ML17329A673

From kanterella
Revision as of 07:33, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Rev 1 to SECL-91-429, Main Steam Safety Valve Lift Setpoint Tolerance Relaxation.
ML17329A673
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 11/11/1992
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17329A671 List:
References
SECL-91-429, SECL-91-429-R01, SECL-91-429-R1, NUDOCS 9211170225
Download: ML17329A673 (215)


Text

ATTACHMENT 4toAEP:NRC:1169 WESTINGHOUSE REPORTSECL-91-429, Revision1,"DONALDC.COOKUNITS1AND2MAINSTEAMSAFETYVALVELIFTSETPOINTTOLERANCE RELAXATION" 92iii70225 92iiiiPDRADOCK050003i5PPDR

SECL-91-429, Revision1DONALDC.COOKUNITS1R2HAINSTEANSAFETYVALVELIFTSETPOINTTOLERANCE RELAXATION NuclearandAdvancedTechnology DivisionWestinghouse ElectricCorporation September 19921992Westinghouse ElectricCorporation AllRightsReserved SECL-91-429, Revision1LISTOFCONTRIBUTORS JeffreyC.BassLeighA.BrooksRobertW.GarisonScottR.GriffithGregJ.HillRobertG.OrendiWilliamJ.RinkacsTimD.RowellKenRubinJillL.Stackhouse HikeB.WatsonHaureenR.Zawalick

SECL-91-429, Revision1TABLEOFCONTENTSSECTIONListofTablesListofFiguresSafetyEvaluation CheckListIntroduction Licensing BasisEvaluations Non-LOCALOCAContainment Integrity SteamGenerator TubeRuptureComponent Performance SystemsEvaluation Radiological Evaluation PlantRiskAnalysis(IPE)PlantRiskAnalysis(non-IPE)

I&CSystemsTechnical Specifications Assessment ofNoUnreviewed SafetyguestionConclusion References AppendixA:Significant HazardsEvaluation AppendixB:Recommended Technical Specification Marked-Ups PAGEvii52024.25272727,272828292933

SECL-91-429, Revision1LISTOFTABLESTABLEPAGETable1:MainSteamSafetyValveLiftSetpoints Table2:DNBDesignBasisTransients NotAffectedAffectedbyMSSVLiftSetpointTolerance IncreaseTable3:Unit1TurbineTripSequenceofEventsTable4:Unit2TurbineTripSequenceofEventsTable5:CurrentLicensing BasisSteamLineSafetyValvesperLoopTable6:MSSVSetpointIncreaseSteamLineSafetyValvesperLoopTable7:Unit1LowPressureLowTemperature InputParameters Table8:Unit1LowPressureHighTemperature InputParameters Table9:Unit2LowPressureHighTemperature InputParameters Table10:Unit1SmallBreakLOCAEvaluation TimeSequenceofEventsTablell:Unit1SmallBreakLOCAEvaluation SummaryofResultsTable12:Unit2SmallBreakLOCAEvaluation TimeSequenceofEventsTable13:Unit2SmallBreakLOCAEvaluation SummaryofResults3537394O4144454647 SECL-91-429, Revision1LISTOFFIGURESFIGUREFigurela:Illustration ofOvertemperature andOverpower hTProtection forUnit1Figure1b-c:Illustration ofOvertemperature andOverpower ATProtection forUnit2(mixedandfullV-5Hcores)Figure2:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure3~Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

NuclearPowerandDNBRFigure4:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure5~Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

SteamGenerator PressureandHSSVReliefRateFigure6:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

Pressurizer ReliefRateFigure7:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure8:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

NuclearPowerandDNBRFigure9:Figure10:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Unit1TurbineTripEventWithoutPressureControl,HaximumReactivity Feedback:

SteamGenerator PressureandHSSVReliefRate111 0

SECL-91-429, Revision1FIGURELISTOFFIGURES(Continued)

Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

Pressurizer ReliefRateUnit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

Pressurizer PressureandWaterVolumeUnit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

NuclearPowerandDNBRUnit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

SteamGenerator PressureandHSSVReliefRateUnit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

Pressurizer ReliefRateUnit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

Pressurizer PressureandWaterVolumeUnit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

NuclearPowerandDNBRUnit1TurbineTripEventWithPressureControl,HinimumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Unit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

SteamGenerator PressureandHSSVReliefRateUnit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

Pressurizer ReliefRate

SECL-91-429, RevisionIFIGURELISTOFFIGURES(Continued)

Figure22a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure23a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivity Feedback:

NuclearPowerandDNBRFigure24a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure25a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivity Feedback:

SteamGenerator PressureandHSSVReliefRateFigure26a-b:Unit2TurbineTripEventWithoutPressureControl,HinimumReactivity Feedback:

Pressurizer ReliefRateFigure27a-b:Unit2TurbineTripEventWithoutPressureControl,HaximumReactivity Feedback:

Pressurizer PressureandMaterVolumeFigure28a-b:Unit2TurbineTripEventWithoutPressureControl,HaximumReactivity Feedback:

NuclearPowerandDNBRFigure29a-b:Figure30a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Unit2TurbineTripEventWithoutPressureControl,HaximumReactivity Feedback:

SteamGenerator PressureandHSSVReliefRateFigure3la-b:Unit2TurbineTripEventMithoutPressureControl,HaximumReactivity Feedback:

Pressurizer ReliefRateFigure32a-b:Unit2TurbineTripEventMithPressureControl,HaximumReactivity Feedback:

Pressurizer PressureandWaterVolume SECL-91-429, Revision1LISTOFFIGURES(Continued)

FIGUREFigure33a-b:Unit1TurbineTripEventWithPressureControl,HaximumReactivity Feedback:

NuclearPowerandDNBRFigure34a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure35a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

SteamGenerator PressureandMSSVReliefRateFigure36a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

Pressurizer ReliefRateFigure37a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure38a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

NuclearPowerandDNBRFigure39a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure40a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

SteamGenerator PressureandHSSVReliefRateFigure41a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

Pressurizer ReliefRate SECL-91-429, Revision1CustomerReference No(s).PO:04877-040-IN Westinghouse Reference No(s}.WESTINGHOUSE NUCLEARSAFETYSAFETYEVALUATION CHECKLIST1)NUCLEARPLANT(S):

OONALDC.COOKUNITS1AND22)SUBJECT(TITLE)'ELAXATION OFHSSVSETPOINTTOLERANCE TO+-3%3)Thewrittensafetyevaluation oftherevisedprocedure, designchangeormodification requiredby10CFR50.59 (b)hasbeenpreparedtotheextentrequiredandisattached.

Ifasafetyevaluation isnotrequiredorisincomplete foranyreason,explainonPage2.PartsAand8ofthisSafetyEvaluation CheckListaretobecompleted onlyonthebasisofthesafetyevaluation performed.

CHECKLIST-PARTA10CFR50.59(a)(1)

(3.1)YesXNo(3.2)YesNoX(3.3)YesNoX(3.4)YesXNo4)CHECKLIST-PartB(4.1)YesNoX(4.2)YesNoX(4.3)YesNoX(4.4)YesNoX(4.5)YesNoX(4.6)YesNoX(4.7}YesNoXAchangetotheplantasdescribed intheUFSAR?Achangetoprocedures asdescribed intheUFSAR?Atestorexperiment notdescribed intheUFSAR?Achangetotheplanttechnical specifications?

(SeenoteonPage2.)10CFR50.59(a)(2)

(Justification forPartBanswersmustbeincludedonPage2.)Willtheprobability ofanaccidentpreviously evaluated intheUFSARbeincreased?

Willtheconsequences ofanaccidentpreviously evaluated intheUFSARbeincreased?

Haythepossibility ofanaccidentwhichisdifferent thananyalreadyevaluated intheUFSARbecreated?Willtheprobability ofamalfunction ofequipment important tosafetypreviously evaluated intheUFSARbeincreased?

Willtheconsequences ofamalfunction ofequipment important tosafetypreviously evaluated intheUFSARbeincreased?

Naythepossibility ofamalfunction ofequipment important tosafetydifferent thananyalreadyevaluated intheUFSARbecreated?Willthemarginofsafetyasdefinedinthebasestoanytechnical specifications bereduced?vi1 SECL-91-429, Revision1NOTES:Iftheanswerstoanyoftheabovequestions areunknown,indicateunder5)REMARKSandexplainbelow.Iftheanswerstoanyoftheabovequestions inPartA3.4orPart8cannotbeansweredinthenegative, basedonthewrittensafetyevaluation, thechangereviewwouldrequireanapplication forlicenseamendment asrequiredbyIOCFR50.59(c) andsubmitted totheNRCpursuantto10CFR50.90.

5)REMARKS:Theattachedsafetyevaluation summarizes thejustification foranswersgiveninPartA3.4andPartBofthissafetyevaluation checklist:Reference todocuments containing writtensafetyevaluation:

FORUFSARUPDATESection:variousPages:Reasonfor/Description ofChange:Tables:Figures:UFSARMark-ustoberovidedbsegratetransmittal 6)SAFETYEVALUATION APPROVALLADDER:6.I)Preparedby(NuclearSafety):Date:6.2)Reviewedby(NuclearSafety):6.3)NuclearSafetyGroupManager:Date:9/d2.Date:0l SECL-91-429, Revision1DONALDC.COOKUNITS1&2INCREASED HAINSTEAMSAFETYVALVESETPOINTTOLERANCE SAFETYEVALUATION I.INTRODUCTION AmericanElectricPowerServiceCorporation (AEPSC)hasfoundthatoveranoperating cyclethesetpointoftheHainSteamSafetyValves(HSSVs)canchangebymorethan1%fromtheoriginalset-pressure.

AEPSChasrequested thatWestinghouse performanevaluation toincreasetheliftsetpointtolerance ontheHSSVsatDonaldC.CookUnits1&2.Thefollowing safetyevaluation isprovidedtosupportchangingtheas-foundliftsetpointtolerance asstatedbytheTechnical Specifications from+1%to+3%.Duringnormalsurveillance, ifthevalvesarefoundtobewithin+3%,theywillbewithinthebasesoftheaccidentanalyses, however,thevalveswillberesetto+1%toaccountforfutureaccumulation ofdrift.Thus,thisevaluation permitsa+3%setpointtolerance toaddressas-foundconditions.

TheHSSVsarelocatedoutsidecontainment upstreamoftheMainSteamIsolation Valves.Thepurposeofthevalvesistopreventoverpressurization ofthesteamgenerators.

Inordertoaccomplish this,abankoffivevalvesislocatedoneachofthefoursteamgenerators, andthereliefcapacityisdesignedsuchthatthetotalsteamflowfromthe20valveswillboundthatproducedbythelimitinglicensing-basis analysis.

ForDonaldC.Cook,thetotalreliefcapacityofthe20valvesis17.153E6ibm/hrat1186.5psia(1171.5psig).

SECL-91-429, Revision1Theliftsetpoints oftheindividual valvesoneachsteamline arestaggered atdifferent pressures tominimizechattering oncethevalvesareactuated.

Staggering thevalvesalsominimizes thetotalnumberofvalvesactuatedduringthosetransients wherelessthanthemaximumreliefcapacityisrequiredtherebyreducingmaintenance requirements onthevalves.Theactualsetpoints areprovidedinTable1andaredocumented inTables4.7-1and3.7-4oftheUnits1and2Technical Specifications, respectively (Reference 1).Theoperation oftheClass2mainsteamsafetyvalves(HSSVs)isgovernedbytheASHECode(Reference 2).AEPSCwillmaintainthedesignbasisoftheHSSVsbyensuringthatthevalves,ifoutsidethe+lXtolerance, willberecalibrated towithin+1X.Thepurposeofthisevaluation istoprovideaquantification oftheeffectsofahigheras-foundliftsetpointtolerance.

Thissafetyevaluation willaddresstheeffectsofthe+3Nas-foundtolerance onUFSARaccidentanalyses(non-LOCA, LOCA,SGTR)andwilldocumenthowtheeffectsareaccounted forwithintheaccidentanalysesandtheacceptability oftheincreaseintheliftsetpointtolerance.

0 SECL-91-429, Revision1TABLE1MAINSTEAMSAFETYVALVELIFTSETPOINTVALVENUMBERLIFTSETPOINT(+I/o)SV-1SV-1SV-2SV-2SV-31065psig1065psig1075"psig 1075psig1085psig(1080psia)(1080psia)(1090psia)(1090psia)(1100psia)

References:

Table4.7-1oftheUnit1Technical Specifications andTable3.7-4oftheUnit2Technical Specifications SECL-91-429, RevisionIII.LICENSING BASISTitle10oftheCodeofFederalRegulations, Section50.59(10CFR50.59)allowstheholderofalicenseauthorizing operation ofanuclearpowerfacilitythecapacitytoinitiatecertainchanges,testsandexperiments notdescribed intheUpdatedFinalSafetyAnalysisReport(UFSAR).PriorNuclearRegulatory Commission (NRC)approvalisnotrequiredtoimplement themodification providedthattheproposedchange,testorexperiment doesnotinvolveanunreviewed safetyquestionorresultinachangetotheplanttechnical specifications incorporated inthelicense.WhiletheproposedchangetotheMSSVliftsetpointtolerances involvesachangetotheDonaldC.CookTechnical Specifications andrequiresalicensing amendment request,thisevaluation willbeperformed usingthemethodoutlinedunder10CFR50.59 toprovidethebasesforthedetermination thattheproposedchangedoesnotinvolveanunreviewed safetyquestion.

Inaddition, anevaluation willdemonstrate thattheproposedchangedoesnotrepresent asignificant hazardsconsideration, asrequiredbylOCFR50.91 (a)(I)andwilladdressthethreetestfactorsrequiredbylOCFR50.92 (c).Thenon-LOCAsafetyanalyseswillbeexaminedtodetermine theimpactoftheMSSVliftsetpointtolerance relaxation ontheDNBdesignbasisaswellastheapplicable primaryandsecondary systempressurelimits.Thelong-term corecoolingcapability ofthesecondary sidewillalsobeconsidered.

TheLOCAevaluation willinvestigate theeffectsonthelicensing basissmallbreakanalysisintermsofpeakcladtemperature, andanyadverseeffectsonthesteamgenerator tuberuptureeventandsubsequent dosereleasecalculations willalsobedetermined.

SECL-91-429, Revision1III.EVALUATIONS Theresultsofthevariousevaluations fromtheNuclearSafetyrelateddisciplines withinWestinghouse scopearediscussed inthefollowing sections.

l.Non-LOCAEvaluation Thenon-LOCAaccidentanalysesthatarecurrently presented intheUFSARmodelledtheMSSYsasabankoffivevalves,allofwhichhavingaIliftsetpointequaltothatofthehighestsetvalve(1100psia)plus3%toaccountforaccumulation.

Alloftheanalysesandevaluations performed forthisreportmodelledthestaggered behavioroftheMSSVs.Specifically, eachvalvewasassumedtooperateindividually.

Moreover, theanalyses/evaluations ofthisreportmodelledtheflowrateofeachvalvetoramplinearlyfromnoflowatitsliftsetpoint(nominalTechnical Specification setpointplusorminusthe3%tolerance value)tofullopenflowatitsfullopenpoint(3%abovethepressureatwhichthevalveswereassumedtopopopen-i.e.,accumulation effect).+3%Tolerance:

Forthepurposesofthisevaluation, all20MSSVsareassumedtolift3%abovetheTechnical Specification liftsetpointandachievefullratedflow(normally at3%abovethesetpoint) 6%abovethesetpoint.

ATProtection TheincreaseintheMSSVliftsetpointtolerance hasthepotential toimpacttheOvertemperature hTandOverpower hTsetpointequations.

Referring toFigurelaforUnit1andFigureslbandlc(whicharethemost'limiting caseforeachunit/core type),increasing thepointatwhichtheMSSVsliftwilllowerthesteamgenerator safetyvalveline.

SECL-91-429, RevisionIIfthecurrentOTATsetpointcoefficients (KIthroughK3)resultinprotection linesthatjustboundthethermalcorelimits,itispossiblethatbyloweringtheSGsafetyvalvelinetotheright,aportionofthecorelimitswillbeuncovered.

Inordertoevaluatetheeffectsoftheincreaseinthesetpointtolerance, theOvertemperature ATandOverpower bTsetpointequations (KlthroughK6)wereexaminedtodetermine iftheequations remainedvalidassumingthatall20NSSVsopenedwitha+3%tolerance.

Theresultsofthatevaluation showedthattherewassufficient margininthegeneration ofthecurrentsetpointequations tooffsetthe1oweringoftheSGsafetyvalveline.Thus,changestotheOvertemperature andOverpower Technical Specifications arenotneeded.Theresultsofthisevaluation arepresented asFiguresla,Ib,andlc.DNBEventsThetransients identified inTable2areanalyzedintheD.C.CookUFSARtodemonstrate thattheDNBdesignbasisissatisfied.

Withoneexception, theseeventsarea)ofsuchashortdurationthattheydonotresultintheactuation oftheHSSVs,b)core-related analysesthatfocusontheactivefuelregiononly(i.e.,onlythecoreismodelled),

orc)cooldowneventswhichresultinadecreaseinsecondary steampressure.

Thesingleexception isthelossofexternalload/turbine tripeventwhichisaddressed explicitly intheANALYSISsectionofthissafetyevaluation.

Thus,basedontheabove,thesenon-LOCADNBtransients arenotadversely impactedbytheproposedchange,andtheresultsandconclusions presented intheUFSARremainvalid.BoronDilutionEventTheborondilutionevent(14.1.5)isanalyzedtodemonstrate thattheoperators (ortheautomatic mitigation circuitry) havesufficient timetorespondpriortoreactorcriticality.

Thesecondary systemisnotmodeledin SECL-91-429, Revision1TABLE2DNBDESIGNBASISTRANSIENTS NOTAFFECTEDBYMSSVLIFTSETPOINTTOLERANCE INCREASEEVENTUFSARSectionExcessive HeatRemovalDuetoFeedwater SystemMalfunction 14.1.10,Excessive LoadIncreaseIncident14.1.11RuptureofaSteamPipe(Steamline Break-CoreResponse) 14.2.5LossofReactorCoolantFlow(Includes LockedRotorAnalysis)

Uncontrolled RCCABankWithdrawal FromaSubcritical Condition 14.1.614.1.1Uncontrolled RCCABankWithdrawal atPower14.1.2RCCAMisalignment 14.1.3 SECL-91-429, Revision1theanalysisofthisevent,andthus,changestotheHSSVshavenoimpactonthisevent.Therefore, theresultsandconclusions presented intheUFSARremainvalid.Steamline BreakMass5EnerReleasesForthesteamline breakmassandenergyreleases, thesteamreleasecalculations areinsensitive tothechangesintheHSSVliftsetpoints sincethevastmajorityofthesecalculations resultindepressurizations ofthesecondary sidesuchthattheHSSVsarenotactuated.

Forthesmallerbreakcasesthatmightresultinaheatup,oneHSSVpersteamgenerator issufficient (basedontheexistinganalyses) toprovideanyrequiredheatremovalfollowing reactortrip.Thesecondary pressures willbenogreaterthanthosepresently calculated.

Thustheexistingsteamline breakmassandenergyreleasecalculations remainvalid.EVENTUFSARSectionSteamline RuptureMass5EnergyReleasesInsideContainment WCAP-11902 Supplement 1Steamline RuptureMass8EnergyReleasesOutsideContainment forEquipment Environmental gualification WCAP-10961 Rev1(current)

Submittal AEP:NRC:1140*(approved 11/20/91)

  • Submittal AEP:NRC:1140 "Technical Specification ChangeRequest,BITBoronConcentration Reduction,"

March26,1991.(included inWCAP-11902, Supplement

1)

SECL-91-429, Revision1Lon-TermHeatRemovalEventsTheonlynon-LOCAtransients remaining arethelong-term heatupevents.Thelong-term heatremovaleventsareanalyzedtodetermine iftheauxiliary feedwater (AFW)heatremovalcapability issufficient toensurethatthepeakRCSandsecondary pressures donotexceedallowable limits,thepressurizer doesnotfill(LONF/LOOP),

andthecoreremainscoveredandinaeoolablegeometry(FLB).Thesetransients arelistedbelow.EVENTUFSARSectionLossofAllACPowertothePlantAuxiliaries (LossofOffsitePower-LOOP)14.1.12LossofNormalFeedwater (LONF)14.1.9Feedwater SystemPipeBreak(FLB)*14.2.8*TheFeedwater SystemPipeBreakeventisnotpartoftheUnit1licensing basisandispresented intheUnit1UFSARforinformation purposesonly.Thesetransients areimpactedbytheincreaseintheMSSVliftsetpointtolerance becausethecalculations determining theamountofAFWflowavailable mustassumeamaximumgivensteamgenerator backpressure inordertodetermine theamountofAFWthatcanbedelivered.

Asthesteamgenerator backpressureincreases, theamountofAFWdelivered willbereduced.Forthelossofnormalfeedwater andthelossofallACpowertothePlantAuxiliaries events,evaluations wereperformed inwhichthestaggered actuation oftheMSSVswastakenintoaccount.Thesafetyanalysispresented inthecurrentUFSARassumedanAFWflowrateof450gpm,splitevenlytoallfoursteamgenerators.

Theevaluations doneforthisreportconcerning lossofnormalfeedwater (LONF)forUnits1

SECL-91-429, Revision1and2,aswellaslossofallACpowertotheplantauxiliaries (LOOP)forUnit1,demonstrated thatthesecondary sidepressures willnotexceed1123psiaduringthetimeAFWisdelivered tothesteamgenerators.

BasedonReference 10,theAFWassumptions modeledinthesafetyanalysisremainvalidforsteamgenerator backpressures upto1123psi'a.Sincetheevaluation, inwhicha+3%HSSVsetpointtolerance wasassumed,showedthatthesecondary sidepressuretransient willnotprecludetheAFWflowratesassumedintheanalysisfrombeingsuppliedtothesteamgenerators, theexistinganalysesremainvalidforUnit1LONF/LOOP andUnit2LONF.TheLossofOffsitePowerevent(LOOP)forUnit2wasalsoevaluated forthisreport.TheLOOPsafetyanalysispresented inthecurrentUFSARforUnit2assumedanAFWflowrateof430gpmsplitevenlytoallfoursteamgenerators.

Therecentevaluation doneforthisreporttookcreditforthestaggered actuation oftheHSSVsaswellasa+3Msetpointtolerance, asdiscussed earlier.Theevaluation yieldedresultssimilartothosediscussed aboveforUnit1.Thesecondary sidepressureforthisUnit2evaluation wasdemonstrated nottoexceed1133psiaduringtheperiodAFWissupplied.

BasedonReference 10,thesecondary sidepressuretransient wasfoundnottoprecludetheAFWflowratesassumedintheanalysisfrombeingdelivered tothesteamgenerators.

Therefore, theexistingLossofOffsitePoweranalysisforUnit2remainvalid.Theevaluations fortheLONF/LOOP eventsforbothUnit1andUnit2,asdiscussed above,demonstrate thattherespective analysesarestillapplicable evenifaNSSVliftsetpointtolerance of+3Misassumed.Therefore theresultsandconclusions presented intheDonaldC.CookUnit1&2UFSARremainvalid.Theevaluation doneforthisreportfortheUnit2FeedlineBreakeventdemonstrated thatthesecondary sidepressurewillnotexceed1133psiaduringtheperiodwhenAFWisbeingdelivered.

At1133psia,anAFWflowrateof685gpmwithasymmetric flowsplitstothethreeintactsteamgenerators couldbesuppliedbasedoninformation contained inReference

10.

SECL-91-429, Revision1ThecurrentanalysisforthiseventassumedatotalAFWflowrateof600gpmwithanevensplitof200gpmtothethreeintactsteamgenerators.

SincethetotalAFWflowrateismorethansufficient toaccommodate AFWflowsplitdeviations ofasmuchas25gpmperloop,thecurrentFeedlineBreakanalysiscontinuetobeapplicable andremainboundingforthisevaluation.

Therefore, theresultsandconclusions presented intheUnit2UFSAR(14.2.8)remainvalid.-3%Tolerance:

Thesecondary steamreleasesgenerated forthelockedrotoroffsitedosecalculations forUnit2couldbepotentially affectedbyanincreaseintheHSSVsetpointtolerance from-1Nto-3X.Reference 9transmitted themostrecentlockedrotordoseanalysis.

Giventhattheradiological assumptions usedintheReference 9analysisdonotchangewithanincreaseinMSSVsetpointtolerance (i.e.,rods-in-DNB andprimarytosecondary leakageremainatllNand1gpmrespectively) theonlyeffectthetolerance increasewouldhavewouldbeonthemassreleasevalues.Themethodology usedtocalculate thesemassesisbasedondetermining theamountofsecondary sideinventory requiredtocooldowntheRCS.Duringthefirsttwohours(0-2hours),theoperators areassumedtolowertheRCSaveragetemperature tono-loadconditions (547'F)bybleedingsteam.Overthenext6hours(2-8hours),theoperators willcooltheplantdownsuchthatMode4operation (hotshutdown) canbeentered.Theexistingsteamreleasecalculations forthe0-2hourperiodusedenthalpies corresponding tosaturated conditions atboththenominalfullpowerRCSaveragetemperature andtheno-loadtemperature (581.3'Fand547'F,respectively).

Thus,aslongastheincreased liftsetpointtolerance

(-3X)doesnotresultintheHSSVsremaining openatasaturation temperature outsideoftherangeidentified above,theexistingmassreleasesremainvalid(Reference 9).

SECL-91-429, Revision1Theexistingmassreleasecalculations wereperformed usingthetemperatures previously identified (581.3'Fand547'F).PertheDonaldC.CookTechnical Specifications, thelowestsetHSSVoneachsteamgenerator willopenat1080psia(1065psig)notincluding anytolerance.

BasedontheASMESteamTables(Reference 6)atsaturated conditions, 547'Fcorresponds to1020.1psiaandrepresents theloweststeampressureconsidered inthemasscalculations.

Thus,theexistingreleasesincludeareseatpressureapproximately 5.5NbelowthelowestTechnical Specification liftsetpoint.

Aslongasthevalvescontinuetoreseatwithinthispressurerange,thecurrentmassreleasesremainvalid.Theoperating windowsthatareapplicable forUnit1operation areboundedbytheUnit2doseanalysis.

Therefore, themassreleasesforUnit2,asfoundinReference 9,areapplicable toUnit1.Evaluation SummarThus,basedonthediscussions presented above,onlyoneUFSARnon-LOCAtransient isimpactedsuchthatanewanalysismustbeperformed inordertoaddresstheeffectsoftheNSSVliftsetpointtolerance increasefrom+1%to+3K.Thiseventisthelossofexternalload/turbine tripaccident.

Fortheothertransients, theresultsandconclusions presented intheDonaldC.CookUnit182UFSARremainvalid.

SECL-91-429, RevisionINon-LOCAAnalsis:elLossofExternalLoadTurbineTriThelossofexternalload/turbine tripeventispresented inSection14.1.8oftheDonaldC.CookUFSAR.Thistransient iscausedbyaturbine-generator tripwhichresultsintheimmediate termination ofsteamflow.Sincenocreditistakenforadirectreactortriponturbinetrip,primaryandsecondary pressureandtemperature willbegintoincrease, actuating thepressurizer andsteamgenerator safetyvalves.Thereactorwilleventually betrippedbyoneoftheotherreactorprotection system(RPS)functions; specifically, overtemperature AT,highpressurizer

pressure, orlow-lowsteamgenerator waterlevel.Theturbinetripeventisthelimitingnon-LOCAeventforpotential overpressurization, i.e.,thistransient formsthedesignbasisfortheprimaryandsecondary safetyvalves.SincetheHSSVswillnowpotentially beopeningatahigherpressureduetotheincreaseintheliftsetpointtolerance, itisnecessary toanalyzethistransient inordertodemonstrate thatalltheapplicable acceptance criteriaaresatisfied.

Aturbinetripisclassified asanANScondition IIevent,afaultofmoderatefrequency.

Assuch,theappropriate acceptance criteriaareDNBR,peakprimarypressure, andpeaksecondary pressure.

Thetransient isdescribed ingreaterdetailintheUFSAR.TheturbinetripeventisanalyzedusingamodifiedversionoftheLOFTRANdigitalcomputercode(Reference 6).ThismodifiedversionofLOFTRANonlydiffersfromthestandardcodeversioninthewaytheHSSVsaremodelled.

Theprogramsimulates neutronkinetics, reactorcoolantsystem,pressurizer, pressurizer reliefandsafetyvalves,pressurizer spray,steamgenerators, andmainsteamsafetyvalves.Withthemodifiedcode,theHSSVsareexplicitly modeledasabankof5valvesoneachsteamgenerator withstaggered liftsetpoints.

WhereasthestandardLOFTRANversionprogramconservatively modelstheHSSVsasabankoffivevalves,allhavingone SECL-91-429, Revision1commonliftsetpoint.

Bymodelling thestaggered behavioroftheHSSVs,amoreaccuratesimulation ofhowthevalvesactuallybehaveisachieved.

Sincehighersteampressures areconservative forthisevent,noblowdownorhysteresis behaviorwasassumed.Consistent withtheexistingUFSARanalysis, allassumptions werethesameaspreviously usedunlessspecifically noted.Thefollowing assumptions wereusedinthisanalysis:

a.Initialpower,temperature, andpressurewereattheirnominalvaluesconsistent with:1)ITDPmethodology (WCAP-8567) forUnit1,withtheexception thata2Xconservatism oninitialcorepowerwasassumed.2)RTDPmethodology (WCAP-11397) forUnit2,withnoexceptions.

b.Turbinetripwasanalyzedwithbothminimumandmaximumreactivity feedback.

C.Turbinetripwasanalyzedbothwithandwithoutpressurizer pressurecontrol.ThePORVsandsprayswereassumedoperableinthecaseswithpressurecontrol.Thecaseswithpressurecontrolminimizetheincreaseinprimarypressurewhichisconservative fortheDNBRtransient.

Thecaseswithoutpressurecontrolmaximizetheincreaseinpressurewhichisconservative fortheRCSoverpressurization criterion.

d.Thesteamgenerator PORVandsteamdumpvalveswerenotassumedoperable.

Thisassumption maximizes secondary pressurewhichinturnmaximizes theprimarytemperature forDNBRandprimarypressureforpressurecases.

SECL-91-429, Revision1e.Hainfeedwater flowwasassumedtobelostcoincident withtheturbinetrip.Thisassumption maximizes theheatupeffects.f.Onlytheovertemperature hT,highpressurizer

pressure, andlow-lowsteamgenerator waterlevelreactortripswereassumedoperableforthepurposesofthisanalysis.

g.TheflowrateforeachHSSVwasmodelledtoramplinearlyfromnoflowatitsliftsetpoint(3XabovethenominalTechnical Specification setpoint) tofullopenflowatitsfullopenpoint(6Xabovethenominalsetpoint).

Thefullopenflowrateisbasedonareference fullflowcapacityof238ibm/secat1186.5psia(basedontheASHEratedflowforthesevalves).Forsecondary sidepressures betweentheinitialfullopenpointforeachvalveand1186.5psia,thefullopenflowratewasmodelledtovaryproportionally withpressure.

Thisassumption maximizes secondary pressurewhichinturnmaximizes theprimarytemperature forDNBRandpr'imarypressureforpressurecases.ResultsFourcasesforeachunit/core type(i.e.Unit1,Unit2mixedcore,andUnit2fullV5core)wereanalyzed:

a)minimumfeedbackwithoutpressurecontrol,b)maximumfeedbackwithoutpressurecontrol,c)maximumfeedbackwithpressurecontrol,andd)minimumfeedbackwithpressurecontrol.ThemostlimitingcasesinthecurrentUFSARcontinuetobethemostlimitingcases.Thecalculated sequenceofeventsforthefourcasesforeachunitarepresented inTables3and4.

SECL-91-429, Revision1UNIT1CaseA:Figures2through6showthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withoutpressurecontrol.Thereactoristrippedonhighpressurizer pressure.

Theneutronfluxremainsessentially constantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.

Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelowllONofthedesignvalue.CaseB:Figures7through11showthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withoutpressurecontrol.Thecorepowerisobservedtoundergoamomentary increase.

Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytheincreaseinprimarypressure.

Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizer pressure.

TheDNBRincreases throughout thetransient andneverdropsbelowth'einitialvalue.Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110/ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110Xofthedesignvalue.CaseC:Figures12through16showthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withpressurecontrol.Thecorepowerisobservedtoundergoamomentary increase.

Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.

Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabrupt SECL-91-429, Revision1UNIT1continued lossoftheheatsink.Thereactoristrippedonlow-lowsteamgenerator waterlevel.TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue.Thepressurizer reliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseD:Figures17through21showthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withpressurecontrol.Thereactoristrippedonhighpressurizer pressure.

AlthoughtheDNBRvaluedecreases belowtheinitialvalue,itremainswellabovethelimitthroughout theentiretransient.

Thepressurizer relief.valvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.AnalsisConclusion Unit1BasedontheresultsoftheseUnit1turbinetripanalyseswitha+3%tolerance ontheHSSVliftsetpoints, alloftheapplicable acceptance criteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondary pressures remainbelow110%ofdesignatalltimes.

SECL-91-429, Revision1UNIT2:amixedandbfullV-5coresCaseA:Figures22athrough26b("a"designates mixedcorefiguresand"b"denotesfullV-5corefigures)showthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withoutpressurecontrolforbothcoretypes.Thereactoristrippedonhighpressurizer pressure.

Theneutronfluxremainsessentially constantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.

Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelowllOXofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelowllOXofthedesignvalue.Case8:Figures27athrough3lbshowthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withoutpressurecontrolforbothmixedandfullV-5coretypes.Thecorepowerisobservedtoundergoamomentary increase.

Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.

Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizer pressure.

TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue.Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110Xofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110Xofthedesignvalue.CaseC:Figures32athrough36bshowthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withpressurecontrolforthetwoapplicable Unit2coretypes.Thecorepowerisobservedtoundergo SECL-91-429, Revision1UNIT2:continued amomentary increase.

Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.

Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonlow-lowsteamgenerator waterlevel.TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue.Thepressurizer reliefvalvesandspraysmaintainprimarypressurebelow110Xofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110Xofthedesignvalue.CaseD:Figures37athrough41bshowthetransient responsefo}theturbinetripeventunderminimumreactivity feedbackconditions withpressurecontrolforboththemixedandfullV-5cores.Thereactoristrippedonhighpressurizer pressure.

AlthoughtheDNBRvaluedecreases below'the initialvalue,itremainswellabovethelimitthroughout theentiretransient.

Thepressurizer reliefvalvesandspraysmaintainprimarypressurebelow110Xofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110Xofthedesignvalue.AnalsisConclusion Unit2BasedontheresultsoftheseUnit2mixedandfullcoreturbinetripanalyseswitha+3Xtolerance ontheNSSVliftsetpoints, alloftheapplicable acceptance criteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondary pressures remainbelowllOXofdesignatalltimes.

SECL-91-429, Revision1Non-LOCAConclusions Theeffectsofincreasing theas-foundliftsetpointtolerance onthemainsteamsafetyvalveshavebeenexamined, andithasbeendetermined that,withoneexception, thecurrentaccidentanalysesaspresented intheUFSARremainvalid.Thelossofload/turbine tripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerance relaxation.

Aspreviously demonstrated inthissafetyevaluation, allapplicable acceptance criteriaforthiseventhavebeensatisfied andtheconclusions presented intheUFSARarestillvalid.Thus,withrespecttothenon-LOCAtransients, theproposedTechnical Specification changedoesnotconstitute anunreviewed safetyquestion, andthenon-LOCAaccidentanalyses, aspresented inthereport,supporttheproposedchange.2.LOCAandLOCARelatedEvaluations LareBreakLOCAThecurrentlargebreakLOCAanalysesforDonaldC.CookUnitsIand2wereperformed withtheNRCapproved1981Evaluation HodelplusBASH.Afterapostulated largebreakLOCAoccurs,theheattransferbetweenthereactorcoolantsystem(RCS)andthesecondary systemmaybeineitherdirection, depending ontherelativetemperatures.

Inthecaseofcontinued heatadditiontothesecondary system,thesecondary systempressureincreases andtheHSSVsmayactuatetolimitthepressure.

However,thisdoesnotoccurinthelargebreakevaluation modelsincenocreditistakenforauxiliary feedwater actuation.

Consequently, thesecondary systemactsasaheatsourceinthepostulated largebreakLOCAtransient andthesecondary pressuredoesnotincrease.

Sincethesecondary systempressuredoesnotincrease, itisnotnecessary tomodeltheHSSVsetpointinthelargebreakevaluation model.Therefore, anincreaseintheallowable HSSVsetpointtolerance forDonaldC.CookUnitsIand2willnotimpactthecurrentUFSARlargebreakLOCAanalyses.

SECL-91-429, RevisionISmallBreakLOCAThesmallbreakLOCAanalysesforDonaldC.CookUnitsIand2wereperformed withtheNRCapprovedEvaluation ModelusingtheNOTRUMPcode.Afterapostulated smallbreakLOCAoccurs,'he heattransferbetweentheRCSandthesecondary systemmaybeineitherdirection depending ontherelativetemperatures.

Inthecaseofcontinued heatadditiontothesecondary system,thesecondary systempressureincreases whichleadstosteamreliefviatheMSSVs.InthesmallbreakLOCA,thesecondary flowaidsinthereduction ofRCSpressure.

Subsequently, DonaldC.CookUnitsIand2werereanalyzed todetermine theimpactofanincreased MSSVsetpointtolerance of3%.Thelicensing basissmallbreakLOCAanalysisforDonaldC.CookUnitIincludedasafetyevaluation toaddressa25gpmchargingpumpflowimbalance andoperation withthehighheadsafetyinjection crosstievalveclosedat3250MWtcorepowerlevel.Also,asafetyevaluation hadbeenperformed whichmodeledanincreased auxiliary feedwater enthalpydelaytime.Theseassumptions wereincorporated intheincreased MSSVsetpointtolerance NOTRUMPanalysisofthelimiting3inchbreakforUnitI.However,in'ordertoobtainadirectsensitivity fortheincreased MSSVsetpointtolerance, aNOTRUMPanalysiswasalsoperformed incorporating theseassumptions butmodelling theoriginalMSSVsetpoints.

Inaddition, a3inchNOTRUMPanalysiswasperformed forthelowpressure, hightemperature operating condition forUnitIsinceasafetyevaluation hadbeenoriginally performed aspartofthelicensing basisanalysis.

Theincreased MSSVsetpointtolerance, acorepowerlevelof3250MWtwiththehighheadcrosstievalveclosed,anda25gpmchargingpumpflowimbalance wereassumedfortheanalysisofthelowpressure, hightemperature case.DonaldC.CookUnit2wasreanalyzed forthelimiting3inchbreak,lowpressureandhightemperature operating condition withthehighheadcrosstievalveclosed.Thepowershapeaxialoffsetwasreducedfromthelicensing basisanalysisof+30Xto+13XfortheMSSVincreaseanalysis.

Anaxialoffsetof+13Nisequaltothevalueassumedinthelicensing basislargebreakLOCA SECL-91-429, Revision1analysis.

Inaddition, thelicensing basisanalysisconservatively assumedamaximumassemblyaveragepower(P>A)of1.519.The3%increased HSSVsetpointtolerance analysisassumedaPMAwhichwasreducedto1.46.Inordertoobtainadirectsensitivity fortheincreased HSSVsetpointtolerance, aNOTRUHPanalysiswasperformed incorporating theseassumptions butmodelling theoriginalHSSVsetpoints.

Tables5and6summarize theHSSVsetpoints usedintheDonaldC.CookUnits1and2currentlicensing basissmallbreakLOCAanalysesandtheincreased MSSVsetpointtolerance

analyses, respectively.

Tables7and8summarize theinitialinputassumptions usedintheUnit1analysis.

TheUnit2initialinputassumptions aresummarized inTable9.ThetimesequenceofeventsandresultsoftheUnit1analysisaresummarized inTables10and11,respectively.

Thelimitingpeakcladtemperature calculated is1879'F,including a25'Fburstandblockagepenalty,forthe3%increased MSSVsetpointtolerance caseat3250HWtandthelowpressure, lowtemperature operating conditions.

Thisvalueislessthantheacceptance criterialimitof2200'F.Themaximumlocalmetal-water reactionis3.47%,whichiswellbelowtheembrittlement limitof17%asrequiredby10CFR50.46.Thetotalcoremetal-water reactionislessthan1.0%,corresponding tolessthan1.0percenthydrogengeneration, ascomparedtothe1Ncriterion of10CFR50.46.ThetimesequenceofeventsandresultsoftheUnit2analysisaresummarized inTables12and13,respectively.

Thelimitingpeakcladtemperature calculated is2125'F,including a12'Fartificial leak-bypenaltyand157'Fburstandblockagepenalty,forthe3%increased HSSVsetpointtolerance caseat3250MWtandlowpressure, hightemperature operating condition.

Thisvalueislessthantheacceptance criterialimitof2200'F.Themaximumlocalmetal-water reactionis4.26%,whichiswellbelowtheembrittlement limitof17%asrequiredby10CFR50.46.Thetotalcoremetal-water reactionislessthan1.0%,corresponding tolessthan1.0percenthydrogengeneration, ascomparedtothe1%criterion of10CFR50.46.

SECL-91-429, RevisionIPost-LOCA LonTermCoreCoolinTheWestinghouse licensing positionforsatisfying therequirements of10CFR50.46Paragraph (b),Item(5),"LongTermCooling,"

concludes thatthereactorwillremainshutdownbyboratedECCSwaterresidingintheRCS/sumpafteraLOCA.SincecreditforthecontrolrodsisnottakenforalargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulators andtheRWSTmusthaveaboronconcentration that,whenmixedwithotherwatersources,willresultinthereactorcoreremaining subcritical assumingallcontrolrodsout.Thecalculation isbaseduponthereactorsteadystateconditions attheinitiation ofaLOCAandconsiders sourcesofbothboratedandunborated fluidinthepost-LOCA containment sump.Thesteadystateconditions areobtainedfromthelargebreakLOCAanalysiswhich,asstatedabove,doesnottakecreditforHSSVactuation.

Thusthepost-LOCA long-term corecoolingevaluation isindependent oftheHSSVsetpointtolerance, andtherewillbenochangeinthecalculated RCS/sumpboronconcentration afterapostulated LOCAforDonaldC.CookUnitsIand2.HotLeSwitchove~

toPreventPotential BoronPreciitationPost-LOCA hotlegrecirculation timeisdetermined forinclusion inemergency operating procedures toensurenoboronprecipitation inthereactorvesselfollowing boilinginthecore.Thistimeisdependent onpowerlevelandtheRCS,RWST,andaccumulator watervolumesandwiththeirassociated boronconcentrations.

TheproposedHSSVsetpointtolerance increaseto3Xdoesnotaffectthepowerlevelortheboronconcentrations assumedfortheRCS,RWST,andaccumulator inthehotlegswitchover calculation forUnit1.TheproposedHSSVsetpointtolerance increaseto3Ndoesnotaffecttheboronconcentrations assumedfortheRCS,RWST,andaccumulator inthehotlegswitchover calculation forUnit2.Thecurrentlicensing basishotlegswitchover calculation forUnit2isatfullpower,3413MWt,withcrosstievalveatclosedposition.

WithMSSVsetpoint SECL-91-429, Revision1tolerance increased to3%,Unit2LOCAanalysesassumedareducedcorepower,3250NWt,withcrosstievalveatclosedposition.

Areduction inpowerreducestheboil-offrateinthehotlegswitchover calculation.

Areduction intheboil-offrateresultsintherateofboronbuildupalsobeingreduced.Therefore, thelicensing basishotlegswitchover calculation fortheDonaldC.CookUnits1and2remainsbounding.

LOCAHdraulicForcinFunctions Thepeakhydraulic forcingfunctions onthereactorvesselandinternals occurveryearlyinthelargebreakLOCAtransient.

Typically, thepeakforcingfunctions occurbetween10and50milliseconds (0.01and0.05seconds)andhavesubsidedwellbefore500milliseconds (0.50seconds).

Anychangeintimeassociated withanincreased MSSVsetpointtolerance wouldoccurseveralsecondsintothetransient.

SincetheLOCAhydraulic forcingfunctions havepeakedandsubsidedbeforethetimeatwhichtheNSSVmayactuate,theincreaseintheNSSVsetpointtolerance to3%willnotimpacttheLOCAhydraulic forcingfunctions calculation forDonaldC.'CookUnits1and2.LOCAConclusions Theeffectofincreasing theNSSVsetpointtolerance to3%forDonaldC.CookUnitsIand2hasbeenevaluated foreachoftheLOCArelatedanalysesaddressed intheUFSAR.Forcurrently analyzedconditions, orforUnit2operation atareducedpowerlevelof3250NWtwhenthehighheadcrosstievalvesareclosed,itwasshownthatthe3%NSSVsetpointtolerance doesnotresultinanydesignorRegulatory limitbeingexceeded.

Therefore, withrespecttotheLOCAanalyses, itcanbeconcluded thatincreasing theNSSVsetpointtolerance to3%forDonaldC.CookUnits1and2willbeacceptable fromthestandpoint oftheUFSARaccidentanalysesdiscussed inthesafetyevaluation.

SECL-91-429, Revision13.Containment InteritEvaluation Relaxation oftheDonaldC.CookUnits152Technical Specification MainSteamSafetyValvesetpointtolerances from+1Nto+3/.donotadversely affecttheshorttermorlongtermLOCAmassandenergyreleasesand,subsequently, the'relatedcontainment analyses.

Sincethereisnoimpactonthemainsteamline breakmassandenergyreleasecalculations, thereisalsonoimpactonthatassociated containment responseanalysis.

Theproposedchangedoesnotaffectthenormalplantoperating parameters, systemactuations, accidentmitigating capabilities orassumptions important tothemassandenergyreleaseandcontainment

analyses, orcreatemorelimitingconditions thanthosealreadyassumedinthecurrentanalyses.

Therefore, theconclusions presented intheDonaldC.CookUFSARremainvalidwithrespecttocontainment.

4.SteamGenerator TubeRutureTodemonstrate thatanunreviewed safetyquestiondoesnotexistforthesteamgenerator tuberupture(SGTR)event,theincreased MSSVsetpointtolerance wasevaluated forDonaldC.CookUnits1and2.Theanalysisforupratingto3600MWTconsidered upto15Xsteamgenerator tubepluggingforbothUnits1and2.Thelimitingcasesfromthisanalysiswerereevaluated fortheincreased MSSVsetpointtolerance.

Anincreased steamgenerator tubeplugginglevelof20Xwasalsoconsidered atpowerlevelsof3262MWTforUnit1and3425MWTforUnit2.ThecriteriastatedintheUFSARanalysisforDonaldC.Cookwereusedinestablishing thecontinued applicability oftheSGTRlicensing basissafetyanalysisbydemonstrating thattheconclusions forSGTRUFSARanalysisremainvalid.Anevaluation hasbeenperformed todetermine theimpactontheDonaldC.CookUnits'GTR analysisofrecordforincreased MSSVsetpointtolerance forallthecaseswithdifferent steamgenerator tubepluggingandpowerlevelsstatedabove.Theprimarythermalhydraulic parameters whichaffectthecalculation ofoffsiteradiation dosesforaSGTRaretheamountof j

SECL-91-429, Revision1radioactivity assumedtobepresentinthereactorcoolant,theamountofreactorcoolanttransferred tothesecondary sideoftherupturedsteamgenerator throughtherupturedtube,andtheamountofsteamreleasedfromtherupturedsteamgenerator totheatmosphere.

Thus,thecalculated offsiteradiation dosesforanSGTRforDonaldC.Cookaredependent onthesethreefactors.FortheUFSARSGTRanalysis, theactivityinthereactorcoolantisbasedonanassumption of1%defective fuel,andthisassumption willnotbeaffectedbytheincreased HSSVsetpointtolerance.

Thetworemaining factorsareaffectedbytheincreased HSSVsetpointtolerance, andtheevaluation wasperformed toquantifythiseffect.Toevaluatetheeffectoftheincreased HSSVsetpointtolerance ontheDonaldC.CookSGTRanalysis, therevisedSGsafetyvalvesetpressurewasloweredby3Xfrom1080psiato1047.6psia.Thisresultedinaslightlyhigherequilibrium primary-to-secondary breakflow(approximately 0.5X),sincetherewasanincreaseinthepressuredifferential betweentheRCSandsecondary sideassumedintheanalysis.

Thesteamreleasedtotheatmosphere subsequently increased (byapproximately 0.2X)because'f thelowerpressureassumedforthemainsteamsafetyvalves.Thelimitingcases,forallpowerlevelsandsteamgenerator tubeplugginglevelsconsidered, wereat3600HWt.Thethyroidandwholebodydosesestimated forUnits1and2,basedontheanalysesdescribed above,areboundedbythosepreviously determined forthereratingprogram.Theactualestimated dosefactors(compared totheresultsofthereratingcalculation) areasfollows:Unit1:thyroid0.7,wholebody1.005Unit2:thyroid0.99,wholebody0.98AlthoughtheUnit1wholebodydoseexceedsthepreviousvaluebyapproximately 0.5N,thisincreaseiswellwithintheacceptable limit.Thus,theresultsandconclusion intheDonaldC.CookUFSARthattheoffsitedosesforanSGTReventwouldbewithinasmallfractionofthe10CFR100guidelines remainsvalid.

SECL-91-429, RevisionI5.ComonentPerformance Therelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookdoesnotdirectlyorindirectly involvemechanical component hardwareconsiderations.

Directeffectsaswellasindirecteffectsonequipment important tosafety(ITS)havebeenconsidered.

Indirecteffectsincludeactivities whichinvolvenon-safety relatedequipment whichmayaffectITS-equipment.

Component hardwareconsiderations mayincludeoverallcomponent integrity, sub-component integrity, andtheadequacyofcomponent supportsduringallplantconditions.

Anevaluation isnotrequiredtodetermine whetherthecondition altersthedesign,material, construction standards, functionormethodofperforming thefunctionofanyITSequipment.

6.SstemsEvaluation Therelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookasdescribed wouldnotaffecttheintegrity ofaplantauxiliary fluidsystemortheabilityofanyauxiliary systemtoperformitsintendedsafetyfunction.

7.RadioloicalEvaluation Therelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookasdescribed donotaffectradiological concernsotherthanthoseidentified aboveinSectionIII.4orpost-LOCA hydrogenproduction.

Theevaluation inSectionsIII.IandIII.3concluded thattheexistingmassreleasesusedintheremaining offsitedosecalculations (i.e.,steamline break,rodejection, lockedrotor,andshort-term

&long-term LOCA)arestillapplicable.

8.PlantRiskAnalsesactivities affectinIPETherelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookdoesnotadversely affecttheIndividual PlantExamination (IPE)fortheplant.Thistestdoesnotaffectthenormalplantoperating SECL-91-429, RevisionIparameters, systemactuations, accidentmitigating capabilities, operating procedures orassumptions important totheIPEanalyses, orcreateconditions thatwouldsignificantly affectcoredamageorplantdamagefrequency orthefrequency ofcoredamageinitiating events.Therefore, theconclusions presented intheIPEremainvalid.9.PlantRiskAnalseschanesothertlPE-related Therelaxation oftheliftsetpointt~.,~ancefortheHSSVsdoesnotresultinanincreaseintheprobability ofoccurrence ofaccidents previously evaluated intheUFSAR.ThisproposedchangetotheTechnical Specifications doesnotresultinanincreaseintheprobability ofoccurrence ofamalfunction ofequipment important tosafetyorofequipment thatcouldindirectly affectequipment important tosafety..~ILTherelaxation oftheliftsetpointtolerance fortheNSSVsdoesnotdirectlyorindirectly involveelectrical systems,components,'or instrumentation considerations.

Directeffectsaswellasindirecteffectsonequipment important tosafetyhavebeenconsidered.

Indirecteffectsincludeconditions oractivities whichinvolvenon-safety relatedelectrical equipment whichmayaffectClasslE,postaccidentmonitoring systems,orplantcontrolelectrical equipment.

Consideration hasbeengiventoseismicandenvironmental qualification, designandperformance criteriaperIEEEstandards, functional requirements, andplanttechnical specifications withrespecttoallplantconditions.

Anevaluation isnotrequiredtodetermine whethertheMSSVsetpointtolerance relaxation altersthedesign,configuration, qualification, orperformance ofsafetyrelatedelectrical systemsorcomponents.

TheHSSVsetpointtolerance relaxation hasnopotential forimpacttotheidentification ofanunresolved safetyquestionasitwouldrelatetothesafetyrelatedfunctionofelectrical systemsofcomponents.

SECL-91-429, Revision111.Technical Secifications AreviewoftheDonaldC.CookUnit1andUnit2Technical Specifications wasperformed toaddressachangeintheliftsetpointtolerance fortheMainSteamSafetyValves.TheTechnical Specification review,inclusive ofAmendments 157and141forUnits1and2,respectively.

Proposedmarkupsareattachedtothisevaluation forbothUnit1andUnit2,andreflectchangestoTable4.7-1and3.7-4,respectively.

Achangetothebasisforbothunitsisalsoproposedanddiscusses therelationship betweenthe+1%and+3%tolerances.

IV.ASSESSMENT OFNOUNREVIEMED SAFETYUESTIONTherelaxation intheliftsetpointtolerance fortheHSSVsatDonaldC.CookUnits1and2hasbeenevaluated consistent withtherequirements of10CFR50.59anddoesnotinvolveanunreyiewed safetyquestiononthebasisofthefollowing justifications:

1.Willtheprobability ofanaccidentpreviously evaluated intheSARbeincreased2 No.The+3%tolerance ontheHSSVsetpointdoesnotincreasetheprobability ofanaccidentpreviously evaluated intheUFSAR.Therearenohardwaremodifications tothevalvesand,therefore, thereisnoincreaseintheprobability ofaspuriousopeningofaHSSV.TheHSSVsareactuatedtoprotectthesecondary systemsfromoverpressurization afteranaccidentisinitiated.

Sufficient marginexistsbetweenthenormalsteamsystemoperating pressureandthevalvesetpoints withtheincreased tolerance toprecludeanincreaseintheprobability ofactuating thevalves.Therefore, theprobability ofanaccidentpreviously evaluated intheUFSARwouldnotbeincreased asaresultofincreasing theHSSVliftsetpointtolerance by3%aboveorbelowthecurrentTechnical Specification setpointvalue.

SECL-91-429, Revision12.Willtheconsequences ofanaccidentpreviously evaluated intheSARbeincreased?

No.Basedonthediscussions presented within,alloftheapplicable LOCAandnon-LOCAdesignbasisacceptance criteriaremainvalidbothforthetransients evaluated andthesingleeventanalyzed.

Additionally, nonewlimitingsinglefailureisintroduced bytheproposedchange.TheDNBRandPCTvaluesremainwithinthespecified limitsofthelicensing basis.Althoughincreasing thevalvesetpointwillincreasethesteamreleasefromtherupturedsteamgenerator abovetheUFSARvaluebyapproximately 0.2N,theSGTRanalysisindicates thatthecalculated dosesareboundedbythosedetermined forthereratingprogramwhich,inturn,arewithinasmallfractionofthe10CFR100doseguidelines.

Theevaluation alsoconcluded thattheexistingmassreleasesusedintheoffsitedosecalculations fortheremaining transients (i.e.,steamline break,rodejection) arestillapplicable.

Therefore, basedontheabove,thereisnoincreaseinthe'doseconsequences.

3.Haythepossibility ofanaccidentwhichisdifferent thananyalreadyevaluated intheSARbecreated'o.

Aspreviously indicated inSectionIII.1,theInadvertent OpeningofaSGRelieforSafetyValveeventiscurrently presented intheDonaldC.CookUFSAR(Section14.2.5)andisboundedbytheSteamline Breakanalysis.

Increasing theas-foundliftsetpointtolerance ontheNSSVsdoesnotintroduce anewaccidentinitiator mechanism.

Nonewfailuremodeshavebeendefinedforanysystemorcomponent important tosafetynorhasanynewlimitingsinglefailurebeenidentified.

Noaccidentwillbecreatedthatwillincreasethechallenge totheHSSVsand SECL-91-429, Revision1resultinincreased actuation ofthevalves.Therefore, thepossibility ofanaccidentdifferent thananyalreadyevaluated intheUFSARisnotcreated.4.Willtheprobability ofamalfunction ofequipment important tosafetypreviously evaluated intheSARbeincreased7 No.Althoughtheproposedchangetakesplaceinequipment utilizedtopreventoverpressurization onthesecondary sideandtoprovideanadditional heatremovalpath,increasing theas-foundliftsetpointtolerance ontheHSSVswillnotadversely affecttheoperation ofthereactorprotection system,anyoftheprotection setpoints, oranyotherdevicerequiredforaccidentmitigation.

Therefore, theprobability ofamalfunction ofequipment important tosafetypreviously evaluated intheUFSARwillnotbeincreased.

5.Willtheconsequences ofamalfunction ofequipment important tosafetypreviously evaluated intheSARbeincreased7 No.Asdiscussed intheresponsetoguestions 2and4,thereisnoincreaseinthedosereleaseconsequences asaresultofincreasing theas-foundliftsetpointtolerance ontheHSSVsasdefinedintheattachedsafetyevaluation.

6.Haythepossibility ofamalfunction ofequipment important tosafetydifferent thananyalreadyevaluated intheSARbecreated'o.

Asdiscussed inguestion4,anincreaseintheas-foundliftsetpointtolerance ontheHSSVswillnotimpactanyotherequipment important tosafety.Therefore, thepossibility ofamalfunction ofequipment important tosafetydifferent thananyalreadyevaluated intheUFSARwillnotbecreated.

SECL-91-429, Revision17;Willthemarginofsafetyasdefinedinthebasestoanytechnical specification bereduced'o.

Asdiscussed intheattachedsafetyevaluation, theproposedincreaseintheas-foundHSSVliftsetpointtolerance willnotinvalidate theLOCAornon-LOCAconclusions presented intheUFSARaccidentanalyses.

Thenewlossofload/turbine tripanalysisconcluded thatallapplicable acceptance criteriaarestillsatisfied.

ForalltheUFSARnon-LOCAtransients, theDNBdesignbasis,primaryandsecondary pressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperatures remainbelowthelimitsspecified in10CFR50.46.

Thecalculated dosesresulting fromasteamgenerator tuberuptureeventremainwithinasmallfractionofthe10CFR100permissible releases.

Thus,thereisnoreduction inthemargintosafety.Notethat,asidentified earlier,changeswillberequiredtotheplantTechnical Specifications inordertoimplement theproposedchange.

SECL-91-429, Revision1V.CONCLUSIONS Theproposedchangetomainsteamsafetyvalveliftsetpointtolerances from+1%to+3Xhasbeenevaluated byWestinghouse.

Thepreceding analysesandevaluations havedetermined thatoperation withtheHSSVsetpoints withina+3%tolerance aboutthenominalvalueswillhavenoadverseimpactuponthelicensing basisanalyses, aswellasthesteamline breakmass&energyreleaseratesinsideandoutsideofcontainment.

Inaddition, itisconcluded thatthe+3%tolerance ontheHSSVsetpointdoesnotadversely affecttheoverpower orovertemperature protection system.Asaresult,adequateprotection tothecorelimitlinescontinues toexists.Therefore, alllicensing basiscriteriacontinuetobesatisfied andtheconclusions intheUFSARremainvalid.Thus,basedontheinformation presented above,itcanbeconcluded thattheproposedincreaseofmainsteamsafetyvalveliftsetpointtolerances from+1Xto+3Xdoesnotrepresent anunreviewed safetyquestionperthedefinition andrequirements definedin10CFR50.59.Therecommended Technical Specification changes,alongwithanosignificant hazardsevaluation, arepresented asappendices tothisevaluation.

ii SECL-91-429, Revision1VI.REFERENCES 1)DonaldC.CookUnits15.2Technical Specifications throughAmendments 157and141,respectively, 10/1/91.2)ANSI/ASME BPV-Ill-1-NB, "ASMEBoilerandPressureVesselCode-SectionIIIRulesforConstruction ofNuclearPowerPlantComponents,"

ASME,1983.3)ANSI/ASME OM-1-1981, "Requirements forInservice Performance TestingofNuclearPowerPlantPressureReliefDevices,"

ASME,1981.4)"DonaldC.CookUnits152UpdatedFinalSafetyAnalysisReport(UFSAR),datedthroughJuly1991.5)ASMESteamTables,FifthEdition,1983.6)Burnett,T.W.T.,etal.,"LOFTRANCodeDescription,"

WCAP-7907-P-A, June1972.7)Chelemer, H.etal.,"Improved ThermalDesignProcedure,"

WCAP-8567-P-A, February1989.8)Butler,J.C.andD.S.Love,"Steamline BreakMass/Energy ReleasesforEquipment Environmental Qualification OutsideContainment,"

WCAP-10961-P, October1985.9)90AE*-G-0126 W/AEP2-0098 Transmittal regarding "LockedRotorDoseAnalysisforDonaldC.CookUnit2Cycles8&9,"7/19/90.10)Letterregarding AFWflowratesfromR.B.BennettofAmericanElectricPowertoJ.N.Steinmetz ofWestinghouse

Electric, 9/24/91.

SECL-91-429, Revision1TABLE3UNIT1TURBINETRIPSE(UENCEOFEVENTSACCIDENTWithoutpressurizer control(minimumreactivity feedback)

EVENTTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureocculs~TINEsec0.07.79.710.5MinimumDNBRoccursWithoutpressurizer control(maximumreactivity feedback)

Turbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccurs0.07.99.910.5MinimumDNBRoccurs*DNBRdoesnotdecreasebelowitsinitialvalue.

SECL-91-429, Revision1TABLE3(continued)

UNIT1TURBINETRIPSEQUENCEOFEVENTSACCIDENTWithpressurizer control(maximumreactivity feedback)

EVENTTurbinetrip,lossofmainfeedwater flowPeakpressurizer pressureoccurs~TIMEsec0.010.0Low-lowsteamgenerator waterlevelreactortripsetpointreached47.1RodsbegintodropMinimumDNBRoccurs49.1Withpressurizer control(minimumreactivity feedback)

Turbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccurs0.012.414.416.0MinimumDNBRoccurs15.5*DNBRdoesnotdecreasebelowitsinitialvalue.

SECL-91-429, Revision1TABLE4UNIT2TURBINETRIPSE(UENCEOFEVENTSACCIDENTWithoutpressurizer control(minimumreactivity feedback)

EVENTTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursTIMEsecmixed,fullcorecore0.00.05.57.57.59.59.511.0MinimumDNBRoccursWithoutpressurizer control(maximumreactivity feedback)

Turbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreached0.00.05.57.6RodsbegintodropPeakpressurizer pressureoccurs7.59.69.010.0MinimumDNBRoccurs*DNBRdoesnotdecreasebelowitsinitialvalue.

ft SECL-91-429, Revision1TABLE4(continued)

UNIT2TURBINETRIPSE(UENCEOFEVENTSACCIDENTEVENTTIMEsecmixedfullcorecoreWithpressurizer control(maximumreactivity feedback)

Turbinetrip,lossofmainfeedwater flow0.00.0Peakpressurizer pressureoccurs7.07.5Low-lowsteamgenerator water60.1levelreactortripsetpointreached52.8RodsbegintodropMinimumDNBRoccurs62.154.8Withpressurizer control(minimumreactivity feedback)

Turbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreached0.010.60.011.2RodsbegintodropPeakpressurizer pressureoccurs12.613.213.514.5MinimumDNBRoccurs14.515.0*DNBRdoesnotdecreasebelowitsinitialvalue.

~~4 SECL-91-429, Revision1DONALDC.COOKUNITS15L2INITIALINPUTPARAMETERS FORTHESMALLBREAKLOCAEVALUATION OFINCREASING THEMSSVSETPOINTTOLERANCE Table5CurrentLicensing BasisSteamLineSafetyValvesperLoopSafetyValve1B2A2BSetpointPressuresi10651065107510751085PercentAccumulation 10.010.08.988.987.97Accumulation Pressuresi1171.51171.51171.51171.51171.5Flowrate8AccPressurelbshr*857690857690857690857690857690*Theratedvalvecapacityatfullaccumulation pressurewascalculated asfollows:51.5xAxKxP=ActualFlowratewhere:A=Valveorificearea=16in2K=Coefficient ofdischarge

=0.975P=Pressure(psia)ataccumulation pressureTheaboveactualflowrateisreducedby0.9togetthevalveratedcapacity.

SECL-91-429, Revision1DONALDC.COOKUNITS18L2INITIALINPUTPARAMETERS FORTHESMALLBREAKLOCAEVALUATION OFINCREASING THE'SSVSETPOINTTOLERANCE Table6MSSVSetpointIncreaseSteamLineSafetyValvesperLoopSafetyValveSetpointPressurePercent~NNiRAccumulation PressuresiFlowrate8AccPressurelbshr*1A1B2A2B1096.951096.951107.251107.251117.553.03.03.03.03.01129.861129.861140.471140.471151.08827585.6827585.6835257.2835257.2842928.9*Theratedvalvecapacityatfullaccumulation pressurewascalculated asfollows:51.5xAxKxP=ActualFlowratewhere:A=Valveorificearea=16in2K=Coefficient ofdischarge

=0.975P=Pressure(psia)ataccumulation pressureTheaboveactualflowrateisreducedby0.9togetthevalveratedcapacity.

SECL-91-429, Revision1DONALDC.COOKUNIT1INITIALINPUTPARAMETERS FORTHESHALLBREAKLOCAEVALUATION OFINCREASING THEHSSVSETPOINTTOLERANCE Table7:LowPressure, LowTemperature CurrentHSSVLicensing SetpointBasisIncreaseLicenseCorePower1(HWt)TotalPeakingFactor,FqAxialOffset(X)HotChannelEnthalpyRiseFactor,FHMaximumAssemblyAveragePower,PHAFuelAssemblyArrayAccumulator WaterVolume(f))Accumulator TankVolume(ft)MinimumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature (F)VesselOutletTemperature (F)RCSPressure(psia)SteamPressure(psia)SteamGenerator TubePluggingLevel(X)MaximumRefueling WaterStorageTankTemperature MaximumCondensate StorageTankTemperature (F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint(psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation (N)ChargingPumpFlowImbalance (gpm)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)HainFeedwater Isolation DelayTime(sec)HainFeedwater ValveClosureTime(sec)Auxiliary Feedwater EnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)358822.32+301.551.43315X9461350600354000509.89581.712100564.3615(F)12012027518601715271010Closed2.04.40.06O~Table132502.32+301.551.43315OFA9461350600354000513.23578.572100596.48~1512012027518601715271025Closed4,44.40.08.0272Table2Twopercentisaddedtothispowertoaccountforcalorimetric error.Asafetyevaluation for25gpmchargingflowimbalance limitsoperation withHHSIcrosstievalveclosedto3250HWt.Valueisbasedon102Xcorepower,maincoolantpumpheatneglected, andbestestimateTavg.Asafetyevaluation wasperformed toaccountforaauxiliary feedwater enthalpydelayof272seconds.

SECL-91-429, Revision1DONALDC.COOKUNIT1INITIALINPUTPARAMETERS FORTHESMALLBREAKLOCAEVALUATION OFINCREASING THEMSSVSETPOINTTOLERANCE Table8:LowPressure, HighTemperature CurrentHSSVLicensi~g SetpointBasisIncreaseLicenseCorePower(HWt)TotalPeakingFactor,FqAxialOffset(%)HotChannelEnthalpyRiseFactor,FHHaximumAssemblyAveragePower,PHAFuelAssemblyArrayAccumulator MaterVolume(f))Accumulator TankVolume(ft)HinimumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature (F)VesselOutletTemperature (F)RCSPressure(psia)SteamPressure(psia)SteamGenerator TubePluggingLevel(%)HaximumRefueling WaterStorageTankTemperature (F)HaximumCondensate StorageTankTemperature (F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint(psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation

(%)ChargingPumpFlowImbalance (gpm)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)HainFeedwater Isolation DelayTime(sec)HainFeedwater ValveClosureTime(sec)Auxiliary Feedwater EnthalpyDelayTime(sec)HainSteamSafetyValveSetpoint(psia)NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA32502.32+301.551.43315X15OFA9461350600354000543.63606.792100793.901512012027518601715271025Closed4,40.08.0272Table2Twopercentisaddedtothispowertoaccountforcalorimetric error.Asafetyevaluation forthelowpressure, hightemperature operating condition wasperformed inthelicensing basisanalysis.

Valueisbasedon102%corepower,maincoolantpumpheatneglected, andbestestimateTavg.

P SECL-91-429, Revision1DONALDC.COOKUNIT2INITIALINPUTPARAMETERS FORTHESMALLBREAKLOCAEVALUATION OFINCREASING THEMSSVSETPOINTTOLERANCE Table9:LowPressure, HighTemperature CurrentHSSVLicensing SetpointBasisIncreaseLicenseCorePower(HWt)TotalPeakingFactor,F~AxialOffset(%)HotChannelEnthalpyRiseFactor,FHHaximumAssemblyAveragePower,P~AFuelAssemblyArrayAccumulator WaterVolume(fg)Accumulator TankVolume(ft~)HinimumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature (F)2VesselOutletTemperature (F)2RCSPressureIncluding Uncertainties (psia)SteamPressure(psia)2SteamGenerator TubePluggingLevel(%)HaximumRefueling WaterStorageTankTemperature HaximumCondensate StorageTankTemperature (F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint(psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation

(%)ChargingPumpFlowImbalance (gpm)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)HainFeedwater Isolation DelayTime(sec)HainFeedwater ValveClosureTime(sec)Auxiliary Feedwater EnthalpyDelayTime(sec)HainSteamSafetyValveSetpoint(psia)(F)34132.34+301.6441.51917X179461350600354000544.41610.192100807.031512012027518601715271025Closed4.74.40.08.0349Table132502.357+131.6661.46V59461350600354000544.41610.192100807.031512012027518601715271025Closed4.72.06.0349Table21Twopercentisaddedtothispowertoaccountforcalorimetric error.2Valueisbasedon102%corepower,maincoolantpumpheatneglected, and.,bestestimateTavg.

SECL-91-429, Revision1D.C.COOKUNIT1HSSVSETPOINTTOLERANCE INCREASESHALLBREAKLOCAEVALUATION TABLE10TINESEqUENCEOFEVENTS~TimesEventLPLTLPLTLPHTLPHTw/HSSVw/oMSSVw/HSSVw/oMSSVBreakOccursReactortripsignalSafetyinjection signalStartofsafetyinjection signalLoopsealventing'oop sealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulator injection beginsPeakcladtemperature occursTopofcorecoveredSIflowrateexceedsbreakflowrate011.2319.2846.28643.4NANA1139.21730.01935.5NA1988011.2319.2846.28644.7NANA1077.31751.01831.4NA2024013.5422.4249.42601.8NANA1073.41647.81872.3NA2293013.5422.4249.42608.3NANA1057.81695.81824.7NA2284LPLTislowpressure, lowtemperature operating condition.

LPHTislowpressure, hightemperature operating condition.

W/HSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250HWtcorepower.W/0MSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3250HWtcorepower.

SECL-91-429, Revision1DONALDC.COOKUNIT1HSSVSETPOINTTOLERANCE INCREASESHALLBREAKLOCAEVALUATION TABLEllSUMMARYOFRESULTSLPLTw/HSSVLPLTLPHTLPHTw/oHSSVw/MSSVw/oHSSVNOTRUHPPeakCladTemperature

('F)PeakCladTemperature Location(ft)PeakCladTemperature Time(sec)LocalZr/H20ReactionMaximum(%)LocalZr/H20ReactionLocation(ft)TotalZr/H20Reaction(N)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature

('F)1853.711.751935.53.4711.75<1.0None251878.71772.911.751831.42.4711.75<1.0None151787.91837.711.751872.33.1311.75<1.0None161853.71710.311.751824.71.8211.75<1.0None151725.3LPLTislowpressure, lowtemperature operating condition.

LPHTislowpressure, hightemperature operating condition.

W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250HWtcorepower.W/0HSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3250HWtcorepower.

SECL-91-429, Revision1DONALDC.COOKUNIT2HSSVSETPOINTTOLERANCE INCREASESHALLBREAKLOCAEVALUATION TABLE12TINESEQUENCEOFEVENTSEvent~TimesLPHTw/HSSVLPHTw/oHSSVBreakOccursReactortripsignalSafetyinjection signalStartofsafetyinjection signalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecovery~Boil-offcoreuncoveryAccumulator injection beginsPeakcladtemperature occursTopofcorecoveredSIflowrateexceedsbreakflowrate11.0120.9247.92620.0NANA620.01604.31691.0NA1683.0011.0120.9247.92627.2NA'NA627.21631.71720.6NA1984.0LPHTislowpressure, hightemperature operating condition.

W/HSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250HWtcorepower.W/0HSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3413HWtcorepower.

SECL-91-429, Revision1DONALDC.COOKUNIT2HSSVSETPOINTTOLERANCE INCREASESMALLBREAKLOCAEVALUATION TABLE13SUMMARYOFRESULTSLPHTw/MSSVLPHTw/oHSSVNOTRUMPPeakCladTemperature

('F)PeakCladTemperature Location(ft)PeakCladTemperature Time(sec)LocalZr/H20ReactionMaximum(%)LocalZr/H20ReactionLocation(ft)TotalZr/H20Reaction(%)RodBurstArtificial Leak-ByPenalty('F)BurstandBlockagePenalty('F)TotalPeakCladTemperature

('F)1955.911.751691.04.2611.75<1.0None121572124.91947.111.751720.64.8311.75<1.0None121432102.1LPHTislowpressure, hightemperature operating condition.

W/HSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250HWtcorepower.W/0HSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3413MWtcorepower.

75031840o51ApSIA'000iPS;Ai2100iPSIA2400PSIA45~gglgNTORSAFETYYALYESOPBI518Sl55885855~8'15688685613615628625638ovg(<F:eamammQ~CareListstsNomfnaITavg~578.7'F.'(ominat Prassure2100ps.'aDONALDC.COOKUNIT1FIGURElaILLUSTRATION OFOVERTEHPERATURE ANO.OVERPOWER OELTATPROTECTION

75OPaT651922PSIA2250PSIA~684D552000PSIA2%0PSIASB45ITENGENERATOR SAFETYVALVESOPQl5685655785755SS5855'RS5'l5Sle685618615628625tevetoF)-----OTaT Protection LinesCarsThsrsslSafetyLtsitsNominalVesselAverageTemperature

~575'FNominalPressurizer Pressure2250psiaDONALDC.COOKUNIT2(MIXEDCORE)FIGURE1bILLUSTRATION OFOVERTEMPERATURE ANDOVERPOWER DELTATPROTECTION

1922PSIAOPaTOQ2400PSIA2000PSIASTENGENERATOR SAFETYVALVESOPEN2250PSIA75588SBS5985~5688685618615628625638ov9toF----OTaTProtection LinesCoraThsrsalSafetyUsitsNominalVesselAverageTemperature

~581.3'FNominalPressurizer Pressure2100psia.OONALOC.COOKUNIT2(FULLV5CORE)FIGURElcILLUSTRATION OFOYERTEHPERATURE ANOOVERPOMER DELTATPROTECTION "500n500n~q<<VvII'n*n"70C2300.1900.1800.0.2'300.10.20.30.40.50.60.70.80.90.10C.TME(SEC)13QQ,1600,1400.1200.Jl1000.800Q,10.20.30.40.50.60.70.,80.90.100.TIME(SEC)DONALDC.COOKUNITIFIGURE2TURBINETRIPEVENTMITHOUTPRESSURECONTROL,HINUHUNREACTIVITY FEEDBACK

0IO203C40506070809CtC~TME(SEC)4,53.X'i5I.Sl.0102030405060lO809CT-'MK(SEC}DONALDC.COOKUNITIFIGURE3TURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINUHUMREACTIVITY FEEDBACK II 68056064062063G.)5805605~05205000t0203C405060IO809CtC3Tu=(SEC)700680560540520500'580560540520500102030405060708090tCOTv=(SEC)I~DONALDC.COOKUNITIFIGURE4TURBINETRIPEVENTMITHOUTPRESSURECONTROL,MINUMUMREACTIVITY FEEDBACK x1IOQ.1300.nn30C.jI300.700.600.500.400IQ35030010.20.30.40.50.60.70.80.90.IOC.T>MK(SEC)250200t50CC10050rnQ-500102030405060108090,ICOTlilE(SKC)DONALDC.COOKUNIT1FIGURE5TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITY FEEDBACK 4p30CAIA252P15105CO0-5-100102030ip5080loSO901OOTiff(SKC)ONALDC.COOKUNITIFIGURE6TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NININNREACTIVITY FEEDBACK iIh'RAPoVe"SOC"OC<<~CC~eelC'OCn21OC.230Cl900.1800.'0.~0.20.30.40.50,do.70.80.90.ioc.T!vK(SEC)2300.taboo.t600ac(400t200.l$04,0.10,20.30,i0.50.d0,70.d0.90.IOC.T<gK(SKC)ONALDC.COOKUNITIFIGURETURBINETRIPEVENTWITHOUTPRESSURECONTROL,,

NXINNREACTIVITY FEEOBACK I1 8Z102030i05060708090~COT'MK(SKC'.53.53,2.50l02030l05060706090>COTlQK(SKC)ONALDC.COOKUNITIFI6NE8TURBINETRIPEVENTitITHOUTPRESSNECONTROL,NXINNREACTIVITY FEEOBACK MII 530t56G5<0626530C5605eQ520500102030405060708090~CQTvK(SEC)~006806606~062060095805605405240i02030io5084708090iCAT<SR(MC)ONllOC.COOKNIT1FISuaa9TNBIltKTRIPEVENTVITHOuTPRKSSNKCONTROl,NXINNREACTIVITY FEEOBACK 1

c11001300300.900.700.600.5000.10.20.30.<0.50.So.70.80.90.1OO.71MK(SKC)400tQ350300'lir)'r250200l~15010050P~0-501020304050do70do90100718K(SKC)DONALDC.COOKUNITIFIGURE10TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITY FEEDBACK ac1000.QC900.800.700.SOO.0.10.20.30.<0.50.60.70.80.90.100.TIME(SEC)4003503OO250zoo150100500Mo>02030io5080>Q8090iooTtiC(SEC)00NAU)C.COOKNIT2(NIXEDCDRE)FIGURE25aTURSINETRIPEVENTWITHOUTPRESSURECONTROt.,

NINNNREACTIVITY FffDBACK 2001100.1300.300.900.700.600.0.10.20.30.4050.60.70.80.90.100.TIME(SEC)400CJu)3503002502OO150100500501020304050do708090100(SEC)00NLDC.COOKUNIT2(FULLVSCORE)FIGURE25bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NINNNREACTIVITY FEEOBACK T

403530CA2520154JN10V)0-5-100102030405060108090100TILING(SEC)OONALDC.COOKUNIT2(NIXEDCORE)FIGURE26aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NIHNNREACTIVITY FEEOBACK 403530pn25w~2015W105CA0-5-1001020304050d0708090100TisC(SCC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE26bTURBINETRIPEVENTltITHOUTPRESSURECONTROL,HINNNREACTIVITY FEEOBACK lI0 17nc2500250C~QC<3AW'V~one+WCi'Jl2100,2300.<900.1800.0.10.20.30.40505070d0.90.100.TtsE(SEC)2300.)800.f600.cet400.l200.1000.10.20.30.io.50.60.TiSK(SEC)10.80.90.100.ONNU)C.COOKUNIT2(NIXEOCORE)FIGURE27aTURSMTRIPGENTWITHOUTPRESSURECONTROL,NXINNREACTIVITY FEEOBACK I0

7"-C'5OC'Jl"2500"~CCCSOCvgOn')hC2tOO2300.1900.l500.lO.ZO.30.40.50.dO.7C.80,90.IOOrvE(SKC)23OC.F900.h1500.>ZOO.1300.$00~0,t0.20,30.40.M.00.70.80.90.l00.r~E(MC)OONlLDC.COOKUNIT2(FULLVsCORE)FIGNE27bTURBINETRIPEVENTWITHOUTNESSURECONTROL,IQXINNREACTIVITY FE'EOBACK

CZQ.>02030<0506010)090>iMK(SEC)2.4a221.20102030io506Q706Q90tCQ(SEC)OOOOC.COOKUNIT2(NDEOCNE)FIQNE28aTNSINETRiPEVENTWITHOUTNESSNECNTROL,NXINNREACTIVITY FEEOBACK Cj4ZZiO20So+05060To80eatCO7'QK(SKC)25l,5toZo30.iO50dO10aOeClCat:~c(sac)OOOOC.COOKNlT2(FULLVSCNE)FNURE2abTNBlNETllPEVNTMlTHOUTPRESSNECQiTROL,NXlllNREACTlVlTY FEEDBACK l<JEF 56Ci54062953G56054052050001020304050d0708090T-'ME(SEC)700dao6606406206005805805<0520IO20304050d0'lO8090ICO(SEC)ONNU)C.COOKUNIT2(NIXEOCORE)FINRK29aTNSINETRIPEVENT'WITHOUTPRESSURECONTROL,NXINNREACTIVITY FEEDBACK

6603'0=.-zc)I%/1JP53C560540520500001020304050d0708090'QQTvK(SKC)3805~052050025805505t05200io20Soio50dO1080r.~g(sKc)00lQLOC.COOKUNIT2(FULLVSCtWE)FINRE29bTNBlNETRIPEVENTWITHOUTPRESSURECONTIML,NXINNREACTIVITY FEEDBACK

1100.'4Jac1300.900.900.700.600.0.10.20~30'0.SO.60.74.80.90.100.TIME(SEC)30025020015010050WcR0410ZO34445060108090100TIhC(SEC)ONALOC.COOKUNIT2(llIXEOCORE)FIGVRE30aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITY FEEDBACK

t200t100t300.300.300.700.500.500.400CJ35030010.20.30.40.50.60.70.80.90.l00.T(ME;(SQC)25020015010050001020304050dO70SO90>00TIME(SEC)DONALDC.COOKLNIT2(FULLV5CORE)FINRE30bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NCINNREACTIVITY FEEOBACK 0

20105QC0-5-1001020304050d070d090100,TiME(SEC)DNhLDC.COOKUNIT2(NIXEDCORE)FIGURE31aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXIHLNREACTIVITY FEEOBACK

20CJ1510QC4J5-5-1001O2030iO50do10eOeo100TIME(SEC)DONALDC.COOKUNIT2(FULLV5CORK)FIGURE3lbTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITY FEEOBACK 27CC26002500nn-qOC'"Cvcn210C.2300.1900.18002300.O.102030iO50807C.8090'1OC1'1MK(SKC)1300.1500.Agcx1400.1200.J71QOO.800.0.10.20'0.40.50.80.10.80.90.10C,TiMK(SKC)OONNC.COOKNIT2(IIIXEOCORE)FINRE32aTURBINETRIPEVENTQITHPRESSURECNTROt.,NXINNREACTIVITY FEEGBACK

'py

~<<ht<<<<v.50C5CCogg(1t<<favI')hea<<Vnn<<lppC300F900>8000.lO.20.30'050d0.TO.50.90.iOCTl4E(SEC)2r00.1300.~e'lip~<<.

~<<~Iel)~<<]f7it~'500C!40Ct20C,n'n>300.aoo.l0.20.30.40.50.50.rvc(sec)'0.50.90.IOC90NLOC.COOKUNIT2(FULLV5CORE)FIQURE32bTNSINETRIPEVENTltITHPRESSURECONTROL,NXINNREACTIVITY FEEDBACK l'

$8c6.4C0.lOZO3040SO6020809C'C3TMK(SEC)t.dl.20IO2030iO5050'lO8090>COT>hC(MC)rIjONLQC.COOKUNIT2(NIXEDCNE)FI6NE33aTNSINETRiPEVENTMITHPRESSNECNTROL,NXINNREACTIVITY FEEOeaCX

l0ZQ30405060~08090'CQTMK(SKC)l0203040506070809C:3TvK(SKC)OONILOC.COOKNIT2(FUllVSCORE)FISm33bTWNETRIPEVENTWITHPRESSURECONTROl,NXINNREACTIVITY FEEDBACK I

":BC~6605206GI58Ga56Q5<0520500lQ203Q40506010SQ9G~GQr~K(SEC)>'30680660640620600580m560540520500l02030405014704090>CQr~c(saciOONAU)C.COOKUNIT2(NIXEOCORE)FI6URE34~TURBINETRIPEVENTMITHPRESQlRECONTROL,NXINNREACTIVITY FEEOBACK

4g56Gt5~0~IhI+tI=:-"r5605cQ500l0203C<05060>080K'v3TvE(SEC'30560540520500580m5605c0520010203040506010809GICQT-~K(SKC)ONALDC.COOKUNIT2(FULLVSCORE)FI6URE34bTURBINETRIPEVENTKITHPRESSURECONTROL,NXINNREACTIVITY FEEOBACK

1100.N'J)!."00.z300.900.700.500.500.0.)0.20.30.40.50.60.70.80.90.100.T:MK(SEC)3004J250I4200(Z1501QQCX500-50102030405080708090100TiME(SEC)DONALDC.COOKUNIT2(MIXEDCORE}FIGURE35aTURSINETRIPEVENTQITHPRESSURECONTROL,HAXINNREACTIVITY FEEDBACK

'z1100.600.5000.10.20.30.4050.60.TO.SO.90.100.T'MK(SEC)400~n350300<g250200ac1501005000102030405080708090100T1MK(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE35bTURBINETRIPEVENTWITHPRESSURECONTROL,NXIHNREACTIVITY FEEDBACK 1

25201510OC5OCV70OCQ-1001Q2030iOSOSO70eO9O1QOTiud(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE36aTURBINETRIPEVENTttITHPRESSURECONTROL,NXINNREACTIVITY FEEDBACK

252010ac5ac0-51020304050507080901COTIME(SEC)OONALOC.COOKUNIT2(FULLV5CORE}FIGURE36bTURBINETRIPEVENTKITHPRESSURECONTROL,NXINNREACTIVITY FEEOBACK hII

<<yC26CCn'5CC~<<C<<~4gA(0<<<<evihoC2."CC.1300'doo."300toZo-30.<050.So.70.50.90.iQQT"vE(SEC)>800.iSOCQC'4oc.C~zoo.1300.800.0.10.20.30.iO.50,do.>0.do.30.iOO.TivE(SEC)DONAlDC.COOKUNIT2(NIXEDCORE)FI6URE37'URSINE TRIPEVENTMITHPRESSURECONTROl,NINNNREACTIVITY FEEDBACK

'I n2500"~oo1nh)Alli'4Cvn1)QQ,[6000.10.20.30.40.50.80.70.80.90.iOC.TivE(SEC)2000.tSOO.)600.I4QQ.i200.ntao0~0.t0,20.JO.40.54.60.Ti%'MC)V0,80.90.iOC.DONILDC.COOKNIT2(FULLVSCORE)FIGURE3IbTNBINETRIPEVBITWITHNESSURECNTROL,IIINNNREACTIVITY FEEDBACK 0lO2030<050dQ7Q809C1CQT4K(SEC)2,210ZO304050d0TOdO90(COT>QK(SEC)DCNLOC.CNKUNIT2(NIXEOCNK}FI6NE38aTURBINETRIPEVENTitlTHPRESSURECNTROL,NINNNREKTIVITY FEEDBACK 5t'01020304050d0708090lCQT'MK(SEC)4,52.5'l02030-405080708090t00TIME(SKC)QOlQLDC.COOKUNIT2(FULLNCORE)FIGNE38bTURBINETRIPEVENTARITHPRESSURECONTROL,NIlNNllREACTIVITY FEEOBACK d'

58C'605<Q520500102030~05080'IQ809C:COIMK(SEC)~QQ6806806cQ6206002580580540520500t02030io5010708090'CaTi~K(SEC)DONALDC.COOK'NIT2(MIXEDCORE)FINRE39aTURBINETRIPEVENTMITHPRESSURECONTROL,NI80%NREACTIVITY FEE08ACK

oAQCV~h~~VCgrVWl560S<G5000lG2050<05060~0809C'CQTMK(SEC)3058G560540a5)h53GSao5605<05205000l02030405080108090100fiQK(Mc)GNALOC.COOKUNIT2(FULLV5CORE)FINRE3gbTUNItIETRIPEVENTMITHNESSURECONTROL,NINNNREACTIVITY FEEDBACK 11OC1300.300.BC'.700.SOO.500.'O.IO.20.30.40.50.60.70.80.90.100.T'ME(SEC)400350300250QC2001501000500-50102030405060708090100TIME(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE40aTURBINETRIPEVENTMITHPRESSURECONTROL,MINIMUMREACTIVITY FEEDBACK

11QC'00~300.+AC700.500Q.10.20.30.40.50.60.70.SO.90,10C.T'ME(SEC)5004QQk1000-100010203040506070SO901COTiMK(SEC)ONALOC.COOKUNIT2(FULLVSCORK)FIGUREl0bTURBINETRIPEVENTQITHPRESSURECONTROL,HINIHNREACTIVITY FEEDBACK 4p30252015/Ap4ipQCD0-5-lp0l0203040506070Sp90tPPTlMK(SKG)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE411TURBINETRIPEVENT'IJITHPRESSURECONTROL,NININNREACTIVITY FEEDBACK

30'J72c2015~A4)05102030io5060ZO80eOtC."TIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE4lbTURBINETRIPEVENTMITHPRESSURECONTROL,MINIMUMSREACTIVITY FEEDBACK SECL-91-429, Revision1APPENDIXASIGNIFICANT HAZARDSEVALUATION SECL-91-429, Revision1SIGNIFICANT HAZARDSEVALUATION DONALDC.COOKUNITS152NSSVLIFTSETPOINTTOLERANCE TECHNICAL SPECIFICATION CHANGEINTRODUCTION:

Pursuantto10CFR50.92, eachapplication foramendment toanoperating licensemustbereviewedtodetermine iftheproposedchangeinvolvesasignificant hazardsconsideration.

TheCommission hasprovidedstandards fordetermining whetherasignificant hazardsconsideration exists(lOCFR50.92(c)].

Aproposedamendment toanoperating licenseforafacilityinvolvesnosignificant hazardsconsideration ifoperation ofthefacilityinaccordance withtheproposedamendment wouldnot:1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, or2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated, or3)involveasignificant reduction inamarginofsafety.DESCRIPTION OFAMENDMENT REVEST:Thepurposeofthisamendment requestistoreviseTechnical Specification Section3/4.7forbothDonaldC.Cookunitsinordertorelaxthemainsteamsafetyvalve(MSSV).liftsetpointtolerance from+INto+3M.Thecurrently specified tolerance of+INoftheliftsetpointcanbedifficult tomeetwhenthevalvesaretestedduetosetpointdriftoverthedurationoftheoperating cycle.Thisevaluation willprovidemarginforAmericanElectricPowerServiceCorporation (AEPSC)whentheyperformtheirsurveillance testing.

SECL-91-429, Revision1TheASHECoderequiresthatthevalvesliftwithinIXofthespecified setpoint(NB-7512.2).

Thecodealsostatesthatthevalvesmustattainratedlift(i.e.,fullflow)within3/oofthespecified setpoint(NB-7512.

1).Thisevaluation willformthebasisfortakingexception totheASHECodewithrespecttotheliftsetpointtolerances.

AsdefinedinNB-7512.2, exceptions canbemadetothecodeproviding theeffectsareaccounted forintheaccidentanalyses.

BASISFORNOSIGNIFICANT HAZARDSDETERHINATION:

-Theeffectsofincreasing theas-foundliftsetpointtolerance onthemainsteamsafetyvalvehavebeenexaminedforthenon-LOCAaccidents, andithasbeendetermined that,withoneexception, thecurrentaccidentanalysesaspresented intheUFSARremainvalid.Thelossofload/turbine tripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerance relaxation.

Aspreviously demonstrated inthisevaluation, allapplicable acceptance criteriaforthiseventhavebeensatisfied andtheconclusions presented intheUFSARarestillvalid.Thus,theproposedTechnical Specification changedoesnotconstitute anunreviewed safetyquestion, andthenon-LOCAaccidentanalyses, aspresented inthereport,supporttheproposedchange.Theeffectofanincreaseintheallowable HainSteamSafetyValvesetpressuretolerance from+IXto+3XontheUFSARLOCAanalyseshasbeenevaluated.

Ineachcasethe-applicable regulatory ordesignlimitwassatisfied.

Specificanalyseswereperformed forsmallbreakLOCAassumingthecurrentHSSVTechnical Specification setpressures plustheproposedadditional 3Xuncertainty.

Thecalculated peakcladdingtemperatures remainedbelowtheIOCFR50.46 2200'Flimit.Thesteamgenerator tuberuptureeventwasalsoanalyzedtodetermine theeffectsoftheliftsetpointtolerance increase.

Theresultsoftheanalysisconcluded thattherewasaveryslightincreaseinthewholebodydosereleaseforUnit1,butthemagnitude oftheincreasewas

SECL-91-429, Revision1withintheuncertainty associated withthecalculation itself,andthatthereleasesgenerated fortheDonaldC.CookReratingProgramboundthosecalculated forthisevaluation.

Theevaluation alsodetermined thatthecurrentUnit2dosesremainbounding.

Thus,theconclusions presented intheDonaldC.CookUFSARremainvalid.Neitherthemassandenergyreleasetothecontainment following apostulated lossofcoolantaccident(LOCA),northecontainment responsefollowing theLOCAanalysis, credittheHSSVinmitigating theconsequences ofanaccident.

Therefore, changingtheHSSVliftsetpointtolerances willhavenoimpactonthecontainment integrity analysis.

Inaddition, basedontheconclusion ofthetransient

analyses, thechangetotheHSSVtolerance willnotaffectthecalculated steamline breakmassandenergyreleasesinsidecontainment.

Theproposedchangehasbeenevaluated inaccordance withtheSignificant Hazardscriteriaof10CFR50.92.

Theresultsoftheevaluation demonstrate thatthechangedoesnotinvolveanysignificant hazardsasdescribed below.l.Asignificant increaseintheprobability orconsequences ofan~~~accidentpreviously evaluated.

Relaxation oftheHSSVsetpointtolerance from+IXto+3Xdoesnotincreasetheprobability orconsequences ofanaccidentpreviously evaluated.

Component andsystemperformance willnotbeadversely affectedsinceequipment andsystemdesigncriteriacontinuetobemet.TheHSSVsdonotinitiateanyaccidentnotalreadydiscussed intheUFSAR.Neitherthemassandenergyreleasetothecontainment following apostulated lossofcoolantaccident(LOCA),northecontainment responsefollowing theLOCAanalysis, credittheHSSVinmitigating theconsequences ofanaccident.

Fortheeventsanalyzed, allapplicable acceptance criteriaweresatisfied, andtherewasno SECL-91-429, Revision1increasein-thedosesoverthosepreviously generated.

Asaresult,theconclusions presented intheDonaldC.CookUFSARareunaffected bytheproposedchange.Therefore, changingtheHSSVliftsetpointtolerances wouldhavenoimpactontheconsequences ofanaccident.

2.Createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated.

Thepossibility foranaccidentormalfunction ofadifferent typethanevaluated previously inthesafetyanalysisreportisnotcreated.Increasing theliftsetpointtolerance ontheMSSVsdoesnotintroduce anewaccidentinitiator mechanism.

Nonewfailuremodeshavebeendefinedforanysystemorcomponent important tosafetynorhasanynewlimitingsinglefailurebeenidentified.

Noaccidentwillbecreatedthatwillincreasethechallenge totheHSSVsorresultinincreased actuation ofthevalves.Therefore, thepossibility ofanaccidentdifferent thanpreviously evaluated isnotcreated.3.Involveasignificant reduction inamarginofsafety.ThemarginofsafetyasdefinedinthebasisoftheTechnical Specifications isnotreducedbythechangeintheMSSVliftsetpointtolerance.

Theproposedincreaseintheas-foundHSSVliftsetpointtolerance willnotinvalidate theLOCAornon-LOCAconclusions presented intheUFSARaccidentanalyses.

Thenewlossofload/turbine tripanalysisconcluded thatallapplicable acceptance criteriaarestillsatisfied.

ForalltheUFSARnon-LOCAtransients, theDNBdesignbasis,primaryandsecondary pressurelimits,anddose SECL-91-429, Revision1limitscontinuetobemet.Peakcladdingtemperatures remainbelowthelimitsspecified in10CFR50.46.

Thecalculated dosesresulting fromasteamgenerator tuberuptureeventremainwithinasmallfractionofthe10CFR100permissible releases.

Thus,thereisnoreduction inthemargintosafety.Note,however,inordertoimplement theproposedchange,theTechnical Specifications willhavetobechanged.

SECL-91-429, Revision1APPENDIXBMARKEDUPTECHNICAL SPECIFICATION SECTIONS 3.1.L.LAllaainsteaaLinecodesafetyvalvesassociated vttheachsesvgenerator shaLLbeOPERhSLE, MODE51,2and3.hQZM:aeb.C.Wteh4reactorcoolantLooysaadassociated steaageneraeocs iaoyeraetoa andvieh,oaeoraorsaataseaaaLinecodesafetyvalvesinoyerable, oyeraetoa ialNDN1,2and3sayyroceedyrovtdad, thatvtthta4hours,etcherthetaoyerable valveRsrestoredtoQMhb?XstatusorthePacerRangeNeutronFLuxMt'eeyoiae trtyisreducedyerTable3.7-1;othervtsa,

<oinatLease80'TANDIT vtehiaehenextIhoursan4tnCO+58VttOWNviehinehefollovtai 30bours.3gQtth3reactorcoolaatLoopsandassoctatsd stsaageneralsiaoyeratton andvtthoneormreaatastsaaLtaecodesafetyvalvesassociated vtthanoyerattng looytnoyerable, oyeraekon inlNDI3aayyrocaedyrovtde4, chatvtehtn4hours,eitherehetaoyerabie valveisrestoredtoQHRQQaeacusorahareaceoreriybreakersareoyeae4;oehervtse, betnCOLD5HUTDORfvtthtnehenext30hours.Theyrovtstoaa of5yectftcattoa 3.0.4arenotayylicable.

~~I4.7.1.1Eachaatns~Ltn>>codesafetyvalvesha11bedsmaaeraead

OPERASLE, vtthliftsetttngaandorificestsesaasbovataTable4.7~L,inaccordance viehSectionXXofeheASARIoilerandtres'sure VesselCode,1974~D.C.OX%UNIT13/471AmINmmeHO.L2o

TABLE3.y-l~l~"LLSHSLEPOMERRANGENEUTROIIFLUEHIGHSETPOIHTMITHINOPERMLE STEglIIRVWAKTIII HaxiaaNeaNNoflaopeable SafetyValvesoaAsatiSteawSaaerator lhximaAllowable PoserRangeNautronfluxHIghSetpointPercentofRATEDTHERNALPORN65.1 n5%14in.1Cin16in.1Cin24oN21CinSV-1$0C5palyh.aV-l40C5paiyLoeSV25075paly$47%palyOsQf3k$paly~)In~%holp~4aeehallooraoe~n4 toeabieatoonlitione otthovalveateaiseloyoretiIy teapereturo en4proeaum'

VVIhaOttRAblLZTY ofehaaatnseeaaLtnaco4asafoeyvaLvosensuresehaethesacondary sysesapressurevillboLkaieadeoviehtniesdos'.gnyraasuroofLOTSpat)duringehanosesevereaneiciyaead sysesaopera.eionalezanaiene.

Theaaxhasraltavtng cayacteyisassociaes4 vizhseurbinaeziyfzoaLO41RATIOMRHALt%LLcotnctdane viehanassumed:as~

ofcondansaz haaesilk(i~~noseNsbyyaageaehacondansor)

.Zhasyectfte4 valveLifesaeetnlaan4raltavtnl cayactetos srsinaccozdanc

~viehehatequttsaanes of5acetonJTToftheASNXSoilozandprissuroCodaL97LKdteton.ThatotaLzaltavtng cayacteyforallvaLvssonao~seaaanaaaD.LS3.800 Lba/hrvhtchtaayyroxtaaeeLy L2'arcane ofehatoealsacondary seamflovafL4.L20,000 Lba/hraeL00%RA~Ogling.tCQCR.AaLntaaof2OPQAILRaafaeyvaLvoayatoyorabLeseaaagonaraeot ensuresthatsufftetane talteCngcayacteytaavatLaforehaallovabla TSRQLLNQRraaertetton tnTable$.7~l.5TARTUtand/orNUN,OPXRAtION inoyarabla viehtntheLtateaeiona ofoftheraduceton.

tnsecondary syseoabyehareducedreaceoreriysaeetagschannals.

TharaaceorertysaeytnefoLLovtng bases:Fot4looyoyaraeton taalleraila vtehsafaeyvalehaACTIONrapatreaanea onehabeat..seemftovandTIKQ.AMERred.ofehaPowerR45$aNaueronFLUÃraduaetons aradartvo4oneha~roanXMhara:5t~te4scadraaceoreztysaepotnetnyarcaneofNATNtHERQt.8ÃSRV~aaxtaanuaberoftneyarable safaeyvalvoaparseaaaLinel,2or3.~Taealraltavtnl cayacteyafallsafaeyvalvoayarseaaaLtna~4,2!8,4SO Lba/beur.

~Hertauszoliaviag cayacteyofanyonesafaeyvalw~lS7,690Lba/hour.

(LO9)~RoverRangeNaueronflue-HtgTriy5aeyotnefor4Loopoyaracton.

0.C.COOCOCTL53/4)4LhNRfDltEHT NO.lc

3.7.L.LhLLmaiasceaaLinecodesafety~elvesassociacea viaeachice~generator shallbe0PQhbAv'.=4liftsettingsasspecified inTable3:7-~.gEJC4gli:

slm413~he%:aeMich4reactorcoolantloopsa@4associated stecageaeracors iaoperation aa4vtthceoorloremaiasee@aLiaacode.safety valvesarable,operation taNDCSl,2aa}3layproceedyrcnrided, thatvithi'hours,eieherchetaoyerable valveisrestoredcoOfthL1LCstatusorthe?averEmceelaacrocLteaEtymTripSeeyoiac.

isreducedperTable3.7-L;othaerLae, beSaatleastSCSTL%SYvichhaeheaeatChoursmlinCOLDSEQTDOIIvtthSathefollevfgg 30hours.iVteh3reactorcoolantLooysaa4assooSate4 steasgeaerators bioyorattoa an4etchoaeorsoreaatnscaasIkoncodasafetyvalvesasaoeiate4 etchcaoyerattag leoyLacerable, operation inMDt3aayyrocee4yeetda4,thatvithts4bours,eithereheSnoyerabl

~+ahabLsreacore4eoOPXRASLXstatusorehersaccorcrLybreakersareeyeoe4;ocheartae, baiaCOLO$5t?DOWvf,ch'aneheaam30hours.e.Theyeovtstona ofSyocificatioa 3.0.4areaotapplicable.

4.V.l.l%a44tt5eaa1 Sere>>%lee Xayattmeats ocherChanchose~redby4.05,Z0.C.CXSNT?23/471AÃ5ÃSQST50.82

TASI.E3.7-1HAXIIINALI.SNSl.E POMERRANGEiIE~Ul@}FALVKKKQNSETPOIIIT MITllINOPERASI.E 5TEAHiiaxlmmNueberoCValvesoa~IleSafetyI}axlmmAllaablep~rRangeNeutronFluxIliehSetpointPercentofRATEDTIIERNLLPOMER265.1

"3CC2600.2400.2000.1800.1d00.0.10.20.3040.50.d0.70.d0%.10C.T1>K(SKC)2300.1800.1600.1400.1200~0.10,20.30.40,50,50,VO.80.90.10C.71'SKCjOOIALDCCOOKUHlT1FI6NE17TNSlNETRIPEVENTltITHPRESSNECONTROL,NlNNNREACT?VITYFEEOBACK

2520(J1510QC50(N0QCQ-100102030405060708090100TIME(SEC)DONALDC.COOKUNITlFIGUREllTURBINETRIPEVENTWITHOUTPRESSURECONTROl,NXINNREACTIVITY FEEDBACK 2500'A"50C.5400-'pci-"200n2tOC2300.1900.ie00.2300.t0.20.304050.&0.70.&0.90~ppTi>K(SEC)F800.t&00.t400.I200.IGOO,NO.0.10.24.30.IO.50.54.70.84.90.>OC.r&(SEC)ONMLDC.COOKlNIT1fIQNE12TNSINETRIPEVENTliITHPRESSNECONTROL.,

NXINNREACTIVITY FEEDVCX 620.102030<05080TO8090rvctsac)3.52.5t.4l02030405464708090lCQ7i&(SEC)00NLDC.COOKUNIT1FI6LNE13TNSINETRIPEVENTWITHPRESQNECONTROL,NXINNREhCTIVITY FEEDBACK

5805605~0520580560540520500TOOtO2030<05080208090lCQViue(SKC)580660d<O620500580SdO5io500t02030405484208090>COTi&(SCC)OSLOC.CONtSITIFI6VRf14TNSINETRIPEVNTkITHNESSNKCONTROL,NXINNREACTIYITY FEEDBACK

>>00.4J1000.900.SOO.700.O600.5000.10.20.30.40.50.50.70.80.IO.100.risc'(sac)'00CJ3503OO25020015010050C50102030405060708090100TluE(SEC)GONLOC.COOKUNIT2(FULLV5CORE)FIGURE15TURBINETRIPEVENTMITHPRESSURECONTROL,NXINNREACTIVITY FEEDBACK

204710QC59j-100102030405060108090100TIVE(SEC)~~DONALDC.COOKUNIT2(FULLV5CORE)FIGURE16TURBINETRIPEVENTMITHPRESSURECONTROL,NAXINNREACTIVITY FEEDBACK

SV-lI..SV-l@.SV-24.SV-2e.SV-3TABLE3.7-4STEMILlNEShfETVVALVESPERLOOP810LlFTSETTlNGl065psigl065psig)075psig1075psigl015psiIGRlFlCESILE16in.~l6in.~l6in.~l6in.~MeHf~seXi'ressure slellcorrespoad to~ieateoaditions ofAevalveataoeiaa)eyeratiaI tesyeratwe

.aalpressure.

a7a7TheOtQAk?UTT efcheactaeceaaLtneee4esefocyvelvoeonncoechacchooooon4azy eyecoaytoeeutovillbe1taice4cevtchtn1101ofLce4eetyaycooaureef104fyetg4ctngcheeeocsevereanctotyaco4 syecoe,oyegactonal Ctaaaten!.

Theaeshma>>teLtevtng eayaetcyLaaaeoctace4 vichaoahtneMt'tea100%NitsTRIAL85CLeetna54en!

v5chanace~4loco~fe&hl5anaef heacetna(te~Ma~lyNaacecheeen4anaeT) theeyeetfte4 Mmltf!eacctngsMteltevtng aayaetctee ateLnaaaec4ance v5chchec~tMeocaeflee!tedlitefcheASSWtletan4QggggTAPteeeuteCe4e,1%71I4tcteaThececal!eitevtng cayaotcyefallrafecyvieen~e~1LneaLal),DS,NOSejmMebtaa!JeascLOSye!concetcheaaxhaeseeen4aty eceaII6evtacea!10K~5RRliiLNIL.Aatnto%efaOnautxeafecyvalvea~e~gen~acer~eechacautfte5ene aeltevtng eayaeteyta<<vatlable fetcheallevable tQRIQ,NOSERreecztectea LItalle3.1l.StiRtltcol/etNQCLOtQif'INtaalleveile vtciaafeeyvalveataeyerahle vtehtacheltitcacteaa etchei'?Neeystteeeoca eacdbaaiaet!hetHuecteaLnseeeniary aye~a~flmaI4~RNAf.Ni-reqetxe41'heeo4sceireaecatmidaee!tNIaefcheSee!Range'4%eha55%2aI Theteaacec'FSQ ac~fiscf04$0Ciena~4a!iverNschefe11evtng baaea:0'f41'fa!taII(LN)Nese:Neeence&reaeeeeel'eeyotnl tayeeeaneetQtQ~~L88RLUse~5%%nilhefef~fahlaaatecy%livea~a~'..IelaicNltevtngeeyaetcyefaQ<<afeeyvillaye!aceQataQa.jhyga1,g4,4gfeaallaeeeltivtNI eayocttgefalyaeaatecyvalvetaQe.)leariIS)>4'N~SwanRaageNeecgeathe~tetySoeyeta!fetileep~ye!a!teaOXCRCLQLPQÃtiNg?taSlat.iiNK!N~IO.Qt3'

1,210203040508070d09C>CQT~QK(SCC)452.51.50IO2030IO506070d090t00riK(SCC)DONLDC.COOKUNITIFINE18TVRSINETRiPEVENTARITHPRESSURECONTROL,NINNNREACTIVITY FEEDBACK 6606226)c)58c5605~O5205000l02050405060y0809CtC"T'~K(SEC)~006405606<0620600=5606605405200102030405060708090)CQTiQC(Sgc)NNMlI)C.CONUNiT1FNNE19TURIIKETRIPEVENT'QITHPRESSNECONTROL,IIINNNIREACTIVITY FEEDBACK

Thesafetyvalve)sOPERABLEw)thal)ftsett1ngofg3%aboutthenoefna~alue.H~er,thesafetYvalveshallberesettothenoe)na]valuepicwheneverr~outsidethe+1%tolerance.

1100Ãa'J)1O00.900.800.CD700.600.5000.102030.40.50607080.90.100.TiMK(SEC)500CJ4JVl4004300M200100Vl0cB-1000102030405060708090100TtMK(SEC)QONLNC.CO%NITIFIGURE20TURBINETRIPEVENTWITHPRESSURECONTROL,HININNREACTIVITY FEEOBACK 254l201510OC5mao5g4J-100102030405060708090100T1&(SEC)ONNLOC.CONUNITIFIGURE21TURBINETRIPEVENTWITHNESSURECONTROL,NININNREACTIVITY FEEOSACK

2500.25OC~n'n:~OC.~GOC'v:2OC.n2100.2300.1900.18000.10.20.30.40.50.60.70.60.90,1POri~K(SKC)2000.1800.1600.1F00.1200.1000.0.10.20.30.40.50.80.rim(sac)VO.60.90.iOO.ONNU)C.COOKUNIT2(NIXEOCORE)FINRE22aTNIINETRIPBtENTVITHOuTPRESSNECONTML,NINNNREACTIVITY FEEOeaCX 9

'TC":rocI'gCChO443'1OC~OC19OC.1800,O.10.ZQ.30.10.50.60.70.gQ.9Q1QQr~E(SgC',"30C.13OC1500.140C.1200,1300.600.0.10.20.30,i0.50.60.70,50.90.10CT.K(SEC)tNKL9C.COOKNIT2(NLLVSCORE}FINE22bTNSlNETRlPEVNTMITHOUTPRKS$QRECefTROL,NNNllREACTIVITY FEEDBACK 218Cd4x200102030+0505070b090tCQTiMK(SKC)2.d2.4i.d102030i0546010b090>COrisc(sec)OONLOC.CNKNIT2{NlXEOCORE)FINE23aTWNETRIPEVENTWITHOUTPRESQNECONTROL,NNNNREACTIVITY FKE08ACK tOZO30+050do70809C'CO~MK{SEC)102030iO50do10809C>CoT:MK(MC)OaeeC.CmUNIT2~FuLLVSCORa)FINE23bTURBINETRIPEVENTitITHOUTPRKSSNKCONTROL,NINNYREACTIVITY FEEDBACK 0

5806605<05205805605405205007000iO2030iO50607080SClC~TiSK(SKC)6806808<0o6206009580540112030405080'lo8090>00Tiff(SEC}CDNWLOC.CONNIT2(IIIXKOCORE)FINRE24aTNSINETRIPEVNTWITHOUTPRESSNtECONTROL,NINNNREACTIVITY FKEOBACK 530560$4062053C56v5~0520500102030405060lO8090tCOTatK(SEC)Sao5606<05205005805605<05200t42030IO5060106090ICQTK(SKC)OONhLOC.COOKUNIT2(FULLVSCORE)FINK24bTlNSINETRIPEVENT'WITHOUTNESSNECONTROL,NINNNREACTIVITY FEEDBACK Attachment 4toAEP:NRC:1159C Page1Includedinthisattachment aretwotables.Thefirsttable,entitled"IssuesTrackingList,"isacompilation oftheinformation requeststhattheNRCmadeofAEPSCduringtheApril21,1992meeting.Questions thatwerespecifictotheMod30instrumentation havebeendeleted.Thesecondcolumninthistableindicates thefilenumberwheretherequested information canbefound.Thesefileswillbeprovidedduringtheaudit.Thesecondtable,entitled"Documentation TrackingList,"containsalistingofwhatisineachfile.Asexplained duringtheDecember1,1992meeting,thefilingsystemdelineated inthistablewasdeveloped toensurethatthedocumentation developed tosupportthispro]ectaddressed theNRC'squestions.

0