ML17331B133: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:DONALDC.COOKUNITS1R2MIJNSTEAMSAHHYVALVELIFI'ETPOINTTOLERANCERELAXATIONNuclearandAdvancedTechnologyDivisionWestinghouseElectricCorporationDecember1993e1993WestinghouseElectricCorporationAllRightsReserved9312230047931217PDRADOCK05000315.PPDR SECL-91<29,Revision2TABLEOFCONTENTS~SEI~NPAEListofTablesListofFiguresnISafetyEvaluationCheckListIntroductionLicensingBasisEvaluationsVINon-LOCALOCAContainmentIntegritySteamGeneratorTubeRuptureComponentPerformanceSystemsEvaluationRadiologicalEvaluationPlantRiskAnalysis/PE)PlantRiskAnalysis(non-IPE)I&CSystemsTechnicalSpecifications517242425262626262727AssessmentofNoUnreviewedSafetyQuestionConclusionReferencesAppendixA:SignificantHazardsEvaluationAppendixB:RecommendedTechnicalSpecificationMarked-Ups28313291429R2.wpf LISTOFTABLESTABLEPAETable1:MainSteamSafetyValveLiftSetpointsTable2:DNBDesignBasisTransientsNotAffectedbyMSSVLiftSetpointToleranceIncreaseTable3:Unit1TurbineTripSequenceofEventsTable4:Unit2TurbineTripSequenceofEventsTable5:CurrentLicensingBasisSteamLineSafetyValvesperLoopTable6:MSSVSetpointIncreaseSteamLineSafetyValvesperLoopTable7:Unit1LowPressureLowTemperatureInputParametersTable7a:Unit1InitialInputParametersfortheSmallBreakLOCAAnalysisTable8:Unit1LowPressureHighTemperatureInputParametersTable9:Unit2LowPressureHighTemperatureInputParametersTable10:Unit1SmallBreakLOCAEvaluationTimeSequenceofEventsTable10a:Unit1SmallBreakLOCAAnalysisTimeSequenceofEventsTable11:Unit1SmallBreakLOCAEvaluationSummaryofResultsTable11a:Unit1SmallBreakLOCAAnalysisSummaryofResults333537383941424345Table12:Unit.2SmallBreakLOCAEvaluation46TimeSequenceofEvents47Table13:Unit2SmallBreakLOCAEvaluationSummaryofResults48ubxxx.wpf:Id-121393 SECI91<29,Revision2LISTOFFIGURES~IGURBFigurela:IllustrationofOvertemperatureandOverpowerhTProtectionforUnit1Figure1b-c:IllustrationofOvertemperatureandOverpowerhTProtectionforUnit2(mixedandfullV-SHcores)Figure2:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure3:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure4:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure5:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback;SteamGeneratorPressureandMSSVReliefRateFigure6:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure7:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure8:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure9:'nit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure10:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure11:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure12:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure13:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure14:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperature'1429R2.wpf SECL-91<29,Revision2LISTOFFIGURES(Continued)~FI@REFigure15:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure16:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure17:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure18:Figure19:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRUnit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure20:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure21:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure22a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure23a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure24a-b:Figure25a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureUnit2TurbineTripEventWithoutOPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure26a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure27a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure28a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBR91429Rz.wpf1v
 
SECI91-429,Revision2LISTOFFIGURES(Continued)FIUREFigure29a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure30a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure31a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure32a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure33a-b:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure34a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure35a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure36a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure37a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure38a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure39a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure40a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure41a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerReliefRate91429R2.wpfv SECI91-429,Revision2CustomerReferenceNo(s).PO:04877-040-INWestinghouseReferenceNo(s).WESTINGHOUSENUCLEARSAFETYSAFETYEVALUATIONCHECKLIST1)NUCLEARPLANT(S):DONALD'CCOOKNITS1AND22)SUBJECT(TITLE):RELAXATINFMSSVSETPOINTTOLERANCETO+/-%3)Thewrittensafetyevaluationoftherevisedprocedure,designchangeormodificationrequiredby1OCFR50.59(b)hasbeenpreparedtotheextentrequiredandisattached.Ifasafetyevaluationisnotrequiredorisincompleteforanyreason,explainonPage2.PartsAandBofthisSafetyEvaluationCheckListaretobecompletedonlyonthebasisofthesafetyevaluationperformed.CHECKLIST-PARTA10CFR50.59(a)(1)(3.1)YesXNoAchangetotheplantasdescribedintheUFSAR?(3.2)YesNoX,,AchangetoproceduresasdescribedintheUFSAR?(3.3)YesNoXAtestorexperimentnotdescribedintheUFSAR?(3.4)YesXNoAchangetotheplanttechnicalspecifications?(SeenoteonPage2.)4)CHECKLIST-PartB10CFR50.59(a)(2)(JustificationforPartBanswersmustbeincludedonPage2.)(4.1)Yes(4.2)Yes(4.3)Yes(4.4)Yes(4.5)Yes(4.6)Yes(4.7)YesNoXWilltheprobabilityofanaccidentpreviouslyevaluatedintheUFSARbeincreased?NoXWilltheconsequencesofanaccidentpreviouslyevaluatedintheUFSARbeincreased?NoXMaythepossibilityofanaccidentwhichisdifferentthananyalreadyevaluatedintheUFSARbecreated?NoXWilltheprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARbeincreased?NoXWilltheconsequencesofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARbeincreased?NoXMaythepossibilityofamalfunctionofequipmentimportanttosafetydifferentthananyalreadyevaluatedintheUFSARbecreated?NoXWillthemargin'ofsafetyasdefinedinthebasestoanytechnicalspecificationsbereduced?91429R2.wpfvi SECL-91-429,Revision2NOTES:Iftheanswerstoanyoftheabovequestionsareunknown,indicateunder5)REMARKSandexplainbelow.IftheanswerstoanyoftheabovequestionsinPartA3.4orPartBcannotbeansweredinthenegative,basedonthewrittensafetyevaluation,thechangereviewwouldrequireanapplicationforlicenseamendmentasrequiredby10CFR50.59(c)andsubmittedtotheNRCpursuantto1OCFR50.90.5)REMARKS:TheattachedsafetyevaluationsummarizesthejustificationforanswersgiveninPartA3.4andPartBofthissafetyevaluationchecklist:'Referencetodocumentscontainingwrittensafetyevaluation:FRUFARPDATEPages:Tables:Figures:Reasonfor/DescriptionofChange:UFSARMark-userovidedbsearatetransmittal6)SAFETYEVALUATIONAPPROVALLADDER:16.1)Preparedby(NuclearSafety):6.2)Reviewedby(NuclearSafety):dccook.wpf-121093vn SECI91<29,Revision2DONALDC.COOKUNITS1&2INCREASEDIVORY&#xc3;ST1MHSAFRXYVALVESEIPOINTTOLERANCESAFEIYEVALUATIONI.INTRODUCTINAmericanElectricPowerServiceCorporation(AEPSC)hasfoundthatoveranoperatingcyclethesetpointoftheMainSteamSafetyValves(MSSVs)canchangebymorethan1%fromtheoriginalset-pressure.AEPSChasrequestedthatWestinghouseperformanevaluationtoincreasetheliftsetpointtoleranceontheMSSVsatDonaldC.CookUnits1&2.Thefollowingsafetyevaluationisprovidedtosupportchangingtheas-foundliftsetpointtoleranceasstatedbytheTechnicalSpecificationsfromJ1%to+3%.Duringnormalsurveillance,ifthevalvesarefoundtobewithin+3%,theywillbewithinthebasesoftheaccidentanalyses,however,thevalveswillberesettoJ1%toaccountforfutureaccumulationofdrift.Thus,thisevaluationpermitsaJ3%setpointtolerancetoaddressas-foundconditions.TheMSSVsarelocatedoutsidecontainmentupstreamoftheMainSteamIsolationValves.Thepurposeofthevalvesistopreventoverpressurizationofthesteamgenerators.Inordertoaccomplishthis,abankoffivevalvesislocatedoneachofthefoursteamgenerators,andthereliefcapacityisdesignedsuchthatthetotalsteamflowfromthe20valveswillboundthatproducedbythelimitinglicensing-basisanalysis.ForDonaldC.Cook,thetotalreliefcapacityofthe20valvesis17.153E6ibm/hrat1186.5psia(1171.5psig).Theliftsetpointsoftheindividualvalvesoneachsteamlinearestaggeredatdifferentpressurestominimizechatteringoncethevalvesareactuated.Staggeringthevalvesalsominimizesthetotalnumberofvalvesactuatedduringthosetransientswherelessthanthemaximumreliefcapacityisrequiredtherebyreducingmaintenancerequirementsonthevalves.TheactualsetpointsareprovidedinTable1andaredocumentedinTables4.7-1and3.7-4oftheUnits1and2TechnicalSpecifications,respectively(Reference1).91429Rz.wpf SECL-91<29,Revision2TheoperationoftheClass2mainsteamsafetyvalves(MSSVs)isgovernedbytheASMECode(Reference2).AEPSCwillmaintainthedesignbasisoftheMSSVsbyensuringthatthevalves,ifoutsidetheJ1%tolerance,willberecalibratedtowithinJ1%.Thepurposeofthisevaluationistoprovideaquantificationoftheeffectsofahigheras-foundliftsetpointtolerance.ThissafetyevaluationwilladdresstheeffectsoftheJ3%as-foundtoleranceonUFSARaccidentanalyses(non-LOCA,LOCA,SGTR)andwilldocumenthowtheeffectsareaccountedforwithintheaccidentanalysesandtheacceptabilityoftheincreaseintheliftsetpointtolerance.91<29R2.wpf SECI91-429,Revision2TABLE1MAINSTEAMSATINYVALVELIFI'ETPOINTValueNumberSV-1SV-1SV-2SV-2SV-3.LiftSeoint11065psig(1080psia)1065psig(1080psia)1075psig(1090psia)1075psig(1090psia)1085psig(1100psia)
 
==References:==
Table4.7-1oftheUnit1TechnicalSpecificationsandTable3.7-4oftheUnit2TechnicalSpecifications91429R2.wpf
 
SECL-91<29,Revision2II.LICENSINGBASISTitle10oftheCodeofFederalRegulations,Section50.59(10CFR50.59)allowstheholderofalicenseauthorizingoperationofanuclearpowerfacilitythecapacitytoinitiatecertainchanges,testsandexperimentsnotdescribedintheUpdatedFinalSafetyAnalysisReport(UFSAR).PriorNuclearRegulatoryCommission(NRC)approvalisnotrequiredtoimplementthemodificationprovidedthattheproposedchange,testorexperimentdoesnotinvolveanunreviewedsafetyquestionorresultinachangetotheplanttechnicalspecificationsincorporatedinthelicense.WhiletheproposedchangetotheMSSVliftsetpointtolerancesinvolvesachangetotheDonaldC.CookTechnicalSpecificationsandrequiresalicensingamendmentrequest,thisevaluationwillbeperformedusingthemethodoutlinedunder10CFR50.59toprovidethebasesforthedeterminationthattheproposedchangedoesnotinvolveanunreviewedsafetyquestion.Inaddition,anevaluationwilldemonstratethattheproposedchangedoesnotrepresentasignificanthazardsconsideration,asrequiredby10CFR50.91(a)(1)andwilladdressthethreetestfactorsrequiredby10CFR50.92(c).Thenon-LOCAsafetyanalyseswillbeexaminedtodeterminetheimpactoftheMSSVliftsetpointtolerancerelaxationontheDNBdesignbasisaswellastheapplicableprimaryandsecondarysystempressurelimits.Thelong-termcorecoolingcapabilityofthesecondarysidewillalsobeconsidered.TheLOCAevaluationwillinvestigatetheeffectsonthelicensingbasissmallbreakanalysisintermsofpeakcladtemperature,andanyadverseeffectsonthesteamgeneratortuberuptureeventandsubsequentdosereleasecalculationswillalsobedetermined.91429R2.wpf SECI91<29,Revision2III.EVALUATIONSTheresultsofthevariousevaluationsfromtheNuclearSafetyrelateddisciplineswithinWestinghousescopearediscussedinthefollowingsections.1.Non-LOCAEvaluationThenon-LOCAaccidentanalysesthatarecurrentlypresentedintheUFSARmodelledtheMSSVsasa'ankoffivevalves,allofwhichhavingaliftsetpointequaltothatofthehighestsetvalve(1100psia)plus3%toaccountforaccumulation.AlloftheanalysesandevaluationsperformedforthisreportmodelledthestaggeredbehavioroftheMSSVs.Specifically,eachvalvewasassumedtooperateindividually.Moreover,theanalyses/evaluationsofthisreportmodelledtheflowrateofeachvalvetoramplinearlyfromnoflowatitsliftsetpoint(nominalTechnicalSpecificationsetpointplusorminusthe3%tolerancevalue)tofullopenflowatitsfullopenpoint(3%abovethepressureatwhichthevalveswereassumedtopopopen-i.e.,accumulationeffect).Forthepurposesofthisevaluation,all20MSSVsareassumedtolift3%abovetheTechnicalSpecificationliftsetpointandachievefullratedflow(normallyat3%abov::thesetpoint)6%abovethesetpoint.hTProtectionTheincreaseintheMSSVliftsetpointtolerancehasthepotentialtoimpacttheOvertemperaturehTandOverpowerhTsetpointequations.ReferringtoFigurelaforUnit1andFigures1band1c(whicharethemostlimitingcaseforeachunit/coretype),increasingthepointatwhichtheMSSVsliftwilllowerthesteamgeneratorsafetyvalveline.IfthecurrentOTATsetpointcoefficients(K1throughK3)resultinprotectionlinesthatjustboundthethermalcorelimits,itispossiblethatbyloweringtheSGsafetyvalvelinetotheright,aportionofthecorelimitswillbeuncovered.'1429R2.wpf SECI91<29,Revision2,Inordertoevaluatetheeffectsoftheincreaseinthesetpointtolerance,theOvertemperaturehTandOverpowerdTsetpointequations(K1throughK6)wereexaminedtodetermineiftheequationsremainedvalidassumingthatall20MSSVsopenedwitha+3%tolerance.TheresultsofthatevaluationshowedthattherewassufficientmargininthegenerationofthecurrentsetpointequationstooffsettheloweringoftheSGsafetyvalveline.Thus,changestotheOvertemperatureandOverpowerTechnicalSpecificationsarenotneeded.TheresultsofthisevaluationarepresentedasFiguresla,lb,and1c.~DNBEvenThetransientsidentifiedinTable2areanalyzedintheD.C.CookUFSARtodemonstratethattheDNBdesignbasisissatisfied.Withoneexception,theseeventsarea)ofsuchashortdurationthattheydonotresultintheactuationoftheMSSVs,b)core-relatedanalysesthatfocusontheactivefuelregiononly(i.e.,onlythecoreismodelled),orc)cooldowneventswhichresultinadecreaseinsecondarysteampressure.Thesingleexceptionisthelossofexternalload/turbinetripeventwhichisaddressedexplicitlyintheANALYSISsectionofthissafetyevaluation.Thus,basedontheabove,theseyon-LOCADNBtransientsarenotadverselyimpactedbytheproposedchange,andtheresultsandconclusionspresentedintheUFSARremainvalid,BoronDilutionEventTheborondilutionevent(14.1.5)isanalyzedtodemonstratethattheoperators(ortheautomaticmitigationcircuitry)havesufficienttimetorespondpriortoreactorcriticality.Thesecondarysystemisnotmodeledintheanalysisofthisevent,andthus,changestotheMSSVshavenoimpactonthisevent.Therefore,theresultsandconclusionspresentedintheUFSARremainvalid.SteamlineBreakMass&:EneReleasesForthesteamlinebreakmassandenergyreleases,the'steamreleasecalculationsareinsensitivetothechangesintheMSSVliftsetpointssincethevastmajorityofthesecalculationsresultindepressurizationsofthesecondarysidesuchthattheMSSVsarenotactuated.Forthe91429Rz.wpf SECI91-429,Revision2TABLE2DNBDESIGNBASISTRANSIENTSNOTAFFECTEDBYMSSVLIFI'ETPOINTTOLERANCEINCREASE"'ventExcessiveHeatRemovalDuetoFeedwaterSystemMalfunctionExcessiveLoadIncreaseIncidentRuptureofaSteamPipe(SteamlineBreak-CoreResponse)LossofReactorCoolantFlowincludesLockedRotorAnalysis)UncontrolledRCCABankWithdrawalFromaSubcriticalConditionUncontrolledRCCABankWithdrawalatPowerRCCAMisalignmentUFSARSection14.1.1014.1.1114.2.514.1.614.1.114.1.214.1.391429R2.wpf SECI91-429,Revision2smallerbreakcasesthatmightresultinaheatup,oneMSSVpersteamgeneratorissufficient(basedontheexistinganalyses)toprovideanyrequiredheatremovalfollowingreactortrip.Thesecondarypressureswillbenogreaterthanthosepresentlycalculated.Thustheexistingsteamlinebreakmassandenergyreleasecalculationsremainvalid.EventSteamlineRuptureMass&EnergyReleasesInsideContainment'teamlineRuptureMass&EnergyReleasesOutsideContainmentforEquipmentEnvironmentalQualificationUFSARSectioWCAP-11902Supplement1.WCAP-10961Rev1(current)SubmittalAEP:NRC:1140*(approved11/20/91)SubmittalAEP:NRC:1140"TechnicalSpecificationChangeRequest,BITBoronConcentrationReduction,"March26,1991.(includedinWCAP-11902,Supplement1)Lon-TermHeatRemovalEventsTheonlynon-LOCAtransientsremainingarethelong-termheatupevents.Thelong-termheatremovaleventsareanalyzedtodetermineiftheauxiliaryfeedwater(AFW)heatremovalcapabilityissufficienttoensurethatthepeakRCSandsecondarypressuresdonotexceedallowablelimits,thepressurizerdoesnotfill(LONF/LOOP),andthecoreremainscoveredandinaeoolablegeometry(FLB).Thesetransientsarelistedbelow.EventLossofAllACPowertothePlantAuxiliaries(LossofOffsitePower-LOOP)LossofNormalFeedwater(LONF)14.1.1214.1.914.1.8FeedwaterSystemPipeBreak(FLB)*C*TheFeedwaterSystemPipeBreakeventisnotpartoftheUnit1licensingbasisandispresentedintheUnit1UFSARforinformationpurposesonly.ThesetransientsareimpactedbytheincreaseintheMSSVliftsetpointtolerancebecausethecalculationsdeterminingtheamountofAFWflowavailablemustassumeamaximumgivensteamgeneratorbackpressureinordertodeterminetheamountofAFWthatcanbedelivered.Asthesteam491429Rz.wpf SECL-91<29,Revision2generatorbackpressureincreases,theamountofAFWdeliveredwillbereduced.ForthelossofnormalfeedwaterandthelossofallACpowertothePlantAuxiliariesevents,evaluationswereperformedinwhichthestaggeredactuationoftheMSSVswastakenintoaccount.ThesafetyanalysispresentedinthecurrentUFSARassumedanAFWflowrateof450gpm,splitevenlytoallfoursteamgenerators.Theevaluationsdoneforthisreportconcerninglossofnormalfeedwater(LONF)forUnits1and2,aswellaslossofallACpowertotheplantauxiliaries(LOOP)forUnit1,demonstratedthatthesecondarysidepressureswillnotexceed1123psiaduringthetimeAFWisdeliveredtothesteamgenerators.BasedonReference10,theAFWassumptionsmodeledinthesafetyanalysisremainvalidforsteamgeneratorbackpressuresupto1123psia.Sincetheevaluation,inwhicha+3%MSSVsetpointtolerancewasassumed,showedthatthesecondarysidepressuretransientwillnotprecludetheAFWflowratesassumedintheanalysisfrombeingsuppliedtothesteamgenerators,theexistinganalysesremainvalidforUnit1LONF/LOOPandUnit2LONF.TheLossofOffsitePowerevent(LOOP)forUnit2wasalsoevaluatedforthis-report.TheLOOPsafetyanalysispresentedinthecurrentUFSARforUnit2assumedanAFWflowrateof430gpmsplitevenlytoallfoursteamgenerators.Therecent'evaluationdoneforthisreporttookcreditforthestaggeredactuationoftheMSSVsaswellasa+3%setpointtolerance,asdiscussedearlier.TheevaluationyieldedresultssimilartothosediscussedaboveforUnit1.ThesecondarysidepressureforthisUnit2evaluationwasdemonstratednottoexceed1133psiaduringtheperiodAFWissupplied.BasedonReference10,thesecondarysidepressuretransientwasfoundnottoprecludetheAFWflowratesassumedintheanalysisfrombeingdeliveredtothesteamgenerators.Therefore,theexistingLossofOffsitePoweranalysisforUnit2remainvalid.TheevaluationsfortheLONF/LOOPeventsforbothUnit1andUnit2,asdiscussedabove,demonstratethattherespectiveanalysesarestillapplicableevenifaMSSVliftsetpointtoleranceof+3%isassumed.ThereforetheresultsandconclusionspresentedintheDonaldC.CookUnit1&2UFSARremainvalid.TheevaluationdoneforthisreportfortheUnit2FeedlineBreakeventdemonstratedthat,thesecondarysidepressurewillnotexceed1133psiaduringtheperiodwhenAFWisbeingdelivered.91429R2.wpf
 
SECL-91<29,Revision2At1133psia,anAFWflowrateof685gpmwithasymmetricflowsplitstothethreeintactsteamgeneratorscouldbesuppliedbasedoninformationcontainedinReference,10.ThecurrentanalysisforthiseventassumedatotalAFWflowrateof600gpmwithanevensplitof200gpmtothethreeintactsteamgenerators.SincethetotalAFWflowrateismorethansufficienttoaccommodateAFWflowsplitdeviationsofasmuchas25gpmperloop,thecurrentFeedlineBreakanalysiscontinuetobeapplicableandremainboundingforthisevaluation.Therefore,theresultsandconclusionspresentedintheUnit2UFSAR(14.2.8)remainvalid.-3%Tolerance:ThesecondarysteamreleasesgeneratedforthelockedrotoroffsitedosecalculationsforUnit2couldbepotentiallyaffectedbyanincreaseintheMSSVsetpointtolerancefrom-1%to-3%.Reference9transmittedthemostrecentlockedrotordoseanalysis.GiventhattheradiologicalassumptionsusedintheReference9analysisdonotchangewithanincreaseinMSSVsetpointtolerance(i.e.,rods-in-DNBandprimarytosecondaryleakageremainat11%and1gpmrespectively)theonlyeffectthetoleranceincreasewouldhavewouldbeonthemassreleasevalues.ThemethodologyusedtocalculatethesemassesisbasedondeterminingtheamountofsecondarysideinventoryrequiredtocooldowntheRCS.Duringthefirsttwohours(0-2hours),theoperatorsareassumedtolowertheRCSaveragetemperaturetono-loadconditions(547'F)bybleedingsteam.Overthenext6hours(2-8hours),theoperatorswillcooltheplantdownsuchthatMode4operation(hotshutdown)canbeentered.Theexistingsteamreleasecalculationsforthe0-2hourperiodusedenthalpiescorrespondingtosaturatedconditionsatboththenominalfullpowerRCSaveragetemperatureandtheno-loadtemperature(581.3'Fand547'F,respectively).Thus,aslongastheincreasedliftsetpointtolerance(-3%)doesnotresultintheMSSVsremainingopenatasaturationtemperatureoutsideoftherangeidentifiedabove,theexistingmassreleasesremainvalid(Reference9),Theexistingmassreleasecalculationswereperformedusingthetemperaturespreviouslyidentified(581.3'Fand547'F).PertheDonaldC.CookTechnicalSpecifications,thelowestsetMSSVoneachsteamgeneratorwillopenat1080psia(1065psig)notincludinganytolerance.BasedontheASMESteamTables(Reference6)atsaturatedconditions,547'Fcorrespondsto1020.1psiaand9l-429R2.wpf10 SECL-91-429,Revision2representstheloweststeampressureconsideredinthemasscalculations.Thus,theexistingreleasesincludeareseatpressureapproximately5.5%belowthelowestTechnicalSpecificationliftsetpoint.Aslongasthevalvescontinuetoreseatwithinthis.pressurerange,thecurrentmassreleasesremainvalid.TheoperatingwindowsthatareapplicableforUnit1operationareboundedbytheUnit2doseanalysis.Therefore,themassreleasesforUnit2,asfoundinReference9,areapplicabletoUnit1.EvaluationSummaThus,basedonthediscussionspresentedabove,onlyoneUFSARnon-LOCAtransientisimpacted'uchthatanewanalysismustbeperformedinordertoaddresstheeffectsoftheMSSVliftsetpointtoleranceincreasefromJ1%toJ3%.Thiseventisthelossofexternalload/turbinetripaccident.Fortheothertransients,theresultsandconclusionspresentedintheDonaldC.CookUnit1&2UFSARremainvalid.LossofExternalLoad/TurbineTriThelossofexternalload/turbinetripeventispresentedinSection14.1.8oftheDonaldC.CookUFSAR.Thistransientiscausedbyaturbine-generatortripwhichresultsintheimmediateterminationofsteamflow.Sincenocreditistakenforadirectreactortriponturbinetrip,primaryandsecondarypressureandtemperaturewillbegintoincrease,actuatingthepressurizerandsteamgeneratorsafetyvalves.Thereactorwilleventuallybetrippedbyoneoftheotherreactorprotectionsystem(RPS)functions;specifically,overtemperaturehT,highpressurizerpressure,orlow-lowsteamgeneratorwaterlevel.Theturbinetripeventisthelimitingnon-LOCAeventforpotentialoverpressurization,i.e.,thistransientformsthedesignbasisfortheprimaryandsecondarysafetyvalves.SincetheMSSVswillnowpotentiallybeopeningatahigherpressureduetotheincreaseintheliftsetpointtolerance,itisnecessarytoanalyzethistransientinordertodemonstratethatalltheapplicableacceptancecriteria91429R2.wpf SECL-91<29,Revision2aresatisfied.AturbinetripisclassifiedasanANSconditionIIevent,afaultofmoderatefrequency.Assuch,theappropriateacceptancecriteriaareDNBR,peakprimarypressure,andpeaksecondarypressure.ThetransientisdescribedingreaterdetailintheUFSAR.TheturbinetripeventisanalyzedusingamodifiedversionoftheLOFTRANdigitalcomputercode(Reference6).ThismodifiedversionofLOFTRANonlydiffersfromthestandardcodeversioninthewaytheMSSVsaremodelled.Theprogramsimulatesneutronkinetics,reactorcoolantsystem,pressurizer,pressurizerreliefandsafetyvalves,pressurizerspray,steamgenerators,andmainsteamsafetyvalves.Withthemodifiedcode,theMSSVsareexplicitlymodeledasabankof5valvesoneachsteamgeneratorwithstaggeredliftsetpoints.WhereasthestandardLOFTRANversionprogramconservativelymodelstheMSSVsasabankoffivevalves,allhavingonecommonliftsetpoint.BymodellingthestaggeredbehavioroftheMSSVs,amoreaccuratesimulationofhowthevalvesactuallybehaveisachieved.Sincehighersteampressuresareconservativeforthisevent,noblowdownorhysteresisbehaviorwasassumed.ConsistentwiththeexistingUFSARanalysis,allassumptionswerethesameaspreviouslyusedunlessspecificallynoted.Thefollowingassumptionswereusedinthisanalysis:a.Initialpower,temperature,andpressurewereattheirnominalvaluesconsistentwith:1)ITDPmethodology(WCAP-8567)forUnit1,withtheexceptionthata2%conservatismoninitialcorepowerwasassumed.2)RTDPmethodology(WCAP-11397)forUnit2,withnoexceptions.b.Turbinetripwasanalyzedwithbothminimumandmaximumreactivityfeedback.C.Turbinetripwasanalyzedbothwithandwithoutpressurizerpressurecontrol.ThePORVsandsprayswereassumedoperableinthe'caseswithpressurecontrol.ThecaseswithpressurecontrolminimizetheincreaseinprimarypressurewhichisconservativefortheDNBRtransient.ThecaseswithoutpressurecontrolmaximizetheincreaseinpressurewhichisconservativefortheRCSoverpressurizationcriterion.91429R2.wpf.12 SECI91<29,Revision2d.ThesteamgeneratorPORVandsteamdumpvalveswerenotassumedoperable.ThisassumptionmaximizessecondarypressurewhichinturnmaximizestheprimarytemperatureforDNBRandprimarypressureforpressurecases.e.Mainfeedwaterflowwasassumedtobelostcoincidentwiththeturbinetrip.Thisassumptionmaximizestheheatupeffects.f.OnlytheovertemperaturedT,highpressurizerpressure,andlow-lowsteamgeneratorwaterlevelreactortripswereassumedoperableforthepurposesofthisanalysis.g.TheflowrateforeachMSSVwasmodelledtoramplinearlyfromnoflowatitsliftsetpoint(3%abovethenominalTechnicalSpecificationsetpoint)tofullopenflowatitsfullopenpoint(6%abovethenominalsetpoint),Thefullopenflowrateisbasedonareferencefullflowcapacityof238ibm/secat1186.5psia(basedontheASMEratedflowforthesevalves).Forsecondarysidepressuresbetweentheinitialfullopenpointforeachvalveand1186.5psia,thefullopenflowratewasmodelledtovaryproportionallywithpressure.ThisassumptionmaximizessecondarypressurewhichinturnmaximizestheprimarytemperatureforDNBRandprimarypressureforpressurecases.R~esulFourcasesforeachunit/coretype(i.e.Unit1,Unit2mixedcore,andUnit2fullV5core)wereanalyzed:a)minimumfeedbackwithoutpressurecontrol,b)maximumfeedbackwithoutpressurecontrol,c)maximumfeedbackwithpressurecontrol,andd)minimumfeedbackwithpressurecontrol.ThemostlimitingcasesinthecurrentUFSARcontinuetobethemostlimitingcases.ThecalculatedsequenceofeventsforthefourcasesforeachunitarepresentedinTables3and4.9l429R2.wpf13 SECI91<29,Revision2CaseA:Figures2through6showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithoutpressurecontrol.Thereactoristrippedonhighpressurizerpressure.Theneutronfluxremainsessentiallyconstantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseB:Figures7through11showthetransientresponsefortheturbinetripeventunderrnaxirnumreactivityfeedbackconditionswithoutpressurecontrol.Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytheincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizerpressure.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseC:Figures12through16showthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithpressurecontrol~Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristripped\onlow-lowsteamgeneratorwaterlevel.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue,Thepressurizerreliefvalves.andspraysmaintainprimarypressure91429R2.wpf14 SECI91-429,Revision2below110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseD:Figures17through21showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithpressurecontrol.Thereactoristrippedonhighpressurizerpressure.AlthoughtheDNBRvaluedecreasesbelowtheinitialvalue,itremainswellabovethelimitthroughouttheentiretransient.Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.AnaliConclionnit1BasedontheresultsoftheseUnit1turbinetripanalyseswitha+3%toleranceontheMSSVliftsetpoints,alloftheapplicableacceptancecriteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondarypressuresremainbelow110%ofdesignatalltimes.UNIT2:amixedandbfullV-5coresCaseA:Figures22athrough26b("a"designatesmixedcorefiguresand"b"denotesfullV-5corefigures)showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithoutpressurecontrolforbothcoretypes.Thereactoristrippedonhighpressurizerpressure.,Theneutronfluxremainsessentiallyconstantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.91429R2.wpf15 SECL-91<29,Revision2CaseB:Figures27athrough31bshowthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithoutpressurecontrolforbothmixedandfullV-5coretypes.Thecorepowerisobservedtoundergoamomentaryincrease,Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizerpressure.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseC:Figures32athrough36bshowthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithpressurecontrolforthetwoapplicableUnit2coretypes.Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonlow-lowsteamgeneratorwaterlevel~TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue..Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseD:Figures37athrough41bshowthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithpressurecontrolforboththemixedandfullV-5cores.ThereactoristripPedonhighpressurizerpressure.AlthoughtheDNBRvaluedecreasesbelowtheinitialvalue,itremainswellabovethelimitthroughouttheentiretransient.Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.The91429R2.wpf16 SECL-91<29,Revision2mainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.AnalisConclusionnit2BasedontheresultsoftheseUnit2mixedandfullcoreturbinetripanalyseswitha+3%toleranceontheMSSVliftsetpoints,alloftheapplicableacceptancecriteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondarypressuresremainbelow110%ofdesignatalltimes.Nn-AConclusioTheeffectsofincreasingtheas-foundliftsetpointtoleranceonthemainsteamsafetyvalveshavebeenexamined,andithasbeendeterminedthat,withoneexception,thecurrentaccidentanalysesaspresentedintheUFSARremainvalid.Thelossofload/turbinetripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerancerelaxation.Aspreviouslydemonstratedinthissafetyevaluation,allapplicableacceptancecriteriaforthiseventhavebeensatisfiedandtheconclusionspresentedintheUFSARares'tillvalid.Thus,withrespecttothenon-LOCAtransients,theproposedTechnicalSpecificationchangedoesnotconstituteanunreviewedsafetyquestion,andthenon-LOCAaccidentanalyses,aspresentedinthereport,supporttheproposedchange,2.CAandARelatedEvaluationsLaeBreakCAThecurrentlargebreakLOCAanalysesforDonaldC.CookUnits1and2wereperformedwiththeNRCapproved1981EvaluationModelplusBASH.AfterapostulatedlargebreakLOCAoccurs,theheattransferbetweenthereactorcoolantsystem(RCS)andthesecondarysystemmaybeineitherdirection,dependingontherelativetemperatures.Inthecaseofcontinuedheatadditiontothesecondarysystem,thesecondarysystempressureincreasesandtheMSSVsmayactuatetolimitthepressure.However,thisdoesnotoccurinthelargebreakevaluationmodelsincenocreditistakenforauxiliaryfeedwateractuation.Consequently,thesecondarysystemactsasaheatsource.inthe91429R2.wpf17 SECL-91<29,Revision2lpostulatedlargebreakLOCAtransientandthesecondarypressuredoesnotincrease.Sincethesecondarysystempressuredoesnotincrease,itisnotnecessarytomodeltheMSSVsetpointinthelargebreakevaluationmodel.Therefore,anincreaseintheallowableMSSVsetpointtoleranceforDonaldC.CookUnits1and2willnotimpactthecurrentUFSARlargebreakLOCAanalyses.mallBreakCAThesmallbreakLOCAanalysesforDonaldC.CookUnits1and2wereperformedwiththeNRCapprovedEvaluationModelusingtheNOTRUMPcode.AfterapostulatedsmallbreakLOCAoccurs,theheattransferbetweentheRCSandthesecondarysystemmaybeineitherdirectiondependingontherelativetemperatures.Inthecaseofcontinuedheatadditiontothesecondarysystem,thesecondarysystempressureincreaseswhichleadstosteamreliefviatheMSSVs.InthesmallbreakLOCA,thesecondaryflowaidsinthereductionofRCSpressure.Subsequently,DonaldC.CookUnits1and2werereanalyzedtodeterminetheimpactofanincreasedMSSVsetpointtoleranceof3%.ThelicensingbasissmallbreakLOCAanalysisforDonaldC.CookUnit1includedasafetyevaluationtoaddressa25gpmchargingpumpflowimbalanceandoperationwiththehighheadsafetyinjectioncrosstievalveclosedat3250MWtcorepowerlevel.Also,asafetyevaluationhadbeenperformedwhichmodeledanincreasedauxiliaryfeedwaterenthalpydelaytime.TheseassumptionswereincorporatedintheincreasedMSSVsetpointtoleranceNOTRUMPanalysisofthelimiting3inchbreakforUnit1.However,inordertoobtainadirectsensitivityfortheincreasedMSSVsetpointtolerance,aNOTRUMPanalysiswasalsoperformedincorporatingtheseassumptionsbutmodellingtheoriginalMSSVsetpoints.Inaddition,a3inchNOTRUMPanalysiswasperformedforthelowpressure,hightemperatureoperatingconditionforUnit1sinceasafetyevaluationhadbeenoriginallyperformedaspartofthelicensingbasisanalysis.TheincreasedMSSVsetpointtolerance,acorepowerlevelof3250MWt.withthe.highheadcrosstievalveclosed,anda25gpmchargingpumpflowimbalancewereassumedfortheanalysisofthelowpressure,hightemperaturecase.91429Rz.wpf18 SECL-91-429,Revision2DonaldC.CookUnit2wasreanalyzedforthelimiting3inchbreak,lowpressureandhightemperatureoperatingconditionwiththehighheadcrosstievalveclosed.Thepowershapeaxialoffsetwasreducedfromthelicensingbasisanalysisof+30%to+13%fortheMSSVincreaseanalysis.Anaxialoffsetof+13%isequaltothevalueassumedinthelicensingbasislargebreakLOCAanalysis.Inaddition,thelicensingbasisanalysisconservativelyassumedamaximum"assemblyaveragepower(P+of1.519.The3%increasedMSSVsetpointtoleranceanalysisassumedaP~whichwasreducedto1.46.InordertoobtainadirectsensitivityfortheincreasedMSSVsetpointtolerance,aNOTRUMPanalysiswasperformedincorporatingtheseassumptionsbutmodellingtheoriginalMSSVsetpoints.Tables5and6summarizetheMSSVsetpointsusedintheDonaldC.CookUnits1and2currentlicensingbasissmallbreakLOCAanalysesandtheincreasedMSSVsetpointtoleranceanalyses,respectively.Tables7and8summarizetheinitialinputassumptionsusedintheUnit1analysis.TheUnit2initialinputassumptionsaresummarizedinTable9,ThetimesequenceofeventsandresultsoftheUnit1analysisaresummarizedinTables10and11,respectively.Thelimitingpeakcladtemperaturecalculatedis1879'F,includinga25'Fburstandblockagepenalty,forthe3%increasedMSSVsetpointtolerancecaseat3250MWtandthelowpressure,lowtemperatureoperatingconditions'.Thisvalueislessthantheacceptancecriterialimitof2200'F.Themaximumlocalmetal-waterreactionis3A7%,whichiswellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.ThetimesequenceofeventsandresultsoftheUnit2analysisaresummarizedinTables12and13,respectively.'Ihelimitingpeakcladtemperaturecalculatedis2125'F,includinga12'Fartificialleak-bypenaltyand157'Fburstandblockagepenalty,forthe3%increasedMSSVsetpointtolerancecaseat3250MWtandlowpressure,hightemperatureoperatingcondition.Thisvalueislessthantheacceptancecriterialimitof2200'F.Themaximumlocalmetal-waterreactionis4.26%,whichisTheseresultsarefromcalculationsusinganominalauxiliaryfcedwaterflow.Asubsequentanalysisusingamorcconservativeminimumauxiliaryfeedwaterflowrateispresentedinthcnextsection.91429R2.wpf19 SECI91<29,Revision2wellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.AdditionalSmallBreakCAAnalsesThesmallbreakLOCAanalysisforCookUnit1,previouslydiscussed,usednominalAuxiliaryFeedwater(AFW)flowrates(1258gpmtotaldelivery),whereasminimumAFWflowrateswereusedforCookUnit2,SinceminimumAFWflowratesaremorelimiting,thesmallbreakLOCAforCookUnit1for+3%MMSVsetpointtolerancewasreanalyzedusinglowerauxiliaryfeedwaterflowrates(750gpmtotaldelivery).ThefollowingpresentstheresultsoftherevisedsmallbreakLOCAanalysesperformedforDonaldC.CookUnit1.BasedontheCookUnit1analysespresentedintheprevioussection,twoadditionalsmallbreakLOCAcaseswereruntoaddressarelaxationto+3%fortheMSSVsetpointtolerance.First,theoriginalLPLT(LowPressure,LowTemperature)casepresentedabove,theresultsofwhichareshowninTables10and11,wasrerunmodeling750gpmtotalAFWsystemflowrate.AswasdemonstratedinReferences11and12,theLPLTcaseisthelimitingcaseforthepressure/temperatureoperatingwindowforCookUnit1,andthatwillnotchangeduetothereductioninAFWflow.Inaddition,sinceonlythelimitingbreaksize(3inch)waspreviouslyanalyzed,a2inchbreakwasalsoanalyzedforthe750gpmAFWflowratetoprovidefurtherassurancethatthelimitingbreaksizehasnotshiftedtoasmallerbreaksizeduetothereductionintheAFWflowrate.NotethatsinceboththereductioninAFWdeliveredflowandtheincreaseinthesetpointtoleranceto>3%tendtoshiftthelimitingbreaksizetoasmallerbreak,itisnotnecessarytoconsiderthatthelimitingbreakcouldbelargerthanwaspresentedinthecurrentlicensingbasisanalysiswhichdemonstratedthatthe3inchbreakislimiting.TheMSSVperformanceassumedinthesenewcasesisshowninTable6.TheinitialinputparametersassumedforthesenewcasesareshowninTable7a,andarecomparedwiththeoriginallicensingbasisinReference11.IfthenewanalysisvaluesfromTable7aarecomparedwiththeoriginalevaluationcasesshowninTable7,veryfewdifferencesareevident.Exceptfortheauxiliaryfeedwaterflowratean'daslightincreaseintheaccumulatorwatertemperature,theinitialRCS91429R2.wpf20 SECL-91<29,Revision2pressurewasloweredtocoverasafetyevaluationthatwasperformedforpressurizerpressureuncertainty.IncorporatingthisnewRCSpressurehadanegligibleeffectonthevesselinletandoutlettemperaturesandthesteampressureassumedforreactorsteady-stateoperation(priortoinitiationofthetransient).OnefinaladditionalchangeisintheAFWenthalpydelay.ThelowerAFWflowratewouldresultinalongerdelay.ThecurrentNOTRUMPmodelhasbeenimprovedtomodelthevolumeofhotmainfeedwaterthatmustbepurgedfromthepipingpriortocoldAFWbeingdeliveredtothesteamgenerator,andthedelayiscalculatedbythemodel.Otherthantheseminordifferences,andtheintendedchange(i.e.,reduceAFWflowrateandincreaseaccumulatorwatertemperature),theinitialconditionsassumedfortheadditionalrunsareidenticaltotherunsperformedfortheprevioussection.ThetimesequenceofeventsandresultsoftheUnit1analysesaresummarizedinTables10aand11a,respectively.ThelimitingPeakCladTemperature(P~calculatedis2068'F,includinga117'Fburstandblockagepenalty,forthe+3%increasedMSSVsetpointtolerancecaseat3250MWtandlowpressure,lowtemperatureoperatingcondition.Thisvalueislessthantheacceptancecriterialimitof2200'F,andisalmostthesamecomputedresultthatisseenforD.'.CookUnit2(thepre-burst/blockagePCTof1951'Fversus1956'F).Themaximumlocalmetal-waterreactionis5.06%,whichiswellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.The>3%increasedMSSVsetpointtolerancehasbeenanalyzedfortheDonaldC.CookNuclearPlantUnit1forthesmallbreakLOCAanalysesperformedbyWestinghouse.ThepotentialeffectofthischangeontheFSARanalysisresultsforthesmallbreakLOCAanalysiswasexaminedviareanalysisandalthoughtheresultsaremorelimitingthanpreviousanalysiscases,itwasshownthattheeffectoftheincreasedMSSVsetpointtolerancedidnotresultinexceedinganyofthefollowingdesignorregulatorylimits:1.Thecalculatedpeakfuelelementcladdingtemperatureisbelowtherequirementsof2200'F.2.Theamountoffuelelementcladdingthatreactschemicallywithwaterorsteamdoesnotexceed1percentofthetotalamountofZircaloyinthereactor.91429Rz.wpf21 SECI91-429,Revision23.Thecladdingtemperaturetransientisterminatedatatimewhenthecoregeometryisstillamenabletocooling.Thelocalizedcladdingoxidationlimitof17percentisnotexceededduringorafterquenching.4.Thecoreremainsamenabletocoolingduringandafterthebreak.5.Thecoretemperatureisreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-livedradioactivityremaininginthecore.Therefore,itisconcludedthatarelaxationtoJ3%fortheMSSVsetpointtoleranceisacceptablefromthestandpointofthesmallbreakLOCAFSARaccidentanalysesdiscussedinthissafetyevaluation.Post-LOCALonTermCoreCoolinTheWestinghouselicensingpositionforsatisfyingtherequirementsof10CFR50.46Paragraph(b),Item(5),"LongTermCooling,"concludesthatthereactorwillremainshutdownbyboratedECCSwaterresidingintheRCS/sumpafteraLOCA.Sincecreditforthecontrolrods.isnottakenforalargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulatorsandtheRWSTmusthaveaboronconcentrationthat',whenmixedwithotherwatersources,willresultinthereactorcoreremainingsubcriticalassumingallcontrolrodsout.ThecalculationisbaseduponthereactorsteadystateconditionsattheinitiationofaLOCAandconsiderssourcesofbothboratedandunboratedfluidinthepost-LOCAcontainmentsump.ThesteadystateconditionsareobtainedfromthelargebreakLOCAanalysiswhich,asstatedabove,doesnottakecreditforMSSVactuation.Thusthepost-LOCAlong-termcorecoolingevaluationisindependentoftheMSSVsetpointtolerance,andtherewillbenochangeinthecalculatedRCS/sumpboronconcentrationafterapostulatedLOCAforDonaldC.CookUnits1and2.HotSwitchovertoPreventPotentialBoronPreciitationPost-LOCAhotlegrecirculationtimeisdeterminedforinclusioninemergencyoperatingprocedurestoensurenoboronprecipitationinthereactorvesselfollowingboilinginthecore.Thistimeis91429R2.wpf22
 
SECL-91<29,Revision2dependentonpowerlevelandtheRCS,RWST,andaccumulatorwatervolumesandwiththeirassociatedboronconcentrations.TheproposedMSSVsetpointtoleranceincreaseto3%doesnotaffectthepowerlevelortheboronconcentrationsassumedfortheRCS,RWST,andaccumulatorinthehotlegswitchovercalculationforUnit1.TheproposedMSSVsetpointtoleranceincreaseto3%'oesnotaffecttheboronconcentrationsassumedfortheRCS,RWST,andaccumulatorinthehotlegswitchovercalculationforUnit2.Thecurrentlicensingbasishotleg.switchovercalculationforUnit2isatfullpower,3413MWt,withcrosstievalveatclosedposition.WithMSSVsetpointtoleranceincreasedto3%,Unit2LOCAanalysesassumedareducedcorepower,3250MWt,withcrosstievalveatclosedposition.Areductioninpowerreducestheboil-offrateinthehotlegswitchovercalculation.Areductionintheboilwffrateresultsintherateofboronbuildupalsobeingreduced.Therefore,thelicensingbasishotlegswitchovercalculationfortheDonaldC.CookUnits1and2remainsbounding.LOCAHdraulicForciFunctionsThepeakhydraulicforcingfunctionsonthereactorvesselandinternalsoccurveryearlyinthelargebreakLOCAtransient.Typically,thepeakforcingfunctionsoccurbetween10and50milliseconds(0.01and0.05seconds)andhavesubsidedwellbefore500milliseconds(0.50seconds).AnychangeintimeassociatedwithanincreasedMSSVsetpointtolerancewouldoccurseveralsecondsintothetransient.SincetheLOCAhydraulicforcingfunctionshavepeakedandsubsidedbeforethetimeatwhichtheMSSVmayactuate,theincreaseintheMSSVsetpointtoleranceto3%willnotimpacttheLOCAhydraulicforcingfunctionscalculationforDonaldC.CookUnits1and2.LOCAConclusioTheeffectofincreasingtheMSSVsetpointtoleranceto3%forDonaldC.CookUnits1and2hasbeenevaluatedforeachoftheLOCArelatedanalysesaddressedintheUFSAR.Forcurrentlyanalyzedconditions,orforUnit2operationatareducedpowerlevelof3250MWtwhenthehighheadcrosstievalvesareclosed,itwasshownthatthe3%MSSVsetpointtolerancedoesnotresultinanydesignorRegulatorylimitbeingexceeded.Therefore,withrespecttotheLOCAanalyses,itcanbeconcludedthatincreasingtheMSSVsetpointtoleranceto3%forDonaldC.CookUnits1and2willbeacceptablefrom.thestandpointoftheUFSARaccidentanalysesdiscussedinthesafety'valuation.91429Rz.wpf23 SECI91429,Revision23.ContainmentTntriEvaluation~~RelaxationoftheDonaldC.CookUnits1&2TechnicalSpecificationMainSteamSafetyValvesetpointtolerancesfrom+1%to+3%donotadverselyaffecttheshorttermorlongtermLOCAmassandenergyreleasesand,subsequently,therelatedcontainmentanalyses.Sincethereisnoimpactonthemainsteamlincbreakmassandenergyreleasecalculations,thereisalsonoimpactonthatassociatedcontainmentresponseanalysis.Theproposedchangedoesnotaffectthenormalplantoperatingparameters,systemactuations,accidentmitigatingcapabilitiesorassumptionsimportanttothemassandenergyreleaseandcontainmentanalyses,orcreatemorelimitingconditionsthanthosealreadyassumedinthecurrentanalyses.Therefore,theconclusionspresentedintheDonaldC,CookUFSARremainvalidwithrespecttocontainment.4.SteamGeneratorTubeRutureTodemonstratethatanunreviewedsafetyquestiondoesnotexistforthesteamgeneratortuberupture(SGTR)event,theincreasedMSSVsetpointtolerancewasevaluatedforDonaldC.CookUnits1and2.Theanalysisforupratingto3600MWTconsideredupto15%steamgeneratortubepluggingforbothUnits1and2.ThelimitingcasesfromthisanalysiswerereevaluatedfortheincreasedMSSVsetpointtolerance.Anincreasedsteamgeneratortubeplugginglevelof20%wasalsoconsideredatpowerlevelsof3262MWTforUnit1and3425MWTforUnit2.ThecriteriastatedintheUFSARanalysisforDonaldC.CookwereusedinestablishingthecontinuedapplicabilityoftheSGTRlicensingbasissafetyanalysisbydemonstratingthattheconclusionsforSGTRUFSARanalysisremainvalid.AnevaluationhasbeenperformedtodeterminetheimpactontheDonaldC.CookUnits'GTRanalysisofrecordforincreasedMSSVsetpointtoleranceforallthecaseswithdifferentsteamgeneratortubepluggingandpowerlevelsstatedabove.TheprimarythermalhydraulicparameterswhichaffectthecalculationofoffsiteradiationdosesforaSGTRaretheamountofradioactivityassumedtobepresentinthereactorcoolant,theaniountofreactorcoolanttransferredtothesecondarysideoftherupturedsteamgeneratorthroughtherupturedtube,andtheamountofsteamreleasedfromtherupturedsteamgeneratortotheatmosphere.Thus,thecalculatedoffsiteradiationdosesforanSGTR'forDonaldC.Cookaredependentonthesethreefactors.91429R2.wpf24 SECI91<29,Revision2FortheUFSARSGTRanalysis,theactivityinthereactorcoolantisbasedonanassumptionof1%defectivefuel,andthisassumptionwillnotbeaffectedbytheincreasedMSSVsetpointtolerance.ThetworemainingfactorsareaffectedbytheincreasedMSSVsetpointtolerance,andtheevaluationwasperformedtoquantifythiseffect.ToevaluatetheeffectoftheincreasedMSSVsetpointtoleranceontheDonaldC.CookSGTRanalysis,therevisedSGsafetyvalvesetpressurewasloweredby3%from1080psiato1047.6psia.Thisresultedinaslightlyhigherequilibriumprimary-to-secondarybreakflow(approximately0.5%),sincetherewasanincreaseinthepressuredifferentialbetweentheRCSandsecondarysideassumedintheanalysis.Thesteamreleasedtotheatmospheresubsequentlyincreased(byapproximately0.2%)becauseofthelowerpressureassumedforthemainsteamsafetyvalves.Thelimitingcases,forallpowerlevelsandsteamgeneratortubeplugginglevelsconsidered,wereat3600MVft.ThethyroidandwholebodydosesestimatedforUnits1and2,basedontheanalysesdescribedabove,areboundedbythosepreviouslydeterminedforthereratingprogram.Theactualestimateddosefactors(comparedtotheresultsofthereratingcalculation)areasfollows:Unitf:thyroid0.7,wholebody1.005Unit2:thyroid0.99,wholebody0.98AlthoughtheUnit1wholebodydoseexceedsthepreviousvaluebyapproximately0.5%,thisincreaseiswellwithintheacceptablelimit.Thus,theresultsandconclusionintheDonaldC.CookUFSARthattheoffsitedosesforanSGTReventwouldbewithinasmallfractionofthe10CFR100guidelinesremainsvalid.5.ComnentPerformanceTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.Cookdoesnotdirectlyorindirectlyinvolvemechanicalcomponenthardwareconsiderations.Directeffectsaswellasindirecteffectsonequipmentimportanttosafety(ITS)havebeenconsidered.Indirecteffectsincludeactivitieswhichinvolvenon-safetyrelatedequipmentwhichmayaffectITSequipment.Componenthardwareconsiderationsmayincludeoverallcomponentintegrity,sub-componentintegrity,andthe9I429R2.wpf25 SECI91<29,Revision2adequacyofcomponentsupportsduringallplantconditions.Anevaluationisnotrequiredtodeterminewhethertheconditionaltersthedesign,material,constructionstandards,functionormethodofperformingthefunctionofanyITSequipment.6.SsteEvaluationTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.Cookasdescribedwouldnotaffecttheintegrityofaplantauxiliaryfluidsystemortheabilityofanyauxiliarysystemtoperformitsintendedsafetyfunction.7.RadioloicalEvaluationTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.CookasdescribeddonotaffectradiologicalconcernsotherthanthoseidentifiedaboveinSectionIII.4orpost-LOCAhydrogenproduction.TheevaluationinSectionsIII.1andGI.3concludedthattheexistingmassreleasesusedintheremainingoffsitedosecalculations(i.e.,steamlinebreak,rodejection,lockedrotor,andshort-term&long-termLOCA)arestillapplicable,8.PlantRikAnalactivitiesaffectiIPTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.CookdoesnotadverselyaffecttheIndividualPlantExamination/PE)fortheplant.Thistestdoesnotaffectthenormalplantoperatingparameters,systemactuations,accidentmitigatingcapabilities,operatingproceduresorassumptionsimportanttotheIPEanalyses,orcreateconditionsthatwouldsignificantlyaffectcoredamageorplantdamagefrequencyorthefrequencyofcoredamageinitiatingevents.Therefore,theconclusionspresentedintheIPEremainvalid.9.PlantRiskAnaleschesotherthanIPFrelatTherelaxationoftheliftsetpointtolerancefortheMSSVsdoesnotresultinanincreaseintheprobabilityofoccurrenceofaccidentspreviouslyevaluatedintheUFSAR.ThisproposedchangetotheTechnicalSpecificationsdoesnotresultin,anincreaseintheprobabilityofoccurrenceofa91429R2.wpf26 SECI91<29,Revision2malfunctionofequipmentimportanttosafetyorofequipmentthatcouldindirectlyaffectequipmentimportanttosafety.10.TherelaxationoftheliftsetpointtolerancefortheMSSVsdoesnotdirectlyorindirectlyinvolveelectricalsystems,components,orinstrumentationconsiderations.Directeffectsaswellasindirecteffectsonequipmentimportanttosafetyhavebeenconsidered.Indirecteffectsincludeconditionsoractivitieswhichinvolvenon-safetyrelatedelectricalequipmentwhichmayaffectClass1E,postaccidentmonitoringsystems,orplantcontrolelectricalequipment.Considerationhasbeengiventoseismicandenvironmentalqualification,designandperformancecriteriaperIEEEstandards,functionalrequirements,andplanttechnicalspecificationswithrespecttoallplantconditions.AnevaluationisnotrequiredtodeterminewhethertheMSSVsetpointtolerancerelaxationaltersthedesign,configuration,qualification,orperformanceofsafetyrelatedelectricalsystemsorcomponents.TheMSSVsetpointtolerancerelaxationhasnopotentialforimpacttotheidentification1ofanunresolvedsafetyquestionasitwouldrelatetothesafetyrelatedfunctionofelectricalsystemsofcomponents.11.TechnicalSficatioAreviewoftheDonaldC.CookUnit1andUnit2TechnicalSpecificationswasperformedtoaddressachangeintheliftsetpointtolerancefortheMainSteamSafetyValves.TheTechnicalSpecificationreview,inclusiveofAmendments157and141forUnits1and2,respectively.ProposedmarkupsareattachedtothisevaluationforbothUnit1andUnit2,andreflectchangestoTable4.7-1and3.7-4,respectively.AchangetothebasisforbothunitsisalsoproposedanddiscussestherelationshipbetweentheJ1%andJ3%tolerances.91429R2.wpf27
 
SECL-91-429,Revision2IV.ASSESSMENTOFNOSAI'KFVUPONTherelaxationintheliftsetpointtolerancefortheMSSVsatDonaldC.CookUnits1and2hasbeenevaluatedconsistentwiththerequirementsof10CFR50.59anddoesnotinvolveanunreviewedsafetyquestiononthebasisofthefollowingjustifications:WilltheprobabilityofanaccidentpreviouslyevaluatedintheSARbeincreased?No.The+3%toleranceontheMSSVsetpointdoesnotincreasetheprobabilityofanaccidentpreviouslyevaluatedintheUFSAR.Therearenohardwaremodificationstothevalvesand,therefore,thereisnoincreaseintheprobabilityofaspuriousopeningofaMSSV.TheMSSVsareactuatedtoprotectthesecondarysystemsfromoverpressurizationafteranaccidentisinitiated.Sufficientmarginexistsbetweenthenormalsteamsystemoperatingpressureandthevalvesetpointswiththeincreasedtolerancetoprecludeanincreaseintheprobabilityofactuatingthevalves.Therefore,theprobabilityofanaccidentpreviouslyevaluatedintheUFSARwouldnotbeincreasedasaresultofincreasingtheMSSVliftsetpointtoleranceby3%aboveorbelowthecurrentTechnicalSpecificationsetpointvalue.2.WilltheconsequencesofanaccidentpreviouslyevaluatedintheSARbeincreased?No.Basedonthe'discussionspresentedwithin,alloftheapplicableLOCAandnon-LOCAdesignbasisacceptancecriteriaremainvalidbothforthetransientsevaluatedandthesingleeventanalyzed.Additionally,nonewlimitingsinglefailureisintroducedbytheproposedchange.TheDNBRandPCTvaluesremainwithinthespecifiedlimits'ofthelicensingbasis.AlthoughincreasingthevalvesetpointwillincreasethesteamreleasefromtherupturedsteamgeneratorabovetheUFSARvaluebyapproximately0.2%,theSGTRanalysisindicatesthat,thecalculateddosesareboundedbythosedeterminedforthereratingprogramwhich,inturn,arewithinasmallfractionofthe10CFR100doseguidelines.Theevaluationalsoconcludedthattheexistingmassreleasesusedintheoffsitedosecalculationsfortheremainingtransients(i.e.,steamlinebreak,rodejation)arestillapplicable.Therefore,basedontheabove,thereisnoincreaseinthedoseconsequences.91429R2.wpf28
 
SECL-91<29,Revision23.MaythepossibilityofanaccidentwhichisdifferentthananyalreadyevaluatedintheSARbecreated?No.AspreviouslyindicatedinSectionIII.1,theInadvertentOpeningofaSGRelieforSafetyValveeventiscurrentlypresentedintheDonaldC.CookUFSAR(Section14.2.5)andisboundedbytheSteamlineBreakanalysis.Increasingtheas-foundliftsetpointtoleranceontheMSSVsdoesnotintroduceanewaccidentinitiatormechanism.Nonewfailuremodeshavebeendefinedforanysystemorcomponentimportanttosafetynorhasanynewlimitingsinglefailurebeenidentified.NoaccidentwillbecreatedthatwillincreasethechallengetotheMSSVsandresultinincreasedactuationofthevalves.Therefore,thepossibilityofanaccidentdifferentthananyalreadyevaluatedintheUFSARisnotcreated.4.WilltheprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheSARbeincreased?No.Althoughtheproposedchangetakesplaceinequipmentutilizedtopreventoverpressurizationonthesecondarysideandtoprovideanadditionalheatremovalpath,increasingtheas-foundliftsetpointtoleranceontheMSSVswillnotadverselyaffecttheoperationofthereactorprotectionsystem,anyoftheprotectionsetpoints,oranyotherdevicerequiredforaccidentmitigation.Therefore,theprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARwillnotbeincreased.5.WilltheconsequencesofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheSARbeincreased?No.AsdiscussedintheresponsetoQuestions2and4,thereisnoincreaseinthedosereleaseconsequencesasaresultofincreasingtheas-foundliftsetpointtoleranceontheMSSVsasdefinedintheattachedsafetyevaluation.91429R2.wpf29 SECI91429,Revision26.MaythepossibilityofamalfunctionofequipmentimportanttosafetydifferentthananyalreadyevaluatedintheSARbecreated?No.AsdiscussedinQuestion4,anincreaseintheas-foundliftsetpointtoleranceontheMSSVswillnotimpactanyotherequipmentimportanttosafety.Therefore,thepossibilityofamalfunctionofequipmentimportanttosafetydifferenttharianyalreadyevaluatedintheUFSARwillnotbecreated.7.Willthemarginofsafetyasdefinedinthebasestoanytechnicalspecificationbereduced?No.Asdiscussedinthea~chedsafetyevaluation,theproposedincreaseintheas-foundMSSVliftsetpointtolerancewillnotinvalidatetheLOCAornon-LOCAconclusionspresentedintheUFSARaccidentanalyses.Thenewlossofload/turbinetripanalysisconcludedthatallapplicableacceptancecriteriaarestillsatisfied.ForalltheUFSARnon-LOCAtransients,theDNBdesignbasis,primaryandsecondarypressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperaturesremainbelowthelimitsspecifiedin10CFR50.46.Thecalculateddosesresultingfromasteamgeneratortuberuptureeventremainwithinasmallfractionofthe10CFR100permissiblereleases.Thus,thereisnoreductioninthemargintosafety.Notethat,asidentifiedearlier,changeswillberequiredtotheplantTechnicalSpecificationsinordertoimplementtheproposedchange.9l429R2.wpf30 SECL-91<29,Revision2SDTheproposedchangetomainsteamsafetyvalveliftsetpointtolerancesfrom+1%to+3%hasbeenevaluatedbyWestinghouse.TheprecedinganalysesandevaluationshavedeterminedthatoperationwiththeMSSVsetpointswithinaJ3%toleranceaboutthenominalvalueswillhavenoadverseimpactuponthelicensingbasisanalyses,aswellasthesteamlinebreakmass&energyreleaseratesinsideandoutsideofcontainment.Inaddition,itisconcludedthattheJ3%toleranceontheMSSVsetpointdoesnotadverselyaffecttheoverpowerorovertemperatureprotectionsystem.Asaresult,adequateprotectiontothecorelimitlinescontinuestoexists.Therefore,alllicensingbasiscriteriacontinuetobesatisfiedandtheconclusionsintheUFSARremainvalid.Thus,basedontheinformationpresentedabove,itcanbeconcludedthattheproposedincreaseofmainsteamsafetyvalveliftsetpointtolerancesfromJ1%toJ3%doesnotrepresentanunreviewedsafetyquestionperthedefinitionandrequirementsdefinedin10CFR50.59.TherecommendedTechnicalSpecificationchanges,alongwithanosignificanthazardsevaluation,arepresentedasappendicestothisevaluation.91429Rz.wpf31 SECL-91-429,Revision2VI.REFERENCES1)DonaldC.CookUnits1&2TechnicalSpecificationsthroughAmendments157and141,respectively,10/1/91.2)ANSI/ASMEBPV-I11-1-NB,"ASMEBoilerandPressureVesselCode-SectionIIIRulesforConstructionofNuclearPowerPlantComponents,"ASME,1983.3)ANSUASMEOM-1-1981,"RequirementsforInservicePerformanceTestingofNuclearPowerPlantPressureReliefDevices,"ASME,1981.4)"DonaldC.CookUnits1&2UpdatedFinalSafetyAnalysisReport(UFSAR),datedthroughJuly1991.5)ASMESteamTables,FifthEdition,1983.6)'urnett,T.W.T.,etal.,"LOFTRANCodeDescription,"WCAP-7907-P-A,June1972.7)Chelemer,H.etal~,"ImprovedThermalDesignProcedure,"WCAP-8567-P-A,February1989.8)Butler,J.C.andD.S.Love,"SteamlineBreakMass/EnergyReleasesforEquipmentEnvironmentalQualificationOutsideContainment,"WCAP-10961-P,October1985.9)90AE*-G4126W/AEP2-0098Transmittalregarding"LockedRotorDoseAnalysisforDonaldC.CookUnit2Cycles8&9,"7/19/90.10)LetterregardingAFWflowratesfromR.B.BennettofAmericanElectricPowertoJ.N.SteinmetzofWestinghouseElectric,9/24/91.11)WCAP-10054-P-A(Proprietary),WCAP-10081(Non-Proprietary),Lee,H.,etal.,WestinghouseSmallBreakECCSEvaluationModelUsingtheNOTRUMPCode,August1985.12)WCAP-12135,DonaldC.CookNuclearPlantUnits1and2ReratingEngineeringReport,Vol.1,September1989.91429R2.wpf32 SECL-91<29,Revision2TABLE3UNITITURBINETRIPSEQUENCEAccidentWithoutpressurizercontrol(minimumreactivityfeedback)Withoutpressurizercontrol(maximumreactivityfeedback)Withpressurizercontrol(maximumreactivityfeedback)Withpressurizercontrol(minimumreactivityfeedback)'ventTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowPeakpressurizerpressureoccursLow-lowsteamgeneratorwaterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHigh-pressurizerpressurereactortripsetpointreachedTimesec0.0779.710.50.07.99.910.50.010.047.149.10.012.491429Rz.wpf33 SECL-91<29,Revision2TABLE3(continued)UNITITURBINETRIPSEQUENCEAccidentEventRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursT~imesec14.416.015.5*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf34 SECL-91<29,Revision2TABLE4UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithoutpressurizercontrol(minimumreactivityfeedback)Withoutpressurizercontrol(maximumreactivityfeedback)EventTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursT~imeeeeInixedcore0.05.57.59.50.05.57.59.0fullcore0.07.59.511.00.07.69.610.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf35
 
SECL-91<29,Revision2TABLE4(continued)UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithpressurizercontrol(maximumreactivityfeedback)Withpressurizercontrol(minimumreactivityfeedback)EventTurbinetrip,lossofmainfeedwaterflowPeakpressurizerpressureoccursLow-lowsteamgeneratorwaterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccurscore0.07.060.162.10.010.612.613.514.5Timeecfullcore0.07.552.854.80.011.213.214.515.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf36 SECI91-429,Revision2TABLE5CURREN'I'ICENSINGBASISSTEAMLINESAFETYVALVESPERLOOPSafetyValve1A1B2A2BSetpoint10651065107510751085PercentAccumulation10.010.08.988.98,7.97Accumulation1171.51171.51171.51171.51171.5FlowrateAcc.857690857690857690857690857690Theratedvalvecapacityatfullaccumulationpressurewascalculatedasfollows:51.5xAxKxP=ActualFlowratewhere:A=Valveorificearea=16in'=Coefficientofdischarge=0.975P=Pressure(psia)ataccumulationpressureTheaboveactualfiowrateisreducedby0.9togetthevalveratedcapacity.91429R2.wpf37 SECI91<29,Revision2TABLE6MSSVSETPOINTINCREASESTEAMLINESAFEIVVALVESPERLOOPSafetyValve1A1B2A2BSetpointPressure1096.951096.951107.251107.251117.55Percentccumulation3.03.03.03.03.0Accumulation1129.861129.861140.471140.471151.08FlowrateAcc827585.6827585.6835257.2835257.2842928.9Theratedvalvecapacityatfullaccumulationpressurewascalculatedasfollows:51.5xAxKxP'=ActualFlowratewhere:A=Valveorificearea=16inK=Coefficientofdischarge=0.975P=Pressure(psia)ataccumulationpressureTheaboveactualflowrateisreducedby0.9togetthevalveratedcapacity.91429R2.wpf38 SECL-91-429,Revision?PRESSURE,LOWTEMPERATURECurrentLicensingBasis3588'.32+301.551.433159461350600354000509.89581.712100564.361512012027518601715271010Closed2.04,40.08.060'able5LicenseCorePower'MWt)TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulatorWaterVolume(ft')AccumulatorTankVolume(ft')MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)'esselOutletTemperature(F)'CSPressure(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperature(F)MaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpin)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.32+301.551.433'15OFA9461350600354000513.23578.572100596.481512012027518601715271025Closed4,44,40.08.0272Table6Twopercentisaddedtothispowertoaccountforcalorimetricerror.Asafetyevaluationfor25gpmchargingflowimbalancelimitsoperationwithHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.Asafetyevaluationwasperformedtoaccountforaauxiliaryfeedwaterenthalpydelayof272seconds.9l429R2.wpf39 SECI91-429,Revision2TABLE7aInitialInputParametersfortheSmallBreakLOCAAnalysisLicenseCorePower'MWt)TotalPeakingFactor,F<.AxMOffset(%)HotChannelEnthalpyRiseFactor,P~MaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulatorWaterVolume(ft')AccumulatorTankVolume(ft)MirumumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature('F)'esselOutletTemperature('F)'CSPressure(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperatureMaximumCondensateStorageTankTemperature('F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterTotalDelivery(gpm)AuxiliaryFeedwaterDeliveryDelayTime(sec)MainSteamSafetyValveSetpoint(psia)AccumulatorTemperature('F)('F)CurrentLicensing~Bas'588'.32+301.551.43315X1509461350600354000509.89581.712100564.361512012027518601715271010Closed2.04.40.08.0125860'able1120MSSVSetpointIncrease32502'.32+301.551.433FA9461350600354000513.20578.442033596.111512012027518601715271025Closed4.44.40.08.075060'able2130Twopercentisaddedtothispowertoaccountforcalorimetricerror.Asafetyevaluationfor25gpmchargingfiowimbalancelimitsoperationwithHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTAvo..Asafetyevaluationwasperformedtoaccountforanauxiliaryfeedwaterenthalpydelayof272seconds.EnthalpydelaycomputedinternallybasedonAFWflowrateand75ft'urgevolume.40
 
SECI91-429,Revision2TABLE8LOWPRESSURE,HIGHTEMPERATURELicenseCorePower'MWt)TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,PuFuelAssemblyArrayAccumulatorWaterVolume(ft')AccumulatorTankVolume(ft')MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)'esselOutletTemperature(F)'CSPressure(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperature(F)MaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint('psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)CurrentLicensingBasisNANANANANANANANANANANANANANANANANANANANANANANANANANANANANANAMSSVSetpointIncrease3250232+301.55'.43315X15OFA9461350600354000543.63606.792100793.901512012027518601715271025Closed4.44.40.08.0272Table61Twopercentisaddedtothispowertoaccountforcalorimetricerror.2Asafetyevaluationforthelowpressure,hightemperatureoperatingconditionwasperformedinthelicensingbasisanalysis.3Valueisbased.on102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.91429R2.wpf41 SECL-91<29,Revision2TABLE9LOWPRESSURE,HIGHTEMPERATURECurrentLicensingBasis34132.34+30Factor,F1.644ePower,Pn1.519179461350600354000544.41610.192100807.031512012027518601715271025Closed4.74.40.08.0349Table5LicenseCorePower'MWt)TotalPeakingFactor,FzAxialOffset(%)HotChannelEnthalpyRiseMaximumAssemblyAveragFuelAssemblyArrayAccumulatorWaterVolume(fP)AccumulatorTankVolume(ft')MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)~VesselOutletTemperature(F)'CSPressureIncludingUncertainties(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperature(F)MaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.357+131.6661.46'17V59461350600354000544.41610.192100807.031512012027518601715271025Closed4.7442.06.0349Table61Twopercentisaddedtothispowertoaccountforcalorimetricerror.2Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.91<29R2.wpf SECI91<29,Revision2TABLE10TIMESEQUENCEOFEVENTSEventLPLTLPLTLPHTLPHTw/MSSVw/oMSSVw/MSSVw/oMSSVBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionsignalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorecoveredSIflowrateexceedsbreakflowrate011.2319.2846.28643.4NANA1139.21730.01935.5NA198800011.2313.5413.5419.2822.4222.4246.2849.4249.42644.7601.8608.3NANANANANANA1077.31073.41057.81751.01647.81695.81831.41872.31824.7NANANA202422932284LPLTislowpressure,lowtemperatureoperatingcondition.LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3250MWtcorepower.91429R2.wpf43 TABLE10aTIMESEQUENCEOFEVFATSSECL-91-429,Revision2EventLPLTw/MSSV2inchBreakTime(seconds)LPLTw/MSSV3inchBreakBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionStartofauxiliaryfeedwaterdeliveryLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccurs'opofcorecoveredSIflowrateexceedsbreakflowrate0.08.6417.1344.1368.6592N/AN/A98416801890N/A18900.019.0337.1164.1179.11390N/AN/A2312N/A4042N/A4091LPLTislowpressure,lowtemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.
SECL-91-429,Revision2TABLE11SUMMITRYOFRFSULTSNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H,OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature('F)LPLTw/MSSV1853.711.751935.53.4711.75<1.0None251878.7LPLTw/oMSSV1772.911.751831.42.4711.75<1.0None151787.9LPHTLPHTw/MSSVw/oMSSV1837.71710.311.7511.751872.31824.73.131.8211.7511.75<1.0<1.0NoneNone16151853.71725.3LPLTislowpressure,lowtemperatureoperatingcondition.LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3250MWtcorepower.91429R2.wpf45
 
TABLE11aSUMMARYOFRESULTSSECL-91-429,Revision2LPLTw/MSSV3inchBreakLPLTw/MSSV2inchBreakNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(I)LocalZr/H~OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature('F)195112.018905.0612.00.568None1172068183312.040423.7512.00.397None151848LPLTislowpressure,lowtemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.46 SECI91<29,Revision2TABLE12TIIKESEQUENCEOFEVI<22lTSEventBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionsignalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorecoveredSIflowrateexceedsbreakflowrateLPHTw/MSSV011.0120.9247.92620.0NANA620.01604.31691.0NA1683.0TimeLPHT~w/0MSV011.0120.9247.92627.2NANA627.21631.71720.6NA1984.0LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3413MWtcorepower.91429R2.wpf47 SECI91429,Revision2TABLE13SUlVPdARYOFRESULTSNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H>0ReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstArtificialLeak-ByPenalty('F)BurstandBlockagePenalty('F)TotalPeakCladTemperature('F)LPHTw/MSSV1955.911.751691.04.2611.75<1.0None121572124.9LPHTw/oMSSV1947.111.751720.64.8311.75<1.0None121432102.1LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3413MWtcorepower.91429R2.wpf48 SECL-91<29,Revision2FIGU1H~591429R2.wpf49 WQQRSIA24OOPSIA681840>SIA'000iPsaA2100xPSIA45~gglgQTOl~VA1.VESO'EN578575598..5955"8'l5688685613615628625638avg(P:eaaaaap+CoreLtmitsNominalTave~578.7'F.'(ominalPI.assure~2100ps.'aOONALOC.COOKUNIT1FIGURElaILLUSTRATIONOFOVERTEHPERATUREANO.OVERPOWEROELTATPROTECTIONi'I 75OPaT651922PSIA2250PSIA402000PSIA2400PSlA<5STEANGENERATORSAPPYVALVESOPEN56856S57857558B5855'%'tS688685618615628625TeveleF')-----OTaTProtectfonLfnesCarsThsrtaslSsfstyLtsftsNominalVesselAverageTeaperature576'FNoafnalPressurfzerPressure2250psfaDONALDCCOOKUNIT2(MIXEDCORE)FIGURE1bILLUSTRATIONOFOVERTEMPERATUREANOOVERPOWERDELTATPROTECTION 73~1922PSIAOPaT2400'.PSIA532000PSIASTGNGENERATORSAFETYVALVESOPEN2250PSIA575S885855I8S~S6886856186I5628625ai3nvg(~F'!-----OTaTProtect)onLinesCoreTherssalSafetyLfeitsNominalVesselAverageTemperature5S1.3'FNominalPressurizerPressure2100psia.DONALDC.COOKUNIT2(FULLV5CORE)FIGUREIcILLUSTRATIONOFOVERTEHPERATUREANDOVERPOWERDELTATPROTECTION' h~vVVI:CC~4hVACvpl'v4II"lCC."300.l900.2300.lo.20.30.40.50.60.~C,80.90.TMK(SEC~F800.>6001~00'41200JlIQOO.0.10.20.30.40.50'0.70.80.90.>00.TME(SEC)DONALDC.COOKUNITIFIGURE2TURBINETRIPEVENT'WITHOUTPRESSURECONTROL,HINUHUHREACTIVITYFEEDBACK
~~
rD~z~~iZIIIII4i1020ic4053607080:CT~E(SEC)4551.510203040506070809C1'K(SEC'ONALDC.COOKUNITIFIGURE3TURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HINUHUMREACTIVITYFEEDBACK 5605~0520i53056C5'0520500010203C<050607080iClCT0=(SEC)EGG'805605<052G5002560560i5<0520500010203040506070SG90t"3v=(SEC,'ONALDC.COOKUNITIFIGURE4ITURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINUMUMREACTIVITYFEEDBACK.
I~CC11'JCO9CC.;9CG.;700.50C.5000.IO.20.30.40.50.60.70.90.90.lQQ.TuE(SEC)400tQ350300250200150C',100500-5010203040505070dO90'COTi&(SEC)DONALDC.COOKUNITIFIGURE5IITURSINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITYFEEDBACK 35sp252015OCtvip5Ul0-5-100,102030405050708090tCOTlhtK(SEC)OONALOC.COOKUNIT1FIGURE6TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITYFEEDBACK
 
OC<OCahAQVnC1i~]V'30Ct800.Io.20.30.io.50.60.~0.50.90.<OC.T:~E(SEC)"300.1900>500accri400>200.Jl>300.0.10.20.JO.40.50.60.70.60.90.IOC.ri~K(sEc)OONALDC.COOKUNITIFI6URETURBINETRIPEVENTWITHOUTPRESSURECONTROL,:NXINNREACTIVITYFEEOBACK 0.102030+0506070d090lCQTvK(SEC,'2.51.51.010203040506070d090tCQTisK(SEC)DONALDC.CMKUNITIFIGURE8TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HAXII%NREACTIVITYFEEDBACK 66G620~~V!30560dr.o520500tO20SOiO50doIo8090rvc(sac)>oo6606606<o62050085doseo5~0520500to20304050do708090tooritz(sec)ONALOC.COOKUNITIFISNETURBINETRIPEVENTltITH0UTNESSVRECONTROL,'NXINNREACTIVITYFEEDBACK
~nC2C'A'.300A300I'J)3CC,;700.500.5000.10.20.30.40.50.60.70.80.90.100.TlMK(SEC)400350300250200150100500-500tQ2Q3040505070d090100TIME(SEC)DNALDC.CXKUNITIFIGURE10TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINPlREACTIVITYFEEDBACK 2520tQ1510acQC5A4-5-10010~2030405060,70SO901COTlsK(SEC)0ONALPC.COOKUNIT1FIGURE11TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEDBACK aoaga4~"500n50C5h40Cj"'CCI"2OCn'OC23001900.18000.10.20.30.io.50.do.70.40.80.iCCtivK(SKC)2300.isoo.tdoo.c>400.1200.nnt000.)0.20,go.io.50.do.70~80,90.~OC.Till(5CC)OQWLDC.COOKNIT1FIQNE12mamTaIeEVENVITHPRESSVRECNTROL~NXINNREACTIVITYFEEoMCK 8520102030<050d0108090T>MK(SEC)45.3.52.510203040506010809GTlirt(5KC)ONEC.COOK.NITIFIGNE13TtWSINETRIPEVENT'KITHPRESSNECONTROL,NXINNREACTIVITYFEEDBACK 580560520cBS~60540520500700lO2030+05050VOT'Mg(SKC)5605iQ520500258056054010203040508010d09GtCSTIIC(SEC)XNALDC.COOKUNIT1,FI6URE14TUNMTRIPEVBITQlTHPRESSNECONTROL,NX1NNREACTIV?TYFEEDBACK IIQQ1500.300.BOO.700:600.5000.10.20.30.40..50.60.70.60.TlhlK(SEC)400350I3OO250200150100I5000102030405060708090100T1QK(SEC)OelALDC.COOKUNIT2(FULLYSCORE)FIGURE15TURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIYITYFEEOBACK 2520Ql15105-10010203040505070d090100Ti~K(SEC)ONALGC.COOKUNIT2(FULLVSCORE)FIGURE16TURBINETRIPEVENTWITHPRESSURECONTROL,NXINtwREACTIVITYFEEOBACK 2500.2400.nn"~"C'v'n2OOO.l800.ld00,0.l0.20.30.'0,50d070g0.90.laC.T<~g(SKC)2300.l800.1d00.1400.I200.l000,800.lo2030.40.50.50,70.So90lo(SEC)OONLDC.COOKUNIT1FI6NE17TURSINETRIPEVENTMITHPRESSURECONTROL,NINNNREACTIVITYFEEOBACK
 
25a4x201020304050do70do9C)C"1'iuK(SKC)52.52~0102030io500070doMiOOTiitE(SEC)ONNLDC.COOKUNITIFI6NE18TNSINETRIPEVENT'WITHPRESQNECONTlSL,NINNNREACTIVITYFEEDBACK 56C'5@i52"5~0'$5560s~c520500102030405060TO809C'C"T'lK(SEC)7006805606<0525600580515555<052041420304050T1IC~(SEC)DNQLD'C.CONNITIFINRE-IgTNSINETRIPEVENTWITHPRESSVRECONTROL,NINNNREACTIVITYFEEDBACK 1000.900.800.700.500.5000.lp,20,30.40.50.dp.70.80.90.100.TiuK(SEC)500CJ4JVl<004300200l000-10001020304050dp708090100TiVK(SEC)00NALOC.CONNITIFIGURE20TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITYFEEDBACK 302520)510QC5tAac0CL-t00I02030405060708090100Ti&(SEC)ONNLDC.CONUNITIFI6URE21TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITYFEEDBACK 2500.n250C.5<OC~COx'V:2QC.2100."00F900.1/000.t0.20.30.40.50.50.70.50.9Q,)GGt~c(sac>2000.1800.1d00.x[400.1200.1300.0.10.20.30.40.50.80.10.80.90.t00.re%(5')OINEDC.COOKNIT2(NIXEOCORK)FIQNK22aTNSNETRIPEVENTltITHOUTPRESSNECONTROL,NINNYREhCTIVITYFKEDBAC<
n50C<c,PC'CCI\+yA~oerV43tOCC""OC>90C.18000~le20'0~<0~50.60.70.<0.g0.~PC~MK(SEC)"30CtSOC.l500.t40C.I200.1300.0.t0.20.30.40.50.60.70.50.90.lOC(MC)tOMLDC.CONNIT2(fULLV5CONK)fIQNK22bTlNSINETRIPEV9fTVITHOUTPRKSSlNKCONTROL,NINNNREKTIVITYFEEDSACK Cc5x200l02030~05050>08090~Co'Tissu(SKC)2.52.2t.dl.24>02030<05050.1050.SOiCaTilg(SEC)OOOOC.COOKNIT2(NIXEOCORE)FICNE23aTlNSINETRIPEVBITWITHOUTPRESQNKCSlTROf.,NINNNREhCTIVITYFEEO84<<
tOZO3O.Oa6O(sec)to20304050607080KiCQ7:~K(SEC)tONU)C;COOKUNIT2(FVLl,NCORE)FINRE23bTVRIINETRIPEVENTitITHOUTPRESSURE@NIAL,NINNNREACTIVITYFEEDBACK 0
560diQ520I5305605cQ520500700Ql0203040506070809Q~Ti~E(SEC)6806606+06206009MQMO5<0]420'04050d0>06090Ti&(SEC)DONALDC.CNXNlT2(NlXEDCORE)FENRK24aTNSlNETRlPEVENTQlTHOUTPRESQNECONTROL,MINN%REACT[VlTYFEEOBACK 53IIc605ao5ZQ5:c.'30c6szo500OlOZOSO4O50.6OrOaoaC.CgrQK(SEC).00Sao5605io520500580I5605co5200~02030iO50607040SOiCOrw(sKc)ONEDC.COOKNIT2(RKLV5CORK)FIQNE24bTURSINETRIPEVENTWITHOUTNESSNECOKTROL,NINNNREACTIVITYFEEDBACK
'20C1000.z300.BQO.o700.600.500.0.Io.20.30.<0.50.60.70.60.9Q.IQQ.TIME(SEC)400350zoo2502001501005000t02030405060708090>007i&(SEC)DNALDC.COOKNIT2(MIXEDCORE)FIGURE25aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINN@REACTIVITYFEEDBACK
:ocP11QQ.100.300.BCQ.700.500.5000.10.20.30.40.50.SO.70.80.90.1OO.TIME(SEC)400rn3503002502OO150100500-50102030<050do708090100TiME(SEC)00NLDC.'COOKUNIT2(FULLVSCORE)FIGURE251TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NINNNREACTIVITYFEEOBACK 4030252015105Vl0-5-1001020304050d0705090)QQTivK(SEC)DONALOC.COOKUNIT2(MIXEDCORK)FIGURE264TURBINETRIPEVENTWITHOUT'RESSURECONTROL,.NINLNNREACTIVITYFEEOBACK 403530252015(Y1050-5-10010203040505070d090100Ti~E(SEC)DONALDC.COOKUNIT2(FULLVSCORE)FIGURE26bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MIHUNNREACTIVITYFEEDBACK tV"50Cn"50C=~OCivs~1hPaavlon2lQCC2300.1300.1500.'0.10.20.30.40.50.5070.dO.90.100TiIE(SEC)2'300.1800.le00.ct1400.'V1200.'1000.800.0.10.20.JO.40.$0.60.70.80.90.100.Ti~KfMC)004lLDC.CONNIT2(MIXEDCORE)FIQURE27aTURBINETRIP'VENTM?THOUTPRESSURECONTROL,NXINPIREACTIVITYFEEDBACK OAA~4"5GCn"504CIhca%%2tQC"300>900.>5000.t0.ZQ.30.44.50.d0(~C)94>004.300I/00.i500.'00.>200.I300.0.10.20.30.44,50.d0.70.60.90.F00TsK(MC)'ONANC.COOKUNIT2(FULLV5CORE)FI6NE27bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,.NXISNREACTIVITYFEEDBACK 0.l0203040505070d09QT~vE(SKC)2.d2.62.4j2,1020304050d070d090lC"(sac)OONLDC.COOKUNIT2(NIXEQCORE)FIQNE28aTVRSINETRIPEVENTWITHOUTPRESQNECONTROL,NXINNREACTIVITYFEEDBACK CIQ2Q30+0506070I509C'CQT:MK(SKC)5525>.5l.OtO2OaO4O5O6O~OaOeCtCaT:VK(SEC)OIWL9C.COOKNIT2(RJLLVSCORE}fNNf28bTlJRSINETRIPEVENT'WITHOUTl%ESSVRECONTROL,NXINNREACTIVITYFEED8ACK g2hi1.~'0II5605<0c2h500010203040506070dOQQrME(sEC)7005805606<06206008580580540520IO.2030405060'10dO90ICQrim(sac)ONlLDC.COOKLNIT2(MIXEDCORE)'I6URK29aTNSINETRIPEVENTWITHOUTPRESSURECNTROL,NXINNREACTIVITYFEEDSACK, 60540520500%%0>020304050607060ypTvK(SEC)51505ip62050085ao5605iO5200>020SOip505070.80SCiCOT'MK(SKC)NNALDC.CONUNIT2(FULLVSCNE)FIQNE29bTNBINETRIPEVENTMlTHGUT-PRESSURECNTROL,NXINNREACTIVITYFEEDBACK QCg1~0090C.nHPC700.500.5000,10.20.30.40.50,60.10.bp.90.100.~TIME(SEC),300250200150w100CC500n500102030405060708090100T1&(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FI6URE30aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEDBACK 300.30C700.500.500.0.IO.20.30<050607080.90.IOC.TME(SKC)400350300250200l50100500-50]02Q304050dQ70d0901COruE(SEC)Ot)NALOC.COOKUNIT2(FULLVSCORE)FIGURE30bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXII%NREACTIVITYFEEDBACK
 
25201510acac5'4ac0ac-5-100102030405060"708090)COTIME(SEC)DONALDC.COOK'NIT2(MIXEDCORE}FIGURE3laTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MAXIHLNREACTIVITYFEEDBACK.
2520V)IO50-5-100102030<050d070Soeo.COTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE}FIGURE31bTURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HAXIHNREACTIVITYFEEOBACK q%sarv25CC500"<cc~leer~,vvvltIAeevbr2'QC300.i90C.It8002300.10.20.30.40.5050T'LIE(ggg)1300.1500.<z14QQ.'V1200.'AtQQQ.0.10.20.30.io.50.dO.ZO.50.90.tQC.TiMK(SKC)ONAu)C.COOKUNIT2(lIIXH)CORE)FIGVRE32aTURBINETRIPEVENTMITHPRESSVRECONTROL,NXINNREACTIVITYFEEDBACK
~~%A%VI50Ct.cQCCn~<hFaVVC'900'80020.30.<0.50.60.70.50.90:GCTvK(SEC)2".00>30C..~:tlj~i~>500>400>200nt300.0.10,20.30.40.50.d0.10.50.90.iOCr~C'(SCC)'ONlDC.COOKUNIT2(FULLV5CQRE)FI6NE321TURBINETRIPEVENTMITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK dt4Z0.102030<0505070809CrvK(SKC)2.63~.z~2010203040505070d090Tlat@(SEC)OOQLGC.COOKNIT2(MIXEDCORE)FI6NE33aTURBINETRIP.EVENTMITHPRESQNECONTROL,NXINNREACTIVITYFEEOSACK l02030405050108090~vK(SKC)lO20304050dO10609CT~K(SKC)ONIALOC.COOKUNIT2(FULLVSCORE)FISuaz33bTlJRSINETRIPEVBITMITHPRESSURECONTROL,NXINNREACTIVITYFEEDSACK 5~0620IIrvSCar<<V5605<05205000!02030405060l0809Cr~E'SEc)7005805606405205008580g5605L05200l02030405060108090lC"TivK(SKC)00NLDC.COOKUNIT2(NIXEQCORE}FI6URE348TURBINETRIPEVENTKITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK 550t54Ce5205000'02030<050607080TvK(SKC',0III5305~062050C258035605c0520500io2030io5060~0aoec:COTilK(SEC)ONALDC.COOKUNIT2(FULLV5CORE)FIeNE34bTURSINETRIPEVENT'KITHPRESSURECONTROL,NXINNREACTIVITYFEE08aCV.
c?.-QC.J7z30C.BCC.D700.500.500.p.30010'0'0.40.50.60.70.80.9p.1pcTMK(SEC)250200150OC10QCZ500n-501020304050'6070SO901CPTlute(SEC)DONALDC.COOKUNIT2(HIXEDCORE)FIGURE35aTURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK P'009CC600.500.40010.20.30'0.50.60.70.80.9p.IppT:ME(SEC)350300250200150100500-50102030405060708090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE35bTURBINETRIPEVENTWITHPRESSURECONTROL,AXINGREACTIVITYFEEDBACK 2520'A)5)0QCac550-5)Q2030405050708090)GOT)MK(SKC)PONALDC.COOKUNIT2(HIXEOCORE)-FIGURE361TURBINETRIPFVENTMITHPRESSURECONTROL,NX'INNREACTIVITYFEEOBACK 252010ac5ac0-5-100t02030405050'08090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE36bTURBINETRIPEVENTMITHPRESSURECONTROL,MAX!NNREACTIVITYFEEDBACK
:5CC"5CC1nIC2ICC".QG.:900.I800.0.300tp.20.30.iP.50.60.70.50.ypTuK(SKC)t300.'6QCac'<OCCv>200nnIQOC.0.l0.20.30.40.50.60.70.80,90.IOO.T5VK(SE'C)DONALDC.COOKUNIT2(IIIXEDCORE)FIGURE37aTURBINETRIPEVENTQITHPRESSURECONTROL,MINN@REACTIVITYFEEOBACK
 
5QCnwgAQevC~'n2~00V)1600)0.20.30.40.50.50.10.80.90.:OC.T:VK(SEC)2'300.1800.1600.I400."4l200.1000.600.0.~0.20.30.i0.50.60.10.d0.90.~OC.7~&(SEC)OONLOC.COOKNIT2(FULLVSCORE)FIQIRE37bTURBINETRIPEVENT'MITHPRESSURECONTROL,NINNNREACTIVITYFEE08ACK 102050<050607Q60gCrvK(SgC)286"2164~Q203040'0647060g)T1QK(SEC)OONU)C.COOKUNIT2(llIXEOCORE)fI6NE38'URSINETRIPEVENTMITHPRESSURECONTROL,NINNPlREACTIVITYFEEDBACK Z0.ic20304050d010d090TMK(SEC}45352.5I.Sl.0102030.io50107080SOtCOTi&(SEC)OQNLDC;COOKUNIT2(FULLVSCORE)FIQNE38b'URSIHETRIPEVENTNITHPRESSURECONTROLSINN@REACTIVITYFEEDBACK 560t520500010203040506070809C'"0IMK(SEC)6805605~0~5205005505605405205000"102030405060108090'00TivK(SEC)00NALDC.COOKUN?T2(NIXEDCORE)FlGURE39aTURSlNETRlPEVENT'MlTHPRESSURECONTROL,NlHUNNREACTLVITYFEEOBACK
 
4,IIcogiII5205000>02030<0506070TvK(SEC)30I68G6605<0r.2r.63058035605i0520500'l02030405060708090iCQTivK(SKC)NXQLO'C.COOKUNIT2(FULLV5CORE)FIGURE3SbTURBINETRIPEVENTQITHPRESSURECONTROL,NINNNREACTIVITYFEEDBACK n13QC.700.500.500.40Q10.20.30.40.50.60.70.80.9Q.!QC.TME(SEC)s)350300"50200150100500500.102030405060708090>00TiMK(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE40aTURBINETRIPEVENTQITHPRESSURECONTROL,MINIMUMREACTIVITYFEEDBACK el'00.3PG.MV7PG.500.5000~10'2030'0'0'0'0~80.90.'CC.TME(SEC)500n4001I(3OO<I200i100J)0n-100010203040506070do90iCOTlMK(SEC)OONALOC.COOKUNIT2(FULLVSCORE)FIGURE40b.TURBINE.TRIPEVENTWITHPRESSURECONTROL,HININNREACTIYITYFEEOBACK 403530252015gA'4]Q5-5-100102030405060lO8090'C3T'ME(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE41aTURBINETRIPEVENTMITHPRESSURECONTROL,HINIMNREACTIVITVFEEDBACK 30412c20151QAgJ70-1Q0102030405060708090TIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE41bTURBINETRIPEVENTMITMPRESSURECONTROL,MINIHUHREACTIVITYFEEOBACK APPENDIXASIGNIFICANTHAZARDSEVALUATION
>A SIGNIFICANTHAZARDSEVALUATIONDONALDC.COOKUNITS1&2MSSVLIFTSETPOINTTOLERANCETECHNICALSPECIFICATIONCHANGEINTRODUCTION:Pursuantto10CFR50.92,eachapplicationforamendmenttoanoperatinglicensemustbereviewedtodetermineiftheproposedchangeinvolvesasignificanthazardsconsideration.TheCommissionhasprovidedstandardsfordeterminingwhetherasignificanthazardsconsiderationexists(1OCFR50.92(c)).Aproposedamendmenttoanoperatinglicenseforafacilityinvolvesnosignificanthazardsconsiderationifoperationofthefacilityinaccordancewiththeproposedamendmentwouldnot:1)involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated,or2)createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated,or3)involveasignificantreductioninamarginofsafety.DESCRIPTIONOfAMENDMENTREVEST:ThepurposeofthisamendmentrequestistoreviseTechnicalSpecificationSection3/4.7forbothDonaldC.Cookunitsinordertorelaxthemainsteamsafetyvalve(MSSV)liftsetpointtolerancefrom<1%toJ3%.ThecurrentlyspecifiedtoleranceofJ1%oftheliftsetpointcanbedifficulttomeetwhenthevalvesaretestedduetosetpointdriftoverthedurationoftheoperatingcycle.ThisevaluationwillprovidemarginforAmericanElectricPowerServiceCorporation(AEPSC)whentheyperformtheirsurveillancetesting.TheASMECoderequiresthatthevalvesliftwithin1%ofthespecifiedsetpoint(NB-7512.2).Thecodealsostatesthatthevalvesmustattainratedlift(i.e.,fullflow)within3%ofthespecifiedsetpoint(NB-7512.1).ThisevaluationwillformthebasisfortakingexceptiontotheASMECodewithrespecttotheliftsetpointtolerances.AsdefinedinNB-7512.2,exceptionscanbemadetothecodeprovidingtheeffectsareaccountedforintheaccidentanalyses.A-1
 
BASISFORNOSINIFICANTHAZAIU)SDETERMINATION:Theeffectsofincreasingtheas-foundliftsetpointtoleranceonthemainsteamsafetyvalvehavebeenexaminedforthenon-LOCAaccidents,andithasbeendeterminedthat,withoneexception,thecurrentaccidentanalysesaspresentedintheUFSARremainvalid.Thelossofload/turbinetripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerancerelaxation.Aspreviouslydemonstratedinthisevaluation,allapplicableacceptancecriteriaforthiseventhavebeensatisfiedandtheconclusionspresentedintheUFSARarestillvalid.Thus,theproposedTechnicalSpecificationchangedoesnotconstituteanunreviewedsafetyquestion,andthenon-LOCAaccidentanalyses,aspresentedinthereport,supporttheproposedchange.TheeffectofanincreaseintheallowableMainSteamSafetyValvesetpressuretolerancefrom+1%to+3%ontheUFSARLOCAanalyseshasbeenevaluated.Ineachcasetheapplicableregulatoryordesignlimitwassatisfied.SpecificanalyseswereperformedforsmallbreakLOCAassumingthecurrentMSSVTechnicalSpecificationsetpressuresplustheproposedadditional3%uncertainty.Thecalculatedpeakcladdingtemperaturesremainedbelowthe10CFR50.462200'Flimit.Thesteamgeneratortuberuptureeventwasalsoanalyzedtodeterminetheeffectsoftheliftsetpointtoleranceincrease.TheresultsoftheanalysisconcludedthattherewasaveryslightincreaseinthewholebodydosereleaseforUnit1,butthemagnitudeoftheincreasewasSECL-91%29,Revision1withintheuncertaintyassociatedwiththecalculationitself,andthatthereleasesgeneratedfortheDonaldC.CookReratingProgramboundthosecalculatedforthisevaluation.TheevaluationalsodeterminedthatthecurrentUnit2dosesremainbounding.Thus,theconclusionspresentedintheDonaldC.CookUFSARremainvalid.Neitherthemassandenergyreleasetothecontainmentfollowingapostulatedlossofcoolantaccident(LOCA),northecontainmentresponsefollowingtheLOCAanalysis,credittheMSSVinmitigatingtheconsequencesofanaccident.Therefore,changingtheMSSVliftsetpointtoleranceswillhavenoimpactonthecontainmentintegrityanalysis.Inaddition,basedontheconclusionofthetransientanalyses,thechangetotheMSSVtolerancewillnotaffectthecalculatedsteamlinebreakmassandenergyreleasesinsidecontainment.A-2 TheproposedchangehasbeenevaluatedinaccordancewiththeSignificantHazardscriteriaof10CFR50.92.Theresultsoftheevaluationdemonstratethatthechangedoesnotinvolveanysignificanthazardsasdescribedbelow.1.Asignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated.RelaxationoftheMSSVsetpointtolerancefrom+1%toJ3%doesnotincreasetheprobabilityorconsequencesofanaccidentpreviouslyevaluated.Componentandsystemperformancewillnotbeadverselyaffectedsinceequipmentandsystemdesigncriteriacontinuetobemet.TheMSSVsdonotinitiateanyaccidentnotalreadydiscussedintheUFSAR.Neitherthemassandenergyreleasetothecontainmentfollowingapostulatedlossofcoolantaccident(LOCA),northecontainmentresponsefollowingtheLOCAanalysis,credittheMSSVinmitigatingtheconsequencesofanaccident.Fortheeventsanalyzed,allapplicableacceptancecriteriaweresatisfied,andtherewasnoincreaseinthedosesoverthosepreviouslygenerated.Asaresult,theconclusionspresentedintheDonaldC.CookUFSARareunaffectedbytheproposedchange.Therefore,changingtheMSSVliftsetpointtoleranceswouldhavenoimpactontheconsequencesofanaccident.2.Createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated.Thepossibilityforanaccidentormalfunctionofadifferenttypethanevaluatedpreviouslyinthesafetyanalysisreportisnotcreated.IncreasingtheliftsetpointtoleranceontheMSSVsdoesnotintroduceanewaccidentinitiatormechanism.Nonewfailuremodeshavebeendefinedforanysystemorcomponentimportanttosafetynorhasanynewlimitingsinglefailurebeenidentified.NoaccidentwillbecreatedthatwillincreasethechallengetotheMSSVsorresultinincreasedactuationofthevalves.Therefore,thepossibilityofanaccidentdifferentthanpreviouslyevaluatedisnotcreated.3.Involveasignificantreductioninamarginofsafety.ThemarginofsafetyasdefinedinthebasisoftheTechnicalSpecificationsisnotreducedbythechangeintheMSSVliftsetpointtolerance.TheproposedIncreaseintheas-foundMSSVliftPA-3 setpointtolerancewillnotInvalidatetheLOCAornon-LOCAconclusionspresentedintheUFSARaccidentanalyses.Thenewlossofload/turbinetripanalysisconcludedthatallapplicableacceptancecriteriaarestillsatisfied.ForalltheUFSARnon-LOCAtransients,theDNBdesignbasis,primaryandsecondarypressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperaturesremainbelowthelimitsspecifiedin10CFR50.46.Thecalculateddosesresultingfromasteamgeneratortuberuptureeventremainwithinasmallfractionofthe10CFR100permissiblereleases.Thus,thereisnoreductioninthemargintosafety.Note,however,inordertoimplementtheproposedchange,theTechnicalSpecificationswillhavetobechanged.
3.7.1.1AllaainstomalinecodasafetyvalveaaasocLaeedvieheachsees.generatorshallboOPEkASLE.IIIC4HLBX:thCGM:aob.VLeh4reactorcoolantloopaandaaaociatadseaaageneracot..sLnoperation'assdviehonaoraoraaainateaalimacodesefecyvalvoaLnoyorabla,operationLnNOES1,Rand3aayproceedyrovidad,thatwithin4houra,eitherehoLnoparablavalveLsraatoradtoOPXMLIatatuaorehahwer4ngeNeutronfLuxHighSatpointtriyiareducedyorTable3.1-1.;othe~a,ioLnatlaaatNTSTARlTviehinehanaxtChouraandLnCogSMVTKNNvithinehofollowing30boura.>teVLeh3raactorcoolantlooyaan4aaaociatadstaaagaaeraeogsLnoyoratiossan4viehoneormraaainataaalinacodesafeeyvalveaaaaociatadviehanoperaticloopLnoporabla,operaeLonLnNRC3aaluproceedprovidad,that&thin4houri,eithertheLnoporablovalveLaraatoradtoOHRALLCaeatuaorchereactortripbreakersareopane4;othariiao,boinCOLOSRUTEOQNvtthinehanext30bours.C~TheproviaionaofSpocificatioo3.0.4arenotapylicable.4.7.1.1Eachaaina~liaocodeaafaeyvalveahaGbo4eeonaeraeedOPEMlJ,richlifeaottiagsandorificeaixaaaaebsLnTable4,71,Lnaccordanceetch,SoetiossZIofehoAQCloilarandPraaauraVaaaalCoda,1914gee.D.C.COCC~URXZ13/47-1agamaNO.ig0 TABLE3.7-lHNIINNALLONkEONERRAHGKlKUTRONfLUNHIGHSETPOINTMITUINOPERhBLESTEANlEFWlKflll~~eCNaxtamNakeroffeeyorableSafetyValvesoalaatiSteaaCaaaratorHexf~Al)owablePowerRangeNeutronfluxHighSetpointPercentofRATKDTERNALPSKR13.6
 
n5%1Cin.LCin1Cln1Cin.1Cin.ooNl$0CSyeiyhN1$045peiy'IIooN-35075peigI4eNR$07IyeiyW~oN3k$peiyIA+fholttcattpraaaaroaballoorroayqn4toaabieataedltloneottheyalyaat.aoaiaaloporatiaytaeperaturaae1proeeur'
 
ThoOPERAITLI.YofehaaainseoaalinecodasafoeyvalvooanagramIocondatyIyocooproasurovil1boLiiieo4eovichinieados'.gnpzoaguroof10f5paiddurinjtheoooesovoroaneicipaeodsyseoNopera.eionaleranaionc.Theaux~'oliovinicapaeieyi4aaoociaeidvihIeutbinoeripfroa100%RATSTHERMALt5CLcoincidentviehanaaavuaod.':ofeondonsothoacsinJa(i.o..noseaaabyyaaaeoehocondonaot).TheIpooifiodvalvelifecoceinlaan@roliovingcapaeieiooareinaocozdaneoviAehozoquiroaeneaof5occionZTZofehoQlCSoklorandprooqutoCodeL97LCdicion.ThececalroliovingcayaoicyforalLvalvoonaogcoaanoooL7~L53.lOOLba/htvhiehiaapyroaiaacolyLRpot'coneofchoeoealsecondaryacornGeeofLL.L20,000LboAgae[00'ATZyatagg.tOQXR.Aaint'f2OPCRAILCaafoeyvalvooperoporabl~gcaaagonotaeoronourooehacouffioionerolieCagcapacityiaevailoforehoallowableZHQ8ALPNCtoactiot&aLnTable3.7~L.STARTUtand/ortQCLOPERATIONinoyorablo+%chanchoLiiicacionaofofehoreduction.insecondaryoyseeebyehorodueodreactoretiyooccingachannela.ThereactorerfyaocyointfoLLovingbaooo:For4LooyoporaeioniiallerahloviehaafocyvaltheiCZZMr~iroaoncsonehobao'.ae~fZovaadTRLLCQ.tOMERzoq.~fcholoverRangeNoueronFlaxro4acionaaredarivo4onehoa(L0%)%hero:5P~N4acodtoaccoteriyooeyointiapotconeofRATtDTHELVL8%lLLV~eaaSaanuabetotinoyotailoaafocyvalvooporscoaa1inoL.,2or3.X~Toealrolkovingcayaaityotalloafoeyvalve!poraeocaLine~4.off,454Lbo/beut.Y~Naciluaroliovinleayacicyotanyonecato'eyvalve~f57,C94Lbo/hour,(109)~RoverRanchoNeutronFicta-HighTtiySoepoinefot4loopoyoracion.O..C.CXC~UNION1)3/i$LAN~tKNTNO.
 
3,7,1.1hL1matnseaaaleonecodasa.aeyvalvesassoc'.acidviAeachsteanjenaraeorsha11beOPELQQv'.5Lifeseer'gsasspeci'fed'.nTabLe3:I-'a.%Egal2i~aob.Vkeh4reactorcoolaneLoopsandassociatedseeaageneraeosLncyerae'onandviehoneormoraIaknseeaaLWcoda.saeeyvalves~rable,eparaetonLaCNS1,2andSmayproceedyrovided,chatvtdgn4bees,etchereheinoperablevalvetsreseoredeoOPQhlLXjeacQ$Qrehe?4%%riange&#xc3;oLeronF11%EkghTripSec[oint.iareducedyearTableS.l-l:otherwise,beinatLeaseBet~~vichinehoneatC~sca@LaCOTE51CTtRKNNvtehfaehefollm4ag30heats.iVSch3reaotorcoolantlooyaaaLassociatedsteamgeneratorsbioperationaa4etchoneorsereaaSasteamLhsecodesa"oeyvalvesaaaoetato4&than~racial3eoytaeporable,eyeraef.ontaMDL3mayyrocoo4ytevtdad,chatvtthtalbeati,eiehetthei.noyerablevalveSareaeoredteOZQQLXstatuserehereactortrLybrewersareeyeaed;etheaCae,beQxCOLOSRUTI%witheehenext30hexa.'Theyxevta5.oaaofSpoctNcaeton3.0.Iarenotayylfcable,4.?.L.LIoe44LCLeaaiSerretlLcaeeteqCr~taeehezthanchose~redby4.t.$.S/a7~1Ajg&#xc3;KICRT50.82 TABLE3.l-lINXINllALL@NB.KPSKRRANGENK~U~FSETPOIIITlIITIIINOPERABLESTEAHSaxi~NuwberofVavesoaleSafetyorNax)mmh))mab)ePoserRangeNeNtroaFluxlllghSetpoiatCerementofRATEOTIIENHLPONER87.2 VMa.SV-lli.SV-lc.SV-21.SV-2,e.SV-3ZAlkf3.7-hSTEINLtdSQ'HYVALVfSffNlOOP81+llfTSEHll065psig)065psigl075psigl075prig)NSysiSORIFlCESIZEl6i16in.~)6in.~l6in.2l6in.~l%mmeXI'ressureslullcerrespoaltooehieatcoa4itioasofQevalveateewiaaloyeratiayteayerebee.aalyra5ssre.
ThoOHRQIUTTofchocatasceaaltnoeo4aaafecy~aireseaaeea~ceeseceataxyIystaa)casanova<11Qltatca4ceWN,all0ooftcs4ast~yciseureof104$Pstg4ctagChoaesCseversanctctpace4eyscaaoPoractana1transient.TheaaxtaaralteCagceyaaicytsassoctaca4vSchaoazbtnecrt'~104i~TRENT8$ZRaotnatdancrichanass~41oisofaen4ensorbeaCsink(L,e.,Ms~l+asscecheaon4ansaz).Tbesyoetfto4Mw1SAsottSILgsan4reltovtagecyacittasaretnaeeor4anaeetchchoreqatr~csofSoertoaIIIofchoA58R&tieran4~gggg~pPros~eCo4e,1071MicoeTbececaltoit~ecyactcyofa11aafocyvresoaes~lineaLalT,U$,000lhsiht~ahtaaclease10f~tcancofche84%~soaon~sc440AMraceae100'ATZO~g,5ggR.iNtsga%of!OMAlLSaafecyM&sPors~gonatacartoglkgoschaseatttatanereit~aayaetryta~ladleferIhealletahlotRQNAL?OCRtoscrta!SoitaTaile3.7l.STIRXQPea4/ot8$CLOPmliTKONteallowableetchsafely~tseyerailowitheche1$akcactoesottheAC?TM~reeencsoathehastaofchere4saciootasoaea4axyaye~s~fleesniThtlsg.8&#xc3;CR-r~atxe4iyChete4aae4reaecer.eriyeeeeSNgeefAePeatRange'1~chIRhllsoThereeccer~ee~tkcf04Nrtooeare4ert~eOchefellatiobases:gal1eeyeyeracQea(i')Aero:Stare~reeeceeartyeeeyeLaeLaPoreeneoflCClTIRlh8%&1aaml~aeAerefSaeyetahlesafeeyWeelPerseem@asY=-&#x17d;10'IeiilrelS~eoyoetryofallsafoeyvalvesPerstable~SBQe./beese4,Q!,4S~~rolteviageayac&yef~onesafoeyva1veSaO~.Pe+&#x17d;aSt,SeeteatOsageSee~Plm~ltdSeeyets!fer1leep~yera@tee~WCLCaatLaamta1$/4liLsammyIo.$2.
 
INNTAhesafetynl>e)sOPERABLE~)tha1)ftsettingof'Waboutthenmfnalvalue.H~r,thesafetyvalveshallberesettothenoa)nalvalue+]%wheneverf~outs1dethe+1%tolerance.}}

Revision as of 04:41, 13 June 2018

DC Cook Units 1 & 2 Main Steam Safety Valve Lift Setpoint Tolerance Relaxation.
ML17331B133
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 12/31/1993
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17331B132 List:
References
SECL-91-429, SECL-91-429-R02, SECL-91-429-R2, NUDOCS 9312230047
Download: ML17331B133 (157)


Text

DONALDC.COOKUNITS1R2MIJNSTEAMSAHHYVALVELIFI'ETPOINTTOLERANCERELAXATIONNuclearandAdvancedTechnologyDivisionWestinghouseElectricCorporationDecember1993e1993WestinghouseElectricCorporationAllRightsReserved9312230047931217PDRADOCK05000315.PPDR SECL-91<29,Revision2TABLEOFCONTENTS~SEI~NPAEListofTablesListofFiguresnISafetyEvaluationCheckListIntroductionLicensingBasisEvaluationsVINon-LOCALOCAContainmentIntegritySteamGeneratorTubeRuptureComponentPerformanceSystemsEvaluationRadiologicalEvaluationPlantRiskAnalysis/PE)PlantRiskAnalysis(non-IPE)I&CSystemsTechnicalSpecifications517242425262626262727AssessmentofNoUnreviewedSafetyQuestionConclusionReferencesAppendixA:SignificantHazardsEvaluationAppendixB:RecommendedTechnicalSpecificationMarked-Ups28313291429R2.wpf LISTOFTABLESTABLEPAETable1:MainSteamSafetyValveLiftSetpointsTable2:DNBDesignBasisTransientsNotAffectedbyMSSVLiftSetpointToleranceIncreaseTable3:Unit1TurbineTripSequenceofEventsTable4:Unit2TurbineTripSequenceofEventsTable5:CurrentLicensingBasisSteamLineSafetyValvesperLoopTable6:MSSVSetpointIncreaseSteamLineSafetyValvesperLoopTable7:Unit1LowPressureLowTemperatureInputParametersTable7a:Unit1InitialInputParametersfortheSmallBreakLOCAAnalysisTable8:Unit1LowPressureHighTemperatureInputParametersTable9:Unit2LowPressureHighTemperatureInputParametersTable10:Unit1SmallBreakLOCAEvaluationTimeSequenceofEventsTable10a:Unit1SmallBreakLOCAAnalysisTimeSequenceofEventsTable11:Unit1SmallBreakLOCAEvaluationSummaryofResultsTable11a:Unit1SmallBreakLOCAAnalysisSummaryofResults333537383941424345Table12:Unit.2SmallBreakLOCAEvaluation46TimeSequenceofEvents47Table13:Unit2SmallBreakLOCAEvaluationSummaryofResults48ubxxx.wpf:Id-121393 SECI91<29,Revision2LISTOFFIGURES~IGURBFigurela:IllustrationofOvertemperatureandOverpowerhTProtectionforUnit1Figure1b-c:IllustrationofOvertemperatureandOverpowerhTProtectionforUnit2(mixedandfullV-SHcores)Figure2:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure3:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure4:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure5:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback;SteamGeneratorPressureandMSSVReliefRateFigure6:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure7:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure8:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure9:'nit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure10:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure11:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure12:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure13:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure14:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperature'1429R2.wpf SECL-91<29,Revision2LISTOFFIGURES(Continued)~FI@REFigure15:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure16:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure17:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure18:Figure19:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRUnit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure20:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure21:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure22a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure23a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure24a-b:Figure25a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureUnit2TurbineTripEventWithoutOPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure26a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure27a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure28a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBR91429Rz.wpf1v

SECI91-429,Revision2LISTOFFIGURES(Continued)FIUREFigure29a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure30a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure31a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure32a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure33a-b:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure34a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure35a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure36a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure37a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure38a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure39a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure40a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure41a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerReliefRate91429R2.wpfv SECI91-429,Revision2CustomerReferenceNo(s).PO:04877-040-INWestinghouseReferenceNo(s).WESTINGHOUSENUCLEARSAFETYSAFETYEVALUATIONCHECKLIST1)NUCLEARPLANT(S):DONALD'CCOOKNITS1AND22)SUBJECT(TITLE):RELAXATINFMSSVSETPOINTTOLERANCETO+/-%3)Thewrittensafetyevaluationoftherevisedprocedure,designchangeormodificationrequiredby1OCFR50.59(b)hasbeenpreparedtotheextentrequiredandisattached.Ifasafetyevaluationisnotrequiredorisincompleteforanyreason,explainonPage2.PartsAandBofthisSafetyEvaluationCheckListaretobecompletedonlyonthebasisofthesafetyevaluationperformed.CHECKLIST-PARTA10CFR50.59(a)(1)(3.1)YesXNoAchangetotheplantasdescribedintheUFSAR?(3.2)YesNoX,,AchangetoproceduresasdescribedintheUFSAR?(3.3)YesNoXAtestorexperimentnotdescribedintheUFSAR?(3.4)YesXNoAchangetotheplanttechnicalspecifications?(SeenoteonPage2.)4)CHECKLIST-PartB10CFR50.59(a)(2)(JustificationforPartBanswersmustbeincludedonPage2.)(4.1)Yes(4.2)Yes(4.3)Yes(4.4)Yes(4.5)Yes(4.6)Yes(4.7)YesNoXWilltheprobabilityofanaccidentpreviouslyevaluatedintheUFSARbeincreased?NoXWilltheconsequencesofanaccidentpreviouslyevaluatedintheUFSARbeincreased?NoXMaythepossibilityofanaccidentwhichisdifferentthananyalreadyevaluatedintheUFSARbecreated?NoXWilltheprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARbeincreased?NoXWilltheconsequencesofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARbeincreased?NoXMaythepossibilityofamalfunctionofequipmentimportanttosafetydifferentthananyalreadyevaluatedintheUFSARbecreated?NoXWillthemargin'ofsafetyasdefinedinthebasestoanytechnicalspecificationsbereduced?91429R2.wpfvi SECL-91-429,Revision2NOTES:Iftheanswerstoanyoftheabovequestionsareunknown,indicateunder5)REMARKSandexplainbelow.IftheanswerstoanyoftheabovequestionsinPartA3.4orPartBcannotbeansweredinthenegative,basedonthewrittensafetyevaluation,thechangereviewwouldrequireanapplicationforlicenseamendmentasrequiredby10CFR50.59(c)andsubmittedtotheNRCpursuantto1OCFR50.90.5)REMARKS:TheattachedsafetyevaluationsummarizesthejustificationforanswersgiveninPartA3.4andPartBofthissafetyevaluationchecklist:'Referencetodocumentscontainingwrittensafetyevaluation:FRUFARPDATEPages:Tables:Figures:Reasonfor/DescriptionofChange:UFSARMark-userovidedbsearatetransmittal6)SAFETYEVALUATIONAPPROVALLADDER:16.1)Preparedby(NuclearSafety):6.2)Reviewedby(NuclearSafety):dccook.wpf-121093vn SECI91<29,Revision2DONALDC.COOKUNITS1&2INCREASEDIVORYÃST1MHSAFRXYVALVESEIPOINTTOLERANCESAFEIYEVALUATIONI.INTRODUCTINAmericanElectricPowerServiceCorporation(AEPSC)hasfoundthatoveranoperatingcyclethesetpointoftheMainSteamSafetyValves(MSSVs)canchangebymorethan1%fromtheoriginalset-pressure.AEPSChasrequestedthatWestinghouseperformanevaluationtoincreasetheliftsetpointtoleranceontheMSSVsatDonaldC.CookUnits1&2.Thefollowingsafetyevaluationisprovidedtosupportchangingtheas-foundliftsetpointtoleranceasstatedbytheTechnicalSpecificationsfromJ1%to+3%.Duringnormalsurveillance,ifthevalvesarefoundtobewithin+3%,theywillbewithinthebasesoftheaccidentanalyses,however,thevalveswillberesettoJ1%toaccountforfutureaccumulationofdrift.Thus,thisevaluationpermitsaJ3%setpointtolerancetoaddressas-foundconditions.TheMSSVsarelocatedoutsidecontainmentupstreamoftheMainSteamIsolationValves.Thepurposeofthevalvesistopreventoverpressurizationofthesteamgenerators.Inordertoaccomplishthis,abankoffivevalvesislocatedoneachofthefoursteamgenerators,andthereliefcapacityisdesignedsuchthatthetotalsteamflowfromthe20valveswillboundthatproducedbythelimitinglicensing-basisanalysis.ForDonaldC.Cook,thetotalreliefcapacityofthe20valvesis17.153E6ibm/hrat1186.5psia(1171.5psig).Theliftsetpointsoftheindividualvalvesoneachsteamlinearestaggeredatdifferentpressurestominimizechatteringoncethevalvesareactuated.Staggeringthevalvesalsominimizesthetotalnumberofvalvesactuatedduringthosetransientswherelessthanthemaximumreliefcapacityisrequiredtherebyreducingmaintenancerequirementsonthevalves.TheactualsetpointsareprovidedinTable1andaredocumentedinTables4.7-1and3.7-4oftheUnits1and2TechnicalSpecifications,respectively(Reference1).91429Rz.wpf SECL-91<29,Revision2TheoperationoftheClass2mainsteamsafetyvalves(MSSVs)isgovernedbytheASMECode(Reference2).AEPSCwillmaintainthedesignbasisoftheMSSVsbyensuringthatthevalves,ifoutsidetheJ1%tolerance,willberecalibratedtowithinJ1%.Thepurposeofthisevaluationistoprovideaquantificationoftheeffectsofahigheras-foundliftsetpointtolerance.ThissafetyevaluationwilladdresstheeffectsoftheJ3%as-foundtoleranceonUFSARaccidentanalyses(non-LOCA,LOCA,SGTR)andwilldocumenthowtheeffectsareaccountedforwithintheaccidentanalysesandtheacceptabilityoftheincreaseintheliftsetpointtolerance.91<29R2.wpf SECI91-429,Revision2TABLE1MAINSTEAMSATINYVALVELIFI'ETPOINTValueNumberSV-1SV-1SV-2SV-2SV-3.LiftSeoint11065psig(1080psia)1065psig(1080psia)1075psig(1090psia)1075psig(1090psia)1085psig(1100psia)

References:

Table4.7-1oftheUnit1TechnicalSpecificationsandTable3.7-4oftheUnit2TechnicalSpecifications91429R2.wpf

SECL-91<29,Revision2II.LICENSINGBASISTitle10oftheCodeofFederalRegulations,Section50.59(10CFR50.59)allowstheholderofalicenseauthorizingoperationofanuclearpowerfacilitythecapacitytoinitiatecertainchanges,testsandexperimentsnotdescribedintheUpdatedFinalSafetyAnalysisReport(UFSAR).PriorNuclearRegulatoryCommission(NRC)approvalisnotrequiredtoimplementthemodificationprovidedthattheproposedchange,testorexperimentdoesnotinvolveanunreviewedsafetyquestionorresultinachangetotheplanttechnicalspecificationsincorporatedinthelicense.WhiletheproposedchangetotheMSSVliftsetpointtolerancesinvolvesachangetotheDonaldC.CookTechnicalSpecificationsandrequiresalicensingamendmentrequest,thisevaluationwillbeperformedusingthemethodoutlinedunder10CFR50.59toprovidethebasesforthedeterminationthattheproposedchangedoesnotinvolveanunreviewedsafetyquestion.Inaddition,anevaluationwilldemonstratethattheproposedchangedoesnotrepresentasignificanthazardsconsideration,asrequiredby10CFR50.91(a)(1)andwilladdressthethreetestfactorsrequiredby10CFR50.92(c).Thenon-LOCAsafetyanalyseswillbeexaminedtodeterminetheimpactoftheMSSVliftsetpointtolerancerelaxationontheDNBdesignbasisaswellastheapplicableprimaryandsecondarysystempressurelimits.Thelong-termcorecoolingcapabilityofthesecondarysidewillalsobeconsidered.TheLOCAevaluationwillinvestigatetheeffectsonthelicensingbasissmallbreakanalysisintermsofpeakcladtemperature,andanyadverseeffectsonthesteamgeneratortuberuptureeventandsubsequentdosereleasecalculationswillalsobedetermined.91429R2.wpf SECI91<29,Revision2III.EVALUATIONSTheresultsofthevariousevaluationsfromtheNuclearSafetyrelateddisciplineswithinWestinghousescopearediscussedinthefollowingsections.1.Non-LOCAEvaluationThenon-LOCAaccidentanalysesthatarecurrentlypresentedintheUFSARmodelledtheMSSVsasa'ankoffivevalves,allofwhichhavingaliftsetpointequaltothatofthehighestsetvalve(1100psia)plus3%toaccountforaccumulation.AlloftheanalysesandevaluationsperformedforthisreportmodelledthestaggeredbehavioroftheMSSVs.Specifically,eachvalvewasassumedtooperateindividually.Moreover,theanalyses/evaluationsofthisreportmodelledtheflowrateofeachvalvetoramplinearlyfromnoflowatitsliftsetpoint(nominalTechnicalSpecificationsetpointplusorminusthe3%tolerancevalue)tofullopenflowatitsfullopenpoint(3%abovethepressureatwhichthevalveswereassumedtopopopen-i.e.,accumulationeffect).Forthepurposesofthisevaluation,all20MSSVsareassumedtolift3%abovetheTechnicalSpecificationliftsetpointandachievefullratedflow(normallyat3%abov::thesetpoint)6%abovethesetpoint.hTProtectionTheincreaseintheMSSVliftsetpointtolerancehasthepotentialtoimpacttheOvertemperaturehTandOverpowerhTsetpointequations.ReferringtoFigurelaforUnit1andFigures1band1c(whicharethemostlimitingcaseforeachunit/coretype),increasingthepointatwhichtheMSSVsliftwilllowerthesteamgeneratorsafetyvalveline.IfthecurrentOTATsetpointcoefficients(K1throughK3)resultinprotectionlinesthatjustboundthethermalcorelimits,itispossiblethatbyloweringtheSGsafetyvalvelinetotheright,aportionofthecorelimitswillbeuncovered.'1429R2.wpf SECI91<29,Revision2,Inordertoevaluatetheeffectsoftheincreaseinthesetpointtolerance,theOvertemperaturehTandOverpowerdTsetpointequations(K1throughK6)wereexaminedtodetermineiftheequationsremainedvalidassumingthatall20MSSVsopenedwitha+3%tolerance.TheresultsofthatevaluationshowedthattherewassufficientmargininthegenerationofthecurrentsetpointequationstooffsettheloweringoftheSGsafetyvalveline.Thus,changestotheOvertemperatureandOverpowerTechnicalSpecificationsarenotneeded.TheresultsofthisevaluationarepresentedasFiguresla,lb,and1c.~DNBEvenThetransientsidentifiedinTable2areanalyzedintheD.C.CookUFSARtodemonstratethattheDNBdesignbasisissatisfied.Withoneexception,theseeventsarea)ofsuchashortdurationthattheydonotresultintheactuationoftheMSSVs,b)core-relatedanalysesthatfocusontheactivefuelregiononly(i.e.,onlythecoreismodelled),orc)cooldowneventswhichresultinadecreaseinsecondarysteampressure.Thesingleexceptionisthelossofexternalload/turbinetripeventwhichisaddressedexplicitlyintheANALYSISsectionofthissafetyevaluation.Thus,basedontheabove,theseyon-LOCADNBtransientsarenotadverselyimpactedbytheproposedchange,andtheresultsandconclusionspresentedintheUFSARremainvalid,BoronDilutionEventTheborondilutionevent(14.1.5)isanalyzedtodemonstratethattheoperators(ortheautomaticmitigationcircuitry)havesufficienttimetorespondpriortoreactorcriticality.Thesecondarysystemisnotmodeledintheanalysisofthisevent,andthus,changestotheMSSVshavenoimpactonthisevent.Therefore,theresultsandconclusionspresentedintheUFSARremainvalid.SteamlineBreakMass&:EneReleasesForthesteamlinebreakmassandenergyreleases,the'steamreleasecalculationsareinsensitivetothechangesintheMSSVliftsetpointssincethevastmajorityofthesecalculationsresultindepressurizationsofthesecondarysidesuchthattheMSSVsarenotactuated.Forthe91429Rz.wpf SECI91-429,Revision2TABLE2DNBDESIGNBASISTRANSIENTSNOTAFFECTEDBYMSSVLIFI'ETPOINTTOLERANCEINCREASE"'ventExcessiveHeatRemovalDuetoFeedwaterSystemMalfunctionExcessiveLoadIncreaseIncidentRuptureofaSteamPipe(SteamlineBreak-CoreResponse)LossofReactorCoolantFlowincludesLockedRotorAnalysis)UncontrolledRCCABankWithdrawalFromaSubcriticalConditionUncontrolledRCCABankWithdrawalatPowerRCCAMisalignmentUFSARSection14.1.1014.1.1114.2.514.1.614.1.114.1.214.1.391429R2.wpf SECI91-429,Revision2smallerbreakcasesthatmightresultinaheatup,oneMSSVpersteamgeneratorissufficient(basedontheexistinganalyses)toprovideanyrequiredheatremovalfollowingreactortrip.Thesecondarypressureswillbenogreaterthanthosepresentlycalculated.Thustheexistingsteamlinebreakmassandenergyreleasecalculationsremainvalid.EventSteamlineRuptureMass&EnergyReleasesInsideContainment'teamlineRuptureMass&EnergyReleasesOutsideContainmentforEquipmentEnvironmentalQualificationUFSARSectioWCAP-11902Supplement1.WCAP-10961Rev1(current)SubmittalAEP:NRC:1140*(approved11/20/91)SubmittalAEP:NRC:1140"TechnicalSpecificationChangeRequest,BITBoronConcentrationReduction,"March26,1991.(includedinWCAP-11902,Supplement1)Lon-TermHeatRemovalEventsTheonlynon-LOCAtransientsremainingarethelong-termheatupevents.Thelong-termheatremovaleventsareanalyzedtodetermineiftheauxiliaryfeedwater(AFW)heatremovalcapabilityissufficienttoensurethatthepeakRCSandsecondarypressuresdonotexceedallowablelimits,thepressurizerdoesnotfill(LONF/LOOP),andthecoreremainscoveredandinaeoolablegeometry(FLB).Thesetransientsarelistedbelow.EventLossofAllACPowertothePlantAuxiliaries(LossofOffsitePower-LOOP)LossofNormalFeedwater(LONF)14.1.1214.1.914.1.8FeedwaterSystemPipeBreak(FLB)*C*TheFeedwaterSystemPipeBreakeventisnotpartoftheUnit1licensingbasisandispresentedintheUnit1UFSARforinformationpurposesonly.ThesetransientsareimpactedbytheincreaseintheMSSVliftsetpointtolerancebecausethecalculationsdeterminingtheamountofAFWflowavailablemustassumeamaximumgivensteamgeneratorbackpressureinordertodeterminetheamountofAFWthatcanbedelivered.Asthesteam491429Rz.wpf SECL-91<29,Revision2generatorbackpressureincreases,theamountofAFWdeliveredwillbereduced.ForthelossofnormalfeedwaterandthelossofallACpowertothePlantAuxiliariesevents,evaluationswereperformedinwhichthestaggeredactuationoftheMSSVswastakenintoaccount.ThesafetyanalysispresentedinthecurrentUFSARassumedanAFWflowrateof450gpm,splitevenlytoallfoursteamgenerators.Theevaluationsdoneforthisreportconcerninglossofnormalfeedwater(LONF)forUnits1and2,aswellaslossofallACpowertotheplantauxiliaries(LOOP)forUnit1,demonstratedthatthesecondarysidepressureswillnotexceed1123psiaduringthetimeAFWisdeliveredtothesteamgenerators.BasedonReference10,theAFWassumptionsmodeledinthesafetyanalysisremainvalidforsteamgeneratorbackpressuresupto1123psia.Sincetheevaluation,inwhicha+3%MSSVsetpointtolerancewasassumed,showedthatthesecondarysidepressuretransientwillnotprecludetheAFWflowratesassumedintheanalysisfrombeingsuppliedtothesteamgenerators,theexistinganalysesremainvalidforUnit1LONF/LOOPandUnit2LONF.TheLossofOffsitePowerevent(LOOP)forUnit2wasalsoevaluatedforthis-report.TheLOOPsafetyanalysispresentedinthecurrentUFSARforUnit2assumedanAFWflowrateof430gpmsplitevenlytoallfoursteamgenerators.Therecent'evaluationdoneforthisreporttookcreditforthestaggeredactuationoftheMSSVsaswellasa+3%setpointtolerance,asdiscussedearlier.TheevaluationyieldedresultssimilartothosediscussedaboveforUnit1.ThesecondarysidepressureforthisUnit2evaluationwasdemonstratednottoexceed1133psiaduringtheperiodAFWissupplied.BasedonReference10,thesecondarysidepressuretransientwasfoundnottoprecludetheAFWflowratesassumedintheanalysisfrombeingdeliveredtothesteamgenerators.Therefore,theexistingLossofOffsitePoweranalysisforUnit2remainvalid.TheevaluationsfortheLONF/LOOPeventsforbothUnit1andUnit2,asdiscussedabove,demonstratethattherespectiveanalysesarestillapplicableevenifaMSSVliftsetpointtoleranceof+3%isassumed.ThereforetheresultsandconclusionspresentedintheDonaldC.CookUnit1&2UFSARremainvalid.TheevaluationdoneforthisreportfortheUnit2FeedlineBreakeventdemonstratedthat,thesecondarysidepressurewillnotexceed1133psiaduringtheperiodwhenAFWisbeingdelivered.91429R2.wpf

SECL-91<29,Revision2At1133psia,anAFWflowrateof685gpmwithasymmetricflowsplitstothethreeintactsteamgeneratorscouldbesuppliedbasedoninformationcontainedinReference,10.ThecurrentanalysisforthiseventassumedatotalAFWflowrateof600gpmwithanevensplitof200gpmtothethreeintactsteamgenerators.SincethetotalAFWflowrateismorethansufficienttoaccommodateAFWflowsplitdeviationsofasmuchas25gpmperloop,thecurrentFeedlineBreakanalysiscontinuetobeapplicableandremainboundingforthisevaluation.Therefore,theresultsandconclusionspresentedintheUnit2UFSAR(14.2.8)remainvalid.-3%Tolerance:ThesecondarysteamreleasesgeneratedforthelockedrotoroffsitedosecalculationsforUnit2couldbepotentiallyaffectedbyanincreaseintheMSSVsetpointtolerancefrom-1%to-3%.Reference9transmittedthemostrecentlockedrotordoseanalysis.GiventhattheradiologicalassumptionsusedintheReference9analysisdonotchangewithanincreaseinMSSVsetpointtolerance(i.e.,rods-in-DNBandprimarytosecondaryleakageremainat11%and1gpmrespectively)theonlyeffectthetoleranceincreasewouldhavewouldbeonthemassreleasevalues.ThemethodologyusedtocalculatethesemassesisbasedondeterminingtheamountofsecondarysideinventoryrequiredtocooldowntheRCS.Duringthefirsttwohours(0-2hours),theoperatorsareassumedtolowertheRCSaveragetemperaturetono-loadconditions(547'F)bybleedingsteam.Overthenext6hours(2-8hours),theoperatorswillcooltheplantdownsuchthatMode4operation(hotshutdown)canbeentered.Theexistingsteamreleasecalculationsforthe0-2hourperiodusedenthalpiescorrespondingtosaturatedconditionsatboththenominalfullpowerRCSaveragetemperatureandtheno-loadtemperature(581.3'Fand547'F,respectively).Thus,aslongastheincreasedliftsetpointtolerance(-3%)doesnotresultintheMSSVsremainingopenatasaturationtemperatureoutsideoftherangeidentifiedabove,theexistingmassreleasesremainvalid(Reference9),Theexistingmassreleasecalculationswereperformedusingthetemperaturespreviouslyidentified(581.3'Fand547'F).PertheDonaldC.CookTechnicalSpecifications,thelowestsetMSSVoneachsteamgeneratorwillopenat1080psia(1065psig)notincludinganytolerance.BasedontheASMESteamTables(Reference6)atsaturatedconditions,547'Fcorrespondsto1020.1psiaand9l-429R2.wpf10 SECL-91-429,Revision2representstheloweststeampressureconsideredinthemasscalculations.Thus,theexistingreleasesincludeareseatpressureapproximately5.5%belowthelowestTechnicalSpecificationliftsetpoint.Aslongasthevalvescontinuetoreseatwithinthis.pressurerange,thecurrentmassreleasesremainvalid.TheoperatingwindowsthatareapplicableforUnit1operationareboundedbytheUnit2doseanalysis.Therefore,themassreleasesforUnit2,asfoundinReference9,areapplicabletoUnit1.EvaluationSummaThus,basedonthediscussionspresentedabove,onlyoneUFSARnon-LOCAtransientisimpacted'uchthatanewanalysismustbeperformedinordertoaddresstheeffectsoftheMSSVliftsetpointtoleranceincreasefromJ1%toJ3%.Thiseventisthelossofexternalload/turbinetripaccident.Fortheothertransients,theresultsandconclusionspresentedintheDonaldC.CookUnit1&2UFSARremainvalid.LossofExternalLoad/TurbineTriThelossofexternalload/turbinetripeventispresentedinSection14.1.8oftheDonaldC.CookUFSAR.Thistransientiscausedbyaturbine-generatortripwhichresultsintheimmediateterminationofsteamflow.Sincenocreditistakenforadirectreactortriponturbinetrip,primaryandsecondarypressureandtemperaturewillbegintoincrease,actuatingthepressurizerandsteamgeneratorsafetyvalves.Thereactorwilleventuallybetrippedbyoneoftheotherreactorprotectionsystem(RPS)functions;specifically,overtemperaturehT,highpressurizerpressure,orlow-lowsteamgeneratorwaterlevel.Theturbinetripeventisthelimitingnon-LOCAeventforpotentialoverpressurization,i.e.,thistransientformsthedesignbasisfortheprimaryandsecondarysafetyvalves.SincetheMSSVswillnowpotentiallybeopeningatahigherpressureduetotheincreaseintheliftsetpointtolerance,itisnecessarytoanalyzethistransientinordertodemonstratethatalltheapplicableacceptancecriteria91429R2.wpf SECL-91<29,Revision2aresatisfied.AturbinetripisclassifiedasanANSconditionIIevent,afaultofmoderatefrequency.Assuch,theappropriateacceptancecriteriaareDNBR,peakprimarypressure,andpeaksecondarypressure.ThetransientisdescribedingreaterdetailintheUFSAR.TheturbinetripeventisanalyzedusingamodifiedversionoftheLOFTRANdigitalcomputercode(Reference6).ThismodifiedversionofLOFTRANonlydiffersfromthestandardcodeversioninthewaytheMSSVsaremodelled.Theprogramsimulatesneutronkinetics,reactorcoolantsystem,pressurizer,pressurizerreliefandsafetyvalves,pressurizerspray,steamgenerators,andmainsteamsafetyvalves.Withthemodifiedcode,theMSSVsareexplicitlymodeledasabankof5valvesoneachsteamgeneratorwithstaggeredliftsetpoints.WhereasthestandardLOFTRANversionprogramconservativelymodelstheMSSVsasabankoffivevalves,allhavingonecommonliftsetpoint.BymodellingthestaggeredbehavioroftheMSSVs,amoreaccuratesimulationofhowthevalvesactuallybehaveisachieved.Sincehighersteampressuresareconservativeforthisevent,noblowdownorhysteresisbehaviorwasassumed.ConsistentwiththeexistingUFSARanalysis,allassumptionswerethesameaspreviouslyusedunlessspecificallynoted.Thefollowingassumptionswereusedinthisanalysis:a.Initialpower,temperature,andpressurewereattheirnominalvaluesconsistentwith:1)ITDPmethodology(WCAP-8567)forUnit1,withtheexceptionthata2%conservatismoninitialcorepowerwasassumed.2)RTDPmethodology(WCAP-11397)forUnit2,withnoexceptions.b.Turbinetripwasanalyzedwithbothminimumandmaximumreactivityfeedback.C.Turbinetripwasanalyzedbothwithandwithoutpressurizerpressurecontrol.ThePORVsandsprayswereassumedoperableinthe'caseswithpressurecontrol.ThecaseswithpressurecontrolminimizetheincreaseinprimarypressurewhichisconservativefortheDNBRtransient.ThecaseswithoutpressurecontrolmaximizetheincreaseinpressurewhichisconservativefortheRCSoverpressurizationcriterion.91429R2.wpf.12 SECI91<29,Revision2d.ThesteamgeneratorPORVandsteamdumpvalveswerenotassumedoperable.ThisassumptionmaximizessecondarypressurewhichinturnmaximizestheprimarytemperatureforDNBRandprimarypressureforpressurecases.e.Mainfeedwaterflowwasassumedtobelostcoincidentwiththeturbinetrip.Thisassumptionmaximizestheheatupeffects.f.OnlytheovertemperaturedT,highpressurizerpressure,andlow-lowsteamgeneratorwaterlevelreactortripswereassumedoperableforthepurposesofthisanalysis.g.TheflowrateforeachMSSVwasmodelledtoramplinearlyfromnoflowatitsliftsetpoint(3%abovethenominalTechnicalSpecificationsetpoint)tofullopenflowatitsfullopenpoint(6%abovethenominalsetpoint),Thefullopenflowrateisbasedonareferencefullflowcapacityof238ibm/secat1186.5psia(basedontheASMEratedflowforthesevalves).Forsecondarysidepressuresbetweentheinitialfullopenpointforeachvalveand1186.5psia,thefullopenflowratewasmodelledtovaryproportionallywithpressure.ThisassumptionmaximizessecondarypressurewhichinturnmaximizestheprimarytemperatureforDNBRandprimarypressureforpressurecases.R~esulFourcasesforeachunit/coretype(i.e.Unit1,Unit2mixedcore,andUnit2fullV5core)wereanalyzed:a)minimumfeedbackwithoutpressurecontrol,b)maximumfeedbackwithoutpressurecontrol,c)maximumfeedbackwithpressurecontrol,andd)minimumfeedbackwithpressurecontrol.ThemostlimitingcasesinthecurrentUFSARcontinuetobethemostlimitingcases.ThecalculatedsequenceofeventsforthefourcasesforeachunitarepresentedinTables3and4.9l429R2.wpf13 SECI91<29,Revision2CaseA:Figures2through6showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithoutpressurecontrol.Thereactoristrippedonhighpressurizerpressure.Theneutronfluxremainsessentiallyconstantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseB:Figures7through11showthetransientresponsefortheturbinetripeventunderrnaxirnumreactivityfeedbackconditionswithoutpressurecontrol.Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytheincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizerpressure.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseC:Figures12through16showthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithpressurecontrol~Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristripped\onlow-lowsteamgeneratorwaterlevel.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue,Thepressurizerreliefvalves.andspraysmaintainprimarypressure91429R2.wpf14 SECI91-429,Revision2below110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseD:Figures17through21showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithpressurecontrol.Thereactoristrippedonhighpressurizerpressure.AlthoughtheDNBRvaluedecreasesbelowtheinitialvalue,itremainswellabovethelimitthroughouttheentiretransient.Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.AnaliConclionnit1BasedontheresultsoftheseUnit1turbinetripanalyseswitha+3%toleranceontheMSSVliftsetpoints,alloftheapplicableacceptancecriteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondarypressuresremainbelow110%ofdesignatalltimes.UNIT2:amixedandbfullV-5coresCaseA:Figures22athrough26b("a"designatesmixedcorefiguresand"b"denotesfullV-5corefigures)showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithoutpressurecontrolforbothcoretypes.Thereactoristrippedonhighpressurizerpressure.,Theneutronfluxremainsessentiallyconstantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.91429R2.wpf15 SECL-91<29,Revision2CaseB:Figures27athrough31bshowthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithoutpressurecontrolforbothmixedandfullV-5coretypes.Thecorepowerisobservedtoundergoamomentaryincrease,Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizerpressure.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseC:Figures32athrough36bshowthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithpressurecontrolforthetwoapplicableUnit2coretypes.Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonlow-lowsteamgeneratorwaterlevel~TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue..Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseD:Figures37athrough41bshowthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithpressurecontrolforboththemixedandfullV-5cores.ThereactoristripPedonhighpressurizerpressure.AlthoughtheDNBRvaluedecreasesbelowtheinitialvalue,itremainswellabovethelimitthroughouttheentiretransient.Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.The91429R2.wpf16 SECL-91<29,Revision2mainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.AnalisConclusionnit2BasedontheresultsoftheseUnit2mixedandfullcoreturbinetripanalyseswitha+3%toleranceontheMSSVliftsetpoints,alloftheapplicableacceptancecriteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondarypressuresremainbelow110%ofdesignatalltimes.Nn-AConclusioTheeffectsofincreasingtheas-foundliftsetpointtoleranceonthemainsteamsafetyvalveshavebeenexamined,andithasbeendeterminedthat,withoneexception,thecurrentaccidentanalysesaspresentedintheUFSARremainvalid.Thelossofload/turbinetripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerancerelaxation.Aspreviouslydemonstratedinthissafetyevaluation,allapplicableacceptancecriteriaforthiseventhavebeensatisfiedandtheconclusionspresentedintheUFSARares'tillvalid.Thus,withrespecttothenon-LOCAtransients,theproposedTechnicalSpecificationchangedoesnotconstituteanunreviewedsafetyquestion,andthenon-LOCAaccidentanalyses,aspresentedinthereport,supporttheproposedchange,2.CAandARelatedEvaluationsLaeBreakCAThecurrentlargebreakLOCAanalysesforDonaldC.CookUnits1and2wereperformedwiththeNRCapproved1981EvaluationModelplusBASH.AfterapostulatedlargebreakLOCAoccurs,theheattransferbetweenthereactorcoolantsystem(RCS)andthesecondarysystemmaybeineitherdirection,dependingontherelativetemperatures.Inthecaseofcontinuedheatadditiontothesecondarysystem,thesecondarysystempressureincreasesandtheMSSVsmayactuatetolimitthepressure.However,thisdoesnotoccurinthelargebreakevaluationmodelsincenocreditistakenforauxiliaryfeedwateractuation.Consequently,thesecondarysystemactsasaheatsource.inthe91429R2.wpf17 SECL-91<29,Revision2lpostulatedlargebreakLOCAtransientandthesecondarypressuredoesnotincrease.Sincethesecondarysystempressuredoesnotincrease,itisnotnecessarytomodeltheMSSVsetpointinthelargebreakevaluationmodel.Therefore,anincreaseintheallowableMSSVsetpointtoleranceforDonaldC.CookUnits1and2willnotimpactthecurrentUFSARlargebreakLOCAanalyses.mallBreakCAThesmallbreakLOCAanalysesforDonaldC.CookUnits1and2wereperformedwiththeNRCapprovedEvaluationModelusingtheNOTRUMPcode.AfterapostulatedsmallbreakLOCAoccurs,theheattransferbetweentheRCSandthesecondarysystemmaybeineitherdirectiondependingontherelativetemperatures.Inthecaseofcontinuedheatadditiontothesecondarysystem,thesecondarysystempressureincreaseswhichleadstosteamreliefviatheMSSVs.InthesmallbreakLOCA,thesecondaryflowaidsinthereductionofRCSpressure.Subsequently,DonaldC.CookUnits1and2werereanalyzedtodeterminetheimpactofanincreasedMSSVsetpointtoleranceof3%.ThelicensingbasissmallbreakLOCAanalysisforDonaldC.CookUnit1includedasafetyevaluationtoaddressa25gpmchargingpumpflowimbalanceandoperationwiththehighheadsafetyinjectioncrosstievalveclosedat3250MWtcorepowerlevel.Also,asafetyevaluationhadbeenperformedwhichmodeledanincreasedauxiliaryfeedwaterenthalpydelaytime.TheseassumptionswereincorporatedintheincreasedMSSVsetpointtoleranceNOTRUMPanalysisofthelimiting3inchbreakforUnit1.However,inordertoobtainadirectsensitivityfortheincreasedMSSVsetpointtolerance,aNOTRUMPanalysiswasalsoperformedincorporatingtheseassumptionsbutmodellingtheoriginalMSSVsetpoints.Inaddition,a3inchNOTRUMPanalysiswasperformedforthelowpressure,hightemperatureoperatingconditionforUnit1sinceasafetyevaluationhadbeenoriginallyperformedaspartofthelicensingbasisanalysis.TheincreasedMSSVsetpointtolerance,acorepowerlevelof3250MWt.withthe.highheadcrosstievalveclosed,anda25gpmchargingpumpflowimbalancewereassumedfortheanalysisofthelowpressure,hightemperaturecase.91429Rz.wpf18 SECL-91-429,Revision2DonaldC.CookUnit2wasreanalyzedforthelimiting3inchbreak,lowpressureandhightemperatureoperatingconditionwiththehighheadcrosstievalveclosed.Thepowershapeaxialoffsetwasreducedfromthelicensingbasisanalysisof+30%to+13%fortheMSSVincreaseanalysis.Anaxialoffsetof+13%isequaltothevalueassumedinthelicensingbasislargebreakLOCAanalysis.Inaddition,thelicensingbasisanalysisconservativelyassumedamaximum"assemblyaveragepower(P+of1.519.The3%increasedMSSVsetpointtoleranceanalysisassumedaP~whichwasreducedto1.46.InordertoobtainadirectsensitivityfortheincreasedMSSVsetpointtolerance,aNOTRUMPanalysiswasperformedincorporatingtheseassumptionsbutmodellingtheoriginalMSSVsetpoints.Tables5and6summarizetheMSSVsetpointsusedintheDonaldC.CookUnits1and2currentlicensingbasissmallbreakLOCAanalysesandtheincreasedMSSVsetpointtoleranceanalyses,respectively.Tables7and8summarizetheinitialinputassumptionsusedintheUnit1analysis.TheUnit2initialinputassumptionsaresummarizedinTable9,ThetimesequenceofeventsandresultsoftheUnit1analysisaresummarizedinTables10and11,respectively.Thelimitingpeakcladtemperaturecalculatedis1879'F,includinga25'Fburstandblockagepenalty,forthe3%increasedMSSVsetpointtolerancecaseat3250MWtandthelowpressure,lowtemperatureoperatingconditions'.Thisvalueislessthantheacceptancecriterialimitof2200'F.Themaximumlocalmetal-waterreactionis3A7%,whichiswellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.ThetimesequenceofeventsandresultsoftheUnit2analysisaresummarizedinTables12and13,respectively.'Ihelimitingpeakcladtemperaturecalculatedis2125'F,includinga12'Fartificialleak-bypenaltyand157'Fburstandblockagepenalty,forthe3%increasedMSSVsetpointtolerancecaseat3250MWtandlowpressure,hightemperatureoperatingcondition.Thisvalueislessthantheacceptancecriterialimitof2200'F.Themaximumlocalmetal-waterreactionis4.26%,whichisTheseresultsarefromcalculationsusinganominalauxiliaryfcedwaterflow.Asubsequentanalysisusingamorcconservativeminimumauxiliaryfeedwaterflowrateispresentedinthcnextsection.91429R2.wpf19 SECI91<29,Revision2wellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.AdditionalSmallBreakCAAnalsesThesmallbreakLOCAanalysisforCookUnit1,previouslydiscussed,usednominalAuxiliaryFeedwater(AFW)flowrates(1258gpmtotaldelivery),whereasminimumAFWflowrateswereusedforCookUnit2,SinceminimumAFWflowratesaremorelimiting,thesmallbreakLOCAforCookUnit1for+3%MMSVsetpointtolerancewasreanalyzedusinglowerauxiliaryfeedwaterflowrates(750gpmtotaldelivery).ThefollowingpresentstheresultsoftherevisedsmallbreakLOCAanalysesperformedforDonaldC.CookUnit1.BasedontheCookUnit1analysespresentedintheprevioussection,twoadditionalsmallbreakLOCAcaseswereruntoaddressarelaxationto+3%fortheMSSVsetpointtolerance.First,theoriginalLPLT(LowPressure,LowTemperature)casepresentedabove,theresultsofwhichareshowninTables10and11,wasrerunmodeling750gpmtotalAFWsystemflowrate.AswasdemonstratedinReferences11and12,theLPLTcaseisthelimitingcaseforthepressure/temperatureoperatingwindowforCookUnit1,andthatwillnotchangeduetothereductioninAFWflow.Inaddition,sinceonlythelimitingbreaksize(3inch)waspreviouslyanalyzed,a2inchbreakwasalsoanalyzedforthe750gpmAFWflowratetoprovidefurtherassurancethatthelimitingbreaksizehasnotshiftedtoasmallerbreaksizeduetothereductionintheAFWflowrate.NotethatsinceboththereductioninAFWdeliveredflowandtheincreaseinthesetpointtoleranceto>3%tendtoshiftthelimitingbreaksizetoasmallerbreak,itisnotnecessarytoconsiderthatthelimitingbreakcouldbelargerthanwaspresentedinthecurrentlicensingbasisanalysiswhichdemonstratedthatthe3inchbreakislimiting.TheMSSVperformanceassumedinthesenewcasesisshowninTable6.TheinitialinputparametersassumedforthesenewcasesareshowninTable7a,andarecomparedwiththeoriginallicensingbasisinReference11.IfthenewanalysisvaluesfromTable7aarecomparedwiththeoriginalevaluationcasesshowninTable7,veryfewdifferencesareevident.Exceptfortheauxiliaryfeedwaterflowratean'daslightincreaseintheaccumulatorwatertemperature,theinitialRCS91429R2.wpf20 SECL-91<29,Revision2pressurewasloweredtocoverasafetyevaluationthatwasperformedforpressurizerpressureuncertainty.IncorporatingthisnewRCSpressurehadanegligibleeffectonthevesselinletandoutlettemperaturesandthesteampressureassumedforreactorsteady-stateoperation(priortoinitiationofthetransient).OnefinaladditionalchangeisintheAFWenthalpydelay.ThelowerAFWflowratewouldresultinalongerdelay.ThecurrentNOTRUMPmodelhasbeenimprovedtomodelthevolumeofhotmainfeedwaterthatmustbepurgedfromthepipingpriortocoldAFWbeingdeliveredtothesteamgenerator,andthedelayiscalculatedbythemodel.Otherthantheseminordifferences,andtheintendedchange(i.e.,reduceAFWflowrateandincreaseaccumulatorwatertemperature),theinitialconditionsassumedfortheadditionalrunsareidenticaltotherunsperformedfortheprevioussection.ThetimesequenceofeventsandresultsoftheUnit1analysesaresummarizedinTables10aand11a,respectively.ThelimitingPeakCladTemperature(P~calculatedis2068'F,includinga117'Fburstandblockagepenalty,forthe+3%increasedMSSVsetpointtolerancecaseat3250MWtandlowpressure,lowtemperatureoperatingcondition.Thisvalueislessthantheacceptancecriterialimitof2200'F,andisalmostthesamecomputedresultthatisseenforD.'.CookUnit2(thepre-burst/blockagePCTof1951'Fversus1956'F).Themaximumlocalmetal-waterreactionis5.06%,whichiswellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.The>3%increasedMSSVsetpointtolerancehasbeenanalyzedfortheDonaldC.CookNuclearPlantUnit1forthesmallbreakLOCAanalysesperformedbyWestinghouse.ThepotentialeffectofthischangeontheFSARanalysisresultsforthesmallbreakLOCAanalysiswasexaminedviareanalysisandalthoughtheresultsaremorelimitingthanpreviousanalysiscases,itwasshownthattheeffectoftheincreasedMSSVsetpointtolerancedidnotresultinexceedinganyofthefollowingdesignorregulatorylimits:1.Thecalculatedpeakfuelelementcladdingtemperatureisbelowtherequirementsof2200'F.2.Theamountoffuelelementcladdingthatreactschemicallywithwaterorsteamdoesnotexceed1percentofthetotalamountofZircaloyinthereactor.91429Rz.wpf21 SECI91-429,Revision23.Thecladdingtemperaturetransientisterminatedatatimewhenthecoregeometryisstillamenabletocooling.Thelocalizedcladdingoxidationlimitof17percentisnotexceededduringorafterquenching.4.Thecoreremainsamenabletocoolingduringandafterthebreak.5.Thecoretemperatureisreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-livedradioactivityremaininginthecore.Therefore,itisconcludedthatarelaxationtoJ3%fortheMSSVsetpointtoleranceisacceptablefromthestandpointofthesmallbreakLOCAFSARaccidentanalysesdiscussedinthissafetyevaluation.Post-LOCALonTermCoreCoolinTheWestinghouselicensingpositionforsatisfyingtherequirementsof10CFR50.46Paragraph(b),Item(5),"LongTermCooling,"concludesthatthereactorwillremainshutdownbyboratedECCSwaterresidingintheRCS/sumpafteraLOCA.Sincecreditforthecontrolrods.isnottakenforalargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulatorsandtheRWSTmusthaveaboronconcentrationthat',whenmixedwithotherwatersources,willresultinthereactorcoreremainingsubcriticalassumingallcontrolrodsout.ThecalculationisbaseduponthereactorsteadystateconditionsattheinitiationofaLOCAandconsiderssourcesofbothboratedandunboratedfluidinthepost-LOCAcontainmentsump.ThesteadystateconditionsareobtainedfromthelargebreakLOCAanalysiswhich,asstatedabove,doesnottakecreditforMSSVactuation.Thusthepost-LOCAlong-termcorecoolingevaluationisindependentoftheMSSVsetpointtolerance,andtherewillbenochangeinthecalculatedRCS/sumpboronconcentrationafterapostulatedLOCAforDonaldC.CookUnits1and2.HotSwitchovertoPreventPotentialBoronPreciitationPost-LOCAhotlegrecirculationtimeisdeterminedforinclusioninemergencyoperatingprocedurestoensurenoboronprecipitationinthereactorvesselfollowingboilinginthecore.Thistimeis91429R2.wpf22

SECL-91<29,Revision2dependentonpowerlevelandtheRCS,RWST,andaccumulatorwatervolumesandwiththeirassociatedboronconcentrations.TheproposedMSSVsetpointtoleranceincreaseto3%doesnotaffectthepowerlevelortheboronconcentrationsassumedfortheRCS,RWST,andaccumulatorinthehotlegswitchovercalculationforUnit1.TheproposedMSSVsetpointtoleranceincreaseto3%'oesnotaffecttheboronconcentrationsassumedfortheRCS,RWST,andaccumulatorinthehotlegswitchovercalculationforUnit2.Thecurrentlicensingbasishotleg.switchovercalculationforUnit2isatfullpower,3413MWt,withcrosstievalveatclosedposition.WithMSSVsetpointtoleranceincreasedto3%,Unit2LOCAanalysesassumedareducedcorepower,3250MWt,withcrosstievalveatclosedposition.Areductioninpowerreducestheboil-offrateinthehotlegswitchovercalculation.Areductionintheboilwffrateresultsintherateofboronbuildupalsobeingreduced.Therefore,thelicensingbasishotlegswitchovercalculationfortheDonaldC.CookUnits1and2remainsbounding.LOCAHdraulicForciFunctionsThepeakhydraulicforcingfunctionsonthereactorvesselandinternalsoccurveryearlyinthelargebreakLOCAtransient.Typically,thepeakforcingfunctionsoccurbetween10and50milliseconds(0.01and0.05seconds)andhavesubsidedwellbefore500milliseconds(0.50seconds).AnychangeintimeassociatedwithanincreasedMSSVsetpointtolerancewouldoccurseveralsecondsintothetransient.SincetheLOCAhydraulicforcingfunctionshavepeakedandsubsidedbeforethetimeatwhichtheMSSVmayactuate,theincreaseintheMSSVsetpointtoleranceto3%willnotimpacttheLOCAhydraulicforcingfunctionscalculationforDonaldC.CookUnits1and2.LOCAConclusioTheeffectofincreasingtheMSSVsetpointtoleranceto3%forDonaldC.CookUnits1and2hasbeenevaluatedforeachoftheLOCArelatedanalysesaddressedintheUFSAR.Forcurrentlyanalyzedconditions,orforUnit2operationatareducedpowerlevelof3250MWtwhenthehighheadcrosstievalvesareclosed,itwasshownthatthe3%MSSVsetpointtolerancedoesnotresultinanydesignorRegulatorylimitbeingexceeded.Therefore,withrespecttotheLOCAanalyses,itcanbeconcludedthatincreasingtheMSSVsetpointtoleranceto3%forDonaldC.CookUnits1and2willbeacceptablefrom.thestandpointoftheUFSARaccidentanalysesdiscussedinthesafety'valuation.91429Rz.wpf23 SECI91429,Revision23.ContainmentTntriEvaluation~~RelaxationoftheDonaldC.CookUnits1&2TechnicalSpecificationMainSteamSafetyValvesetpointtolerancesfrom+1%to+3%donotadverselyaffecttheshorttermorlongtermLOCAmassandenergyreleasesand,subsequently,therelatedcontainmentanalyses.Sincethereisnoimpactonthemainsteamlincbreakmassandenergyreleasecalculations,thereisalsonoimpactonthatassociatedcontainmentresponseanalysis.Theproposedchangedoesnotaffectthenormalplantoperatingparameters,systemactuations,accidentmitigatingcapabilitiesorassumptionsimportanttothemassandenergyreleaseandcontainmentanalyses,orcreatemorelimitingconditionsthanthosealreadyassumedinthecurrentanalyses.Therefore,theconclusionspresentedintheDonaldC,CookUFSARremainvalidwithrespecttocontainment.4.SteamGeneratorTubeRutureTodemonstratethatanunreviewedsafetyquestiondoesnotexistforthesteamgeneratortuberupture(SGTR)event,theincreasedMSSVsetpointtolerancewasevaluatedforDonaldC.CookUnits1and2.Theanalysisforupratingto3600MWTconsideredupto15%steamgeneratortubepluggingforbothUnits1and2.ThelimitingcasesfromthisanalysiswerereevaluatedfortheincreasedMSSVsetpointtolerance.Anincreasedsteamgeneratortubeplugginglevelof20%wasalsoconsideredatpowerlevelsof3262MWTforUnit1and3425MWTforUnit2.ThecriteriastatedintheUFSARanalysisforDonaldC.CookwereusedinestablishingthecontinuedapplicabilityoftheSGTRlicensingbasissafetyanalysisbydemonstratingthattheconclusionsforSGTRUFSARanalysisremainvalid.AnevaluationhasbeenperformedtodeterminetheimpactontheDonaldC.CookUnits'GTRanalysisofrecordforincreasedMSSVsetpointtoleranceforallthecaseswithdifferentsteamgeneratortubepluggingandpowerlevelsstatedabove.TheprimarythermalhydraulicparameterswhichaffectthecalculationofoffsiteradiationdosesforaSGTRaretheamountofradioactivityassumedtobepresentinthereactorcoolant,theaniountofreactorcoolanttransferredtothesecondarysideoftherupturedsteamgeneratorthroughtherupturedtube,andtheamountofsteamreleasedfromtherupturedsteamgeneratortotheatmosphere.Thus,thecalculatedoffsiteradiationdosesforanSGTR'forDonaldC.Cookaredependentonthesethreefactors.91429R2.wpf24 SECI91<29,Revision2FortheUFSARSGTRanalysis,theactivityinthereactorcoolantisbasedonanassumptionof1%defectivefuel,andthisassumptionwillnotbeaffectedbytheincreasedMSSVsetpointtolerance.ThetworemainingfactorsareaffectedbytheincreasedMSSVsetpointtolerance,andtheevaluationwasperformedtoquantifythiseffect.ToevaluatetheeffectoftheincreasedMSSVsetpointtoleranceontheDonaldC.CookSGTRanalysis,therevisedSGsafetyvalvesetpressurewasloweredby3%from1080psiato1047.6psia.Thisresultedinaslightlyhigherequilibriumprimary-to-secondarybreakflow(approximately0.5%),sincetherewasanincreaseinthepressuredifferentialbetweentheRCSandsecondarysideassumedintheanalysis.Thesteamreleasedtotheatmospheresubsequentlyincreased(byapproximately0.2%)becauseofthelowerpressureassumedforthemainsteamsafetyvalves.Thelimitingcases,forallpowerlevelsandsteamgeneratortubeplugginglevelsconsidered,wereat3600MVft.ThethyroidandwholebodydosesestimatedforUnits1and2,basedontheanalysesdescribedabove,areboundedbythosepreviouslydeterminedforthereratingprogram.Theactualestimateddosefactors(comparedtotheresultsofthereratingcalculation)areasfollows:Unitf:thyroid0.7,wholebody1.005Unit2:thyroid0.99,wholebody0.98AlthoughtheUnit1wholebodydoseexceedsthepreviousvaluebyapproximately0.5%,thisincreaseiswellwithintheacceptablelimit.Thus,theresultsandconclusionintheDonaldC.CookUFSARthattheoffsitedosesforanSGTReventwouldbewithinasmallfractionofthe10CFR100guidelinesremainsvalid.5.ComnentPerformanceTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.Cookdoesnotdirectlyorindirectlyinvolvemechanicalcomponenthardwareconsiderations.Directeffectsaswellasindirecteffectsonequipmentimportanttosafety(ITS)havebeenconsidered.Indirecteffectsincludeactivitieswhichinvolvenon-safetyrelatedequipmentwhichmayaffectITSequipment.Componenthardwareconsiderationsmayincludeoverallcomponentintegrity,sub-componentintegrity,andthe9I429R2.wpf25 SECI91<29,Revision2adequacyofcomponentsupportsduringallplantconditions.Anevaluationisnotrequiredtodeterminewhethertheconditionaltersthedesign,material,constructionstandards,functionormethodofperformingthefunctionofanyITSequipment.6.SsteEvaluationTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.Cookasdescribedwouldnotaffecttheintegrityofaplantauxiliaryfluidsystemortheabilityofanyauxiliarysystemtoperformitsintendedsafetyfunction.7.RadioloicalEvaluationTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.CookasdescribeddonotaffectradiologicalconcernsotherthanthoseidentifiedaboveinSectionIII.4orpost-LOCAhydrogenproduction.TheevaluationinSectionsIII.1andGI.3concludedthattheexistingmassreleasesusedintheremainingoffsitedosecalculations(i.e.,steamlinebreak,rodejection,lockedrotor,andshort-term&long-termLOCA)arestillapplicable,8.PlantRikAnalactivitiesaffectiIPTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.CookdoesnotadverselyaffecttheIndividualPlantExamination/PE)fortheplant.Thistestdoesnotaffectthenormalplantoperatingparameters,systemactuations,accidentmitigatingcapabilities,operatingproceduresorassumptionsimportanttotheIPEanalyses,orcreateconditionsthatwouldsignificantlyaffectcoredamageorplantdamagefrequencyorthefrequencyofcoredamageinitiatingevents.Therefore,theconclusionspresentedintheIPEremainvalid.9.PlantRiskAnaleschesotherthanIPFrelatTherelaxationoftheliftsetpointtolerancefortheMSSVsdoesnotresultinanincreaseintheprobabilityofoccurrenceofaccidentspreviouslyevaluatedintheUFSAR.ThisproposedchangetotheTechnicalSpecificationsdoesnotresultin,anincreaseintheprobabilityofoccurrenceofa91429R2.wpf26 SECI91<29,Revision2malfunctionofequipmentimportanttosafetyorofequipmentthatcouldindirectlyaffectequipmentimportanttosafety.10.TherelaxationoftheliftsetpointtolerancefortheMSSVsdoesnotdirectlyorindirectlyinvolveelectricalsystems,components,orinstrumentationconsiderations.Directeffectsaswellasindirecteffectsonequipmentimportanttosafetyhavebeenconsidered.Indirecteffectsincludeconditionsoractivitieswhichinvolvenon-safetyrelatedelectricalequipmentwhichmayaffectClass1E,postaccidentmonitoringsystems,orplantcontrolelectricalequipment.Considerationhasbeengiventoseismicandenvironmentalqualification,designandperformancecriteriaperIEEEstandards,functionalrequirements,andplanttechnicalspecificationswithrespecttoallplantconditions.AnevaluationisnotrequiredtodeterminewhethertheMSSVsetpointtolerancerelaxationaltersthedesign,configuration,qualification,orperformanceofsafetyrelatedelectricalsystemsorcomponents.TheMSSVsetpointtolerancerelaxationhasnopotentialforimpacttotheidentification1ofanunresolvedsafetyquestionasitwouldrelatetothesafetyrelatedfunctionofelectricalsystemsofcomponents.11.TechnicalSficatioAreviewoftheDonaldC.CookUnit1andUnit2TechnicalSpecificationswasperformedtoaddressachangeintheliftsetpointtolerancefortheMainSteamSafetyValves.TheTechnicalSpecificationreview,inclusiveofAmendments157and141forUnits1and2,respectively.ProposedmarkupsareattachedtothisevaluationforbothUnit1andUnit2,andreflectchangestoTable4.7-1and3.7-4,respectively.AchangetothebasisforbothunitsisalsoproposedanddiscussestherelationshipbetweentheJ1%andJ3%tolerances.91429R2.wpf27

SECL-91-429,Revision2IV.ASSESSMENTOFNOSAI'KFVUPONTherelaxationintheliftsetpointtolerancefortheMSSVsatDonaldC.CookUnits1and2hasbeenevaluatedconsistentwiththerequirementsof10CFR50.59anddoesnotinvolveanunreviewedsafetyquestiononthebasisofthefollowingjustifications:WilltheprobabilityofanaccidentpreviouslyevaluatedintheSARbeincreased?No.The+3%toleranceontheMSSVsetpointdoesnotincreasetheprobabilityofanaccidentpreviouslyevaluatedintheUFSAR.Therearenohardwaremodificationstothevalvesand,therefore,thereisnoincreaseintheprobabilityofaspuriousopeningofaMSSV.TheMSSVsareactuatedtoprotectthesecondarysystemsfromoverpressurizationafteranaccidentisinitiated.Sufficientmarginexistsbetweenthenormalsteamsystemoperatingpressureandthevalvesetpointswiththeincreasedtolerancetoprecludeanincreaseintheprobabilityofactuatingthevalves.Therefore,theprobabilityofanaccidentpreviouslyevaluatedintheUFSARwouldnotbeincreasedasaresultofincreasingtheMSSVliftsetpointtoleranceby3%aboveorbelowthecurrentTechnicalSpecificationsetpointvalue.2.WilltheconsequencesofanaccidentpreviouslyevaluatedintheSARbeincreased?No.Basedonthe'discussionspresentedwithin,alloftheapplicableLOCAandnon-LOCAdesignbasisacceptancecriteriaremainvalidbothforthetransientsevaluatedandthesingleeventanalyzed.Additionally,nonewlimitingsinglefailureisintroducedbytheproposedchange.TheDNBRandPCTvaluesremainwithinthespecifiedlimits'ofthelicensingbasis.AlthoughincreasingthevalvesetpointwillincreasethesteamreleasefromtherupturedsteamgeneratorabovetheUFSARvaluebyapproximately0.2%,theSGTRanalysisindicatesthat,thecalculateddosesareboundedbythosedeterminedforthereratingprogramwhich,inturn,arewithinasmallfractionofthe10CFR100doseguidelines.Theevaluationalsoconcludedthattheexistingmassreleasesusedintheoffsitedosecalculationsfortheremainingtransients(i.e.,steamlinebreak,rodejation)arestillapplicable.Therefore,basedontheabove,thereisnoincreaseinthedoseconsequences.91429R2.wpf28

SECL-91<29,Revision23.MaythepossibilityofanaccidentwhichisdifferentthananyalreadyevaluatedintheSARbecreated?No.AspreviouslyindicatedinSectionIII.1,theInadvertentOpeningofaSGRelieforSafetyValveeventiscurrentlypresentedintheDonaldC.CookUFSAR(Section14.2.5)andisboundedbytheSteamlineBreakanalysis.Increasingtheas-foundliftsetpointtoleranceontheMSSVsdoesnotintroduceanewaccidentinitiatormechanism.Nonewfailuremodeshavebeendefinedforanysystemorcomponentimportanttosafetynorhasanynewlimitingsinglefailurebeenidentified.NoaccidentwillbecreatedthatwillincreasethechallengetotheMSSVsandresultinincreasedactuationofthevalves.Therefore,thepossibilityofanaccidentdifferentthananyalreadyevaluatedintheUFSARisnotcreated.4.WilltheprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheSARbeincreased?No.Althoughtheproposedchangetakesplaceinequipmentutilizedtopreventoverpressurizationonthesecondarysideandtoprovideanadditionalheatremovalpath,increasingtheas-foundliftsetpointtoleranceontheMSSVswillnotadverselyaffecttheoperationofthereactorprotectionsystem,anyoftheprotectionsetpoints,oranyotherdevicerequiredforaccidentmitigation.Therefore,theprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARwillnotbeincreased.5.WilltheconsequencesofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheSARbeincreased?No.AsdiscussedintheresponsetoQuestions2and4,thereisnoincreaseinthedosereleaseconsequencesasaresultofincreasingtheas-foundliftsetpointtoleranceontheMSSVsasdefinedintheattachedsafetyevaluation.91429R2.wpf29 SECI91429,Revision26.MaythepossibilityofamalfunctionofequipmentimportanttosafetydifferentthananyalreadyevaluatedintheSARbecreated?No.AsdiscussedinQuestion4,anincreaseintheas-foundliftsetpointtoleranceontheMSSVswillnotimpactanyotherequipmentimportanttosafety.Therefore,thepossibilityofamalfunctionofequipmentimportanttosafetydifferenttharianyalreadyevaluatedintheUFSARwillnotbecreated.7.Willthemarginofsafetyasdefinedinthebasestoanytechnicalspecificationbereduced?No.Asdiscussedinthea~chedsafetyevaluation,theproposedincreaseintheas-foundMSSVliftsetpointtolerancewillnotinvalidatetheLOCAornon-LOCAconclusionspresentedintheUFSARaccidentanalyses.Thenewlossofload/turbinetripanalysisconcludedthatallapplicableacceptancecriteriaarestillsatisfied.ForalltheUFSARnon-LOCAtransients,theDNBdesignbasis,primaryandsecondarypressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperaturesremainbelowthelimitsspecifiedin10CFR50.46.Thecalculateddosesresultingfromasteamgeneratortuberuptureeventremainwithinasmallfractionofthe10CFR100permissiblereleases.Thus,thereisnoreductioninthemargintosafety.Notethat,asidentifiedearlier,changeswillberequiredtotheplantTechnicalSpecificationsinordertoimplementtheproposedchange.9l429R2.wpf30 SECL-91<29,Revision2SDTheproposedchangetomainsteamsafetyvalveliftsetpointtolerancesfrom+1%to+3%hasbeenevaluatedbyWestinghouse.TheprecedinganalysesandevaluationshavedeterminedthatoperationwiththeMSSVsetpointswithinaJ3%toleranceaboutthenominalvalueswillhavenoadverseimpactuponthelicensingbasisanalyses,aswellasthesteamlinebreakmass&energyreleaseratesinsideandoutsideofcontainment.Inaddition,itisconcludedthattheJ3%toleranceontheMSSVsetpointdoesnotadverselyaffecttheoverpowerorovertemperatureprotectionsystem.Asaresult,adequateprotectiontothecorelimitlinescontinuestoexists.Therefore,alllicensingbasiscriteriacontinuetobesatisfiedandtheconclusionsintheUFSARremainvalid.Thus,basedontheinformationpresentedabove,itcanbeconcludedthattheproposedincreaseofmainsteamsafetyvalveliftsetpointtolerancesfromJ1%toJ3%doesnotrepresentanunreviewedsafetyquestionperthedefinitionandrequirementsdefinedin10CFR50.59.TherecommendedTechnicalSpecificationchanges,alongwithanosignificanthazardsevaluation,arepresentedasappendicestothisevaluation.91429Rz.wpf31 SECL-91-429,Revision2VI.REFERENCES1)DonaldC.CookUnits1&2TechnicalSpecificationsthroughAmendments157and141,respectively,10/1/91.2)ANSI/ASMEBPV-I11-1-NB,"ASMEBoilerandPressureVesselCode-SectionIIIRulesforConstructionofNuclearPowerPlantComponents,"ASME,1983.3)ANSUASMEOM-1-1981,"RequirementsforInservicePerformanceTestingofNuclearPowerPlantPressureReliefDevices,"ASME,1981.4)"DonaldC.CookUnits1&2UpdatedFinalSafetyAnalysisReport(UFSAR),datedthroughJuly1991.5)ASMESteamTables,FifthEdition,1983.6)'urnett,T.W.T.,etal.,"LOFTRANCodeDescription,"WCAP-7907-P-A,June1972.7)Chelemer,H.etal~,"ImprovedThermalDesignProcedure,"WCAP-8567-P-A,February1989.8)Butler,J.C.andD.S.Love,"SteamlineBreakMass/EnergyReleasesforEquipmentEnvironmentalQualificationOutsideContainment,"WCAP-10961-P,October1985.9)90AE*-G4126W/AEP2-0098Transmittalregarding"LockedRotorDoseAnalysisforDonaldC.CookUnit2Cycles8&9,"7/19/90.10)LetterregardingAFWflowratesfromR.B.BennettofAmericanElectricPowertoJ.N.SteinmetzofWestinghouseElectric,9/24/91.11)WCAP-10054-P-A(Proprietary),WCAP-10081(Non-Proprietary),Lee,H.,etal.,WestinghouseSmallBreakECCSEvaluationModelUsingtheNOTRUMPCode,August1985.12)WCAP-12135,DonaldC.CookNuclearPlantUnits1and2ReratingEngineeringReport,Vol.1,September1989.91429R2.wpf32 SECL-91<29,Revision2TABLE3UNITITURBINETRIPSEQUENCEAccidentWithoutpressurizercontrol(minimumreactivityfeedback)Withoutpressurizercontrol(maximumreactivityfeedback)Withpressurizercontrol(maximumreactivityfeedback)Withpressurizercontrol(minimumreactivityfeedback)'ventTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowPeakpressurizerpressureoccursLow-lowsteamgeneratorwaterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHigh-pressurizerpressurereactortripsetpointreachedTimesec0.0779.710.50.07.99.910.50.010.047.149.10.012.491429Rz.wpf33 SECL-91<29,Revision2TABLE3(continued)UNITITURBINETRIPSEQUENCEAccidentEventRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursT~imesec14.416.015.5*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf34 SECL-91<29,Revision2TABLE4UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithoutpressurizercontrol(minimumreactivityfeedback)Withoutpressurizercontrol(maximumreactivityfeedback)EventTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursT~imeeeeInixedcore0.05.57.59.50.05.57.59.0fullcore0.07.59.511.00.07.69.610.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf35

SECL-91<29,Revision2TABLE4(continued)UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithpressurizercontrol(maximumreactivityfeedback)Withpressurizercontrol(minimumreactivityfeedback)EventTurbinetrip,lossofmainfeedwaterflowPeakpressurizerpressureoccursLow-lowsteamgeneratorwaterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccurscore0.07.060.162.10.010.612.613.514.5Timeecfullcore0.07.552.854.80.011.213.214.515.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf36 SECI91-429,Revision2TABLE5CURREN'I'ICENSINGBASISSTEAMLINESAFETYVALVESPERLOOPSafetyValve1A1B2A2BSetpoint10651065107510751085PercentAccumulation10.010.08.988.98,7.97Accumulation1171.51171.51171.51171.51171.5FlowrateAcc.857690857690857690857690857690Theratedvalvecapacityatfullaccumulationpressurewascalculatedasfollows:51.5xAxKxP=ActualFlowratewhere:A=Valveorificearea=16in'=Coefficientofdischarge=0.975P=Pressure(psia)ataccumulationpressureTheaboveactualfiowrateisreducedby0.9togetthevalveratedcapacity.91429R2.wpf37 SECI91<29,Revision2TABLE6MSSVSETPOINTINCREASESTEAMLINESAFEIVVALVESPERLOOPSafetyValve1A1B2A2BSetpointPressure1096.951096.951107.251107.251117.55Percentccumulation3.03.03.03.03.0Accumulation1129.861129.861140.471140.471151.08FlowrateAcc827585.6827585.6835257.2835257.2842928.9Theratedvalvecapacityatfullaccumulationpressurewascalculatedasfollows:51.5xAxKxP'=ActualFlowratewhere:A=Valveorificearea=16inK=Coefficientofdischarge=0.975P=Pressure(psia)ataccumulationpressureTheaboveactualflowrateisreducedby0.9togetthevalveratedcapacity.91429R2.wpf38 SECL-91-429,Revision?PRESSURE,LOWTEMPERATURECurrentLicensingBasis3588'.32+301.551.433159461350600354000509.89581.712100564.361512012027518601715271010Closed2.04,40.08.060'able5LicenseCorePower'MWt)TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulatorWaterVolume(ft')AccumulatorTankVolume(ft')MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)'esselOutletTemperature(F)'CSPressure(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperature(F)MaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpin)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.32+301.551.433'15OFA9461350600354000513.23578.572100596.481512012027518601715271025Closed4,44,40.08.0272Table6Twopercentisaddedtothispowertoaccountforcalorimetricerror.Asafetyevaluationfor25gpmchargingflowimbalancelimitsoperationwithHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.Asafetyevaluationwasperformedtoaccountforaauxiliaryfeedwaterenthalpydelayof272seconds.9l429R2.wpf39 SECI91-429,Revision2TABLE7aInitialInputParametersfortheSmallBreakLOCAAnalysisLicenseCorePower'MWt)TotalPeakingFactor,F<.AxMOffset(%)HotChannelEnthalpyRiseFactor,P~MaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulatorWaterVolume(ft')AccumulatorTankVolume(ft)MirumumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature('F)'esselOutletTemperature('F)'CSPressure(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperatureMaximumCondensateStorageTankTemperature('F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterTotalDelivery(gpm)AuxiliaryFeedwaterDeliveryDelayTime(sec)MainSteamSafetyValveSetpoint(psia)AccumulatorTemperature('F)('F)CurrentLicensing~Bas'588'.32+301.551.43315X1509461350600354000509.89581.712100564.361512012027518601715271010Closed2.04.40.08.0125860'able1120MSSVSetpointIncrease32502'.32+301.551.433FA9461350600354000513.20578.442033596.111512012027518601715271025Closed4.44.40.08.075060'able2130Twopercentisaddedtothispowertoaccountforcalorimetricerror.Asafetyevaluationfor25gpmchargingfiowimbalancelimitsoperationwithHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTAvo..Asafetyevaluationwasperformedtoaccountforanauxiliaryfeedwaterenthalpydelayof272seconds.EnthalpydelaycomputedinternallybasedonAFWflowrateand75ft'urgevolume.40

SECI91-429,Revision2TABLE8LOWPRESSURE,HIGHTEMPERATURELicenseCorePower'MWt)TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,PuFuelAssemblyArrayAccumulatorWaterVolume(ft')AccumulatorTankVolume(ft')MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)'esselOutletTemperature(F)'CSPressure(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperature(F)MaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint('psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)CurrentLicensingBasisNANANANANANANANANANANANANANANANANANANANANANANANANANANANANANAMSSVSetpointIncrease3250232+301.55'.43315X15OFA9461350600354000543.63606.792100793.901512012027518601715271025Closed4.44.40.08.0272Table61Twopercentisaddedtothispowertoaccountforcalorimetricerror.2Asafetyevaluationforthelowpressure,hightemperatureoperatingconditionwasperformedinthelicensingbasisanalysis.3Valueisbased.on102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.91429R2.wpf41 SECL-91<29,Revision2TABLE9LOWPRESSURE,HIGHTEMPERATURECurrentLicensingBasis34132.34+30Factor,F1.644ePower,Pn1.519179461350600354000544.41610.192100807.031512012027518601715271025Closed4.74.40.08.0349Table5LicenseCorePower'MWt)TotalPeakingFactor,FzAxialOffset(%)HotChannelEnthalpyRiseMaximumAssemblyAveragFuelAssemblyArrayAccumulatorWaterVolume(fP)AccumulatorTankVolume(ft')MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)~VesselOutletTemperature(F)'CSPressureIncludingUncertainties(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperature(F)MaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.357+131.6661.46'17V59461350600354000544.41610.192100807.031512012027518601715271025Closed4.7442.06.0349Table61Twopercentisaddedtothispowertoaccountforcalorimetricerror.2Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.91<29R2.wpf SECI91<29,Revision2TABLE10TIMESEQUENCEOFEVENTSEventLPLTLPLTLPHTLPHTw/MSSVw/oMSSVw/MSSVw/oMSSVBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionsignalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorecoveredSIflowrateexceedsbreakflowrate011.2319.2846.28643.4NANA1139.21730.01935.5NA198800011.2313.5413.5419.2822.4222.4246.2849.4249.42644.7601.8608.3NANANANANANA1077.31073.41057.81751.01647.81695.81831.41872.31824.7NANANA202422932284LPLTislowpressure,lowtemperatureoperatingcondition.LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3250MWtcorepower.91429R2.wpf43 TABLE10aTIMESEQUENCEOFEVFATSSECL-91-429,Revision2EventLPLTw/MSSV2inchBreakTime(seconds)LPLTw/MSSV3inchBreakBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionStartofauxiliaryfeedwaterdeliveryLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccurs'opofcorecoveredSIflowrateexceedsbreakflowrate0.08.6417.1344.1368.6592N/AN/A98416801890N/A18900.019.0337.1164.1179.11390N/AN/A2312N/A4042N/A4091LPLTislowpressure,lowtemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.

SECL-91-429,Revision2TABLE11SUMMITRYOFRFSULTSNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H,OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature('F)LPLTw/MSSV1853.711.751935.53.4711.75<1.0None251878.7LPLTw/oMSSV1772.911.751831.42.4711.75<1.0None151787.9LPHTLPHTw/MSSVw/oMSSV1837.71710.311.7511.751872.31824.73.131.8211.7511.75<1.0<1.0NoneNone16151853.71725.3LPLTislowpressure,lowtemperatureoperatingcondition.LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3250MWtcorepower.91429R2.wpf45

TABLE11aSUMMARYOFRESULTSSECL-91-429,Revision2LPLTw/MSSV3inchBreakLPLTw/MSSV2inchBreakNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(I)LocalZr/H~OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature('F)195112.018905.0612.00.568None1172068183312.040423.7512.00.397None151848LPLTislowpressure,lowtemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.46 SECI91<29,Revision2TABLE12TIIKESEQUENCEOFEVI<22lTSEventBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionsignalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorecoveredSIflowrateexceedsbreakflowrateLPHTw/MSSV011.0120.9247.92620.0NANA620.01604.31691.0NA1683.0TimeLPHT~w/0MSV011.0120.9247.92627.2NANA627.21631.71720.6NA1984.0LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3413MWtcorepower.91429R2.wpf47 SECI91429,Revision2TABLE13SUlVPdARYOFRESULTSNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H>0ReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstArtificialLeak-ByPenalty('F)BurstandBlockagePenalty('F)TotalPeakCladTemperature('F)LPHTw/MSSV1955.911.751691.04.2611.75<1.0None121572124.9LPHTw/oMSSV1947.111.751720.64.8311.75<1.0None121432102.1LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3413MWtcorepower.91429R2.wpf48 SECL-91<29,Revision2FIGU1H~591429R2.wpf49 WQQRSIA24OOPSIA681840>SIA'000iPsaA2100xPSIA45~gglgQTOl~VA1.VESO'EN578575598..5955"8'l5688685613615628625638avg(P:eaaaaap+CoreLtmitsNominalTave~578.7'F.'(ominalPI.assure~2100ps.'aOONALOC.COOKUNIT1FIGURElaILLUSTRATIONOFOVERTEHPERATUREANO.OVERPOWEROELTATPROTECTIONi'I 75OPaT651922PSIA2250PSIA402000PSIA2400PSlA<5STEANGENERATORSAPPYVALVESOPEN56856S57857558B5855'%'tS688685618615628625TeveleF')-----OTaTProtectfonLfnesCarsThsrtaslSsfstyLtsftsNominalVesselAverageTeaperature576'FNoafnalPressurfzerPressure2250psfaDONALDCCOOKUNIT2(MIXEDCORE)FIGURE1bILLUSTRATIONOFOVERTEMPERATUREANOOVERPOWERDELTATPROTECTION 73~1922PSIAOPaT2400'.PSIA532000PSIASTGNGENERATORSAFETYVALVESOPEN2250PSIA575S885855I8S~S6886856186I5628625ai3nvg(~F'!-----OTaTProtect)onLinesCoreTherssalSafetyLfeitsNominalVesselAverageTemperature5S1.3'FNominalPressurizerPressure2100psia.DONALDC.COOKUNIT2(FULLV5CORE)FIGUREIcILLUSTRATIONOFOVERTEHPERATUREANDOVERPOWERDELTATPROTECTION' h~vVVI:CC~4hVACvpl'v4II"lCC."300.l900.2300.lo.20.30.40.50.60.~C,80.90.TMK(SEC~F800.>6001~00'41200JlIQOO.0.10.20.30.40.50'0.70.80.90.>00.TME(SEC)DONALDC.COOKUNITIFIGURE2TURBINETRIPEVENT'WITHOUTPRESSURECONTROL,HINUHUHREACTIVITYFEEDBACK

~~

rD~z~~iZIIIII4i1020ic4053607080:CT~E(SEC)4551.510203040506070809C1'K(SEC'ONALDC.COOKUNITIFIGURE3TURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HINUHUMREACTIVITYFEEDBACK 5605~0520i53056C5'0520500010203C<050607080iClCT0=(SEC)EGG'805605<052G5002560560i5<0520500010203040506070SG90t"3v=(SEC,'ONALDC.COOKUNITIFIGURE4ITURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINUMUMREACTIVITYFEEDBACK.

I~CC11'JCO9CC.;9CG.;700.50C.5000.IO.20.30.40.50.60.70.90.90.lQQ.TuE(SEC)400tQ350300250200150C',100500-5010203040505070dO90'COTi&(SEC)DONALDC.COOKUNITIFIGURE5IITURSINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITYFEEDBACK 35sp252015OCtvip5Ul0-5-100,102030405050708090tCOTlhtK(SEC)OONALOC.COOKUNIT1FIGURE6TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITYFEEDBACK

OC<OCahAQVnC1i~]V'30Ct800.Io.20.30.io.50.60.~0.50.90.<OC.T:~E(SEC)"300.1900>500accri400>200.Jl>300.0.10.20.JO.40.50.60.70.60.90.IOC.ri~K(sEc)OONALDC.COOKUNITIFI6URETURBINETRIPEVENTWITHOUTPRESSURECONTROL,:NXINNREACTIVITYFEEOBACK 0.102030+0506070d090lCQTvK(SEC,'2.51.51.010203040506070d090tCQTisK(SEC)DONALDC.CMKUNITIFIGURE8TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HAXII%NREACTIVITYFEEDBACK 66G620~~V!30560dr.o520500tO20SOiO50doIo8090rvc(sac)>oo6606606<o62050085doseo5~0520500to20304050do708090tooritz(sec)ONALOC.COOKUNITIFISNETURBINETRIPEVENTltITH0UTNESSVRECONTROL,'NXINNREACTIVITYFEEDBACK

~nC2C'A'.300A300I'J)3CC,;700.500.5000.10.20.30.40.50.60.70.80.90.100.TlMK(SEC)400350300250200150100500-500tQ2Q3040505070d090100TIME(SEC)DNALDC.CXKUNITIFIGURE10TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINPlREACTIVITYFEEDBACK 2520tQ1510acQC5A4-5-10010~2030405060,70SO901COTlsK(SEC)0ONALPC.COOKUNIT1FIGURE11TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEDBACK aoaga4~"500n50C5h40Cj"'CCI"2OCn'OC23001900.18000.10.20.30.io.50.do.70.40.80.iCCtivK(SKC)2300.isoo.tdoo.c>400.1200.nnt000.)0.20,go.io.50.do.70~80,90.~OC.Till(5CC)OQWLDC.COOKNIT1FIQNE12mamTaIeEVENVITHPRESSVRECNTROL~NXINNREACTIVITYFEEoMCK 8520102030<050d0108090T>MK(SEC)45.3.52.510203040506010809GTlirt(5KC)ONEC.COOK.NITIFIGNE13TtWSINETRIPEVENT'KITHPRESSNECONTROL,NXINNREACTIVITYFEEDBACK 580560520cBS~60540520500700lO2030+05050VOT'Mg(SKC)5605iQ520500258056054010203040508010d09GtCSTIIC(SEC)XNALDC.COOKUNIT1,FI6URE14TUNMTRIPEVBITQlTHPRESSNECONTROL,NX1NNREACTIV?TYFEEDBACK IIQQ1500.300.BOO.700:600.5000.10.20.30.40..50.60.70.60.TlhlK(SEC)400350I3OO250200150100I5000102030405060708090100T1QK(SEC)OelALDC.COOKUNIT2(FULLYSCORE)FIGURE15TURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIYITYFEEOBACK 2520Ql15105-10010203040505070d090100Ti~K(SEC)ONALGC.COOKUNIT2(FULLVSCORE)FIGURE16TURBINETRIPEVENTWITHPRESSURECONTROL,NXINtwREACTIVITYFEEOBACK 2500.2400.nn"~"C'v'n2OOO.l800.ld00,0.l0.20.30.'0,50d070g0.90.laC.T<~g(SKC)2300.l800.1d00.1400.I200.l000,800.lo2030.40.50.50,70.So90lo(SEC)OONLDC.COOKUNIT1FI6NE17TURSINETRIPEVENTMITHPRESSURECONTROL,NINNNREACTIVITYFEEOBACK

25a4x201020304050do70do9C)C"1'iuK(SKC)52.52~0102030io500070doMiOOTiitE(SEC)ONNLDC.COOKUNITIFI6NE18TNSINETRIPEVENT'WITHPRESQNECONTlSL,NINNNREACTIVITYFEEDBACK 56C'5@i52"5~0'$5560s~c520500102030405060TO809C'C"T'lK(SEC)7006805606<0525600580515555<052041420304050T1IC~(SEC)DNQLD'C.CONNITIFINRE-IgTNSINETRIPEVENTWITHPRESSVRECONTROL,NINNNREACTIVITYFEEDBACK 1000.900.800.700.500.5000.lp,20,30.40.50.dp.70.80.90.100.TiuK(SEC)500CJ4JVl<004300200l000-10001020304050dp708090100TiVK(SEC)00NALOC.CONNITIFIGURE20TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITYFEEDBACK 302520)510QC5tAac0CL-t00I02030405060708090100Ti&(SEC)ONNLDC.CONUNITIFI6URE21TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITYFEEDBACK 2500.n250C.5<OC~COx'V:2QC.2100."00F900.1/000.t0.20.30.40.50.50.70.50.9Q,)GGt~c(sac>2000.1800.1d00.x[400.1200.1300.0.10.20.30.40.50.80.10.80.90.t00.re%(5')OINEDC.COOKNIT2(NIXEOCORK)FIQNK22aTNSNETRIPEVENTltITHOUTPRESSNECONTROL,NINNYREhCTIVITYFKEDBAC<

n50C<c,PC'CCI\+yA~oerV43tOCC""OC>90C.18000~le20'0~<0~50.60.70.<0.g0.~PC~MK(SEC)"30CtSOC.l500.t40C.I200.1300.0.t0.20.30.40.50.60.70.50.90.lOC(MC)tOMLDC.CONNIT2(fULLV5CONK)fIQNK22bTlNSINETRIPEV9fTVITHOUTPRKSSlNKCONTROL,NINNNREKTIVITYFEEDSACK Cc5x200l02030~05050>08090~Co'Tissu(SKC)2.52.2t.dl.24>02030<05050.1050.SOiCaTilg(SEC)OOOOC.COOKNIT2(NIXEOCORE)FICNE23aTlNSINETRIPEVBITWITHOUTPRESQNKCSlTROf.,NINNNREhCTIVITYFEEO84<<

tOZO3O.Oa6O(sec)to20304050607080KiCQ7:~K(SEC)tONU)C;COOKUNIT2(FVLl,NCORE)FINRE23bTVRIINETRIPEVENTitITHOUTPRESSURE@NIAL,NINNNREACTIVITYFEEDBACK 0

560diQ520I5305605cQ520500700Ql0203040506070809Q~Ti~E(SEC)6806606+06206009MQMO5<0]420'04050d0>06090Ti&(SEC)DONALDC.CNXNlT2(NlXEDCORE)FENRK24aTNSlNETRlPEVENTQlTHOUTPRESQNECONTROL,MINN%REACT[VlTYFEEOBACK 53IIc605ao5ZQ5:c.'30c6szo500OlOZOSO4O50.6OrOaoaC.CgrQK(SEC).00Sao5605io520500580I5605co5200~02030iO50607040SOiCOrw(sKc)ONEDC.COOKNIT2(RKLV5CORK)FIQNE24bTURSINETRIPEVENTWITHOUTNESSNECOKTROL,NINNNREACTIVITYFEEDBACK

'20C1000.z300.BQO.o700.600.500.0.Io.20.30.<0.50.60.70.60.9Q.IQQ.TIME(SEC)400350zoo2502001501005000t02030405060708090>007i&(SEC)DNALDC.COOKNIT2(MIXEDCORE)FIGURE25aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINN@REACTIVITYFEEDBACK

ocP11QQ.100.300.BCQ.700.500.5000.10.20.30.40.50.SO.70.80.90.1OO.TIME(SEC)400rn3503002502OO150100500-50102030<050do708090100TiME(SEC)00NLDC.'COOKUNIT2(FULLVSCORE)FIGURE251TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NINNNREACTIVITYFEEOBACK 4030252015105Vl0-5-1001020304050d0705090)QQTivK(SEC)DONALOC.COOKUNIT2(MIXEDCORK)FIGURE264TURBINETRIPEVENTWITHOUT'RESSURECONTROL,.NINLNNREACTIVITYFEEOBACK 403530252015(Y1050-5-10010203040505070d090100Ti~E(SEC)DONALDC.COOKUNIT2(FULLVSCORE)FIGURE26bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MIHUNNREACTIVITYFEEDBACK tV"50Cn"50C=~OCivs~1hPaavlon2lQCC2300.1300.1500.'0.10.20.30.40.50.5070.dO.90.100TiIE(SEC)2'300.1800.le00.ct1400.'V1200.'1000.800.0.10.20.JO.40.$0.60.70.80.90.100.Ti~KfMC)004lLDC.CONNIT2(MIXEDCORE)FIQURE27aTURBINETRIP'VENTM?THOUTPRESSURECONTROL,NXINPIREACTIVITYFEEDBACK OAA~4"5GCn"504CIhca%%2tQC"300>900.>5000.t0.ZQ.30.44.50.d0(~C)94>004.300I/00.i500.'00.>200.I300.0.10.20.30.44,50.d0.70.60.90.F00TsK(MC)'ONANC.COOKUNIT2(FULLV5CORE)FI6NE27bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,.NXISNREACTIVITYFEEDBACK 0.l0203040505070d09QT~vE(SKC)2.d2.62.4j2,1020304050d070d090lC"(sac)OONLDC.COOKUNIT2(NIXEQCORE)FIQNE28aTVRSINETRIPEVENTWITHOUTPRESQNECONTROL,NXINNREACTIVITYFEEDBACK CIQ2Q30+0506070I509C'CQT:MK(SKC)5525>.5l.OtO2OaO4O5O6O~OaOeCtCaT:VK(SEC)OIWL9C.COOKNIT2(RJLLVSCORE}fNNf28bTlJRSINETRIPEVENT'WITHOUTl%ESSVRECONTROL,NXINNREACTIVITYFEED8ACK g2hi1.~'0II5605<0c2h500010203040506070dOQQrME(sEC)7005805606<06206008580580540520IO.2030405060'10dO90ICQrim(sac)ONlLDC.COOKLNIT2(MIXEDCORE)'I6URK29aTNSINETRIPEVENTWITHOUTPRESSURECNTROL,NXINNREACTIVITYFEEDSACK, 60540520500%%0>020304050607060ypTvK(SEC)51505ip62050085ao5605iO5200>020SOip505070.80SCiCOT'MK(SKC)NNALDC.CONUNIT2(FULLVSCNE)FIQNE29bTNBINETRIPEVENTMlTHGUT-PRESSURECNTROL,NXINNREACTIVITYFEEDBACK QCg1~0090C.nHPC700.500.5000,10.20.30.40.50,60.10.bp.90.100.~TIME(SEC),300250200150w100CC500n500102030405060708090100T1&(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FI6URE30aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEDBACK 300.30C700.500.500.0.IO.20.30<050607080.90.IOC.TME(SKC)400350300250200l50100500-50]02Q304050dQ70d0901COruE(SEC)Ot)NALOC.COOKUNIT2(FULLVSCORE)FIGURE30bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXII%NREACTIVITYFEEDBACK

25201510acac5'4ac0ac-5-100102030405060"708090)COTIME(SEC)DONALDC.COOK'NIT2(MIXEDCORE}FIGURE3laTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MAXIHLNREACTIVITYFEEDBACK.

2520V)IO50-5-100102030<050d070Soeo.COTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE}FIGURE31bTURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HAXIHNREACTIVITYFEEOBACK q%sarv25CC500"<cc~leer~,vvvltIAeevbr2'QC300.i90C.It8002300.10.20.30.40.5050T'LIE(ggg)1300.1500.<z14QQ.'V1200.'AtQQQ.0.10.20.30.io.50.dO.ZO.50.90.tQC.TiMK(SKC)ONAu)C.COOKUNIT2(lIIXH)CORE)FIGVRE32aTURBINETRIPEVENTMITHPRESSVRECONTROL,NXINNREACTIVITYFEEDBACK

~~%A%VI50Ct.cQCCn~<hFaVVC'900'80020.30.<0.50.60.70.50.90:GCTvK(SEC)2".00>30C..~:tlj~i~>500>400>200nt300.0.10,20.30.40.50.d0.10.50.90.iOCr~C'(SCC)'ONlDC.COOKUNIT2(FULLV5CQRE)FI6NE321TURBINETRIPEVENTMITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK dt4Z0.102030<0505070809CrvK(SKC)2.63~.z~2010203040505070d090Tlat@(SEC)OOQLGC.COOKNIT2(MIXEDCORE)FI6NE33aTURBINETRIP.EVENTMITHPRESQNECONTROL,NXINNREACTIVITYFEEOSACK l02030405050108090~vK(SKC)lO20304050dO10609CT~K(SKC)ONIALOC.COOKUNIT2(FULLVSCORE)FISuaz33bTlJRSINETRIPEVBITMITHPRESSURECONTROL,NXINNREACTIVITYFEEDSACK 5~0620IIrvSCar<<V5605<05205000!02030405060l0809Cr~E'SEc)7005805606405205008580g5605L05200l02030405060108090lC"TivK(SKC)00NLDC.COOKUNIT2(NIXEQCORE}FI6URE348TURBINETRIPEVENTKITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK 550t54Ce5205000'02030<050607080TvK(SKC',0III5305~062050C258035605c0520500io2030io5060~0aoec:COTilK(SEC)ONALDC.COOKUNIT2(FULLV5CORE)FIeNE34bTURSINETRIPEVENT'KITHPRESSURECONTROL,NXINNREACTIVITYFEE08aCV.

c?.-QC.J7z30C.BCC.D700.500.500.p.30010'0'0.40.50.60.70.80.9p.1pcTMK(SEC)250200150OC10QCZ500n-501020304050'6070SO901CPTlute(SEC)DONALDC.COOKUNIT2(HIXEDCORE)FIGURE35aTURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK P'009CC600.500.40010.20.30'0.50.60.70.80.9p.IppT:ME(SEC)350300250200150100500-50102030405060708090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE35bTURBINETRIPEVENTWITHPRESSURECONTROL,AXINGREACTIVITYFEEDBACK 2520'A)5)0QCac550-5)Q2030405050708090)GOT)MK(SKC)PONALDC.COOKUNIT2(HIXEOCORE)-FIGURE361TURBINETRIPFVENTMITHPRESSURECONTROL,NX'INNREACTIVITYFEEOBACK 252010ac5ac0-5-100t02030405050'08090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE36bTURBINETRIPEVENTMITHPRESSURECONTROL,MAX!NNREACTIVITYFEEDBACK

5CC"5CC1nIC2ICC".QG.:900.I800.0.300tp.20.30.iP.50.60.70.50.ypTuK(SKC)t300.'6QCac'<OCCv>200nnIQOC.0.l0.20.30.40.50.60.70.80,90.IOO.T5VK(SE'C)DONALDC.COOKUNIT2(IIIXEDCORE)FIGURE37aTURBINETRIPEVENTQITHPRESSURECONTROL,MINN@REACTIVITYFEEOBACK

5QCnwgAQevC~'n2~00V)1600)0.20.30.40.50.50.10.80.90.:OC.T:VK(SEC)2'300.1800.1600.I400."4l200.1000.600.0.~0.20.30.i0.50.60.10.d0.90.~OC.7~&(SEC)OONLOC.COOKNIT2(FULLVSCORE)FIQIRE37bTURBINETRIPEVENT'MITHPRESSURECONTROL,NINNNREACTIVITYFEE08ACK 102050<050607Q60gCrvK(SgC)286"2164~Q203040'0647060g)T1QK(SEC)OONU)C.COOKUNIT2(llIXEOCORE)fI6NE38'URSINETRIPEVENTMITHPRESSURECONTROL,NINNPlREACTIVITYFEEDBACK Z0.ic20304050d010d090TMK(SEC}45352.5I.Sl.0102030.io50107080SOtCOTi&(SEC)OQNLDC;COOKUNIT2(FULLVSCORE)FIQNE38b'URSIHETRIPEVENTNITHPRESSURECONTROLSINN@REACTIVITYFEEDBACK 560t520500010203040506070809C'"0IMK(SEC)6805605~0~5205005505605405205000"102030405060108090'00TivK(SEC)00NALDC.COOKUN?T2(NIXEDCORE)FlGURE39aTURSlNETRlPEVENT'MlTHPRESSURECONTROL,NlHUNNREACTLVITYFEEOBACK

4,IIcogiII5205000>02030<0506070TvK(SEC)30I68G6605<0r.2r.63058035605i0520500'l02030405060708090iCQTivK(SKC)NXQLO'C.COOKUNIT2(FULLV5CORE)FIGURE3SbTURBINETRIPEVENTQITHPRESSURECONTROL,NINNNREACTIVITYFEEDBACK n13QC.700.500.500.40Q10.20.30.40.50.60.70.80.9Q.!QC.TME(SEC)s)350300"50200150100500500.102030405060708090>00TiMK(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE40aTURBINETRIPEVENTQITHPRESSURECONTROL,MINIMUMREACTIVITYFEEDBACK el'00.3PG.MV7PG.500.5000~10'2030'0'0'0'0~80.90.'CC.TME(SEC)500n4001I(3OO<I200i100J)0n-100010203040506070do90iCOTlMK(SEC)OONALOC.COOKUNIT2(FULLVSCORE)FIGURE40b.TURBINE.TRIPEVENTWITHPRESSURECONTROL,HININNREACTIYITYFEEOBACK 403530252015gA'4]Q5-5-100102030405060lO8090'C3T'ME(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE41aTURBINETRIPEVENTMITHPRESSURECONTROL,HINIMNREACTIVITVFEEDBACK 30412c20151QAgJ70-1Q0102030405060708090TIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE41bTURBINETRIPEVENTMITMPRESSURECONTROL,MINIHUHREACTIVITYFEEOBACK APPENDIXASIGNIFICANTHAZARDSEVALUATION

>A SIGNIFICANTHAZARDSEVALUATIONDONALDC.COOKUNITS1&2MSSVLIFTSETPOINTTOLERANCETECHNICALSPECIFICATIONCHANGEINTRODUCTION:Pursuantto10CFR50.92,eachapplicationforamendmenttoanoperatinglicensemustbereviewedtodetermineiftheproposedchangeinvolvesasignificanthazardsconsideration.TheCommissionhasprovidedstandardsfordeterminingwhetherasignificanthazardsconsiderationexists(1OCFR50.92(c)).Aproposedamendmenttoanoperatinglicenseforafacilityinvolvesnosignificanthazardsconsiderationifoperationofthefacilityinaccordancewiththeproposedamendmentwouldnot:1)involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated,or2)createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated,or3)involveasignificantreductioninamarginofsafety.DESCRIPTIONOfAMENDMENTREVEST:ThepurposeofthisamendmentrequestistoreviseTechnicalSpecificationSection3/4.7forbothDonaldC.Cookunitsinordertorelaxthemainsteamsafetyvalve(MSSV)liftsetpointtolerancefrom<1%toJ3%.ThecurrentlyspecifiedtoleranceofJ1%oftheliftsetpointcanbedifficulttomeetwhenthevalvesaretestedduetosetpointdriftoverthedurationoftheoperatingcycle.ThisevaluationwillprovidemarginforAmericanElectricPowerServiceCorporation(AEPSC)whentheyperformtheirsurveillancetesting.TheASMECoderequiresthatthevalvesliftwithin1%ofthespecifiedsetpoint(NB-7512.2).Thecodealsostatesthatthevalvesmustattainratedlift(i.e.,fullflow)within3%ofthespecifiedsetpoint(NB-7512.1).ThisevaluationwillformthebasisfortakingexceptiontotheASMECodewithrespecttotheliftsetpointtolerances.AsdefinedinNB-7512.2,exceptionscanbemadetothecodeprovidingtheeffectsareaccountedforintheaccidentanalyses.A-1

BASISFORNOSINIFICANTHAZAIU)SDETERMINATION:Theeffectsofincreasingtheas-foundliftsetpointtoleranceonthemainsteamsafetyvalvehavebeenexaminedforthenon-LOCAaccidents,andithasbeendeterminedthat,withoneexception,thecurrentaccidentanalysesaspresentedintheUFSARremainvalid.Thelossofload/turbinetripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerancerelaxation.Aspreviouslydemonstratedinthisevaluation,allapplicableacceptancecriteriaforthiseventhavebeensatisfiedandtheconclusionspresentedintheUFSARarestillvalid.Thus,theproposedTechnicalSpecificationchangedoesnotconstituteanunreviewedsafetyquestion,andthenon-LOCAaccidentanalyses,aspresentedinthereport,supporttheproposedchange.TheeffectofanincreaseintheallowableMainSteamSafetyValvesetpressuretolerancefrom+1%to+3%ontheUFSARLOCAanalyseshasbeenevaluated.Ineachcasetheapplicableregulatoryordesignlimitwassatisfied.SpecificanalyseswereperformedforsmallbreakLOCAassumingthecurrentMSSVTechnicalSpecificationsetpressuresplustheproposedadditional3%uncertainty.Thecalculatedpeakcladdingtemperaturesremainedbelowthe10CFR50.462200'Flimit.Thesteamgeneratortuberuptureeventwasalsoanalyzedtodeterminetheeffectsoftheliftsetpointtoleranceincrease.TheresultsoftheanalysisconcludedthattherewasaveryslightincreaseinthewholebodydosereleaseforUnit1,butthemagnitudeoftheincreasewasSECL-91%29,Revision1withintheuncertaintyassociatedwiththecalculationitself,andthatthereleasesgeneratedfortheDonaldC.CookReratingProgramboundthosecalculatedforthisevaluation.TheevaluationalsodeterminedthatthecurrentUnit2dosesremainbounding.Thus,theconclusionspresentedintheDonaldC.CookUFSARremainvalid.Neitherthemassandenergyreleasetothecontainmentfollowingapostulatedlossofcoolantaccident(LOCA),northecontainmentresponsefollowingtheLOCAanalysis,credittheMSSVinmitigatingtheconsequencesofanaccident.Therefore,changingtheMSSVliftsetpointtoleranceswillhavenoimpactonthecontainmentintegrityanalysis.Inaddition,basedontheconclusionofthetransientanalyses,thechangetotheMSSVtolerancewillnotaffectthecalculatedsteamlinebreakmassandenergyreleasesinsidecontainment.A-2 TheproposedchangehasbeenevaluatedinaccordancewiththeSignificantHazardscriteriaof10CFR50.92.Theresultsoftheevaluationdemonstratethatthechangedoesnotinvolveanysignificanthazardsasdescribedbelow.1.Asignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated.RelaxationoftheMSSVsetpointtolerancefrom+1%toJ3%doesnotincreasetheprobabilityorconsequencesofanaccidentpreviouslyevaluated.Componentandsystemperformancewillnotbeadverselyaffectedsinceequipmentandsystemdesigncriteriacontinuetobemet.TheMSSVsdonotinitiateanyaccidentnotalreadydiscussedintheUFSAR.Neitherthemassandenergyreleasetothecontainmentfollowingapostulatedlossofcoolantaccident(LOCA),northecontainmentresponsefollowingtheLOCAanalysis,credittheMSSVinmitigatingtheconsequencesofanaccident.Fortheeventsanalyzed,allapplicableacceptancecriteriaweresatisfied,andtherewasnoincreaseinthedosesoverthosepreviouslygenerated.Asaresult,theconclusionspresentedintheDonaldC.CookUFSARareunaffectedbytheproposedchange.Therefore,changingtheMSSVliftsetpointtoleranceswouldhavenoimpactontheconsequencesofanaccident.2.Createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated.Thepossibilityforanaccidentormalfunctionofadifferenttypethanevaluatedpreviouslyinthesafetyanalysisreportisnotcreated.IncreasingtheliftsetpointtoleranceontheMSSVsdoesnotintroduceanewaccidentinitiatormechanism.Nonewfailuremodeshavebeendefinedforanysystemorcomponentimportanttosafetynorhasanynewlimitingsinglefailurebeenidentified.NoaccidentwillbecreatedthatwillincreasethechallengetotheMSSVsorresultinincreasedactuationofthevalves.Therefore,thepossibilityofanaccidentdifferentthanpreviouslyevaluatedisnotcreated.3.Involveasignificantreductioninamarginofsafety.ThemarginofsafetyasdefinedinthebasisoftheTechnicalSpecificationsisnotreducedbythechangeintheMSSVliftsetpointtolerance.TheproposedIncreaseintheas-foundMSSVliftPA-3 setpointtolerancewillnotInvalidatetheLOCAornon-LOCAconclusionspresentedintheUFSARaccidentanalyses.Thenewlossofload/turbinetripanalysisconcludedthatallapplicableacceptancecriteriaarestillsatisfied.ForalltheUFSARnon-LOCAtransients,theDNBdesignbasis,primaryandsecondarypressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperaturesremainbelowthelimitsspecifiedin10CFR50.46.Thecalculateddosesresultingfromasteamgeneratortuberuptureeventremainwithinasmallfractionofthe10CFR100permissiblereleases.Thus,thereisnoreductioninthemargintosafety.Note,however,inordertoimplementtheproposedchange,theTechnicalSpecificationswillhavetobechanged.

3.7.1.1AllaainstomalinecodasafetyvalveaaasocLaeedvieheachsees.generatorshallboOPEkASLE.IIIC4HLBX:thCGM:aob.VLeh4reactorcoolantloopaandaaaociatadseaaageneracot..sLnoperation'assdviehonaoraoraaainateaalimacodesefecyvalvoaLnoyorabla,operationLnNOES1,Rand3aayproceedyrovidad,thatwithin4houra,eitherehoLnoparablavalveLsraatoradtoOPXMLIatatuaorehahwer4ngeNeutronfLuxHighSatpointtriyiareducedyorTable3.1-1.;othe~a,ioLnatlaaatNTSTARlTviehinehanaxtChouraandLnCogSMVTKNNvithinehofollowing30boura.>teVLeh3raactorcoolantlooyaan4aaaociatadstaaagaaeraeogsLnoyoratiossan4viehoneormraaainataaalinacodesafeeyvalveaaaaociatadviehanoperaticloopLnoporabla,operaeLonLnNRC3aaluproceedprovidad,that&thin4houri,eithertheLnoporablovalveLaraatoradtoOHRALLCaeatuaorchereactortripbreakersareopane4;othariiao,boinCOLOSRUTEOQNvtthinehanext30bours.C~TheproviaionaofSpocificatioo3.0.4arenotapylicable.4.7.1.1Eachaaina~liaocodeaafaeyvalveahaGbo4eeonaeraeedOPEMlJ,richlifeaottiagsandorificeaixaaaaebsLnTable4,71,Lnaccordanceetch,SoetiossZIofehoAQCloilarandPraaauraVaaaalCoda,1914gee.D.C.COCC~URXZ13/47-1agamaNO.ig0 TABLE3.7-lHNIINNALLONkEONERRAHGKlKUTRONfLUNHIGHSETPOINTMITUINOPERhBLESTEANlEFWlKflll~~eCNaxtamNakeroffeeyorableSafetyValvesoalaatiSteaaCaaaratorHexf~Al)owablePowerRangeNeutronfluxHighSetpointPercentofRATKDTERNALPSKR13.6

n5%1Cin.LCin1Cln1Cin.1Cin.ooNl$0CSyeiyhN1$045peiy'IIooN-35075peigI4eNR$07IyeiyW~oN3k$peiyIA+fholttcattpraaaaroaballoorroayqn4toaabieataedltloneottheyalyaat.aoaiaaloporatiaytaeperaturaae1proeeur'

ThoOPERAITLI.YofehaaainseoaalinecodasafoeyvalvooanagramIocondatyIyocooproasurovil1boLiiieo4eovichinieados'.gnpzoaguroof10f5paiddurinjtheoooesovoroaneicipaeodsyseoNopera.eionaleranaionc.Theaux~'oliovinicapaeieyi4aaoociaeidvihIeutbinoeripfroa100%RATSTHERMALt5CLcoincidentviehanaaavuaod.':ofeondonsothoacsinJa(i.o..noseaaabyyaaaeoehocondonaot).TheIpooifiodvalvelifecoceinlaan@roliovingcapaeieiooareinaocozdaneoviAehozoquiroaeneaof5occionZTZofehoQlCSoklorandprooqutoCodeL97LCdicion.ThececalroliovingcayaoicyforalLvalvoonaogcoaanoooL7~L53.lOOLba/htvhiehiaapyroaiaacolyLRpot'coneofchoeoealsecondaryacornGeeofLL.L20,000LboAgae[00'ATZyatagg.tOQXR.Aaint'f2OPCRAILCaafoeyvalvooperoporabl~gcaaagonotaeoronourooehacouffioionerolieCagcapacityiaevailoforehoallowableZHQ8ALPNCtoactiot&aLnTable3.7~L.STARTUtand/ortQCLOPERATIONinoyorablo+%chanchoLiiicacionaofofehoreduction.insecondaryoyseeebyehorodueodreactoretiyooccingachannela.ThereactorerfyaocyointfoLLovingbaooo:For4LooyoporaeioniiallerahloviehaafocyvaltheiCZZMr~iroaoncsonehobao'.ae~fZovaadTRLLCQ.tOMERzoq.~fcholoverRangeNoueronFlaxro4acionaaredarivo4onehoa(L0%)%hero:5P~N4acodtoaccoteriyooeyointiapotconeofRATtDTHELVL8%lLLV~eaaSaanuabetotinoyotailoaafocyvalvooporscoaa1inoL.,2or3.X~Toealrolkovingcayaaityotalloafoeyvalve!poraeocaLine~4.off,454Lbo/beut.Y~Naciluaroliovinleayacicyotanyonecato'eyvalve~f57,C94Lbo/hour,(109)~RoverRanchoNeutronFicta-HighTtiySoepoinefot4loopoyoracion.O..C.CXC~UNION1)3/i$LAN~tKNTNO.

3,7,1.1hL1matnseaaaleonecodasa.aeyvalvesassoc'.acidviAeachsteanjenaraeorsha11beOPELQQv'.5Lifeseer'gsasspeci'fed'.nTabLe3:I-'a.%Egal2i~aob.Vkeh4reactorcoolaneLoopsandassociatedseeaageneraeosLncyerae'onandviehoneormoraIaknseeaaLWcoda.saeeyvalves~rable,eparaetonLaCNS1,2andSmayproceedyrovided,chatvtdgn4bees,etchereheinoperablevalvetsreseoredeoOPQhlLXjeacQ$Qrehe?4%%riangeÃoLeronF11%EkghTripSec[oint.iareducedyearTableS.l-l:otherwise,beinatLeaseBet~~vichinehoneatC~sca@LaCOTE51CTtRKNNvtehfaehefollm4ag30heats.iVSch3reaotorcoolantlooyaaaLassociatedsteamgeneratorsbioperationaa4etchoneorsereaaSasteamLhsecodesa"oeyvalvesaaaoetato4&than~racial3eoytaeporable,eyeraef.ontaMDL3mayyrocoo4ytevtdad,chatvtthtalbeati,eiehetthei.noyerablevalveSareaeoredteOZQQLXstatuserehereactortrLybrewersareeyeaed;etheaCae,beQxCOLOSRUTI%witheehenext30hexa.'Theyxevta5.oaaofSpoctNcaeton3.0.Iarenotayylfcable,4.?.L.LIoe44LCLeaaiSerretlLcaeeteqCr~taeehezthanchose~redby4.t.$.S/a7~1AjgÃKICRT50.82 TABLE3.l-lINXINllALL@NB.KPSKRRANGENK~U~FSETPOIIITlIITIIINOPERABLESTEAHSaxi~NuwberofVavesoaleSafetyorNax)mmh))mab)ePoserRangeNeNtroaFluxlllghSetpoiatCerementofRATEOTIIENHLPONER87.2 VMa.SV-lli.SV-lc.SV-21.SV-2,e.SV-3ZAlkf3.7-hSTEINLtdSQ'HYVALVfSffNlOOP81+llfTSEHll065psig)065psigl075psigl075prig)NSysiSORIFlCESIZEl6i16in.~)6in.~l6in.2l6in.~l%mmeXI'ressureslullcerrespoaltooehieatcoa4itioasofQevalveateewiaaloyeratiayteayerebee.aalyra5ssre.

ThoOHRQIUTTofchocatasceaaltnoeo4aaafecy~aireseaaeea~ceeseceataxyIystaa)casanova<11Qltatca4ceWN,all0ooftcs4ast~yciseureof104$Pstg4ctagChoaesCseversanctctpace4eyscaaoPoractana1transient.TheaaxtaaralteCagceyaaicytsassoctaca4vSchaoazbtnecrt'~104i~TRENT8$ZRaotnatdancrichanass~41oisofaen4ensorbeaCsink(L,e.,Ms~l+asscecheaon4ansaz).Tbesyoetfto4Mw1SAsottSILgsan4reltovtagecyacittasaretnaeeor4anaeetchchoreqatr~csofSoertoaIIIofchoA58R&tieran4~gggg~pPros~eCo4e,1071MicoeTbececaltoit~ecyactcyofa11aafocyvresoaes~lineaLalT,U$,000lhsiht~ahtaaclease10f~tcancofche84%~soaon~sc440AMraceae100'ATZO~g,5ggR.iNtsga%of!OMAlLSaafecyM&sPors~gonatacartoglkgoschaseatttatanereit~aayaetryta~ladleferIhealletahlotRQNAL?OCRtoscrta!SoitaTaile3.7l.STIRXQPea4/ot8$CLOPmliTKONteallowableetchsafely~tseyerailowitheche1$akcactoesottheAC?TM~reeencsoathehastaofchere4saciootasoaea4axyaye~s~fleesniThtlsg.8ÃCR-r~atxe4iyChete4aae4reaecer.eriyeeeeSNgeefAePeatRange'1~chIRhllsoThereeccer~ee~tkcf04Nrtooeare4ert~eOchefellatiobases:gal1eeyeyeracQea(i')Aero:Stare~reeeceeartyeeeyeLaeLaPoreeneoflCClTIRlh8%&1aaml~aeAerefSaeyetahlesafeeyWeelPerseem@asY=-Ž10'IeiilrelS~eoyoetryofallsafoeyvalvesPerstable~SBQe./beese4,Q!,4S~~rolteviageayac&yef~onesafoeyva1veSaO~.Pe+ŽaSt,SeeteatOsageSee~Plm~ltdSeeyets!fer1leep~yera@tee~WCLCaatLaamta1$/4liLsammyIo.$2.

INNTAhesafetynl>e)sOPERABLE~)tha1)ftsettingof'Waboutthenmfnalvalue.H~r,thesafetyvalveshallberesettothenoa)nalvalue+]%wheneverf~outs1dethe+1%tolerance.