ML17229B044
ML17229B044 | |
Person / Time | |
---|---|
Site: | Saint Lucie |
Issue date: | 03/02/1999 |
From: | Klein R, Stall J FLORIDA POWER & LIGHT CO. |
To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
References | |
L-99-059, L-99-59, NUDOCS 9903110413 | |
Download: ML17229B044 (28) | |
Text
CATEGORY 1 y.
REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)
ACCESSION NBR:9903110413 DOC.DATE: 99/03/02 NOTARIZED: NO FACIL:50-389 St. Lucie Plant, Unit 2, Florida Power & Light Co.
DOCKET 05000389 I
AUTH.NAY& . AUTHOR AFFILIATION KLEIN,R.M. Florida Power & Light Co.
STALL,J'.A. Florida Power & Light Co.
RECIP.NAME RECIPIENT AFFILIATION
SUBJECT:
"St Lucie,Unit 2,Cycle 11 Reactor Startup Physics Testing Rept." With 990304 ltr.
DISTRIBUTION CODE: IE26D COPIES RECEIVED:LTR TITLE: Startup Report/Refueling Report (per Tech Specs) 2 ENCL [ SIEE: Z I NOTES:
RECIPIENT COPIES RECIPIENT COPIES ID, CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD2-3 PD 1 1 GLEAVES,W 1 1 INTERNAL: ACRS 1 1 CSEE 1. 1 NRR/DSSA/SRXB/B 1 1 RGN2 FILE 01 1 1 EXTERNAL: NOAC 1 1 NRC PDR 1 1 NOTE TO ALL "RIDS" RECIPIENTS:
PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROI DESK (DCD) ON EXTENSION 415-2083 TOTAL NUMBER OF COPIES REQUIRED: LTTR 8 ENCL 8
Florida Power St Light Company,6351 S. Ocean Drive, Jensen Beach, FL 34957 March 4, 1999 L-99-059
@PI 10 CFR 50.36 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 Re: St. Lucie Unit 2 Docket 50-389 P i in R Pursuant to St. Lucie Unit 2 Technical Specification 6.9.1.1, the enclosed summary report of plant startup and power escalation testing for Cycle 11 is hereby submitted.
Should you have any questions, please contact us.
Very truly yours, J. A. Stall Vice President St. Lucie Plant JAS/RLD II
Enclosure:
St. Lucie Unit 2, Cycle 11 Reactor Startup Physics Testing Report; March 2, 1999 CC: Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, St. Lucie Plant 9903ii0413 990302 05000389' PDR ADOCK PDR an FPL Group company
~hurtle S'T<ARg'UgrP> XE'S'f"RE~Og<RX'
ST. LUCIE UNIT 2, CYCLE 11 REACTOR STARTUP PHYSICS TESTING REPORT Author Date .2 z Ray M.
React ngineering, S . Lucie Plant Reviewed Date Walter D. Mead Jr.
Reactor Engineering, St. Lucie Plant Reviewed Date Carl G. O'Farrill S ervisor of P Fu Engineering Approved C. Ashton Pell Reactor Engineering Supervisor, St. Lucie Plant
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table of Contents Section Title Pa e I Introduction 4 II Cycle 11 Fuel Design 5 III CEA Drop Time Testing 7 IV Approach to Criticality 8 V Zero Power Physics Testing 9 VI Power Ascension Program 10 VII Summary 11 VIII References 12 List of Fi ures Fi ure Title Pa e Cycle 11 Core Loading Pattern 13 Inverse Count Ratio Plot- Channel B 14 Inverse Count Ratio Plot- Channel D 14 Power Distribution - 25% Power 15 Power Distribution - 50% Power 16 Power Distribution - 98% Power 17
0 St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table of Contents cont List of Tables Table Title Pa e 1 Approach to Criticality 18 2 CEA Group'Worth Summary 19
11 St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report I. Introduction The purpose of this report is to provide a description of the fuel design and core load, and to summarize the startup testing performed at St. Lucie Unit 2 following the Cycle 11 refueling.
The Startup testing verifies key core and plant parameters are as predicted. The major parts of this testing program include:
- 1) Initial criticality following refueling,
- 2) Zero power physics testing, and
- 3) Power ascension testing.
This Cycle 11 Startup Report is being submitted in accordance with Technical Specification 6.9.1.1 because:
A. Fuel design changes were made, introducing the "Value Added" pellet, the Guardian Grid and consequently eliminating long lower end-caps The test data satisfied all acceptance criteria and demonstrated general conformance to predicted performance..
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report II. cle 11 Fuel Desi n The Cycle 11 reload consists entirely of fuel manufactured by Asea Brown Boveri Combustion Engineering (ABB-CE). The 217 assemblies of the Cycle 11 core are comprised of fuel from four batches. Of these, 64 are fresh batch N assemblies, 64 are once-burned batch M assemblies, 84 are twice-burned batch L assemblies and 5 are )hrice-burned batch K assemblies.
The Region N assemblies consist of non-gadolinia fuel rods (4.1 to 4.45 w/o UQ35 enriched) and Gadolinia (UOz -GDg 03 )'bearing fuel rods (Gadolinia burnable absorber fuel rods, 4 or 8 w/o gadolinia homogeneously dispersed in a 2.2 to 2.55 w/o UQ35 enriched carrier).
The mechanical design of the Region N fuel assemblies differs from Regions M, L and K in the following ways:
- 1) The bottom grid is the laser welded "Guardian" grid. The Guardian grid incorporates debris stopping features. The other fuel batches employ TIG welded lower grids.
- 2) The fuel rod lower endcaps were changed from the long lower endcap design to a shorter design which works with the new Guardian grid. This effectively shifted the active fuel 1.14 inches down relative to the other fuel assembly regions.
- 3) The upper pellet stack spacer disc which separates the top fuel pellet &om the upper plenum spring was deleted.
- 4) The Plenum spring design was modified to accommodate the longer plenum size.
- 5) The fuel rod pellet diameter was increased by 0.0005 inches, pellet dish volume decreased by 69%, and the pellet theoretical density was.increased &om 95.25% to 95.4%.
- 6) The top spacer grid incorporates backup arches in all interior cells as opposed to only the peripheral cells of previous fuel assembly designs.
- 7) The upper end fitting flow and hold-down plates were slightly thickened'. The spring force was increased for the fuel assembly upper end fitting springs PC/M 98016 adressed the mechanical, thermal hydraulic and neutronic impact of the region N fuel design changes. Evaluations performed by FPL and ABB-CE found the operational impact of the fuel design changes to be acceptable. There was no safety impact due to the fuel design changes. Subsequent Low Power Physics, Power Ascension and Shape Annealing Factor (SAF) testing substantiated the conclusions of the evaluations.
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report II. cle 11 Fuel Desi n continued No fuel handling issues were noted due to the Region N fuel assembly upper end fitting changes mentioned above. The impact of the upper end fitting changes had been evaluated by FPL prior to the fuel receipt. This was accomplished by field testing an available Region N design upper end fitting with a PSL 2 new fuel grapple.
The entire Cycle 11 core consists of debris resistant fuel (long lower end-cap or Guardian grid).
The Cycle 11 loading pattern is similar to Cycle 10. Cycle 11 employs a low-leakage fuel management scheme'and is 90 degrees rotationally symmetric.
h The Cycle 11 core map is represented in Figure 1. The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location.
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Repor't III. CEA Dro Time Testin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed. The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit) to the 90% inserted position under hot, full flow conditions. The average CEA drop time was found to be 2.29 seconds with maximum and minimum times of 2.92 seconds and 0.90 seconds, respectively. All drop times were within the 3.1 second maximum requirement of Technical Specification 3.1.3.4. 'In addition the CEA drop time distribution requirements for scram shape (average drop time <2.77 seconds and maximum drop time <3.07 seconds) specified in the reload PC/M 98016 (Reference 6) were satisfied.
St. Lucie Vnit 2, Cycle 11 Startup Physics Testing Report IV. A roach to Criticali The approach to criticality involved diluting from a sub-critical boron concentration of 1660 ppm to a predicted critical boron concentration of 1441 ppm. Inverse Count Rate ratio (ICRR) plots were maintained during the dilution process using wide range channels B and D. Refer to Figures 2 and 3 for ICRR information. Table 1 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.
'nitial criticality for St. Lucie Unit 2, Cycle 11, was achieved on December 12, 1998 at 06:29 with CEA group 5 at 60 inches withdrawn and all other CEAs at the all-rods-out (ARO) position.
The actual critical concentration was observed to be 1473 ppm.
St.t ucie Unit 2, Cycle 11 Startup Physics Testing Report V. Zero Power Ph sics Testin To ensure that the operating characteristics of the Cycle 11 core were consistent with the design predictions, the following tests were performed:
- 1) Reactivity Computer Checkout;
- 2) AllRods Out Critical Boron Concentration;
- 3) Isothermal Temperature Coefficient Measurement; and
- 4) CEA Group Rod Worth Measurements.
Proper operation of the reactivity computer is ensured by performing the "Reactivity Computer Checkout". This part of the testing determines the appropriate testing range and checks that reactivity changes are being correctly calculated by the reactivity computer's internal algorithms.
The testing range is selected such that the signal to noise ratio is maximized and that testing is performed below the point of adding nuclear heat. The reactivity calculation is. checked a positive and negative reactor period test through respective introduction of a known by'erforming amount of positive and negative reactivity. The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 98016 (Reference 6).
Satisfactory agreement was obtained.
The measurement of the all-rods-out (ARO) critical boron concentration was performed. The measured value was 1524.9 ppm which compared favorably with the design value of 1491 ppm (Reference 2). This was within the acceptance limits of+ 100 PPM.
The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was derived. The MTC was determined to be -1.630 pcm/'F which fell well within the acceptance criteria of + 2.0 pcm/'F. of the design MTC of
-1.938 pcm/'F (corrected). This satisfies Unit 2 Technical Specification 3.1.1.4 which states that the MTC shall be less positive than 5.0 pcm/;F when reactor power is less than or equal to 70%
rated thermal power.
Rod worth measurements were performed using the rod swap methodology. This method involves exchanging a reference group, which is. measured by the boration dilution technique, with each of the remaining test groups. A comparison of the measured and design CEA reactivity worths is provided in Table 2. The following acceptance criteria apply to the measurements made:
- 1) The measured value of each test group, or supergroup measured, is within+15% or+100 pcm of its corresponding design CEA worths, whichever is greater and,
- 2) The measure worth of the reference group and the total worth for all the CEA groups measured is within+ 10% of the total design worth.
All acceptance criteria were met.
0 St. I ucie Unit 2, ~cle 11 Startup Physics Testing Report VI. Power Ascension Pro ram During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt) for power plateaus at 25%, 50%, and greater than 98%
rated thermal power.
A summary of the flux maps at the 25%, 50% and 98% power levels is provided in figures 4, 5 8c
- 6. These flux maps are used for comparing the measured power distribution with the predicted power distribution. For the purposes of the power ascension, the acceptance criteria requires the RMS value of the power deviation be less than or equal to 5%. In addition, for the 25% and 98%
plateaus, the individual assembly powers should be within 10% of the predicted power (both) and the relative power density (RPD) should be within 0.1 RPD units of predicted for the 25%
power case. These criteria were satisfied.
A Shape Annealing Factor (reference 5) test was performed in conjunction with the power ascension (reference 3). This test was necessitated by the replacement of the Reactor Protection System Channel "D" the Linear Power Range Detector and the change in the active fuel stack height introduced with the Region N fuel. The measured Shape Annealing Factors were installed in the Linear Power Range Detector instrument circuits as required by the reload PC/M 98016 (Reference 6).
Additionally, calorimetric, nuclear, and delta T power calibrations were performed at each power plateau prior to advancing reactor power to the next higher level specified by procedure.
10
St. Lucie Unit 2, Cycle 11 0
Startup Physics Testing Report VII. Summaru Compliance with the applicable Unit 2 Technical Specifications was satisfactory and all acceptance criteria were met.
11
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report VIII.References
- 1) "Initial Criticality, " Pre-Operational Procedure 2-3200088
- 2) "Reload Startup Physics Testing, " Pre-Operational Procedure 3200091
- 3) "Reactor Engineering Power Ascension Program," Pre-Operational Procedure 3200092
- 4) St. Lucie Unit 2 Technical Specifications.
- 5) "Shape Annealing Factor Test," Pre-Operational Test Procedure 3200093
- 6) St. Lucie Urit 2 Cycle 11 Reload PC/M 898016 12
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report FIGURE 1 CYCLE 11 CORE LOADINGPATTERN P M K H Y X W I
V I
~ T I
S F I
E I
0I C 'B I A
I I I I L41 L97 L76 L47 I I I I I I I I I I I I I I I
-21 I I I I I L66 M04 M24 N15 M48 N18 M26 M10 L84 h I 28 10 I I I L86 N20 M45 N35 L04 M35 L06 N40 M54 N26 L62 55 23 200 34 15 I I L65 N29 201 L59 N02 111 N42 114 L11 N48 4
L22 N04 78 L93 N30 202 L88
-'r'-'-i-'-'-18 I I I
N27 L91 N09 L50 M62 M06 L27 M32 L80 N10 L61 N14 L68 I I
'- 17 43 73 118 29 119 107 8 I
i M11 M52 NOS L78 N49 M58 N54 K78 N56 M68 N34 L52 N06 M44 M01 -~ - -
I
~
16 112 19 113 51 5 115 I M27 N52 L20 M33 'M69 M39 L55 N57 L73 M41 M55 M59 L34 I N36 M21 15 105 203 204 17 33 104 100 L43
-'-'-14 N28 L07 N45 L25 N62 L71 M81 M63 M83 L57 N63 L31 N46 L01 N16
-'13 L74 101 32 75 25 L94 21 6 1
-'-'-12 L95 M49 M38 205 L12 MOT 67 K79 N53 30 M66 K73 70 M65 N64 44 K80 M08 60 L13 M37 206 M50 L75
-'1
-'-'-10 N23 L02 N43 L30 N55 M64 M82 L70 N60 L24 N44 L08 N24 -'
L42 63 63 18 109 116 72 13 -'-'- 8' M22 N39 L35 M60 M56 M42 L72 N61 L54 M40 M70 M34 L21 N41 hl28 122 110 207 52 208 108 121 M02 N07 L53 N33 M67 N58 K77 N59 M57 N47 L79 N01 M51 M12 -'"'-'- 6 71 16 14 64 9 12 L69 N21 L60 N11 L81 M31 M05 L28 M61 L51 N12 L90 N22 L83 -'-'-'- 5 120 20 102 31 103 41 7 L89 N31 L92 N08 L23 N38 L10 N37 L33 N03 L58 N32 L64 4
209 76 27 22 117 210 L63 N17 M53 N51 L05 M36 L03 N50 M46 N19 L87 3
3 74 211 79 L85 M09 M25 N13 M47 N25 M23 M03 L67 69 26 L46 L77 L96 L40 Assembly Serial ¹ XXX Insert Serial ¹ ¹¹ 13
St. Lucie Unit 2, Cycle il Startup Physics Testing Report FIGLRE 2. WIDE RANGE CHANNEL B BORON DILUTION 0.9 .
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1000 2000 3000 4000 5000 , 6000 7000 8000 OAu.OII$ DILUTCD FIGURE 3. WIDE RANGE CHAN%L D BORON DILUTION 0.9 0.8 0.7 0.6 K 0.5 5
0.4 0.3 0.2 0.1
.0 1000 2000 3000 4000 5000 8000 7000 8000 OALLONS OILUTKD 14
0 St. Lucie Unit 2, Cycle 11, Startup Physics Testing Report Figure 4 POWER DISTRIBUTION COMPARISON WITH DESIGN -25% POWER Uhg
$ 400$ urtd: $ )CACOIC $ )cslgn:
OODTD )O 7)DSNJkM PDWW LDTO Jxtonto
$ 471 LAlttH'";
CCACDTOon,7$ $ ,=,
eorm Conc. !Till0
'.!',]I
.
~ 0 p I t J 0 4 l)T 1$ 11$ IM 7 I
~ SN DSN DSID MN
~ SN OSU 0JIC tSIT AN$ 44ll 4)to 4117 IQ )I 10 Nl 410 $$0 )$ 00 1410 ~ JN OAN 4$ 1 JS7 )SQ ISQ ~ AQ ~ DN ANT 4 Alt 4170 4141 4NC A
IQ I JN IN IN MT IM 17$ ltf
)$ 10 IND )SN 1410 1170 1$ 'N ISN Uft I.QD OID LIN IAN 1$ )t IJM LMD 1411 ISQ 140$ Llol O$
4451 4105 ~ 41$ 44)l 44)t 4417 4411 414t 44Q 441$
Itl ltl MD Nt Ml NI MS )M IQ IQ Ml IJTD 1$ )l LIOI Un Ult
)SIC 141 ~
Ult 1450 IJOS lln IAN IJID ISOI 14)0 1110 I JSD ISO IJ50 IJ7A
)JIO
)SN ATD ASS 4Jkl 4451 4JDC 44Q 441$ 44Q 441$ 4Nt 44Q 4NA 44N 4)OS I'8 ln Itt )$$ )n IM ln 171 ln IN Mt MT MC LQD UTD IJN SN N
)$ 00
)SN IDN IIIO IUD IJCD )lit SN IJln Ult LMO Un
)$ 50 Llll L)Q LITC 1$ 1T IAID IDM LMC AN4 44Q 4 450 4477 44N 4DN 4N$ MN 41OI 441$ 4AN 41)1 44Q 4JQ MS SM MS Ml M4 LO )$ 7 QC QS IQ 47D )ND ISN U)4 USD JN INO U>> ISN 1410 AID LDN ISN UN L)N JIC )$ 71 LL!l IJot )NI I 4110 4DN 44N 0ND ONI ~ DQ ~ DIC ~ ADI ODN ~ lnl ~ Aol ~ DN 7 Ml MI MI MS 11$ Mi Ml la Qt QT
)AN LQO LQD Uto 1510 $ 50 Uto IJN IJN Loni ISN I UOD INC LLTC LN7 t 1$ ) t INT LQS UDI LNt ISQ I OJIO ~ DM ~ 1Q ~ 41$ 001$ MIS ~ 1Q ~ 11$ ~ JQ ~ All ~ All ON I ~ JQ 17 IQ IQ Ql Qt Qt Ql QT QS IQ Qi Ql Ilt MN IJN USD IJN )NC l&0 ND IND IND Uto IDN ISN ISQ 1417 1404 Llol 1$ n UOT 1417 I 1$ Tl IDDS UOS )SN 0DIS ONA DJM ~ 1Q ~ JQ ~ 41$ ~ 4)$ ~ 41$ ~ Alt ~ 41$ ~ AOS ~ Nl 11$ l)$ Ill 11$ IQ Ill IN Nl NT NS loo Nl LIN Ult LIN ISN LAN IJN 1410 UN LIN IJnl LIN )IN LIN JIC 1517 Stl Ult IJN IN) IJN 0411 MN, LNO 44N OAM ~ AQ ~ 4M ~ NO ~ 11$ ~ 4N ~ JN ~ 4$ 0 0 Jl'I 7 I
)SN ISIO IND IJN JSD IJN ISN IIOI 1450 INC UM ISI5 UDS $$ t litt Un MN INI IN7 ON) NOC OA)$ 01)5 ~ AQ ~ 1M DNS SN Tl 77 7I Tl n 7 17 ISSD INC LMD IND ISN JID 1410 LIN )SN )AID ISN 410 IUKO Nt Lilt INt LQC IDI7 UII $ 11 lANt LIN UDI INO IS)$ DQ OJQ ON I OJQ ONI CAN OJQ ~ JQ ~ NS MN MN 0400 ~ JN 0417 ONT I I AC4 LMD ISIO JN ISN I 15D ISN $ 70 1$ 'N Lilt ISLD USD ION 477 1ltl )JN JN IJOlt )JN Un Ull LQt ISN 1471 INT 0AQ OAM MM 04)0 0411 0JQ ODIO OAIC 4401 ~ )KO ~ NI OAN DACI
$ ) I I L)IO 1)N IJN 1110 IDN 1410 IJN LMD )JN LMI 44N lln4141 1$ 1'I CDQ JN
~ 100 UIC 0401 INI 040$
110$
~ D05 JN 4DN 1$ )7 44lt LQO 41M IJCS AJQ 41)0 I 17 ll ISN )JID ION IS%I )4N ISIC INO ISN IJSC LQD AN ISN IJTO )AN UN ISIS LNt IJIC LITI Ull AQ 441$ 411C 41N ONI 4)N 4145 440$ 44M 4N) 4NC 44Q I 17 ll 1$
Lilt 1410 ISN 1410 1470 L)OI IJCT UQ IJM ISlt IDN 1$ $ )
4NS 411$ 44M, 41M 44Q 4 Jlt Q Q JTD ACO JQ IJN I 4$ 1 4110 44N 411$ tin) 4407 4417 I
17 4407 0JIC 440I CADI RMS Deviation: 1.63/
lh0 07cof 0 IMItcoDh CVMCOI N opof4140 Pcf Appcholf ~, WNo otvINNO chDIDo Pt Iccc PNO of DOPN ct OJTN Oho ONC\ OW fttnNCITICTIN CA 0 d,) 4 ptntflht0 N ON $ $ NIO Ol pCT C CIO pDWCf IC51 )DNC NIS ONllg OIC pOWCf 0CC tfNIDCI IC51 PftgfNTL El 15
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 5 POWER DISTRIBUTION COMPARISON WITH DESIGN 50% POWER Power SSISCITKNon Comptftson tthh 270$ 25$ 1
$ 4080IDOATI
$ >>tft>>
ddACOIC t>>$ IQO~
',ttt,~(I 1st "tti I"
Den>>I LIT>>l At>>7 It h>> 05 Osffttl
',]let dlrln Conc 8 ~ 8 5 8 ~ 8 C 117 ll 11$
Cl'5 ll f I 8$ 10 MCO CQD MQ CQI 40>> 4110 40>> 40CI IQ Q N KIT Alt JID IJOD UN ~ NO ~ 450 CSIO AQ 45l UQ 1$ 1$ ~ JQ ~ ACC Ott>>
41Q 4NI 4010 4010 4015 4D12 4JN ODIS 102 I 50 QC ISN INO ISN Ult IJN ID>>
ASO KISS ISIC IJ I I Ull 14Q ~ $1 40>> 4ACS 4011 41ll 4021 4DIT QI 51 QD Qt ltt QT QC Ql Ql IQ Ill ISIO LQO ISN INO IJIO ID>> IND INO ISN LI>> LQD ATD I 2412 LQI ISQ IDI>> IN5 UTT lÃl UN ISN UQ U l1 0$ 1 4017 40ll DNI 425$ 4NA 4NS OACI 4NC 400C 4AIN 402$ 4NI 4DN 17$ 178 177 15 Ill I'5 171 Ill 170 Nt Qt 1st LQD 1$ >> 1400 1210 1010 L170 I AN LIIO $ 10 IJ>> LQD isa 1$ $ $ IJQ 1407 Uls UOT 1$ >> I>>7 LNT JID 1$07 Llll ISIS 415K 40Q 4011 ~ NI MQ MN ~ ACI ~ DCI 4AOt 4NI 4NS IC5 lll Nl Ql ill QO Qt IN 1$ T QC 155 ISA Ql 1$ 1 4$ 0 IAI'Io IAID 70 ISIO USD IS>> 1$ >> Litt ISN J70 1000 AIO All ID>> INC 70 IJOI IJll 1$ 7t 0TC ISKI LIQ IJth Slt IDI~ AQ 4AQC 40Q 400C 0150 OAKI ~ 157 ~ Ahl CDN ~ 110 ~ DIK OADI 0D01 ~ DKI 4001 QO la 1>> Ilt IAC l>> l>> la ill Ia Qt QT Ja UN 1070 LQD ISCO IJIO ISN 10>> 1$ >> IJN ISN UIO 14SC LNT sill 1001 1$ lt 0$ 2 UCI Lla Ull IJIC 40Q ~ 010 Olol SNS 8010 ~ AN ~ 417 Iltlt ~ All ~ DI~ >>57 ~ 41l ~ Dll Ql Ql Ql Qt Qt QO Qt Ql QS IQ Ql Qt I'5 1$ >> LQD IJCO IAOD IJID 14>> IJN 14>> IDN Uls UN INS 141>> IJTC IDDT 1220 1020 Uls I>>8 1$ 5 UOT Ill 1 1411
~ 11$ ~ 1N ONl ~ 01$ DNO ~ Jlt tlhl ~ 1Q ~ AQ Olh1 801$ ~ Alt OAQ QT IQ 110 IQ Ql IN 85 IDT IOC 5$ 10$
SN IS>> 170 IJCO Ltlo ID>> $ 70 Uls Uls Slt 1077 JN ISQ 101$ I DIS ISQ 47C UQ 'I JQ 0DII OJQ OAQ ~ JQ ~ 11$ ~ Nl ~ 01$ ~ J15 >>IN ~ DQ ~ NS 0411 70 I I 8000 1$>> Ult ISN IDN JN IND 10>> 12>> IAN ISN 1$ >>
ISQ U l1 ISQ IDDT 0$ 1 UQ INS U57 IJIA ISQ
~ Nl CQS ~ Alit ~ Jlt ~ 1Q ~ JQ ~ 1N ~ DIS ~ 11$ ~ 115 N
Q I Tt 70 77 7$ 72 71 10 415$ 10>> LI>> Ule ISN 1$ $ 0 UN I>>0 ISN Ja 4NS Ua ICIA LNC 1.1>> I IOI 1$ $$ UQ LNT INC ISN JQ 01ll 011C 00ll ONT t018 Mlt ~ N5 0007 OAK5 ~ DQ MDI ~ NO 4AM I I I t $$
llD UN ISID t 1510 21>> JN ISN ua 1510 1$ 8l I >>0 All U'I~ IJQ tJlt 1$ >>l ISN ~ '5 IJlt Lia IJ>> 1$ 1$ ID>>
4NI OAOI OAKYI OAOI ONI ~ DN 04N MIN ~ Al'I 40>> ONI 400$ 4151 I I t u>> ISN ISN 14 10 IJN 1270 UN Llls Sle LNI I.QD IS>>
12SS 401$
ill4011 I IJDT 4157 1407
~ AK5 INT ODCI UQ
~ DN IN7
~ 00$
LIN 400C 1st 4215 1407 4017 LIQ 4DQ 1270 40Q I I ll 1270 INO IS>>0 10>> 1$ >> Uls ISN U>>0 LQD 1412 IACC IJN INT uls INl INS Ul1 Ull 4011 4NS OAOI ~ ACI ~ NS 4AOI 40Q 4NI 4NI Q I It 5 lt ls 1$ ll I IN 10>> 1$ >> ISN LQD ISN IJIO IJ>> LQO ~ 70 I LQC 1410 sill LIQ Q ISIC ISS$ '170 4007 4NC 4251 40N 4NC 4DQ 4NI 4NC 4010 4NS 5 Q AN 050 INO 470 4010 Jll 40Q 70 t
Msl 1210 MCI lll4NI I
Sh 4AK5 40>> NK5 4AK5 RMS DdVldtlOn: 1.J9k N ODCfNKO hef DAIDCIKJK hhm oct>>noh shot45 50 Ns0 5>>n of 0otla to DDN Dno She OICof0 nlilCDon 07>>SIem f
IIWOI ha cot>> emems IÃ 0 f,l 8 peftollne5 N CN 40 >>VII, M pet elm powtf IDQ pnht>>10 oof Klg Ihe powef KICeh>>on test prottfsnc 16
St. I ucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 6 POWER DISTRIBUTION COMPARISON WITH DESIGN -98% POWER Una power DIN)ttn4)oh colllpNtlon yhal De Ntpt nkasarcd: DCJCDN Secrcc N).ttt) 1100 1st t)tt 1)OOU; Smenec DUS~"'c'esign:
40445tltyi; ',
Sccsncsnc et)SAAA1I'"Le n 4 a I n 4 I It ll US N 5 t M)4 OSN 0410
~ SN 4STC MTS M)I 4AN 4AN 4DN 4ANI U N 101 )05 LUO SCD Lite ~ Jcs ~ A50 MSO Act IJTC All IJDI ~ JS) ~ N) ~ stt 4llt c 4404 4ANI 4411 44U 44U OJN I IN )St IN Als IACD ISN ISN Lite ISN IS' 1450 AC I UNI LIU LISI ISN ISN IANS I 4 AU 44) I 44m 44n 4DU c
4ACC 44N 441S 44) I 1$ 1 lt1 Nt IN Ut UC US IN IU Ul Ul IJN ISN IAN ISN IDN ISN IAN ISN U)0 LIN I IJDD Ucl ICU IJN lect I JU IDU 1 Ale IJII 1)00 ACI 4DII 4)NO 44U 4411 4ml ~ ANI 4AN4 44U 4JN 44N 44N 44U In 111 151 ln )TC US ln In its Nt lcl lit IJN ISN Jis IJN ION UN )DN ISN sn IJN LUD IS)0
)ill44N 44m Ti 4AIN
)Sic
~ A4C
)AN Mll Lli)
~ ADI i ms
~ Ael Lilt 4ADC sn 4DU 4JU Llcl 44U U)A 44N IU lll ND LN Ut US UI 151 l)l IS)I 1$ 14 ISN JN ISN ills Isn't ISle )Am Ael
)SIC L)ll L)$ 5 ISU u1 I ISU )AC I 4ANC 4)NI ~ AU ~ Jl I ~ 41$ 4DO) 4DN 4ml ~ Dtl IN Ict ics NS Nl N) N) ill )CO Ut UT UC UOD LIN LUO UN IDIO UN INN LUD UCO IUD ISN
)DU LIN USC LIU I LNI UN LUT LIN JC1 ODOT ~ mc ~ AN ~ AU OAU ~ Alt MU aln MCI ~ ANC ~ JN M45 Ut Ul UI UC US Ul Ul Ul IN lit lt UN IANO UN) Leis UN Ule )AN IJai ISN UN IJ01
~ 40$
IJU 0DU JU
~ All IDU Ml1 utlMU Ilnl~ 415 I 4DDS
)lt)
~ 41$
ISU
~ ln UN
~ AN LU)
~ Jlt LIN 44M UT
)N Ul UI Ul IN SN NC NS let 10$ 1st LND LU4 ISN lsn Jl IDN Jle Llm UDO Lln I
MU IDTS aml un SJU 04) I INI
~ Alt 1451
~ DU Alt OOU 1451
~ lot ltlAII un
~ ~ JU ~ AU L15)
F 411 I
ODtt 5 I
)lie IJN IDN ION IJN Nce ION lme ISN UN ISN IJ)C ID)I All IDCS 1451 IDC) IJN LUC IN) 44N ~ AN Ml) ~ Alt 4 SIT Mst ~ ANT ~ 4U ~ lit ~ 405 I it TT IC n I JSD IJIO IJN LIN Lln ISN SN LUI 1450 J14 ~ ACI NI UN ID)I LIN 11$ 1 ISU Jtl SIN ISN Jn NNS ONO Mst MDC MU MU ~ DN ~ Ant MIC ~ ANC ~ Am 1 I 1 LND ISN L)14 Uls LXO lie IJDD IDIO IJN Isle ACI uc1 UU u1 ) USC lit) Att ISN u1 I LIN I st ODN DANI 44CI 4ANI ~ Aet OD0$ ~ All ~ AOS 4ANI 4lal 4AN I I I LIN LUC
)lit LI lc IAN IDU ula un IAN IAN Llle UN ACO JTI LNO lln LIN 44N 440I ~ DU MN ~ ACI 4 mt 4ln 4JU 44ll I lt I 5 IS)0 um'JIC IJlt IACI )Jlt lms 1 see ATO IJle IDU 141$ ISN Lml IJU UU I 44N 4)IN 4AU Msl 44N 4401 4AIU 4ml 44U U I lt U lt IC 1$ N ASD Ills IDN ISN LIN Lite IJN ISN I)CD UN AC) LUS UNS IJN l)N LIU )ST) IJN IACI Lml 4411 4DU . 4415 4llc 44DC 4)m 4ANS 44)0 44) I 4ml 44U U N t JDI LUD Scs IJN Jcs 4$ 0 451 IJll JU IJN Jct ACD 4JU 4411 4)NI 44N, 4401 4JN I
$ 10 JN sle IT 4401 J'n MN 4NC ll 4DN RMS Devlatlon: 1.25'A tna mcor 0 oetecaon system N onerame oer Dooencsx t, nato aevuaon snoam os Ns 0 man or cham Io as@, ana meet me reqeremems a DA I 4 snntormea a me sa ena os per ceca power tnt pcmewe meme me power acean smn test pmefmh, 17
0 St.
..
I ucie Unit 2, Cycle 11 Startup Physics Testing Report I
Table 1 Approach.to Criticality Dilution Rate Initial Boron Final Boron Dilution Time Concentration Concentration (minutes) 132 gpm 1660 1591 ~
21 88 gpm 1591 1491 70 44 gpm 1491 1473 75 18
0 St. Lucie Unit 2, Cycle 11 0
Startup Physics Testing Report Table 2 CEA Group Worth Summary CEA Group Measured Worth Design
- Worth Percent Difference (pcm) (pcm)
Reference Group B 2140.69 2070.00 -3.30 .
~
1427.65 1417 -0.75 1&2 1724.48 1691 -1.94 3,4&5 1762 1712 -2.84 Total 7054.84 6890 -2.34
- Reference 2 Percent difference = (Design-Measured)/(Measured) *100 19
0 a,
}
l