ML17229B044: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:CATEGORY 1 y.REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)ACCESSION NBR:9903110413 DOC.DATE: 99/03/02 NOTARIZED:
{{#Wiki_filter:CATEGORY 1               y.
NO FACIL:50-389 St.Lucie Plant, Unit 2, Florida Power&Light Co.AUTH.NAY&.AUTHOR AFFILIATION KLEIN,R.M.
REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)
Florida Power&Light Co.STALL,J'.A.
ACCESSION NBR:9903110413           DOC.DATE: 99/03/02 NOTARIZED: NO FACIL:50-389 St. Lucie Plant, Unit 2, Florida Power & Light Co.
Florida Power&Light Co.RECIP.NAME RECIPIENT AFFILIATION DOCKET I 05000389
DOCKET 05000389 I
AUTH.NAY&   .         AUTHOR AFFILIATION KLEIN,R.M.           Florida Power & Light Co.
STALL,J'.A.         Florida Power & Light Co.
RECIP.NAME           RECIPIENT AFFILIATION


==SUBJECT:==
==SUBJECT:==
"St Lucie,Unit 2,Cycle 11 Reactor Startup Physics Testing Rept." With 990304 ltr.DISTRIBUTION CODE: IE26D COPIES RECEIVED:LTR 2 ENCL[SIEE: Z I TITLE: Startup Report/Refueling Report (per Tech Specs)NOTES: RECIPIENT ID, CODE/NAME PD2-3 PD INTERNAL: ACRS NRR/DSSA/SRXB/B EXTERNAL: NOAC COPIES LTTR ENCL 1 1 1 1 1 1 1 1 RECIPIENT ID CODE/NAME GLEAVES,W CSEE RGN2 FILE 01 NRC PDR COPIES LTTR ENCL 1 1 1.1 1 1 1 1 NOTE TO ALL"RIDS" RECIPIENTS:
  "St Lucie,Unit 2,Cycle 11 Reactor Startup Physics Testing Rept." With 990304 ltr.
PLEASE HELP US TO REDUCE WASTE.TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROI DESK (DCD)ON EXTENSION 415-2083 TOTAL NUMBER OF COPIES REQUIRED: LTTR 8 ENCL 8 Florida Power St Light Company,6351 S.Ocean Drive, Jensen Beach, FL 34957@PI March 4, 1999 L-99-059 10 CFR 50.36 U.S.Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 Re: St.Lucie Unit 2 Docket 50-389 P i in R Pursuant to St.Lucie Unit 2 Technical Specification 6.9.1.1, the enclosed summary report of plant startup and power escalation testing for Cycle 11 is hereby submitted.
DISTRIBUTION CODE: IE26D         COPIES RECEIVED:LTR TITLE: Startup Report/Refueling Report (per Tech Specs) 2  ENCL    [  SIEE:    Z  I NOTES:
Should you have any questions, please contact us.Very truly yours, J.A.Stall Vice President St.Lucie Plant JAS/RLD II  
RECIPIENT           COPIES              RECIPIENT            COPIES ID, CODE/NAME         LTTR ENCL          ID  CODE/NAME        LTTR ENCL PD2-3 PD                   1    1      GLEAVES,W                1      1 INTERNAL: ACRS                       1    1              CSEE              1. 1 NRR/DSSA/SRXB/B           1     1       RGN2     FILE   01       1     1 EXTERNAL: NOAC                        1     1       NRC PDR                  1     1 NOTE TO ALL "RIDS" RECIPIENTS:
PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROI DESK (DCD) ON EXTENSION 415-2083 TOTAL NUMBER OF COPIES REQUIRED: LTTR               8   ENCL     8
 
Florida Power St Light Company,6351 S. Ocean Drive, Jensen Beach, FL 34957 March 4, 1999                                   L-99-059
@PI                                                                                              10 CFR 50.36 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 Re:       St. Lucie Unit 2 Docket 50-389 P   i       in R Pursuant to St. Lucie Unit 2 Technical Specification 6.9.1.1, the enclosed summary report                   of plant startup and power escalation testing for Cycle 11 is hereby submitted.
Should you have any questions, please contact us.
Very truly yours, J. A. Stall Vice President St. Lucie Plant JAS/RLD II


==Enclosure:==
==Enclosure:==
St. Lucie  Unit 2, Cycle  11 Reactor Startup Physics Testing Report; March 2, 1999 CC:              Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, St. Lucie Plant 9903ii0413 990302    05000389' PDR      ADOCK PDR an FPL Group company
          ~hurtle S'T<ARg'UgrP> XE'S'f"RE~Og<RX'
ST. LUCIE UNIT 2, CYCLE 11 REACTOR STARTUP PHYSICS TESTING REPORT Author                                                    Date .2 z Ray M.
React    ngineering, S . Lucie Plant Reviewed                                                  Date Walter D. Mead Jr.
Reactor Engineering, St. Lucie Plant Reviewed                                                  Date Carl G. O'Farrill S ervisor of P    Fu    Engineering Approved C. Ashton Pell Reactor Engineering Supervisor, St. Lucie Plant
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table of Contents Section              Title                          Pa e I    Introduction                                  4 II    Cycle 11 Fuel Design                          5 III  CEA Drop Time Testing                          7 IV    Approach to Criticality                        8 V    Zero Power Physics Testing                    9 VI    Power Ascension Program                        10 VII  Summary                                        11 VIII  References                                    12 List of Fi ures Fi ure                Title                          Pa e Cycle 11 Core Loading Pattern                  13 Inverse Count Ratio Plot- Channel B            14 Inverse Count Ratio Plot- Channel D            14 Power Distribution - 25% Power                15 Power Distribution - 50% Power                16 Power Distribution - 98% Power                17
0 St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table of Contents cont List of Tables Table                      Title                  Pa e 1  Approach to Criticality                        18 2  CEA Group'Worth Summary                        19
11 St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report I. Introduction The purpose of this report is to provide a description of the fuel design and core load, and to summarize the startup testing performed at St. Lucie Unit 2 following the Cycle 11 refueling.
The Startup testing verifies key core and plant parameters are as predicted. The major parts of this testing program include:
: 1)  Initial criticality following refueling,
: 2)  Zero power physics testing, and
: 3)  Power ascension testing.
This Cycle  11 Startup Report is being submitted in accordance with Technical Specification 6.9.1.1 because:
A. Fuel design changes were made, introducing the "Value Added" pellet, the Guardian Grid and consequently eliminating long lower end-caps The test data satisfied all acceptance criteria and demonstrated general conformance to predicted performance..
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report II.      cle 11 Fuel Desi n The Cycle 11 reload consists entirely of fuel manufactured by Asea Brown Boveri Combustion Engineering (ABB-CE). The 217 assemblies of the Cycle 11 core are comprised of fuel from four batches. Of these, 64 are fresh batch N assemblies, 64 are once-burned batch M assemblies, 84 are twice-burned batch L assemblies and 5 are )hrice-burned batch K assemblies.
The Region N assemblies consist of non-gadolinia fuel rods (4.1 to 4.45 w/o UQ35 enriched) and Gadolinia (UOz -GDg 03 )'bearing fuel rods (Gadolinia burnable absorber fuel rods, 4 or 8 w/o gadolinia homogeneously dispersed in a 2.2 to 2.55 w/o UQ35 enriched carrier).
The mechanical design    of the Region N fuel assemblies differs from Regions M, L and K in the following ways:
: 1) The bottom grid is the laser welded "Guardian" grid. The Guardian grid incorporates debris stopping features. The other fuel batches employ TIG welded lower grids.
: 2) The fuel rod lower endcaps were changed from the long lower endcap design to a shorter design which works with the new Guardian grid. This effectively shifted the active fuel 1.14 inches down relative to the other fuel assembly regions.
: 3) The upper pellet stack spacer disc which separates the top fuel pellet &om the upper plenum spring was deleted.
: 4) The Plenum spring design was modified to accommodate the longer plenum size.
: 5) The fuel rod pellet diameter was increased by 0.0005 inches, pellet dish volume decreased by 69%, and the pellet theoretical density was.increased &om 95.25% to 95.4%.
: 6) The top spacer grid incorporates backup arches in all interior cells as opposed to only the peripheral cells of previous fuel assembly designs.
: 7) The upper end fitting flow and hold-down plates were slightly thickened'. The spring force was increased for the fuel assembly upper end fitting springs PC/M 98016 adressed the mechanical, thermal hydraulic and neutronic impact of the region N fuel design changes. Evaluations performed by FPL and ABB-CE found the operational impact of the fuel design changes to be acceptable. There was no safety impact due to the fuel design changes. Subsequent Low Power Physics, Power Ascension and Shape Annealing Factor (SAF) testing substantiated the conclusions  of the evaluations.
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report II.        cle 11 Fuel Desi n continued No fuel handling issues were noted due to the Region N fuel assembly upper end fitting changes mentioned above. The impact of the upper end fitting changes had been evaluated by FPL prior to the fuel receipt. This was accomplished by field testing an available Region N design upper end fitting with a PSL 2 new fuel grapple.
The entire Cycle 11 core consists of debris resistant fuel (long lower end-cap or Guardian grid).
The Cycle 11 loading pattern is similar to Cycle 10. Cycle 11 employs a low-leakage fuel management scheme'and is 90 degrees rotationally symmetric.
h The Cycle 11 core map is represented in Figure 1. The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location.
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Repor't III. CEA Dro        Time Testin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed. The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit) to the 90% inserted position under hot, full flow conditions. The average CEA drop time was found to be 2.29 seconds with maximum and minimum times of 2.92 seconds and 0.90 seconds, respectively. All drop times were within the 3.1 second maximum requirement of Technical Specification 3.1.3.4. 'In addition the CEA drop time distribution requirements for scram shape (average drop time <2.77 seconds and maximum drop time <3.07 seconds) specified in the reload PC/M 98016 (Reference 6) were satisfied.
St. Lucie Vnit 2, Cycle 11 Startup Physics Testing Report IV. A roach to Criticali The approach to criticality involved diluting from a sub-critical boron concentration of 1660 ppm to a predicted critical boron concentration of 1441 ppm. Inverse Count Rate ratio (ICRR) plots were maintained during the dilution process using wide range channels B and D. Refer to Figures 2 and 3 for ICRR information. Table 1 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.
'nitial criticality for St. Lucie Unit 2, Cycle 11, was achieved on December 12, 1998 at 06:29 with CEA group 5 at 60 inches withdrawn and all other CEAs at the all-rods-out (ARO) position.
The actual critical concentration was observed to be 1473 ppm.
St.t  ucie Unit 2, Cycle 11 Startup Physics Testing Report V. Zero Power Ph sics Testin To ensure that the operating characteristics of the Cycle    11 core were consistent with the design predictions, the following tests were performed:
: 1) Reactivity Computer Checkout;
: 2) AllRods Out Critical Boron Concentration;
: 3) Isothermal Temperature Coefficient Measurement; and
: 4) CEA Group Rod Worth Measurements.
Proper operation of the reactivity computer is ensured by performing the "Reactivity Computer Checkout". This part of the testing determines the appropriate testing range and checks that reactivity changes are being correctly calculated by the reactivity computer's internal algorithms.
The testing range is selected such that the signal to noise ratio is maximized and that testing is performed below the point of adding nuclear heat. The reactivity calculation is. checked a positive and negative reactor period test through respective introduction of a known by'erforming amount of positive and negative reactivity. The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 98016 (Reference 6).
Satisfactory agreement was obtained.
The measurement of the all-rods-out (ARO) critical boron concentration was performed. The measured value was 1524.9 ppm which compared favorably with the design value of 1491 ppm (Reference 2). This was within the acceptance limits of+ 100 PPM.
The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was derived. The MTC was determined to be -1.630 pcm/'F which fell well within the acceptance criteria of + 2.0 pcm/'F. of the design MTC of
-1.938 pcm/'F (corrected). This satisfies Unit 2 Technical Specification 3.1.1.4 which states that the MTC shall be less positive than 5.0 pcm/;F when reactor power is less than or equal to 70%
rated thermal power.
Rod worth measurements were performed using the rod swap methodology. This method involves exchanging a reference group, which is. measured by the boration dilution technique, with each of the remaining test groups. A comparison of the measured and design CEA reactivity worths is provided in Table 2. The following acceptance criteria apply to the measurements made:
: 1)      The measured value of each test group, or supergroup measured, is within+15% or+100 pcm of its corresponding design CEA worths, whichever is greater and,
: 2)      The measure worth of the reference group and the total worth for all the CEA groups measured is within+ 10% of the total design worth.
All acceptance criteria were  met.
0 St. I ucie Unit 2, ~cle 11 Startup Physics Testing Report VI. Power Ascension Pro ram During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt) for power plateaus at 25%, 50%, and greater than 98%
rated thermal power.
A summary of the flux maps    at the 25%, 50% and 98% power levels is provided in figures 4, 5 8c
: 6. These flux maps are used for comparing the measured power distribution with the predicted power distribution. For the purposes of the power ascension, the acceptance criteria requires the RMS value of the power deviation be less than or equal to 5%. In addition, for the 25% and 98%
plateaus, the individual assembly powers should be within 10% of the predicted power (both) and the relative power density (RPD) should be within 0.1 RPD units of predicted for the 25%
power case. These criteria were satisfied.
A  Shape Annealing Factor (reference 5) test was performed in conjunction with the power ascension (reference 3). This test was necessitated by the replacement of the Reactor Protection System Channel "D" the Linear Power Range Detector and the change in the active fuel stack height introduced with the Region N fuel. The measured Shape Annealing Factors were installed in the Linear Power Range Detector instrument circuits as required by the reload PC/M 98016 (Reference 6).
Additionally, calorimetric, nuclear, and delta T power calibrations were performed at each power plateau prior to advancing reactor power to the next higher level specified by procedure.
10
St. Lucie Unit 2, Cycle 11 0
Startup Physics Testing Report VII. Summaru Compliance with the applicable Unit 2 Technical Specifications was satisfactory and all acceptance criteria were met.
11
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report VIII.References
: 1)  "Initial Criticality, " Pre-Operational Procedure 2-3200088
: 2)  "Reload Startup Physics Testing, " Pre-Operational Procedure 3200091
: 3)  "Reactor Engineering Power Ascension Program," Pre-Operational        Procedure 3200092
: 4)  St. Lucie Unit 2 Technical Specifications.
: 5)  "Shape Annealing Factor Test," Pre-Operational Test Procedure 3200093
: 6)  St. Lucie Urit 2 Cycle    11 Reload PC/M 898016 12
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report FIGURE 1 CYCLE 11        CORE LOADINGPATTERN P      M      K      H Y  X  W I
V I
                ~  T I
S                                    F I
E I
0I    C      'B I A
I I  I      I L41    L97    L76    L47      I  I      I              I      I I        I    I    I                                        I  I      I      I        I      I
                                                                                                      -21 I    I                                                                I I    I  L66  M04 M24    N15    M48    N18    M26 M10 L84            h I                    28            10                            I        I      I L86  N20  M45 N35    L04    M35    L06    N40 M54 N26    L62 55      23            200            34      15                      I      I L65 N29 201 L59  N02 111 N42 114 L11    N48 4
L22 N04 78 L93    N30 202 L88
                                                                                      -'r'-'-i-'-'-18 I      I I
N27  L91  N09  L50 M62            M06    L27    M32 L80 N10    L61    N14      L68      I I
                                                                                                    '- 17 43        73      118            29          119    107            8 I
i  M11 M52 NOS    L78  N49 M58    N54    K78    N56    M68 N34 L52    N06    M44      M01    -~ - -
I
                                                                                                    ~
16 112        19        113            51          5        115                      I M27 N52  L20  M33 'M69 M39    L55    N57    L73    M41 M55 M59    L34                      I N36      M21 15 105      203                          204 17                                33                  104          100              L43
                                                                                                    -'-'-14 N28 L07 N45    L25  N62 L71    M81    M63    M83    L57 N63 L31    N46    L01      N16
                                                                                                    -'13 L74 101      32        75                                                              25    L94 21                        6          1
                                                                                                    -'-'-12 L95 M49 M38 205 L12  MOT 67 K79 N53 30 M66    K73 70 M65    N64 44 K80 M08 60 L13    M37 206 M50 L75
                                                                                                    -'1
                                                                                                    -'-'-10 N23 L02 N43    L30  N55                M64    M82    L70 N60 L24  N44    L08      N24          -'
L42  63      63        18                      109        116        72              13          -'-'- 8' M22 N39  L35  M60  M56 M42    L72    N61    L54    M40 M70 M34    L21    N41      hl28 122        110      207            52          208    108          121 M02    N07    L53  N33 M67    N58    K77    N59    M57 N47 L79  N01    M51      M12    -'"'-'- 6 71        16          14            64          9        12 L69 N21  L60  N11  L81 M31            M05    L28    M61 L51 N12    L90    N22      L83    -'-'-'- 5 120        20      102            31          103    41            7 L89 N31    L92  N08 L23    N38    L10    N37    L33 N03 L58  N32    L64 4
209        76        27            22        117        210 L63  N17  M53 N51    L05    M36    L03    N50 M46 N19    L87 3
3        74            211                  79 L85  M09 M25    N13    M47    N25    M23 M03 L67 69            26 L46    L77    L96    L40 Assembly Serial  &#xb9;    XXX Insert Serial &#xb9;      &#xb9;&#xb9; 13
St. Lucie Unit 2, Cycle              il Startup Physics Testing Report FIGLRE 2. WIDE RANGE CHANNEL B BORON DILUTION 0.9  .
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1000 2000        3000      4000        5000 ,  6000 7000 8000 OAu.OII$ DILUTCD FIGURE 3. WIDE RANGE CHAN%L D BORON DILUTION 0.9 0.8 0.7 0.6 K 0.5 5
0.4 0.3 0.2 0.1
      .0 1000 2000        3000      4000        5000    8000 7000 8000 OALLONS OILUTKD 14
0 St. Lucie Unit 2, Cycle 11, Startup Physics Testing Report Figure 4 POWER DISTRIBUTION COMPARISON WITH DESIGN -25% POWER Uhg
$ 400$ urtd:  $ )CACOIC              $ )cslgn:
OODTD        )O 7)DSNJkM PDWW LDTO Jxtonto
            $ 471 LAlttH'";
CCACDTOon,7$ $ ,=,
eorm Conc. !Till0
                        '.!','']I
                                .
                                                                                ~      0      p      I      t      J    0      4 l)T            1$          11$            IM                    7        I
                                                                              ~ SN          DSN          DSID          MN
                                                                              ~ SN          OSU          0JIC          tSIT AN$            44ll          4)to          4117 IQ        )I            10                                      Nl 410      $$0          )$ 00                        1410          ~ JN      OAN 4$ 1      JS7          )SQ                          ISQ          ~ AQ      ~ DN ANT        4  Alt        4170                                      4141      4NC A
IQ                    I          JN            IN            IN            MT        IM        17$      ltf
                                                )$ 10    IND      )SN            1410          1170          1$ 'N        ISN      Uft      I.QD        OID LIN      IAN      1$ )t          IJM          LMD          1411          ISQ      140$      Llol        O$
4451    4105      ~ 41$          44)l          44)t          4417          4411      414t      44Q      441$
Itl        ltl      MD        Nt                          Ml            NI            MS        )M        IQ        IQ        Ml IJTD 1$  )l LIOI Un Ult
                                                        )SIC 141 ~
Ult 1450 IJOS lln IAN IJID ISOI 14)0 1110 I JSD ISO IJ50 IJ7A
                                                                                                                                                          )JIO
                                                                                                                                                          )SN ATD ASS 4Jkl    4451    4JDC      44Q            441$          44Q          441$          4Nt      44Q      4NA      44N      4)OS I'8      ln        Itt      )$$      )n            IM            ln            171          ln        IN        Mt                  MT        MC LQD      UTD        IJN      SN N
                                                                  )$ 00
                                                                  )SN IDN IIIO IUD          IJCD          )lit        SN IJln Ult LMO Un
                                                                                                                                                                    )$ 50 Llll L)Q      LITC      1$ 1T                                          IAID          IDM          LMC AN4          44Q      4 450    4477    44N        4DN            4N$          MN            41OI          441$      4AN      41)1      44Q      4JQ MS            SM      MS                  Ml        M4                          LO            )$ 7          QC        QS                            IQ 47D          )ND      ISN                U)4      USD                          JN          INO          U>>        ISN                          1410 AID          LDN      ISN                UN        L)N                          JIC          )$ 71        LL!l      IJot                          )NI            I 4110          4DN      44N      0ND      ONI        ~ DQ                        ~ DIC          ~ ADI        ODN      ~ lnl                        ~ Aol    ~ DN 7                            Ml        MI      MI        MS                          11$          Mi            Ml        la        Qt                  QT
                                    )AN        LQO      LQD      Uto                          1510          $ 50        Uto      IJN      IJN      Loni      ISN I                            UOD        INC      LLTC      LN7                t        1$ ) t                      INT      LQS      UDI      LNt      ISQ            I OJIO      ~ DM    ~ 1Q      ~ 41$        001$          MIS            ~ 1Q        ~ 11$    ~ JQ      ~ All    ~ All    ON I      ~ JQ 17      IQ            IQ      Ql        Qt      Qt        Ql            QT                          QS                      IQ        Qi        Ql                  Ilt MN    IJN          USD      IJN        )NC      l&0        ND            IND                        IND                    Uto      IDN                            ISN ISQ            1417    1404      Llol    1$ n                    UOT                        1417              I    1$ Tl    IDDS      UOS                  )SN 0DIS                  ONA      DJM      ~ 1Q      ~ JQ          ~ 41$                        ~ 4)$        ~ 41$    ~ Alt    ~ 41$    ~ AOS              ~ Nl 11$          l)$      Ill        11$      IQ        Ill            IN                          Nl            NT                  NS        loo      Nl LIN      Ult        LIN                ISN            LAN                        IJN          1410                UN        LIN      IJnl LIN      )IN        LIN      JIC      1517                                        Stl          Ult                IJN      IN)      IJN 0411        MN,      LNO      44N      OAM        ~ AQ          ~ 4M                        ~ NO        ~ 11$              ~ 4N      ~ JN      ~ 4$ 0    0 Jl'I 7                                                                      I
              )SN          ISIO    IND        IJN                JSD                                      IJN                    ISN      IIOI                1450 INC          UM      ISI5      UDS                $$  t                                    litt                    Un MN INI                IN7 ON)          NOC      OA)$      01)5                ~ AQ                                                                        ~ 1M                DNS SN Tl        77                                        7I            Tl        n                              7                    17 ISSD    INC                LMD      IND                          ISN            JID          1410      LIN      )SN      )AID      ISN        410        IUKO Nt          Lilt    INt                LQC      IDI7                        UII            $ 11        lANt      LIN      UDI      INO      IS)$        DQ OJQ          ON I      OJQ                ONI        CAN          OJQ          ~ JQ          ~ NS        MN        MN        0400      ~ JN      0417      ONT I                                                                  I AC4        LMD      ISIO        JN      ISN      I 15D          ISN            $ 70        1$ 'N        Lilt      ISLD                USD      ION 477        1ltl    )JN        JN      IJOlt    )JN            Un                          Ull          LQt      ISN                1471      INT 0AQ          OAM      MM        04)0    0411      0JQ          ODIO          OAIC          4401          ~ )KO    ~ NI                OAN      DACI
                            $ )                                    I                                                                            I L)IO    1)N        IJN                1110          IDN                        1410                              IJN      LMD      )JN LMI 44N lln4141    1$ 1'I CDQ JN
                                                            ~ 100 UIC 0401 INI 040$
110$
                                                                                                                  ~ D05 JN 4DN 1$ )7 44lt LQO 41M IJCS AJQ      41)0 I                                              17        ll ISN        )JID              ION            IS%I          )4N          ISIC          INO      ISN      IJSC      LQD        AN ISN        IJTO              )AN                          UN            ISIS          LNt      IJIC      LITI      Ull        AQ 441$      411C              41N            ONI          4)N          4145          440$      44M      4N)      4NC      44Q I                                                      17        ll        1$
Lilt              1410                                      ISN          1410      1470      L)OI IJCT              UQ                                        IJM          ISlt      IDN      1$ $ )
4NS                411$                                      44M,                    41M      44Q      4 Jlt Q        Q JTD ACO      JQ                                        IJN                I      4$ 1 4110    44N        411$                                        tin)        4407      4417 I
17 4407          0JIC          440I          CADI RMS Deviation: 1.63/
lh0 07cof 0 IMItcoDh CVMCOI N opof4140 Pcf Appcholf ~, WNo otvINNO chDIDo Pt Iccc PNO of DOPN ct OJTN Oho ONC\ OW fttnNCITICTIN CA 0 d,) 4 ptntflht0 N ON $ $ NIO Ol pCT C CIO pDWCf IC51 )DNC NIS ONllg OIC pOWCf 0CC tfNIDCI IC51 PftgfNTL                                                                                                                                                    El 15
St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 5 POWER DISTRIBUTION COMPARISON WITH DESIGN 50% POWER Power SSISCITKNon Comptftson tthh 270$ 25$ 1
$ 4080IDOATI
$ >>tft>>
ddACOIC t>>$  IQO~
                                    ',ttt,~(I 1st "tti I"
Den>>I LIT>>l At>>7 It h>> 05 Osffttl
                                                ',]let dlrln Conc                                                                8      ~      8    5            8      ~    8      C 117            ll          11$
Cl'5 ll                  f        I 8$ 10        MCO                        CQD MQ                                      CQI 40>>          4110          40>>          40CI IQ        Q              N                                      KIT Alt      JID          IJOD                        UN            ~ NO      ~ 450    CSIO AQ      45l          UQ                          1$ 1$        ~ JQ      ~ ACC    Ott>>
41Q        4NI      4010          4010                        4015          4D12      4JN  ODIS 102        I                                      50                      QC ISN        INO      ISN            Ult                        IJN                    ID>>
ASO      KISS                ISIC          IJ I I                    Ull                    14Q                    ~ $1 40>>        4ACS                  4011                        41ll                    4021                  4DIT QI        51          QD      Qt            ltt          QT            QC            Ql        Ql                    IQ      Ill ISIO      LQO        ISN      INO            IJIO        ID>>          IND          INO      ISN      LI>>        LQD        ATD I      2412      LQI        ISQ      IDI>>          IN5          UTT          l&#xc3;l          UN        ISN      UQ          U l1        0$ 1 4017        40ll      DNI        425$    4NA          4NS          OACI          4NC          400C      4AIN    402$        4NI      4DN 17$          178      177                  15            Ill          I'5          171          Ill      170      Nt          Qt      1st LQD          1$ >>      1400                1210          1010        L170          I AN          LIIO        $ 10    IJ>>        LQD      isa 1$ $ $      IJQ      1407                Uls            UOT          1$ >>          I>>7          LNT        JID    1$07        Llll    ISIS 415K        40Q        4011                ~  NI          MQ          MN            ~ ACI        ~ DCI              4AOt        4NI      4NS IC5      lll          Nl        Ql          ill      QO            Qt          IN            1$ T          QC        155      ISA                  Ql        1$ 1 4$ 0    IAI'Io      IAID          70      ISIO    USD            IS>>                        1$  >>        Litt      ISN        J70                1000        AIO All      ID>>          INC          70      IJOI    IJll          1$ 7t        0TC          ISKI          LIQ      IJth      Slt                IDI~        AQ 4AQC      40Q          400C      0150      OAKI      ~ 157        ~ Ahl        CDN          ~ 110        ~ DIK      OADI    0D01                  ~ DKI      4001 QO        la          1>>        Ilt        IAC      l>>                          l>>            la            ill      Ia        Qt                  QT Ja      UN          1070      LQD        ISCO    IJIO                        ISN                        10>>      1$ >>      IJN                  ISN UIO          14SC      LNT        sill    1001                        1$ lt          0$ 2        UCI      Lla      Ull                  IJIC 40Q      ~ 010        Olol      SNS        8010    ~ AN          ~ 417        Iltlt        ~ All        ~ DI~      >>57      ~ 41l                ~ Dll Ql        Ql          Ql        Qt          Qt      QO            Qt          Ql            QS                      IQ        Ql                  Qt        I'5 1$ >>      LQD          IJCO      IAOD        IJID                    14>>          IJN          14>>                              IDN                  Uls        UN INS      141>>        IJTC      IDDT        1220                    1020        Uls          I>>8                    1$ 5      UOT                  Ill 1      1411
                  ~ 11$    ~ 1N        ONl        ~ 01$      DNO      ~  Jlt        tlhl        ~ 1Q          ~ AQ                    Olh1    801$                  ~ Alt      OAQ QT IQ                    110                  IQ      Ql            IN                        85            IDT      IOC      5$                  10$
SN                    IS>>                    170    IJCO          Ltlo                      ID>>                      $ 70    Uls                  Uls Slt                  1077                  JN      ISQ            101$                      I DIS        ISQ        47C      UQ                  'I JQ 0DII                  OJQ                  OAQ      ~ JQ          ~ 11$        ~ Nl          ~ 01$        ~ J15      >>IN      ~ DQ                  ~ NS      0411 70                            I                                                                        I 8000  1$>>      Ult          ISN      IDN                  JN                        IND          10>>                    12>>      IAN                  ISN        1$ >>
ISQ      U l1        ISQ      IDDT                  0$ 1                      UQ            INS                              U57                  IJIA      ISQ
                  ~ Nl      CQS                    ~ Alit              ~  Jlt                      ~ 1Q          ~ JQ                    ~ 1N    ~ DIS                ~ 11$      ~ 115 N
Q                I                    Tt          70      77                          7$                                    72        71          10 415$                          10>>                  LI>>      Ule                        ISN                                  1$ $ 0    UN          I>>0      ISN        Ja          4NS Ua          ICIA      LNC        1.1>>    I IOI                      1$ $$                                UQ        LNT        INC      ISN        JQ 01ll        011C      00ll      ONT      t018          Mlt          ~ N5          0007                    OAK5    ~ DQ        MDI      ~ NO      4AM I                                                    I              I                                                  t                    $$
llD      UN          ISID t      1510    21>>                          JN          ISN          ua        1510                  1$ 8l    I >>0 All      U'I~        IJQ                  tJlt    1$ >>l          ISN          ~ '5        IJlt          Lia      IJ>>                  1$ 1$    ID>>
4NI      OAOI        OAKYI      OAOI      ONI      ~ DN          04N          MIN          ~ Al'I        40>>        ONI                  400$      4151 I                                                                                                                      I                      t u>>          ISN      ISN                  14 10          IJN          1270          UN            Llls        Sle    LNI        I.QD    IS>>
12SS 401$
ill4011 I    IJDT 4157 1407
                                                                        ~ AK5 INT ODCI UQ
                                                                                                    ~ DN IN7
                                                                                                                  ~ 00$
LIN 400C 1st 4215 1407 4017 LIQ 4DQ 1270 40Q I                                              I          ll 1270                          INO            IS>>0        10>>          1$  >>        Uls      ISN      U>>0        LQD 1412                          IACC          IJN          INT          uls          INl      INS      Ul1        Ull 4011                          4NS            OAOI        ~ ACI        ~ NS          4AOI      40Q      4NI          4NI Q        I                          It            5            lt        ls        1$          ll I IN        10>>      1$ >>          ISN          LQD          ISN          IJIO      IJ>>      LQO          ~ 70 I    LQC                  1410          sill        LIQ              Q        ISIC                ISS$  '170 4007      4NC        4251    40N          4NC          4DQ          4NI          4NC      4010    4NS 5        Q AN      050                                      INO                      470 4010 Jll 40Q 70 t
Msl 1210 MCI lll4NI I
Sh 4AK5        40>>          NK5          4AK5 RMS DdVldtlOn:          1.J9k N ODCfNKO hef DAIDCIKJK hhm oct>>noh shot45 50 Ns0 5>>n of 0otla to DDN Dno She OICof0 nlilCDon 07>>SIem f
IIWOI ha cot>> emems I&#xc3; 0    f,l 8 peftollne5 N CN 40 >>VII, M pet elm powtf IDQ pnht>>10 oof Klg Ihe powef KICeh>>on test prottfsnc 16
St.          I ucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 6 POWER DISTRIBUTION COMPARISON WITH DESIGN -98% POWER Una                                                                        power DIN)ttn4)oh colllpNtlon yhal De Ntpt nkasarcd:    DCJCDN Secrcc      N).ttt) 1100        1st  t)tt 1)OOU; Smenec      DUS~"'c'esign:
40445tltyi; ',
Sccsncsnc                        et)SAAA1I'"Le                          n      4                          a        I    n      4 I It            ll        US                N                  5        t M)4          OSN          0410
                                                                                ~ SN          4STC        MTS            M)I 4AN            4AN          4DN            4ANI U              N                                        101                )05 LUO            SCD          Lite            ~ Jcs    ~ A50    MSO Act            IJTC          All          IJDI            ~ JS)    ~ N)      ~ stt 4llt          c 4404        4ANI          4411          44U      44U  OJN I                                      IN              )St      IN Als                  IACD      ISN            ISN          Lite        ISN            IS'      1450 AC I                UNI                        LIU          LISI        ISN            ISN      IANS                    I 4 AU                  44) I      44m            44n          4DU c
4ACC          44N      441S                44) I 1$ 1          lt1                Nt              IN            Ut          UC              US      IN        IU        Ul        Ul IJN          ISN                IAN            ISN          IDN          ISN            IAN      ISN      U)0      LIN I    IJDD          Ucl                ICU            IJN          lect        I JU            IDU      1 Ale    IJII      1)00      ACI 4DII        4)NO        44U                  4411            4ml          ~ ANI          4AN4          44U      4JN      44N      44N      44U In            111      151        ln              )TC          US          ln              In      its      Nt        lcl      lit IJN          ISN      Jis      IJN            ION          UN          )DN            ISN        sn      IJN      LUD      IS)0
                                )ill44N          44m Ti 4AIN
                                                                  )Sic
                                                                        ~ A4C
                                                                                  )AN Mll Lli)
                                                                                                    ~ ADI i ms
                                                                                                                    ~ Ael Lilt 4ADC sn 4DU      4JU Llcl 44U U)A 44N IU                    lll        ND                            LN          Ut                      US                  UI        151      l)l IS)I                  1$ 14      ISN                            JN          ISN                      ills                Isn't ISle      )Am        Ael
                                )SIC                  L)ll      L)$ 5                                      ISU                      u1 I                ISU      )AC I 4ANC                  4)NI        ~ AU                        ~ Jl I          ~ 41$                  4DO)                4DN      4ml      ~ Dtl IN            Ict      ics        NS              Nl            N)          N)              ill      )CO      Ut                  UT        UC UOD          LIN      LUO        UN              IDIO          UN          INN            LUD      UCO      IUD                ISN
                                )DU          LIN      USC        LIU                  I        LNI                          UN      LUT      LIN                            JC1 ODOT        ~ mc      ~ AN      ~ AU            OAU        ~ Alt          MU            aln      MCI      ~ ANC              ~ JN      M45 Ut                  Ul              UI            UC          US                      Ul        Ul        Ul        IN        lit lt                              UN                  IANO            UN)          Leis        UN                      Ule      )AN      IJai      ISN      UN IJ01
                ~ 40$
IJU 0DU JU
                                                                        ~ All IDU Ml1 utlMU Ilnl~ 415                  I 4DDS
                                                                                                                                      )lt)
                                                                                                                                          ~ 41$
ISU
                                                                                                                                                    ~ ln  UN
                                                                                                                                                              ~ AN LU)
                                                                                                                                                                        ~ Jlt LIN 44M UT
            )N                  Ul            UI                  Ul              IN                        SN                      NC        NS        let      10$      1st LND          LU4                ISN            lsn            Jl          IDN                        Jle    Llm      UDO      Lln I
MU IDTS aml un SJU      04) I INI
                                                                        ~ Alt 1451
                                                                                        ~ DU Alt OOU 1451
                                                                                                                    ~ lot ltlAII un
                                                                                                                                          ~        ~ JU      ~ AU L15)
F 411 I
ODtt 5                                                                            I
            )lie                IJN          IDN                ION            IJN          Nce          ION                                lme                ISN      UN ISN                  IJ)C          ID)I                All            IDCS          1451        IDC)                              IJN                LUC      IN) 44N                  ~ AN        Ml)                  ~ Alt          4 SIT      Mst            ~ ANT                            ~ 4U                ~ lit    ~ 405 I                      it                  TT                                        IC                                n                                          I JSD      IJIO      IJN          LIN      Lln        ISN                                          SN                              LUI                1450      J14        ~ ACI NI        UN        ID)I          LIN      11$ 1      ISU                                        Jtl                              SIN                ISN        Jn NNS      ONO        Mst          MDC      MU        MU              ~ DN                        ~ Ant                            MIC                ~ ANC    ~ Am 1                                                                      I                                                    1 LND      ISN                    L)14      Uls            LXO            lie        IJDD                    IDIO                IJN      Isle ACI      uc1      UU                    u1 )      USC            lit)          Att        ISN                      u1 I                LIN      I st ODN      DANI        44CI                  4ANI        ~ Aet          OD0$        ~ All          ~ AOS                  4ANI              4lal      4AN I                                          I                                                                            I LIN LUC
                                                                  )lit LI  lc IAN IDU ula un IAN IAN Llle UN ACO JTI LNO      lln LIN 44N                                          440I            ~ DU        MN              ~ ACI        4 mt    4ln      4JU      44ll I                          lt                  I                  5 IS)0                  um'JIC IJlt                          IACI        )Jlt            lms      1 see                          ATO IJle                              IDU                          141$        ISN            Lml      IJU      UU                      I 44N                  4)IN      4AU                          Msl            44N            4401    4AIU      4ml                44U U                    I                            lt          U              lt      IC        1$        N ASD        Ills    IDN        ISN            LIN          Lite        IJN            ISN      I)CD      UN AC)        LUS      UNS        IJN            l)N          LIU          )ST)            IJN      IACI      Lml 4411        4DU    . 4415        4llc            44DC        4)m            4ANS          44)0    44) I    4ml      44U U              N                                          t JDI            LUD            Scs        IJN              Jcs      4$ 0 451            IJll          JU          IJN              Jct      ACD 4JU            4411        4)NI          44N,          4401    4JN I
                                                                            $ 10          JN                          sle IT 4401 J'n MN          4NC ll 4DN RMS Devlatlon:        1.25'A tna mcor 0 oetecaon system N onerame oer Dooencsx t, nato aevuaon snoam os Ns 0 man or cham Io as@, ana meet me reqeremems    a DA I 4 snntormea a me sa ena os per ceca power tnt pcmewe meme me power acean smn test pmefmh, 17


St.Lucie Unit 2, Cycle 11 Reactor Startup Physics Testing Report;March 2, 1999 CC: Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, St.Lucie Plant 9903ii0413 990302 PDR ADOCK 05000389'PDR an FPL Group company
0    St.
~hurtleS'T<ARg'UgrP>
                            ..
XE'S'f" RE~Og<RX' ST.LUCIE UNIT 2, CYCLE 11 REACTOR STARTUP PHYSICS TESTING REPORT Author Ray M.React ngineering, S.Lucie Plant Date.2 z Reviewed Walter D.Mead Jr.Reactor Engineering, St.Lucie Plant Date Reviewed Approved Carl G.O'Farrill S ervisor of P Fu Engineering C.Ashton Pell Reactor Engineering Supervisor, St.Lucie Plant Date St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table of Contents Section Title Pa e I II III IV V VI VII VIII Introduction Cycle 11 Fuel Design CEA Drop Time Testing Approach to Criticality Zero Power Physics Testing Power Ascension Program Summary References 4 5 7 8 9 10 11 12 List of Fi ures Fi ure Title Pa e Cycle 11 Core Loading Pattern Inverse Count Ratio Plot-Channel B Inverse Count Ratio Plot-Channel D Power Distribution
I ucie Unit 2, Cycle 11 Startup Physics Testing Report I
-25%Power Power Distribution
Table 1 Approach.to Criticality Dilution Rate  Initial Boron          Final Boron  Dilution Time Concentration          Concentration    (minutes) 132 gpm            1660                  1591            ~
-50%Power Power Distribution
21 88 gpm            1591                  1491              70 44 gpm            1491                  1473              75 18
-98%Power 13 14 14 15 16 17 0 St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table of Contents cont List of Tables Table Title Pa e 1 2 Approach to Criticality CEA Group'Worth Summary 18 19 11 St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report I.Introduction The purpose of this report is to provide a description of the fuel design and core load, and to summarize the startup testing performed at St.Lucie Unit 2 following the Cycle 11 refueling.
The Startup testing verifies key core and plant parameters are as predicted.
The major parts of this testing program include: 1)Initial criticality following refueling, 2)Zero power physics testing, and 3)Power ascension testing.This Cycle 11 Startup Report is being submitted in accordance with Technical Specification 6.9.1.1 because: A.Fuel design changes were made, introducing the"Value Added" pellet, the Guardian Grid and consequently eliminating long lower end-caps The test data satisfied all acceptance criteria and demonstrated general conformance to predicted performance..
St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report II.cle 11 Fuel Desi n The Cycle 11 reload consists entirely of fuel manufactured by Asea Brown Boveri-Combustion Engineering (ABB-CE).The 217 assemblies of the Cycle 11 core are comprised of fuel from four batches.Of these, 64 are fresh batch N assemblies, 64 are once-burned batch M assemblies, 84 are twice-burned batch L assemblies and 5 are)hrice-burned batch K assemblies.
The Region N assemblies consist of non-gadolinia fuel rods (4.1 to 4.45 w/o UQ35 enriched)and Gadolinia (UOz-GDg 03)'bearing fuel rods (Gadolinia burnable absorber fuel rods, 4 or 8 w/o gadolinia homogeneously dispersed in a 2.2 to 2.55 w/o UQ35 enriched carrier).The mechanical design of the Region N fuel assemblies differs from Regions M, L and K in the following ways: 1)The bottom grid is the laser welded"Guardian" grid.The Guardian grid incorporates debris stopping features.The other fuel batches employ TIG welded lower grids.2)The fuel rod lower endcaps were changed from the long lower endcap design to a shorter design which works with the new Guardian grid.This effectively shifted the active fuel 1.14 inches down relative to the other fuel assembly regions.3)The upper pellet stack spacer disc which separates the top fuel pellet&om the upper plenum spring was deleted.4)The Plenum spring design was modified to accommodate the longer plenum size.5)The fuel rod pellet diameter was increased by 0.0005 inches, pellet dish volume decreased by 69%, and the pellet theoretical density was.increased
&om 95.25%to 95.4%.6)The top spacer grid incorporates backup arches in all interior cells as opposed to only the peripheral cells of previous fuel assembly designs.7)The upper end fitting flow and hold-down plates were slightly thickened'.
The spring force was increased for the fuel assembly upper end fitting springs PC/M 98016 adressed the mechanical, thermal hydraulic and neutronic impact of the region N fuel design changes.Evaluations performed by FPL and ABB-CE found the operational impact of the fuel design changes to be acceptable.
There was no safety impact due to the fuel design changes.Subsequent Low Power Physics, Power Ascension and Shape Annealing Factor (SAF)testing substantiated the conclusions of the evaluations.
St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report II.cle 11 Fuel Desi n continued No fuel handling issues were noted due to the Region N fuel assembly upper end fitting changes mentioned above.The impact of the upper end fitting changes had been evaluated by FPL prior to the fuel receipt.This was accomplished by field testing an available Region N design upper end fitting with a PSL 2 new fuel grapple.The entire Cycle 11 core consists of debris resistant fuel (long lower end-cap or Guardian grid).The Cycle 11 loading pattern is similar to Cycle 10.Cycle 11 employs a low-leakage fuel management scheme'and is 90 degrees rotationally symmetric.
h The Cycle 11 core map is represented in Figure 1.The assembly serial numbers and control element assembly (CEA)serial numbers are given for each core location.
St.Lucie Unit 2, Cycle 11 Startup Physics Testing Repor't III.CEA Dro Time Testin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed.
The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit)to the 90%inserted position under hot, full flow conditions.
The average CEA drop time was found to be 2.29 seconds with maximum and minimum times of 2.92 seconds and 0.90 seconds, respectively.
All drop times were within the 3.1 second maximum requirement of Technical Specification 3.1.3.4.'In addition the CEA drop time distribution requirements for scram shape (average drop time<2.77 seconds and maximum drop time<3.07 seconds)specified in the reload PC/M 98016 (Reference 6)were satisfied.


St.Lucie Vnit 2, Cycle 11 Startup Physics Testing Report IV.A roach to Criticali The approach to criticality involved diluting from a sub-critical boron concentration of 1660 ppm to a predicted critical boron concentration of 1441 ppm.Inverse Count Rate ratio (ICRR)plots were maintained during the dilution process using wide range channels B and D.Refer to Figures 2 and 3 for ICRR information.
0      St. Lucie Unit 2, Cycle 11 0
Table 1 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.
Startup Physics Testing Report Table 2 CEA Group Worth Summary CEA Group           Measured Worth       Design
'nitial criticality for St.Lucie Unit 2, Cycle 11, was achieved on December 12, 1998 at 06:29 with CEA group 5 at 60 inches withdrawn and all other CEAs at the all-rods-out (ARO)position.The actual critical concentration was observed to be 1473 ppm.
* Worth Percent Difference (pcm)                 (pcm)
St.t ucie Unit 2, Cycle 11 Startup Physics Testing Report V.Zero Power Ph sics Testin To ensure that the operating characteristics of the Cycle 11 core were consistent with the design predictions, the following tests were performed:
Reference Group B          2140.69              2070.00            -3.30 .
1)Reactivity Computer Checkout;2)All Rods Out Critical Boron Concentration; 3)Isothermal Temperature Coefficient Measurement; and 4)CEA Group Rod Worth Measurements.
                          ~
Proper operation of the reactivity computer is ensured by performing the"Reactivity Computer Checkout".
1427.65                1417            -0.75 1&2                 1724.48                1691            -1.94 3,4&5                   1762                  1712            -2.84 Total                7054.84                  6890            -2.34
This part of the testing determines the appropriate testing range and checks that reactivity changes are being correctly calculated by the reactivity computer's internal algorithms.
*Reference 2 Percent difference = (Design-Measured)/(Measured) *100 19
The testing range is selected such that the signal to noise ratio is maximized and that testing is performed below the point of adding nuclear heat.The reactivity calculation is.checked by'erforming a positive and negative reactor period test through respective introduction of a known amount of positive and negative reactivity.
The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 98016 (Reference 6).Satisfactory agreement was obtained.The measurement of the all-rods-out (ARO)critical boron concentration was performed.
The measured value was 1524.9 ppm which compared favorably with the design value of 1491 ppm (Reference 2).This was within the acceptance limits of+100 PPM.The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC)was derived.The MTC was determined to be-1.630 pcm/'F which fell well within the acceptance criteria of+2.0 pcm/'F.of the design MTC of-1.938 pcm/'F (corrected).
This satisfies Unit 2 Technical Specification 3.1.1.4 which states that the MTC shall be less positive than 5.0 pcm/;F when reactor power is less than or equal to 70%rated thermal power.Rod worth measurements were performed using the rod swap methodology.
This method involves exchanging a reference group, which is.measured by the boration dilution technique, with each of the remaining test groups.A comparison of the measured and design CEA reactivity worths is provided in Table 2.The following acceptance criteria apply to the measurements made: 1)The measured value of each test group, or supergroup measured, is within+15%
or+100 pcm of its corresponding design CEA worths, whichever is greater and, 2)The measure worth of the reference group and the total worth for all the CEA groups measured is within+10%of the total design worth.All acceptance criteria were met.
0 St.I ucie Unit 2,~cle 11 Startup Physics Testing Report VI.Power Ascension Pro ram During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt)for power plateaus at 25%, 50%, and greater than 98%rated thermal power.A summary of the flux maps at the 25%, 50%and 98%power levels is provided in figures 4, 5 8c 6.These flux maps are used for comparing the measured power distribution with the predicted power distribution.
For the purposes of the power ascension, the acceptance criteria requires the RMS value of the power deviation be less than or equal to 5%.In addition, for the 25%and 98%plateaus, the individual assembly powers should be within 10%of the predicted power (both)and the relative power density (RPD)should be within 0.1 RPD units of predicted for the 25%power case.These criteria were satisfied.
A Shape Annealing Factor (reference 5)test was performed in conjunction with the power ascension (reference 3).This test was necessitated by the replacement of the Reactor Protection System Channel"D" the Linear Power Range Detector and the change in the active fuel stack height introduced with the Region N fuel.The measured Shape Annealing Factors were installed in the Linear Power Range Detector instrument circuits as required by the reload PC/M 98016 (Reference 6).Additionally, calorimetric, nuclear, and delta T power calibrations were performed at each power plateau prior to advancing reactor power to the next higher level specified by procedure.
10 0 St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report VII.Summaru Compliance with the applicable Unit 2 Technical Specifications was satisfactory and all acceptance criteria were met.11 St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report VIII.References 1)"Initial Criticality," Pre-Operational Procedure 2-3200088 2)"Reload Startup Physics Testing," Pre-Operational Procedure 3200091 3)"Reactor Engineering Power Ascension Program," Pre-Operational Procedure 3200092 4)St.Lucie Unit 2 Technical Specifications.
5)"Shape Annealing Factor Test," Pre-Operational Test Procedure 3200093 6)St.Lucie Urit 2 Cycle 11 Reload PC/M 898016 12 St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report FIGURE 1 CYCLE 11 CORE LOADING PATTERN Y X I i M11 I M27 N28 L74 101 M49 L95 N23 L42 63 M22 I I I I I L66 M04 L65 N27 43 M52 N52 17 L07 M38 205 L02 N39 122 L86 N20 M45 55 N29 L59 N02 201 111 L91 N09 L50 73 NOS L78 N49 112 19 L20 M33'M69 105 N45 L25 N62 32 75 L12 MOT K79 67 N43 L30 N55 63 18 L35 M60 M56 110 W V~T S I I I I I I P M K H I I I I I I I I I I I I I L41 L97 L76 L47-21 I I I I I I I I I I I-'r'-'-i-'-'-18 I I h I M24 M48 N18 M26 M10 L84 10 N15 28 L62 L04 N35 23 M35 L06 N40 M54 N26 200 34 15 L11 N48 L22 N04 L93 4 78 N42 114 N30 L88 202 I I'-17 I I-~-~-16 I I M62 118 L61 N14 L68 8 M06 L27 M32 L80 N10 29 119 107 N54 113 M58 K78 N56 M68 N34 L52 51 5 N06 M44 M01 115 L55 M39 203 N57 L73 M41 M55 M59 33 204 104 L34 N36 M21 100 15-'-'-14-'13-'-'-12-'1-'-'-10-'-'-'-8'L43 L71 M81 21 M63 M83 L57 N63 L31 6 N16 25 N46 L01 1 L94 N53 30 M66 L13 M37 M50 206 K73 M 65 N64 K80 M08 70 44 60 L75 N44 L08 N24 72 13 M 64 M82 L70 N60 L24 109 116 L72 M42 207 N61 L54 M40 M70 M34 52 208 108 L21 N41 hl28 121 F E 0 C'B A M02 N07 L53 N33 71 16 M67 N58 14 K77 N59 M57 N47 L79 64 9 N01 M51 M12 12-'"'-'-6 L69 N21 120 L60 N11 L81 20 M31 102 M05 L28 M 61 L51 31 103 N12 41 L90 N22 L83 7-'-'-'-5 L89 N31 209 L92 N08 76 L23 N38 27 L10 N37 L33 N03 L58 22 117 N32 L64 4 210 L63 N17 M53 3 L85 M09 N51 74 M25 L05 N13 69 M36 L03 N50 M46 N19 211 79 M47 N25 M23 M03 L67 26 L87 3 L46 L77 L96 L40 Assembly Serial&#xb9;XXX Insert Serial&#xb9;&#xb9;&#xb9;13


St.Lucie Unit 2, Cycle il Startup Physics Testing Report FIGLRE 2.WIDE RANGE CHANNEL B BORON DILUTION 0.9.0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1000 2000 3000 4000 5000 , 6000 7000 8000 OAu.OII$DILUTCD FIGURE 3.WIDE RANGE CHAN%L D BORON DILUTION 0.9 0.8 0.7 0.6 K 0.5 5 0.4 0.3 0.2 0.1.0 1000 2000 3000 4000 5000 8000 7000 8000 OALLONS OILUTKD 14 0
0 a,
St.Lucie Unit 2, Cycle 11, Startup Physics Testing Report Figure 4 POWER DISTRIBUTION COMPARISON WITH DESIGN-25%POWER Uhg$400$urtd:$)CACOIC OODTD)O 7)DSNJkM I PDWW LDTO$471 CCACDTOon,7$
  }
$,=,'.!.Jxtonto LAlttH'";','']eorm Conc.!Till 0$)cslgn:~0 p I t J 0 4 l)T 1$11$IM~SN DSN DSID MN~SN OSU 0JIC tSIT AN$44ll 4)to 4117 7 I IQ)$10 LIN 4451 IQ 410 4$1 ANT IND IAN 4105)I$$0 JS7 4 Alt I)SN 1$)t~41$10)$00)SQ 4170 JN 1410 I JM 44)l IN 1170 LMD 44)t 1410 ISQ IN 1$'N 1411 4417 Nl~JN~AQ 4141 MT ISN ISQ 4411 OAN~DN 4NC A IM Uft 140$414t 17$I.QD Llol 44Q ltf OID O$441$Itl I JTD 1$)l 4Jkl ltl LIOI Un 4451 MD Ult)SIC 4JDC Nt 141~Ult 44Q 1450 I JOS 441$Ml lln I AN 44Q NI I JID ISOI 441$MS 14)0 1110 4Nt)M I JSD ISO 44Q IQ I J50 IJ7A 4NA IQ)JIO)SN 44N Ml ATD ASS 4)OS AN4 I'8 LQD L)Q 44Q ln UTD LITC 4 450 I tt I JN 1$1T 4477)$$SN N 44N)n)$00)SN 4DN IM IDN IIIO 4N$ln IUD I AID MN 171 I JCD IDM 41OI ln)lit LMC 441$IN SN 4AN Mt I Jln Ult 41)1 LMO Un 44Q MT)$50 Llll 4JQ MC MS 47D AID 4110 SM)ND LDN 4DN MS ISN ISN 44N 0ND Ml U)4 UN ONI M4 USD L)N~DQ LO JN JIC~DIC)$7 INO)$71~ADI QC U>>LL!l ODN QS ISN I Jot~lnl IQ 1410)NI~Aol I~DN 7 I Ml)AN UOD OJIO MI LQO INC~DM MI LQD LLTC~1Q MS Uto LN7~41$t 001$11$1510 1$)t MIS Mi$50~1Q Ml Uto INT~11$la I JN LQS~JQ Qt IJN UDI~All Loni LNt~All QT ISN ISQ ON I I~JQ 17 MN IQ I JN ISQ 0DIS IQ USD 1417 Ql I JN 1404 ONA Qt)NC Llol DJM Qt l&0 1$n~1Q Ql ND~JQ QT IND UOT~41$QS IND 1417~4)$I~41$IQ Uto 1$Tl~Alt Qi IDN IDDS~41$Ql UOS~AOS Ilt ISN)SN~Nl 11$0411 l)$LIN LIN MN, Ill Ult)IN LNO 11$LIN LIN 44N IQ JIC OAM Ill ISN 1517~AQ IN LAN~4M Nl I JN Stl~NO NT 1410 Ult~11$NS UN I JN~4N loo LIN IN)~JN Nl I Jnl I JN~4$0 0 Jl'I)SN INC ON)Nt OJQ ISIO UM NOC ISSD Lilt ON I 7 IND ISI5 OA)$INC INt OJQ I JN UDS 01)5 Tl LMD LQC ONI JSD$$t~AQ 77 IND IDI7 CAN OJQ ISN UII~JQ I I JN litt 7I JID$11~NS Tl 1410 lANt MN ISN Un MN n LIN LIN MN IIOI INI~1M)SN UDI 0400)AID INO~JN 1450 IN 7 DNS 7 ISN IS)$0417 410 DQ ONT SN 17 IUKO I AC4 477 0AQ LMD 1ltl OAM ISIO)JN MM JN JN 04)0 ISN I JOlt 0411 I 15D)JN 0JQ I ISN Un ODIO$70 OAIC 1$'N Ull 4401 Lilt LQt~)KO ISLD ISN~NI USD 1471 OAN ION INT DACI$)L)IO LMI 44N 1)N lln 4141 I JN 1$1'I CDQ JN~100 I 1110 UIC 0401 IDN INI 040$1410 110$~D05 JN 4DN I I JN 1$)7 44lt LMD LQO 41M)JN I JCS AJQ 41)0 ISN ISN 441$)JID I JTO 411C ION)AN 41N IS%I ONI I)4N UN 4)N I SIC ISIS 4145 I NO LNt 440$ISN I JIC 44M 17 I JSC LITI 4N)ll LQD Ull 4NC AN AQ 44Q Lilt I JCT 4NS I 1410 UQ 411$ISN I JM 44M, 17 1410 ISlt ll 1470 IDN 41M 1$L)OI 1$$)44Q 4 Jlt 4110 Q JTD ACO 44N Q JQ 411$I JN tin)I 4407 4$1 4417 I 17 4407 0JIC 440I CADI RMS Deviation:
l}}
1.63/lh0 07cof 0 IMItcoDh CVMCOI N opof4140 Pcf Appcholf~, WNo otvINNO chDIDo Pt Iccc PNO of DOPN ct OJTN Oho ONC\OW fttnN CITIC TIN CA 0 d,)4 ptntflht 0 N ON$$NIO Ol pCT C CIO pDWCf IC51)DNC NIS ONllg OIC pOWCf 0CC tfNIDCI IC51 PftgfNTL El 15 St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 5 POWER DISTRIBUTION COMPARISON WITH DESIGN-50%POWER$4080IDOATI ddACOIC$>>tft>>t>>$IQO~Den>>I LIT>>l At>>7 I" It h>>05 dlrln Conc 1st"tti Osffttl',ttt,~(I~
',]let Power SSISCITKNon Comptftson tthh 270$25$1 8~8 5 8~8 C 117 ll 11$8$10 MCO Cl'5 MQ 40>>4110 40>>ll CQD CQI 40CI f I 41Q IQ Alt AQ 4NI Q JID 45l 4010 N I JOD UQ 4010 UN 1$1$4015 KIT~NO~JQ 4D12~450~ACC 4JN CSIO Ott>>ODIS ASO ISN KISS 40>>102 INO 4ACS I ISN I SIC Ult I J I I 4011 50 I JN Ull 41ll QC ID>>14Q 4021~$1 4DIT I 4017 QI ISIO 2412 40ll 51 LQO LQI DNI QD ISN ISQ 425$Qt INO IDI>>4NA ltt I JIO IN5 4NS QT ID>>UTT OACI QC IND l&#xc3;l 4NC Ql INO UN 400C Ql ISN ISN 4AIN LI>>UQ 402$IQ LQD U l1 4NI Ill ATD 0$1 4DN 17$LQD 1$$$415K 178 1$>>I JQ 40Q 177 1400 1407 4011 15 1210 Uls~NI Ill 1010 UOT MQ I'5 L170 1$>>MN 171 I AN I>>7~ACI Ill LIIO LNT~DCI 170$10 JID Nt I J>>1$07 4AOt Qt LQD Llll 4NI 1st isa ISIS 4NS IC5 4$0 All 4AQC lll IAI'Io ID>>40Q Nl I AID INC 400C Ql 70 70 0150 ill ISIO I JOI OAK I QO USD I Jll~157 Qt IS>>1$7t~Ahl IN 0TC CDN 1$T 1$>>I SKI~110 QC Litt LIQ~DIK 155 ISN I Jth OADI ISA J70 Slt 0D01 Ql 1000 IDI~~DKI 1$1 AIO AQ 4001 QO Ja 40Q la UN UIO~010 1>>1070 14SC Olol Ilt LQD LNT SNS IAC ISCO sill 8010 l>>I JIO 1001~AN~417 l>>ISN 1$lt Iltlt la 0$2~All ill 10>>UCI~DI~Ia 1$>>Lla>>57 Qt I JN Ull~41l QT ISN I JIC~Dll Ql 1$>>INS~11$IQ SN Slt 0DII Ql LQD 141>>~1N Ql I JCO I JTC ONl 110 IS>>1077 OJQ Qt IAOD IDDT~01$Qt I JID 1220 DNO IQ 170 JN OAQ QO~Jlt Ql I JCO ISQ~JQ Qt 14>>1020 tlhl IN Ltlo 101$~11$Ql I JN Uls~1Q~Nl QS 14>>I>>8~AQ 85 ID>>I DIS~01$IDT ISQ~J15 IQ 1$5 Olh1 IOC$70 47C>>IN Ql IDN UOT 801$5$Uls UQ~DQ Qt Uls Ill 1~Alt 10$Uls'I JQ~NS I'5 UN 1411 OAQ 0411 QT 70 8000 1$>>ISQ~Nl N Q 415$Ult U l1 CQS I Ua 01ll I ISN ISQ 10>>I CIA 011C IDN IDDT~Alit Tt LNC 00ll 70 LI>>1.1>>ONT JN 0$1~Jlt 77 Ule I IOI t018 Mlt IND UQ~1Q 7$ISN 1$$$~N5 I 10>>INS~JQ 0007 12>>~1N 72 1$$0 UQ OAK5 IAN U57~DIS 71 UN LNT~DQ 10 I>>0 INC MDI ISN IJIA~11$ISN ISN~NO 1$>>ISQ~115 Ja JQ 4AM 4NS I llD All 4NI UN U'I~OAOI ISID I JQ OAKYI t OAOI 1510 t Jlt ONI I 21>>1$>>l~DN I ISN 04N JN~'5 MIN ISN I Jlt~Al'I ua Lia 40>>t 1510 I J>>ONI$$1$8l 1$1$400$I>>0 ID>>4151 I u>>12SS 401$ISN ill I 4011 ISN I JDT 4157 14 10 1407~AK5 I JN INT ODCI 1270 UQ~DN UN IN 7~00$Llls LIN 400C Sle 1st 4215 I LNI 1407 4017 I.QD LIQ 4DQ t IS>>1270 40Q 1270 1412 4011 INO IACC 4NS IS>>0 IJN OAOI I 10>>INT~ACI 1$>>uls~NS Uls INl 4AOI ISN INS 40Q I U>>0 Ul1 4NI ll LQD Ull 4NI I 4007 I IN LQC 4NC Q 10>>4251 I 1$>>1410 40N ISN sill 4NC It LQD LIQ 4DQ 5 ISN Q 4NI lt I JIO ISIC 4NC ls 1$IJ>>LQO'170 ISS$4010 4NS ll~70 5 AN 4010 Q 050 Jll 40Q 70 t Msl INO 1210 MCI 470 lll 4NI RMS DdVldtlOn:
1.J9k I Sh 4AK5 40>>NK5 4AK5 She OICof 0 nlilCDon 07>>SIem N ODCf NKO hef DAIDCIKJK I, hhm oct>>noh shot45 50 Ns0 5>>n of 0otla to DDN Dno IIWOI ha f cot>>emems I&#xc3;0 f,l 8 peftollne5 N CN 40>>VI M pet elm powtf IDQ pnht>>10 oof Klg Ihe powef KICeh>>on test prottfsnc 16 St.I ucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 6 POWER DISTRIBUTION COMPARISON WITH DESIGN-98%POWER Una nkasarcd: DCJCDN Secrcc N).ttt)1100Smenec 40445tltyi;
', Sccsncsnc DUS~"'c'esign:
1st t)tt 1)OOU;et)SAAA1I'"Le power DIN)ttn4)oh colllp Ntlon yhal De Ntpt n 4 a I n 4 I It ll US M)4 OSN 0410~SN 4STC MTS 4AN 4AN 4DN N M)I 4ANI 5 t I 4DII Als AC I 4 AU 1$1 IJN I JDD 4)NO lt1 ISN Ucl 44U IACD UNI 44)I U Act 4llt I ISN 44m Nt IAN ICU 4411 N LUO I JTC 4404 c ISN LIU 44n IN ISN I JN 4ml SCD All 4ANI Lite LISI 4DU Ut IDN lect~ANI Lite I JDI 4411 IN ISN ISN 4ACC c UC ISN I JU 4AN4 101~Jcs~JS)44U)St IS'ISN 44N US I AN IDU 44U~A50~N)44U IN 1450 IANS 441S IN ISN 1 Ale 4JN)05 MSO~stt OJN IU U)0 IJII 44N I 44)I Ul LIN 1)00 44N Ul ACI 44U In I JN)ill 44N 111 ISN 44m 151 Jis Ti 4AIN ln I JN)Sic~A4C)TC ION)AN Mll US UN Ll i)~ADI ln)DN i ms~Ael In ISN Lilt 4ADC its sn sn 4DU Nt I JN 4JU lcl LUD Llcl 44U lit IS)0 U)A 44N IU IS)I)SIC 4ANC lll 1$14 L)ll 4)NI ND ISN L)$5~AU LN JN~Jl I Ut ISN ISU~41$US ills u1 I 4DO)UI ISle ISU 4DN 151)Am)AC I 4ml l)l Ael~Dtl IN UOD)DU ODOT Ict LIN LIN~mc ics LUO USC~AN NS UN LIU~AU Nl IDIO I OAU N)UN LNI~Alt N)INN MU ill LUD UN aln)CO UCO LUT MCI Ut IUD LIN~ANC UT ISN~JN UC JC1 M45 lt IJ01~40$Ut UN I JU 0DU Ul IANO JU~All UI UN)IDU M l1 UC Leis utl MU US UN Ilnl~415 I 4DDS Ul Ule)lt)~41$Ul)AN ISU~ln Ul IJai UN~AN IN ISN LU)~Jlt lit UN LIN 44M UT)N I MU Ul LND IDTS aml UI LU4 un SJU 04)I Ul ISN INI~Alt IN lsn 1451~DU Jl Alt OOU SN IDN 1451~lot NC Jle ltl~AI I NS Llm un~JU let UDO Isn't~AU 10$Lln L15)F 411 1st I ODtt)lie ISN 44N 5 I JN IJ)C~AN IDN ID)I Ml)ION All~Alt I JN IDCS 4 SIT Nce 1451 Mst I ION I DC)~ANT lme I JN~4U ISN LUC~lit UN IN)~405 JSD NI NNS I IJIO I JN UN ID)I ONO Mst it LIN LIN MDC Lln 11$1 MU TT ISN ISU MU~DN IC SN Jtl~Ant n LUI SIN MIC 1450 ISN~ANC J14 Jn~Am I~ACI 1 ACI ODN LND uc1 DANI ISN UU 44CI L)14 u1)4ANI Uls USC~Aet I LXO lit)OD0$lie Att~All I JDD ISN~AOS 1 IDIO u1 I 4ANI IJN LIN 4lal Isle I st 4AN I LIN LUC 44N I)lit LI lc 440I IAN IDU~DU ula un MN I AN IAN~ACI Llle UN 4 mt ACO JTI 4ln I LNO 4JU lln LIN 44ll IS)0 I Jle 44N um'JIC 4)IN I Jlt I DU 4AU I IACI 141$Msl)Jlt ISN 44N lt lms Lml 4401 1 see IJU 4AIU I UU 4ml 5 ATO I 44U ASD AC)4411 U Ills LUS 4DU IDN UNS.4415 I ISN I JN 4llc LIN l)N 44DC lt Lite LIU 4)m U I JN)ST)4ANS lt ISN IJN 44)0 IC I)CD IACI 44)I 1$UN Lml 4ml N 44U U JDI 451 4JU N LUD I Jll 4411 Scs JU 4)NI t I JN Jcs I JN Jct 44N, 4401 4$0 ACD 4JN RMS Devlatlon:
1.25'A$10 JN IT J'n 4401 MN I sle ll 4NC 4DN tna mcor 0 oetecaon system N onerame oer Dooencsx t, nato aevuaon snoam os Ns 0 man or cham Io as@, ana meet me reqeremems a DA I 4 snntormea a me sa ena os per ceca power tnt pcmewe meme me power acean smn test pmefmh, 17 0..I St.I ucie Unit 2, Cycle 11 Startup Physics Testing Report Table 1 Approach.to Criticality Dilution Rate 132 gpm 88 gpm 44 gpm Initial Boron Concentration 1660 1591 1491 Final Boron Concentration 1591 1491 1473 Dilution Time (minutes)~21 70 75 18 0 0 St.Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table 2 CEA Group Worth Summary CEA Group Reference Group B 1&2 3,4&5 Total Measured Worth (pcm)2140.69~1427.65 1724.48 1762 7054.84 Design*Worth (pcm)2070.00 1417 1691 1712 6890 Percent Difference
-3.30.-0.75-1.94-2.84-2.34*Reference 2 Percent difference
=(Design-Measured)/(Measured)
*100 19 0 a,}l}}

Revision as of 20:45, 29 October 2019

Cycle 11 Reactor Startup Physics Testing Rept. with 990304 Ltr
ML17229B044
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 03/02/1999
From: Klein R, Stall J
FLORIDA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
L-99-059, L-99-59, NUDOCS 9903110413
Download: ML17229B044 (28)


Text

CATEGORY 1 y.

REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)

ACCESSION NBR:9903110413 DOC.DATE: 99/03/02 NOTARIZED: NO FACIL:50-389 St. Lucie Plant, Unit 2, Florida Power & Light Co.

DOCKET 05000389 I

AUTH.NAY& . AUTHOR AFFILIATION KLEIN,R.M. Florida Power & Light Co.

STALL,J'.A. Florida Power & Light Co.

RECIP.NAME RECIPIENT AFFILIATION

SUBJECT:

"St Lucie,Unit 2,Cycle 11 Reactor Startup Physics Testing Rept." With 990304 ltr.

DISTRIBUTION CODE: IE26D COPIES RECEIVED:LTR TITLE: Startup Report/Refueling Report (per Tech Specs) 2 ENCL [ SIEE: Z I NOTES:

RECIPIENT COPIES RECIPIENT COPIES ID, CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD2-3 PD 1 1 GLEAVES,W 1 1 INTERNAL: ACRS 1 1 CSEE 1. 1 NRR/DSSA/SRXB/B 1 1 RGN2 FILE 01 1 1 EXTERNAL: NOAC 1 1 NRC PDR 1 1 NOTE TO ALL "RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROI DESK (DCD) ON EXTENSION 415-2083 TOTAL NUMBER OF COPIES REQUIRED: LTTR 8 ENCL 8

Florida Power St Light Company,6351 S. Ocean Drive, Jensen Beach, FL 34957 March 4, 1999 L-99-059

@PI 10 CFR 50.36 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 Re: St. Lucie Unit 2 Docket 50-389 P i in R Pursuant to St. Lucie Unit 2 Technical Specification 6.9.1.1, the enclosed summary report of plant startup and power escalation testing for Cycle 11 is hereby submitted.

Should you have any questions, please contact us.

Very truly yours, J. A. Stall Vice President St. Lucie Plant JAS/RLD II

Enclosure:

St. Lucie Unit 2, Cycle 11 Reactor Startup Physics Testing Report; March 2, 1999 CC: Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, St. Lucie Plant 9903ii0413 990302 05000389' PDR ADOCK PDR an FPL Group company

~hurtle S'T<ARg'UgrP> XE'S'f"RE~Og<RX'

ST. LUCIE UNIT 2, CYCLE 11 REACTOR STARTUP PHYSICS TESTING REPORT Author Date .2 z Ray M.

React ngineering, S . Lucie Plant Reviewed Date Walter D. Mead Jr.

Reactor Engineering, St. Lucie Plant Reviewed Date Carl G. O'Farrill S ervisor of P Fu Engineering Approved C. Ashton Pell Reactor Engineering Supervisor, St. Lucie Plant

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table of Contents Section Title Pa e I Introduction 4 II Cycle 11 Fuel Design 5 III CEA Drop Time Testing 7 IV Approach to Criticality 8 V Zero Power Physics Testing 9 VI Power Ascension Program 10 VII Summary 11 VIII References 12 List of Fi ures Fi ure Title Pa e Cycle 11 Core Loading Pattern 13 Inverse Count Ratio Plot- Channel B 14 Inverse Count Ratio Plot- Channel D 14 Power Distribution - 25% Power 15 Power Distribution - 50% Power 16 Power Distribution - 98% Power 17

0 St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Table of Contents cont List of Tables Table Title Pa e 1 Approach to Criticality 18 2 CEA Group'Worth Summary 19

11 St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report I. Introduction The purpose of this report is to provide a description of the fuel design and core load, and to summarize the startup testing performed at St. Lucie Unit 2 following the Cycle 11 refueling.

The Startup testing verifies key core and plant parameters are as predicted. The major parts of this testing program include:

1) Initial criticality following refueling,
2) Zero power physics testing, and
3) Power ascension testing.

This Cycle 11 Startup Report is being submitted in accordance with Technical Specification 6.9.1.1 because:

A. Fuel design changes were made, introducing the "Value Added" pellet, the Guardian Grid and consequently eliminating long lower end-caps The test data satisfied all acceptance criteria and demonstrated general conformance to predicted performance..

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report II. cle 11 Fuel Desi n The Cycle 11 reload consists entirely of fuel manufactured by Asea Brown Boveri Combustion Engineering (ABB-CE). The 217 assemblies of the Cycle 11 core are comprised of fuel from four batches. Of these, 64 are fresh batch N assemblies, 64 are once-burned batch M assemblies, 84 are twice-burned batch L assemblies and 5 are )hrice-burned batch K assemblies.

The Region N assemblies consist of non-gadolinia fuel rods (4.1 to 4.45 w/o UQ35 enriched) and Gadolinia (UOz -GDg 03 )'bearing fuel rods (Gadolinia burnable absorber fuel rods, 4 or 8 w/o gadolinia homogeneously dispersed in a 2.2 to 2.55 w/o UQ35 enriched carrier).

The mechanical design of the Region N fuel assemblies differs from Regions M, L and K in the following ways:

1) The bottom grid is the laser welded "Guardian" grid. The Guardian grid incorporates debris stopping features. The other fuel batches employ TIG welded lower grids.
2) The fuel rod lower endcaps were changed from the long lower endcap design to a shorter design which works with the new Guardian grid. This effectively shifted the active fuel 1.14 inches down relative to the other fuel assembly regions.
3) The upper pellet stack spacer disc which separates the top fuel pellet &om the upper plenum spring was deleted.
4) The Plenum spring design was modified to accommodate the longer plenum size.
5) The fuel rod pellet diameter was increased by 0.0005 inches, pellet dish volume decreased by 69%, and the pellet theoretical density was.increased &om 95.25% to 95.4%.
6) The top spacer grid incorporates backup arches in all interior cells as opposed to only the peripheral cells of previous fuel assembly designs.
7) The upper end fitting flow and hold-down plates were slightly thickened'. The spring force was increased for the fuel assembly upper end fitting springs PC/M 98016 adressed the mechanical, thermal hydraulic and neutronic impact of the region N fuel design changes. Evaluations performed by FPL and ABB-CE found the operational impact of the fuel design changes to be acceptable. There was no safety impact due to the fuel design changes. Subsequent Low Power Physics, Power Ascension and Shape Annealing Factor (SAF) testing substantiated the conclusions of the evaluations.

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report II. cle 11 Fuel Desi n continued No fuel handling issues were noted due to the Region N fuel assembly upper end fitting changes mentioned above. The impact of the upper end fitting changes had been evaluated by FPL prior to the fuel receipt. This was accomplished by field testing an available Region N design upper end fitting with a PSL 2 new fuel grapple.

The entire Cycle 11 core consists of debris resistant fuel (long lower end-cap or Guardian grid).

The Cycle 11 loading pattern is similar to Cycle 10. Cycle 11 employs a low-leakage fuel management scheme'and is 90 degrees rotationally symmetric.

h The Cycle 11 core map is represented in Figure 1. The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location.

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Repor't III. CEA Dro Time Testin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed. The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit) to the 90% inserted position under hot, full flow conditions. The average CEA drop time was found to be 2.29 seconds with maximum and minimum times of 2.92 seconds and 0.90 seconds, respectively. All drop times were within the 3.1 second maximum requirement of Technical Specification 3.1.3.4. 'In addition the CEA drop time distribution requirements for scram shape (average drop time <2.77 seconds and maximum drop time <3.07 seconds) specified in the reload PC/M 98016 (Reference 6) were satisfied.

St. Lucie Vnit 2, Cycle 11 Startup Physics Testing Report IV. A roach to Criticali The approach to criticality involved diluting from a sub-critical boron concentration of 1660 ppm to a predicted critical boron concentration of 1441 ppm. Inverse Count Rate ratio (ICRR) plots were maintained during the dilution process using wide range channels B and D. Refer to Figures 2 and 3 for ICRR information. Table 1 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.

'nitial criticality for St. Lucie Unit 2, Cycle 11, was achieved on December 12, 1998 at 06:29 with CEA group 5 at 60 inches withdrawn and all other CEAs at the all-rods-out (ARO) position.

The actual critical concentration was observed to be 1473 ppm.

St.t ucie Unit 2, Cycle 11 Startup Physics Testing Report V. Zero Power Ph sics Testin To ensure that the operating characteristics of the Cycle 11 core were consistent with the design predictions, the following tests were performed:

1) Reactivity Computer Checkout;
2) AllRods Out Critical Boron Concentration;
3) Isothermal Temperature Coefficient Measurement; and
4) CEA Group Rod Worth Measurements.

Proper operation of the reactivity computer is ensured by performing the "Reactivity Computer Checkout". This part of the testing determines the appropriate testing range and checks that reactivity changes are being correctly calculated by the reactivity computer's internal algorithms.

The testing range is selected such that the signal to noise ratio is maximized and that testing is performed below the point of adding nuclear heat. The reactivity calculation is. checked a positive and negative reactor period test through respective introduction of a known by'erforming amount of positive and negative reactivity. The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 98016 (Reference 6).

Satisfactory agreement was obtained.

The measurement of the all-rods-out (ARO) critical boron concentration was performed. The measured value was 1524.9 ppm which compared favorably with the design value of 1491 ppm (Reference 2). This was within the acceptance limits of+ 100 PPM.

The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was derived. The MTC was determined to be -1.630 pcm/'F which fell well within the acceptance criteria of + 2.0 pcm/'F. of the design MTC of

-1.938 pcm/'F (corrected). This satisfies Unit 2 Technical Specification 3.1.1.4 which states that the MTC shall be less positive than 5.0 pcm/;F when reactor power is less than or equal to 70%

rated thermal power.

Rod worth measurements were performed using the rod swap methodology. This method involves exchanging a reference group, which is. measured by the boration dilution technique, with each of the remaining test groups. A comparison of the measured and design CEA reactivity worths is provided in Table 2. The following acceptance criteria apply to the measurements made:

1) The measured value of each test group, or supergroup measured, is within+15% or+100 pcm of its corresponding design CEA worths, whichever is greater and,
2) The measure worth of the reference group and the total worth for all the CEA groups measured is within+ 10% of the total design worth.

All acceptance criteria were met.

0 St. I ucie Unit 2, ~cle 11 Startup Physics Testing Report VI. Power Ascension Pro ram During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt) for power plateaus at 25%, 50%, and greater than 98%

rated thermal power.

A summary of the flux maps at the 25%, 50% and 98% power levels is provided in figures 4, 5 8c

6. These flux maps are used for comparing the measured power distribution with the predicted power distribution. For the purposes of the power ascension, the acceptance criteria requires the RMS value of the power deviation be less than or equal to 5%. In addition, for the 25% and 98%

plateaus, the individual assembly powers should be within 10% of the predicted power (both) and the relative power density (RPD) should be within 0.1 RPD units of predicted for the 25%

power case. These criteria were satisfied.

A Shape Annealing Factor (reference 5) test was performed in conjunction with the power ascension (reference 3). This test was necessitated by the replacement of the Reactor Protection System Channel "D" the Linear Power Range Detector and the change in the active fuel stack height introduced with the Region N fuel. The measured Shape Annealing Factors were installed in the Linear Power Range Detector instrument circuits as required by the reload PC/M 98016 (Reference 6).

Additionally, calorimetric, nuclear, and delta T power calibrations were performed at each power plateau prior to advancing reactor power to the next higher level specified by procedure.

10

St. Lucie Unit 2, Cycle 11 0

Startup Physics Testing Report VII. Summaru Compliance with the applicable Unit 2 Technical Specifications was satisfactory and all acceptance criteria were met.

11

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report VIII.References

1) "Initial Criticality, " Pre-Operational Procedure 2-3200088
2) "Reload Startup Physics Testing, " Pre-Operational Procedure 3200091
3) "Reactor Engineering Power Ascension Program," Pre-Operational Procedure 3200092
4) St. Lucie Unit 2 Technical Specifications.
5) "Shape Annealing Factor Test," Pre-Operational Test Procedure 3200093
6) St. Lucie Urit 2 Cycle 11 Reload PC/M 898016 12

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report FIGURE 1 CYCLE 11 CORE LOADINGPATTERN P M K H Y X W I

V I

~ T I

S F I

E I

0I C 'B I A

I I I I L41 L97 L76 L47 I I I I I I I I I I I I I I I

-21 I I I I I L66 M04 M24 N15 M48 N18 M26 M10 L84 h I 28 10 I I I L86 N20 M45 N35 L04 M35 L06 N40 M54 N26 L62 55 23 200 34 15 I I L65 N29 201 L59 N02 111 N42 114 L11 N48 4

L22 N04 78 L93 N30 202 L88

-'r'-'-i-'-'-18 I I I

N27 L91 N09 L50 M62 M06 L27 M32 L80 N10 L61 N14 L68 I I

'- 17 43 73 118 29 119 107 8 I

i M11 M52 NOS L78 N49 M58 N54 K78 N56 M68 N34 L52 N06 M44 M01 -~ - -

I

~

16 112 19 113 51 5 115 I M27 N52 L20 M33 'M69 M39 L55 N57 L73 M41 M55 M59 L34 I N36 M21 15 105 203 204 17 33 104 100 L43

-'-'-14 N28 L07 N45 L25 N62 L71 M81 M63 M83 L57 N63 L31 N46 L01 N16

-'13 L74 101 32 75 25 L94 21 6 1

-'-'-12 L95 M49 M38 205 L12 MOT 67 K79 N53 30 M66 K73 70 M65 N64 44 K80 M08 60 L13 M37 206 M50 L75

-'1

-'-'-10 N23 L02 N43 L30 N55 M64 M82 L70 N60 L24 N44 L08 N24 -'

L42 63 63 18 109 116 72 13 -'-'- 8' M22 N39 L35 M60 M56 M42 L72 N61 L54 M40 M70 M34 L21 N41 hl28 122 110 207 52 208 108 121 M02 N07 L53 N33 M67 N58 K77 N59 M57 N47 L79 N01 M51 M12 -'"'-'- 6 71 16 14 64 9 12 L69 N21 L60 N11 L81 M31 M05 L28 M61 L51 N12 L90 N22 L83 -'-'-'- 5 120 20 102 31 103 41 7 L89 N31 L92 N08 L23 N38 L10 N37 L33 N03 L58 N32 L64 4

209 76 27 22 117 210 L63 N17 M53 N51 L05 M36 L03 N50 M46 N19 L87 3

3 74 211 79 L85 M09 M25 N13 M47 N25 M23 M03 L67 69 26 L46 L77 L96 L40 Assembly Serial ¹ XXX Insert Serial ¹ ¹¹ 13

St. Lucie Unit 2, Cycle il Startup Physics Testing Report FIGLRE 2. WIDE RANGE CHANNEL B BORON DILUTION 0.9 .

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1000 2000 3000 4000 5000 , 6000 7000 8000 OAu.OII$ DILUTCD FIGURE 3. WIDE RANGE CHAN%L D BORON DILUTION 0.9 0.8 0.7 0.6 K 0.5 5

0.4 0.3 0.2 0.1

.0 1000 2000 3000 4000 5000 8000 7000 8000 OALLONS OILUTKD 14

0 St. Lucie Unit 2, Cycle 11, Startup Physics Testing Report Figure 4 POWER DISTRIBUTION COMPARISON WITH DESIGN -25% POWER Uhg

$ 400$ urtd: $ )CACOIC $ )cslgn:

OODTD )O 7)DSNJkM PDWW LDTO Jxtonto

$ 471 LAlttH'";

CCACDTOon,7$ $ ,=,

eorm Conc. !Till0

'.!',]I

.

~ 0 p I t J 0 4 l)T 1$ 11$ IM 7 I

~ SN DSN DSID MN

~ SN OSU 0JIC tSIT AN$ 44ll 4)to 4117 IQ )I 10 Nl 410 $$0 )$ 00 1410 ~ JN OAN 4$ 1 JS7 )SQ ISQ ~ AQ ~ DN ANT 4 Alt 4170 4141 4NC A

IQ I JN IN IN MT IM 17$ ltf

)$ 10 IND )SN 1410 1170 1$ 'N ISN Uft I.QD OID LIN IAN 1$ )t IJM LMD 1411 ISQ 140$ Llol O$

4451 4105 ~ 41$ 44)l 44)t 4417 4411 414t 44Q 441$

Itl ltl MD Nt Ml NI MS )M IQ IQ Ml IJTD 1$ )l LIOI Un Ult

)SIC 141 ~

Ult 1450 IJOS lln IAN IJID ISOI 14)0 1110 I JSD ISO IJ50 IJ7A

)JIO

)SN ATD ASS 4Jkl 4451 4JDC 44Q 441$ 44Q 441$ 4Nt 44Q 4NA 44N 4)OS I'8 ln Itt )$$ )n IM ln 171 ln IN Mt MT MC LQD UTD IJN SN N

)$ 00

)SN IDN IIIO IUD IJCD )lit SN IJln Ult LMO Un

)$ 50 Llll L)Q LITC 1$ 1T IAID IDM LMC AN4 44Q 4 450 4477 44N 4DN 4N$ MN 41OI 441$ 4AN 41)1 44Q 4JQ MS SM MS Ml M4 LO )$ 7 QC QS IQ 47D )ND ISN U)4 USD JN INO U>> ISN 1410 AID LDN ISN UN L)N JIC )$ 71 LL!l IJot )NI I 4110 4DN 44N 0ND ONI ~ DQ ~ DIC ~ ADI ODN ~ lnl ~ Aol ~ DN 7 Ml MI MI MS 11$ Mi Ml la Qt QT

)AN LQO LQD Uto 1510 $ 50 Uto IJN IJN Loni ISN I UOD INC LLTC LN7 t 1$ ) t INT LQS UDI LNt ISQ I OJIO ~ DM ~ 1Q ~ 41$ 001$ MIS ~ 1Q ~ 11$ ~ JQ ~ All ~ All ON I ~ JQ 17 IQ IQ Ql Qt Qt Ql QT QS IQ Qi Ql Ilt MN IJN USD IJN )NC l&0 ND IND IND Uto IDN ISN ISQ 1417 1404 Llol 1$ n UOT 1417 I 1$ Tl IDDS UOS )SN 0DIS ONA DJM ~ 1Q ~ JQ ~ 41$ ~ 4)$ ~ 41$ ~ Alt ~ 41$ ~ AOS ~ Nl 11$ l)$ Ill 11$ IQ Ill IN Nl NT NS loo Nl LIN Ult LIN ISN LAN IJN 1410 UN LIN IJnl LIN )IN LIN JIC 1517 Stl Ult IJN IN) IJN 0411 MN, LNO 44N OAM ~ AQ ~ 4M ~ NO ~ 11$ ~ 4N ~ JN ~ 4$ 0 0 Jl'I 7 I

)SN ISIO IND IJN JSD IJN ISN IIOI 1450 INC UM ISI5 UDS $$ t litt Un MN INI IN7 ON) NOC OA)$ 01)5 ~ AQ ~ 1M DNS SN Tl 77 7I Tl n 7 17 ISSD INC LMD IND ISN JID 1410 LIN )SN )AID ISN 410 IUKO Nt Lilt INt LQC IDI7 UII $ 11 lANt LIN UDI INO IS)$ DQ OJQ ON I OJQ ONI CAN OJQ ~ JQ ~ NS MN MN 0400 ~ JN 0417 ONT I I AC4 LMD ISIO JN ISN I 15D ISN $ 70 1$ 'N Lilt ISLD USD ION 477 1ltl )JN JN IJOlt )JN Un Ull LQt ISN 1471 INT 0AQ OAM MM 04)0 0411 0JQ ODIO OAIC 4401 ~ )KO ~ NI OAN DACI

$ ) I I L)IO 1)N IJN 1110 IDN 1410 IJN LMD )JN LMI 44N lln4141 1$ 1'I CDQ JN

~ 100 UIC 0401 INI 040$

110$

~ D05 JN 4DN 1$ )7 44lt LQO 41M IJCS AJQ 41)0 I 17 ll ISN )JID ION IS%I )4N ISIC INO ISN IJSC LQD AN ISN IJTO )AN UN ISIS LNt IJIC LITI Ull AQ 441$ 411C 41N ONI 4)N 4145 440$ 44M 4N) 4NC 44Q I 17 ll 1$

Lilt 1410 ISN 1410 1470 L)OI IJCT UQ IJM ISlt IDN 1$ $ )

4NS 411$ 44M, 41M 44Q 4 Jlt Q Q JTD ACO JQ IJN I 4$ 1 4110 44N 411$ tin) 4407 4417 I

17 4407 0JIC 440I CADI RMS Deviation: 1.63/

lh0 07cof 0 IMItcoDh CVMCOI N opof4140 Pcf Appcholf ~, WNo otvINNO chDIDo Pt Iccc PNO of DOPN ct OJTN Oho ONC\ OW fttnNCITICTIN CA 0 d,) 4 ptntflht0 N ON $ $ NIO Ol pCT C CIO pDWCf IC51 )DNC NIS ONllg OIC pOWCf 0CC tfNIDCI IC51 PftgfNTL El 15

St. Lucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 5 POWER DISTRIBUTION COMPARISON WITH DESIGN 50% POWER Power SSISCITKNon Comptftson tthh 270$ 25$ 1

$ 4080IDOATI

$ >>tft>>

ddACOIC t>>$ IQO~

',ttt,~(I 1st "tti I"

Den>>I LIT>>l At>>7 It h>> 05 Osffttl

',]let dlrln Conc 8 ~ 8 5 8 ~ 8 C 117 ll 11$

Cl'5 ll f I 8$ 10 MCO CQD MQ CQI 40>> 4110 40>> 40CI IQ Q N KIT Alt JID IJOD UN ~ NO ~ 450 CSIO AQ 45l UQ 1$ 1$ ~ JQ ~ ACC Ott>>

41Q 4NI 4010 4010 4015 4D12 4JN ODIS 102 I 50 QC ISN INO ISN Ult IJN ID>>

ASO KISS ISIC IJ I I Ull 14Q ~ $1 40>> 4ACS 4011 41ll 4021 4DIT QI 51 QD Qt ltt QT QC Ql Ql IQ Ill ISIO LQO ISN INO IJIO ID>> IND INO ISN LI>> LQD ATD I 2412 LQI ISQ IDI>> IN5 UTT lÃl UN ISN UQ U l1 0$ 1 4017 40ll DNI 425$ 4NA 4NS OACI 4NC 400C 4AIN 402$ 4NI 4DN 17$ 178 177 15 Ill I'5 171 Ill 170 Nt Qt 1st LQD 1$ >> 1400 1210 1010 L170 I AN LIIO $ 10 IJ>> LQD isa 1$ $ $ IJQ 1407 Uls UOT 1$ >> I>>7 LNT JID 1$07 Llll ISIS 415K 40Q 4011 ~ NI MQ MN ~ ACI ~ DCI 4AOt 4NI 4NS IC5 lll Nl Ql ill QO Qt IN 1$ T QC 155 ISA Ql 1$ 1 4$ 0 IAI'Io IAID 70 ISIO USD IS>> 1$ >> Litt ISN J70 1000 AIO All ID>> INC 70 IJOI IJll 1$ 7t 0TC ISKI LIQ IJth Slt IDI~ AQ 4AQC 40Q 400C 0150 OAKI ~ 157 ~ Ahl CDN ~ 110 ~ DIK OADI 0D01 ~ DKI 4001 QO la 1>> Ilt IAC l>> l>> la ill Ia Qt QT Ja UN 1070 LQD ISCO IJIO ISN 10>> 1$ >> IJN ISN UIO 14SC LNT sill 1001 1$ lt 0$ 2 UCI Lla Ull IJIC 40Q ~ 010 Olol SNS 8010 ~ AN ~ 417 Iltlt ~ All ~ DI~ >>57 ~ 41l ~ Dll Ql Ql Ql Qt Qt QO Qt Ql QS IQ Ql Qt I'5 1$ >> LQD IJCO IAOD IJID 14>> IJN 14>> IDN Uls UN INS 141>> IJTC IDDT 1220 1020 Uls I>>8 1$ 5 UOT Ill 1 1411

~ 11$ ~ 1N ONl ~ 01$ DNO ~ Jlt tlhl ~ 1Q ~ AQ Olh1 801$ ~ Alt OAQ QT IQ 110 IQ Ql IN 85 IDT IOC 5$ 10$

SN IS>> 170 IJCO Ltlo ID>> $ 70 Uls Uls Slt 1077 JN ISQ 101$ I DIS ISQ 47C UQ 'I JQ 0DII OJQ OAQ ~ JQ ~ 11$ ~ Nl ~ 01$ ~ J15 >>IN ~ DQ ~ NS 0411 70 I I 8000 1$>> Ult ISN IDN JN IND 10>> 12>> IAN ISN 1$ >>

ISQ U l1 ISQ IDDT 0$ 1 UQ INS U57 IJIA ISQ

~ Nl CQS ~ Alit ~ Jlt ~ 1Q ~ JQ ~ 1N ~ DIS ~ 11$ ~ 115 N

Q I Tt 70 77 7$ 72 71 10 415$ 10>> LI>> Ule ISN 1$ $ 0 UN I>>0 ISN Ja 4NS Ua ICIA LNC 1.1>> I IOI 1$ $$ UQ LNT INC ISN JQ 01ll 011C 00ll ONT t018 Mlt ~ N5 0007 OAK5 ~ DQ MDI ~ NO 4AM I I I t $$

llD UN ISID t 1510 21>> JN ISN ua 1510 1$ 8l I >>0 All U'I~ IJQ tJlt 1$ >>l ISN ~ '5 IJlt Lia IJ>> 1$ 1$ ID>>

4NI OAOI OAKYI OAOI ONI ~ DN 04N MIN ~ Al'I 40>> ONI 400$ 4151 I I t u>> ISN ISN 14 10 IJN 1270 UN Llls Sle LNI I.QD IS>>

12SS 401$

ill4011 I IJDT 4157 1407

~ AK5 INT ODCI UQ

~ DN IN7

~ 00$

LIN 400C 1st 4215 1407 4017 LIQ 4DQ 1270 40Q I I ll 1270 INO IS>>0 10>> 1$ >> Uls ISN U>>0 LQD 1412 IACC IJN INT uls INl INS Ul1 Ull 4011 4NS OAOI ~ ACI ~ NS 4AOI 40Q 4NI 4NI Q I It 5 lt ls 1$ ll I IN 10>> 1$ >> ISN LQD ISN IJIO IJ>> LQO ~ 70 I LQC 1410 sill LIQ Q ISIC ISS$ '170 4007 4NC 4251 40N 4NC 4DQ 4NI 4NC 4010 4NS 5 Q AN 050 INO 470 4010 Jll 40Q 70 t

Msl 1210 MCI lll4NI I

Sh 4AK5 40>> NK5 4AK5 RMS DdVldtlOn: 1.J9k N ODCfNKO hef DAIDCIKJK hhm oct>>noh shot45 50 Ns0 5>>n of 0otla to DDN Dno She OICof0 nlilCDon 07>>SIem f

IIWOI ha cot>> emems IÃ 0 f,l 8 peftollne5 N CN 40 >>VII, M pet elm powtf IDQ pnht>>10 oof Klg Ihe powef KICeh>>on test prottfsnc 16

St. I ucie Unit 2, Cycle 11 Startup Physics Testing Report Figure 6 POWER DISTRIBUTION COMPARISON WITH DESIGN -98% POWER Una power DIN)ttn4)oh colllpNtlon yhal De Ntpt nkasarcd: DCJCDN Secrcc N).ttt) 1100 1st t)tt 1)OOU; Smenec DUS~"'c'esign:

40445tltyi; ',

Sccsncsnc et)SAAA1I'"Le n 4 a I n 4 I It ll US N 5 t M)4 OSN 0410

~ SN 4STC MTS M)I 4AN 4AN 4DN 4ANI U N 101 )05 LUO SCD Lite ~ Jcs ~ A50 MSO Act IJTC All IJDI ~ JS) ~ N) ~ stt 4llt c 4404 4ANI 4411 44U 44U OJN I IN )St IN Als IACD ISN ISN Lite ISN IS' 1450 AC I UNI LIU LISI ISN ISN IANS I 4 AU 44) I 44m 44n 4DU c

4ACC 44N 441S 44) I 1$ 1 lt1 Nt IN Ut UC US IN IU Ul Ul IJN ISN IAN ISN IDN ISN IAN ISN U)0 LIN I IJDD Ucl ICU IJN lect I JU IDU 1 Ale IJII 1)00 ACI 4DII 4)NO 44U 4411 4ml ~ ANI 4AN4 44U 4JN 44N 44N 44U In 111 151 ln )TC US ln In its Nt lcl lit IJN ISN Jis IJN ION UN )DN ISN sn IJN LUD IS)0

)ill44N 44m Ti 4AIN

)Sic

~ A4C

)AN Mll Lli)

~ ADI i ms

~ Ael Lilt 4ADC sn 4DU 4JU Llcl 44U U)A 44N IU lll ND LN Ut US UI 151 l)l IS)I 1$ 14 ISN JN ISN ills Isn't ISle )Am Ael

)SIC L)ll L)$ 5 ISU u1 I ISU )AC I 4ANC 4)NI ~ AU ~ Jl I ~ 41$ 4DO) 4DN 4ml ~ Dtl IN Ict ics NS Nl N) N) ill )CO Ut UT UC UOD LIN LUO UN IDIO UN INN LUD UCO IUD ISN

)DU LIN USC LIU I LNI UN LUT LIN JC1 ODOT ~ mc ~ AN ~ AU OAU ~ Alt MU aln MCI ~ ANC ~ JN M45 Ut Ul UI UC US Ul Ul Ul IN lit lt UN IANO UN) Leis UN Ule )AN IJai ISN UN IJ01

~ 40$

IJU 0DU JU

~ All IDU Ml1 utlMU Ilnl~ 415 I 4DDS

)lt)

~ 41$

ISU

~ ln UN

~ AN LU)

~ Jlt LIN 44M UT

)N Ul UI Ul IN SN NC NS let 10$ 1st LND LU4 ISN lsn Jl IDN Jle Llm UDO Lln I

MU IDTS aml un SJU 04) I INI

~ Alt 1451

~ DU Alt OOU 1451

~ lot ltlAII un

~ ~ JU ~ AU L15)

F 411 I

ODtt 5 I

)lie IJN IDN ION IJN Nce ION lme ISN UN ISN IJ)C ID)I All IDCS 1451 IDC) IJN LUC IN) 44N ~ AN Ml) ~ Alt 4 SIT Mst ~ ANT ~ 4U ~ lit ~ 405 I it TT IC n I JSD IJIO IJN LIN Lln ISN SN LUI 1450 J14 ~ ACI NI UN ID)I LIN 11$ 1 ISU Jtl SIN ISN Jn NNS ONO Mst MDC MU MU ~ DN ~ Ant MIC ~ ANC ~ Am 1 I 1 LND ISN L)14 Uls LXO lie IJDD IDIO IJN Isle ACI uc1 UU u1 ) USC lit) Att ISN u1 I LIN I st ODN DANI 44CI 4ANI ~ Aet OD0$ ~ All ~ AOS 4ANI 4lal 4AN I I I LIN LUC

)lit LI lc IAN IDU ula un IAN IAN Llle UN ACO JTI LNO lln LIN 44N 440I ~ DU MN ~ ACI 4 mt 4ln 4JU 44ll I lt I 5 IS)0 um'JIC IJlt IACI )Jlt lms 1 see ATO IJle IDU 141$ ISN Lml IJU UU I 44N 4)IN 4AU Msl 44N 4401 4AIU 4ml 44U U I lt U lt IC 1$ N ASD Ills IDN ISN LIN Lite IJN ISN I)CD UN AC) LUS UNS IJN l)N LIU )ST) IJN IACI Lml 4411 4DU . 4415 4llc 44DC 4)m 4ANS 44)0 44) I 4ml 44U U N t JDI LUD Scs IJN Jcs 4$ 0 451 IJll JU IJN Jct ACD 4JU 4411 4)NI 44N, 4401 4JN I

$ 10 JN sle IT 4401 J'n MN 4NC ll 4DN RMS Devlatlon: 1.25'A tna mcor 0 oetecaon system N onerame oer Dooencsx t, nato aevuaon snoam os Ns 0 man or cham Io as@, ana meet me reqeremems a DA I 4 snntormea a me sa ena os per ceca power tnt pcmewe meme me power acean smn test pmefmh, 17

0 St.

..

I ucie Unit 2, Cycle 11 Startup Physics Testing Report I

Table 1 Approach.to Criticality Dilution Rate Initial Boron Final Boron Dilution Time Concentration Concentration (minutes) 132 gpm 1660 1591 ~

21 88 gpm 1591 1491 70 44 gpm 1491 1473 75 18

0 St. Lucie Unit 2, Cycle 11 0

Startup Physics Testing Report Table 2 CEA Group Worth Summary CEA Group Measured Worth Design

  • Worth Percent Difference (pcm) (pcm)

Reference Group B 2140.69 2070.00 -3.30 .

~

1427.65 1417 -0.75 1&2 1724.48 1691 -1.94 3,4&5 1762 1712 -2.84 Total 7054.84 6890 -2.34

  • Reference 2 Percent difference = (Design-Measured)/(Measured) *100 19

0 a,

}

l