ML19343D575

From kanterella
Revision as of 06:47, 31 January 2020 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Supplemental Investigation - Svc Water Pond West Embankment Rept 2.
ML19343D575
Person / Time
Site: Summer South Carolina Electric & Gas Company icon.png
Issue date: 04/30/1981
From:
GILBERT/COMMONWEALTH, INC. (FORMERLY GILBERT ASSOCIAT, WOODWARD-CLYDE CONSULTANTS, INC.
To:
Shared Package
ML19343D572 List:
References
NUDOCS 8105050351
Download: ML19343D575 (70)


Text

I 0

1 SUPPLEMENTAL INVESTIGATION SERVICE WATER POND WEST EMBANKMENT REPORT NO. 2 VIRGIL C. SUMMER NUCLEAR STATION I

I I

I I Prepared for:

SOUTH CAROLINA ELECTRIC & GAS CO.

COLUMBIA, SOUTH CAROLINA I

I I

Prepared by:

WOODWARD-CLYDE CONSULTANTS I PLYMOUTH MEETING, PENNSYLVANIA and GILBERT ASSOCIATES, INC.

READING, PENNSYLVANIA 810505 O D6 k

I I

SUPPLEMENTAL INVESTIGATION I- SERVICE WATER POND WEST EMBANKMENT REPORT NO. 2 VIRGIL C. SUMMER NUCLEAR STATION 1 TABLE OF CONTENTS Page Number

1.0 INTRODUCTION

. . . . . . . . . . . 1 2.0 UNDPNINED CREEP TESTS . . . . . . . . 1 3.0 SUPPLEMENTAL LABORATORY TESTING . . . . . 5 4.0 ANALYSIS OF CREEP SETTLEMENT . . . . . . 7 5.0 SELECT FILL INTRUSION POTENTIAL . . 10 I

6.0 STABILITY ANALYSIS . . . . . . . . . 13

7.0 CONCLUSION

S . . . . . . . . . . . . 14 ATTACHMENTS I TABLES FIGURES APPENDIX A: LABORATORY TEST RESULTS I

I

L

[

{ LIST OF TABLES I

l 1.

SUMMARY

OF PHYSICAL PROPERTIES OF SELECT FILL I

l LIST OF FIGURES

1. UNDRAINED CREEP TEST, SELECT FILL
2. UNDRAINED CREEP TEST, SELECT FILL
3. UNDRAINED CREEP TEST, SELECT FILL
4. UNDRAINED CREEP TEST, SELECT FILL
5. UNDRAINED CREEP TEST, SELECT FILL
6. UNDRAINED CREEP TEST, SELECT FILL
7. UNDRAINED CREEP TEST, SAPROLITE
8. UNDRAINED CREEP TEST, SAPROLITE
9. UNDRAINED CREEP TEST, SAPROLITE
10. UNDRAINED CREEP TEST, SAPROLITE
11. UNDRAINED CREEP TEST, SAPROLITE
12. UNDRAINED CREEP TEST, SAPROLITE
13. STRESS LEVEL VS. STRAIN RATE, SELECT FILL 14 STRESS LEVEL VS. STRAIN RATE, SAPROLITE
15. SUPJ1ARY OF TRIAXIAL TESTS ON SELECT FILL
16. STRESS RATIO FOR SOIL INTRUSION FROM LABORATORY TESTS
17. STRESS RATIO FOR SOIL INTRUSION FROM FIELD OBSERVATIONS
18. STRESS RATIO FOR SOIL INTRUSION FROM FIELD OBSERVATIONS
19. UNDRAINED SHEAR STRENGTH OF EMBANKMENT MATERIALS
20. EXTRUSION POTENTIAL, SERVICE WATER INTAKE STRUCTURE
21. STATIC STABILITY ANALYSIS, WEST EMBANKMENT

i l

I l

1.0 INTRODUCTION

f Presented herein is Report No. 2 of the Supplemental I

I Investigation of the as-built condition of the West Embankment at the Virgil C. Summer Nuclear Station. The original report was submitted on March 6, 1981. The purpose of Report No. 2 is to l present the results of long-term laboratory tests (with associated engineering tis) which were incomplete at the time of the initial subri. .41. This report also includes the results of other l

tests which were requested to be performed by NRC Staff and l

addresses various specific concerns expressed by NRC Staff since the initial submittal.

2.0 UNDRAINED CREEP TESTS I A total of four series of undrained creep tests, consisting of three tests per series, were conduced on relatively l undisturbed select fill and saprolite samples obtained by means of a 3-inch O.D. thin-walled Shelby tube sampler. A Pitcher sampler was also used to obtain some of the saprolite samples. The selection of specimens, testing loads and data obtained are discussed below.

2.1 SPECIMEN SELECTION AND PREPARATION 1

The test specimens were selected on the basis of the results of Standard Penetration Resistance (SPR) tests perfctmed in f

the borings above or below each undisturbed sample. The specimens used for testing had SPR values representative of the range of l

values measured in the borings. The SPR values of the test specimens from the select fill ranged from 13 to 28 blows per foot and those for the saprolite from 31 to 53 blows per foot.

I I

I

l l

I 4 I

l The test specimens were cut to a length equal to twice the diameter and were not trimmed from the original diameter of l 2.87 inches. The specimen ends were carefully trimmed square. As i

I the saprolite specimens were considered likely to contain slicken-sided fissures, care was taken to prevent separation of the specimens during preparation for testing.

I l 2.2 CREEP DEVIATOR STRESS I

f The specimens tested were consolidated tc the estimated in-situ effective vertical pressure. The specimens were consoli-dated at least for four dHs prior to being loaded so that the l

volumetric deformations due to consolidation pressure would be essentially complete and would not unduly affect the pore pressures during the undrained creep phase of the test.

lI The specimens were loaded with a deviatoric stress of 30, 50 and 70 percent of their estimated undrained strengths at the appropriate consolidation pressure. To estimate the strength of the specimens for this purpose, the strength data from consolidated undrained (CIU) triaxial compression tests was utilized. The results of these tests have been presented in Section 4.3 of the original report. To obtain the undrained strength, the CIU test data was analyzed in terms of total stress. Linear regression I analyses were conducted to determine the average strength of the select fill and saprolite. The results obtained from the regression analyses are as below:

For select fill:

(ci - a3)g = 1.50 + 2 c tan 26.2*

Eq. (1)

I I

I .

I For saprolite:

(or - cz)g = 1.78 + 2 o c tan 18.4' Eq. (2)

I where: (ci - on)g = maximum deviator stress at f ailure (tsf) o = consolidation pressure (tsf).

c The deviatoric loads were applied to the specimens pneumatically to mitigate any impact load effects. It should be noted that none of the samples failed during the creep tests.

I 2.3 CREEP TSST DATA After the deviatoric loads were applied to the speci-mens, deformations were monitored with time. The duration of all I the tests was 28 days or longer (approximately 40,000 minutes).

The test results, in the form of plots of deformation vs. time are included in Appendix A. After 28 days of creep loading, the specimens were f ailed to determine the actual undrained strength of each specimen and, thus, the actual percentage of the failure load that the creep load represented. In some cases the creep stress ratio tcas much lower than planned because the samples were much stronger than estimated. The strength tests were controlled stress

tests with the deviator loads being imposed in small steps.

Stress-strain curves from these tests are also presented in Appendix A.

At the end of the test, each specimen was analyzed for grain size distribution, unit weight, Atterberg limits and specific gravity. This data is presented in Appendix A.

ANALYSIS OF CREEP TEST DATA 2.4 The creep test data was analyzed following procedures

I I

l l I l 1

described by Singh and Mitchel1 III. The stress-strain-time l functions proposed by Singh and Mitchell are:

I c = a+ e oD t(1-"I (m/1) Eq. (3)

E l c = c1 +A* e" In (t) (m = 1, t>l) Eq. (4)

, where: c = strain at any time t l

D= ratio of deviatoric stress to failure stress m, a, A = constants depending upon material properties a, et = integration constants e = base of natural logarithms In the above relationship the three parameters m, a and A are evaluated from the laboratory experimental data. The procedure which was followed to determine the values of these parameters is ouclined briefly as follows:

Step 1. Deformations were plotted against time and a smooth g curve passed through the data points. Any abrupt E changes in deformations which are believed to be due to disturbance, temperature change or fluctuations in pneumatic pressure were ignored. This data is shown in Appendix A.

I Step 2. The strain races (c) at various values of time were computed mathematically:

. c2 - c1

  • " t2 -

ti at t= (t2 + tt )/2 and the strain rates were then plotted against time on log-log graphs. These plots are shown on Ficures 1 l through 12. Straight lines were fitted to the data using linear regression analyses. The slopes of these straight lines give the values of "m" for each test.

I Singh, A. and Mitchell, J.K. (1968) " General Stress-Strain-(1) l Time Function for Soils", Journal of the Soil Mechanics and Foundations Division,, ASCE, Vol. 94, No. 1, January, pp. 21-46.

Step 3: Values of strain rates at a known time (i.e. t = 1 minute) were determined for each test from the regres-sion analyses in Step 2. This value has been denoted as c.a The values of c e versus the value of corresponding D were then plotted, as shown in Figures 13 and 14. A best fit line was drawn through these points, again using linear regression analysis. The slope of this line is the value of a and its intercept I at D = 0 is the value of A. The value of D was calculated using the failure stress obtained at the end of the creep test for each specimen.

2.5 CREEP TEST PARAMETERS Using the method described in the previous section, the following creep test parameters were obtained:

Select fill: A = 2.13 X 10 -3  %/ min a = 1.695 m = 0.819 (average)

Saprolite: A = 3.66 X 10 -3  %/ min a = 1.415 m = 0.847 (average) 3.0 SUPPLEMENTAL LABORATORY TESTING In addition to the creep tests, isotropically consolidated-undrainad (CIU) triaxial compression tests (with pore pressure measurements) were conducted on samples of select fill l from Borings WE-14 and WE-15. These borings were located adjacent

-. to the Service Water Intake Structure. The samples selected for 1

I

~

I testing were those within the backfill zone of the structure, where Standard Penetration Resistance (SPR) values were found in the borings to range from 4 to 9 blows per foot.

I The test results are included in Appendix A. On Figure 15 the test results are summarized and compared with the design shear I strength of the West Embankment as well as the results of other tests conducted on samples with higher SPR values. It was found that the effective stress chear strength of the lower SPR doll was similar to that of the previously tested samples and exceeded the strength used for ciengn in all cases.

An unconfined compression test was also conducted on a sample from Boring WE-14 which yielded a compressive strength of 1.2 tons per square foot. While there is no specific design I requirement for unconfined compressive strength for this project, this value is representative of a stiff (2) material. The design value for unconsolidated-undrained (UU) compressive strength with-out confinement is 1.6 tons per square foot, but this was for unsaturated samples at the end-of-construction condition. The unconfined compressive strength would be expected to be lower after saturation.

Physical property tests were also conducted on samples of I the select fill from Borings WE-14 and WE-15, at depths which are above the base of the Service Water Intake Structure. The test results, shown in Appendix A and summarized in Table 1, indicate that the average moisture content of the select fill in the backfill zone of the structure is about 3.5 percentage points higher than the average moisture content in the deep fill under the crest of the West Embankment. However, this backfill area is completely submerged and has relatively little vertical confine-This area would, therefore, be expected to exhibit more I ment.

(2) Terzaghi, K. and Peck, R.B. (1967) Soil Mechanics in Engineering Practice, dohn Wiley & Sons, New York, p. 30.

I I 1

l l ~ 7-l swelling, and hence a higher moisture content, than the deep fill area. Also, some of the samples indicated a plasticity index in j the range of 13 to 28 percent, whereas all of the samples obtained from the mass fill were non-plastic.

1 4.0 ANALYSIS OF CREEP SETTLEMENT I

4.1 CREEP DEFORMATION CALCULATIONS I

f Creep settlements expected under the Service Water Pump-house and Intake Structure during the 40-year projected life of the nuclear plant were estimated using the creep characteristics of the l

select fill and sap ~olite obtained from the creep tests described in detail in Section 2.0. The Pumphouse weight is approximately equal to the weight of soil displaced, and thus, for stress I calculations the presence of the Pumphouse does not need to be considered. The stresses within the West Embankment were estimated using vertical and horizontal stress contours for embankments by Poulos, Brooker and Ring for a 1. 7:1 slope. The value of deviatoric stress was obtained as the difference in the vertical and horizontal stresses, (at - os), at a particular level.

The value of the failure stress, (at - o3)f, was estimated based on the design shear strength and the horizontal stress at each level.

The embankment and underlying saprolite were divided into seven I layers below the Pumphouse for this purpose. This method of analysis does not take into account the effect of rotation of principal planes in the embankment slope, but this assumption is believed to be reasonable. Since the slope inclination of the West Embankment is 3:1 as compared to a 1. 7:1 slope, the deviatoric stresses computed are conservative.

I The value of D, the stress ratio, was obtvined at each level for the seven layers as (at - 03 )/ (o r - os)g and the expected I creep strains were calculated for each layer using Equation (3).

The constant of integration, which represents instantaneous strain (3) Poulouc, H.G., Booker, J.R. and Ring G.J. (19 72) , " Simplified I Calculations of Embankment Deformation," Soils and Founda-tions, Vol. 12, No. 4, pp. 1-17.

I I at time zero, was eliminated by considering a finite time period beginning at a time other than time zero. Equation (3) then becomes:

I c2 - ct I

=lm* ID 2 1 ) Eq. (S)

I The time period selected was from t 1 = 4 years to t2 = 44 years.

(In the actual calculations the base of natural logarithms, e, was replaced with the ucse of common logarithms, 10, since all data reduction was performed using common logarithm graph paper.) The strains were then converted to settlements by multiplying by the height of each layer. The creep settlements for the Pumphouse and the Intake Structure were then estimated by summing the deformation of soil layers under each structure.

I The magnitude of undrained creep computed for the Pump-However, house, assuming a 1.7:1 slope angle, is about 4.0 inches.

using the same method, the magnitude of creep for level ground is computed to be about 3.0 inches. Since undrained creep does not occur in the level ground situation because of lateral restraint, it is believed that the actual undrained creep in the field, if any, would more likely be the difference between these values, or about 1.0 inch. The creep settlement of the Pumphouse end of the Intake Structure was calculated to be about 2/3 of that of the Pumphouse.

If 4.0 inches of creep settlement were to occur during the next 40 years, which may be considered to be a conservative upper bound estimate, the theory indicates that the present rate of creep settlement for the Pumphouse would be about 0.3 inches per year, decreasing gradually to about 0.2 inches per year during the next 6 years. This amount of settlement would be readily detected by the I existing monitorir.g system. The actual recorded movement of the Pumphouse and the west end of the Intake structure for the 12 months from March 1980 through March 1981 has been 0.09 inches and 0.04 inches, respectively, upwards (rebound). Thus, there is no I

I evidence of creep occurring beneath the Pumphouse almost four years after the completion of construction in the area.

4.2 DISCU3SION OF RESULTS The creep deformations calculated in Section 4.1 are I believed to be very conservative estimates. The reasons for chis are discussed below.

4.2.1 Creep rarameters: The creep parameters used in the analysis were obtained from undrained tests. During the undrained tests the pore pressure continues to increase and the stress path moves toward the Mohr-Coulomb yield criterion. The actual field conditions, however, allow the dissipation of all construction pore pressures after a certain time has elapsed. The use of undrained I creep parameters will therefore yield conservative estimates of future creep deformation.

4.2.2 Effect of Groundwater: The groundwater level in the embankment has been raised to about elevation 420 due to filling of the Service Water Pond. This has resulted in the reduction of effective stresses, constituting unloading. The unloading is resulting in rebound of the Pumphouse and Intake Structure. This stress history was not simulated in the laboratory creep tests, I which would probably significantly reduce any creep deformations.

4.2.3 Lack of similitude: The creep tests were conducted under triaxial test conditions, wherein the test samples were permitted to strain laterally. In the field, the soils beneath the Pumphouse and the heavily loaded portion of the Intake Structure are confined laterally and significant creep deformations can occur only as a result of secondary compression. Based on one-I dimensional oedometer tests conducted previously it is estimated

  • hat future secondary compression will not exceed about 0.7 to 1.2 I

I inch.

4.2.4 Lack of Verification: The theory of creep settlements is based on laboratory testing and the literature is not known to contain any field verification data for conditions similar to the West Embankment. Therefore, the level of confidence in the upper bound estimate is low, and it is believed that any actual creep settlement which occurs would be much smaller. It is I expected that the creep settlement will not exceed about one inch during the project life of the structure, if it occurs at all.

I 5.0 SELECT FILL INTRUSION POTENTIAL I Cracks which occurred in the Service Water Intake Structure due to excessive settlement were grouted during December, 1977 and January, 1978. All cracks having widths greater than 0.012 inches were grouted.  ?.lthough it is considered unlikely that any future significant cracking will occur, the intrusion potential of the compacted select fill through open cracks has been evaluated. This evaluation is described in the following subsections.

5.1 ASSUMPTIONS For the purpose of this analysis, it was assumed that unfilled open cracks could exist above.the b4_se anywhere along the 167-feet length of the Intake Structure. It was also very conservatively postulated that the width of any crack could be as

large as 1/2 inch. The flow velocity of water through the Intake Structure under emergency operating conditions will be less than 0.5 feet per second and, therefore, no turbulent flow is expected within the cracks.

I I

~I

I I

l 5.2 PUBLISHED DATA

In 1967, Broms and Bennermark I4) conducted laboratory extrusion tests by applying various vertical pressures to undis-turbed samples contained within a brass liner with a circular hole 1

l of 0.4 to 0.8 inches in diameter at mid-height. Other tests were

. conducted by applying various vertical pressures to remolded, large j diameter samples containing a central, hollow brass cylinder with a circular hole of 0.4 to 1. 6 inches in diameter on its side. The l results of these tests, summarized in Figure 16, indicate that when the ratio of the applied effective vertical stress, (og - p g) g, to the undrained shear strength, S (also referred to as c ), s equal u u to 6 or greater clay extrusion occurred.

The results of field observations on clay extruaion problems in sheeted retaining walls and tunnel walls and liners were also reported in the same paper by Broms and Bennermark, as shown by Figure 17, and in 1969 by Peck (5) , as shown in Figure 18.

These observations indicate that when the ratio of the effective overburden pressure to the undrained shear strength was between 5 and 6 slight squeezing of the clay was observed, but the system was stable. However, when the ratio was greater than 6, the system was I unstable and excessive squeeze of the clay was encountered.

II In addition, Broms and Bjerke reached the same conclusion based on the extrusion of soft clay through a retaining wall with an opening of 1.5 meters by 2 meters.

5.3 UNDRAINED SHEAR STRENGTH OF EMBANKMENT MATERIALS The undrained shear strengths of the West Embankment materials obtained from the isotropically consolidated undrained (4) Broms, B.B. and Bennermark, H. (1967), " Stability of Clay at Vertical Openings", Proc. Am. Soc. Civ. Eng., Journal of the Scil Mech. and Found. Div., Vol. 93, No. SM1, pp. 71-94.

(5) Peck, R.B. (1969), " Deep Excavations and Tunneling in Soft 1 Ground", Proc. 7th Int. Conf., Soil Mech, and Found. Eng.,

Mexico, State-of-the-Art Volume, pp. 225-290.

I (6) Broms, B.B. and Bjerke, H. (1973), " Extrusion of Soft Clay through a Retaining Wall", Canadian Vol. 10, pp. 103-109.

Geotechnical Journal

I l triaxial compression tests (CIU) are summarized in Figure 19 as a l

function of the effective confining pressure (5fc). Also shown on j that figure is the shear strength from an unconfined compression test (o g = 0). From the CIU results, the lower bound undrained shear strength is conservatively estimated as:

I S, = (oi - o')f = 0.5 + a,c ean 26.2- Eq. (6) 2 I

where: S u

= undrained shear strength, tsf (at - 03)g = principal stress difference at failure, tsf I 6fc = effective confining pressure, tsf In Eq. (6), Efc = 0 represents the case of unconfined compression.

5,4 INTRUSION POTENTIAL The intrusion potential of the embankment material above the base or the top of the Intake Structure is summarized in Figure 20 in terms of the effective overburden pressure (3yg) and 6 times the undrained rhear strength (6Su ) fr various fill thicknesses.

It is shown that 6Su is considerably greater than B yg for all fill thicknesses for both the CIU strength, which includes the confine-ment effect, and the unconfined strength, which conservatively neglects the confinement effect. Therefore, it is concluded that there will not be any soil extrusion through any postulated crack in the Service Water Intake Structure.

5.5 ADDITIONAL CONSIDERATIONS g Aside from the squeezing of soil into a crack because of la overburden stress, additional modes of soil infiltration could be postulated, consisting of dispersion and erosion. However, dispersion tests conducted on the select fill during construction I

I determined that the soil is non-dispersive and resistant to erosion, as described in FSAR Section 2.5.6.4.6.5. The water pressure in the Intake Structure and the pore water pressure in the soil are essentially the same. Both are essentially equivalent to the hydraulic head in the Service Water Pond, except for the slight differential due to the flow of water through the Intake Structure I at a rate of less than 0.5 feet per second. Thus, there would be no significant gradient or water flow into a crack from the outside of the structure and no potential for erosion.

6.0 STABILITY ANALYSIS At the request of NRC Staff, a static stability analysis and parametric study was conducted for the West Embankment. The I purpose of the study was to determine the influence on the stability of the embankment if the shear strength of the soil in the backfill zone of the Intake Structure was reduced to a value below the design strength.

The results of this analysis, conducted using the simpli-fled Bishop method of slices, are shown on Figure 21. For all cases, the minimum factor of safety was found at the maximum permissible depth of the trial failure arcs, i.e., elevation 367, the base of the Intake Structure slab. A typical failure arc is shown on Figure 21. For the design shear strength of c = 300 psf and R = 28 degrees, the static factor of safety was found to be I 2.41. For assumed values of 60 percent and 40 percent of the design shear strength the factors of safety were found to be 1.46 and 0.96, respectively. (It should be noted that for these parametric studies, the shear strength was very conservatively reduced along the entire failure arc, not just in the backfill zone adjacent to the Intake Structure.) From these results, an actual shear strength of 52 percent of the design shear strength would provide a static factor of safety of 1.3, which is the design criteria for the West Embankment slope. However, laboratory testing of samples from I

I I Borings WE-14 and WE-15, adjacent to the Intake Structure, indicate that the shear strength in this area actually exceeds the design j shear strength, as described in Section 3.0. It is concluded, therefore, that a slope failure will not occur adjacent to the Service Water Intake Structure.

7.0 CONCLUSION

S Based on the data presented in the previous sections of l this report, the following conclusions have been determined:

I l A. The future settlement of the Service Water Pumphouse and Intake Structure due to soil creep during the life of the nuclear plant is estimated to be not more than about l

1 inch. This amount is about equal to the rebound which has occurred since filling of the Service Water Pond and would not be detrimental to the structures. It is believed, however , that undrained creep deformations would f be negligible due to the lateral constraint of the soil beneath the structures and that any settlement which occur.s l would actually be due to secondary compression.

I B. The shear strength of the select fill in the backfill zone of the Service Water Puirphouse exceeds design require-ments. The shear strength could be considerably reduced and still provide an adequate f actor of safety, however.

C. Soil intrusion through a postulated 0.5-inch crack in ll the Service Water Intake Structure will not occur.

I

p**

P W

W >

L p=*

Pa-i f

W 4

b t

b4 W

e W

M-L m

TABLES a ,

i m

9 l

-  ;

I

, t r

k l l

[ .

l f

I L >

1 1

1 6

i i I w i l

I

l l

TABLE 1

SUMMARY

OF PHYSICAL PROPERTY TESTS OF SELECT FILL Property No. of Tests Maximum Minimum Average I Borings WE-18 and WE-19 (a) ,

Water Content (%) 17 35.7 20.8 27.0 Liquid Limit (%) 17 NP NP NP Plasticity Index (%) 17 NP NP NP Specific Gravity 17 2. 76 2.58 2.69 Unit Dry Weight (pcf) 17 105.5 83.5 95.6 Degree of Saturation (%) 17 100.0 89.1 95.6 Borings WE-14 and WE-15 (b) ,

Water Content (%) 22 37.6 24.7 30.5 Liquid Limit (%) 9 70 NP ----

Plasticity Index (%) 9 28 NP ----

Specific Gravity I

5 2.73 2.65 2.69 Unit Dry Weight (pcf) 5 98.9 85.7 91.1 Degree of Saturation (%) 5 100.0 95.3 97.9 Notes: (a) Borings WE-18 and WE-19 are located on the crest of the West Embankment.

(b) Borings WE-14'and WE-15 are located in the backfill zone of the Service Water Intake Structure, l

. - _ _ _ _ _ _ _ - a_ s' A + ---_a--4a J. 4A4 m.- -m I

f l

I

,[

[  ;

[ -

, FIGURES I i a

I  ;

I l l 1

1 i

I I

f I'

6 l

i l .

4 l

4 I  !

r aio~'

I I

I , , ,o-a

. i

{

e,. 5 is , io 3{

I BORING NO. WE-19 SAMPLE NO. ST-2 l

OEPTH 18.0 -20.0'

, STRESS R ATIO 29.9".

I l '

s a Q'I I

, e n o.7ss

! i 4

. l I 3 E.

I sid" 1

i

i i

I

  • i 5 j t l

l l 1 l

i '

5  !

,,,g * *

? \ l, .

6 .

{ .i asid i i i l i i

j l i.

' I 4 I ised 0.1 1 40 ICO etME (meavies)

I,0C0 I C.CCC ICO Cc0 UNDRAINED CREEP TEST SELECT FILL VIRGIL C. SUMMER MUCLEAR STATION l FIGURE I l

I

I

\

L

[

[ ..0. .

e , . 2.3 2 . io'*

s . id' SORING N0. WE-t9 SAMPLE NO. ST-2

. 0 ses DEPTH 18.0'-20.0' STRESS RATIO 3C.3%

  • I I s10' i . 8 e

d

- l

' l

$ i.i6'

.

5 .

I I

i 1 i I

. . .e l l 1

.\ . l

.I .

I I i a 0'I l

i  %

I 1 l

0.1 1 10 100 1000 10,000 100,000 TIME ( m i%t es )

UNDRAINED CREEP TEST SELECT FILL VIRGIL C. SUMMER NUCLEAR STATICN FIGURE 4

4"

s ro

I e 2.as sio'*

I 1 a lO' N .

  • o.eze l

BORING NO. *E-19 SAMPLE NO. ST-3 DEPTH 23.0'-30.0' STRESS RATIO 72.95

. I I isid

..g .

[

g .

N

~

t laib" l .'.. -

a N

..id' .

~

I a 10' I slo,

. i  : 1

, ;o 10 0 1000 to,CCO ' C O,CCC Tiu t t= a.ees t

'JNORAINED CREE? TEST SELECT FILL YlRGIL C. SUMMER NUCLEAR STATION FIGURE 3 I

I

i l

isid' I esio 1 I I l j 50 RING N0. wE-19

\ s' g e,s3.issid 3 SANPLE NO. ST-5 DEPTH 48.0'-50.0'

! STRESS RATIO .28.6%

I ssi6

. I l

j

- l ,

l lI #

m a o.692

- . I -

% ia8 I I z

2

i

i i

l 5 l l i 1 l

, i i

l a ld . .

I i i

isid" I t a 'd i

3, , , io ico i. coo io.coc ico.oco riut t =.a.'e o UNDRAINED CREEP TEST SELECT FILL VIRGIL C. SUMMER NUCLEAR STATION I FIGURE '4 I

I

_ -,,--_.g y

l i

l I

l I

f l

I sid 1 2 l

g q . . . . . .. 10 i .,e N- 4 l

J l I

f

, , o ,, ,

BCRING N0. WE-19 O T 68h'.00' STRESS R ATIO = 47.7%

I l l i.id 3

\ -

? '

t' 4

= n 40 E

  • a

l

' t . .i .

i i.if S * .

l l

l Isid i

i h

t a i6 10 CCO iOOM 0' ' 10 t0O 1.CCO t i u t ( .. ... .o

'J50 RAINED CREEP TEST l i

SELECT FILL VIRGIL C. SUMMER NUCLEAR STATION FIGURE 5

I

~

W 4

L L

ieed' L

f l

e ,e i 24 sio

-2 I,

. 3 l l BORING NO. WE-19 g SAMPLE NO. ST-5 i I DEFTH 118.0'-50.0' L

STRESS RATIO 351.2'.

' I r i . io' ,

L  ! l =

  • o. 722 i - l

- -  : l L e i i I

ei.i6'  ;

F  !  ! .

i  :

i i j #

said

!  ! N I

! l i

I a lo i

co, coa I

O.i a io ico i.co o io.o c o

,,.c......,

UNDRAINED CREEP TEST SELECT FILL I VIRGIL C. SUMMER NUC'.DR STATION FIGURE 6 I

I

l -

~

I l

I I

a .iv' ,

I '

i l ''' 3 I i SORING MO. 'aE-17

, . SAMPLE NO. ST-7 I DEPTH 68.0'-70.0' STRESS R ATIO 34.37.

i.io

,3 f . o sis I 1 I -

I. ,

i

)i  !.

1 -

i . i(*

.i .

g i ,

I E E

3 8

. l g i.i.

l i . io.6 6

i, l

g. , , io l

ico riut ( = a.e.s i i . coo io.cco ico. coo I

=

UNDRAINED CREEP TEST SAP 90 LITE VIRGIL C. SUMMER NUCLEAR STATICN FIGURE 7 1

1

I  !

i I

I .._

i I .

\  !

s eio '

BORING NO. *E-17 SAMPLE NO. ST-7

-2 DEPTH 68.0'-70.3' I leto-2 .

e ', 2.4 2 s iO STRESS RATIO 50.S'.

I I I -

i i 1

I i

{

l  !

e

= = 0 9C4 I i i i t

)g -

}

I i l is10~3

;

I

s I I

I ei i I i

i a 1o**

I

! I -

1 l'

t i l .

te10 *I .

! ,I .

i ,

I iaa0"0 O. I I #0 100

?twE (miavieil 1.000 :0,0CC 100.cco I UNDRAINED CREEP TEST SAPROLITE VIRGIL C. SUMMER NUCLEAR STATich FIGURE 8 I

I l l

1 I

I i a 10 *' ,

2

, 4,s 4. 93 a 10

= s0.89:

. BORING NO. wE-17 SAMPLE NO. ST-7

. OEPTM 68.0'-70.0' s . ,o 3 l

N STRESS R ATIO 65.2".

I i*

I i  !

/ .

l' I I I 3 l 3  !

E i

I + .

l IsiO*3 ani,4 i

l l l  !

l l l 1 4 - I '

,,,g.t O. I I to 10 0 1000 1C,000 iCCJ:0 f aut ta.a eest UNDRAINED CREEP TEST

SA?ROLITE vtRGIL C SUMMER NUCLEAR STAit0N FIGURE 9 I

ieic" t i l i

! l ,

'"*3 w ......s,0> -

;

i SORING NO. wE-16 I

! S AMPLE is0. PIT-1

' OEPTH 79.0'-81.0'

. . . STRESS RATIO 20.7%

I  !

l '

I sid

  • 'I .

i 8

l I

1 i

i

  • i
  • m s 0 930 .

d 1 1

4

$ I a to I $

3 I

I

i

. i i

3  ; ,

I I sih l

l

, I.

2 I I l

1a16 , ,

3

! i  !.

i , -

' I i .

1 l

I l, ,

1  ;

l

, i i

l i l l l 7

IC :C0 1,000 'C.0C0 100.C00 O. I I f:wt fm.a.eest c

UNDRAINE3 CREEP TEST SAPROLITE VIRGIL C. $UMMER FJCLEAR STAil0N FIGURE 10 I

I I

I I .

I 4

I ,.. .

  • .g c .s i.ss . ic I

,,,o t '

I l BORING NO. WE-16 I i,

$ AMPLE No. PIT-2 OEPTH 81.0'-83.0' STRESS RATIO 26.3%

1 a nd'

; ,

i I s 8

w q8.iG 4

f i  !

i

- l I i.

i

i i

=

N i . id' '

l I I

i ,

t o ld i

l i I ,,,,.,

Q.1 1

l i

10 #CO 1.C CO i

60.CCO

100,C00 i s c t . . . .. .

I UNDRAINED CREEP TEST 5APROLITE VIRGIL C. SUMNER NUCLEAR STATION FIGURE 11 I

'I J

I

!I

I I lI

- i s i o" ,

I

~

i n lo , N I l N- ,

. . . s . . . .o >

BORING NG. 'pE-16 j $ AMPLE NO. PIT-6 DEPTH 93.5'-36.0' j  ;

STRESS R ATIO 47.37.

i ni6 3 \ l l l

= = o sis I' f 1

. e I t i

s

? i 1 l

- 1 ' #

4 '

! = i . io

  • E z .

5 .

a

, E i5 isto I j l '

i i

. i iii" ,

!

l 6

I l

l

' l sand' ' io ico i, coo 'c.000 ico.cco i

' 4 l

( flMC (mia.res) 1 l

UN0 RAINED CREEP TEST f

$APROLITE E VIRGIL C. SUMMER NUCLEAR STATION

,g FIGURE 12 I

I

I I

I I id'  ; _ _ _ ._ _ . _ ;. v = -- --

/

p

..a -

.+=-.gw-~

f. ,

-..7.:==.  ; ,

.. _ -. = +-.-2-= ti  ?:w-- E =_+ = - L -e f

._=--. -. m _ m ,_#

. - i: - / -- -l

- ; _ m = _c-._k -

_ ; : :_ :. u r . .i : - i. / -!

I 7 =- =.= r-==- :: r p__ =- L.=.. q&5 == = == == - i_=:: = a- rL : p =

- "_- . 51_ _I .i ~3N i ;= r : I

-y-
L h 9' t

.r.<-/2 i.- 1

.w i L / . -..

7-  ;/-  ;~

if
I I T- . _Z _.' _-~_ _ _ . ._ _T i=-i- T = ! ~ = /i- -

~'

Z._ ___ ~ ~ "----- ~ ~. l .}d._i_ n._ . :. ;__r_t_. _. L _ r r.i_ .'. :/b-!.:

t

_ . y.: :. -~___::cccr/ - : V : . r.' /.'=- -: . *I --:  : -- - _ ;!

{_: r_r

___ . __2 _ .p. p/; /.0Z: r 1 '.

T: - r - ~-

- . ~ l u>___._+ __-..__.w. -

' O }-_.___._,..

Y~-'ZT ~--* .~. .! _.C _ _. i.FY_.-. ..

I

. a = t.695 .....-i I

__ . _,._Ei-i . :: __  : .':::. : - . ~ : - ,- - : l

. _; ;.; = 2n :..; :.rr t : . ; . .

t-=-  :::L ': ::_.:.:-__ .'-

I 4..

.___;

, ._ 3 _. . _ . -_;_ _. ._

. . _ __a _ _ . . ... . . . _

[:..ZJ....._..v_.._._'..' 2,. _ . _ I. . . _ .

I I

-2 .

r w I to -

.s A y = :- - - . - - - -- _ _ _

_F:-- );:- r- ,

J . h O - - : _. L_L P. . _ - - , _i g .- f _ {

( . . f.

C  : -c zi- +: :_; r 5 2:. ::, ;f-'s , - - E- -

^

---~~=L- ~;; -Ed. j E-S 51. [.-l - 4 .I I

3 _

>=

-  %+u.=w ---2-s-c=- j= g a-=

x = i= = --Wt-r ===-/ --ts + r-- = - = ; = -

<r===c: - -

g .=. .m-= e2--=-+ay/_ w=_ - J. i- _-* --,:.=..-1 :t

. :i

i-TMi ==w-:f= = = M ?-. -b =a

-t.--

- = -- ; = C- ~/ =io =9-+'s : .i 2 :- t :

I r .i: + .- I 3-

==._--/=- ~= ; _ . M -9_; -_:.}- .

I. 1.__

6

.;

__.__,..__.__..{..

..[_. -_:. -

_ _ _ _ __/ .

ii~:;t;^^:. iip _. .: - -i . :-i I . . .

__-/;_-

~~}.

. .j- --'--_:T-O SEMES I a SERIES 2

l~

I rf. .Y-- -_ . :. : ::. - ~ ' _ . _ .

i

., . ._._., 5

, . _..g . -,.

i

. _ _- - A = 2.13 x 10._3 . ..- __

r

-!- i l j

l u, : __ . .. . . _ . _ -

I ._-_ _ _- . - . _ _ _ __ ._. _. _. . . . - . . . _ . _ 4

--~

~~C C_- - b STRESS LEVEL vs. STRAIN 4 ATE

_ _ _ _ __ _ _ - . - - _ _ - . . . - . t. ggggg3 m g

__.__.._-- _ _ _ ,

  • _ - - - - .'.l - VIRGIL C. SUHHER NUCLEAR STATION I

3-[- _l; "- ZU^ FIGURE I3

~f i .

7 5 *

.. e _-..-m 1n10, O O.2 0.4 0.6 0.8 1.0 0s .C+C g 3 h Ti - #3)f I

I

I.

I I snto

-s

~=,y q ,

w -l /d I

./--__-- ,

, i , ,

j l_.bc w_-e - - - - t . . .!.

_n

/ .  !

-=-~~--_r_---... . t-- . : : .p . . -

f- a

i ==_=.-_ .._. _ w _= =___- r .. .,../ t i I _ =- q m _.n+ -. , ,- i i
f- .ui

-I 2E-t-:2.=_E_V I c = If=:II. I.:.9 : E =

v_ 7_ :_r ia :J/

h -ti =K=&M -  : H h ; . ~ /1 -

'I

._;___.__._.__._ ._;_. . f ., , .

.___.._--.___.rrr _ _ .m . _ _ /: - t - -

I

-n

. _ . - . . . _ _ _ _ _ _ _ - . _ . . . . .,. . 'j.

.______._- - E 9Ei Eli E E /.x if

__:. = = = c c-. A = i.gis _..

._. _. :=T:1.

- : _ t . . - ._I

___:5.5 q ___._ _~2.. __ __] .'_. _

. . J%_:_3:~::5:]5

__ . _ u _ _ _ . . .l

_ -i

_ .0_ _ ..t-.-.__.___._- L _ _~.*_.

.;..

6

__ . L . _

._3!

.[.__....i._.._:_._ [ -. .A.

I

_ _ . _ ___ __ I .._ _i_ _ _ p_. _ ,.;

_, _ _ ., _ m ;-, . .

r-- _ . u - _ : ;. = _1. --._t:: _:.

_f :n . . : . :. :._ u__.-  ! =:.2-!

m.:.: . =_- _. _ : . :- __. :.=__ : ::=__:: 7 _ ; ;

I -.C =._.}:::_ =::::::: ~'_ l

=

c m :gr =_ {_ E _.~Z2

.t. . ..,

1. N 2: Zi' _

{_

_p____._____L__.___._a _ _. ._

g _.__.7.__.._._.,..__.._a p__.._;__...

I y _ _ _

w into =- ---_ m 2=: n .g . s -:- . ._ :

  1. f%.

- -, - i L- s

-- F = - / = - _  : . .

e ^:"-?,L---_'

m-

._ -wfw, . m = . i . m ,

f ".:I' r_.-~8- [5 -- . .r-__ 4  :

I $_EWM--Wf d'# I 55 r Ni * - * - - -

JT -- i ' ' ' - t h ^

===--- ,-

< M- MM+= =rf=r.;- n =: : M = r--

h ;0- = - :fE/Mi^Z:5_~_-Ei W .1 -

."-.-_:. --;.= .-L:._.----

K =L =-/-e " = = = E =w = - =ru===<-V. - - - - - -

= ' 'i /-MsE .~_ , _ - .. i _...- _ r 4 _ i -: i -i - . ;- }:

I

.g/ ==_2:= - --

i g._3

...._._(.

i

__ r ._

_..-._.....:: __(___._ -- . . .i, -

f_ - _ _ . _ .

~

b A = 3.66 x 10 @ 5 N55I-F N P-@ kEi ~ '

I - - -

__ . --  :: . . = L _=_ , _. O SERIES t

.. , . _ . _ ._._-;_____. 6 SERIES 2 ,

u-- _a .- - r - -  :- I . -- .c  !

I __.______;..---

_== :_ : _ . _. .

t

_i.

-I-a.

. :. - . ._i . . _ - :. . . .

I - - - - . = _ - : _ . >~~

.= .= = -- ~

~ - - -

STRESS LEVEL vs. STRA N RATE

_ ____ _ -_____:_-_ r :.L - _. _!. SAPROLITE VIRGIL C. SUMHER NUCLEAR ST!. TION

_ _ _ _ ----_: 4 __ _ __ _ _ l' -

I istC

,3

_._.________",-~

- . _ . - ~ . . . '

- - . ;. .

t 4

i L

FIGURE l'4 O 0.2 0.4 C.S 0.9 i .0 I 05 ($ * $1/t% 8'yf

S T

S 6 E T

_eJ-n s" LL AL c"

o _

a -

t

= /

' . - .- - - g I I XF 5 s' - . - A 1 4

e, . - . I T _

n - RC E _

- ,. R is c -

TE _

- U J

7 FE L

G -

E - p - OS I _

T F

[.- .. . - _

O N ~

. A, .

l T - _ YN RO

~ - -

A 4

5~

- - A, .. - 2~ -

W U

- .. = . - . S

. d,i i - - .

,6

-(

~ : : .~

4, - . -  : .

. - .. j

~ _

. '?

..L E

P O

- . - - - ._ .. . .- : .: E V 5

7.-

~. . . ,.

N E .

)

N G

f

. - - - - . ... .. .~  : , - I _

t s

. 3, S _

~ .

. . - f -

E{ . (

D _

N-I- \

. r 3

4

~

. - . - . . +3 2

r

.- .. - . =

/~

- . - . - - . _P 3

. - .. . - I e, - . .

~ - : . . - < _

. - - - - - - , . 4 ~

9 - - -

2

~ - - - - )

- 3 0_ . . -

- - G 1 1 1 . - - .

= = =_ . . .

- 7 f

- - R R R .

s

- P P P . -

t S S S

/,

- - aO D 3 1

1 0

e,

=

/,* a

-

d O 5 A 3 2 g 0

,h U s u

m b ,~~ b

I

- I2 60-

'i I ~

d' 6l 7/ / -

  • / '

$?////. ~ .

s', u' ,

I .,

2-

- 0 200 400 600

" Uncrcined shear strengtn, c,, Ib/f t*

i (a) UNDISTURBED SAMPLES I

I Unconfined com-pression tests Saecisn 1011 Qne tests L:ccrctory vene tests 20; 20 . 20 l  !

e l w 4:

f3 u,15 - 15 4

s IS -

2 b "

  • 1 ,

o IO -

10 ,. IQ .'

  • '. *
  • l 5- , 3 a I

..  ; ,e s - <

a 0 5 5 l Sl

G .  !

I t ,

0 0' C 20 30 0 10 20 30 0 10 20 30

.m 0 10 i Time to faulure. minutes

!I -

(b) REMOLDED SAMPLES l

II i (after Broms and Bennermark,1967)

- STRESS RATIO FOR S0ll INTRUSION FROM LABORATORY TESTS
FIGURE 16 .

a r

[

[

[

I4 ,

e 12 - e O Na Collicultres a Scecnal prec:urions a

[ 10 3 ,

3 e Fon ture 8- a

% 0 e 8[ws------*<>----------------------

o O =

l o o i

i 2j

[  !

0 '

0 400 BCO I200 6C3 ?CCO Uncrainec snect strengrn, c., m/f t" (after Brems and Bennermark,1967) v T~

L I

STRESS RATIO FOR S0ll lHTRUSION

. FROM F! ELD OBSERVATIONS I

FIGURE 17 l

DEEP EXCAVATIONS AND TUNNEluNG oble : Field Oata on Stability of Tunnels in Saturated Plastic Clays

. N

'E < a > "

2

~ ~

u u.

l' ma i.

'ix

= W c 9 d ce a o . - - =x ,  : ,

C  % e j

N N 5M w e Ow o

= ~ cv =~ um e e 2 o R 3C Dx L2 4

  • u a c w o '-4 A  :

e c w * '- *

  • 2 a w - c. c  :.

>d >s - *

  • o ts  :
  • 1-
o. e

=

o m C= b c <m C* <a '

z u London Clay, 90 9.3 9.7 21, 11.0 0 0.5 (1 )

1 London, Ash- Tattersall et lI ford al, 1955 fissured, plastic 55 7.7 7.1 7.2 7.0 0 1.0 (1 )

3 London, post Ward and Them- do.

office as, 1965 I *3 London, Vic-toria Ward and Them-as, 1965 do. 85 14.0 6.1 7.8 10.8 0 1.4 (1 )

4 ottawa, Sewer Iden and Soz- Leda Clay, 60 10.0 6.0 3.7 6.2 0.6 1.5 (1) cruk, 1963 sensitive de9eer and Boom Clay, 253 11.? 14.3 7.8 31.5 0 4.1 (1) 5 A.. t -e r p , Oas Storage But:iens, 1966 fiss. red, plastic

.I G Detroit, water Housel, 1942 Plastic glacial clay 63 15.0 4.5 0.8 8.0 3.9 5.1 (2) 7 Toronto, sub- Pers. comm. Plastic olacial 43 17.0 2.5 0.7 5.5 1.4 5.7 (2) way clay 8 Chicago, sub- Terzaghi, 1943' Plastic glacial 36 20.0 l'S. 0.44 4.3 1.7 5.9 (2) way city Koto, Tokyo, Shiraishi Normally leaded 74 23.0 3.2 0.76 5.6 1.2 7.4 (3) 9 subway pers. cera. sensitive clay Osaka, Munici- Shiraishi Normally loaded -51 23.0 2.2 0.60 5.0 1.0 6.6 (3)

I

.0 pal F.ailway pers. cors.  ; sens'.tive clay (after Peck, 969)

I REMARKS:

I Stable, no sq'teeze 2 Stable, with some squeeze 3 Unstable, with excessive squeeze I  ;

I STRESS RATIO FOR S0ll INTRUSION FROM FIELD OBSERVATIGNS l

FIGURE 18

. _ = - - . . . .- .- .. .. .

m m m M M 3.0 , , . .

  • Clu, SAMPLES FROM BORING N0.WE-18 O CIU, SAMPLES FROM BORING NOS.WE-14 & 15 5* A UNCONFINED COMPRESSION, SAMPLE FROM 2.5- -

BORING N0.WE-14 e

m /

T q o /

/

p 2.0

/

x /

$ I'5- 0 -

6 p f-

/ .. ( Fl F )3 f /2 = 0.50 TSF + Ffc tan 26.2 0 1.0 'l M /

m /

I 5 /

h O.5-E r

O

! O O.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

EFFECTIVE CONFINING PRESSURE, Ffc , TSF l

I UNDRAlHED SilEAR STRENGTil i 0F i El-1BANKMENT MATERI ALS I

FIGURE 19 i

i

i I j sz a z

W

= l i

W W g a8 I -

5 (1333)38n10nHIS3XVINIDN07Y30NV1Sl0 O

_5 5*

gm WW O O O o wx m I o O O g n e Of -

  • o<g m o <n

. . . . . , z g

  • 2

=

$. se -

e E

- m<

M H5 m ><

M WW

& O O

O

  • W s e H

5 m

x S4\

I I

o o $

g -

Ib

> d /

/z -

n A /

/ $

oz 0 / 0C m" \ /

C S4 m /

/

I O S

. -/-

/

/

0 8,

v. hh

~

'69o 2 BASE

. To? gp SMS ,

g9o t 2***#

N I (13)3SV83A08Vllid3.0SS3NX0l.H1 N n g (13)d0l3A08V771330SS3NX0lH1 l

l

\

) 1  ;, \

0 M 0 1

S I

S M Y L

/ 5 7

H T

G N

AT NN AE YK M 1 M E R

TN IA 2

E T LB R S I M U H BE G T N A M G  % G TT I

F 2 I SS N 5 S E E .

l II 0 E CW R - 5 D I T

T - F A M S F S

P g

O T S T

R - N A O* 3 E E O0 1 C

M H 3 2 R S : : E 5 P N c5 2 G

I S

M E D

M - - O 5 0 5 0 5 2 2 1 1 O

M i

u

  • ho D x u' M

M q ,

M 8

p3c M /4g E

R U

E R

U T

5 0 T C C U M \.OO J

R T

S s S D E E

M S* ,, ' K l

A A T

T N

N I

s. I F

F O _

M

\ O P

F S

A T B .

M j \ -

a 7 0 _

3 e G 5 M 4 3 v

3 v.

3 V.

v.

E E E~ E L L L L E E E E M

i I

II l-

![

l i

l[

i i

I 1 i

l -

l A PPE NDIX l A l 5

t

[ -

t t

E

(

I ,

I l 1

I  ;

I  !

l

>l t

K R C

AS RE R

P 6

A t I

A N L A L E

5 f 1 R Ct e

M I P

ul * * * -

C _

U U

yg Jg _

"t

'r Eg _

f i

5g 5 9 I

I 23 6 6 -

I 77 -

V A 2 2 -

, E 22

, O 5 8 f )

76 .

f s 7 9 iN e 53 8 U l 89 8 S

T S H 6 L S l g 0 E A U R P

R .j, 6 M S E

M O

C T g S

R 5 0 _

N 5 ,,

2 T O t R ,

S C 1 g 1 E N 5 U

T E S C I

W Y T

I T S

g 3 4 1 P P 0

- R M A g 22 4 4 5 N N 4 2 IL L g 44 O G P

M7C T A

R t

a D g, I

R s U g 0 4 P P 4 1 E Q 07 0 7 O T T

l g 76 6 6 6 N N 6

, B A L H A L A t 4 1

5 4 9 5 3 40 0 9 9 9 6 6 0 8 8 a L R t .

U f T, 9 8 9 3 4 1 7 0 6 n F T A N 6 6 4 8 0 59 3 3 2 3 3 2 3 HA WO 2 2 3 2 3 32 2 2 O C S

Y I S

R E A I M

M U

S N

Ol l

A C

I FI l l l 1 l l l l l l l l l l S l l l 1 l l l S l l l l l l l l l~ i i i i i A i i i i i f.

i i i i F F F F F F F F F L

C F F F F F F t t t t t t t t t t t t t t t c c c c c c c c c c c c c c c e e e e e e e e e e e e e e e l l l l l l l l M l e

l S

e l

S e

l S

e l

S e

l S

e l

S e

S e

S e

S e

S e

S e

S e

S e

S e

S 0 4 6 1 3 3 3

- s 5 0 0 0 5 5 0 5 . . .

e .

2

-M l e

9 1

6 2

9 2

6 3

9 3

4 4

6 4

9 4

6 5

6 3

0 4

4 2

7 4

0 5

5 H - - - - - 6 8 8 3 5 0 5 9 6 I

P 0 5 5 5 0 ' 0 . .

C se E

. 4 8 4 4 8 0 5 8 0 D 8 4 8 4 8 ".

5 3 3 4 4 4 5 se e

1 2 2 3 3 4 4 4 f e e

, H 2 e G 0 2 5 1

, 4 9 1 1 1 - 2 3 - 4 Nd at 1 1 3 4 6 7 8 1 T - - T -

, I L

- - - - - S #

, R m P - - - - - - -

S S S ES S S S S

, o A M ES S S S S S W

, R 5 W

,.! lf}li1!,

>b -

K .

CM' A5 B'

L' Lj 5 E

C '5 ,, _

a '

(

I'"

m ,!

y3 _

C ' 9 1 8 3 8 4 1 0 4 8 m fl l

C E

P 8

2 8

2 9

2 6

2 7

2 7

2 7

2 7

2 7

2 5

2 S " 3 0 7 0 5 7 I 2 7 9 7

' G' 3 2 5 7 6 1 5 1 3 5 m S W

Y e R

D

(

1 1

2 1

2 1

8 9 0 1

9 0 1

8 9 T " -

L '3,

^ f U

S E

R T ' ,,.

S ' .

E T

E ' ,

W- Y ' i P P F P P P P P P P R ^ m , N N N N N N N N N N

/ O '

t T

W2 C A ' ,

R '

u P P P P P P P P P P 1 f N N N 7 O I

^

' g N N N N N N N m B A t Mure L t

t l

ig 9 0 6 7 6 3 9

3 3

4 7 8

6 3

2 0

9 5

1 3

7 5

8 6

A 2 7 8 6 7 1 2 F O

" Wm. c 3 2 2 2 3 1 1 1 2 2 2 2 2 3 2 L

A 5 ) ) ) ) ) ) ) ) )

Y )

M R I

C E

5 8

1 1

(

1

(

1

(

1

( (

1 1

( (

1 1

(

1

(

1

(

A S P 1 _

M .

M -

M U S

t s

e T

_ N p O e

_M l l

A C

e r

I C

F l l l l d I

l l l S l l l l l l l l l e e e n l

S l e e e i i i M A L

C i

F i

F i

F i

F i

F i

e t t i i t t i i t t l

i F F F F i a

l l l l l t t t t r t t t t t l c c c c c c o o o o o o c e d

_ c c e e e r r r r r r e e e n

_ e e p p p p p p l l l l U e

_M e l l l l l e e a a a a a e e e e e a S S S S S S S S )

d S S S S S S 1

(

3 3 3 2 3 0 0 0 0 0 0 0 0 0 0

e. . . . . .

. 7 7 1 3 6 0 0 0 0 0 0 0 f 7 1 1 7 7 2 2 3 5 .

5 6 6 7 7 8 8 9 7 t - - - - 0 t

i 8 8 8 7 8 0 0 5 0 0 0 0 0 0 ..

_ P 3 8 8 8 8 8 8 8 C.

_ E 5 9 5 9 5 9 1 .

o D 7 7 8 9 6 6 1 1 2 4 .

5 5 6 6 i 6 .

- . 1 2 2 3 5 .

r G n 5 6 - - - 7 7 7 7 9 2- 5 a

Nd a e t 8 9 T T T 1 - - - 1 r

T T

- I 1 5 6 7 1

- 1 I I

- T T T - T

  • e r - - - - -

P S S E b S S S A

R m E- S S S S S EP P ES

_ s O a W T W W

. Mw B L s

_ i f)! 1 il i;  !)  ;;

>ita _

e E n i C 5, ui A5p -

Iee -

e r

' e

" E n

^ E ui>

' E 5 ,,

5

' Cr, a

r ui C _

u u _ .

go - _

.0 I

I

$x

  • _

. =

5e.

C v l

f i 9 9 t

C vA l

6 5 N a 2 2 S G 2 5 H

N ' o., 3 0

5 0

u e 1 1 S

T S H ,

L l )

H A U H h%

S M t 1 E 5 O

R C $

N $ )

ts T O n on S C it E N S U

T C

Y H

l f l

t M 5 i P R I Am L i N P

O L r

t N T G A H Dl I

R H U u l e Qi P P O H A

I t L

N N 3

- B H A L A e s, i

6 8 L a f S

U f n .,, 0 -

A F A n 3 2 -

I O AN W CO.

2

, 5 )

Y , 1 5

)

R ,c t (

1

(

1 A ,

1 M

M t .

U s -

S e -

T t

t p

. O e -

e, l

e

. l A r ,

_ C C -

_ I F d I

S l ]

1 e .

S l i 1 n .

A i L F F a C

t r -

t d c c n e

e l U ,-

l e e )

_ S S _ 1 ,

_ _ ( ,.

0 0 -

s

. 0 0 .

5 5 . ~

n 0

n. -

i r

0 -

e 8 c. e p 8 _

l 4 4 i ,

l n

o P 5 9 5 5 -

R nd e 1 - - .,

- i n .r t

- T T a -

A u S G O n S a W ES_ n W .

' , i ili e l'
!1j!l  : :i ,! l!! !;!ii1iii.4

A-4 x

o I m H

c/3 H

H M

m O w <

I -

J J-8=

O o

H 0Jo w J =)

w-z mw w

J LL. M o m i LaJ H LaJ l H- oo2 l om WwI LaJ L&a x J =3 J co - wC/3 LLI <m 4

= O 9 m o o x

O :s J b o. -

a O -

4 I

I r_1 .

Cl O

w L 8 e

m m m -o m

e w c> n I g c)

/

m N

e (J3 c)

C') -

es I O

- try O. Lt)

LL8 N H m

g c) c)

N-is I O

- gg)

C. m.

L1J N H we

.e-

. . in o3

- C.O o3 -az<D

- C s

N N- c) o. to H .C- H - - -

1 O <o

  • L1J <o . C LLJ- t::

i "wms osaz. o mzm= -

0 mzem -

- e cs w ca c.s w '

taJ en z z J co z z _a o 2 I H . o. w- o _p

<o w-Hn w-Ho

. m z co = - m 2 c. 2 r1 mma2 A O, N How< How< y 4

me w mmon m m o us o cy en x z a w - H o.

a:: m o. I How<

v3 m a en O b m

O O

s I i u

o i l'

-O i O o O D O an' O m D O O s o m O s o t N .

0 O 9 d

d O O O 6 6 O (sayou!) ly 'N Ol1VW80330

y N

O I

T A

S T T S 0 S 0 E R 0, T A E

L 0 PLL L2 5 ELC I EI U FS RFN E C TI TR CR DCE

.EE EEM LS NLM E I EU S ASS R .

D C N

0 U L

% "4 0 I 7 3 0, G R

5 0 I 7 9 4

41

=

05 0

o 4 V E5T OW - H

- I T

G I

- AO . 0. E RN 8 H

)J 8

SG SNHL EI TP RRPM 4

E g 0

_ 2 0 TOEA 0

. ' 5

,l SBDS 0

/

3 .

51 90.5 g 0,

3

- 0

= E5T )

OW I

- H

'G ,- t s

e T u AO 0. EI - n RN8H - i 4

, m SG l E SNiL - (

EI TP RRPM

+

O[A TOEA E SBDS 0 M y 0 I 0, T y

0 p 2

% 6 6 5

. 5 8 9 0' 5 21 0

OW

=E5T H 0'.EGI I

T 0 A0 V RN8H SG 4

SNiL l E 0

0, 0

_ 1 EI TP M RRPM TOEA SBDS

- , O 5 0 5 0 5 0 5 O 7 5 2 0 7 5 2 .

1 1

1 l

0 0 0 O 0 0 O 0 O 0 -

7i$a $5y 8b _

\

j4 ' ! i' 4

O.175 I I SAPROLITE STRESS RATIO = 65.2%

EPH68b'-70.0' O.150 [SAMPLEHEIGHT5.57!1"

-o a 1 3 d-O.125 u-

?

c O.10 0 -

~ STRESS RATIO = 50.8%

I BORING NO. WE-17 d DEPTH 68.0'-70.0' g SAMPLE HEIGHT 5.556" 9 0.075 l l O

$ --O-

-0 -O-2

--O- D-y 0.050- (O

' STRESS RATIO = S!!.3%

BORING NO. WE-17

/ DEPTH 68.0'-70.0'

)! / SAMPLE HEIGHT 5.568"

{ O.025 W o o c / o e I

3 O l

O l 0,000 20,000 30,000 40,000 50,000 l

i TIME (minutes)

I w

(

UNDRAINED CREEP TESTS j SAPROLITE

! VIRGIL C. SUMMER NUCLEAR STATION

M M M M O.175 SAPROLITE SERIES 2 STRESS RATIO = 47.3%

BORING NO. WE-16 0.150 DEPTH 93.5'-96.0' \ J SAMPLE HEIGHT 5.543" O.125

C I STRESS RATIO = 26.9%

E BORING NO. WE-16

' C j

g ,gg

(

[ DEPTH 81.0'-83.0' SAMPLE HEIGHT 5.539" N i A b #

4 0.075 r b

o w' M M-O-O-C XW O 0.050-STRESS RATIO = 20.7% ,

E 7 b'81 '

O.025- SAMPLE HEIGHT 5.533"-

O j O 10,000 20,000 30,000 40,000 50,000 1

TIME (minutes)

UNDRAINED CREEP TESTS T l w SAPROLITE VIRGIL C. SUMMER NUCLEAR STATION i

i

>,m M n , . = : . - - - - - -

. ~

c

_ <. G g ,. . - - .- . - _ . - - ~ - _

n '

a t # g ./.. . . -

.- - - ~

l - - - ~

= /

Eig -

d' _ ig- -

..h, .. - - . . : - . - . . - .

- - . - - - ~ - - .

in s -

~ 2.g . . = - E P.

- - ~ - . . - - - - - . - - - -

23i .

., O ~ . - - - - - - - - +. - .

.n. /.

E 1g L- - .

W T O

N 1 _ g -

7ga

. - h

- ~

E-V-

N-

- - ~

- - _ . - - p~ E- . - _: .

- . - - - . - . . - . - - - - I - . - $ . . -

. - :..- . . . - - I N- . - : . -

g I - - . $ - -

G- _ - . - - - . - - - - .

. - . < . - - I - -  :.. - - . - - - . - - -

Y,

_: T : . . S- - - . . - . - . . ~

.s . - - - - - :. - -

E-

~ _ - - . . - a . . - - d- - - - . - - . - _ . - - l r. . . . - - -

- ,- - - - p- D- .
- - - - - - . - - - . . - - I 3 .

- . - - - - - . - .. . - - - . . e 3' 7 . - - ~ s -

- - - . : - - - . - - - .- ..2 - - - - . - . .

qd 93_

~

~~ - ; :

p

...Z.-

. .~ e

=

=-

_ . . - - . ~

- - - 7-

- - - ,@3

- 9 . . - ,- - - ~ -

y.- - .:.

- . . . . - I

- - _ : y 7 . - . - - ,- - - -

W . 3g9 -

. qg3

. qp 3 .

. /- .

.l,

. - - . ~

3 s,

w

/,. %

E m b

, _g

..1 ~

g I

.- . - - - - - - - - - - - . - - - - - - I 5-

, I -

I

.~, .-

= - : .-

. - I l.-

i.. - .

m I -

. I

--. M . ** -- .

-  : .v- - - - . - -

K.

i -

. .*1 . . - - _ . - -. - - - . . . - - - - - ~ - - . . - - - .

l

. .- - - - - 8 - - - - . - - - - - . - - - _ - - - - - ~ - - . - .

i i

- - - .- - -  : - - - - . - - . . - - _ . - - - - - ~ - - . $ - . . -

yy .

f - . - - - - . - . - .- - - - - - ! - - . . -

c st I -

r-I

...: . - ~

- - . . - - - - . . . - - - ~ - - - -

.1 . - - - . . * . -

I I

, 1 - . / -

- . j - - - . .

,.i

..I v

2- _

~ - , _ . . / - - . - - - -

i i

)3 n 1 8 -- - - - - - - : .

, .t. . , . _. . - - - -

- . - - . - - I - - . - - - -

- - - - . _- - - ;., - - - - - . - - - - - . - * - -

l 5 n n 1 . - .

--- Z E i

i N

1

- 2 ,,

1 1 2

- - - 2 _-

. - ,; . - - - -

.s

- .. ~

--~ -

Z.-

- - - - - - ~ - - . .

I

--- . - --- ~

_ - - - - I .

i

. . p - - - - - . -------~- 5- _ D.

4 e-l s ---- - - . . - . . - - - - . - - . g -

i l #c f

s t

n 1 2 - . . - Z.- .

~

,)p.. . - . - -

. -. . .- - - - I

- - - ~ 1

.. - - . - : _- - - - - _ - - -  ? - ... ._ . m - - e i

- - - - : - . - . _ - - - e, ., s t .- - . - - _ . . - . -

. i s 8 6 . . . : . . - - : - - . -

- - - - - - Z .. - - .- - .

I i

d c f

? 9 3

7L ,r- - .

- - . - --. ~ -

- i - - - -.. .-

I y p n 8 9

. s/s ..

- . ~ - : - - . - . - - - . - .

. - - . - ~ . - - .

I i

L - - - . -

- - y. './.j .a} .

7- . - - ~

- 6 . .- - - ~ . .- . - .

e - .

i 6 0 - - - - -

) f

. . r I

nf_.-

- - _ - - t. .

I W" (% a 0 9 . - . - _ - - . - . - . - y .

_ e I

3 3 2 - - .. . _- - . - - . : . . - _ . - - ~ - .

. .. e.d, I

l

' h i

IPtpt . 7 2 8 - .  :  : - . - - - - - - - .- -

I

  • d e-f 7 9 3

i D

i S 1 4 4 . . . . : -

w . -

F S 5. .. -

l -

. - . . : _ - . . - . ~ . _ .

,6 . e .

T ,. - _

i t . .. . . . . . . - - . 7 _

s _ $,

e o I

. - ~ - . . . 3 . -

i T N 1 2 3 - , - - : . - . - - . - . . :. _

I i e 5 5 4 _ - -

, 0 - -

lp . 1 ,12 1 - . - - . - - / = -

i o - - - - - 8 . . ~ . - - - - ,. .

mN . -

I E EPE-S a f

S a

Wm WSI . ~

.../.

. l

~

_ ~

. . . ./ 3

~

.) _) -

~

r.. .

- .M..:_ _ - ~

+

. .u.

.- - - - )

u@I 5m 0 - _ H ;._ 1 g . d 3,I

1 . - i

{ - - ,- .

1 l ,;'

~ _ - _ . _ . . - - .

A-9 l

l

. ,,.. . , , . . . . , , ,,. , . . . . . i , , . , . .

l

..,e iji,. , , , . . . i , . . . . , i , ,. . . . i i . . , . . . . . . i i , i . . . . , . , , 4 j

. , i i i . . . . . . , , . < , . .

ii .,,6 . i . . . . . . . . i . . . . . . i i . i .t ++ . . . . . 6 . . , , i i . , . , , ....i.. . . . . . , , . , . . . . . . .

. 6 , , , , ,,.i i . , 4 i , i i , , . . . i , , , , i . <

, . ...,,, , , , 4 , , ,

  • i , . . . , , , . . . . . , . . . . . . , . . , , , . , . . i

. . . . . . . . . , , 3

. , i , , , . . . . . . i , . i , , ! i i . . ,,,,4 . . . . . . i , , i , . . . . . , 4 . . . i i , . .

A . ...i . . . . . . . i . . . i . . i 6 ! , . . . . . , i . i v i . . . . . . i . . > . .

F- . . . ,ii.,6 . . . i . . , . . , i i . . . . . . . i e i . . . i i , i 6 . , ,  ! . 1 i i e , , . . . . . , , ,i. .

e-. . . . u ..; _ i . . . .,1. . . , i . . . . . 4 . . . . . . , , , . , , . . . . . , i . . . . .

3 *** ' ' ' ' ' ' ' ' ' ' ' '

O_,

. y ,. ,

i , . . . '****1'.

i , , , , . 2 2 , y! + . . . _ , . .

. . . . . . '.. . i , ,

, . . . , i g  ;- . . . . . . , , , # . . . , . . . . . . . . .v...,..a_ . . t i , i g *. . , , # . . 6 6 . i , . . . . , , . i . . . . . . . . . . . . . r . . i . i . i e i , i .

W . . . , i . . . . . i , i . . . . 4 , , , i . . . i . i . i . . . . . . . . . . , . . i . . .

Ig i.

', ,i

. . . . i . ,

, , 4 . . . .

j . . . . , , !

. . i e i i , ,

. . . . ! 4 .i

. . , , , i . . .

. . i . i i , ,

, . ... ; i i

, . , . i . . . i

, , i . i . . . ,

! i . , . 6 . .

. . . i i . . i i . , , . , , .

i . . i i . ! , .

i . . . i . 6

, l . i i i i

, . , . . . . i i i

. i i i

, , . . i . . . 6 i i . . . i . . , . i , e i i . . . . i . . . . . . . # . . . . . . > . . , i

. . , . , . . . i o . . . . . ,n. . , . . . . ,, . . , . . . . on. , , ,

n n ,.

_n.

u . . . . . . . , , . , , , , , w , . . . . . , .u, i , , , , , , mi , , , , . , , w , . . i i , , . & . . , , . , , ,

. . . i , , , i . i . . 4 i . , , . , , , , ! . . . . i  ! . . i , , i e i . ......... , . . . i i

. i . 4 , . . . . e i . , i , i i , . . i . i , . . . i , i , , , , . 6 i , , , . . i . i . . . . . . . . . . i

, , e . . . . . i . . . . 6 ie i . . . . . . , , . . . , . . . i i . . . . . . ! . . i i i .

i * . . . , 1 . .. 6 , . . . . . . , . , i . . i , 6 , . . i . . . . , ,

, . i i i . . . . . . . . . , , , i . . . . , , . , 6 i . . i . . . . . . 4 . , . . . . , . . , , , , . . .

. .ii,,.i . , i . , . . . . . . i , , , . . i . . . . i , . . . . . i . . . . , , , , , , , , . . .

. , ;.,! . . i  !.. . . , . , i , , , . . . . . . 4 i , , e . i  ! l i . . i . . .6 . . , , i. . . . . i i .

...,6 . i , . .. . . . . . . . . . i i i , . . . . . , . . i i , 6 . . . . , , . , , . . i m 2a 0 3 . . . , , , , , ,. . . . .

, , , . . , i . ,., t i i , i . , . . i . . , . . . , , . .

0 6 , , i. . i. e. i , ,;, .

, , i . i , , . i . . , i.,, , .

i 6 . i 6 i .. . , , , . t , , , , ,

,v . . . , . . 4 , , ,  ! . , . . . . . 4 i , . . . . i i . .

g _i , i , i i . .. . , , # 1 4 . . . . . . .

1g,

, . . . e , 4 .

i , i i e . .

. 6 + 4 i i ei

. i . . . . i .

i L4 . , , , . e i : , i 6 . .

i 4 . ! e i . , ,

. . , . . 6 , ,

, , i . e e .

, . . 4 4 i i ,

.! . . . > > > i i

, , i , i i . .

t e i i i .

. . . i . . i .

T . , , 6 . . , , , , i . , e ,i .. i , , i . 6 i , , , . 4 . , ,  ; , , , . . . i i . . , ei,t . . . i , i . .

, i , . , , . .  !,, i . . . , ii4 . . . . , i , , . i . . .

. , , , i . . .  ! , , . . 4 i,, i, ..

. . i . , . . . i i i i , i ieii.i 6 , . i . . . i i . i . a a .,' ,, i , . i . . i . . . . , , , , .

!

  • i t ti i , i i l i i 4 iii4 i i , i i i  ! i e i ._ w+'T4 i 4 , i i e i . e i I . ! , 6 . i ! 4 i . . . . . 6 6 6 6 . . 6 i i , i e e , i e i i 6 . i a i -l _t e i i 6 6 6 i . . i i . . 6 i . . i e i . i i i 2 , . , , , , , , , ,,, , , . , , i , , , , , . . , . ,3, . . , , ,,, . . . , . . . , . , . _ , . . , , . .

4ff i i i 6 e iiiit ! !  ! , ! *

  • 6 ei i *_ e' e 6 i i i i i! 6 i , ! e i e i . . . . i i i *i,i,ii..

i i ! : , ! , i e . . . . . . . , i . i . . 6 ..,i. i,,ie i i  ! . . . i ii , , e i . , i . . , i i , 6 . ,

i , i 6 e. . e i i i , i i ti . . . i . + 6.', , i i i i , . 6 i .i . . i e i , i ! i , i . . . . i i i i . ,

i . , i e . I  ! i ! 6 i i , ii . . i 4 . 19 i , , t , i 4 . . . i ! - i i , i i e , ri . i i ! , , , . . . .

i . i i . + i  ! ! 4 . , ! ! t i . ! t+t i i , i . . . i s . t v . i ! i . . # , t . . i, . . . i . i . ,

g i i i i 6 . I i i i . i . . . i e ..,6 .ii .

g , i 6 i i . ! . !l ! t i i ! I tei i i ii , , i e et i e i . i , . , ,.. , , . . . . , .., . . . i . . . . . . , , . . . i . . . . 4 , . . , , . . .

p 1

. i e i i . ,ii , i e i . , r_ *i 6 . . i , i . . . . , , . . , , , . . , , , . . .. , , . . . .

IZ1.D

' ' ' ' ' ' i ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

1. ', , , ,' . . .

1 .. . . . . 6 .i . . . . . i i t t , , , . . . . . i t i , , , , . , , , , . . , , i e i i a . . . . i .

i e i . i . i

.,! . . . . .. . 6

. . .. ;- i i .  !

i . . . . , , 3

. 6 , , e . . , ,

. . . 6 i . . . ,

. . i , . .ii.

! . , i , i

. . , , , i . 3

. . . i . .

. , i . , , .

i

.c.

. , , . , , . . . ! . ... . . . . . i

,o , i , . . .

e i . . . i . i , , . 6 ..i. , . . , . . . , i . i i i H . . i . .  ! , , . , , , . , , , . . . , . . . . . i , , , . . , , , , , . , , , , ,

, 2  ! i , , . i 6 i_ . . . , . .i e i . i i i , , i . . i i,. i . . . i . i i i . , , i i . . . i >

y al 6 , , . , , _, i . , , . . ,, i , i . , , i , , , , . . , , , . . , . , . , . . . . , .i , i y E , , i t . .p. . . , , , i i . . 6 , , , , . . . , , ! , . . i i . , i 4 , . , . . . , i

-. W , . . i , .c . . e . . . , , . , . . . . . . . 6 . i , , . , ,

2; LL 1 , , ._. . . . . , , , . . , , . . , , . . . , , . . . . . .

<n L. . i 4 - i . . . , , . . e i , . . i e i , i . . i . , . .i i . i , , . , . i . . i 3 . ,

- . .r - , . . . . . . i . . .. , . . . . i , i

  • i . . , , , , , ,
n.

w ,

.* , , . . . . . i . , , e i , . . i i . , , . . . .,,, . . . , . , , , ,

gg . . , , , . , , . . , . , . . _ . . . . , , . PHH IFl:I : NH4 /1E77-WF

, . . , , . , . . . . . , . ie i,. y y y . % ,. r. . , , .

a g

. . . i ,

i ,,

, n , OA .

g f. , e ..i, i . . . . . . . . . . . . . . i , , . . i ia u w s . v6isu, i s i i s. As

ygg LLI L . ,,.. .

p, i .... .

, , . 1 . ,

. i , , . . .

HRRINHiNH.

H F_ - T 1 y,i 0 .

i i i i , i

, , , , , , , g h5n ,u c.

w u. N O. v,; a M ,* U g m,0.D,,.,,,,,,,,,,,,

ogg i g. i n, s m. p i . 3n 3_

-f . . . i . , , e i i . , i . > , , i .,. y y .,. ! . . i i i

,a u ., . , N Q . 2 . . i i i , , . . . . , , Bu% it . i 2y i i iii. . . , . . . . , . . . ! . i , , , i EHNFININE. JRFSS.. H. 3 T SF-

, . , , , i . . . + 4 i . . . , , , , , , . , , .

gy i i , , . . . . , , , , . ,

i

  • , , t 4 i i i . . . , . . , , , j , , i- , ,

m . 8 . , , i i t i e i . . i i . . . t i . . . i i i i . .  ! i 4 l

0 n' ni ni ' ,n +

% n '

n m ,i Au' i

u, , ,si i i i , u, , . , , , , A c .' .

s O ,- sg 4

g+. i , i , , . , , ,

, , i,. , i N. , , , . . i i i . i, , ,

M W**F^ , , .

-N. . . , , , .

! i i e H

GO. 2Y J . . . . , , , i i . . . . . . . . i i . , ,

g , . ,

,**.,, , , , i e i C , . , . . -.+..i.. , , , i i .

, . . . . .._ 6 i c 0 mi e ,

-.m.u.

... 4. . '

u. . , ;ri . . i ai .L &. .

1 20.. 2 ,,3

. . , i , . . . .

! .....,1 i j

.i i . , i . . . i ,

! . i , ,

!  ;

, i , . i ys . . . t .

-0. u , , ,, , , ,

, ,. . . . , i j

. i AYTAI RTRATN- i i

.- 1 -

. - ,  ;

--a i

, ' l i

j

A-10

. . f . . g . l . 1 . t , i . . . t . . . . . . . , . , ,

. ,,ii 1 . > e . e i i i . , . . . . . i . . . . . i . . ! ! . . i . . i . . . . t i e a .. . i ,

, i , . . , . . . e i . . , n . . . . . , i . .6 , , . , . ,

! . . . i .

, i.. . . . . . r . . . 6 , , . . 3 i . I i . i . i . e . . . . . I i i . I i t i i i i.. e i t i . i . . , , . . . . i i i . . . 6 i . . . i i . ...ie i . , , ,i i i i

i. e i .

. . . i -

_..'e' e i . . . .

-. . + . .,

. i ,

e . . i i,

. . . i i . .

. . i . i i . , .

i i . . . . , ,.

. i , o i . . .

i i A i i ..i . . . i . . 4 i , . . . . i i . . . . i . , , , - > ........ , . . . i , , i, + , i , . . .

F- ,

> . ! i . . . . . 6 i , , . , . . . . i . . . , . . . . , , . . . . . i . . . . . . , ,. . i i . i i

'"* . , . . . . . . . . . . . s . . i . . . . . . . . i . ,

3 3 ..,'. . . . . . . , . . . . . , , . . . . , . . , .

O, A. .,e.

4 ,

t i . . . y.. . i . . . i . . . . i , . , , . . . . . . . . .. . . . ii . . . . . . . .

, . , i , , , . ,,,,, . , , , . . . , i , i . . , , i . i , . , , .

J p,. 6 . . i . , , , . . . i . , ,. . . . . . , , . . i i , . . . i , . i i . . . . . . . . , ,

CD ' ' ' i ' ' ' * ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

I CD E.

. .. . . , , , ,, , , , . 6 . . .' i . . . . . . .' . . . . . .' .' i ! .' . . . r . .

.. . . . . . 6 . . ! . ..t . . 6 . i i , , , i . . 4 . i i . i , i . , . ! . . . . . . . . . . . , i i i . .

, j . i , , i . . . , , i i i . . i . . . . . . . , i . , ,. . . i , . . . . i i , , . . . . . .

6 . . i . ! i i . ,. , . . i , , i i , , , i . . . i i 6 . . . . . . . . . . . . . + i . . . e i .. . . . i , i

. 4 . . . . . . . i i . . 6 i . . . i , . 6 . i . 6 i . . . i . . i 6 . . . . .. . . . .

1 _. . . , . .. . . . . , a . . . . . . s . . . 1 , . . s . . . a .  ! . . _a . . .

U! . . . ! i , 'T e i e i ei,.O i , i . . , 1 A4 . t e i . . AD. . . i . . . 4l>. ! . . i .

  • 4 'T i , e . . .

. . . i . 6 , . . . . . i , , , , . . . . , i i . . . . . . , e i . 6 . . i . . . . 4 . . .

4 i . . . . . .  ! . 6 . . , , i 6 i . . . . . , . . t . . i . i . i . . . . . . . . . . , i , .  ! . ,

, , i . . . i , i , . , . . . . , . i . . . . . . . . . . . . , . , . 1 i , . # , i . i i . . . . . .

. . . i i i , , i i . i i . , , . . . . . , . . . . . . . . i . . . . . . , .

. . . . . . i , , , i . . , . . . i , , , , , . . . . 6 i , i i 4 . . 6 . . i . t . . . . i i

. i , . . . . . . . . . . . . . . . . 6 . . . , , .. . . . . . . . . . , , , , . . .

i , , i . . . . . . . 4 i . . 6 i , , , . . , i . . . . . . . , . . . . . . , , i i , i .. i i . . .

. i . , . . . . , , . . . . . 6 . . i , . i i , . i . . . . i i . . . i i , , . , . . i . . . , i m 2. 5 ,. . . . . . . . . , , . . . . . . . , , i . , . . . . . . . . . . . . . . . . . . . . . .

O . i i i , . . . . . . . . . , i i , , , , , . . i , 4 . 6 i . . . . . . . . , , , . . . , . . . i i .i . . , i . i .

,ii..i . . . . i , j i . , . , 6 . , , , . . i 6 , . . . . t . 6 i t i , i i ! . . . . i i . . . . .

. i i t . , . , i i ! . . i . i . . . ! 4 . . . 6 i , tt....., , i . . . . . . . . I i 6 i i . . . .  ! . .

C . , 4 . . i e . . . . , i . . i . . . j i , ti,ie i ,'4 . . , . . . . . . . i i i . 4 . , . . . . . . . . .

T  : e . , . . 6 6 . . , 6 , , i . . . . . , , i . , . . . . , , . i , i . . . . . . . i i i .. . . .

4 . , i f i e i e i i . . . ! i 4 , , . . i . i . i i , i 6 i . . . , , i e i . 6 . . . . . . . . . . i e

.i,.it . i e 4 , i i , i i 4 i i i t i 6 i . i . ie i i . ! , 6 i i 6 . i , , . , , . . . . 4 .. .

. , i 4 . , t ! ! i i e i ! i . ! t . 6 6 ) t i 6 i e ! . . . , i i i e 6 i i e i i , 6 1 . l .. + . i ..* .

i . . . i i . 6 . 1 . . i ! . . . . i . , _ i .. i. ... + . *'i'.vi- 'i"'T+..;.. .! . . 6 . . .i  !

2 . i . i . . . . . . . , , . i , i

.i', ' .r:

. . . , , , , . . . , . . , , . , . . . . . . . . 4 ,4 . , . . . ...

. ' i i 6 ! i $ 6 e 6 t , 6 i ! .: i i e 4 i . I ! i , e i , , , i . 6 , t 6 .  ! ! . j . e e t . . . i .ii .

, i , i .  ! . i . . i i L,*'. . . i . , t . . . . ! i i i 4 . e e i . . , i . e . i e6 . ! . . . . ! . .iiii i , . i e i i 6 i i .7e , , i  ! e ii! 6 i a 6 e , 4 i . e . . i i e i e 6 , . ! i . i s . i i i

  • i i . ! .

1 , a 6 i i i 8. i' 6 i ! ! i i  ! , i i , i e i i 6 , i i . i i . i . . 6 ,. . 43 , i , i t , i ....i i i i . i . ._ i , . . . ! i , e i i i , . i . . , , . . i . . 4 . , , . . . , i e i . . . . . i k i e i i i ! . . . . i ei , 6 . I i i 4 i . i ., t . i e6 i ! , i i i i e 6 i e i i I 6 i . . i

  • i i ! ' iie .

CO i , , , . . . e . . , i . , . i , , , , i . i. . i . i i . . . . . . . . i . . . , , . i h  ! t i t i

. . i 4

/.T . . .

4 i . e e . i

.i . . 6 !

. . ii . . . i '

. . . . i ,

. . . . . i . . . .

, , , . . i , . .

. i i i . . .

i

.t i .

h.D ii..* , .

. i . . . . i , e i i , . . . , , i , .

i , ,

, , i

. i .

. 1 i .

, . . , . i , , , . ,

, i

. , , i , , i i i , . . , , , , i , i 6 , , i i . .

g 6 i,.,,i. , i , , i i , i i .

i !,i . . , . . . , ; . . . , i i . . . i . . . . . . . i i e i . , , . , , , , i . . . . . . . i , . . .

,c; e i ,i i . . i . . 6 i , , 6 . . . . i , i . . . . . . , a,, i i . , , , . . . . . , , , , , . , ,

p. 6 f;. ,.., i i i . . . r . !  ! . . . i , e ' . i . ' i . ' i . . . i i . , l . . i . . . .
3 g  ! _. . . . i i , i ! t i , i i . , i i . I . i . , . . . i , . , i . . i . , , . i , i i . . . i , .
i e uj . _ , . . .  !

i , , , , , , i . . , 4 . . . . . > . . . . . , , , , , , . , i. i ,

j Z 1 i . . , , . i , . , . , . . . i i i . i ! , i . , , . , e i i . . . . i i . . . . , i i i . . . . . I

_. uj , i . , , i . . . > . 6 . . . > , . i i i . i , . . i , , . . , , , . , .

2; UL 1 ' i . , . . . . . . , i , . , , . i , , . . . i i . . i i , . . ,

cs k  ? i , e . . . . , . i i , , e i i i i , i i i i 6 i , . . . , , , , i . , i i . . , , , , . . ,

i

-s i-* .. , . . . . . , , , , i , . . . , . . i I , i i i i . . , .

t , i . .

  • , 5 O '. i . . . i . . . i . ! e i . t i i . i . . . . , , i . . i e i 4 . , , , , , i i q

a

, .,. . i .

. , i !. ,

i i . . , , , .

, i , . . . i p g gg y _i , ,

OGME 9 . .  ! , $ 1 4 4 . k . t . . t i ! . I 5 l . , , i I , . . . . , e e a LLl d T-f aii , i

, e i 6 .

i , , . . , , , i i ' , ' . i i e i . . . . i  !

i

. , , , . po T M--ir::: M g-7-

i

, . uE L ' "'

i og H i, . ' i . . . > ' i i . i . i , . i e i M IT N f 7 II h 3 r4 (C0. 5 . r i . . . . . i . , , . . , . . . .

3

. . , . , i i . . , , , i , . , . . , , I DEPI N..M. EEEJ. ' 43 ',

si . . , , , . . , . . . # . . . . i I ,

IMMTf788R 2. i

,i i , , . , , , . , , , , , , . , , , , . i ,

i , . . . . . , , , , , , , , . . . . . , , C, B ", T M T M G. P-RE4E T, S F -

g.y + i i i , . i . 6 i i

  • , . . . . . , , , , . , , i

.  ! e i

. . . . I 4 , , , . , , i  ; j i i i 1 0 , , . , . . .. _=. .

U. . Ti i i . O i . . . 14, i 10 , , 4U. eT.

j , . , i i . 'i Vi.a* .; e i . . . i i . . . . i , ,

M L, i ', . . , i , , i . , , i . . . I cDO. 20 ! . - * .

..v i > > i .  ! .  ! i h- i, i . , . --'

..., , , , i , . . . . , j i U  ! i  !

    • ....._g;' > i i e IC _ : T-

. , , , i , , ; , i , ,7.......... .

i b= i i i , i i e i  !

i C O . , . . . . . . .

U. .  ?! i ' . U . 14: ' lb' ZU -"Z 4 - -,

. . . i l . f I

i . . # i  ! . I }

i . . 2 . i i i i

= O, 2 g , I i . .

+=

e i *  ! l  !

.{'

I i , , r

%K.l M. 4 [.8 M M^

1

, i

! i  ! 1

A-ll

. . . , e i . , i ,

. , . . . . . . r i . i 6 . 6 . 6 . , i i . .. i i , , . . +

. j . , . . { l , i e . . . 4 i . . ..

... ,,.. i i . , i i i . . . . . . . , , i . . i e i . . . . i ! . . .

. . . e i . . i

.. 6 . . . i . . i i .  ! i i . . . . e i . . s i .

. . . i 1 . i 6 , . i , . , , , . ! i, . i i . i . i . .i r e i i

. . i . i ' , i . . . . 6 * ' . . i

. . . i i i . I .

  • t ' i i 4 4 . i , i i i e i s . . , . . . . i , i . . . e i i i i . , i i . . , . + .

. . . . . i ,

g . .

. . . i . ,

, e i i , . . . . . . .

Q i . . i , .

. ..i. . . i

. i . .

e e . . . . . .

. . , . , i i . i . . . . i i I7 e

s . . _y , , L 4 . 6 . i , ,i .

g , . __*, -*.,i_ , .. . . i i . .

, i

/~ .  ! : i i i ". ,) . , # r .. . . . i i e i . i , . ....i i i i i . . i

. + . . . .i j ,' , s . . . E i . 4 ~ .- . . f 1 y . , . i , . e . .

i m i ..T , . . . . . . . . . i . . . 4 , i 1 - * ... . . . 1 _ i . t . i . , i . . . . , i i . . i G . e

f. , , .. . i i , , . i i . . . . . . , i . m o . i. . . . . _ 4 i e ,
f. . . e i . fi . 6 a . . . . . . .. . , i i . . i , i i . . e i

, . . . . . t i i i i ,,. . . , , . , , i . . 6 i ..it . . > i . , i , , , . ,

27 . i , , . . . .

r,* , . . . . i , , . . i , . . .. . . . . , .

  • i . . . . . ,

J ; . . . i . . . . . , . . , i i . i . , . . . ... , ,.,6 . i . 4 i . . .... . . . . I i .! . .

. . . i . . i e i...i i . . . . . .. i i . . . i . , 4 . ... . i . . . i

n. . . . a . . . , o . 4 . . . . 3,i 1 . , , , c, i . .on. .... o.. .
  • ! . . . , e i c . . . . . . . r  ! , s . . , ,i~ ,i,,iie i r i. ; i  !-~. . . . . . .. , i . . . .

. . . . . . # , t , . 4 i , . .ii . . . . , , t i i . . i e i i . . . . ... . . . . . . . . i . . . .

, . . . i . ., , .

. . . , . , , . . . . i , , . , ,4 i . i 4 i. . . . . . . . , . . . . . . . , , i

. . . . . . . . i . , .

e i i i , , 6 i i i i . . . . .. . . . . . . i . . . . . , . i ,.

.i , , i . . . > . , i , , . . . i . i 4 . . .. , , , i i i i . . i . .. . .

. i , , . 6 . . . . . . . I e . l . . . p , . , [ i , . 6 . . I i s . . 1 . i . 0 i 8 i i . . .

. , i . + , . . . . . i , . , , , , , , . i e i . . . . . . i . . . i . i i .. . . . . . . .

.., i . , 6 6 . . . . . . . , , . i . . . . i . . . . . . , . . i . i . . . . . i i . .

. . . i 4 . . . . . . .

. . 6 . . . . i . . . , , . . . . . . . i i . , , . .

m $ i i . . . . , , . . . . .: . . , . . 1 . . i . . , , , i . , i . . . . .

0 *,,,,,. i i j i , e j i , i ; i . . . 4 i , i i , , . . , . i . i , i , . . i, , i . . . . . . . . .

i,i. i , t i e i , , i e i . i i i i 6 i . . . . t , i e i . t . i i . . ii e i . . .. . , , i g {

1f% @

i,i.i.,

. . . t . .

e

. !i . . . . .

i s . . , i e i ,

i , 4 . . . i .

i i . ! i4 . .

i i

i i

e i

. i i . . , . ..

. 4 i i i . i , i i i 6 i i . . ..

, i . . . . . ..

. . . . i

. . i . i i V i , . . . . i . . . . , i i , , i i . , , i i . , . . i . . i . , , , , i . , t .. , , , . . . . . . . . .

, ,i e i i . i , 4 i , . ,,,e... ..*ii'1m+-... .i . . i . . .. . . . . . . . i , , i i . .

. . 1 i . i i i

!.e i . . . . . , . . , i * , ; , te-. . i . i . 4 i . . .~.... . i e . 6 i i . . . , . . . . . . . ,

. . , , . 6 i . . . , t , 4 . i , i i .... . .

, i , 6 i . . . 6

. i . # . 6 i .

i , i , .

i , i . i

. 6 i i . ..

.. ,',,,i ,. ei e ii . .

. . . . . . . i , 4 . i i i i . .

. i i .

i . . . i 9 . i , , , e i . ! . , . . . . . , , i ! . . , . . . , , . . . . . . . . . . . , , , , . . , . , . . i .

f ! i , i i i i i  ! ! !7i I I i i , ! i p . , , i 9 i 6 . , 6 l4 i . . 6 i ! . i i e i e i. e . i.I i e a i i , t ii i , e i , . 6 , i i . i + , , , . , , , . . , i . , , . . , i . . , i i i i . . I , e

. i i . I e i I ' f. l , 6 iif 0 i I i l i I . , . t i Q i . 9i gg . , 6 i i , i .

i .,i i , i .. i,. i $6 i , , i i i i i . 4 i , 4 . i , . . . . i i , i 6 ,. , , i .

. , , . . .  ! , , . . . , , . . . . . . i , , .

g . . . . . . i i., , e i . i i . . i , . .

! ( i I , 8 i ) . . . i f , !

4

' I . . i e i e a

, . ! i , i t i I ! 6 1 i i

  • f * ! I i i ! . . i e i ! .  !

@ i

. i . ,

. , , , i i , .

p, . . . . . I , . , . . .. i , .i.. .

I . 6 i e i i i .. ! 4 i . i i , , , i i . . . . . . . . . . , , i . . , , . , . . . . . . . .

Z 3 s

. . , . Si

, . , i .

. . , i i ,' .'

i . , , , , , , . . . . , . . . . . 4 i , . i . . i e i , e . . , , i 4 . . . , , , , . .

_J , , . . .. , . . . . . . . . . . i i , , . . 4 i , . . i . . . . , , i i i . 4 . i C 9 i i , i - i . 6 i . i . , . e i i i . . . . . . i . . . . . . i s i , i i , . . . . . . . e , ,i . . . .

    • i i i _

. i e , i . . . . . . . . . . . . ! . . . . 6 i . . . i . , , . . . . . i i . ,, i h- , . . . . . . . . i . . . . . . . , . . 6 . , , i.

< _ i . . , . . i . 4 4 . !

, Z ~- ., , , . . 6 . i i t i i i . . i , . . . _ i . . i . . . . , , i i . . . . , , , . . .

s W .. , , , , i i i . . i i . . . . s . . i . . . . . . , i i , i ,

.Q  %

  • i i , . . . . . 6 . . , i e , i , .  ! t i , . i i . . , , . . . . . . . . . , . . . . .

i i . . . i i . . . . i , i i

, ; , , . i i . . i ,

. _. L 2 . . . . . .

I.=W

, e i . . , i i i 1

o L is,ii.,,i . i . . . . . 6 i e . < , , , , . . . i . . i . . . . i . . . . . . . . , i g g i

i . , i . .

. . i

, i . , , , . , , , ,

. i , . . i

, i . . . . . . . ,

, i

, i 1 g ' . . . . . . .  ; i . , , . , , . , , , ' r' K d J t L i i N d o . . , - /AL/Z-h L m t ' .

  • i . . i i . + ' . *Teer,naTei aee 1 $ p v a+s . i

,Ia_v w if , , , . . . , i ,

' ' , . i . '.

i i . . i , . , , i i i i i ! , i , , ,

. # - t i - a _t a - ! , , , . . .

. gg  ;.. , i . e i, i . , , , , , . . d d K 1 N t.] ! Nd. .

! _. H b r _L't ll6MW:b  %

ol h! , . ' ' ' '

ll!','!

E- 8 !

q ml

, , l!!l l l l ,

. , , , . . . . . . . . ii., . . , utPiH,IN.rtet . y d ge s i i,. , , i iii , . , i i ' . m- ! '

ea i . . . . ,

. . . . . . . . . ,,,, , . i. , i e i i i i .T r-_e_c- T. ! -iu..N- .

y . . , . . . . ,i,,iii . . , , ,

. In d N P 1 N 1 N L1 ! P Ktb b.

, , , i, Z.IbP a

. , . . . . i . . i . . . . , , ,

f g i

, i . . . . i

, i

. i i

. 1 i i

i 1

i i

.Iv.*.

, , . . , 4 .

. i i i

. . . . , . .. . . i . , ,

- i i g l , l g g [ )

n-

w. . . . . A. 6 . i

> wo . .

e i i . i

. 1o'

  • t . , , , e . *4,1 gn. u 79

. . i , . , , i . . . . , , i i

-I ,_ . -[N . i . .; . . i

. . i ,

. . i ,

l .

j a , , . .

-+.., . ,

i i g , ,

.*... ._. , ,_. i w . . . .

i , , ' --i. ..,... ,

i e C O n o! 1o se- m

v. ,

n!

ai . i wi i . . 4c, , . 4y. , , c v '. 2i .

i

. . i' . , i i I

  • 0. 6, .

t, i , , . .

i

. . i . . .

i ,

i i

i e

. . . i ,

51 -(R I N -

i e

i i

i i , R, X 1 R L_ i  !

, i . ,

A-12 l

UNCONFINED COMPRESSION TEST Project V. C. Stm.:ner 8oring Mo. WE-14 SamoIe No. 3_g Depth 43.0-43.5 F t.

Description Red-Brown Micaceous Sandy Clayey Silt (Select Fill) 1 Moistire Content 35.4 % Dry Density 85.7 pcf Liquid Limit 70 % Plastic Limit 42 %

Maximum Axial Stress 1.20 tsf e 6.06% Strain 1.50- ,

1 .

I 1.25 y

[

em \

m , .

1.00

/

I :& + ,

l y

m' /

oc 0.75

/ -

7  ;

I a r

  • l

?E  ; /

0.50 /

r i <

0.25 j .o. t

/ i I

' t '

o o z.o .o e.o e.o 1o.o u , u S m ,N. 7 I - - _ _ - -

A-13 UNCONSOLIDATED UNDRAINED TRIAXlAL COMPRESSION TEST

  • Project V. C. Struer Boring No. WE-16 Sample No. PIT-1 Depth 79.3-79.8 ft 0escriotion Green, Brown and Gray Micaceous Sandy Silt (Saprolite)

Moisture Content Ory Density 113.2 PCf 19.3 %

Liquid Limit N.P. 5 Plsstic Limit N.P. 4 Relative Density -

( T I- T3) max.= 5.28 tsf at 11.1 % Strain Chamber Pressure, fe = 2.81 tsf

  • After Undrained Creep 6.0 g g g ,

j l

l l l i il 1 -

1 I l l l l I I l l 1 l l l '

I  ! IM Ica 5.0 I i i l IM" l i T j l g H- l;  ; ;

Ml I I Il Iso ~

a l l i l I

! l-l I v ' I I Ii l

l l I

~ - 1 I I l .V I !I I I I ! I i i l i I/ I I I I I I E

i l l l l 1 l/ I I I I I I i i I i l- I l- l l l/ I I Ii l i I l! I

- II I flI I l !l l l l I ' I I I I

I I I I l I I I I I ' I uI 3.0 o I l i IAIl l l l l l l l l l l l I l 5 I I I VI I II I I l1 I I i liI I I I i I O

I i E

I I I fl I i i I/

l iI I l l l I I

!II II I I ! t l I I I I ! I I l l 1 I I l l l I I : 1 2.0 m

g w i I ll i I i l I I i ! I I i i I i i liI I I I I l/ I l l l l } l I I Il l l l l ! ____

l I w I l* 1 I I I I l l l ! ! l I l 1 1 I l i I E  ! I I "

l l l l l l l l 1 I I l l l l l l l l l l l i l l l l 1 II I I I II ! ! l l ! I f\

! l l l i i i i i li tiiiil l i  : i i i i \ l i l l l l l l l l l l l l Ii  ! l l l l l  : I I l l l i i l i l i l l I l l I I l l Ql _If_S i I I l l 1 I l l l l I l l l l l l I I l I i I !

g i I II I I I I I i i II I I I I I I II i l I i i ,

O 2.0 4.0 6.0 8.0 10.0 AXIAL STRAIN, 7 1

i

A-14 UNCONSOLIDATED UNDRAINED TRI AXI AL COMPRESSION TEST

  • Project V. C. Su:mer 9oring No. WE-16 Sample No. PIT-2 De9th 81'.3-81.8 Ft Descriotion Green, Brown and Gray Micaceous Sandy Silt (Saprolite)

Moisture Content 13.38 Dry Density 122.7 DCf l

Liquid Limit N.P. 5 Plastic Limit N . P . *, Relative Density -  %

( Og- T3) max.= 9.59 tsf at 11.7 % Strain Chamber Pressure, fe= 2.87 tsf

  • After Undrained Creep l

ii '

i iil  !

I I I

l l ,

\ll_ l l l l1 II l l l I .i i !

$ 10.0 '

I I I l 8 i ) l i l ! l !

ISo t

i i i l I III I I y

77 'i T I I i 14 1 i I I I I I i i I - . I I i iiI / > I I %J l I I 8.0

, = i i! e i i i

, i i i I

' i i i I Al i l l II I I t I l G i i IAI !I i I i l I!i 1

- i i i va i i  ; i i ii i i iiiiI a g 6.0 i i i i j ;

A j,;

i i j ij i i

i i I i i i

; ; ---

3  ; i ;  ; ;

l 5 I i I/ I i I I l l l 1. I I II I! !I I I i i i t l/l iI I I I I I I I I I , i I I I i I I

m i I7I I I II i I I I I i I i l! l !I I l 3 i I /i i l i i i i i i l i i t I i l i I i !! I

U j = i !/ l !I I I I I I I I l l l l l l l l l l l l i !

,, i i i i i i i i i i i i i i i i i i i , i l  : , _ . ,  ! i e  !/l l I I I I i l i 1 I I ! I I I I I I ! ; ,

i ! I l l l l ! lI ! l l ! I I l !! l l l l l(I 2.0 l 1 l l l 1 I I i l I i i

; ; j ; ; g;;

l I I i i l ;I ;(/!

j ; j lI I j ; l  !

I i i i i i i i i i i iiii i i i i i i i  ! ! i i ii i i i i i i i i i i !/lii i i il m i i i I i i i i i i i i i ! i i i i i i i i , i !

lI I II I I i i Iil l l l 1 I I ! Iil 1 i I I i 0.0 5.0 10'.0 l'5 . 0 .0'. 0 AXIAL STRAIN, #.

t i . - . - _ _

A A-15

[ UNCONS01.lDATED UNDRAINED TRIAXIAL COMPRESSION TEST

  • Project V. C. Sumer 3 oring No. WE-16 Sample Mo- PIT-6 Depth 93.7-94.1 Ft Deserlotion Green. Brown and Gray Micaceous Sandy Silt (Saprolite)

Moisture Content Dry Density 125.9 8*I 11.4 f.

Liquid Limit N.P.  % Plastic Limit N.P. 5 Relative Density --  %

( Og- r3) max.= 4.16 tsf at 10.7  % Strain Chamber Pressure, fe = 3.24 tsf

  • After Undrained Creep h 6.0 i l i i l I i l Ii !

[

I I I l l! I lI l I I I l l l l t i II 5.0

{ g  ;  ; j ,  ; ,  ;

gdu ,

a I i III i i 1 I

I l

II l

I I l l l

!I I I - - l l 1 lI '

, I I II I i 1 40

, :ii i  ! i i i vi i i l

8 i l I l i I I Il l ! I/I I i I L- 1 I Il I I I I I I I I /.I I I ! l

- 1 l l l l I I l l l /l l l 1 I l

I

' I I  !"' ' ' '

uI 3.0 I ll ! III-o l I I I i lII I l

5 I I I I I II I I II! L i 1/ _I ! I I ! !I I 5

I I

E I I I I I I i i l I l l l l l l l !

i I l l I I /I l I' l I l l l /i i i l !

I l l l ) 1 l l i }l l 2.0 e i l i l lI l l l l l l l l Ill l l ! l IIl ! I l w l I l I li l I l l l l l l l l l l l l i I

! I I I I ii i l l I i l i I i l l I I I I- ' I i l I l l l 1 l 1 ! l l l  ! l I l l l l l .  ! I I ' I ' ' I I 1.0  !

i l i lii l l 1 I I Il 1 l l i l i i l l

i l I I l l I' l I l l l i i  ! i l I  ! I I I I I l i I i l ! I I I I l l I I l . _ 'O , i l I I l l l l I I l ! I I I I I  ! I I I , I I i 'l i l i i i l i l I  ! I I I l l l II i l l l I O 2'0. 4 . '0 6 .' 0 d .' O 10.0 12.'0 14.0

$ AXIAL STRAlH, 7 s . . - -. -.. ...-. . - - . - - . - . . - . . - . - - - - .

l l A-16 UNCONSOLIDATED UNDR AINED TRI AXI AL COMPRESSION TEST *

.I Project V. C. Summer j Boring No. WE-17 Sample No. ST-7 Depth 68.0-68.5 ft 0escriotion Light brown micaceous fine sandy silt (Saprolite) l Mcisture Content 28.7 lt Dry Density 87.7 ocf

" NP --- '

Liquid Limit NP . Plastic Limit  ?, Relative Densi ty .

( 5~i- Q) max.= 2.89 tsf at 2.81  % Strain Chamber Pressure, fe = 2.3 tf

  • After undrained creep test Il ll !I I

i l l l I I I  ! II I I Il l l l ,

l l l  !

lI

, , , I I i  ; i :i i l i 4 ,

I l l  ! lII I I I II I II

~ = l l l l ll l l I I I I I

". I l I I i I I I  ! I I I I% e T

I 1 I I i l II I I I

I I

I II I I

I I

I I

I a

i i I I i i l I I i i i I

.l G I I II l l l i I I I i i l l

- 1 III I I II !I I I I iiI~

I  ! ! I I I I I I I 3

U II i 1rTl l ~TN I II II l 5 i i Ifiiil i I I 1 I II I I I I I 5

I lt E

I Ifl i I i l i i I i l l VI I I II IiiI

!/l i l l I I i ; I I i I I I l 1 l l iil I I I I I I i !! I I l t I I I I ! !

I i i I

2 e if , i  ; i i i ; i  ; i i , ; i , i i 0

" /I II I I I i ! I I i l I II II I I i I

/ I i i i i i l I I I i i i i i l I I I i ' l l

  • ll i I ! I I I I I I ! ! !

nii i i i i i i i i i I I I II I I i i i i i i i

][____' I I i i

~1il I Il !l II;I II I I i a - (? I I l 1 l l I i I i I i iI i il I i l l l l 1 I I I I I I i l i I

!h l

y I !

I i i I l l !l I l l l l l ! I I I I  ! !

i l I I I I i l I I i i i l I I I I i i l I i i !

g 0 2 4 6 8 10 12 AXIAL STRAlH, #

e t

5 .

. , _ _ . . . _ _ _ . 1

,+, T .ST e.. _ _

TARG.T-(MT-3)

+ ,. ,; .

l.0 583 EA 2m M m l11 l ll 'i 5 M l N -v 11 / "" lg i.6 ll1.25 i.4 ij

, = . =

  • r%%

f,,

  1. f,h/ +++D 4d?h 4

"W -Mmr ,

<>*+

$ ,..e. ...<e.1,.

.4 o

TEST TARGET-(MT-3)

  • 1.0 E EA HM m

e 83 m En l-l S E M hN /

j'u 1 l.25 1.4 1.6 4> +i -

+ //p

  • $lf&

3,,,

Rh,}f4 ,

'{ _-

A-17

' UNCONSOLIDATED UN0 RAINED TRI AXI AL COMPRESSION TEST

  • I Project V. C. Summer S oring No. WE-17 Sample No. ST-7 Depth 68.5-69.1 Ft D escriotion Light brown micaceous fine sandy silt (Saprolite)

Dry Density 96.3 ocf Moisture Content 23.6  %

Liquid Limit NP  % Plastic Limit NP "

. Relative Density  %

( C;- 73) max.= 3.27 tsf at 6.74  % Strain Chamber Pressure. fe = 2.3 tsf

  • After undrained creep test I I i  ! I l I ll1 I I l l i l l

l l

Il I

l 1 I

! I i i ll I I I I I I I I I I II I II I I I 5

s i I I I I I i i liI N ,

I l l l l l

.' l i I l Il l l I 1 l l  ! I I I l l I l a

- - I ! l l l l l I l l l l l I IS 4 l l ' l  !!  !! l a l lI i Il l l l l 1 I l q i Ii i I I t l I  ! i i_

1 _

le -l i I I I l ! I l I iil l l 1  ! I I

- 1 IIl l llhii;i 'MI ! ! I I l'

- 1 I l l lMl i I l l l ll l l

!I U

E l i ! l I MI I l i I I l l ifl l l l l l l l i l

l. l l l l l ll l l {

l I I~

I l t l

)g h I I I l /I l l l l l l l l l l I i  ! I i I I

5 w I l I/I l l l 1 1 I i l l 1 I I I I l l l 1 1 E I I Vi l l l ! l ! l i l l l l l l '  ! i l i l

2

'Il

. m

" I l/ l l l l l III l l l l l l II I !

l I/ I I I I I I i l I i I I I i liI I I I I t I I

s

! I i 1 I I I l ! I I I I I I I I i ! l r- q-  !

l I l 1

i I i l i lI i i l I I I I i l I !I I 'i l l l i i l l I I I I I  ! I I I ! '  ! j iI l

l l l l l !I I I I II l l l l l l I l l II I IlI ll II_(

l l I g, , - 1I I l l  : 1 I l i l I I I I I ! u____ l !

I !I I I !I I I I !I I I I I i I

I I I ,

, I I I I I I I ! I I I I i l Ilil l t i I I : !

0 2 4 6 8 10 12 I-AXIAL STRAIN, ".

e

I A-18 UNCONSOLIDATED UNDR AIN ED TRI AXl AL COMPRESSION TEST *

I Project V. C. Summer Boring No. WE-17 Sample No. ST-7 Depth 69.1-69.6 ft 0escriotion Light brown micaceous fine sandy silt (Saprolite)

Moisture contant 20. 2 f. Dry Density 101.0 ocf Liquid Limit NP  % Plastic Limit W 4 Relative Density

( f -t - 73) max.= 3.56 tsf at 6.06 % Strain Chamber Pressure, fe = 2.3 tsf

  • After undrained creep test 1I lll I I l l l

i l l

l 1 lI l ll I 5 I

I -

I I!

Ii l1 I

y I l !  !

II lf a

I i I l i

1 1

I I I I II

! l l1 l- e

{ 4 i I i !

l I

I I

l l i l l !I l !I II ll I $ 1 i i i l l I l t I lo i I I I y~I I ~N I l l l l 1

- 1 l lVi l l l l l_ ,V I I i I

'I i  ! '

U l l l /l l I I l l l } ! I

{ llI I/ I l l 1 ! l- 1 I I I  ! l I I I I =

m E

l l l l i/

IIIiF i ll

!I I

i I

l l i l I I I I ! I Ii I l i l I ! I

! : I 2

I II I I I I I I II I I I  ! I w I I I  ! I I i l l I I I1 !I I i i l - i i i i i i i l I i i l i i i i i i i  ;

O I I I i ! I I I i 1 i I i i i I i I I i '--~~7 i i l l l l l l l i l l l l l l l l l I i  ! !

1 i i i I !iii i i i i  ! l l i i : t i l ! I IIl l I l l l l l l l 1l l  ! I I I i i l i I i I !

I i 1 l l l l 1 l l l ! i l

i l

i l

j gr*

i1 j l i iI I l I g 0

I I I l l l I i l I I I I 2

4 l l l I I I I I I! I I 6

l l I l ,

i l i i l i I I i 8 10 12 AXIAL STRAIN, ",

l 9 .

A-19 UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

  • Project V. C. Summer Boring No. WE-19 Sample No. ST-2 Depth 18.0-18.7 Ft 0escriotion Red-brown micaceous medium to fine sandy silt (Select Fill)

Moisture content 25.9-  %

Dry Density 95.7 Scf Liquid Limit NP  % Plastic Limit NP  % Relative Density 5

( T;- r3) max.s 2.41 tsf at 16.1  % $ train Chamber Pressure, fe = 0.90 tsf g

  • 1.fter undrained creep test l l l i l I l l l l l ll I l l l

I l

II II I II I I l  !

I I I I 2.5 I

I I I j

I

,

II I g,;

i l I I- l l l 1h Isk a l i I l l i l I l l l l

l I I I !J l

.-TRI I l

S - I l I i l l M 'i l l l l

' I I' II I I  ! I

., 20 -

lii i i -, i i i i i i i l i g i il i ! I I IX ! I I I II i i I i I j le

~

i i i l l VI I i l l I I I I I I I

- lI i /! I I l i i l l I II I I I

- 1I I i l l II I 1 l l

l/l i g 1.5

, ,g,; ,

; , , gg  ; i ,-

5 l ! VI I I I I I I l1 I l l 1

l l I I l 5 l l/i I I I i i l l I j l I I I I I I I i l i i I l '/l l I I I lI ! Iil l II l l 1 1 I !

E  ! /i l i I

! II I I I I l l l l l I I I I !

I e 0

E l/ l I i l I { l i I i l l l l l i j l l I

/I I l l 1 I I I I I I II I ! I i l l l III l !

' - ~ ~ ~ ~l i I

! i fi l i I i i I I I I t i i ! l 6 l l l l l I 0.5 l I I I i l i l l l ! I II I i I l l l l f I I I ! I I I

, , j ;

1I I

l 1 l l I I I

, ,(

f'i I !

); ;

l l l l l 1 l l 1 I i I I I I I I j i i !

l1 l ! I I I 1 I I I

.i l l k6.**

!it; ;

II l 1 1 I I l! II i l l l ll . i !

I l l l i l i 1 i 1 ! l i i !! i l ! l l 1 ! l l i 0.0 0 2 4 6 8 10 12 14 AXI AL STR AIN, %

9

A-20 UNCONSOLIDATED UNDR AINED TRI AXl AL COMPRESSION TESTQ l

Project V. C. Summer S oring No. WE-19 Sample No. ST-2 Depth 18.7-19.4 ft 0escriotion Red-brown micaceous medium to fine sandy silt (Select Fill)

Moisture Content 23.1 v, Dry Density 101.0 8Cf

" 8 Liquid Limit NP #. - Plastic Limit NP Relative Density ---

I 0.90

( T;- 73) max.= 3.28 tsf at 9.39  % Strain Chamber Pressure, fe = tsf

  • After undrained creep test l l ' l l l I  ! l l l l

l l

l l

l l III l

I I I !  ! I II I l 5 I I I I I !I  ! I I l l l I I _l l l l 1 I I I s i I I i 1 !_ 1 l l l l l I II I4 a l I i I i i l I I

II i l

! l i

l I I j l ! I S - I i I l l I 1l1 l l i ! i l l  !

C

  • e 4 i l i l I l l l l 1 I I I ll I l l l 1l i  : I le l@ 1 I i l i I I  !

!l l 1 I i l l I I i i i I TlIS Wl- l~ll 'll

- 1I l l l l l l l i I l 1 I I

- 11 I II I II Iii~

U l 1l!I III # l ll l l l l l l 5 I i i I i i I/I I I I 1. I I !  ! I I I I I 5 l i l l l fi l l l l l I l l l l l I l i l l !

I l l l I /l I l l l l l l l l l l l l l 1l I !

E 2 f i i l l l l l lil ! i i i i i l i l I e w

5 i I l/l ! l ! ! I i I i l i l I i i l i I I I I I I t I l/ I I I ! I I i I i l I l ! I I I l l I~~~~

I l/l I I I I I i I I i l I I i i i l l I 3 i 1 it I g i (1i! II i ! lI I I I i i i I i I Il l l l l l1ll l l l l l u  ! I I i

,l l l l l l I l l 1 l l l l l !

l!{ g. j l l i

1 i

I l

I l

I 1

I l

I l

i I

i I

l i

I I i I i i I I l l i l I l i

I r i i l I l l I I l l I l l l l l l l l , , i I l, g i I I I, I I I I l i I I I I I i I I I i i I i i 0 2 4 6 8 10 12 AXIAL STRAIN, #.

=,

I e

A-21 UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

  • Pro)ect V. C. Summer Soring No. WE-19 Sample No. ST-3 Depth 28:0-28.7 Ft D escriotion Red-brown micaceous medium to fine sandy silt (Select Fill)

Moisture content 35.7  % Dry Density 83.5 ocf Liquid Limit NP  % Plastic Limit NP 5 Relative Density 5

( C;- T3) max.= 2.55 tsf at 17.8  % Strain Chamber Pressure, fe = 1*17 tsf

  • After undrained creep test 30 I ll l l1

!  ! I l l l 1 l I l l I l l .,

2.s i . - 1, i-' l i

$ I I l l l fv<l i I II I* I

~.

! l l l l ff l l l II

[ I I l l l i fl l I i l i I

{ 2.0 l l I I II i If l I l i i!

a g  ; ;  ;  ;  ;  ; ;

j ;j7 l EC i l I I i VI I I I I I I I l

L:- 1 I i l l II I I I I I _

i I

- 1I I !I I !I I Il !I I l

m 1*5 --

o I I I l l l l l l l l I ll l l i w l j l l I I I l l I l l- l l_ l l l 1 i I 5 l I I I I !I I i i I l l I l I  !!  ! !I I I I I l l I I I II II I i i l liI I I I !I I E I i j l l I l ! I l l l l l l 1 l l I I I I ! l '

l-m 1 I II I I I I I I I I l 1I II I i j ll II I w I I I I I I l l l l I I I I I I i l I l _ _ _ _ ,

1l

- 1 I I I ; I i I i l l I I I I i ! I I I I i i l l l l ! l l l ! I I I I I I I IIil I f- ]I i l I I I I I I I ! I I I I I i i i l i I I 0.5 -l; I i

;  ; ; ; ; j j i j j l ; , j i i l l 1 l l l 1 l l l l l l I i -

\;l I

l l l l i I I I I l ! .

I I I I I (L____J I i_

l l l l l l 1 l l l l l l l l I l i ,  ! l 0.0 0 2 4 6 8 10 12 14 AXIAL STRAIN, #.

i E

A-22 UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

  • Project 7. J. Sunner Boring No. Sample No. ST-5 Depth 48:0-48.5 Ft WE-19 0escription Red Brown Micaceous Sandy Silt (Select Fill)

Ory Density 95.7 PCf Moisture content 26.8 3 Liquid Limit 54 4 Plastic Limit 39 4 Relative Density --

( T;- T3) max.= 3.50 tsf at 10.5 % Strain Chamber Pressure, fe = 1.87 tsf

  • After Undrained Creep I\l ll } !l l l l l l l l l l l l l l l l l l l l g l i l l l l l l l 3 I II Il l 1 l l l1 w l l l l l 1 l l l l !

E 2 -

1I ' ' I I I I I II E *

  • I I I l  ! I l l l l l

" - 1I I l l l l l l I II I g Il l l ll l l l IT 4 l l l !

I I I I II I I I !l !l !

!! 1 I I I Ii il i i I II I I I I 6 I I I l l l l l l ! I I l}!

- I I l l l ! 1I ! I_l } "

M ili i

- 1I l l l l l l l ,M l l l 1I U l !l I I l I lMl l l l l I i l E I I I I I I /I i l l 1 I i l l l l I l 5 I I I I ! I Fi i i l I !I i l I ii I l l I I I I !l ) l/lI l l l l l l l ! I I I { l I i l l E

2 l l i ! f l l l l li i l i l ! ! l l ! ! f I m C

l l l/I l Il l II l l l l l/l I I i l I i l l i I I }( l I I i l 1 I I i i l I i i l

I l l l l l l l l 1 i I I i l I i f~~~~l i I i I l/l l I I l l l { l i l I ! l l . !l ! f 4o* T I I 7

/ I I l l l l l l l l I I I i i I i i l l l l i l I i l l I I i l l l l l ll l l l l

I l l l l i i l I i l l l II I I I I l i , 60' i !

! I I l I l l l l l l l l l } l t !

I i l l l l l l 1 l Il l l l, I i 0 8 fo 0 2 4 6 AXIAL STRAIN, %

L A-23 UNCONSOLIDATED UNDRAINED TRI AXI AL COMPRESSION TEST

  • Project V. C. Sucuner 5oring No.' WE-19 Sample No* ST-5 Depth 48.5-49.0 Ft

[ Descriotion Red-Brown Micaceous Sandy Silt (Select Fill)

Moisture Content 23.6  % Dry Density 103.2 8Cf Liquid Limit 50  % Plastic Limit 34  % Relative Density --

( T i- r3) max.* 3.14 tsf at 13.07 % Strain Chamber Pressure. Ee = 1,87 tsf i i i i i i i  ! i .- i t i i i i I t I #I i b 3~ '

} jf l l l l l I I I I 'I

[ l I fl l I I i t

/ I i i I i 1 I i 2.5 yg

[2 w ,

I I I /I i f I i a i l l I / } l l l

[E ~. '

I I I I f I I i E _

I I I I l/ I I I I

[': '

G i

i iI l I I

l i /i I /- l 4

I I

i I I I i l I i !

i i I

i i i

/ l I II I I I

[ w' 1.5 ,

I -

g

,i i i i l , ,

[ =

w i

I I I I I I ! I I i i I I i i i i ,

!1 I i !

i l !I II I i l I I i i l Iil 1 ' I I l i i i i l i l i I I i

[ E m

I'U i i i I i i i i i l l I i l i II I l IIIl I Il I I I I II I l

I 1 I I II Il i i t I i I l I I I I I I i ! I I l l l 1 i i l i i

[ O i i i i i I i i l i i l I I l l 1 1 I I [-~~~-ll l i i I i t Ii !! !! !IIi  ! l II , y.; ! I I ! I I ! I I I I I I l l l l l l i 1! l

{ 0.5

, , , ; , ,  ;;  ;  ; j ,j-l t I i i II I I l l l lQ ll l I I I i i l I i l IL I I

[- l l l l l l l l l l , !I g,3 i i ! I I II I I I I I  ! I II l l! l !

0 2 4 6 8 10 12 14 h

  • After Undrained Creep t

A-24 UNCONSOLIDATED UNDRAINED TRIAY.lAL COMPRESSION TEST

  • Project V. C. Sumer 3 oring No. WE-19 Sample No. ST-5 Depth 49'.0-49 5 Ft Descriotion Red-Brown Micacer.o Sandy Silt (Select Fill)

Moisture Content 20.8 5 Dry Density 105.5 8Cf Liquid Limit N.P. 4 Flastic Limit N.P. 4 Relative Density -- 4

( T -i T3) max.= 4.90 tsf at 13.66 5 Strain Chamber Pressure, fe = 1.87 tsf

  • After Undrained Creep i !II i !l l l l l ll 1 II l1 I I I I I I '

l II l l l l l l l l  ! I I I

$ 5

! I I I I II' I I I

-; -l 1 I '

l l l l l I l 1 l 1 l l4

  • 0 p

I I I II I I I l I l l/

I IA if i i fl l I IIi l

i 1 I l l lI I I I I i I

l l l l II I l j l

' ' l C 4 I ' '

a i i I VI I i I i ,

I I I I I l l ! l i l l I/ l i I l l I I I I I l l  ! I G I I I/I IIi i I i l l l l 1 ! ! l !

1 I/I III I i! I III II i I 3

I l/i llI II T I I I II I i!-

- U i 1/ l l I I I I I I I I I I i l l l l l E l /l l I I! I II lI i ! i i l I I I i l 5 l/ l I i ! I I I l l l 1 l l l l l l l l l 1 1 I I- I l ll !I l I l i l l I I l l l l l l l l l l i E l l i l l l I ! l Ii ! i l I I i I I I I l !

2 e I I II I II I I l l l I Iil l IIjl i I! ! ! I g I I I I I I l l l l I !l l l l l l l l l i I g i l l I I I I I I l l l l l l 1 l l l l l [__]  !

l l l l l  ! l l l l i l II l l ! l I I l l  ! l I

1 I I I I I I i i l l l l 1 I I I l l l l l i i i l I l 1 l l l  ! l l l l l l l l 1 l l l l  ! !I I

I I I l l I I i l l l l l l 1 I l l l g. ll l l l l i i l I I I i l i I , i I i i _!_ I I  ! i i l l I I 1 l l l l l 1 ! I I I I II I l l , I i

! I I ! I 0  !  ! .

O 5 10 15 20 AXIAL STRAIN, f,

=-

a

A-25 MECHANICAL ANALYSIS

~

~ ~

C088LES COARSE i FINE c0 ARSE 4 WEQiuu i FINE SILT OR CLAY U.S. STANDARD SIEVE SIZE N O.

3* l '4 M h. 4 to 40 200 ll g ll l I !

hi ! i i i t I e

l i i i 1 's i i li 6 i i q! 6

%M6 Nr%i

) i l I e

j i i: i i !

i e i t jii } ! !

iit l i i I

I 'l l ! I i i f f I i is j j!IN he I, ji j t i  !! iI i i I

  • , , I(l 6 e i i 1 t i e i; I t I ( i IN I N l' Ii e i t li i i i I i i si i i t i iiI ll 4 I i6 t i I A M6 t i i i lii ! I i i i t(6 e i i i iii d i 6 6ii i i i 'MN i diti e i i i is it i I i till :e 1 6 I s ti t I i 4 i ' lit t th JiliI i ! l i

i i t i i itii d i l i ili e i i e i ' lli i i t i NN i i t (l ! e I tt i it t I  ! ttii e i i lii t I ! ( N Ai i

$ ,_ i e6 i li i; i i i 16 i i i i i i st i i ! i 64 ! %

2 I t  ! ii t i 4I i I ll t I i i  ! itd I i i t 6 IIi ! i t i N ia- i t i iii I 4e i l ii i i i i i I ill I i l i i IL 6I I a t M Ii6

> i i e isi! s! i i .!: e i t  ! e i .I e i e i i si i i

$ 6 et 6 i e i i itiI :s i i t a ll 1 i i i i l i si e i e i i ieie i i i i y tal I i i l i sti e ii ! t ;it6 t i I s t ij l i i i i 11 6 e i i ins lii i e ! I I iiee i t i i i si6i e I i i l is i i i i ! 68 i i e i i i !! I i I: ! !I i i !

I iet- 1 i I j !t le ! l t i l l ll 1 i ! i !

t ii i e i 4 i iql i i eii I 6 t i lt i i i i i e' ei i i 4 e

!s! i i  ! i e 'l t I tI i i  ! iid ! ! ! I i i Iit ! ! t i ji I 4i i it i i i e li i i i I i i iii t i I 0 6 (i i i i t ico io ia o. . coi occi GRAIN SIZE IN MILLIMETERS 8CRING SAMPLEL DEPTH SYM SCL CLASSIFICATION MC LL PL WE-14 S-8 43'-43.5' o Reu-brown micaceous medium to fine 34.5 70 42 sandv clayev silt (Select fill)

]

E WE-14 S-8 43.5-44.0

  • Red-brown micaceous clavev silty 29.0 67 42 medium to fine sand (Select fill)

I COBBLES ccARst i FINE coaRsti u t DiU M i FINE SILT OR CLAY U.S. 5TAND ARD SIEVE SIZE No. """***'"'""*"**'"

5' iM. h. N 4 io 40 200

'OC iet 1 I I ! l i ! ! !! ! I Nm! l t I ! I I 41.i ! i ! I i li!! ! ! ! I lui l i i i il 6 I el I i 1 'NN i 6 l lll I 4 i I I iii i i i I i 1 l 5. I

,!t i l i i i lii I lll i :s i i i i i i

iiii NN leti iiX I Ni i _

i e i

I i ie!i itist I

! I i i t

y .i i i i t t i iit i .I  ! i 1Ie. I eN lh i {'

l iii ii i e Q ,

il i i i i i Ii i i et i i i Iii 6 i t\ i i .i i N i ii.I e i i 1 3 y

Iil e i i e l 'l i ti j i i

i ii ! I di e iii 6 dr i ti<4 ieie i

i e

i i

i i

\ i;J N

iN i i N 3 ili 5 1 i i ii! i e i i

  • ! 41 i ( i i i lii i '! ' i  !  !!!! I i  ! t 11 1  !% i N! ' '

m i l it iN i st%i I

. 'i e i e li t i 'i i i i llit i l i I I f z 14i! I ' !  ! IiI i '. ! ! I ti!' ' i e i i !" 'I i ' f N C # >s t i i i i t is t i +i e i i tilie i i i l i st i i ! I ' hei ' ' '. M Ni t

w { i, 4 i i e i t il i i j . i I itt ii i i i l i si i e i i l i ! \f 4 i Z i qi il i l i 6i t i i e i iIii i t i t ! !! i i i . j'i i%

y IdtI !  !  !  !!1 !I i i e

!!t ! e t i  ! lI" i i ' i i ' i i  !

1 iu 6 li e : i t t l 91 I I ! I 6

i 1:I t i ie i l!! i e i i

  • teit i 11i ' I i i i i t ii . i i i l i '! i f f I i

I iiI iI tili i ! 6 i i dj i i l ) i ii t i d i 6 i ie iI 6 4 4 I!i i e i i iil 1 8 '

t I i s! l 1 i i '

I iil t I ! I i ti!I a i i i  !!ii ! l  !  ! 1!!I i i

  • C ' 5! ' ' ' ' I! ' ' ' !I ' ' ' ' ' ' ' ' ' ' '

60 0 10 to ei GQ 0005 GRAIN SIZE IN MILLIMETERS 80tlNGlSAMPii OEPTH SYMeOL CLAS$lFICATiCN MC LL PL 1 '

4E-15 ST-1 37'.0-37.5 0 Red-brown micaceous medium to fine 34.6 60 44 sandy clayey silt (Select fill)

E- 15 ST-2 '+ 8 . 9-4 9 . 5

  • Red-brown micaceous medium to fine 30.8 NP NP 1 sandy silt (Select fill)

MECHANICAL ANALYSIS I C088LES coanss 0

a ring coAnst i utotuu i Fi*E SILT OR CLAY U.S. STANJARD StEV ' SIZE No. '"**'"'"*'**'"""

I ice 3* th.

l i;l i i tNN i ii i ti i iN

! sl i i i i k'

"N N.

I s'N I 4

I t ti i i i i sdi !

io i

lli ill lll ao i

i i I i

i i 200

'i l I lii

!il l 6 i ii !I i ' '

ii ii e i i 118 ! ! i 8 p I jl 11 I t i Thi N LLI e i i li! I i iti i i i i

I g 3

istIt ! i its i i e s e I i j i i

1 61 11 i N iiii << i i i iiii ti i t  !

liti h t Ni i Ni

! I i i i\t N i lis t i f I lll i t t il i f I I i i I

li t i I i I li'ii e i Ii 4 ! I i i i i

4

> li i i i iii! di i e iII i l i IN\ i lli i i i e i iii i i i 1

" " .!i I E z

ia.

eii e deii i i e in i i i i i A6 i i t i l

i i

i ! j i to i i !

i i i i si i i i tili ; i i till 'l I i i I

tit 6i !

ill i i i e ll l ! : !

Il i i e i iM i %

i l i .! I i t iii s i

\\lidti W ili i e i i i i i

t i

i lii i ! ' ' i 61* *'!

!!i ' !

til l 4 I i 8 i

  • !hi,ie .tii,i wi'.i li i i t - - >

I

,_ i ei,i, i i i , i i Z i et i i i i i iiti is i i e il4 s I i i i e i% i i i t II e i i ' i i i U i!: i ! i t  ! ' i i ri i ! ! !I i i i ! l !Id N i i itIi ! I ' i E , 14i i i e i 6 t e j i la i I i it I e i i t il ! Ih I ilt i i i !

" :i!l ;i i i t i i I;I I I !\ h lIi 1 ! I t- i l!! i I ! 6  ! I i

}is e i i l itie4I 6 i e i i i 6 . i ii i I ' A5% i t ist it i i e i t ! i 6' t t i ttI i i i !ii fi ! i 7%N iei i e P e 6 (i i e i i t l i e i i; i I i eii i i i t i' Ii i l i too io us o.i oca 0001

G R AIN SIZE IN MILLIMETERS 5 BORING SAMPLE DEPTH SYMBOd CLASSIFICATION MC LL PL E- 16 PT-1 79.3-79.8 o Green, brown and gray micaceous fine 19.3 NP NP gravelly silty fine sand (Saprolite)

WE-16PT- 2 01. 3-81. 5

  • Green, brown and gray micaceous 13.3 NP NP 3

gravelly silty coarse to fine sand (Saprolite)

C088LES I cCanst i riNE C3Anstl W E DIU M i FINE l S LT OR CLAY U.S. STANDARD SIEVE SIZE NO. ******'"'"'""**'"""

S* iM. M. V a io ao too I i! jf l l Ill i d ! l MI hl I lii i i ! I i  !! ! I l l I

lN 4I i i iiiili i i i iiif IN N i l'l I ii i i

, iiI i i i i i s. ! ! i ! i 11 e i .i i i i iiii ! t \i N e !! ! I ' i i iiii e 6  !

p l is t i i i 6 i i i l i il , , ; inii ,\ i\ i i ii r , sit, i i i 5 !d' ?! ! I i i!i i 4 t !  !

I';' ' l\ ! \ l i 's i '  ! !I' 'i e i I G i sl l It i i i i lii: i i\i \ l i ,{ n i i i tii e i ! i 6 li l I 4t i 3 l il j t i i e i i l l i ii t i 6 tisi i \i il a . ii i6 i e i

>  ! !ii j l t i i ti e i d i e i i6i 6 ' i i \ N 'i i e f 1'i i i i

  • t
  • ! il ! e i i i !i'! !i i  !  !'!!8 ! ! \ !S '
  • i  ! l8i i i 6 i 8 e i .f i n i i e i ill I Ji i i it ti i i e i\ llh \i ' i I til i i 4 i I

.I itii ,i i\ i E  ! i: 1 t i ! ! i  !!!! ! ' e  !!"i \> >

i  !! ' 8 C { il l i I i i i itii .i I i t 'l i i i i i i I \  ! i ll i i%t 4 iiii e i , I w l is t i i e i i itt l l! ! l li e i i I e i \_liy . i i 'M i 14 i i i i z iql , , i e ii i ei i i eeie i ; i i Ni i i i\i ei. i e I o  !! nN 'N

' s! i i - ! i ' ;ii ! + i

  • i ci ! i i i e  !! i i ii i 6 j ii i i i i i i si: i ie i i i je ii i i li es i  % i N tile i t 1;l i I i t i ii i t i li'i i t i i l ei ' i\ NI i ' i eiiiJi i i eiii i i I !N i i A'

,diii i!' + i i a i i i i l iC ,, , ,

c q!,,

I

, , j!,, ,,!,, , , , , f,,,,, t C ' UI I ' ' ' ' II ' i Ii ' i i i ' i i i i 'i ' ' ' i ' ' ' G ico to to Gi GQ 0001 GRAIN SIZE IN MILLIMETERS I BORING: SAMPLE WE-16 PT-693.7-94.1 DEPTH SYM BOL' o

CLASSIFICATION Green. brown and crav micaceous silty fine sand (Saprolite) 11.4 WC LL NP PL NP WE-17 ST-768.0-68.5

  • Lizht brown micaceous fine sandy I

28.7 NV NP silt (Saorolite)

I

MECHANICAL ANALYSIS 1 C088LES coaRS i FINE CCAR$E i M E OiUM i FINE SILT OR CLAY y i 'a. k- N. U S. $TANDAR.D o SIEV E SIZEzoo No.

l 4 to ico I i; l ii e i e iI{i ,i t i

iii iiTI i i i s ii ' i i !  ! !I i' ' ' '

y i,i ii , s ...: i i i iii ei ,\\! i ii. tie i . * *i.ir .

.i i. > , i iisi. i i e iis i i i g i j i i .i i i .  !

$ iiiii i > i y i ji i i i . i ie> e i li1 I i i\\ i t i l ei i i i i , ii? ie i

  • g .. . , i i
3. t i  ! i ni i I

i i ist ii i i , g ., ! t i i \N i g ;i i i i e iei e ai i . iisi. i i \\ lit, i i . . i ti 'i i e 3

  • i,i Ii i , ii . i i ; ! i i li e s ! i i i , \\ ! ! : :: 1 i i l I *i ii i I

> :4 iii i i , ii.i..i a i liii e i i i , \\ l i i'i i e i ! , i . ' ii i ,

  • " i ,1 i e t i i i.* . it i ! i j;sii! i i i \N l i d I i i i i
  • ii i , i I e E

c

'C

is

.,.ie

.niii ,

ii i ,

i i i

i

it . i. i i ,

ei;i ,

,iii .. . i i ii s i i i ! i iiii i i . .

niii i i i w ,i i igiii is w i

i it' e

i 4C i . . .! w ,

ti. .

2 I 0 3C i

,9e ii i i.; i i ,

i i. ,i ,

  • 20 . g, i i e

i t -

ii;i .. t iii , , . .

i i i i .. i i i i e iiiie i e r :i i e tiiii. . i i

i i

iits'=\\0

. . . '.i

. a- .

w I
%N iii.

i

!. .i

. i t i i

i i i i ! i ,, i i i taiii i i i tu.I i- IN N t- i! t ,

i.si , i i iiii i; . i i iii i e i >

  • ii, > , i i Xh' i '

ic

, , , , , , , , ,,,, ,, , , , ,,,;,, , , , , , , ! , i,,,%

e ' i' i ' ' ' ' ' ' i ' ii' i I i ' ' '4i' ' "' ' '

iCQ i .) 6.Q Qi OC. Mi GRAIN SIZE IN MILLIME TERS BCRING SAMPt.EI DEPTH SYM80d CLASSIFICATION MC LL PL 2 IE-17 ST-7 b 8. 5-6 9 .1 o Light brown micaceous fine sandy 23.6 NP NP i silt (Saprolite)

WE-17 ST-769.1-69.6

  • Light brown micaceous fine sandy 20.2 NP NP 3 silt (Saprolite)

I i.

I GAAVEL i SANO I COSSLES I CARSE t F iN E ICCARSEg M E DIU M i F i as E SILT OR CLAY ib. H. M' U.S. STAND AR0 SIEVE SIZE No.

s' 4 io 40 too i'ei! ' I h i'si ! i e ,e i ai ! , i i

! I l I e i' 1 I i i!, : i l i!! i i!*1 4, t  ! .,

I i t , e i is e i 6 NN i i i i i i  : .ri ,

~

4 i i e i . i l t NN i i i .! 4 i i i l'...

e i! !

  • i p isi i i i i iiii  !, , e is e i . %\ , j g *)

, i.,i i i ii.i ; , , i .

1NN i ,,

c

  • i ,:

. i i i.i,a i , ii- NN i - i, i 3 ip., i ii, ., , .

i NN i; . i ,

j O

i a, i i i i i viii .i i i i W. i

,,I 't i > l t i *i  ! b., ,

- i:

e t .o . . . , :iii , i i iiii i ,

i Ax i i  ; ,,

y SC ,7 ,. : .i w x I

,- , . . , ,i1 i i  ! i C i ai , i e i i ! I to i ' i i e

  • i i\N 6 i w i.. !i ; i , , i !i,, i e i i .. \\

Z iai i i e i  ! si. i '

it i i i i ii i i  % -

d 3C i . . , , . ,

e i , . ,

um ,%

I 3 5 ji . , , . I it i li . , is. i ' ' \N

' 2C i., . i ii. i , , . p. . . i n , ,, , , i, , i %N ic ici . i,, , i p- , i i ji n , w

!a, , , , p ,1 , . i n , ,

n o. * , ,

I

_ i .. i i . i i 6.. . i , ii i . i , e i i li i s e i ie,i .

Tco io io c. cc. cosi GRAIN SIZE IN M I L LIM E T E R S SCRINGlSAMP'.E O E P T >t SYVSCLI CL AS$1FIC ATION l MC l LL lPL WE- 19 ST-2 18.0-18.7 o Red-brown micaceous medium to fine 25.9 NP NP sandy silt (Select fill)

WE-19 ST- 2.18. 7- 19. 4

  • Red-brown micaceous medium to fine 23.1 NP NP sandy silt (Select fill)

I

g i-28 MECHANICAL ANALYSIS I C088LES SILT OR CLAY cosast FINE CQaRsEl M E DIUM I FiNC U.S. STANDARD SIEVE SIZE NO, ""#'" ""#'"""'"""

' 3' l '4' N. N. 4 10 40 200

' li, I 6 it it i ! i li!I a i i m:LLt i i e i i I I  ! l  !

w i-. it i e s il i c i i i me i i Ill i 6 i i 4 i t I 14 ! I ii  ! I il !hI . t i Iiti i I '

, g i? i i  !  ! I t I i; 6 i it i i M ' e i il i i i i I 5 Q

60 l(i t I i i t I i  !

l ilt i i I I i iiii s' t I i lii lii ei i 6 h

i \N3 I i t 'n i e ! !

e I

.!t iII I ! '

I8 8 I

i 3 !i4 ! I i l l 4 I)  ?> l 1 l ti{l 4 I I i \i IN I l } III l i ' i

> i i I1 di ; i Vi4i N i iIil i i  !

i Iii ! I I 6 e ii i l i 6

!tfI{ j l I i' i is I t l !l } i f i 6 i i ih I l IN 8i I II ! I a: , ,i a ; e , a it i ,, i i , i,,,i ; i i igi, N i A lii ! i i i ht t 6 t i i }! t di i t i !I Ii l i l III e i i N!h IlI i ! l I i E

I at I i j i i ji 4 il I i i a l I1 it l i e t il i I i l l\\ lil i l I i  !

w iit i : i e i ,i!e i, e t i seiie i i e i ! .i ! e i i i %i i ! <

I Z  ! ts t I i i i81 t! I i i

i l e i i 't i t i!I e s i 1 I ilii e i i 1 Iti i i i i

l i l 8i iit i i

? Ih i i i i IlhW e

!!!Y !

I

  • 4 4i 4 i e i i sii s d i i i sii6 i i in i i i l i lii i i\ l i!! ! ! ! ! t I ! t is I i  ! I I i t ll l l 8 ! I l!I t ! l A8 N

I is,ie 6 i il Ii e i III ' ' ' '

i t

i l l is tii it I

i i ti t

i i i

! I I e

i l ii !e I i e i l ii ! ! . I i 6.

f 6!

!ii ! ?

O

  1. Co to 4 0i 0 06 0 o 01 GRAIN SIZE IN MILLIMETERS BCRING SAMPLE; DEPTH SYM80LJ C L AS$1FICAT10N MC LL PL M-19 ST-3 78.0-28.7 o Red-brown micaceous medium to fine 35.7 NP NP sc_dv silt (Select f L1) 1 RE-19 ST-5G8.0-48.5
  • Red-brown micaceous medium to fine 26.8 NP NP sandy silt (Select fill)

I 0

C088LES lccansE i r iiis t cosasti in t oiv u i rime SILT OR CLAY U.S. STANDARD SIEVE - SIZE NO.

5' ih. N. N 4 t o_ 40 200 iiH i ! i t i li t t d i i NL' i t i i t  ! i. ll t ! i

!i t ! I t i I  ! al i i i i e i s, I ! l !

i 4

lii i n i i il! ! l ! !

i I

iKN i lie! N sN 6

iN I! si i i ll ! I e l ii i i

' i i

i li t i i i i

'lI I i

% lii s i i t i l i i i it i i i 11 4 i .\ 1 .:ii. i e 5- s i' ! ! I i  !  ! ! ' i i! ! t I l  ! \ ! IN T i i !i!i i i i,; iqii i i i i tili e i i i i:i.. i iNi  ! !. ii %i iii. ii i i 1 3 i t! t ! I 1 i al i t i t i

i l i e i ii s

.IIi idi i

' i i

ti'i iiii i i

' ! \

i\

t id .

.I;' i e i N i \

t il i i!

! t + i i i

" #4!63 i i i pi! ! ! i i iiii i i i N itu  ! . i \ i!! I t i -

e iit i t i i ll 6 e i ,I i e iiiil i ! i Xi u i i e i t \ iiIi ' I i I I z C 'C ist i i e i

l i i i i i t

s i i I ri i i i

!'i! ' ' '

tiie i i e i

i

!Aie i i t il IN ,

i i

4 !. i

\il i i i

, iviii ! i  ! ! ! i -i , i ! tisii e i  !  ! ! .. . i .N Aii i 2 i q) i i i . i i .: i i e iiiii , i i i .i . i , A, i i ,W e i .

$ ti { t i l $il i4 I

i i i 1 l l 1 i l l ll t M a i i '

.ii ' __

5 e di i i i e i ii t i. > ii i . 4 i i l i i ii , i i i i t.. A i *

' E i i; i i i i i i !. -i i i t si'! i i  ! It.. I i i  ! t!Ii s IN iiiia i i '

i i . lit i ,i i , i i.i i i e i lim i i . i ic ;j ,3 ili s, i ! , , , , ,j ,, ,, , , , f;!, , , , ,,,,, , ,,,, ! , , ,

I 1 e i ji ii .l r i e iii i e i i i i i .i e i i i i !I i 1 i i i koo! qi e i io io ci 0 06 0006 GRAIN . SIZE IN MILLIMETERS 80 RING SAMPLE DEPTH SYMBOL l C L A S $lFI C ATIO N MC LL PL RE-19 ST-5 '.8. 5-4 9. 0 Red-brown micaceous medium to fine 23.6 NP NP sandy silt (Select fill)

WE-19 ST-5 '9.0-49.5 4

  • Red-brown micaceous medium to fine 20.8 NP NP 1 sandy stit (Select fill)

I