. I'F W - 20 F - 10'F 10 F - 23.0 F - 18.7 F 4.3*F ,

X - 20'F - 10 F 10*F - 23.0 F - 29.9 F - 6.9 F Z - 20 F -- --

- 23.0 F - 0.5 F 22.5 F TABLE B-12 Changes in Average Energy Absorption at Full Shear for the Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 Capsule Unitradiated Hand Fit AE Unirradiated CVGRAPH AE Fit U 144 ft-lb 132 ft-lb - 12 ft-lb 144 ft-lb 132 ft-lb - 12 ft-lb W 144 ft-lb 144 ft-lb 0ft-lb 144 ft-lb 144 ft-lb 0ft-lb X 144 ft-lb 144 ft-lb 0 ft-lb 144 ft-lb 150 ft-lb 6ft-lb Z 144 ft-lb -- --

144 ft-lb 133 ft-lb - 11 ft-lb .

I J. M.Farley Unit 2 Capsule Z I

r B-7 TABLE B-13 Changes in Average 30 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit Unitradiated CVGRAPH AT30 AT30 Fit U - 131 F - 73 F 58 F - 175.4'F - 76.5'F 98.9 F W - 131 F - 22?F 109'F - 175.4 F - 27.7 F 147.7 F

. X - 131 F - 21 F 110 F - 175.4 F - 65.8*F 109.6 F Z - 131'F -- --

- 175.4 F - 32.8 F 142.6 F TABLE B-14 Changes in Average 50 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Capsule Umrradiated Hand Fit Unitradiated CVGRAPH AT50 AT50 Fit U - 83*F -33 F 50 F - 116.8'F - 44.6'F 72.2*F W - 83 F 0F 83'F - Il6.8'F - 16.2"F 100.6 F X - 83*F 12 F 95 F - 116.8 F - 39.9 F 76.9 F Z - 83 F -- --

- Il6.8*F - 3.2 F 113.6 F i

J.M.Farley Unit 2 Capsule Z 6

p 1 B-8 i

TABLE B l Changes in Average 35 mil Lateral Expansion Temperatures for the Weld Heat-Affected-Zone Material j Hand Fit vs. CVGRAPH 4.1 L Capsule Unirradiated Hand Fit - AT35 Unirradiated CVGRAPH AT35

' Fit l U - 91 F - 38*F 53 F - 111.3 F - 59.6*F 51.7 F

~

l- W - 91 F -5F- 86*F - 111.3*F - 20.3*F 91.0*F X - 91*F -5 F 86 F - 111.3*F - 36.8*F 74.5 F

! Z- - 91*F -- --

- Ill.3*F 5.l*F 116.4 F f

i I-TABLE B-16 L Changes in Average Energy Absorption at Full Shear for the Weld Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AE Unitradiated CVGRAPH AE Fit U 158 ft-lb 111 ft-lb - 47 ft-lb 158 ft-lb 111 ft-lb - 47 ft-lb I

W 158 ft-lb 126 ft-lb - 32 ft-Ib 158 ft-lb 126 ft-lb - 32 ft-lb '

~

X 158 ft-lb 126 ft-lb - 32 ft-lb 158 ft-lb 128 ft-lb - 30 ft-lb

-- Z 158 ft-lb --~ --

158 ft-lb 126 ft-lb - 32 ft-lb .

J.M. Fadey Unit 2 Capsule Z 1

1 C-0 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TANGENT CURVE-FITTING METHOD i

J.M. Farley Unit 2 Capsule Z

g -r- )

1 C-1 Contained in Table C-1 are the upper shelf energy values used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 4.1. Lower shelf energy values were fixed at 2.2 ft-lb. The i umrradiated and irradiated upper shelf energy values were calculated per the ASTM El85-82 definition of upper shelf energy, "the average energy value for all Charpy specimens (normally three) whose test

temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy."

l Table C-1 Upper Shelf Energy Values Fixed in CVGRAPH Material Unirradiated Capsule U Capsule W Capsule X Capsule Z Inter. Shell Plate B7212-1 .130 ft-lb 94 ft-lb 102 ft-lb 96 tt-Ib 94 ft-lb (Longitudinal Orientation)

Inter. Shell Plate B7212-1 95 ft-lb 69 ft-lb 76 ft-lb 69 ft-lb 68 ft-lb (Transverse Orientation)

Weld Metal 144 ft-lb 132 ft-lb 144 ft-lb 150 ft-lb 133 ft-lb (Heat # BOLA)

HAZ Material 158 ft-lb i11 ft-lb 126 ft lb 128 ft-lb 126 ft-lb f

J.M.Farley Unit 2 Capsule Z L .-.

UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 133430 on 12-21-1998 Page1 Coefficients of Curve 1 A = 66.09 B = 63.9 C = 84.01 TO = 3137 Equation is CVN = A + B * [ tanh((T - TO)/C) l Uppr Shelf Energy:130 Fixed Temp. at 30 ft-lbs -21B Temp. at 50 ft-lbs 10 2 lower Shelf Energy 2.19 Fixed Material PLATE SA533B1 Heat Number: B7212-1 Orientation LT Capsule UNIRR Total Fluence 30o m 25o Q

I a

% 22 D%

t:to 4 150 0 a e

,' C' u

1, l Z l >

O 50 w D

0 0

-300 -200 -100 0 100 200 300 400 500 600 4

~

Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: UNIRR Material: PLATE SA533B1 Ori.: LT Heat l: IT/212-1 Charpy V-Notch Data Temperature input CVN Energy Computed CVN 5hrgy Differentie!

-60 12 15.09 -109

-50 15 18.13 -3.13

-25 34 2E42 557

-25 19 28.42 -9.42

-10 47 36S4 10.35 0 50 42.95 7D4 20 63 57.12 537 50 72 79.67 -7S7 60 67 86.72 -19.72

Data continued on next page

C-2

i

, UNIRRADIATED Page 2 Material: PLATE SA533B1 Heat Number. B7212-1 Orientation: LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 75 103 9629 6.7 100 111 108.91 2.08 125 123 117.44 5.55 150 132 122To 921 210 132 128J8 3B1 210 134 12838 5.81 210 130 12838 1B1 SUM of RESIDUAIS = 20B1 l

l e

O C-3 t.... . _ - . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - . _ - - . - _ - . - - - _ _ - - _ - - - - - . - _ _ _ _ _ - - -

7 CAPSULE U i CVGRAPH 43 Hyperbolic Tangent Curve Printed at 13S410 on 12-21-1998 Page1 Coefficients of Curve 2 A = 48.09 B = 45.9 C = 126.01 TO = 135.02  !

Equation is CVN = A + B ' I tanh((T - TO)'C) J Upper Shelf Energy 94 Fixed Temp. at 30 ft-lbs 82.4 Temp. at 50 ft-lbs 1402 Lower Shelf Energy 2.19 Fixed Material: PLATE SA533B1 Heat Number: IT/212-1 Orientation: LT Capsue U Total Fluence 300 m 250 4

I x am N

u 4 150 D

c m

100 0 "

n h

O od

/oo 50 ogo J l l l

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant; FA2 Cap;U Materiah PLATE SA533B1 Ori: Lt Heat f: Ir/212-1 Charpy V-Notch Data Temperature input CYN Energy Computed CVN Energy Differential 0 14 1134 2.15 ,

50 - 24 2L11 238 75 33 27.75 524 100 41 35f;6 533 125 42 44.45 -145 150 46 53.52 -752 150 54 5152 .47 175 53 62.18 - 9.18 l

i

- Data continued on next page

  • C-4

CAPSULE U  !

Page2 Material: PLATE SA533B1 - Heat Number: B7212-1 Orientation: LT Capsule: U Total Fluence:

Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 200 74 6936 433 200 55 6936 -14.86 225 89 7623 12.76 250 90 8124 8.75 300 92 87.75 424 350 99 91.06 7.93 400 98 92.64 535 SIS! of P2SIDUAIS = 2524 e

d C-5 L.

CAPSULE W CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13S4d0 on 12-21-1998 Page1 Coefficiente ' Curve 3 A = 52.09 B = 49.9 C = 92.4 TO = 18937 Equation is CVN = A + B * [ tanh((T - TO)/C) J Upper Shelf Energy: 102 Fixed Temp. at 30 ft-lbs 145.4 Temp. at 50 ft-lbs 1814 lower Shelf Energy 2.19 Fixed i Male:ial: PLATE SA533B1 Heat Number: B7212-1 Orientation: LT  !

Capsule: W Total Fluence:

t -

m 250

,C I

a N 2m X

u 4 150 0

c N o - m 100 e e Z e 0 .

50 , e l

,. s o i j

-300 -200 -100 0 100 200 300 400 500 600 l Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; W Material: PLATE SA533B1 Ori; LT Heat f. B7212-1 Charpy V-Notch Data 4 Temperature input CVN Energy Computed CVN Energy Differential 0 6 332 237 73 26 9.63 1636 100 34 14B 19.19  ;

125 15 E04 -7D4 I 150 W E03 -5.03 150 40 32.03 7.96 175 40 4439 -4.39 175 38 4439 -639

  • Data continued on next page -

C-6

CAPSULE W Page2 Material: PLATE SA533B1 Heat Numben B7212-1 Orientation LT Capsule: W Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 200 49 57B1 -831 200 45 5731 -1231 225 82 70.43 It56 250. 93 8033 12.16 300 103 93B5 934 350 100 99 .99 400 103 100.96 2.03 SUM of RESIDUALS = 3728 4

i C-7

CAPSULE X CTGRAPH 41 Hyperbolic Tangent Curve Printed at 13S4 10 on 12-21-1998 Page1 Coefficients of Curve 4 A = 49.09 B = 46.9 C = 96.53 TO = IM21 Equation is CVN = A + B * [ tanh((T - TO)/C) )

i Upper Shelf Energy 96 Fired Temp. at 30 ft-lbs 1424 Temp. at 50 ft-lbs 186 lower Shelf Energy: 219 Fired Materiah PLATE SA533B1 Heat Number. B7212-1 Orientation LT Capsule: X Total Fluence:

300 m 250 4

I N am X

tw 4 150 0

c N .. L 100 a y -

U ,

50 2 J

o t

-300 -200 - 100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: X Materiah PLATE SA533B1 Ori; LT Heat h B7212-1 Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential 0 2 421 -221 72 19 10.55 8.44 100 28 1614 ILB5 125 22 23.46 -L46 125 18 2146 -5.46 l 150 37 3313 3.86 j 150 33 3313 -13

" Data continued on next page =

C-8

CAPSULE X Page2 Material: PLATE SA533B1 Heat Number: B7212-1 Orientation: LT Capsule: X Total Fluence Charpy V-Notch Data (Continued)

Temperature input CvN Energy Computed CVN Energy Differential 175 46 44S3 1.36 200 47 56.69 -9.69 200 42 56f9 -14E9 225 73 67B1 5.18 250 92 76B8 15J1 350 97 93.07 3.92 400 102 94.93 7.06 450 94 9522 -1.62 SUM of RESIDUAIS : 215 .

i e

9 i

I C-9

CAPSULE Z CVGRAPH 4l Hyperbolic Tangent Curve Printed at 1331:10 on 12-21-1998 Page1 Coefficients of Curve 5 A = 48.09 B = 45.9 C = 67 5 TO = 205.78 Equation is CVN = A + B

  • 1 tanh((T - TO)/C) ]

Upper Shelf Energy 94 Fixed Temp. at 30 ft-lbs 177S Temp. at 50 ft-lbs 208.5 Lower Shelf Energy: 219 Fixed Material: PLATE SA533B1 Heat Number. IT/212-1 Orientation: LT Capsule Z Total Fluence 30o m 250 l Q  !

- i l l J 1

% 200 l h

un ,

L 150

1) J c:

N 100 e m

> 4 0

So- e f

d o  ;

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap: Z Material: PLATE SA533B1 Ori: LT Heat f: IT/212-1 Charpy V-Notch Data Tempaature Input CVN Energy Computed CVN Energy Differential l 0 5 24 259 l 72 21 3.91 172 125 17 9.89 71 150 20 16.!Tl 3.02 175 28 28.52 -52 190 39 37 5 L43

= Data continued on next page "

C 10 .

)

CAPSULE Z Page 2 l

Material: PIATE SA533B1 Ifeat Number B7212-1 Orientation: LT Capsule Z TotalFluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 200 25 4 4.18 -19.18 210 60 50.96 9.03 225 60 6031 -El 250 74 74.47 .47 275 94 8352 10.47 300 90 88.68 121 350 91 9173 -1.73 400 96 917 229 450 98 93.93 4D6 .

SUM of P.EIDUAIS = 35f9 O

N C-11 l

I-l UNIRRADIATED f CVGRAPH 4J Hyperbolic Tangent Curve Printed at 165255 on 12-21-1998 Page1 Coefficients of Curve 1 A = 45.82 B = 44B2 C = 84S2 TO = 225 Equation is E = A + B * [ tanh((T 'lV)/C) l Upper Shelf 119035 Temperature at E 35- L6 lower Shelf 111 Fixed {

Materiah PLATE SA533B1 Heat Number. B7212-1 Orientation LT  !

Capsule: UNIRR Total Fluence:

200 1

c m

O 150 a

M M 100-Ew 0

c f l 4

d O a so e

O 0

-300 -200 -100 0 100 200 300 400 500 600

~

Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: UNIRR Material: PLATE SA53381 Ori.: LT Heatb.IT/212-1 Charpy V-Notch Data Temperature input lateral Expansion Computed E Differential

-60 9 1217 -3.17

-50 11 14.69 -339

-25 26 23.01 2.98

-25 16 23.01 -7.01

-10 35 29.41 558 0 40 34JB 531 20 49 445 4f) 50 60 59.9 49 60 53 64.48 -1L48

Data continued on next page

C-12

i l

l UNIRRADIATED Page2 Material: PLATE SA533B1 Heat Number. Ir/212-1 Orientation: LT Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input lateral Expansion Computed LE Differential 75 71 70M .45 100 80 7828 111 125 84 8335 .64 150 91 86.45 454 210 89 89.6 -S 210 87 893 -?.6 210 90 893 .39 SUM of PJSIDUAIS = -134 C-13

1 l

CAPSULE U l

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 165255 on 12-21-1998 l

Page1 l

Coefficients of Curve 2 A = 43.01 B = 42.01 0 = 130B9 TO = 147.39 Equation is: E = A + B ' I tanh((T - TO)/C) l I Upper inelf LE: 85.02 Temperature at 2 35 122.1 lower Shelf LE: 1 Fixed Material: PLATE SA533B1 Heat Numben IT/212-1 I Orientation LT Capsule: U Total Fluence

- 1 20o i

i en

.O 150 b

a

>i 100

~ .. .

90 g

W l a  ?

e a 5o O

o 4 s

U l

-300 -200 -100 0 100 200 300 400 500 600 l

Temperature in Degrees F l Data Set (s) Plotted Plant: FA2 Cap; U Material PLATE SA533B1 Ori: LT Heat #: IT/212-1 Charpy V-Notch Data Temperature Input lateral Erpansion Computed LE, Differential l

0 8 8.97 -F/ j 50 21 16.4 4 455 l 75 27 2136 5.13 i 100 34 28.41 558 125 31 35B8 -4B8 l 15 0 38 43B5 -5B5 i 150 40 43B5 -335 3 175 40 5L75 -1L75  ;

  • "* Data continued on next page ****

C-14 i i

CAPSULE U Page 2 Material PLATE SA533B1 Heat Number. IT/212-1 Orientation: LT Capsule U Total Fluence:

Charpy V-Notch Data (Continued)

]

Temperature Input lateral Expansion Computed 12 Differential 200 59 59.06 .06 200 63 59.06 3.93 225 81 6529 15.6 25, 72 70.55 L44 300 76 T/.61 -1.61 350 80 81.4 -t4 400 80 833 -33 SUM of Pl51DUAIS = 254

- l i

C-15

i i CAPSULE W i CVGRAPH 4J Hyperbolic Tangent Curve Printed at 165255 on 12-21-1998 Page1

Coefficients of Curve 3 l

A = 4141 B = 42.41 C = 155.01  !

TO = 19&To Equation is 2 = A + B

  • I tanh((T - TO)/C) ]

Upper Shelf 1185.83 Temperature at E 35: 1675 Irwer Shelf LE 1 Fixed Material: PLATE SA533B1 Heat Number. B7212-1 Orientation: LT Capsule W Total Fluence i y 1 m

." 150

~

n M

100 m -

$ e a so -

  • Y
s. '

9 e o*

A O

-300 -200 -100' O 100 200 300 400 500 600

~

Temperature in Degrees F Data Set (s) Plotted Plant: F/.2 Cap; Y Material: PLATE SA533B1 Ori; LT Heat l B7212-1 Charpy V-Notch Data Temperature Input lateral Expansion Computed E Differential 0 7 7.06 .06 73 19 14.98 4.01 100 30 1954 10.4 5 125 18 24.63 -6.63 l 150 23 305 -75 150 35 305 4.49 ITa 35 36.97 -1F/

175 35 36FI -1Fl

  • Data continued on next page "

I C-16 L

F CAPSULE W Page2 llaterial: PLATE SA533B1 Heat Numben IT/212-1 Orientation LT Capsule: W Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computed 12 Differential j 200 39 4316 -416 4 200 38 43.76 -i?6 1 225 60 50.53 9.46 250 63 56 5 6.04 300 70 67.75 224 350 71 7528 -428 -

4@ @ WM m Sl31 of PJSIDUAIS = 3.81 l

l

. I l

l I

c-17

l

[.

L l CAPSULE X l .

1

( CVCRAPH 41 Hyperbolic Tangent Curve Printed at 165255 on 12-21-1998 l l Page1 Coefficients of Curve 4 A = 35.7 B = 34.7 C = 103.9 TO = 185.15 l Equation is E = A + B ' I tanh((T - 10)/C) l Upper Shelf 2: 70.41 Temperature at E 35- 183 Lower Shelf LF;1 Fixed Material: PIATE SA533B1 Heat Number: B7212-1 Orientation: LT Capsule: X Total Fluence i

i m

.O 150  ;

6 M

M 100 1

+ \

m '

4 es 4 [~ A a w

"/

o

/

A la O 6.A 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; X Material: PLATE SA533B1 Ori.: LT Heat l: B7212-1 Charpy V-Notch Data ,

l Temperature input Lateral Expansion Computed 2 Differential 0 2 2.91 .91 1

72 13 8.06 4.93 l 100 21 1228 8.71 125 13 1759 -459 125 13 1759 -459 150 27 2439 2S 150 27 2439 2B 1 j " Data continued on next page =

l l

C-18

CAPSULE X Page2 Materiah PLATE SA533B1 Heat Number: B7212-1 Orientation LT Capsule: X Total Fluence:

Charpy V-Notch Data (Continued)

Temperature input Lateral Expansion Computed LE. Differential 175 31 32.32 -122 200 33 40.63 -743 200 34 40.63 -633 225 55 4&4 6.59 250 63 54S3 8.06 350 65 67S2 -2.62 400 73 6922 337 450 65 69.99 -499 SUM of RESIDUAIS = 3.9 .

i 1

I i

C-19

r

)

CAPSULE Z

! CVGRAPH 41 Hyperbolic Tangent Curve Printed at 165255 on 12-21-1998 PageI l Coefficients of Curve 5 A = 33.81 B = 32.81 C = 6236 TO = 210.05 Equation is LE : A + B ' I tanh((T - TO)/C) l Upper Shelf LL 66.63 Temperature at LE 35 2123 lower Shelf LE 1 Fixed Material PLATE SA533B1 Heat Number: B7212-1 Orientation LT Capsule: Z Total Fluence-200 t

I m <

."~ 150 l c

>i 100 cc k

3 c, ,

a ce so 7

y V

%?

O

-300 -200 -100 0 100 200 300 400 500 600 '

Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: Z Material PLATE SA533B1 Ori.: LT Heat f: M212-1 Charpy V-Notch Data Temperature input lateral Expansion Computed LE Differential 0 0 LO7 -LO7 72 11 L77 922 125 5 5.02 .02 150 12 934 2.65 17 5 18 17D9 .9 190 & 23.61 338

- Data continued on next page "

C-20 L-

1 CAPSULE Z Page2 Materiah PLATE SA533B1 Heat Numler. II?212-1 Orientation LT Capsule Z Total Fluence-Charpy V-Notch Data (Continued)

Temperature Input lateral Expansion Computed 12 Differential 200 16 2857 -1257 210 40 33.78 621 225 41 4L53 -53 250 52 52.36 .36 275 64 5936 4.63 300 63 63J6 -J6 350 64 65.9 -1.9 400 67 66.48 .51 450 65 66.6 -L6 .

SUM of RESIDUAIS = 928 9

i l

i C-21

[ l l'

UNIRRADIATED CVGRAPH 41 Hyperbolic Tangent Curve Printed at 142419 on 12-21-1998 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 84.43 TO = 39.37 l

Equation is Shearx = A + B * [ tanh((T - TO)/C) ]

l Temperature at 50x Shean 393 Material: PLATE SA533B1 Heat Numben B7212-1 Orientation: LT Capsule: UNIRR Total Fluence

~

22 100 k a

u ao cd o

c M

eo l a i c 1 o

O b 40 e

4 t-o7 a>-

i 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; UNIRR Materiat PLATE SA533B1 Ori: LT Heat b B7212-1

, Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential f;0 8 BR -R

-50 12 10.74 125

-25 18 17N 12

-25 22 17N 4.12 i -10 25 23.69 13 i 0 30 2823 L76 20 40 38.72 127 50 60 5625 174 60 48 6L97 -13W

= Data continued on next page "

C-22

UNIRRADIATED I Page 2 l Material: PLATE SA533B1 Heat Number. IT/212-1 Orientation: LT Capsule: UNIRR Total Fluence Charpy V-Notch ' Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential 75 63 69.92 -6.92 100 85 80.78 4 21 125 100 8837 11B2 150 100 9321 6.78 210 100 9827 L72 ~

210 100 9827 1.72 210 100 9827 1.72 SUM of RESIDUAIS = 1931

. l C-23

i 1 I

CAPSULE U l CVGRAPil 4J llyperbolic Tangent Curve Printed at 1424:19 on 12-21-1998 Page 1 0xfficients of Curve 2 l A = 50 B = 50 C = 100.7 TO = 15029 Equation is Shearx = A + B * [ tanh((T - TO)/C) ]

I Temperature at 50x Shear: 1502 Material PLATE SA533B1 lleat Number: IT/212-1 Orientation LT Capsule: U Total Fluence: ,

  • ^ ~

100 -

u ao /

c < /

o 80 o a

c e

o l b 40 g l 4 o 20

  • )<

o o-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: U Material PLATE SA533B1 Ori LT Heat f:IP/212-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 2 4B1 -231 50 17 12 4.99

% 25 1831 648 l

100 31 26.91 4.08 13  % MM 3 150 44 49 5 -52 l 150 49 49 5 -5 175 56 6P.02 -6.02 I

= Data continued on next page "

C-24

CAPSULE U  !

Page2 )

1 Material: PLATE SA533B1 Ileat Number: B7212-1 Orientation: LT '

Capsule: U Total Fluence-Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 200 73 72 5 14 200 58 72 2 -145 225 96 8151 14.48 250 100 87E 1213 300 100 9513 436 350 100 9814 15 400 100 99.3 29 SUM of PISIDUAIS = 1934 l

1 C-25

r f

CAPSULE W CVGRAPH 43 Hyperbolic Tangent Curve Printed at 1424:19 on 12-21-1998 Page1 Coefficients of Curve 3 A = 50 B = 50 C = 74.69 TO = 188.43 Equation is Shearx = A + B ' [ tanh((T - TO)/C) ) l Temprature at 50:: Shear: 188.4 Material: PLATE SA533B1 Heat Number: B7212-1 Orientation: LT Capsule W Total Fluence j

1*

s f O

L 80 Cd O

A Cn 60 a (

C k o 1 a  :

b 40

)

O j 20 o 1

"~

n }

-300 -200 -100 0 100 200 300 400 500 600 \

Temperature in Degrees F I Data Set (s) Plotted Plant: FA2 Cap; W Material PLATE SA533B1 Oriz LT Heat f. B7212-1 Charpy V-Notch Data j Temperature input Percent Shear Computed Percent Shear Differentiat  !

l 0 2 S3 136 73 7 434 265 1 100 18 8.56 9.43 l l 125 24 15.46 8.53 I

} 150 26 26132 -32 l 15 0 29 26.32 237 I 175 37 4L1 -43 f 175 37 411 -43  ;

l

  • Data continued on next page =  !

)

ll c

C-26 i r , .

CAPSULE W Page2 i Material: PLATE SA533B1 Heat Number: B7212-1 Orientation: 1,T Capsule: W Total Fluence-Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 200 50 57B7 -7m 200 49 57B7 -&67 225 82 72.69 93 250 95 8336 1113 300 100 95l9 43 '

350 100 98.69 13 400 100 99E5 34 -

Sta! of PEIDUAIS = 26.66 O

i l

l l

C-27

T CAPSULE X l CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1424:19 on 12-21-1900 l Page1 Coefficients of Curve 4 A = 50 B = 50 C = 83.64 TO = 19a28 Equation is: Shearx = A + B

  • l tanh((T - TO)/C) l Temperature at 50x Shean 1982 Material: PLATE SA533B1 Heat Number: IT/212-1 Orientation LT Capsule: X Total Fluence:

^ ' ^

100 a

  • e ^

o 4 1 to a i a

c e i O /^

L 40

.e ,,

' ^

20

< .),

0 l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted ,

Plant FA2 Cap; X MaterM PLATE SA533B1 Ori LT Heat f: B7212-1 l Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 2 .86 U3 72 15 4E5 1034 100 20 8.7 1129 125 20 f '125 20 14 7/ 522 14 7/ 522

-150 25 23.96 1.03 150 25 23.96 LO3

" Data continued on next page "

C-28

CAPSULE X Page 2 Material: PLATE SA533B1 Heat Number: B7212-1 Orientation: LT Capsule X Total Fluence: l Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 175 30 36.43 -ft43 200 40 5LO2 -ILO2 200 35 5LO2 -16.02 225 70 65.44 455 250 100 77.49 225 '

350 100 1T7.41 2.58 400 100 992 .79 450 100 99.75 24 SUM of RESIDUAIS = 32.47 -

l P

l C-29

l CAPSULE Z

! CVGRAPIf 4J Ilyperbolic Tangent Curve Printed at 1424:19 on 12-2H998 Page1 Coefficients of Curve 5 A = 50 B = 50 C = 63.29 11) = 209.06 Equation is Shearx = A + B

  • l tanh((T - TO)/C) ) {

Temperature at 50x Shear 209 Material: PLATE SA533B1 Heat Number fr/212-1 Orientation LT Capsule Z TotalFluence 100 i

- i 1

u

  • 1 cc 1 o

C ca 30 ..

a d

e i O

g 40 20 -

t? .

0 l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: Z Material PLATE SA533B1 Ori; LT Heat f. Ir/212-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 2 13 IB6 72 5 L29 3.7 125 10 656 143 150 20 1339 6S 17 5 25 25.42 .42 190 35 35.38 -38 l

    • Data continued on next page "*

C-30

CAPSULE Z i Page2 i

Material: PLATE SA533B1 lieat Number: B7212-1 Orientation LT l

Capsule: Z Total Fluence- l Charpy V-Notch Data (Continued) ,

Temperature Input Percent Shear Computed Percent Shear Differential 200 30 42B9 -1239 210 60 50.74 9.25

{

j 225 60 6232 -232 250 80 7&47 1.52 275 90 88.92 ID7

, 300 100 94f5 534 l 350 100 98.84 L15 l

' 400 100 99.76 23  !

450 100 99.95 D4 -

(

SUM of PISIDUAIS : 1822 l

l l

l Y

C-31

UNIRRADIATED CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13:24f)1 on 12-21-1998 Page1 Coefficients of Curve 1 A = 4859 B = 46.4 C = 90.41 TO = 30.46 Equation is CVN = A + B ' [ tanh((T - TO)/C) l Upper Shelf Energy; 95 Fixed Temp. at 30 ft-lbs -7.9 Temp. at 50 ft-lbs 33.1 leer Shelf Energy 219 Fixed Material PLATE SA533B1 Heat Number: Ir/212-1 Orientation: TL Capsule UNIRR Total Fluence 300 m 250 A

I a

N. 200 l l

h 60 L 150 1 0 '

C M o 100 5 o

r 0i i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted .

Plant: FA2 Cap; UNIRR Material: PLATE SA533B1 Ori: TL Heat f. B7212-1 Charpy V-Notch Data

' Temperature input CVN Energy Computed CVN Energy Differential

-50 16 1559 .4

-50 19 15.59 3.4

-50 19 15.59 3.4 0 35 3352 1.47 0 30 3352 -352 0 35 3352 L47 30 52 4&35 3S4 30 43 48 2 -535 30 48 48 3 -%

l = Data continued on next page =

C-32 1

UNIRRADIATED Page2 Material PLATE SA533B1 IIeat Number. IT/212-1 Orientation TL Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)_

Temperature Input CVN Energy Computed CVN Energy - Differential 100 74 7&59 -459 100 70 ' 7&59 -&59 100 77 7859 -159 1 150 98 8&B4 915 150 95 8834 615 150 106 8834 1715 210 88 9328 -528 210 94 9328 .71 210 69 9328 -428 SUM of RESIDUAIS : 13.4 C-33

CAPSULE U CVGRAPl! 41 Hyperbolic Tangent Curve Printed at 132401 on 12-21-1998 Page1 Coefficients of Curve 2 A = 35.59 B = 33.4 C = 103.98 TO = 132.74 Equation is 03 = A + B ' I tanh((T - TO)/C) l Upper Shelf Energy 69 Fixed Temp. at 30 ft-lbs 1151 Temp. at 50 ft-lbs 180.7 lower Shelf Energy: 239 Fired Materiah PIATE SA533B1 fleat Number: B7212-1 Orientation TL Capsule: U Total Fluence 30o

<n 250

,.C

- l l

g am h

bf)

L 150 e

c m ' - ~

100

^ U Oon-U 7 j [

u ,

1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; U Materiah PLATE SA533B1 Ori.: TL Heat f: IT/212-1 Charpy V-Notch Data Temperature Input 03 Energy Computed CVN Energy Differential 50 15 13 5 1.49 75 23 1&74 425 100 22 25.41 -3.41 110 33 28.4 459 125 34 3311 B8 l

15 0 J/ 41.09 -4.09 175 43 48.47 -5.47 17a 46 . 48.47 -2.47

"" Data continued on next page ""

C-34

CAPSULE U '

l Page2 Materiah PLATE SA533B1 Ileat Number: B7212-1 Orientation: TL Capsule U Total Fluence:

Charpy V-Notch Data (Continued)

Temperature input CVN Energy ComputM CVN Energy Differential 200 50 54.62 -4S2 225 69 5931 9.68 250 68 62.66 533 275 68 64.93 3.06 300 67 66.42 57 '

350 69 67S9 1 400 73 68.61 4.38 SUM of RESIDUAIS = 1521

)

l C-35

CAPSULE W i

CVGRAPH 4J llyperbolic Tangent Curve Printed at 132401 on 12-21-1998 Page1 Coefficients of Curve 3 A = 39.09 B = 36S C = 103.07 TO = 186.91 Equation is CVN = A + B * [ tanh((T - TO)/C) J ,

Uppr Shelf Energy: 76 Fired Temp. at 30 ft-lbs: 160.9 Temp. at 50 ft-lbs 218.2 laer Shelf Energy 2.19 Fixed i Material: PLATE SA533B1 Heat Number: B7212-1 Orientation: TL  !

' 1 Capsule: W Total Fluence-3m i

i e 250 -

l

,Q l

~ \

l -

[ 200 l N

t:to 4 150 Q.)

c i N  ;

100

% o O v co ,

e s@

n3 t o l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in, Degrees F Data Set (s) Plotted Plant: FA2 Cap; W Material: PLATE SA533B1 Ori.: TL Heat f. Is212-1 Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential 25 6 5.25 .74 76 16 938 6J1 125 29 1926 9.73 150 30 26.42 3.57 150 30 26.42 3.57 1% N Mg a4 13 & ME -75 200 30 43.75 -13.75

" Data continued on next page "

C-36 L-

i CAPSULE W Page2 Material PLATE SA53381 Heat Number. B7212-1 Orientation TL l Capsule i Total Fluence  !

Charpy V-Notch Data (Continued) ,

Temperature input CVN Energy Computed CVN Energy Differential 200 33 43.75 -10.75 210 35 4722 -1222 225 68 5214 1535 250 72 5923 12.76 300 78 68.59 9.4 ,

350 68 73 -5 400 Si 74B3 936 SUM of RESIDUAIS = 23.46 4

C-37 ,

f: 1 l

i 1

CAPSULE X  !

CVGRAPH 41 Ilyperbolic Tangent Curve Printed at 132401 on 12-21-1998 Page1 I Coefficients of Curve 4 A = 35.59 B = 314 C = 46.64 TO = 20023 l Equation is CVN :. A + B ' I tanh((T - TO)/C) ]

Upper Shelf Energy: 69 Fixed Temp. at 30 ft-lbs 192.3 Temp. at 50 ft-lbs 221.7 lower Shelf Energy 219 Fixed l Material PLATE SA533B1 Heat Number: IT/212-1 Orientation: TL Capsule: X Total Fluence:

3m m 250 l

.c l ,

a 1 x em i h

bf) 4 150 0

c N

100

^

> m y

4 V

, a a i..

U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant FA2 Cap: X Material PLATE SA533B1 Ori: TL Heat f. B7212-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

'0 3 221 .id 72 19 ' 2.47 1652 l 150 24 914 1435 175 18 191 -11 175 23 191 3.89 190 30 2838 131 200 26 35.43 -9.43

" Data continued on next page =

C-38

CAPSULE X Page2 Material: PLATE SA533B1 Ileat Number: B7212-1 Orientatin TL Capsule X Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 200 23 35.43 -1143 210 38 42.49 -4.49 210 45 4149 25 225 63 51.83 11.16 225 55 51B3 - 3.16 250 69 6L93 706 350 67 68B9 82 3 450 75 68.99 6 SUM of RESIDUAIS = 3821 .

O l

l C-39 i . _ _ _ _

CAPSULE Z

)

CVGP.APH 4J Hyperbolic Tangent Curve Printed at 132401 on 12-21-1998 Page1 Coefficients of Curve 5 A = 35.09 B = 32.9 C = 67.31 TO = 19&75 F4uation is CVN = A + B ' l tanh((T - TO)/C) )

Upper Shelf Energy: 68 Fixed Temp. at 30 ft-lbs 1882 Temp. at 50 ft-lls 2316 lower Shelf Energy: 2.19 Fixed {

Materiah PLATE SA533B1 Heat Number: B7212-1 Orientation: TL Capsule: Z Total Fluence: -

300 m 250 Q

I N 2m x

bD L 150 e

c tra 100 I Z )

o v7 -

4 50 Y l o

. h

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: Z Materiah PLATE SA533B1 Ori: TL Heat f. IT/212-1 l

Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential 0 6 27/ 3.62 ,

72 4 3S8 .31 125 17 831 &l8 150 22 14.71 728 175 28 23.95 4.04 190 31 3034 .15

" Data wntinued on next page

  • C-40

CAPSULE Z Page2 hiaterial: Pl. ATE SA533B1 Heat Numben B7212-1 Onentation: TL Capsule Z Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 200 25 3531 -1011 200 18 35.71 -17.71 210 44 40.54 3.45 225 61 4731 13.68 250 56 5621 - 21 275- 64 61A1 2J8 300 76 64.9 11.0 9 350 69 67 7/ 112 400 62 6733 -5B3 .

SUni of PEIDUAIS = 2127 C-41

UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 14Wl8.on 12-21-1998 Page!

Coefficients of Curve 1 A = 36M B = 3557 C = 98.64 TO = 31M Equation is 11 : A + B ' I tanh((T - TO)/C) ] j Upper Shelf LE: 72.35 Temperature at 12 35- 27.2 Lower Shelf II: 1 Fixed I Material: PLATE SA533B1 Heat Number. M212-1 Orientation TL Capsule: UNIRR Total Fluence 200 rn

." 150 a

M M 100 cJ u o A

a 50 1

t

\

o- 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: UNIRR Material PLATE SA533B1 Ori: TL Heat l: B7212-1

, Charpy V-Notch Data Temperature input lateral Erpansion Computed LE Differential 1

-50 11 12.4 -L4 1

-50 11 1?.4 -14 I

-50 11 12.4 -14 0 27 2553 146 0 27 25.53 146 i 0 27 2553 L46 1 30 39 35.99 3 I 30 35 35.99 .99 30 36 35.99 0  !

J

" Data continued on next page -

C-42

r-UNIRRADIATED Page2

!!aterial PLATE SA533B1 IIeat Number. B7212-1 Orientation: TL Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computed 11 Differential 100 56 58.02 -2.02 100 M 58.02 -4.02 100 55 58.02 -3.02 l'A M M2 M1 150 67 66.38 SI 150 76 66.38 931 210 69 70.47 -1.47 210 70 70.47 .47 210 68 70.47 -P.47 .

SUni of RESIDUAIS = .54 C-43

r-CAPSULE U i CVGRAPH 4J Hyperbolic Tangent Curve Printed at 14fTld8 on 12-21-1998 Page1 Coefficients of Curve 2 A = 31.74 B = 33.74 C = 9897 'fD = 145.78 Equation is 2 = A + B ' [ tanh((T - TO)/C) ]

Upper Shelf LE: 68.48 Temperature at LE. 3& 1465 laer Shelf LE: 1 Fixed Materiah PLATE SA533B1 Heat Number: Ir/212-1 Orientation TL Capsule: U Total Fluence: i 200 m

.O 150 a l M i 100 e

p i i

Q) o a 50 f

o o i l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted P. at FA2 Cap: U Materiah PLATE SA533B1 Ori: TL Heat f. B7212-1 Charpy V-Notch Data Temperature input Lateral Expansion Computed E L:ffuential 50 11 951 L48 75 16 14.02 IS7 100 20 2016 -16 11 0 27- 23.04 3.95 125 30 27.76 223

! 150 30 3618 -6JB l

175 '40 44.42 -4.42 f 175 40 44.42 -4.42 f-

" Data continued on next page "

C-44

o-.

l CAPSULE U Page2 Material PLATE SA533B1 Heat Number: B7212-1 Orientation TL Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature Input lateral Expansion Computed 12 Differential 200 50 5157 -lI37 225 70 57J5 12.84 250 63 61.16 1.83 275 67 63.86 3.13 300 64 65.62 -1.62 350 60 67.41 -7.41 ,

400 69 ' 68.09 .9 SUM of RESIDUAIS = 257 l

1 l

l 1

I C-45

E

}

CAPSULE W l l

l CVGRAPH 4J Hyperbolic Tangent Curve Printed at 14f)7d8 on 12-21-1998 I Page1 Coefficients of Curve 3 A = 34.77 B = 33.7/ C = 138J6 TO = 18123 Equation is LE = A + B

  • l tanh((T - TO)/C) l Upper Shelf LE: 68.54 Temperature at LE 35 182.1 Lower Shelf LE: 1 Fixed Materiah PLATE SA533B1 Heat Number:Ir/212-1 Orientation: TL Capsule W Total Fluence 200 1

m i O- 150 {

a .

1 M

100 m

L a;

e e/s W"

a 50 /

s G

, se o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap: N Materiah PLATE SA533B1 Ori: TL Heat f. B7212-1 1

Charpy V-Notch Data Temperature Input lateral Expansion Computed LE Differential 25 7 737 -37 76 15 13.08 L91 125 25 2173 326 150 27 T/26 -26 150 30 2726 2.73 175 38 3324 4.75 175 28 3324 -524 200 31 39.33 -833

Data continued on next page

C-46

CAPSULE W Page 2 Materiah PLATE SA533B1 Ileat Number: B7212-1 Orientation TL Capsule W Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computed 12 Differential 200 31 3933 -833 210 37 4L7 -4.7 225 54 4 5.12 8B7 f 250 59 5021 8.68 300 60 58 27 L72 350 61 63.14 -2.14 400 64 65B1 -1B1 SUM of RESIDUAIS = .71 l

C-47

I CAPSULE X CVGRAPH 4.1 Ilyperbolic Tangent Curve Printed at 14M:18 on 12-21-1998 Page1 l

Coefficients of Curve 4

)

A = 3L72 B = 30.72 C = 117.52 TO = 201B5 Equation is 12 = A + B

  • l tanh((T - TO)/C) ]  !

Upper Shelf LL 62.45 Temperature at 12 35 214.4 lower Shelf LE: 1 Fixed ifaterial PLATE SA533B1 Heat Number. E7212-1 Orientation TL

]

Capsule: X Total Fluence:

200 l

m O 150 '

d

)

a  !

x -

M 100 e

4 c) u ^

a - F a m a a

A a A

zs 0

l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted  ;

Plant: FA2 Cap.: X liaterial PLATE SA533B1 Ori TL Heat f: B7212-1 Charpy V-Notch Data Temperature input lateral Expansion Computed 12 Differential 0 4 291 LO8 72 12 7.07 4.92 150 23 18.98 4.01 17 5 23 24.82 -1.82 175 21 24B2 -3.82 190 36 28B3 736 200 27 3124 -424

" Data continued on next page =

C-48

CAPSULE X Page2

{

Material PLATE SA533B1 Heat Number: B7212-1 Orientation TL Capsule: X Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computed LE. Ditferential 200 23 3124 -824 210 28 33 5 -52 210 30 33 2 -335 225 44 37.7 629 225 40 37.7 2!4.

250 53 43 2 934 350 54 57B8 -3B8 450 62 6157 .42 SL3f of RESIDUAIS = 3.99 .

l C-49

CAPSULE Z CVGRAPH 4J Hyperbolic Tangent Curve Printed at 14fri B J on 12-21-1998 Page1 Coefficients of Curve 5 A = 27.06 B = 26.06 C = 69.02 TO = 203.9 F4 uation is E = A + B ' I tanh((T - TO)/C) ]

Upper Shelf 2: 53J3 Temperature at E 3i 2255 lower Shelf I.E.: 1 Fixed Material: PLATE SA533B1 Heat Number: B7212-1 Orientation TL Capsule Z Total Fluence:

200 co

.O 150

$ 1 m

M N 100 e

4 D

e ,.

A So v  ::

o i

-300 -200 -100 0 100 200 300 4.00 500 66u Temperature in Degrees F Data Set (s) Plotted.

Plant: FA2 Cap.:2 Material: PLATE SA533B1 Ori.: TL Heat f. ITI212-1 Charpy V-Notch Data Temperature Input lateral Expansion Computed 2 Differential 0 2 Ll4 35 72 0 211 - 2.11 125 7 5.81 1.18 150 15 10.03 4S6 l 175 22 16.74 5.25 190 22 2t88 ll ,

  • Data continued on next page "

C-50

CAPSULE Z Page2 Material: PIATE SA533B1 Heat Number: B7212-1 Orientation: TL Capsule: Z Total Fluence ) ,

Charpy V-Notch Data (Continued)

Tempe tuit Input lateral Expansion Computed LE Differential 19 2559 -659 14 25.59 -1159 210 30 29 2 m O 44 St?9 92 1

250 45 4228 p_71 g

F 43 55 4724 501

-424 439 2 52 5239 -39 400 50 52 2 - 296 -

SUM of REIDUAIS : L92 j

e C-51

UNIRRADIATED 1 l

CVCRAPli 4J Hyperbolic Tangent Curve Frinted at 14d451 on 12-21-1998 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 85.4 TO = 49.68 Equation is Shearx = A + B ' l tanh((T - 11))/C) )

Temperature at 50x Shean 49.6 Materiah PLATE SA533B1 Heat Numben B7212-1 Orientation TL Capsule UNIRR Total Fluence

~

100 M u * (i e

e a

.c cn 60 a

c o

O D L 40 I

1 e l 4 i l

E i 20 D I s

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F  !

Data Set (s) Plotted Plant: FA2 Cap: UNIRR Materiah PLATE SA533B1 Ori TL Heat #: B7212-1 <

, Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential

-50 12 8M 3.16

-50 12 8.83 336

-50 12 833 316 0 25 233 119 0 25 23.8 L19 0 27 23.0 319 30 43 38.67 42 30 32 38.67 -6El 30 35 38S7 -3S7

  • Data continued on next page =

C-52

UNIRRADIATED l Page 2

!!aterial: PLATE SA533R1 Ifeat Number. M212-1 Orientation: TL Capsule: UNIRR Total Fluence )

l Charpy V-Notch Data (Continued) 1 Temperature Input Percent Shear Computed Percent Shear Differential 100 73 76.46 -3.46 10 0 69 76.46 -7.46 100 73 76.46 -3.46 150 100 9L28 & 71 150 100 9128 8.71 150 100 9128 a71 210 100 97.71 228 210 100 !77.71 228 210 100 97.71 228 -

Sulf of RESIDUAIS = 27E9 l

l l

C-53

CAPSULE U CVGRAPil 41 Hyperbolic Tangent Curve Printed at 141451 on 12-21-1998 Page1 Coefficients of Cun'e 2 A = 50 B = 50 C = 95.05 TO = 159.64 Equation is Shearx : A + B

  • l tanh((T - TO)/C) ]

Temperature at 50x Shear: 159.6 Materiah PIATE SA533B1 Ileat Number: B7212-1 Orientation: TL Capsule: U Total Fluence l 1

100 _: . -

j i

a

  • e y

4

  • )

co o c:

o 8

)

o g 40 oo j O

o O

O i >

l 0

-300 -200 -100 0 100 200 300 400 500 600 l i

Temperature in Degrees F 1 Data Set (s) Plotted Plant: FA2 Cap.: U Material: PLATE SA533B1 Ori; TL Heat f. B7212-1 Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential 50 16 9.05 6.94 75 23 14.41 858 100 T/ 22.18 4.81

' 110 31 20.02 4.97 125 37 32.54 4.45 150 37 44.94 -7.94 l 175 48 58 -10 175 46 58 -12

" Data continued on next page

  • C 54

CAPSULE U Page2 Material: PLATE SA533B1 Heat Number: B7212-1 Orientation TL Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Rhear Computed Percent Shear Differential 200 57 70.03 -13.03 225 100 79B1 20J8 250 100 87 1199 l?5 100 91B8 811 300 100 95.04 45 350 100 9 & 21 1.78 400 100 99"A E3 SUM of PISIDUAIS = 35.46 C-SS

1 CAPSULE W CVGRAPil 4.1 Hyperbolic Tangent Curve Printed at 14:1451 on 12-21-1998 Page1 Coefficients of Cune 3 A = 50 B = 50 C = 6L11 TO = 199.68 Equation is Shearx = A + B ' I tanh((T - TO)/C) l Temperature at 50x Shear: 199.6 I Material PLATE SA533B1 Heat Number: Ir/212-1 Orientation: TL Capsule: W Total Fluence:

100 2

'/

+

b 80 e '

e d

W co a l c 4 o

9 /

g 40 a o O I O l

^

20 j e I O J l 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap W Material: PLATE SA533B1 Ori.: T2 Heat #: B7212-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 25 2 .32 L67 76 11 L71 928 125 20 7.98 12.01 150 24 16.4 3 736 150 T/ 16.4 3 10.56 175 32 30.83 IJ6 175 28 30.83 -2B3 200 34 5025 -1625

= Data continued on next page

  • C-56

l CAPSULE W  ;

Page2 h!aterial- PLATE SA533B1 Heat Number. IT/212-1 Orientatiort TL Capsule: W Total Fluence Charpy V-Notch Data (Continued) l Temperature input Percent Shear Computed Percent Shear Differential 200 36 50 3 -1425 210 49 58 3 -9.35 225 90 093 20.39 250 100 83M lt, '5 300 100 9638 3.61 350 100 99 7/ .72 400 100 99 5 J4 Sulf of RESIDUAIS : 40.6 e

9 C-57 J

CAPSULE X CVGRAPH 41 Hyperbolic Tangent Curve Printed at h:1451 on 12-21-1998 Page1

)

j Coefficients of Curve 4 '

A = 50 B = 50 C = 3505 TO = 20P96 Equation is: Shearx = A + B

  • l tanh((T - TO)/C) ]

Temperature at 50x Shear: 202.9 i Material PLATE SA533B1 Heat Number: Ir/212-1 Orientation TL Capsule X Total Fluence 1gg J Bo L l e  !

e cn go l

' h c:

e ,

O b 40-e .

% a

^

l

^ i

^

As 0

-300 -"00 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) PlottM Planc FA2 Cap; X Material: PLATE SA533B1 Ori TL Heat f. Ir/212-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 2 0 1.99 72 10 f)5 9.94 150 20 454 1535 17 5 25 16B5 814 175 30 1635 1314 190 35 32.3 2S9 2t)0 40 457/ -577

"" Data continued on next page ""

C-58

CAPSULE X Page 2 Material: PLATE SA533B1 Heat Number: IT/212-1 Orientation TL Capsule X Total Fluence Charpy V-Notch Data (Continued) erature . Input Percent Shear Computed Percent Shear Differential Temp'au0 35 45.7/ -10.77 210 45 5939 -1439 210 45 59E9 -1439 225 100 77B5 2214 225 95 77B5 1714 250 100 93.6 639 350 100 99F/ .02 450 100 99.99 0 SUM of PEIDUAIS = 5065 .

(

O C-59

CAPSULE Z CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 141451 on 12-21-1998 Page1 Coefficients of Curve 5 A = 50 B = 50 C = 4E55 TO = 209.53 Equation is Sheare. & 4 + B * [ tanh((T - TO)/C) l Temperature at 507. Shear. 209.5 1 Material: PLATE SA533B1 Heat Number. B7212-1 Orientation: TL Capsule Z Total Fluence

~

100 - r a m -

e e

.c w ,

a e

o 1 o

k 40 f O .

b ,

20 -

e- _

o

~

l i i ,

-300 -200 -100 0 100 200 300 400 500 600 l Temperature in Degrees F Data Set (s) Plotted Plant FA2 Cap: Z Material PLATE SA533B1 Ori: TL Heat h F7212-1 Charpy V-Notch Data Temperature input Percent Shear Computed Percent Sheat Differential l 0 2 .01 L98 i 72 10 27 9.72 125 10 257 7.42 150 15 719 7.8 175 20 1&49 15 190 35 3017 432

= Data continued on next page ""

!- C-60 L_

I i

CAPSULE Z l Page 2 Material: PLATE SA533Bi Heat Number. IT/212-1 Orientation; TL Capsule Z Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 200 35 393 -4S 200 30 39.9 -99 210 45 50.5 -5.5 225 80 66.02 13.97 250 80 85.04 -5.04 ~

275 100- 9433 5.66 300 100 97.98 2.01 350 100 99.76 23 400 100 W97 .02 -

SUM of RESIDUAIS = 2933 C-61

UNIRRADIATED CVCRAPH 41 Ilyperbolic Tangent Curve Printed at 134331 on 12-21-1990 Page1 Ceefficients of Curve 1 A = 73.09 ~B = 70.9 C = 52.07 TO = 2.05 Equation is CVN = A + B

  • l tanh((T - TO)/C) ]  ;

Upper Shelf Energy:144 Fixed Temp. at 30 ft-lbs -34B Temp. at 60 ft-!bs: -15.5 lower Shelf Energy: 2J9 Fixed l Material: FELD Heat Number. BOLA Orientation-Capsule UNIRR Total Fluence 4

m 250

,C I

N 22  ;

X  !

bf) ,o a 4 150 o -

4 0 o o a 0

i C o '

N o 100

> a o J so r 1 o , 1

-300 -200 -100 0 100 200 300 400 500 600 i Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; UNIRR Matenal WELD Ori Heat f. BOLA

, Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential

-100 8 4.96 3.03

-50 16 1911 - 3.11

-25 42 3926 2.73

-10 50- 56.97 -:UT7 10 109 8333 25J6 25 68 102.46 -34.46 40 124 11722 6.77 50 133 124.59 8.4 75 144 135B8 831

= Data continued on next page "

C42

i 1

UNIRRADIATED l Page2 Material: Wild lleat Number: BOLA Orientation-Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CYN Energy Differential 100 132 140.77 -8.7/

150 131 143.51 -12.51 150 150 143.51 6.48 175 155 14331 11.18 210 13~ 143.95 -6.95

~

210 153 143.95 9.04 210 154 143S5 10.04 SUM of PISIDUAIS = 18.18 e

4D 1

1 C-63

n _ ~ , .

l l CAPSULE U i CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 134331 on 12-21-1998 l

Page1 Coefficients of Cune 2 l

L A = 67.09 B = 64.9 C = 961 TO = .93 l F4uation is CVN = A + B * [ tanh((T - TO)/C) ] )

Uppr Shelf Energy: 132 Fixed Temp. at 30 ft-lbs -63.4 Temp. at 50 ft-lbs -263 Lower Shelf Energy: 2.19 Fixed I

' Material: WEID Heat Number: BOLA Orientation-Capsule U Total Fluence w 250  !

Q l

~

l l o i N 2m N

N O L 150 0

0 o "

y; M<

C m >

100 o Z o U /

g o

o

-300 -200 -100 'O 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant FA2 Cap; U Material: WELD Ori Heat l: BOLA Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differentist

-50 13 3657 -2357

-25 79 5L18 27B1

, 0 37 67.73 -3023 0 95 67.73 2726 25 - 90 842 529 50 85 98E -13S 50 96 98.6 -2.6 75 113 10933 3.16

    • Data continued on next page **

C-64

I CAPSULE U Page2 l Material: WELD Heat Numben BOLA Orientation-Capsule: U Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differenthl 100 108 11731 -934 125 14 0 123.19 16 3 150 133 126E2 0.37 175 122 12 & 74 -6.74 200 114 130.04 -16.04 ~

250 155 1313 23.69 300 128 13L75 -3.75 SUM of RESIDUAIS = 4D1 l

l

~

l i

CAPSULE W I

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 134331 on 12-21-1998 Page1 l Coefficients of Curve 3 A = 73.09 B = 70S C = 66.19 TO = 18S1 j

Equation is CVN : A + B

  • l tanh((T - TO)/C) l Upper Shelf Energy: 144 Fixed Temp. at 30 ft-lbs -27S Temp. at 50 ft-lbs -15 lower Shelf Energy 219 Fixed Material: WELD Heat Number: BOLA Orientation-Capsule: W Total Fluence:

3m m 250 1 6 I I

a w 20u l

u L 150 e 8 D s f C e e m

100 6 0

50 e r e o

+

0-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; W Material: WELD Ori Heat l: BOLA Charpy V-Notch Data

'emperature input CVN Energy Computed CVN Energy Differential

-100 5 6.05 -1.05

-50 14 18.04 -4D4

-50 33 18.04 14 95

-25 47 32.07 14 S 2 0 45 5145 -8.45 0 28 53.45 -25.45 25 98 79.56 18.43 25 72 79.56 -7.56

" Data mntinued on next page "

C-66

h CAPSULE W Page2 Material TELD lleat Number: BOLA Orientation: )

Capsule: W Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 50 108 104D2 3.97 76 132 1214 9.59 125 123 138.39 -15.39 200 IT/ 14339 -1639 250 155 143.86 11.13 350 159 143.99 15 350 154 143.99 10 SUM of RESIDUAIS : 19.66 l

l l

l l

C-67

CAPSULE X l CVGRAPil 41 Hyperbolic Tangent Curve Printed at 134331 on 12-21-1998 l Page1 Coefficients of Curve 4 A = 76.09 B = 73.9 0 = 8&94 TO = 15 Equation is CVN = A + B

  • I tanh((T - TO)/C) I llpper Shelf Energy: 150 Fired Temp. at 30 ft-lbs -50 Temp. at 50 ft-lbs -17.8 Lower Shelf Energy: 219 Fixed Material WELD Heat Number. BOLA Orientation-Capsule: X Total Fluence 300 ro 250 o

I a

N 2*

a A

no a 6

53 "

C 0

100

/

> e.

O ^)

so a d a O l 6

-300 -200 100 0 100 200 300 400 s00 600

^

Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; X Material: TELD Ori Heat f. DOLA Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-100 4 1255 -855

-60 40 30.01 9.98 25 30.01 - 5.01 l -40 25 35.45 -10.45 l -25 43 44.93 -L93

-25 58 44.93 13.06 0 62 63.75 -175

" Data condnued on next page "

C-68

CAPSULE X Page2 liaterial WELD Heat Number: BOLA Orientation:

Capsule: X Total Fluence:

Charpy V-Notch Data (Continued)

I Temperature Input CVN Energy Computed CVN Energy Differential 0 74 63.75 1024 25 69 84.37 -15.37 50 107 103.76 323 100 138 130.95 7.04 200 128 147.72 -19.72 350 181 149.92 31.07 450 153 149.99 3 SUh! of RESIDUAIS = 14B3 e

C-69

CAPSULE Z  !

! CVGRAPH 4J Hyperbolic Tangent Curve Printed at 134131 on 12-21-1998 ,

Page1 Coefficients of Curve 5 j A = 6759 B = 65.4 C = 6126 TO = 15.46 Fauation is CVN = A + B * { tanh((T - TO)/C) ] )

Uppr Shelf Energy 133 Fixed Temp. at 30 ft-lbs -24B Temp. at 50 ft-lbs -1.4 lower Shelf Energy 2.19 Fixed Material WELD Heat Number: BOLA Orientation-Capsule: Z Total Fluence 300 m 250

,.C l l N 2*

N bD _

L 150 -

O C "v v M / ,

z;>

a vv U

su y v v o i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: Z Material: WELD Ori: Heat f. BOLA i

i Charpy V-Notch Data  !

Temperature Inp'It CVN Energy Compir M CVN Energy Differential j

-100 4 514 -1J4  ;

-60 7 12.4 6 -5.46

-30 10 26.36 -1636 l 0 72 5L43 20 2; ,

L 0 13 51.43 -38.43 5 86 56.53 29.46 i l

" Data continued on next page " ,

C-70  !

CAPSULE Z Page2 Material: WELD Heat Number: BOLA Orientation:

Capsule: Z Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed O'N Energy Differential 15 77 67.09 9.9 15 57 67.09 -10.09 25 86 77.69 8.3 30 91 8?_82 &l7 50 88 100.99 -12.99 ~

100 105 1252 -202 150 123 131.4 -&4 195 151 132.62 18.37 250 124 132.93 -8.93 -

l SUM of RISIDUAIS =-2726 l

l I

l I

C-71

UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 170430 on 12-21-1998 Page1 Coefficients of Curve 1 A = 46.67 B = 45.67 C = 5229 TO = -937 Fauation is II : A + B ' I tanh((T - TO)/C) ] l Upper Shelf LD 9234 Temperature at 12 35- -23 lower Shelf II: 1 Fixed Material WELD Heat Numben BOLA Orientation-Capsule UNIPR Total Fluence

~

200 ,

I l

ro O 150 a

M M 100 _ _

-u -

~ a W

e D

co a 50 b

o l l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; UNIRR Material: WELD Ori.: Heat l. 8011.

, Charpy V-Notch Data Temperature Input Lateral Expansion Computed Il Differential

-100 7 3.76 323

-50 15 16.94 -L94

-25 35 33.41 158 l

-10 44 46.12 -?12 10 73 6235 1014 25 60 73 -13 40 80 80.33 - 33 50 89 83.79 52 75 92 8835 3.14

    • Data continued on next page
  • C-72

UNIRRADIATED Page2 Material: WELD Heat Number: BOLA Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 100 91 90.96 .03 150 92 92J3 -J3 150 91 92.13 -1.13 17 5 90 9226 -226 210 92 9P32 -32 210 93 9232 .67 210 91 9232 -132 SUM of RESIDUAIS = 1.42 I

CAPSULE U (WELD)

CVGRAPH 4J Hyperbolic Tangent Curve Printed at 17f)4 J0 on 12-21-1998 Page1 Coefficients of Curve 2 A = 4623 B = 4523 C = 83J TO = -22.96 Equation is E = A + B * [ tanh((T - TO)/C) ]

Upper Shelf LE: 91.47 Temperature at E 35 -44 lower Shelf LE: 1 Fixed Material: NELD Heat Number: BOLA Orientation-Capsule: U Total Fluence:

200 m

O 150 a

M 100 o

~ A"0 v c o o o

4 a

e o o D )

a so o

o

/

o-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F ,

Data Set (s) Plotted Plant: FA2 Cap; U Material: WELD Ori: Heat @ B0LA' Charpy V-Notch Data Temperature Input lateral Expansion Computed 2 Differential

-50 16 32.02 -16.02

-25 68 4533 22.86 0 32 58.43 -26.43 0 7/ 58.43 18.56 25 74 69.78 4 21 50 70 7814 -8J4 50 78 7814 -J4 7a 85 83.65 134

  • "* Data continued on next page *"*

I C-74

CAPSULE U (WELD)

Page2 Material NEl.D lleat Number. BOLA Orientation-Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computed LE. Differential 100 81 87.01 - 6.01 125 92 8E97 3.02 150 92 90.08 191 ITa 91 90.7 29 200 91 9t05 .05 250 90 9134 -134 300 96 91.43 4f6 SUM of RESIDUAIS : -136 4

I C-75 l l

f CAPSULE W (WELD) l CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 17f1410 on 12-41-1998 Page1 l Coefficients of Curve 3 A = 43J/ B = 42.37 C = 67B2 TO = -115 Equation is M = A + B

  • l tanh((T - 11))/C) l Upper Shelf LE; 85.75 Temperature at E 3i -18.6 lower Shelf LE; I Fixed Material TELD Heat Number: BOLA Orientation-l Capsule W Tctal Fluence 200 m

.O 150 a

M 100

- e e 4 g 9 - o e b e e-a e

A 50 (

o >

e o a

0

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted Plant FA2 Cap; W Material: WELD Ori.: Heat //. BOLA Charpy V-Notch Data Temperature Input Lateral Erpansion Computed E Differential

-100 5 SBl -B1

-50 15 1&75 -3.75

-50 29 18.75 1024 l- -25 41 3127 9.72
l. 0 42 46.6 -4.6 i

0 29 46B -17.6 25 71 61.13 9B6 25 55 61.13 -6.13

"" Data continued on next page ""

C-76

CAPSULE W (WELD)

Page2 Material: WELD IIeat Nuinber: BOLA Orientation:

Capsule W Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 50 81 7t91 9.08 76 79 78.73 26 125 92 83.99 8 200 83 85.56 -2.56 250 93 85.71 728 350 83 85.75 -2Ta 350 71 85.75 -14.75 SUM of PJSIDUAIS = 15 E

4 C-77

~

CAPSULE X (WELD) i CVGRAPH 4J Hyperbolic Tangent Curve Printed at 1724:10 on 12-21-1998 Page1 i

Cxfficients of Curve 4 i A = 42.38 B = 4L38 C = 70.53 TO = -1718 Equation is LE : A + B

  • I tanh((T - TO)/C) l Upper Shelf LE: 83.77 Temperature at LE 35 -29.9 lower Shelf LE: 1 Fixed l

Material: WELD Heat Numben BOLA Orientation-Capsule: X Total Fluence 200 m

O 150

~

a x

l 100 ,

A e A a )

~ \

e> 1 a

e < a a so-a l

1 s .

o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F l Data Set (s) Plotted <

Plant: FA2 Cap.: X Material: WELD Ori: Heat f. BOLA Charpy V-Notch Data Tanperature input lateral Expansion Computed LE Differential

-100 4 821 -421

-50 33 24.4 8.59

-50 24 24.4 .4

-40 22 29.44 -7.44 i -25 40 37B1 2.18

-25 43 37.81 518 0 50 5227 -227

  • Data continued on next page =

C-78

l CAPSULE X (WELD)

Page2 i Material: WELD lleat Number. BOLA Orientation-Capsule X Total Fluence:

Charpy V-Notch Data (Continued)

Temperature input Lateral Expansion Computed 11 Differential 0 52 52Z1 -27 25 53 6455 -11.5 5 50 80 73.04 6.95 100 92 80.89 11.1 200 85 83.59 1.4 350 80 8176 -3.76 450 78 8177 -57/

SUM of RESIDUAIS = -28 4

9 4

y .!4 49%.

C-79

i 1.

1 l CAPSULE Z (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1704:10 on 12-21-1998 Page1 Coefficients of Curve 5 l

l A = 403 B = 39.8 C = 39.93 TO = 5.39 l Equation is E = ' i B * [ tanh((T - TO)/C) l l

Upper Shelf 1180S Temperature at E 35: .4 lower Shelf 111 Fixed Material TED Heat Number. BOLA Orientation:

Capsule Z Total Fluence y

m

.O 150 l 6 a

M 100

%u -

c) a ,,

eo . :

a 50 l [

v 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap Z Material: WELD Ori: Heat f. BOLA l

l Charpy V-Notch Data Temperature Input lateral Erpansion Computed E Differential

-100 0 14 -14

-60 1 'J.9 -2.9

-30 7 1256 -5.56

'0 52 35.46 1653 0 10 35.46 -25.46 5 58 40.41 1758

"" Data continued on next page ""

C-80

CAPSULE Z (WELD)

Page 2 Material WELD fleat Number. BOLA Orientation:

Capsule Z Total Fluence Charpy V-Notch Data (Continued) )

Te w rature Input lateral Expansion Computed 12 Differential 15 55 50.19 43 15 42 5019 4 19 25 62 58.91 3.08 30 63 6233 .36 50 61 72S -11S 100 78 79S1 -1S1 150 M 80.54 3.45 195 81 80.59 .4 250 85 803 4.39 -

SUM of PISIDUAIS = 471 O

i i

0 C-81 1 J

m 1

UNIRRADIATED (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 17:15d5 on 12-21-1998 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 62.37 E = -15 Equation is Shearx = A + B

  • I tanh((T - TO)/C) )

i Temperature at 50x Shear: -15 l

Material: TELD Heat Numben BOLA Orientation:

Capsule: UNIPR Total Fluence

- ~

100 2 e

O

=

- m ca e

A cn gg .._

a ce O

i 4 40 l' D

% o l l 20 o

J o

-300 -200 - 100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant FA2 Cap; UNIRR Matenal WELD Ori: Heat f: BOLA Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-100 12 6J4 5B5 1

-50 30 2456 5.43 l

=-25 40 42.05 -2.05 i

-10 43 53.99 -10.99 1 10 80 69.03 10.96 4

25 72 7&28 -628 40 85 85 E .36 50 94 88.93 5.06 75 100 94.71 528

"" Data continued on next page *"*

i C-82

I UNIRRADIATED (WELD)

Page 2 Material WELD Heat Number: BOLA Orientation-Capsule: UNIRR Total Fluence l Charpy V-Notch Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential 100 100 fTl55 2.44 150 100 99.49 .5 150 100 99.49 3 175 100 99.7/ 22 210 100 99.92 .07 '

210 100 99.92 M 210 100 99.92 M SUM of RESIDUAIS = 16B O

C-83

I CAPSULE U (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 17d5d5 on 12-21-1998 Page1 Coefficients of Curve 2

A = 50 B = 50 C = 76S3 10 = -1125 Equation is Shearx = A + B * [ tanh((T - TO)/C) }

Temperature at 50x Shear: -11 2 hlaterial WELD Heat Number: BOLA Orientation:

Capsule: U Total Fluence-

~

2 100 vo O

L

  • d O e

M o cn 6

(

O c

o O o 4 40-0 20 U

) l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap: U hfaterial: WELD Ori; Heat f: BOLA Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential

-50 24 26.74 -2.74 l -25 53 4L15 11M O 42 5725 -1525

! 0 64 5725 6.74 25 67 7L95 -4S5 50 73 83.09 -10.09 50 91 83.09 7S 75 99 90.39 8.6 I

" Data continued on next page "

l 1

C-84 i

CAPSULE U (WELD)

Page2 Material: WELD Heat Number: DOLA Orientation-Capsule U Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Pemnt Shear Computed Percent Shear Differential 100 98 94.74 325 125 100 9718 2.81 150 100 98.51 L48 175 100 9921 .78 200 100 99.58 .41 250 100 99.88 11 300 100 99.96 .03 SUM of PISIDUAIS = 10.92 l

l l

C-85 a_ l

T CAPSULE W (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 17d5:15 on 12-21-1998

, Page1 Coefficients of Cune 3 A = 50 B = 50 C = 53.01 TO = IB7 Equation is Shearx = A + B

  • l tanh((T - E)/C) l Temperature at 50% Shear. IB Material: WELD Heat Number. BOLA Orientation-Capsule W Total Fluence

~

E 100 0 9

s a 80 e

o i 4 i W

eo l a o  ;

c 4 i O

o J b 40 3 0

a 20 o

o

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap;W Material WELD Ori; Heat f. BOLA' Charpy V-Notch Data Temperature Input Perant Shear Computed Percent Shear Differential

-100 6 P.09 3,9

-50 13 1237 22

-50 21 12 7/ 8f2 i -25 28 26S2 137 0 49 4823 .76 0 37 4823 -1123 25 fr/ 7052 16.47 25 55 7052 -15.52

" Data continued on next page

  • C-86

CAPSULE W (WELD)

Page2 Material WELD Heat Number BOLA Orientation-Capsule Y Total Fluence Charpy V-Notch Data (Continued)

I t Temperature Input Percent Shear Computed Percent Shear Differential

(

50 94 86 7.99 76 W 9424 95a 125 100 99.04 .95 200 100 99.94 .05 250 100 99.99 0 .

350 100 99.99 0 350 100 99.99 0 SUM of RESIDUAIS = 16.77

(

I i

a f

i i

C 87

._. ________ _a

CAPSULE X (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 17d5d5 on 12-21-1998 Page1 Coefficients of Curve 4 A = 50 B = 50 C = 64.71 TO = -8.9 4 Equation is Shearx = A + B * [ tanh((T - TO)/C) J Temperature at 50x Shean -8.9 Material: WELD Heat Nu:nber. BOLA Orientation- j Capsie X Total Fluence 1

100

, r i u 80 m

o

,c .

W l

.co a I a -

o -

o k 40 o .

% a 20 l

j.

o

-300 -200 - 100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant FA2 Cap;X Material WELD Ori; Heat #: DOLA Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-100 4 5S4 -134

-50 30 2192 8.07

-50 20 2L92 -L92

-40 25 27S6 -2B6

-25 30 3731 -7B1

-25 45 37B1 718 0 50 56.83 -4 33

= Data continued on next page "

C-88

l l

CAPSULE X (WELD) l Page2 Material WELD Heat Number: DOLA Orientation-Capsule: X Total fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 0 05 56.83 836 25 65 74.03 -9.03 50 95 86.06 8.93 100 100 96.66 3.33 200 100 9934 J5 350 100 99.99 0 450 100 99.99 0 SUM of RESIDUAIS = 5.92 J8hV b*

C-89

CAPSULE Z (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 171515 on 12-21-1998 Page1 Coefficients of Curve 5 A = 50 B = 50 C = 40.03 TO = 15.93 Equation is Shearx = A + B ' [ tanh((T - TO)/C) )

Temperature at 50x Shear: 15.9 j Material: YELD Heat Numben BOLA Orientation:

Capsule: Z Total Fluence:

100 J V

  • s.

. m e ,

e Z'

60 a

c *

-o G.

W 40 -

e

_CL

)

m s,

0 ,

s l

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap 2 Material: WELD Ori: Heat l: BOLA Charpy V-Notch Data '

Temperature input Percent Shear Computed Percent Shear Differential

-100 5 3 4.69

-60 10 22 7.79

-30 15 915 5.84 0 30 3L08 -LOB 0 20 31.08 -ILO8 5 40 36S7 332 1

  • "* Data continued on next page ""

C-90

CAPSULE Z (WELD)

Page2 Material TELD Heat Number. BOLA Orientation- l Capsule: Z Total Fluence:

Charpy V-Notch Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential 15 45 48B2 -3B2 15 50 48B2 117 25 ~ f5 6L12 337 30 75 6637 8.12 50 80 8457 -457 ,

100 90 9852 -852 150 100 99E7 .12 195 100 99.98 .01 250 100 99.99 0 -

SUM of RISIDUAIS = 537 Y

C-91

UNIRRADIATED (HEAT AFFECTED 20NE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 14f236 on 12-21-1998 Page1 Coefficients of Curve 1 A = 80.09 B = 77.9 C = 16451 TO = -49.76 s

Equation is CVN = A + B

  • l tanh((T - TO)/C) l Upper Shelf Energy: 158 Fixed - Temp. at 30 ft-lbs -1753 Temp. at 50 ft-lbs -116B laer Shelf Energy: 2.19 Fixed Material HEAT AFFD ZONE Heat Number: B7212-1 Orientation:

Capsule: UNIRR Total Fluence 300 m 250

,.C l

o 4 N 200 g g x o o es m 150 g g -

c 1 m

100 0 Z o i > i l

o ,

50 g a  !

o x

i

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap: UNIRR Material: HEAT AFFD ZONE Ori: Heat #:Ir/212-1

. Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-200 11 233 -123

-100 98 57 02 405/

-100 40 57.02 -17.02

-50 98 79.98 18.01

-50 71 79.98 -&98 20 44 11128 -6728 25 11 4 11325 .74 50 136 12229 13.7 75 123~ 129.96 -6.96

" Data continued on next page

  • C-92

---~ _

l UNIRRADIATED (HEAT AFFECTED ZONE) l Pge 2 l l

Material: HEAT AFTD ZONE Heat Number. B7212-1 I Orientation-Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 100 191 13628 54.71 1 150 159 145 7/ 13.62 210 86 15L64 -65.64 210 189- 151E4 37135 213 151 151E4 .64 SUM of PflDUAIS : -22 6

I l

1 C-93

CAPSU~LE U CVGRAPH 41 Hyperbolic Tangent Curve Printed at 135i16 on 12-21-1998 Page1 Coefficients of Cune 2 A = 5659 B = 54.4 C = 7723 TO = -35.15 Equation is CVN = A + B * [ tanh((T - TO)/C) )

Uppr Shelf Energy 111 Fixed Temp. at 30 ft-lbs -76.4 Temp. at 50 ft-lbs -445 lower Shelf Energy: 2.19 Fixed Material: HEAT AFFD ZONE Heat Number. B7212-1 SIDF 0F WELD Orientation:  ;

Capsule: U Total Fluence 300 m 25o 4

I a

N 22 h

tw i L 150 l c) 1 C O i N ,, r v o

100 v

> /o U f O so O

j o

-300 -200 -100 0 100 200 300 400 500 600 I

, Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: U Material HEAT AFFD ZONE Ori: Heat f. B7212-1 SIDE OF WELD Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-100 21 19 3 1.69

-50 30 467/ -16 7/

-25 76 63.71 1228 0 68 79.78 -11.78 0 102 79.78 2221 50 104 10019 33 50 98 100.19 -219 75 58 105.06 -47.06

"" Data continued on next page ""

C-94

CAPSULE U Page2 Material HEAT AFFD ZONE Heat Number. B7212-1 SIDE OF WELD Orientation-Capsule: U TotalFluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 75 119 105.00 1193 100 106 1073 -1B 125 125 109.3 15 69 175 108 110.53 -253 200 114 110.75 3.24 250 97 110.93 -13.93 300 108 110.98 -2.98 SUM of RESIDUAG =-25B8 6

C-95

CAPSULE W (HAZ)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1641f)0 on 12-21-1998 Pagei Coefficients of Curve 1 A = 64.09 B = 6L9 C = 29.54 11) = -937 Equation is CVN = A + B * { tanh((T - TO)/C) )

Upper Shelf Energy 126 Fixed Temp. at 30 ft-lbs -Elf Temp. at 50 ft-lbs -162 lower Shelf Energy 219 Fixed Material: HEAT AFFD ZONE Heat Number: 19212-1 iTDE OF WELD Orientation:

Capsule: W Total Fluence:

300 25u

<n

.c I

a x em X

tw a 4 150 C

D a o a 100 /

2 o f o lo 2 )

u  !

a a a

g ,

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.:W Material: HEAT AFFD ZONE Ori: Heat #: B7212-1 SIDE OF WELD

_ Charpy V-Notch Data l Temperature - Input CVN Energy Computed CVN Energy Differential

-100- 29 2.46 2653

-100 20 2.46 1753 l -50 13 9.63 336 l -50 5 9S3 -4S3

-25 79 341 44B9

-25 9 341 -251

-20 19 42.75 -23.75 0 119 831 35B9 0 53 831 -301 l ** Data continued on next page ""

C-96

~

l CAPSULE W (HAZ) {

Page2 Ifaterial: IIEAT AFFD ZONE Heat Number. B7212-1 SIDE OF WELD Orientation

  • Capsule W Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 50 122 12331 -1B1 76 132 12531 638 125 120 125.98 -5.98 250 139 126 13 250 89 126 -37 350 155 126 29 SUh! of RESIDUAIS : 48.18 l

i

~

l C-97

1 CAPSULE X CVGRAPIl 41 Ilyperbolic Tangent Curve Printed at 135516 on 12-21-1998 l Page1 I Coefficients of Curve 4 A = 65.09 B = 62.9 C = 6724 TO = -2143 Equation is CVN = A + B

  • I tanh((T - 11))/C) l Upper Shelf Energy: 128 Fixed Temp. at 30 ft-lbs: -65.7 Temp. at 50 ft-lbs -39.9 Lower Shelf Energy: 219 Fixed Material: HEAT AFFD ZONE Heat Number: IT/212-1 SIDE OF WELD Orientation:

Capsule: X TotalFluence:

m as I CJ \

~ \

l i o )

N 22 h I u 5 b

c m

f m

g 100 m

7

[ m

^

{

o a 1 m , l n

J -

O I -300 -200 -100 0 100 200 300 400 500 600 l, Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap X Material HEAT AFFD ZONE Ori: Heat & B7212-1 SIDE OF WELD l

l l

Charpy V-Notch Data l Temperature Input CVN Energy Computed CVN Energy Differential l

-100 13 13.9 .9

-70 8 2728 -1928

-50 66 4L46 2453

-50 38 4L46 -3.46

-40 59 4 9.91 9.08

-20 36 6831 -3231 0 110 8617 23.82

" Data continued on next page =

C-98

l CAPSULE X Page 2 l l

Material HEAT AF7D ZONE Heat Number. IT/212-1 SIDE OF FELD Orientation-Capsule: X Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 0 135 8617 48B2 0 27 8617 -5917 20 127 100.88 26.11 50 91 1157/ -24 7/

125 92 126.49 -34.49 '

200 11 8 E.83 -923 250 126 E.96 -1.96 350 140 E.99 -

12 SUM of RESIDUAIS :-41.44 C-99

CAPSULE Z CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1355 16 on 12-21-1998 Page1 Coefficients of Curve 5 A = 64.09 B = 61.9 C = 76.31 TO = 1453 Equation is: CVN = A + B ' [ tanh((T - TO)/C) l Upper Shelf Energy: 126 Fired Temp. at 30 ft-lbs -32.7 Temp. at 50 ft-lbs -31 lower Shelf Energy: 2.19 Fixed Material HEAT AFPD ZONE Heat Number: IT/212-1 SIDE OF WELD Orientation-Capsule: Z Total Fluence:

~

300

=

to 250 4

J l

[4 200 h

bD l 4 150 0

  • y C v g

/

100

> e' ,

l U 50 ,

1 v

s VU U l

-300 -200 -100 ' 100 200 300 400 500 600

. Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.:Z Material: HEAT AFFD ZONE Ori: Heat f: B7212-1 SIDE OF WELD Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-100 8 8.06 .06

-60 16 17.57 -157

-30 20 3159 -1159

-20 68 37B5 3014

-15~ 68 4127 26.72

-10 42 44B6 -2B6

= Data continued on next page "

C-100

CAPSULE Z Page2 Material: HEAT AFTD ZONE Heat Number: B7212-1 SIDE OF WELD Orientation-Capsule Z Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential

-10 8 44E -36B6 0 70 52.45 17.54 0 44 52.45 -8.45 10 7 60.42 -53.42 25 130 7253 57.46 .

50 68 90.96 -22.96 100 122 114M 791 150 115 122M -754 195 140 124.91 15.08 SUM of RESIDUAIS = 952 b

C 101

l l

I UNIRRADIATED (HAZ)

CVGRAPH 43 Hyperbolic Tangent Curve Printed at 023532 on !?-22-1998 Page1 Coefficients of Curve 1 A = 4416 B = 4316 C = 1(TT.3 TO = -8812 Equation is: 11 : A + B ' [ tanh((T - TO)/C) l Upper Shelf LE; 8722 Temperature at 2 35 -1112 lower Shelf LE: 1 Fixed Material HEAT AFD ZONE Heat Number: IT/212-1 SIDE OF WEl.D Orientation:

Capsule: UNID. Total Fluence-200 en O 150 a 1

>i  !

100 a o

- U a 9 M O l

o l

n l ce A M a

fa I

A O l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; UNIRR Material: HEAT AFD ZONE Ori; Heat f. IT/212-1510E OF WELD

! Charpy V-Notch Data Temperature Input Lateral Expansion Computed 12 Differential

-200 5 10.54 -551

-100 33 39.4 -6.4

-100 57 39.4 1759

-50 46 5838 -12B3

-50 60 58B8 111 20 73 7737 -437 25 79 71.98 1.01 50 91 8121 9.78 75 87 8338 3.61

" Data continued on next page "

~.

C-102

I UNIRRADIATED (HAZ)

Page 2 Material llEAT AFFD ZONE lieat Number: IT/212-1 SIDE OF WELD Orientation:

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input lateral Expansion Computed LF. Differential 100 81 84B1 -3B1  !

150 95 86.32 8.67 i 210 73 86.99 -13 S 9 I 210 91 86S9 4 210 87 86S9 0 SUM of RESIDUAIS = -1.01

't s

I l

C-103

CAPSULE U (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 17m24 on 12-21-1998

)

Page1 Coefficients of Curve 2 A = 44S3 B = 43.63 C = 90.03 TO = -39.37 Equation is LE = A + B ' l tanh((T - TO)/C) ]

Upper Shelf LE: 8827 Temperature at LE 35: -595 lower Shelf LE:1 Fixed l Materiah HEAT AFFD ZONE Heat Number: IT/212-1 SIDE OF WELD Orientation-Capsule: U Total Fluence- i 200 m

O 150 n l x

100 oo n o o 8

0,)

v O

c / _

a so -

o I o

-300 -200 -100 0 100 200 300 400 500 600

. Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cape U Materiah HEAT AFFD ZONE Ori.: Heat f: IT/212-1 SIDE OF WELD Charpy V-Notch Data Temperature input lateral Expansion Computed LE Differential

-100 17 19.01 - 2.01

-50 29 4

' 51 -1051

-25 63 5154 11.4 5 0 58 6259 -4.59 0 75 6259 12.4 50 83 71.73 526 50 70 71.73 -7.73 75 50 81.9 -31.9

" Data continued on next page "

C-104

CAPSULE U-(HAZ) l Page 2

]

l Materiah HEAT Af7D ZONE Heat Number. B7212-1 SIDE OF WELD Orientation- l Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computed 12 Differential 75 89 81.9 7.09 100 89 845 4.49 125 93 86.07 6.92 175 89 87.53 1.46 200 90 87B5 114 .

250 88 8833 -13 300 W 8823 3.76 SUM of RESIDUAIS = -1.88 m

h

)

i C-105

I CAPSULo W (HAZ)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 172324 on 12-21-1998 Page1 Coefficients of Curve 3 A = 4324 B = 4224 C = 38.53 TO = -12.65 Equation is E = A + B ' l tanh((T - TO)/C) )

Upper Shelf 11 Bi49 Temperature at E 35 -202 lower Shelf 111 Fixed Material: HEAT AFFD ZONE Heat Number: 177212-1 SIDE OF WELD Orientation:

Capsule: W Total Fluence:

ax; I

. 150 E

a M

100 v v 0 m eh ce o a

5

  • ce

+ ,

,_a 50 t e

e g i l

0 i

-300 -200 -100 0 100 200 300 400 500 600 l Temperature in Degrees F l Data Set (s) Plotted Plant: FA2 Cap; W Material HEAT AFFD ZONE Ori: Heat l: B7212-1 SIDE OF WELD Charpy V-Notch Data Temperature Input lateral Expansion Computed E Differential

-100 15 189 131

-100 17 139 153

-50 23 1163 1136 i

-50 10 IL63 -1f3 I

-25 57 30.15 2634 1

-25 10 3035 -20J5 j

-20 15 3529 -2029 1 0 80 56.64 2335 j

= Data continued on next page " l j

l C-106 i

l CAPSULE W (HAZ) l Page 2 l Material IIEAT AFTD ZONE Ileat Number. B7212-1 SIDE OF NEID Orientation-Capsule N Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computed LE. Differential 0 41 56S4 -15.64 50 90 8234 725 76 m gig a 125 98 85.42 1257 250 98 85.49 12 5 250 71 85.49 -14.49 350 99.5 85.49 14 SUM of RESIDUAIS = 72.63 4

1 C-107

CAPSULE X (HAZ)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 17:2324 on 12-21-1998 Page1 Coefficients of Curve 4 A = 42.98 B = 41.98 C = 59.47 11) = -2531 Equation is E = A + B

  • I tanh((T - IV)/C) ]

Upper Shelf 1184FI Temperature at E 35 lower Shelf 111 Fixed 36.7

)

Materiah HEAT AFFD ZONE Heat Number. B7212-1 SIDE OF WELD Orientation-Capsule X Total Fluence ,

I 200 J en

.O 150 l 6 a  ;

x 1 100 a na a

! e ,

k -

c) .

a C A l A 50 m

l A

n J '

l 0

-300 -200 -100 0 100 200 300 400 500 600

, .. Temperature in Degrees F l Data Set (s) Plotted Plant: FA2 Cap X Material: HEAT AFFD ZONE Ori: Heat f: Ir/212-1 SIDE OF TELD Charpy V-Notch Data Temperature Input lateral Expansion Computed 2 Differential

-100 9 73 1.69

-70 7 1628 -928

-50 40 26.49 13 5

-50 23 26.49 -3.49

-40 40 3232 7J7

-20 32 46.72 -14.72 0 15 5934 -4434

" Data continued on D .4 page "

C-108

CAPSULE X (HAZ) l Page2 Material: HEAT AWD ZONE Heat Number. B7212-1 SIDE OF WELD Orientation-Ccpsule X Total Fluence Charpy V-Notch Data (Continued)

\

Temperature input lateral Expansion Computed LE Differential 0 68 5934 815 0 91 5931 3115 20 92 69.94 22.05 50 65 78.79 13.79 125 76 84.44 i .

200 82 84.93 33 250 90 84.96 5.03 350 94 84 97 9.02 SUM of RESIDUAIS = .27 I

l i

l C-109

{

l l CAPSULE Z (HAZ)

I CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 18M04 on 12-21-1998 l Page1 i

! Coefficients of Curve 5 A = 4328 B = 4228 C = 6&72 TO = 1&75 I Fquation is LE = A + B * [ tanh((T - TO)/C) ]

Upper Shelf LE: 8557 Temperature at LF. 35- 5.1 lower Shelf LE: 1 Fixed Material: HEAT AFD ZONE Heat Number. IT/212-1 SIDE OF WELD Orientation:

Capsule: Z Total Fluence:

l l

l m

O 150 .  ;

a M

100

- v s, v a r, L-O a

e 4 50 v s, v v l 7

- 7 Q 0 l

-300 -200 -100 0 100 200 300 400 500 600

. Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; Z Material: HEAT AFPD ZONE Ori: Heat f: IT/212-1 SIDE OF WELD J

Charpy V-Notch Data Temperature input lateral Erpansion Computed LE Differential

-100 2 3.58 -158

-60 5 8.76 -3.76

-30 9 17.4 8 -&48

-20 46 2128 2431

-15 40 24D4 15.95

-10 26 2&56 -56

  • Data continued on next page
  • C-Il0 L

i CAPSULE Z (HAZ)

Page2 Material: HEAT AFFD ZONE Heat Number: B7212-1 SIDE OF WELD Orientation-Capsule Z Total Fluence Charpy V-Notch Data (Continued)

Temperature Input lateral Expansion Computed LF. Differential

-10 26 26.49 .49 0 43 3t99 11 0 25 31.99 -6.99 10 1 37.93 -36.93 25 90 4721 42.78 '

50 40 61 2 -212 100 87 78 8 8.3 150 88 84J6 3.83 195 79 85.47 -6.47 SUM of RESIDUAIS = -216 C-111

UNIRRADIATED (HAZ)

CVGRAPH 43 Hyperbolic Tangent Curve Printed at la33M on 12-22-1998 Page1  !

Coefficients of Curve 1 A = 50 B = 50 C = 11L34 TO = -67.03 Equation is Shearx = A + B

  • I tanh((T - TO)/C) ]

Temperature at 50x Shean -67 Materiah HEAT AFPD ZONE Heat Numben B7212-1 SIDE OF WELD Orientation:

Capsule UNIRR Total Fluence 7  : :  : -

100 g O

n

  • f e

e 4

m , -

l 4

C e o i o a D

a<

/

au l

0

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted, Plant: FA2 Cap.: UNIRR Materiah HEAT AFFD ZONE Ori; Heat f. B7212-1 SIDE OF WELD

, Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential

-200 8 8.4 .4

-100 42 35.61 6.38

-100 45 35.61 9.38

-50 34 57 2 -23.58

-50 60 57.58 2.41 20 82 82fB -fo 25 83 83.92 .92 50 100 8911 10.88 75 100 9?.76 723

" Data continued on next page "

C-ll2

UNIRRADIATED (HAZ)

Page 2 Material: HEAT AFD ZONE Heat Numben B7212-1 SIDE OF WELD Orientation:

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 100 100 9525 4.74 150 100 9&01 1.98 210 93 9931 -631 210 100 9931 .68 210 100 9921 f8 SUM of REDUALS :12.48 C-113

l i

CAPSULE U (HAZ)

L CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1&26:40 on 12-21-1998 Page1 Coefficients of Curve 2 l A = 50 B = 50 C = 76.33 TO = -2812 Equation is Shearx = A + B * [ tanh((T - TO)/C) 1 Temperature at 50x Shear: -281 Materiah HEAT AFFD ZONE Heat Number: b7212-1 SIDE OF WELD Orientation-Capsule U Total Fluence 100 r -

1 O

8 m

cc O Q,)

A W A 80

'M c

e O

4o 5

j ao

/

o o i i

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F i Data Set (s) Plotted l Flant FA2 Cap.: U Materiah HEAT AFFD ZONE Ori.: Heat //. B7212-1 SIDE OF WEll) 1 Charpy V-Notch Data l

Temperature input Percent Shear Computed Percent Shear Differential i l

-100 5 13 2 -82

-50 35 36.05 -12

-25 52 52.04 .04 l 0 62 67.63 -5.63 i t

0 87 67M 19 2 1 50 82 88 2 -62 1 50 84 88M -4M 3 E E71 -M71

)

" Data continued on next page =

C-114

CAPSULE U (HAZ)

Page 2 Material: HEAT AFFD ZONE IIeat Number: B7212-1 SIDE OF WELD Orientation-Capsule: U Total Fluence:

Charpy V-Notch Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential Ta 100 9171 628 100 100 96E3 336 125 100 98.T L77 l

175 100 9931 .48 l

200 100 99.74 25 ,

250 100 99.93 .06 300 100 99.98 .01 SUM of RESIDUAIS =-1515 G

1 i

C-115

CAPSULE W (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1826:40 on 12-21-1998 Page1 b;efficients of Curve 3 A = 50 B = 50 C = 2731 TO = -1125 Equation is Shearz = A + B ' I tanh((T - TO)/C) l Temperature at 50x Shear. -112 Material HEAT AFFD ZONE Heat Number B7212-1 SIDE OF WELD Orientation-Capsule W Total Fluence

~

o se ,

c e

.c

. ca 60 a

c v, o

O 4-o h

m e h

20 -

+

O e i  :

c-

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap; W Maarial: HEAT AFFD ZONE Gri: Heat f. B7212-1 SIDE OF WELD Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-100 9 15 9 84

-100 10 15 934

-30 13 553 7.46

-50 9 553 3.46

-25 16 26.76 -10.76

-25 31 26.76 423

-20 35 3451 .48 0 Bi 095 24.49 l " Data continued on next page

  • C-Il6

CAPSULE W (HAZ)

Page 2 Material HEAT AFFD ZONE lieat Number. B7212-1 SIDE OF Nf1D Orientation-Capsule i Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 0 49 605 -205 50 96 98.88 -?.88 76 W 99KI -243 125 100 99.99 0 250 95 100 -5 250 100 100 0 350 100 100 0 SUM of PEIDUAIS = 16B7 -

4 C-117

CAPSULE X (HAZ)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 18:26:40 on 12-21-1998 Page1 Coefficients of Curve 4 A = 50 B = 50 C = 632 TO = -15 Equation is Shearx = A + B ' [ tanh((T - TO)/C) ]

Temperature at 50x Shean -15 Materiah HEAT ArTD ZONE Heat Numben IT/212-1 SIDE OF YELD Orientation-Capsule: X Total Fluence-

- ^ ' ' ~

100 r ce O

4 x- a cn 60 a

c o

O g 4-o m

20

< a

  1. 1 o l

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap;X Material HEAT AFFD ZONE Ori; Heat & IT/212-1 SIDE OF WELD Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential

-100 5 6.35 -1.35

-73 5 14.92 -9.92

-50 35 24B3 10J6

-50 20 24B3 -433

-40 35 3L19 3B

-20 35 46.05 -11.05 0 25 61E4 -36f4

"" Data continued on next page

  • C-II8

CAPSULE X (HAZ)

Page2 Material: HEAT AWD ZONE Heat Number IT/212-1 SIDE OF WELD Orientation:

Capsua: X Total Fluence Charpy V-Notch Data (Continued)

Temnarature Input Percent Shear Computed Percent Shear Differential o 65 61E4 3.35 0 95 61E4 3335 20 100 7516 24B3 l

50 65 88.66 -23B6 125 75 98.82 -23.82 ~

200 100 9938 .11 250 100 99F/ .02 350- 100 99.99 0 SUM of FiSIDUAIS :-35.66 4

C-Il9

CAPSULE Z (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1826:40 on 12-21-1998 Page1 Coefficients of Curve 5 A = 50 B = 50 C = 71.04 TO = 15.93 e

Equation is Shearx = A + B ' [ tanh((T - TO)/C) l Temperature at 50x Shear 15.9 Materiah HEAT AFFD ZONE Heat Numben B7212-1 SIDE OF WELD Orientation:

Capsule: Z Total Fluence:

100 -

~

80

/

a e

a>

c cn , -

a v c ,,

8 "

40 ~

b a

z v v v

J o i

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted Plant: FA2 Cap.: Z Materiah HEAT AFFD ZONE Ori.: Heat f: M212-1 SIDE OF FELD Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differentid

-100 5 3.68 131

-60 20 10.54 9.45

-30 15 2153 -653

-20 40 26.06

-15 45 295 1149

-10 20 3251 -1251

  • Data continued on next page
  • C-120

CAPSULE Z (HAZ)

Page 2 Materia!: HEAT AFFD ZONE lieat Number: B7212-1 SIDE OF WELD Orientation:

Capsule Z Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential

-10 25 3251 - 7.51 0 50 3&96 1103 0 25 38.96 -13.96 10 10 4533 -35.83 25 100 56.34 43.65 .

50 55 7229 -1729 100 100 9L42 &57 150 100 W.75 224 195 -

100 9935 E4 SUM of RESIDUAIS : 12D9 D

4 Y

C-121

D-0 APPENDIX D J. M. FARLEY UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY ANALYSIS 9

J. M. Farley Unit 2 Capsule Z

D-1 INTRODUCTION:

Regulatory Guide 1.99, Revision 2, describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the method

[

for calculating the adjusted reference temperature and Charoy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

, To date there has been four surveillance capsules removed from the J. M. Farley Unit 2 reactor vessel.

To use these surveillance data sets, they must be shown to be credible, in accordance with the discussion of Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to bejudged credible.

The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the J. M. Farley Unit 2 reactor vessel surveillance data and determine if the J. M. Farley Unit 2 surveillance data is credible.

EVALUATION Criterion 1: Materials in the capsules should be thosejudged most likely to be controlling with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, " Fracture Toughness Regt.irements", as follows:

"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicMd to experience sufficient neutron radiation damage to be considered in the selection of the most lim: ting material with regard to radiation danmge."

The J. M. Farley Unit 2 reactor vessel consists of the following beltline region materials:

Intermediate shell plate B7203-1, Intermediate shell plate B72121, Lower shell plate B7210-2, Lower shell plate B7210-2, Intermediate shell longitudinal weld seam 19-923A (Heat # HODA)

Inteimediate shell longitudinal weld seam 19-923B (Heat # BOLA)

Intermediate to lower shell circumferential weld seam I l-923 (Heat # SP5622)

Lower shell longitudinal weld seams20-923 A & B (Heat # 83640)

I J. M. Farley Unit 2 Capsule Z

D-2 Per WCAP-8956, the Farley Unit 2 surveillance program was based on ASTM E185-73, " Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels" Per Section 4.1 of ASTM E185-73, "The base metal and weld metal to be included in the program should represent the material that may limit the operation of the reactor during its hfetime. The test material should be selected on the basis ofinitial transition temperature, upper shelfenergy level, and estimated increase in transition temperature considering chemical composition (copper (Cu) andphosphorus (P)) and neutronfluence. "

At the time the Farley Unit 2 surveillance capsule program was developed, intermediate shell plate B7212-1 wasjudged to be most limiting and was therefore utilized in the surveillance program.

The Farley Unit 2 surveillance program weld was fabricated using the shielded metal arc welding process -

and E8018 stick electrodes, in a manner similar to that used to fabricate middle shell axial seams 19-923A (heat HODA) and B (heat BOLA). These electrodes were not copper-coated and do not exhibit ,

the chemical variability found in copper-coated submerged arc weld wire. Although the surveillance weld material does not represent the limiting reactor vessel beltline weld, the results of mechanical property tests performed on the surveillance weld are considered to be representative of the property changes expected in the reactor vessel beltline seams. The NRC explicitly approved the selection of the Farley Unit 2 surveillance weld material on the basis that the limiting beltline material (i.e., intermediate plate B7212-1) was included in the surveillance program and conservative methods of analysis contained in Regulatory Guide 1.99 were available to predict the radiation characteristics of the limiting beltline weld.

The NRC lncorporated an exemption to the requirements of Appendix H to 10 CFR Part 50 in the Farley Unit 2 Operating License, thereby approving the selected surveillance weld material based on the NRC evaluation provided in Section 5.2.1 of NUREG-0117.

Although the Farley ' Unit 2 surveillance weld material does not meet the requirements of Criterion 1, conservative methods of analysis are available to predict the radiation characteristics of the limiting beltline weld. The limiting beltline plate material is intennediate plate B7212-1 which is more limiting than any of the reactor vessel beltline welds and is included in the reactor vessel material surveillance program. Therefore, the Farley Unit 2 reactor vessel material surveillance program provides assurance that the radiation damage to the vessel can be adequately determined and the integrity of the Farley Unit 2

, reactor vessel will be ensured during normal plant operations and anticipated operational occurrences.

Therefore, the Farley Unit 2 surveillance program meets this criteria.

I J. M. Farley Unit 2 Capule Z

D-3 Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enougin to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented Section 5 of this report.

Based on engineeringjudgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy of the J. M.

Farley Unit 2 surveillance materials unambiguously. Hence, the J. M. Farley Unit 2 surveil'ance program meets this criterion.

Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ARTNDT values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28 F for welds and 17 F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM El85-82.

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine if the scatter of these ARTNDT values about this line is less than 28 F for welds and less than 17 F for the plate.

Following is the calculation of the best fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2.

e J. M. Parley Unit 2 capsule z l

D-4 TABLE D-1:

Calculation of the J. M. Farley Unit 2 Chemistry Factor Values Based on Surveillance Capsule Data l

1 Material Capsule Capsule f*) Fl* ARTmW FF*ARTm FF 2

Inter. Shell U 0.644 0.88 104.4 91.9 0.77 Plate B72121 W l.85 1.17 167.3 195.7 1.37  !

(Longitudinal) X 3.19 1.31 164.4 215.4 1.72 .

2 5.28 1.41 199.5 281.3 1.99 Inter. Shell U 0.644 0.88 123.1 108.3 0.77 -

Plate B7212-1 W 1.85 1.17 168.9 197.6 1.37 (Transverse) X 3.19 1.31 200.3 262.4 1,72 Z 5.28 1.41 196.2 276.6 1.99 SUM: 1629.2 11.7 2

CFases.: = Z(FF

  • RTm) + I( FF ) = (1629.2) + (11.7) = 139.2*F i

Suneillance Weld UN 0.644 0.88 0.0 0.0 0.77 Material

  • W l.85 1.17 6.7 7.8 1.37 X" 3.19 1 31 0.0 0.0 1.72 Z 5.28 1.41 10.0 14.1 1.99 SUM: 21.9 5.85 2

CFs= w.a = Z(FF

  • RTm) + Z( FF ) = (21.9) + (5.85) = 3.7'F Notes.

(a) f = Measured fluence from capsule 2 dosimetry analysis results(See Section 6 of this report).

(b): FF = fluence factor = ("28 * 80 (c) ARTmyr values are the measured 30 ft-Ib shift values (See Section 5 of this report). '

(d) These measured ARTm alues v do not include the adjustment ratio procedure of Reg. Guide 1.99

{

Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld metal measured shift values and based on the copper and nickel content the ratio would be 1 *

(i.e. 41/41 = 1). In addition, tre only surveillance data available is from the J. M. Farley Unit 2 reactor vessel, therefore, no temperature adjustment is required.

(e) The measured ARTmvalues for capsules U and X are -28.7'F and -15.3'F, respectfully. These values are assumed to be O'F in this analysis since using the negative numbers will give a negative chemistry

]

factor value and this should physically not happen. In addition, using 0*F will result in a higher chemistry factor for other calculations (i.e. PTS, P-T curves, etc.).

l 4

1 I

I J. M.Farley Unit 2 Capsule Z

]

L- '

D-5 The scatter of ARTer alues v about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table D-2.

TABLE D-2 Best Fit Evaluation for J. M. Farley Unit 2 Surveillancc Materials Base Material CF FF Measured Best Fit (* Scattcr of < 17'F (Base Metals)

(*F) ARTmyr ARTer ARTer (30 ft-Ib) ('F) ('F) < 28*F (Weld Metal)

(*F)

Inter. Shell 139.2 0.88 104.4 122.5 18.1 No Plate B7212-1 139.2 1.17 167.3 162.9 4.4 Yes (Longitudinal) 139.2 1.31 164.4 182.4 18 1.io 139.2 1.41 199.5 196.3 -3.2 Yes Inter. Shell 139.2 0.88 123.1 122.5 -0.6 Yes Plate B72121 139.2 1.17 168.9 162.9 -6.0 Yes (Transverse) 139.2 1.31 200.3 182.4 17.9 No 139.2 1.41 196.2 196.3 0.1 Yes Surveillance Weld 3.7 0.88 0.0 3.3 -3.3 Yes Metal 3.7 1.17 6.7 4.3 -2.4 Yes 3.7 1.31 0.0 4.8 -4.8 Yes 3.7 1.41 10.0 5.2 -4.8 Yes NOTES:

(a)Best Fit Line Per Equation 2 of Reg. Guide 1.99 Rev. 2 Position 1.1.

J. M. Farley Urdt 2 Capsule Z

D4 I

Table D-2 indicates all the scatter is w..ain the acceptable range for credible surveillance weld data.

However, only five out of eight plate surveillance data points meet this criteria.

Hence, on the above data the J. M. Farley Unit 2 intermediate shell plate B7212-1 surveillance material does not meet this criteria. However, the weld metal surveillance data does meet this criteria.

The best fit surveillance data is shown graphically in Figures D-1 and D-1 which follow.

(.

l

. J. M. Farley Unit 2 Capsule Z

p...- .ii '

D-7 Figure D-1 Farley Unit 2 intermediate Shell Plate B7212-1 250 200

      • ,...- B ********......-. " --

5 Farley Unit 2 Data

~*...- E * *,,,....... ..

' w 150-y$ .-#..

, One Std Dev(17 F)

FX' 100- .

t l ,.- Reg Guide 1.99 Pos. 2 l ,*

(CF= 139.5 F) 50 'l 0

0.00E+00 1.00E+19 2.00E+19 3.00E+19 Fluence, n/cm4 90E+19 5.00E+19 6.00E+19 Figure D-2 Farley Unit 2 Weld Metal Data 40 -

_ ,,,,...... .. .. ... ..- *===** -= *- -

E Farley Unit 2 Weld Data kg10 - E 5

" One Std Dev (28 F)

E 0- E E b

h -10 Reg Guide 1.9a Pos. 2

  • O'

,,,......... ...... . .* .. -= < - -

-30 0 1 E+19 2E+19 3E+ 4E+19 SE+19 6E+19 Fluence,19n/cm2 J.M.Farley Unit 2 Capsule Z

D-8 Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding / base metal interface within +/- 25 F.

The capsule specimens are locate.d in the reactor between the core barrel and the vessel wnl and are positioned opposite the center of the core. The test capsules are in baskets attached to the neutron pads. The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25'F. Hence, this criteria is met.

Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the data base for that material.

The J M. Farley Unit 2 surveillance program does not contain correlation monitor material.

Therefore, this criterion is not applicable to the J. M. Farley Unit 2 surveillance program.

CONCLUSION:

Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B and 10 CFR 50.61, the J. M. Farley Unit 2 surveillance weld data is credible and the intermediate shell plate D7212- surveillance data is NOT credible.

~

t I

J. M. Farley Unit 2 Capsule Z L