ML17326B134: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 18: Line 18:
=Text=
=Text=
{{#Wiki_filter:XN-NF-84-21(NP
{{#Wiki_filter:XN-NF-84-21(NP
)Revision2IssueDate:8/7/84DONALDC~COOKUNIT2CYCLE5-5/oSTEAMGENERATOR TUBEPLUGGINGLIMITINGBREAKLOCA/ECCS ANALYSISPrepared-by:W.V.ayser,ManagerPWRSafetyAnalysisConcur:.C.Caner,LeangneerReloadFuelLicensing Approve:out,ManagerLicensing
)Revision 2 Issue Date: 8/7/84 DONALD C~COOK UNIT 2 CYCLE 5-5/o STEAM GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Prepared-by: W.V.ayser, Manager PWR Safety Analysis Concur:.C.C an er, Lea ng neer Reload Fuel Licensing Approve: out, Manager Licensing&Safety Engineering CSr Concur: ggg g.'.organ, anag r Proposals 5 Customer Services Engineering Approve: 87~%/.A.o er, Manag Fu 1 Engineering 8 Technical Services gf ,E3(CGM NU.CLEAR.COMPANY, INC.KNIMIolY-MIlIl'I'.I I.II.f.IlI)I'Y r~}~5 F XN-Nf-84-21(NP)
&SafetyEngineering CSrConcur:gggg.'.organ,anagrProposals 5CustomerServicesEngineering Approve:87~%/.A.oer,ManagFu1Engineering 8Technical Servicesgf,E3(CGMNU.CLEAR.COMPANY, INC.KNIMIolY-MIlIl'I'.I I.II.f.IlI)I'Y r~}~5F XN-Nf-84-21(NP)
Revision 2 TABLE OF CONTENTS Section~Pa e
Revision2TABLEOFCONTENTSSection~Pae


==1.0INTRODUCTION==
==1.0 INTRODUCTION==


....:..................................
....:..................................
12.0SUMMARYo~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~33.0LIMITINGBREAKLOCAANALYSIS~~~~~~~~~~~~~53.1LOCAANALYSISMODEL...........................
1 2.0 S UMMARY o~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~3 3.0 LIMITING BREAK LOCA ANALYSIS~~~~~~~~~~~~~5 3.1 LOCA ANALYSIS MODEL...........................
53.2RESULTS
5 3.2 RESULTS 7


==74.0CONCLUSION==
==4.0 CONCLUSION==
S
S
~~~~~~~~~~~~~~~~~~~~~~~~645.065REFERENCES
~~~~~~~~~~~~~~~~~~~~~~~~64 5.0 65 REFERENCES
...............,..........................  
...............,..........................  
~i~~li1~~~~~~~
~i~~l i 1~~~~~~~
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision2LISTOFTABLESTableParcae2.1D.C.CookUnit2LOCA/ECCS AnalysisSummary........43.1DonaldC.CookUnit2SystemInputParameters
Revision 2 LIST OF TABLES Table Parcae 2.1 D.C.Cook Unit 2 LOCA/ECCS Analysis Summary........4 3.1 Donald C.Cook Unit 2 System Input Parameters
~~~~~~93.23.33.43.51.0OECLGBreakAnalysisParameters
~~~~~~9 3.2 3.3 3.4 3.5 1.0 OECLG Break Analysis Parameters
................
................
10D.C.CookUnit21.0OECLGBreakEventTimes...~...111.0OECLGBreakFuelResponseResultsforCycle5............................................
10 D.C.Cook Unit 2 1.0 OECLG Break Event Times...~...11 1.0 OECLG Break Fuel Response Results for C ycle 5............................................
121.0OECLGBreakFuelResponseResultswithanAllENCCore....................................
12 1.0 OECLG Break Fuel Response Results with an All ENC Core....................................
13 jN~I8~~~~~~~~~~~~~  
13 j N~I 8~~~~~~~~~~~~~  
.XN-NF-84-21(NP)
.XN-NF-84-21(NP)
Revision2LISTOFFIGURES~FiurePacae3.1RELAP4/EM BlowdownSystemNodalization forD.C.CookUnit2....143.2Oowncomer FlowRateDuringBlowdownPeriod,1.0OECLGBreak...................................
Revision 2 LIST OF FIGURES~Fi ure Pacae 3.1 RELAP4/EM Blowdown System Nodalization for D.C.Cook Unit 2....14 3.2 Oowncomer Flow Rate During Blowdown Period, 1.0 OECLG Break...................................
153.33.4UpperPlenumPressureduringBlowdownPeriod,1.0DE(LGBreak.......AverageCoreInletFlowduringBlowdownPeriod,1.0OECLGBreak........16173.53.6AverageCoreOutletFlowduringBlowdownPeriod,1.0DECLGBreak.....................
15 3.3 3.4 Upper Plenum Pressure during Blowdown Period, 1.0 DE(LG Break.......Average Core Inlet Flow during Blowdown Period, 1.0 OECLG Break........16 17 3.5 3.6 Average Core Outlet Flow during Bl owdown Period, 1.0 DECLG Break.....................
TotalBreakFlowduringBlowdownPeriod,1.0OECLGBreak.............................
Total Break Flow during Blowdown Period, 1.0 OECLG Break.............................
18193.7BreakFlowEnthalpyduringBlowdown, 1.0DECLGBreak....................................
18 19 3.7 Break Flow Enthalpy during Blowdown, 1.0 DECLG Break....................................
203.8FlowfromIntactLoopAccumulator duringBlowdownPeriod,1.0OECLGBreak..................
20 3.8 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 OECLG Break..................
213.9FlowfromBrokenLoopAccumulator duringBlowdownPeriod,1.0OECLGBreak..................
21 3.9 Flow from Broken Loop Accumulator during Blowdown Period, 1.0 OECLG Break..................
223.10Pressurizer Surge'ine FlowduringBlowdownPeriod,1.0OECLGBreak~~~~~~~~~~~~~~~~~~233.113.12HeatTransferCoefficient duringBlowdownPeriodatPCTNode,1.0OECLGBreak,2.0MWO/kgCase.CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0OECLGBreak,2.0MWD/kgCase..........,.
22 3.10 Pressurizer Surge'ine Flow during Blowdown Period, 1.0 OECLG Break~~~~~~~~~~~~~~~~~~23 3.11 3.12 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case.Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWD/kg Case..........,.
~~~~~~~~~~~~~~~~~~24253.13~~~~~~~~~~~~~~~26DepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0DECLGBreak,2.0MWD/kgCase.
~~~~~~~~~~~~~~~~~~24 25 3.13~~~~~~~~~~~~~~~26 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 MWD/kg Case.
ivXN-NF-84-21(NP)
iv XN-NF-84-21(NP)
Revision2LISTOFFIGURES(Cont.)~FiurePa<ac3.14,3.153.163.173.18AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0OECLGBreak,2.0MWD/kgCase.27HotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,2.0MWD/kgCase...........
Revision 2 LIST OF FIGURES (Cont.)~Fi ure Pa<ac 3.14 , 3.15 3.16 3.17 3.18 Average Fuel Temperature during Bl owdown Period at PCT Location, 1.0 OECLG Break, 2.0 MWD/kg Case.27 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 2.0 MWD/kg Case...........
28HotAssemblyOutletFlowduringBlowdownPeriod,1.0DECLGBreak,2.0MWD/kgCase...........
28 Hot Assembly Outlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 MWD/kg Case...........
29HeatTransferCoefficient duringBlowdownPeriodatPCTNode,1.0OECLGBreak,10.0MWO/kgCase...................................
29 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWO/kg Case...................................
30CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0OECLGBreak,10.0MWD/kgCase...................................
30 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWD/kg Case...................................
313.19DepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0DECLGBreak,10.0MWD/kgCase..................
31 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 MWD/kg Case..................
323.203.213.223.233.243.25AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0DECLGBreak,10.0MWD/kgCase...................................
32 3.20 3.21 3.22 3.23 3.24 3.25 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 MWD/kg Case...................................
33HotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,10.0MWO/kgCase..................
33 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWO/kg Case..................
34HotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,10.0MWD/kgCase.......;..........
34 Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWD/kg Case.......;..........
35HeatTransferCoefficient duringBlowdownPeriodatPCTNode,1.0OECLGBreak,47.0MWD/kgCase..................
35 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case..................
.........36CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0OECLGBreak,47.0MWO/kgCase...................................
.........36 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWO/kg Case...................................
37DepthofMetal-Water ReactionduringSlowdownPeriodatPCTNode,1.0OECLGBreak,47.0MWD/kgCase.................................
37 Depth of Metal-Water Reaction during Slowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case.................................
38 XN-NF-84-21(NP)Revision2LISTOFFIGURES(Cont.)~FierePa<ac3.263.273.28AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0OECLGBreak,47.0MWO/kgCasee~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~HotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0NWD/kgCase'.......
38 XN-NF-84-21(NP)Revision 2 LIST OF FIGURES (Cont.)~Fi ere Pa<ac 3.26 3.27 3.28 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, 47.0 MWO/kg Case e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 NWD/kg Case'.......
HotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0HWD/kgCase..........
Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 HWD/kg Case..........
3940413.293.303.313.323.33Accumulator FlowduringRefillandRefloodPeriods,BrokenLoop,1.0OECLGBreak.............
39 40 41 3.29 3.30 3.31 3.32 3.33 Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OECLG Break.............
42Accumulator FlowduringRefillandRefloodPeriods,IntactLoop,1.0DECLGBreak.............
42 Accumulator Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break.............
43HPSI8LPSIFlowduringRefillandRefloodPeriodg,BrokenLoop,1.0OECLGBreak.............
43 HPSI 8 LPSI Flow during Refill and Ref lood Periodg, Broken Loop, 1.0 OECLG Break.............
44HPSI8LPSIFlowduringRefillandRefloodPeriods,IntactLoop,1.0DECLGBreak.............
44 HPSI 8 LPSI Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break.............
45Containment BackPressure, 1.0DECLGBreak........463.343.353.363.37Normalized Power,1.0OECLGBreak,2.0MWO/kgCase.....Normalized Power,1.0DECLGBreak,10.0NWD/kgCase..............................
45 Containment Back Pressure, 1.0 DECLG Break........46 3.34 3.35 3.36 3.37 Normalized Power, 1.0 OECLG Break, 2.0 MWO/kg Case.....Normalized Power, 1.0 DECLG Break, 10.0 NWD/kg Case..............................
Normalized Power,1.0OECLGBreak,47.0NWD/kgCase.............
Normalized Power, 1.0 OECLG Break, 47.0 NWD/kg Case.............
RefloodCoreMixtureLevel,1.0OECLGBreak,Cycle5Core........................
Reflood Core Mixture Level, 1.0 OECLG Break, C ycle 5 Core........................
474849503.383.39RefloodDowncomer MixtureLevel,1.0DECLGBreak,Cycle5Core.....................
47 48 49 50 3.38 3.39 Reflood Downcomer Mixture Level, 1.0 DECLG Break, Cycle 5 Core.....................
51RefloodUpperPlenumPressure, 1.0OECLGBreak,Cycle5Core...............................
51 Reflood Upper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core...............................
52 viXN-NF-84-21(NP)
52 vi XN-NF-84-21(NP)
Revision2LISTOFFIGURES(Cont.)~Fiure~Pae3.40CoreFloodingRate,1.0OECLGBreak,Cycle5Core~~~~~~~~~e~~~~~~~533.41RefloodCoreMixtureLevel,1.0OECLGBreak,54AllENCCore......................................
Revision 2 LIST OF FIGURES (Cont.)~Fi ure~Pa e 3.40 Core Flooding Rate, 1.0 OECLG Break, Cycle 5 Core~~~~~~~~~e~~~~~~~53 3.41 Ref lood Core Mixture Level, 1.0 OECLG Break, 54 All ENC Core......................................
3.42RefloodOowncomer MixtureLevel,1.0OECLG'reak,AllENCCore............
3.42 Reflood Oowncomer Mixture Level, 1.0 OECLG'reak, All ENC Core............
553.433.44RefloodUpperPlenumPressure, 1.0DECLGBreak,AllENCCore...............................
55 3.43 3.44 Ref lood Upper Plenum Pressure, 1.0 DECLG Break, All ENC Core...............................
56CoreRefloodingRate,1.0OECLGBreak,A11ENCCore....................-......-....
56 Core Ref looding Rate, 1.0 OECLG Break, A 11 ENC Core....................-......-....
..573.453.46TOODEE2CladdingTemperature versusTime,1.0OECLGBreak,2.MWO/kgCase,Cycle5'ore.....58TOOOEE2CladdingTemperature versusTime,1.0OECLGBreak,10.MWO/kgCase,Cycle5Core...................
..57 3.45 3.46 TOODEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2.MWO/kg Case, Cycle 5'ore.....58 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 10.MWO/kg Case, C ycle 5 Core...................
~-.....593.47TOOOEE2Cladding1.0OECLGBreak,Cycle5Core...Temperature versusTime,47.MWO/kgCase,~~~~~~~~~~~~~~~~~~~~~~~603.483.49TOOOEE2CladdingTemperature versusTime,1.0OECLGBreak,2.MWO/kgCase,AllENCCore.....TOODEE2CladdingTemperature versusTime,1.0DECLGBreak,10.MWO/kgCase,AllENCCore61'23.50TOOOEE2CladdingTemperature versusTime,1:0OECLGBreak,47.MWO/kgCase,AllENCCore63 XN-NF-84-21(NP
~-.....59 3.47 TOOOEE2 Cladding 1.0 OECLG Break, Cycle 5 Core...Temperature versus Time, 47.MWO/kg Case,~~~~~~~~~~~~~~~~~~~~~~~60 3.48 3.49 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2.MWO/kg Case, All ENC Core.....TOODEE2 Cladding Temperature versus Time, 1.0 DECLG Break, 10.MWO/kg Case, All ENC Core 61'2 3.50 TOOOEE2 Cladding Temperature versus Time, 1:0 OECLG Break, 47.MWO/kg Case, All ENC Core 63 XN-NF-84-21(NP
)Revision
)Revision 2 1.0 I NTRODUCT ION Large break LOCA/ECCS analyses were performed in 1982(~2)to support operation of the D.C.Cook Unit 2 reactor at 3425 MWt with ENC fuel.Reference 1 presented analytical results for a spectrum of postulated large break LOCAs.The limiting break was identified as the 1.0 double ended cold line guillotine (DECLG)break.Reference 2 presented results for the previously identified limiting break using the EXEM/PWR(3)
ECCS models, except GAPEX was used as the fuel performance model in place of RODEX2.The RODEX2 code was not approved (by the NRC for use in ECCS analyses in 1982.Therefore the NRC-approved GAPEX(4)code was used to calculate fuel properties at the initialization of the LOCA calculation.
The Reference 2 report documented the results of calculations with one and two LPSI pumps operating.
At equivalent core peaking limits, higher peak cladding temperatures (PCTs)were calculated in the LOCA analysis when two LPSI pumps were assumed operating.
The Reference 2 analysis with two LPSI pumps operating was performed for Cycle 4 operation of D.C.Cook Unit 2.This report documents the results of a LOCA/ECCS analysis to support operation of the D.C.Cook Unit 2 reactor for Cycle 5 at a thermal power rating of 3425 MWt, with up to 5/.of the steam generator tubes plugged, with two LPSI pumps operating, and for ENC fuel exposed up to a peak rod average burnup of 47 MWD/kg.Results are also reported for the case in which the entire core is ENC fuel.The calculations were performed using the EXEM/PWR LOCA/ECCS XN-NF-84-21(NP
)Revision 2 models, including fuel properties calculated at the start of the LOCA transient with ENC's generically approved RODEX2 code.(5)
XN-NF-84-21(NP)
Revision 2 2.0


==21.0INTRODUCTION==
==SUMMARY==
LargebreakLOCA/ECCS analyseswereperformed in1982(~2)tosupportoperation oftheD.C.CookUnit2reactorat3425MWtwithENCfuel.Reference 1presented analytical resultsforaspectrumofpostulated largebreakLOCAs.Thelimitingbreakwasidentified asthe1.0doubleendedcoldlineguillotine (DECLG)break.Reference 2presented resultsforthepreviously identified limitingbreakusingtheEXEM/PWR(3)
LOCA/ECCS calculations were performed to determine core peaking limits which permit operation of the O.C.Cook Unit 2 reactor within guidelines specified by 10 CFR 50.46 and Appendix K.(6)The calculations assumed operation:
ECCSmodels,exceptGAPEXwasusedasthefuelperformance modelinplaceofRODEX2.TheRODEX2codewasnotapproved(bytheNRCforuseinECCSanalysesin1982.Therefore theNRC-approved GAPEX(4)codewasusedtocalculate fuelproperties attheinitialization oftheLOCAcalculation.
1)At a thermal power of 3425 MWt;2)With 5X average steam generator tube plugging;3)With the Cycle 5 core configuration (85/ENC fuel);and 4)With the entire core ENC fuel.The calculations were performed for the previously identified limiting break, the 1.0 OECLG break, with full ECCS flow.The results of the analysis are summarized in Table 2.1.The analysis supports operation of the O.C.Cook Unit 2 reactor for Cycle 5, and future cycles with ENC fuel, at a total peak limit (FqT)of 2.04 and a corresponding F<H limit of 1.55.T XN-NF-84-21(NP)
TheReference 2reportdocumented theresultsofcalculations withoneandtwoLPSIpumpsoperating.
Revision 2 Table 2.1 O.C.Cook Unit 2 LOCA/ECCS Analysis Summary Peak Rod Average Burnup (MWO/kg)FT Q T 2.0 2.04 1.55 10.0 2.04 1.55 47.0 2.04 1.55 Results for the Cycle 5 Core Confi uration (85K ENC Fuel)Peak Cladding Temperature (oF)Maximum Local 2r-H20 Reaction (X)Total Zr-H20 Reaction 2007 4.6<1.0 2014 4.7<1.0 1993 4.5<1.0 Results with Entire Core of ENC Fuel Peak Cladding Temperature (oF)Maximum Local Zr-H20 Reaction (/)Total Er-H20 Reaction 2022 4.9<1.0 2030 5.0<1.0 2008 4.7<1.0 XN-NF-84-21(NP)
Atequivalent corepeakinglimits,higherpeakcladdingtemperatures (PCTs)werecalculated intheLOCAanalysiswhentwoLPSIpumpswereassumedoperating.
Revision 2 3.0 LIMITING BREAK LOCA ANALYSIS This report supplements previous LOCA/ECCS analyses performed and documented for D.C.Cook Unit 2.A spectrum of LOCA breaks was performed and reported in XN-NF-82-35.(1)
TheReference 2analysiswithtwoLPSIpumpsoperating wasperformed forCycle4operation ofD.C.CookUnit2.Thisreportdocuments theresultsofaLOCA/ECCS analysistosupportoperation oftheD.C.CookUnit2reactorforCycle5atathermalpowerratingof3425MWt,withupto5/.ofthesteamgenerator tubesplugged,withtwoLPSIpumpsoperating, andforENCfuelexposeduptoapeakrodaverageburnupof47MWD/kg.ResultsarealsoreportedforthecaseinwhichtheentirecoreisENCfuel.Thecalculations wereperformed usingtheEXEM/PWRLOCA/ECCS XN-NF-84-21(NP
The limiting LOCA break was determined to be the large double-ended guillotine break of the cold leg or reactor vessel inlet pipe with a discharge coefficient of 1.0 (1.0 DECLG).Reference 2 established that for D.C.Cook Unit 2 it is more limiting in the LOCA analysis to assume no failure of a LPSI pump.The analysis performed and reported herein considers:
)Revision2models,including fuelproperties calculated atthestartoftheLOCAtransient withENC'sgenerically approvedRODEX2code.(5)
1)That 5X of the steam generator tubes are plugged;2)That 85/of the Cycle 5 core is composed of ENC fuel;3)That both LPSI pumps are operational; and 4)That ENC fuel may be exposed to a peak average burnup of 47 MWD/kg.3.1 LOCA ANALYSIS MODEL The Exxon Nuclear Company EXEM/PWR-ECCS evaluation model was used to perform the analyses required.This model(3)consists of the following computer codes: RODEX2(5)code for initial stored energy;RELAP4-EM(")
XN-NF-84-21(NP)
for the system blowdown and hot channel blowdown calculations; ICECON(8)for the computation of the ice condenser containment backpressure; REFLEX(3 g)for computation of system ref lood;and TOODEE2(3~ID~11) for the calculation of final fuel rod heatup.
Revision22.0SUMMARYLOCA/ECCS calculations wereperformed todetermine corepeakinglimitswhichpermitoperation oftheO.C.CookUnit2reactorwithinguidelines specified by10CFR50.46andAppendixK.(6)Thecalculations assumedoperation:
1)Atathermalpowerof3425MWt;2)With5Xaveragesteamgenerator tubeplugging; 3)WiththeCycle5coreconfiguration (85/ENCfuel);and4)WiththeentirecoreENCfuel.Thecalculations wereperformed forthepreviously identified limitingbreak,the1.0OECLGbreak,withfullECCSflow.Theresultsoftheanalysisaresummarized inTable2.1.Theanalysissupportsoperation oftheO.C.CookUnit2reactorforCycle5,andfuturecycleswithENCfuel,atatotalpeaklimit(FqT)of2.04andacorresponding F<Hlimitof1.55.T XN-NF-84-21(NP)
Revision2Table2.1O.C.CookUnit2LOCA/ECCS AnalysisSummaryPeakRodAverageBurnup(MWO/kg)FTQT2.02.041.5510.02.041.5547.02.041.55ResultsfortheCycle5CoreConfiuration(85KENCFuel)PeakCladdingTemperature (oF)MaximumLocal2r-H20Reaction(X)TotalZr-H20Reaction20074.6<1.020144.7<1.019934.5<1.0ResultswithEntireCoreofENCFuelPeakCladdingTemperature (oF)MaximumLocalZr-H20Reaction(/)TotalEr-H20Reaction20224.9<1.020305.0<1.020084.7<1.0 XN-NF-84-21(NP)
Revision23.0LIMITINGBREAKLOCAANALYSISThisreportsupplements previousLOCA/ECCS analysesperformed anddocumented forD.C.CookUnit2.AspectrumofLOCAbreakswasperformed andreportedinXN-NF-82-35.(1)
ThelimitingLOCAbreakwasdetermined tobethelargedouble-ended guillotine breakofthecoldlegorreactorvesselinletpipewithadischarge coefficient of1.0(1.0DECLG).Reference 2established thatforD.C.CookUnit2itismorelimitingintheLOCAanalysistoassumenofailureofaLPSIpump.Theanalysisperformed andreportedhereinconsiders:
1)That5Xofthesteamgenerator tubesareplugged;2)That85/oftheCycle5coreiscomposedofENCfuel;3)ThatbothLPSIpumpsareoperational; and4)ThatENCfuelmaybeexposedtoapeakaverageburnupof47MWD/kg.3.1LOCAANALYSISMODELTheExxonNuclearCompanyEXEM/PWR-ECCS evaluation modelwasusedtoperformtheanalysesrequired.
Thismodel(3)consistsofthefollowing computercodes:RODEX2(5) codeforinitialstoredenergy;RELAP4-EM(")
forthesystemblowdownandhotchannelblowdowncalculations; ICECON(8) forthecomputation oftheicecondenser containment backpressure; REFLEX(3g)forcomputation ofsystemreflood;andTOODEE2(3~ID~11) forthecalculation offinalfuelrodheatup.
XN-NF-84-21(NP
XN-NF-84-21(NP
)Revision2TheOonaldC.CookUnit2nuclearpowerplantisa4-1oopWestinghouse pressurized waterreactorwithicecondenser containment.
)Revision 2 The Oonal d C.Cook Uni t 2 nuclear power pl ant i s a 4-1 oop Westinghouse pressurized water reactor with ice condenser containment.
Thereactorcoolantsystemisnodalized intocontrolvolumesrepresenting reasonably homogeneous regions,interconnected byflow-paths or"junctions".
The reactor coolant system is nodalized into control volumes representing reasonably homogeneous regions, interconnected by flow-paths or"junctions".
Thesystemnodalization isdepictedinFigure3.1.Theunbrokenloopswereassumedsymmetrical andmodeledasoneintactloopwithappropriately scaledinput.Pumpperformance curvescharacteristic ofaWestinghouse series93Apumpwereusedintheanalysis.
The system nodalization is depicted in Figure 3.1.The unbroken loops were assumed symmetrical and modeled as one intact loop with appropriately scaled input.Pump performance curves characteristic of a Westinghouse series 93A pump were used in the analysis.The transient behavior was determined from the governing conservation equations for mass, energy, and momentum.Energy transport, flow rates, and heat transfer were determined from appropriate correlations.
Thetransient behaviorwasdetermined fromthegoverning conservation equations formass,energy,andmomentum.
The Cycle 4 LOCA analysis(2) assumed that lX of the steam generator tubes were plugged.In the current analysis, the plant was modeled assuming asymmetric steam generator tube plugging: 3.33/of the tubes plugged in the intact loops, and 10.0/of the tubes plugged in the broken loop.The larger plugging in the broken loop results in higher PCTs.The primary coolant flow at full power was reduced by 1.1/from the current measured flow at the plant to account for the assumed average 5X steam generator plugging.Additionally, the core model assumed that the core is 85/ENC fuel, whereas the previous analysis assumed the Cycle 4 core configuration.
Energytransport, flowrates,andheattransferweredetermined fromappropriate correlations.
Calculations were also performed for the case in which the core is all ENC fuel, representative of XN-NF-84-21(NP)
TheCycle4LOCAanalysis(2) assumedthatlXofthesteamgenerator tubeswereplugged.Inthecurrentanalysis, theplantwasmodeledassumingasymmetric steamgenerator tubeplugging:
Revision 2 Cycle 6 and beyond.ENC fuel has a smaller rod diameter than the Westinghouse fuel it replaces.To offset the impact of increased flow area on the LOCA analysis results, the core power was reduced from 3425 MWt to 3411 NWt.System input parameters are given in Table 3.1.The reactor core is modeled with heat generation rates determined from reactor kinetics equations with reactivity feedback and with decay heating as required by Appendix K of 10 CFR 50.Chopped cosine axial power profiles are assumed with the maximum axial peaking factor used in the analysis given in Table 3.2.The analysis of the loss-of-coolant accident is performed at 102 percent of rated power.The core power and other parameters used in the analyses are given in Table 3.1.3.2 RESULTS Table 3.3 presents the timing and sequence of events as determined for the large'break guillotine configuration with a discharge coefficient of 1.0 for full ECCS operation.
3.33/ofthetubespluggedintheintactloops,and10.0/ofthetubespluggedinthebrokenloop.ThelargerplugginginthebrokenloopresultsinhigherPCTs.Theprimarycoolantflowatfullpowerwasreducedby1.1/fromthecurrentmeasuredflowattheplanttoaccountfortheassumedaverage5Xsteamgenerator plugging.
Table 3.4 presents the results of the exposure analysis for Cycle 5 composed of 85K ENC fuel.Table 3.5 presents the results of the exposure analysis for a core composed of all ENC fuel.Results of the analyses are given in Figures 3.2 to 3.43.Figures 3.2 to 3.10 provide plots of key system blowdown parameters versus times.Figures 3.11 to 3.28 provide plots of key core responses during the blowdown period.Figures 3.29 to 3.32 provide the ECCS flows in the broken and intact loop during the refill period.Figure 3.33 presents the containment pressure during the LOCA.Figures 3.34 to 3.36 present the normalized power during the LOCA for the three exposure cases analyzed.Figures 3.37 to 3.40 provide results from the reflood portion of the transient for the case in which 85K of XN-NF-84-21(NP)
Additionally, thecoremodelassumedthatthecoreis85/ENCfuel,whereasthepreviousanalysisassumedtheCycle4coreconfiguration.
Revision 2 the core is ENC fuel.Figures 3.41 to 3.44 provide the reflood results for the case in which the core is composed entirely of ENC fuel.Finally, Figures 3.45 to 3.50 provide the response of the fuel during the refill and reflood periods of the LOCA transient for the fuel burnup cases'investigated.
Calculations werealsoperformed forthecaseinwhichthecoreisallENCfuel,representative of XN-NF-84-21(NP)
Revision2Cycle6andbeyond.ENCfuelhasasmallerroddiameterthantheWestinghouse fuelitreplaces.
Tooffsettheimpactofincreased flowareaontheLOCAanalysisresults,thecorepowerwasreducedfrom3425MWtto3411NWt.Systeminputparameters aregiveninTable3.1.Thereactorcoreismodeledwithheatgeneration ratesdetermined fromreactorkineticsequations withreactivity feedbackandwithdecayheatingasrequiredbyAppendixKof10CFR50.ChoppedcosineaxialpowerprofilesareassumedwiththemaximumaxialpeakingfactorusedintheanalysisgiveninTable3.2.Theanalysisoftheloss-of-coolant accidentisperformed at102percentofratedpower.Thecorepowerandotherparameters usedintheanalysesaregiveninTable3.1.3.2RESULTSTable3.3presentsthetimingandsequenceofeventsasdetermined forthelarge'breakguillotine configuration withadischarge coefficient of1.0forfullECCSoperation.
Table3.4presentstheresultsoftheexposureanalysisforCycle5composedof85KENCfuel.Table3.5presentstheresultsoftheexposureanalysisforacorecomposedofallENCfuel.ResultsoftheanalysesaregiveninFigures3.2to3.43.Figures3.2to3.10provideplotsofkeysystemblowdownparameters versustimes.Figures3.11to3.28provideplotsofkeycoreresponses duringtheblowdownperiod.Figures3.29to3.32providetheECCSflowsinthebrokenandintactloopduringtherefillperiod.Figure3.33presentsthecontainment pressureduringtheLOCA.Figures3.34to3.36presentthenormalized powerduringtheLOCAforthethreeexposurecasesanalyzed.
Figures3.37to3.40provideresultsfromtherefloodportionofthetransient forthecaseinwhich85Kof XN-NF-84-21(NP)
Revision2thecoreisENCfuel.Figures3.41to3.44providetherefloodresultsforthecaseinwhichthecoreiscomposedentirelyofENCfuel.Finally,Figures3.45to3.50providetheresponseofthefuelduringtherefillandrefloodperiodsoftheLOCAtransient forthefuelburnupcases'investigated.
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision2Table3.1'DonaldC.CookUnit2SystemInputParameters ThermalPower,MWt*Core,MWtPump,MWtPrimaryCoolantFlow,Mlbm/hrPrimaryCoolantVolume,ft3Operating
Revision 2 Table 3.1'Donald C.Cook Unit 2 System Input Parameters Thermal Power, MWt*Core, MWt Pump, MWt Primary Coolant Flow, Mlbm/hr Primary Coolant Volume, ft3 Operating Pressure, psia In,let Coolant Temperature, oF Reactor Vessel Volume, ft3 Pressurizer Volume, Total, ft3 Pressurizer Volume, Liquid, ft3 Accumulator Volume, Total, ft3 (each of four)Accumulator Volume, Liquid, ft3 (each of four)Accumulator Pressure, psia Steam Generator Heat Transfer Area, ft2-SG1, SG2, SG3, SG4 Steam Generator Secondary Flow, ibm/hr-S'G1, SG2, SG3, SG4 Steam Generator Secondary Pressure, psia Reactor Coolant Pump Head, ft Reactor Coolant Pump Speed, rpm Moment of Inerti a, 1 bm-f t2 Cold Leg Pipe, I.D.in.Hot Leg Pipe, I.D.in.Pump Suction Pipe, I.D.in.Fuel Assembly Rod Diameter, in.Fuel Assembly Rod Pitch, in.Fuel Assembly Pitch, in.Fueled (Core)Height, in.Fuel Heat Transfer Area, ft2**Fuel Total Flow Area, Bare Rod, ft2**Refueling Water Storage Tank Temperature, oF Accumulator Water Temperature, oF 3425 3411 14 143.1 11,768 2250 542 4945 1800 1080 1350 950 636 11,588, 3(12,446)3.505 x 106 3(3.764 x 106)799 277 1189 82,000 27.5 29.0 31.0 0.360 0.496 8.466 144.0 57,327 53.703 80 120*Primary Heat Output used in RELAP4-fM Model=1.02 x 3425=*."ENC Fuel Parameters.
: Pressure, psiaIn,letCoolantTemperature, oFReactorVesselVolume,ft3Pressurizer Volume,Total,ft3Pressurizer Volume,Liquid,ft3Accumulator Volume,Total,ft3(eachoffour)Accumulator Volume,Liquid,ft3(eachoffour)Accumulator
3493.5 Mwt 10 XN-NF-84-21(NP)
: Pressure, psiaSteamGenerator HeatTransferArea,ft2-SG1,SG2,SG3,SG4SteamGenerator Secondary Flow,ibm/hr-S'G1,SG2,SG3,SG4SteamGenerator Secondary
Revision 2 Table 3.2 1.0 OECLG Break Analysis Parameters Peak Rod Average Burnup (MWO/kg)Total Core Power (MWt)*Total Peaking (F~)T Fraction Energy Oeposited in Fuel~Fully Moderated Core Voided Core 2.0 3411 2.04 0.974 0.954 10.0 3411 2.04 0.974 0.954 47.0 3411 2.04 0.974 0.954 Cycle 5 (85/ENC Fuel)Peaking'Axial x Engineering
: Pressure, psiaReactorCoolantPumpHead,ftReactorCoolantPumpSpeed,rpmMomentofInertia,1bm-ft2ColdLegPipe,I.D.in.HotLegPipe,I.D.in.PumpSuctionPipe,I.D.in.FuelAssemblyRodDiameter, in.FuelAssemblyRodPitch,in.FuelAssemblyPitch,in.Fueled(Core)Height,in.FuelHeatTransferArea,ft2**FuelTotalFlowArea,BareRod,ft2**Refueling WaterStorageTankTemperature, oFAccumulator WaterTemperature, oF3425341114143.111,7682250542494518001080135095063611,588,3(12,446) 3.505x1063(3.764x106)799277118982,00027.529.031.00.3600.4968.466144.057,32753.70380120*PrimaryHeatOutputusedinRELAP4-fM Model=1.02x3425=*."ENCFuelParameters.
~-Enthalpy Rise (F~H)T 1.316 1.55 1.316 1.55 1.316 1.55 All ENC Core Peaking.Axial x Engineering
3493.5Mwt 10XN-NF-84-21(NP)
.Enthalpy Rise (F~H)T 1.316 1.55 1.316 1.55 1.316 1.55*2%power uncertainty is added to this value in the LOCA analysis.
Revision2Table3.21.0OECLGBreakAnalysisParameters PeakRodAverageBurnup(MWO/kg)TotalCorePower(MWt)*TotalPeaking(F~)TFractionEnergyOeposited inFuel~FullyModerated CoreVoidedCore2.034112.040.9740.95410.034112.040.9740.95447.034112.040.9740.954Cycle5(85/ENCFuel)Peaking'AxialxEngineering
~-EnthalpyRise(F~H)T1.3161.551.3161.551.3161.55AllENCCorePeaking.AxialxEngineering
.EnthalpyRise(F~H)T1.3161.551.3161.551.3161.55*2%poweruncertainty isaddedtothisvalueintheLOCAanalysis.
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision2Table3.30.C.CookUnit21.0OECLGBreakEventTimesEventTime(sec.)StartBreakInitiation SafetyInjection SignalAccumulator Injection BrokenLoopIntactLoopEndofBypassSafetyPumpInjection StartofRefloodAccumulator EmptyBrokenLoopIntactLoop0.000.050.653.215.524.3125.6540.4844.252.9 12XN-NF-84-21(NP
Revision 2 Table 3.3 0.C.Cook Unit 2 1.0 OECLG Break Event Times Event Time (sec.)Start Break Initiation Safety Injection Signal Accumulator Injection Broken Loop Intact Loop End of Bypass Safety Pump Injection Start of Ref lood Accumulator Empty Broken Loop Intact Loop 0.00 0.05 0.65 3.2 15.5 24.31 25.65 40.48 44.2 52.9 12 XN-NF-84-21(NP
)Revision2Table3.41.0DECLGBreakFuelResponseResultsforCycle5.PeakRodAverageBurnup(MWD/kg)InitialPeakFuelAverageTemperature (oF)HotRodBurstTime(sec)Elevation (ft)ChannelBlockageFractionPeakCladTemperature
)Revision 2 Table 3.4 1.0 DECLG Break Fuel Response Results for Cycle 5.Peak Rod Average Burnup (MWD/kg)Initial Peak Fuel Average Temperature (oF)Hot Rod Burst Time (sec)Elevation (ft)Channel Blockage Fraction Peak Clad Temperature
.Time(sec)Elevation (ft)'.Temperature (oF)Zr-SteamReaction~LocalMaximumElevation (ft)~LocalMaximum(X)*CoreMaximum2.0215169.57.0.252879.6320079.634.6<1.010.0206070.57.0.282889.6320149.634.7<1.047.0162978.57.75.472699.3819939.384.5<1.0*Values400secintoLOCAtransient.
.Time (sec)Elevation (ft)'.Temperature (oF)Zr-Steam Reaction~Local Maximum Elevation (ft)~Local Maximum (X)*Core Maximum 2.0 2151 69.5 7.0.25 287 9.63 2007 9.63 4.6<1.0 10.0 2060 70.5 7.0.28 288 9.63 2014 9.63 4.7<1.0 47.0 1629 78.5 7.75.47 269 9.38 1993 9.38 4.5<1.0*Values 400 sec into LOCA transient.
13XN-NF-84-21(NP)
13 XN-NF-84-21(NP)
Revision2Table3.51.0OECLGBreakFuelResponseResultswithanAllENCCorePeakRodAverage.Burnup(MWO/kg)InitialPeakFuelAverageTemperature (oF)2.0215110.0206047.01629HotRodBurst.Time(sec)Elevation (ft).ChannelBlockageFraction69.17.0.2570.17.0.2878.37.75.47PeakCladTemperature
Revision 2 Table 3.5 1.0 OECLG Break Fuel Response Results with an All ENC Core Peak Rod Average.Burnup (MWO/kg)Ini ti al Peak Fuel Average Temperature (oF)2.0 2151 10.0 2060 47.0 1629 Hot Rod Burst.Time (sec)Elevation (ft).Channel Blockage Fraction 69.1 7.0.25 70.1 7.0.28 78.3 7.75.47 Peak Clad Temperature
.Time(sec).Elevation (ft).Temperature (oF)Zr-SteamReaction.LocalMaximumElevation (ft).LocalMaximum(X)*.CoreMaximum2929.6320229.634.9<1.02929.6320309.625.0<1.02749.3820089.384.7<1.0*Values400secintoLOCAtransient.
.Time (sec).Elevation (ft).Temperature (oF)Zr-Steam Reaction.Local Maximum Elevation (ft).Local Maximum (X)*.Core Maximum 292 9.63 2022 9.63 4.9<1.0 292 9.63 2030 9.62 5.0<1.0 274 9.38 2008 9.38 4.7<1.0*Values 400 sec into LOCA transient.
0Ep5oe'6erne8K6gONorig5IH~~CI~eRI5QEK]5ogmK CI1~0DCCOOK217X17~DECLBONs57AVEPLUG,10X343~3%PLUGSQOu)S0K~3k-QKC)y4-95KO1R,16zn2.4TAHEAFTERBREAK(SEC)Fiqnre3.PDowncomer FlowRateDnringBlowdownPeriod,1.0DECLGBreak 1.0DCCOOK217X17DECLBDN5XAVE'.PLUG10/3+3-3XPLUG.122DTIHEAFTERBREAKfSEC)3aFigure3.3UpperPlenumPressureDuringOlowdownPeriod,1.0OECLGBreak alDtvUlX'.y1.0DCCOOK217X1'j~DECL8DNi5lAVE.PLUG,10K3+3.31PLUG,4JCKoKgO44JK0QoCXgI1P1C20RATAHEAFTERBREAK(SEC)Figure3.clAverageCoreInletFlowduringBlowdownPeriod,1.0DECLGBreak
0 E p 5 o e'6erne 8 K6g O Nor i g5 IH~~CI~eR I 5 QEK]5 o gmK CI 1~0 DC COOK 2 17X17~DECL BONs 57 AVE PLUG,10X 343~3%PLUGS Q O u)S 0 K~3 k-Q K C)y 4-9 5 K O 1R, 16 zn 2.4 TAHE AFTER BREAK (SEC)F iqnre 3.P Downcomer Flow Rate Dnring Blowdown Period, 1.0 DECLG Break 1.0 DC COOK 2 17X17 DECL BDN 5X AVE'.PLUG 10/3+3-3X PLUG.12 2D TIHE AFTER BREAK f SEC)3a Figure 3.3 Upper Plenum Pressure During Olowdown Period, 1.0 OECLG Break al D tv Ul X'.y 1.0 DC COOK 2 17X1'j~DECL 8DNi 5l AVE.PLUG,10K 3+3.31 PLUG, 4J CKo Kg O 4 4J K 0 Qo CXg I 1P 1C 20 RA TAHE AFTER BREAK (SEC)Figure 3.cl Average Core Inlet Flow during Blowdown Period, 1.0 DECLG Break
~RLUV)Kgg)CI>o10OCCOOK217X17eOECLBONo5XAVEPLUGS10<'+3~3XPLUG>C)pomSQOI-DO4Jy<aDC9Cl121C202$TXMEAFTERBRFAKlSEC)2Ifiqure3.5AverageCoreOutletFlowduringBlowdownPeriod,1.0OCCLGBreak DbioKJ~8wRK10OCCOOK217X17aOECL BONt5~AVE~PLUG~10~3+3~3>PLUGSODg<oRupXDZ12162.0RATXHEAFTERORF"'K(SEC)Figure3.6TotalBreakFlowduringBlowdownPeriod,1.0DECLGBreak 10OCCOOKR1.0OECLGBON<<a8%5IjJwlpVesselSide~PumpSideTIME(SEC)Figure3.7BreakFlowEnthalpyOuringBlowdown, 1.0DECLGBreak tJ4JgCAgCK1.0DCCOOK217X17~DECLBOH.5XAVE.PlUG.10K3'+3-3XPLUGOaQOLoP-8cr.QKOg121C20t4TIHEAFTER8REAK(SEC)Figure3.0FlowfromIntactLoopAccumulator duringBlowdownPeriod,1.0DFCLGBreak tJ4J3CAw~e4Kld$CKfL10DCCOOK217X17rDECLBDNr5>AVEPLUGS1013+33XPLUGSOgK4J.ogKO1-oQOKKOgCK121C202lTXHEAFTERBREAK(SEC)a2Figure3.9F)owfromBrokenl.oopAccumulator duringBlnwdownPeriod,1.0DECLGBreak 1.0DCCOOK217X17~DECLBOND57AVE.PLUGi10l3+3-3XPLUG>lZ162024TAHEAFTERBREAK(SEC)2a32Figure3.10Pressurizer SurgeLineFlowduringBlowdownPeriod,1.0DL'CLGBreak l-0OCCOOKZ10OECLGt0tiTZ~E~SE.C)X8IZVlIOCOIFigure3.11lleatTransferCoefficientduringBlowdownPeriodatPCTNode,1.0DECLGBreak,2.0NHD/kgCase 1.0DCCOOK2.1.0OE'CLGtDZITIVEtSEC)Figure3.12CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0DECLGBreak,2.0NWD/kgCase rJo~IMbjm4ggOX.ODCCOOKaa.ODEcLcg4nli1tNROtlTXVEtSEC)Figure3.13OepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0OECLGBreak,2.0MWO/kgCase CDc4U)3OI10OCCOOKR1.0DECLG5II5oJ8BlSRDTXMElSEC)Figure3.10AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0OECLGBreak,P.UNWO/kgCaseR>c82:(IEAllg0COIa i.OOCCOOKZ.X-0OECLGFigure3.l5Q.&#xc3;NU3f.TIVE(SEC)llotAssemblyInletFlowduringBlowdownPeriod,1.0DECLGBreak,2.0HWD/kgCase 1.0DcCOOK21-0DE'CLG1$t0?ITXHE(SEC)Figure3.16I<otAssemblyOutletIlowduringBlowdownPeriod,1.0DECLGBreak,2.0I'1HD/kqCaseIOR>c82.'pVlOCQIo i.oDCCOOK2.x.oDECL&R924TIME(SEC)3240XlX8ZIEA0COIUFigure3.17lleatTransferCoeffir.ientduringBlowdownPeriodatPCTNode,1.0l)ECLGBreak,10.0MWD/kgCase 1.0DCCOOKZ1.0DECLGZOZLTINE'SEC)Figure3.18CladSurfaceTemperature duringBlowdownI'eriodatPCTNode,1.0DFCLGBreak,l0.0NWD/kgCasel4R7OCIVlOCOIo 1.0OCCOOK21.0OECLGHXz4OoHI-CJCKblI4JCCi8<olYHNoghQgZ.OUTIME(SEC)Figure3.19DepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0DECLGBreak,10.0HWD/kgCase(0QX8H(IlAI0COIo 1.0DCCOOK21.0DECLGFigure3.20ZOtl3tTINE(SE'C)AverageFuelTeotperature duringBlowdownPeriodatPCTLocation, 1.0DECLGBreak,10.0HWD/kgCase(0QX8IVl0COIo 10OCCOOKR1.0OECLGFigure3.21Lt1CZOR.lTIVE(SE'C))lotRssemblytnletFlawduringOlowdownPeriod,1.0OLCI.Gllreak,10.0llWO/kgCase10KlM8RIVlOCOI 1.0OCCOOK2.10DfCLGzaZ(TINE(SfC)Figure3.22tlotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,10.0NHD/kgCase3C10R>C82:ICAOCOIMiMD l-0OCCOOK2=10OECLtFigure3.231klSt0t42$TIvEtSEC)lleatTansferCoefficient duringBlowdownPeriodatPCTNode,1.0DLCLGBreak,47.0MHD/kgCaseZXlDIZVlOCOIMmU 1-0OCCOOKP.1.0QECLGLSzaKlTETE(SE'C)Figure3.24CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0DECLGBreak,47.0Hll0/kgCase
~R LU V)K gg)CI>o 1 0 OC COOK 2 17X17 e OECL BONo 5X AVE PLUGS 10<'+3~3 X PLUG>C)po mS Q O I-D O 4Jy<a D C9 Cl 12 1C 20 2$TXME AFTER BRFAK l SEC)2I f iqure 3.5 Average Core Outlet Flow during Blowdown Period, 1.0 OCCLG Break D bio K J~8 wR K 1 0 OC COOK 2 17X17aOECL BONt 5~AVE~PLUG~10~3+3~3>PLUGS O Dg<o R up X D Z 12 16 2.0 RA TXHE AFTER ORF"'K (SEC)Figure 3.6 Total Break Flow during Blowdown Period, 1.0 DECLG Break 1 0 OC COOK R 1.0 OECLG BON<<a8%5 IjJ wl p Vessel Side~Pump Side TIME (SEC)Figure 3.7 Break Flow Enthalpy Ouring Blowdown, 1.0 DECLG Break tJ 4J g CA g CK 1.0 DC COOK 2 17X17~DECL BOH.5X AVE.Pl UG.10K 3'+3-3X PLUG Oa QO L o P-8 cr.Q K Og 12 1C 20 t4 TIHE AFTER 8REAK (SEC)Figure 3.0 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 DFCLG Break tJ 4J3 CA w~e4 K ld$CK fL 1 0 DC COOK 2 17X17 r DECL BDNr 5>AVE PLUGS 101 3+3 3X PLUGS Og K 4J.og K O 1-o Q O K K Og CK 12 1C 20 2l TXHE AFTER BREAK (SEC)a2 Figure 3.9 F)ow from Broken l.oop Accumulator during Blnwdown Period, 1.0 DECLG Break 1.0 DC COOK 2 17X17~DECL BOND 57 AVE.PLUGi10l 3+3-3X PLUG>lZ 16 20 24 TAHE AFTER BREAK (SEC)2a 32 Figure 3.10 Pressurizer Surge Line Flow during Blowdown Period, 1.0 DL'CLG Break l-0 OC COOK Z 1 0 OECLG t0 ti TZ~E~SE.C)X 8 I Z Vl I O CO I Figure 3.11 lleat Transfer Coeff icient during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NHD/kg Case 1.0 DC COOK 2.1.0 OE'CLG tD ZI TIVE t SEC)Figure 3.12 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NWD/kg Case r Jo~I M bjm 4 g gO X.O DC COOK a a.O DEcLc g 4 nl i 1t N RO tl TXVE t SEC)Figure 3.13 Oepth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case CD c4 U)3 OI 1 0 OC COOK R 1.0 DECLG 5II 5 oJ 8 B lS RD TXME l SEC)Figure 3.10 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, P.U NWO/kg Case R>c 8 2: (I EA ll g 0 CO I a i.O OC COOK Z.X-0 OECLG Figure 3.l5 Q.&#xc3;N U 3f.TIVE (SEC)llot Assembly Inlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 HWD/kg Case 1.0 Dc COOK 2 1-0 DE'CLG 1$t0?I TXHE (SEC)Figure 3.16 I<ot Assembly Outlet I low during Blowdown Period, 1.0 DECLG Break, 2.0 I'1HD/kq Case IO R>c 8 2.'p Vl O CQ I o i.o DC COOK 2.x.o DECL&R9 24 TIME (SEC)32 40 Xl X 8 Z I EA 0 CO I U F igure 3.17 lleat Transfer Coeff ir.ient during Blowdown Period at PCT Node, 1.0 l)ECLG Break, 10.0 MWD/kg Case 1.0 DC COOK Z 1.0 DECLG ZO ZL TINE'SEC)Figure 3.18 Clad Surface Temperature during Blowdown I'eriod at PCT Node, 1.0 DFCLG Break, l0.0 NWD/kg Case l4 R7 OC I Vl O CO I o 1.0 OC COOK 2 1.0 OECLG H X z4 Oo H I-CJ CK bl I 4J CC i8<o lY H N og h Qg Z.O U TIME (SEC)Figure 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 HWD/kg Case (0 QX 8 H (I lA I 0 CO I o 1.0 DC COOK 2 1.0 DECLG Figure 3.20 ZO tl 3t TINE (SE'C)Average Fuel Teotperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 HWD/kg Case (0 Q X 8 I Vl 0 CO I o 1 0 OC COOK R 1.0 OECLG Figure 3.21 Lt 1C ZO R.l TIVE (SE'C))lot Rssembly tnlet Flaw during Olowdown Period, 1.0 OLCI.G llreak, 10.0 llWO/kg Case 10 Kl M 8 R I Vl O CO I 1.0 OC COOK 2.1 0 DfCLG za Z(TINE (SfC)Figure 3.22 tlot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 NHD/kg Case 3C 10 R>C 8 2: I CA O CO I M iM D l-0 OC COOK 2=1 0 OECLt Figure 3.23 1k lS t0 t4 2$TIvE t SEC)lleat Tansfer Coefficient during Blowdown Period at PCT Node, 1.0 DLCLG Break, 47.0 MHD/kg Case Z X lD I Z Vl O CO I Mm U 1-0 OC COOK P.1.0 QECLG LS za Kl TETE (SE'C)Figure 3.24 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 Hll0/kg Case
~N~SQo~8Oo0~skg4JlZgOCI$gpOAJ1-0OCCOOk21.0DECL&R>c8KIVl)000I0lf1SEORltl"3E1TINE(SEC)Figure3.25DepthofMetal-Water ReactionDuringBlowdownPeriodatPCTNode,1.0DECLGBreak,47.0MWD/kgCase 10OCCOOK21.0OECLGFigure3.263R.'3CItLCt0UtlTIt>E(SEC1AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0DECLGBreak,47.0MWO/kgCasel0R>clDMIVl0COIo 10OCCOOK210DE'CLGI1tlS5lRATAHE(SEC)eeFigure3.27(lotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0MHD/kgCase 1.0OCCOOK2,1~0OCCLGFigure3.28lffOzltlTIvE(SEC)HotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0MWD/kgCase
~N~S Qo~8 Oo 0~s kg 4J lZ gO CI$gp O AJ 1-0 OC COOk 2 1.0 DECL&R>c 8 K I Vl)0 00 I 0 lf 1S EO Rl tl"3E 1 TINE (SEC)Figure 3.25 Depth of Metal-Water Reaction During Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 MWD/kg Case 1 0 OC COOK 2 1.0 OECLG Figure 3.26 3R.'3C It LC t0 U tl TIt>E (SEC 1 Average Fuel Temperature dur ing Blowdown Period at PCT Location, 1.0 DECLG Break, 47.0 MWO/kg Case l0 R>c lD M I Vl 0 CO I o 1 0 OC COOK 2 1 0 DE'CLG I 1t lS 5l RA TAHE (SEC)ee Figure 3.27 (lot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MHD/kg Case 1.0 OC COOK 2, 1~0 OCCLG Figure 3.28 lf fO zl tl TIvE (SEC)Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MWD/kg Case
~8OyI.igure3.291t15tDZI3aTIMEAFTEREOBY(SEC)Accumulator FlowduringRefillandRefloodPeriods,BrokenLoop,1.0DECLGBreak 1$tD-HElTXHEAFTEREOBY(SEC)-.Figure3.30Rccumulator FlowduringRefillandRefloodPeriods,IntactLoop,1.0OECLGBreak 300250200150-10050-0050100150200Time(sec)After.Start250300350R>cEDMIVlllI0COIFigure3.31IIPSI0LPSIFlowduringRefillandRefloodPeriods,BrokenLoop,1.0OfCLGBreak CV)CQO1000800-600400POO2000050100150200Time(sec)AfterStart300350Iignre3.3?Hi'Sl5I.PSIFlowduringRefillandRefloodPeriods,IntactIoop,1.0I)ECLGllreak 2221PROO20191801615050100150200Time(sec)-After Start250Figure3.33Containment BackPressure, 1.0OECLGBreak300350g)XlDM'CIpUl000Ia CK4JO0a4Jt'4~lKLLoX~4Q(0COl$0200Z40TINE(SECONDS)SRIZVl000IoFigiire3.34Horn"li"edPokier,'.CDECLuBreak,Z.OHl'ID/kgCase ZlX8(IlhOOOIH.O160200210210TINE(SE'CONDS)3203CO100Eigure3.35Normalized Power,1.0BECLGBreak,10.0MWO/kgCase i0320isoQ.ONOZOOZEOTINED(SECONDS)I'igure3.36NormalizedPower,1.0DECLGBreak,47.0NWD/kgCase DCC2REFl000.10OECLGFULLECCSFLOVFQ=2.041553525HMT.HIXCORELESSSPCR40180Z00ZA0Z00TIHEFROMBOCREC(SEC)3ZO400R>cCDIVl0COIPOtVaI=i@ore3.3/lieflooclCoreMixlisreI.evel,1.0OECI.GBreak,Cycle5Core DCC2,REFLOODo1.0DECLGFULLECCSFLOWFQ=2.0$1.553425HWTiHIXCORELESSSPCR40801602002AO280TIHEFROHBOCREC(SEC)<00R>CID(IVlO00IUlinure3.3ARefloodfjowocoioer MixtureLevel,1.0DECLGBreak,Cycle5Core OCC2REFLOOD,1.0DECLGFULLECCSfLOWF9=2.0i1.553425HMT,HIXCORELESSSPCR40ao1602002402SOTIHEFROHBOCREC(SEC)360400R>cCDR(II/l0COIFOfOoIicjur>>3.39Hei'loodtipperPlenumPressure, 1.0OECLGBreak,Cycle5Core OCC2REFLOOD.1.0 OECLGFULLECCSFLOWFQ=2.041.553525HWTiHIXCORELESSSPCR40SO120160200RAO280TIMEFROHBOCREC(SEC)Iignre3.40CoreI-looding Rate,1.0DECI.GBreak,Cycle5Core380400R>C8R(IVl0COI~POa OCC2.REFLOODoAlLENCCORE-FOH=1-554040asozaazoozeaTXHEFROMBOCREC(SEC)3zoeaoIigure3.41lhefloori CoreHixIorel.evel,1.0DECI.GBreak,AllENCCore OCC2.REFLOOO.ALLEHCCORE-FOH=1.55LLJPAXHKoOOa40IO160200240ZIOTIMEFROM80CREC(SEC)360400Iigure3.02RefloorlOnwncomer MixtureLevel,1.0OECLGBreak,AllENCCore OCC2REFLOOOoALLENCCORE-FOH<<155MO$044X60ZaoZ.40nl0TINEFROHBOCREC(SEC)Eigure3.03liefloodUpperVier>iunPressiire, 1.0OECl.GBreak,AllENCCore'360400RX82(I~'I/I0COIa OCC2REFLOOD,ALLEHCCORE-FOH=1.553200126L605)0240TIMEFROMBOCREC(SEC)Iignore3A4CoreRefloodirlgRat.e,1.0DECI.GBreak,AllENCCore360ioo
~8 Oy I.igure 3.29 1t 15 tD ZI 3a TIME AFTER EOB Y (SEC)Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 DECLG Break 1$tD-H El TXHE AFTER EOBY (SEC)-.Figure 3.30 Rccumulator Flow during Ref ill and Ref lood Periods, Intact Loop, 1.0 OECLG Break 300 250 200 150-100 50-0 0 50 100 150 200 Time (sec)After.Start 250 300 350 R>c ED M I Vl ll I 0 CO I Figure 3.31 IIPSI 0 LPSI Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OfCLG Break C V)CQ O 1000 800-600 400 P O O 200 0 0 50 100 150 200 Time (sec)After Start 300 350 I ignre 3.3?Hi'Sl 5 I.PSI Flow during Refill and Reflood Periods, Intact I oop, 1.0 I)ECLG llreak 22 21 P R O O 20 19 18 0 16 15 0 50 100 150 200 Time (sec)-After Start 250 Figure 3.33 Containment Back Pressure, 1.0 OECLG Break 300 350 g)X lD M'C I p Ul 0 00 I a CK 4J O 0 a 4J t'4~l K LL o X~4 Q (0 CO l$0 200 Z40 TINE (SECONDS)SR I Z Vl 0 00 I o Figiire 3.34 Horn" li"ed Pokier,'.C DECLu Break, Z.O Hl'ID/kg Case Zl X 8 (I lh O OO I H.O 160 200 210 210 TINE (SE'CONDS)320 3CO 100 Eigure 3.35 Normalized Power, 1.0 BECLG Break, 10.0 MWO/kg Case i0 320 iso Q.O NO ZOO ZEO TINED (SECONDS)I'igure 3.36 Normal ized Power, 1.0 DECLG Break, 47.0 NWD/kg Case DCC2 REFl 000.1 0 OECLG FULL ECCS FLOV FQ=2.04 1 55 3525 HMT.HIX CORE LESS SPCR 40 180 Z00 ZA0 Z00 TIHE FROM BOCREC (SEC)3ZO 400 R>c CD I Vl 0 CO I PO tV a I=i@ore 3.3/lief loocl Core Mixlisre I.evel, 1.0 OECI.G Break, Cycle 5 Core DCC2, REFLOODo 1.0 DECLG FULL ECCS FLOW FQ=2.0$1.55 3425 HWTiHIX CORE LESS SPCR 40 80 160 200 2AO 280 TIHE FROH BOCREC (SEC)<00 R>C ID (I Vl O 00 I U l inure 3.3A Reflood fjowocoioer Mixture Level, 1.0 DECLG Break, Cycle 5 Core OCC2 REFLOOD, 1.0 DECLG FULL ECCS fLOW F9=2.0i 1.55 3425 HMT,HIX CORE LESS SPCR 40 ao 160 200 240 2SO TIHE FROH BOCREC (SEC)360 400 R>c CD R (I I/l 0 CO I FO fO o I icjur>>3.39 Hei'lood tipper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core OCC2 REFLOOD.1.0 OECLG FULL ECCS FLOW FQ=2.04 1.55 3525 HWTiHIX CORE LESS SPCR 40 SO 120 160 200 RAO 280 TIME FROH BOCREC (SEC)I ignre 3.40 Core I-looding Rate, 1.0 DECI.G Break, Cycle 5 Core 380 400 R>C 8 R (I Vl 0 CO I~PO a OCC2.REFLOODo Al L ENC CORE-FOH=1-55 40 40 aso zaa zoo zea TXHE FROM BOCREC (SEC)3zo eao I igure 3.41 lhefloori Core HixIore l.evel, 1.0 DECI.G Break, All ENC Core OCC2.REFLOOO.ALL EHC CORE-FOH=1.55 LLJ PA X H K o O O a 40 IO 160 200 240 ZIO TIME FROM 80CREC (SEC)360 400 I igure 3.02 Ref loorl Onwncomer Mixture Level, 1.0 OECLG Break, All ENC Core OCC2 REFLOOOo ALL ENC CORE-FOH<<1 55 MO$0 44 X60 Zao Z.40 nl 0 TINE FROH BOCREC (SEC)Eigure 3.03 lief lood Upper Vier>iun Pressiire, 1.0 OECl.G Break, All ENC Core'360 400 R X 8 2 (I~'I/I 0 CO I a OCC2 REFLOOD, ALL EHC CORE-FOH=1.55 320 0 126 L60 5)0 240 TIME FROM BOCREC (SEC)I ignore 3A4 Core Ref loodirlg Rat.e, 1.0 DECI.G Break, All ENC Core 360 ioo
-FQ=2.05-FOH~1.55-2HMtLg5~alIblCLDaK"KtdCL'Kid/C9z,HClQoO1.PCTHOOE(HOOE22ATS-62FT-)2.RUPTUREOHOOE(NOOE11AT7.00FT)CICI%.040.0S0.0I'igure3.45200.0320.0360.0120.0160.0200.0Z(0.0TIME-SECONDSTOOOEE2CladdingTemperature versusTime,1.0DECLGBreak,2.HllD/KgCase,Cycle5Core
-FQ=2.05-FOH~1.55-2 HM tL g 5~al I bl CL Da K" K td CL'K id/C9 z, H Cl Qo O 1.PCT HOOE (HOOE 22 AT S-62 FT-)2.RUPTUREO HOOE (NOOE 11 AT 7.00 FT)CI CI%.0 40.0 S0.0 I'igure 3.45 200.0 320.0 360.0 120.0 160.0 200.0 Z(0.0 TIME-SECONDS TOOOEE2 Cladding Temperature versus Time, 1.0 DECLG Break, 2.HllD/Kg Case, Cycle 5 Core
-FQ=2.04-FOH~1.55-10H1-PCTNODE(NODE22AT$.62FT)2..RUPTUREDNODE(NODE11AT1-00FT-)40-0I:ignite3.0680.0ZS0.032,0.0160.0200.0240.0TIME-SECONDSTOODCE2CladdingTemperature versusTime,1.0DECI.GBreak,10.IIWD/KgCase,Cycle5Core360.040.0 N1-PCT)JODO'NODf RlAT$.31FT)(0hJhJKC9~UJ~Qc5I)LJf)'oCJ:LLlLJ0KQJCI)-5C9MClQogD0RUPTUREDHODRl'NODE1<.AT1.15FT-)ClClQ).0210.0320.0360.0120.040.080.0160.0?00'2<0.0TINE-SECONDSIigrrre3.47~l000l.:L2 Claddirrg Temperature versusTime,1.0OECLGBreak,4/.Hll0/KgCase,Cycle5Core40.0RX8RIVl00)I  
-FQ=2.04-FOH~1.55-10 H 1-PCT NODE (NODE 22 AT$.62 FT)2..RUPTURED NODE (NODE 11 AT 1-00 FT-)40-0 I:ignite 3.06 80.0 ZS0.0 32,0.0 160.0 200.0 240.0 TIME-SECONDS TOODCE2 Cladding Temperature versus Time, 1.0 DECI.G Break, 10.IIWD/Kg Case, Cycle 5 Core 360.0 40.0 N 1-PCT)JODO'NODf Rl AT$.31 FT)(0 hJ hJ K C9~UJ~Q c5 I)LJ f)'o CJ: LL lLJ 0 K QJ CI)-5 C9 M Cl Qo g D 0 RUPTURED HODR l'NODE 1<.AT 1.15 FT-)Cl Cl Q).0 210.0 320.0 360.0 120.0 40.0 80.0 160.0?00'2<0.0 TINE-SECONDS I igrrre 3.47~l000l.:L2 Claddirrg Temperature versus Time, 1.0 OECLG Break, 4/.Hll0/Kg Case, Cycle 5 Core 40.0 RX 8 R I Vl 0 0)I  
-FQ~R.O{-FOB=1.55"2,HMi.PCTNODE(NODE22AT$.62FT.)2-RUPTUREDNODE(NODE).LAT1.00FT.)40.0I'igure3.0Aa0.0320.0360.0160.0200.02(0-0260.0TIHE-SECONDSTOOOLC2Cli~lrliugTemperaLure versusTime,1.0OLCl.GBreak,2.NWO/KgCase,Alll:NCCorelORO
-FQ~R.O{-FOB=1.55" 2, HM i.PCT NODE (NODE 22 AT$.62 FT.)2-RUPTURED NODE (NODE).L AT 1.00 FT.)40.0 I'igure 3.0A a0.0 320.0 360.0 160.0 200.0 2(0-0 260.0 TIHE-SECONDS TOOOLC2 Cl i~lrliug TemperaLure versus Time, 1.0 OLCl.G Break, 2.NWO/Kg Case, All l:NC Core lORO
-FQ~L.0$-FOH=155-10H1-PCTNODEtNODE22,AT5.62FT.)RUPTUREDNODEtNODE11AT1.OOFT.)40.0Iigurt3.49320.0ao.o120.0160.0200.02io.o280-0TXHE-SECONDSf00f)EE2Clarlding funperature versus1ime,1.0DECLGBreak,10.NWf)/KgCase,AllENCCore FQ<2.04-FOH3.=1-55-h7M1.PCTHQOE(HOOE21AT031FT)Z.RUPTUREDHOOf(HOOE14AT7.15FT140.0Figure3.50320.080.0120.0160.0200.0240.0280.0TIME-SECONDS100DEE2CladdingTemperature versusTime,1.0DECIGBreak,c17.HWD/KgCase,RllENCCore l
-FQ~L.0$-FOH=1 55-10 H 1-PCT NODE t NODE 22, AT 5.62 FT.)RUPTURED NODE t NODE 11 AT 1.OO FT.)40.0 I i gurt 3.49 320.0 ao.o 120.0 160.0 200.0 2io.o 280-0 TXHE-SECONDS f00f)EE2 Clarlding funperature versus 1 ime, 1.0 DECLG Break, 10.NWf)/Kg Case, All ENC Core FQ<2.04-FOH 3.=1-55-h7 M 1.PCT HQOE (HOOE 21 AT 0 31 FT)Z.RUPTURED HOOf (HOOE 14 AT 7.15 FT 1 40.0 Figure 3.50 320.0 80.0 120.0 160.0 200.0 240.0 280.0 TIME-SECONDS 100DEE2 Cladding Temperature versus Time, 1.0 DECI G Break, c17.HWD/Kg Case, Rll ENC Core l
64XN-NF-84-21 (NP)Revision
64 XN-NF-84-21 (NP)Revision 2


==24.0CONCLUSION==
==4.0 CONCLUSION==
S Forbreaksuptoandincluding thedouble-ended severance ofareactorcoolantpipe,theDonaldC.CookUnit2Emergency CoreCoolingSystemwill.meettheAcceptance Criteriaaspresented in10CFR50.46foroperation withENC17xl/fueloperating inaccordance withtheLHGRlimitsnotedinTable2.1.Thatis:1.Thecalculated peakfuelelementcladtemperature doesnotexceedthe2200oFlimit.2.Theamountoffuelelementcladdingthatreactschemically withwaterorsteamdoesnotexceed1percentofthetotalamountofzircaloyinthereactor.3.Thecladdingtemperature transient isterminated atatimewhenthecoregeometryisstillamenabletocooling.Thehotfuelrodcladdingoxidation limitsof17/arenotexceededduringorafterquenching.
S For breaks up to and including the double-ended severance of a reactor coolant pipe, the Donald C.Cook Unit 2 Emergency Core Cooling System will.meet the Acceptance Criteria as presented in 10 CFR 50.46 for operation with ENC 17xl/fuel operating in accordance with the LHGR limits noted in Table 2.1.That is: 1.The calculated peak fuel element clad temperature does not exceed the 2200oF limit.2.The amount of fuel element cladding that reacts chemically with water or steam does not exceed 1 percent of the total amount of zircaloy in the reactor.3.The cladding temperature transient is terminated at a time when the core geometry is still amenable to cooling.The hot fuel rod cladding oxidation limits of 17/are not exceeded during or after quenching.
4.Thecoretemperature isreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-lived radio-activityremaining inthecore.  
4.The core temperature is reduced and decay heat is removed for an extended period of time, as required by the long-lived radio-activity remaining in the core.  


XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision
Revision 2


==25.0REFERENCES==
==5.0 REFERENCES==


(2)(3)(4)(5)XN-NF-82-35, "DonaldC.CookUnit2LOCAECCSAnalysisUsingEXEM/PWRLargeBreakResults,"
(2)(3)(4)(5)XN-NF-82-35,"Donald C.Cook Unit 2 LOCA ECCS Analysis Using EXEM/PWR Large Break Results," Exxon Nuclear Company, Inc., Rich-land, WA 99352, April 1982.XN-NF-82-35, Supplement 1,"Donald C.Cook Unit 2 Cycle 4 Limiting Break LOCA-ECCS Analysis Using EXEM/PWR," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1982.XN-NF-82-20(P), Rev.1, August 1982;and Supplement 4, July 1984,"Exxon Nuclear Company Evaluation Model EXEM/PWR ECCS Model Up-dates," Exxon Nuclear Company, Inc., Richland, WA 99352.XN-73-25,"GAPEXX: A Computer Program for Predicting Pellet-to-Cladding Heat Transfer Coefficients," Exxon Nuclear Company, Inc., Richland, WA, August 13, 1973.XN-NF-81-58(A), Rev.2,"RODEX2: Fuel Rod Thermal-Mechanical Re-sponse Evaluation Model," Exxon Nuclear Company, Inc., Richland, WA.99352, February 1983.(6)"Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50.(7)(8)(9)(10)(12)U.S.Nuclear Regulatory Commission letter, T.A.Ippolito (NRC)to W.S.Nechodom (ENC),"SER for ENC RELAP4-EM Update," March 1979.XN-CC-39, Rev.1,"ICECON: A Computer Program Used to Calculate Containment Backpressure for LOCA Analysis (Including Ice Condenser Plants)," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1977.XN-NF-78-30(A),"Exxon Nuclear Company WREM-Based Generic PWR ECCS Evaluation Model Update ENC WREM-IIA," Exxon Nuclear Company, Inc., Richland, WA 99352.May 1979.XN-NF-82-07(A), Rev.1,"Exxon Nuclear Company ECCS Cladding Swelling and Rupture Model," Exxon Nuclear Company, Inc., Richland, WA 99352, March 1982.G.N.Lauben, NRC Report NUREG-75/057,"TOODEE2: A Two-Dimensional 1>>D.C.Cook Unit 2 Technical Specification, Appendix"A" to License No.DPR-74, Amendment No.48.
ExxonNuclearCompany,Inc.,Rich-land,WA99352,April1982.XN-NF-82-35, Supplement 1,"DonaldC.CookUnit2Cycle4LimitingBreakLOCA-ECCS AnalysisUsingEXEM/PWR,"
66 XN-NF-84-21(NP)
ExxonNuclearCompany,Inc.,Richland, WA99352,November1982.XN-NF-82-20(P),
Revision 2 (13)XN-NF-82-32(P), Supplement 2,"Plant Transient Analysis for the Donald C.Cook Unit 2 Reactor at 3425 MWt: Operation with 5%Steam Generator Tube Plugging," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984., (14)XN-NF-84-21(P),"Donald C.Cook Unit 2, Cycle 5, 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.(15)Letter, H.R.Denton (NRC)from J.C.Chandler (ENC), Re: Support-ing Documentation for Unit 2 Technical Specification Changes for Cycle 5 Reload, dated May 7, 1984 (JCC:076:84).
Rev.1,August1982;andSupplement 4,July1984,"ExxonNuclearCompanyEvaluation ModelEXEM/PWRECCSModelUp-dates,"ExxonNuclearCompany,Inc.,Richland, WA99352.XN-73-25, "GAPEXX:AComputerProgramforPredicting Pellet-to-CladdingHeatTransferCoefficients,"
(16)XN-NF-84-21(P), Revision 1,"Donald C.Cook Unit 2 Cycle 5-5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, May 1984.
ExxonNuclearCompany,Inc.,Richland, WA,August13,1973.XN-NF-81-58(A),
Rev.2,"RODEX2:FuelRodThermal-Mechanical Re-sponseEvaluation Model,"ExxonNuclearCompany,Inc.,Richland, WA.99352,February1983.(6)"Acceptance CriteriaforEmergency CoreCoolingSystemsforLightWaterCooledNuclearPowerReactors,"
10CFR50.46andAppendixKof10CFR50.(7)(8)(9)(10)(12)U.S.NuclearRegulatory Commission letter,T.A.Ippolito(NRC)toW.S.Nechodom(ENC),"SERforENCRELAP4-EM Update,"March1979.XN-CC-39, Rev.1,"ICECON:AComputerProgramUsedtoCalculate Containment Backpressure forLOCAAnalysis(Including IceCondenser Plants),"
ExxonNuclearCompany,Inc.,Richland, WA99352,November1977.XN-NF-78-30(A),
"ExxonNuclearCompanyWREM-Based GenericPWRECCSEvaluation ModelUpdateENCWREM-IIA,"
ExxonNuclearCompany,Inc.,Richland, WA99352.May1979.XN-NF-82-07(A),
Rev.1,"ExxonNuclearCompanyECCSCladdingSwellingandRuptureModel,"ExxonNuclearCompany,Inc.,Richland, WA99352,March1982.G.N.Lauben,NRCReportNUREG-75/057, "TOODEE2:
ATwo-Dimensional 1>>D.C.CookUnit2Technical Specification, Appendix"A"toLicenseNo.DPR-74,Amendment No.48.
66XN-NF-84-21(NP)
Revision2(13)XN-NF-82-32(P),
Supplement 2,"PlantTransient AnalysisfortheDonaldC.CookUnit2Reactorat3425MWt:Operation with5%SteamGenerator TubePlugging,"
ExxonNuclearCompany,Inc.,Richland, WA99352,February1984.,(14)XN-NF-84-21(P),
"DonaldC.CookUnit2,Cycle5,5XSteamGenerator TubePlugging, LimitingBreakLOCA/ECCS Analysis,"
ExxonNuclearCompany,Inc.,Richland, WA99352,February1984.(15)Letter,H.R.Denton(NRC)fromJ.C.Chandler(ENC),Re:Support-ingDocumentation forUnit2Technical Specification ChangesforCycle5Reload,datedMay7,1984(JCC:076:84).
(16)XN-NF-84-21(P),
Revision1,"DonaldC.CookUnit2Cycle5-5XSteamGenerator TubePlugging, LimitingBreakLOCA/ECCS Analysis,"
ExxonNuclearCompany,Inc.,Richland, WA99352,May1984.
XN-NF-8'4-21(NP
XN-NF-8'4-21(NP
)Revision2IssueDate:8/7/84DONALDCCOOKUNIT2CYCLE5SioSTEAN,GENERATOR TUBEPLUGGINGLIMITINGBREAKLOCA/ECCS ANALYSISDistribution J.C.ChandlerW.V.KayserG.F.OwsleyH.G.ShawT.TahviliAEP/H.G.Shaw(10)USNRC/J.C.
)Revision 2 Issue Date: 8/7/84 DONALD C COOK UNIT 2 CYCLE 5 Sio STEAN, GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Distribution J.C.Chandler W.V.Kayser G.F.Owsley H.G.Shaw T.Tahvili AEP/H.G.Shaw (10)USNRC/J.C.
Chandler(15)DocumentControl(3)}}
Chandler (15)Document Control (3)}}

Revision as of 09:05, 6 July 2018

Nonproprietary Version of Rev 2 to DC Cook,Unit 2 Cycle 5,5%.Steam Generator Tube Plugging Limiting Break Loca/Eccs Analysis.
ML17326B134
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 08/07/1984
From: CHANDLER J C, KAYSER W V, STOUT R B
SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER
To:
Shared Package
ML17326B133 List:
References
XN-NF-84-21-(NP, XN-NF-84-21-(NP)-R02, XN-NF-84-21-(NP)-R2, NUDOCS 8408090209
Download: ML17326B134 (80)


Text

XN-NF-84-21(NP

)Revision 2 Issue Date: 8/7/84 DONALD C~COOK UNIT 2 CYCLE 5-5/o STEAM GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Prepared-by: W.V.ayser, Manager PWR Safety Analysis Concur:.C.C an er, Lea ng neer Reload Fuel Licensing Approve: out, Manager Licensing&Safety Engineering CSr Concur: ggg g.'.organ, anag r Proposals 5 Customer Services Engineering Approve: 87~%/.A.o er, Manag Fu 1 Engineering 8 Technical Services gf ,E3(CGM NU.CLEAR.COMPANY, INC.KNIMIolY-MIlIl'I'.I I.II.f.IlI)I'Y r~}~5 F XN-Nf-84-21(NP)

Revision 2 TABLE OF CONTENTS Section~Pa e

1.0 INTRODUCTION

....:..................................

1 2.0 S UMMARY o~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~3 3.0 LIMITING BREAK LOCA ANALYSIS~~~~~~~~~~~~~5 3.1 LOCA ANALYSIS MODEL...........................

5 3.2 RESULTS 7

4.0 CONCLUSION

S

~~~~~~~~~~~~~~~~~~~~~~~~64 5.0 65 REFERENCES

...............,..........................

~i~~l i 1~~~~~~~

XN-NF-84-21(NP)

Revision 2 LIST OF TABLES Table Parcae 2.1 D.C.Cook Unit 2 LOCA/ECCS Analysis Summary........4 3.1 Donald C.Cook Unit 2 System Input Parameters

~~~~~~9 3.2 3.3 3.4 3.5 1.0 OECLG Break Analysis Parameters

................

10 D.C.Cook Unit 2 1.0 OECLG Break Event Times...~...11 1.0 OECLG Break Fuel Response Results for C ycle 5............................................

12 1.0 OECLG Break Fuel Response Results with an All ENC Core....................................

13 j N~I 8~~~~~~~~~~~~~

.XN-NF-84-21(NP)

Revision 2 LIST OF FIGURES~Fi ure Pacae 3.1 RELAP4/EM Blowdown System Nodalization for D.C.Cook Unit 2....14 3.2 Oowncomer Flow Rate During Blowdown Period, 1.0 OECLG Break...................................

15 3.3 3.4 Upper Plenum Pressure during Blowdown Period, 1.0 DE(LG Break.......Average Core Inlet Flow during Blowdown Period, 1.0 OECLG Break........16 17 3.5 3.6 Average Core Outlet Flow during Bl owdown Period, 1.0 DECLG Break.....................

Total Break Flow during Blowdown Period, 1.0 OECLG Break.............................

18 19 3.7 Break Flow Enthalpy during Blowdown, 1.0 DECLG Break....................................

20 3.8 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 OECLG Break..................

21 3.9 Flow from Broken Loop Accumulator during Blowdown Period, 1.0 OECLG Break..................

22 3.10 Pressurizer Surge'ine Flow during Blowdown Period, 1.0 OECLG Break~~~~~~~~~~~~~~~~~~23 3.11 3.12 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case.Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWD/kg Case..........,.

~~~~~~~~~~~~~~~~~~24 25 3.13~~~~~~~~~~~~~~~26 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 MWD/kg Case.

iv XN-NF-84-21(NP)

Revision 2 LIST OF FIGURES (Cont.)~Fi ure Pa<ac 3.14 , 3.15 3.16 3.17 3.18 Average Fuel Temperature during Bl owdown Period at PCT Location, 1.0 OECLG Break, 2.0 MWD/kg Case.27 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 2.0 MWD/kg Case...........

28 Hot Assembly Outlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 MWD/kg Case...........

29 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWO/kg Case...................................

30 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWD/kg Case...................................

31 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 MWD/kg Case..................

32 3.20 3.21 3.22 3.23 3.24 3.25 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 MWD/kg Case...................................

33 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWO/kg Case..................

34 Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWD/kg Case.......;..........

35 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case..................

.........36 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWO/kg Case...................................

37 Depth of Metal-Water Reaction during Slowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case.................................

38 XN-NF-84-21(NP)Revision 2 LIST OF FIGURES (Cont.)~Fi ere Pa<ac 3.26 3.27 3.28 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, 47.0 MWO/kg Case e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 NWD/kg Case'.......

Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 HWD/kg Case..........

39 40 41 3.29 3.30 3.31 3.32 3.33 Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OECLG Break.............

42 Accumulator Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break.............

43 HPSI 8 LPSI Flow during Refill and Ref lood Periodg, Broken Loop, 1.0 OECLG Break.............

44 HPSI 8 LPSI Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break.............

45 Containment Back Pressure, 1.0 DECLG Break........46 3.34 3.35 3.36 3.37 Normalized Power, 1.0 OECLG Break, 2.0 MWO/kg Case.....Normalized Power, 1.0 DECLG Break, 10.0 NWD/kg Case..............................

Normalized Power, 1.0 OECLG Break, 47.0 NWD/kg Case.............

Reflood Core Mixture Level, 1.0 OECLG Break, C ycle 5 Core........................

47 48 49 50 3.38 3.39 Reflood Downcomer Mixture Level, 1.0 DECLG Break, Cycle 5 Core.....................

51 Reflood Upper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core...............................

52 vi XN-NF-84-21(NP)

Revision 2 LIST OF FIGURES (Cont.)~Fi ure~Pa e 3.40 Core Flooding Rate, 1.0 OECLG Break, Cycle 5 Core~~~~~~~~~e~~~~~~~53 3.41 Ref lood Core Mixture Level, 1.0 OECLG Break, 54 All ENC Core......................................

3.42 Reflood Oowncomer Mixture Level, 1.0 OECLG'reak, All ENC Core............

55 3.43 3.44 Ref lood Upper Plenum Pressure, 1.0 DECLG Break, All ENC Core...............................

56 Core Ref looding Rate, 1.0 OECLG Break, A 11 ENC Core....................-......-....

..57 3.45 3.46 TOODEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2.MWO/kg Case, Cycle 5'ore.....58 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 10.MWO/kg Case, C ycle 5 Core...................

~-.....59 3.47 TOOOEE2 Cladding 1.0 OECLG Break, Cycle 5 Core...Temperature versus Time, 47.MWO/kg Case,~~~~~~~~~~~~~~~~~~~~~~~60 3.48 3.49 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2.MWO/kg Case, All ENC Core.....TOODEE2 Cladding Temperature versus Time, 1.0 DECLG Break, 10.MWO/kg Case, All ENC Core 61'2 3.50 TOOOEE2 Cladding Temperature versus Time, 1:0 OECLG Break, 47.MWO/kg Case, All ENC Core 63 XN-NF-84-21(NP

)Revision 2 1.0 I NTRODUCT ION Large break LOCA/ECCS analyses were performed in 1982(~2)to support operation of the D.C.Cook Unit 2 reactor at 3425 MWt with ENC fuel.Reference 1 presented analytical results for a spectrum of postulated large break LOCAs.The limiting break was identified as the 1.0 double ended cold line guillotine (DECLG)break.Reference 2 presented results for the previously identified limiting break using the EXEM/PWR(3)

ECCS models, except GAPEX was used as the fuel performance model in place of RODEX2.The RODEX2 code was not approved (by the NRC for use in ECCS analyses in 1982.Therefore the NRC-approved GAPEX(4)code was used to calculate fuel properties at the initialization of the LOCA calculation.

The Reference 2 report documented the results of calculations with one and two LPSI pumps operating.

At equivalent core peaking limits, higher peak cladding temperatures (PCTs)were calculated in the LOCA analysis when two LPSI pumps were assumed operating.

The Reference 2 analysis with two LPSI pumps operating was performed for Cycle 4 operation of D.C.Cook Unit 2.This report documents the results of a LOCA/ECCS analysis to support operation of the D.C.Cook Unit 2 reactor for Cycle 5 at a thermal power rating of 3425 MWt, with up to 5/.of the steam generator tubes plugged, with two LPSI pumps operating, and for ENC fuel exposed up to a peak rod average burnup of 47 MWD/kg.Results are also reported for the case in which the entire core is ENC fuel.The calculations were performed using the EXEM/PWR LOCA/ECCS XN-NF-84-21(NP

)Revision 2 models, including fuel properties calculated at the start of the LOCA transient with ENC's generically approved RODEX2 code.(5)

XN-NF-84-21(NP)

Revision 2 2.0

SUMMARY

LOCA/ECCS calculations were performed to determine core peaking limits which permit operation of the O.C.Cook Unit 2 reactor within guidelines specified by 10 CFR 50.46 and Appendix K.(6)The calculations assumed operation:

1)At a thermal power of 3425 MWt;2)With 5X average steam generator tube plugging;3)With the Cycle 5 core configuration (85/ENC fuel);and 4)With the entire core ENC fuel.The calculations were performed for the previously identified limiting break, the 1.0 OECLG break, with full ECCS flow.The results of the analysis are summarized in Table 2.1.The analysis supports operation of the O.C.Cook Unit 2 reactor for Cycle 5, and future cycles with ENC fuel, at a total peak limit (FqT)of 2.04 and a corresponding F<H limit of 1.55.T XN-NF-84-21(NP)

Revision 2 Table 2.1 O.C.Cook Unit 2 LOCA/ECCS Analysis Summary Peak Rod Average Burnup (MWO/kg)FT Q T 2.0 2.04 1.55 10.0 2.04 1.55 47.0 2.04 1.55 Results for the Cycle 5 Core Confi uration (85K ENC Fuel)Peak Cladding Temperature (oF)Maximum Local 2r-H20 Reaction (X)Total Zr-H20 Reaction 2007 4.6<1.0 2014 4.7<1.0 1993 4.5<1.0 Results with Entire Core of ENC Fuel Peak Cladding Temperature (oF)Maximum Local Zr-H20 Reaction (/)Total Er-H20 Reaction 2022 4.9<1.0 2030 5.0<1.0 2008 4.7<1.0 XN-NF-84-21(NP)

Revision 2 3.0 LIMITING BREAK LOCA ANALYSIS This report supplements previous LOCA/ECCS analyses performed and documented for D.C.Cook Unit 2.A spectrum of LOCA breaks was performed and reported in XN-NF-82-35.(1)

The limiting LOCA break was determined to be the large double-ended guillotine break of the cold leg or reactor vessel inlet pipe with a discharge coefficient of 1.0 (1.0 DECLG).Reference 2 established that for D.C.Cook Unit 2 it is more limiting in the LOCA analysis to assume no failure of a LPSI pump.The analysis performed and reported herein considers:

1)That 5X of the steam generator tubes are plugged;2)That 85/of the Cycle 5 core is composed of ENC fuel;3)That both LPSI pumps are operational; and 4)That ENC fuel may be exposed to a peak average burnup of 47 MWD/kg.3.1 LOCA ANALYSIS MODEL The Exxon Nuclear Company EXEM/PWR-ECCS evaluation model was used to perform the analyses required.This model(3)consists of the following computer codes: RODEX2(5)code for initial stored energy;RELAP4-EM(")

for the system blowdown and hot channel blowdown calculations; ICECON(8)for the computation of the ice condenser containment backpressure; REFLEX(3 g)for computation of system ref lood;and TOODEE2(3~ID~11) for the calculation of final fuel rod heatup.

XN-NF-84-21(NP

)Revision 2 The Oonal d C.Cook Uni t 2 nuclear power pl ant i s a 4-1 oop Westinghouse pressurized water reactor with ice condenser containment.

The reactor coolant system is nodalized into control volumes representing reasonably homogeneous regions, interconnected by flow-paths or"junctions".

The system nodalization is depicted in Figure 3.1.The unbroken loops were assumed symmetrical and modeled as one intact loop with appropriately scaled input.Pump performance curves characteristic of a Westinghouse series 93A pump were used in the analysis.The transient behavior was determined from the governing conservation equations for mass, energy, and momentum.Energy transport, flow rates, and heat transfer were determined from appropriate correlations.

The Cycle 4 LOCA analysis(2) assumed that lX of the steam generator tubes were plugged.In the current analysis, the plant was modeled assuming asymmetric steam generator tube plugging: 3.33/of the tubes plugged in the intact loops, and 10.0/of the tubes plugged in the broken loop.The larger plugging in the broken loop results in higher PCTs.The primary coolant flow at full power was reduced by 1.1/from the current measured flow at the plant to account for the assumed average 5X steam generator plugging.Additionally, the core model assumed that the core is 85/ENC fuel, whereas the previous analysis assumed the Cycle 4 core configuration.

Calculations were also performed for the case in which the core is all ENC fuel, representative of XN-NF-84-21(NP)

Revision 2 Cycle 6 and beyond.ENC fuel has a smaller rod diameter than the Westinghouse fuel it replaces.To offset the impact of increased flow area on the LOCA analysis results, the core power was reduced from 3425 MWt to 3411 NWt.System input parameters are given in Table 3.1.The reactor core is modeled with heat generation rates determined from reactor kinetics equations with reactivity feedback and with decay heating as required by Appendix K of 10 CFR 50.Chopped cosine axial power profiles are assumed with the maximum axial peaking factor used in the analysis given in Table 3.2.The analysis of the loss-of-coolant accident is performed at 102 percent of rated power.The core power and other parameters used in the analyses are given in Table 3.1.3.2 RESULTS Table 3.3 presents the timing and sequence of events as determined for the large'break guillotine configuration with a discharge coefficient of 1.0 for full ECCS operation.

Table 3.4 presents the results of the exposure analysis for Cycle 5 composed of 85K ENC fuel.Table 3.5 presents the results of the exposure analysis for a core composed of all ENC fuel.Results of the analyses are given in Figures 3.2 to 3.43.Figures 3.2 to 3.10 provide plots of key system blowdown parameters versus times.Figures 3.11 to 3.28 provide plots of key core responses during the blowdown period.Figures 3.29 to 3.32 provide the ECCS flows in the broken and intact loop during the refill period.Figure 3.33 presents the containment pressure during the LOCA.Figures 3.34 to 3.36 present the normalized power during the LOCA for the three exposure cases analyzed.Figures 3.37 to 3.40 provide results from the reflood portion of the transient for the case in which 85K of XN-NF-84-21(NP)

Revision 2 the core is ENC fuel.Figures 3.41 to 3.44 provide the reflood results for the case in which the core is composed entirely of ENC fuel.Finally, Figures 3.45 to 3.50 provide the response of the fuel during the refill and reflood periods of the LOCA transient for the fuel burnup cases'investigated.

XN-NF-84-21(NP)

Revision 2 Table 3.1'Donald C.Cook Unit 2 System Input Parameters Thermal Power, MWt*Core, MWt Pump, MWt Primary Coolant Flow, Mlbm/hr Primary Coolant Volume, ft3 Operating Pressure, psia In,let Coolant Temperature, oF Reactor Vessel Volume, ft3 Pressurizer Volume, Total, ft3 Pressurizer Volume, Liquid, ft3 Accumulator Volume, Total, ft3 (each of four)Accumulator Volume, Liquid, ft3 (each of four)Accumulator Pressure, psia Steam Generator Heat Transfer Area, ft2-SG1, SG2, SG3, SG4 Steam Generator Secondary Flow, ibm/hr-S'G1, SG2, SG3, SG4 Steam Generator Secondary Pressure, psia Reactor Coolant Pump Head, ft Reactor Coolant Pump Speed, rpm Moment of Inerti a, 1 bm-f t2 Cold Leg Pipe, I.D.in.Hot Leg Pipe, I.D.in.Pump Suction Pipe, I.D.in.Fuel Assembly Rod Diameter, in.Fuel Assembly Rod Pitch, in.Fuel Assembly Pitch, in.Fueled (Core)Height, in.Fuel Heat Transfer Area, ft2**Fuel Total Flow Area, Bare Rod, ft2**Refueling Water Storage Tank Temperature, oF Accumulator Water Temperature, oF 3425 3411 14 143.1 11,768 2250 542 4945 1800 1080 1350 950 636 11,588, 3(12,446)3.505 x 106 3(3.764 x 106)799 277 1189 82,000 27.5 29.0 31.0 0.360 0.496 8.466 144.0 57,327 53.703 80 120*Primary Heat Output used in RELAP4-fM Model=1.02 x 3425=*."ENC Fuel Parameters.

3493.5 Mwt 10 XN-NF-84-21(NP)

Revision 2 Table 3.2 1.0 OECLG Break Analysis Parameters Peak Rod Average Burnup (MWO/kg)Total Core Power (MWt)*Total Peaking (F~)T Fraction Energy Oeposited in Fuel~Fully Moderated Core Voided Core 2.0 3411 2.04 0.974 0.954 10.0 3411 2.04 0.974 0.954 47.0 3411 2.04 0.974 0.954 Cycle 5 (85/ENC Fuel)Peaking'Axial x Engineering

~-Enthalpy Rise (F~H)T 1.316 1.55 1.316 1.55 1.316 1.55 All ENC Core Peaking.Axial x Engineering

.Enthalpy Rise (F~H)T 1.316 1.55 1.316 1.55 1.316 1.55*2%power uncertainty is added to this value in the LOCA analysis.

XN-NF-84-21(NP)

Revision 2 Table 3.3 0.C.Cook Unit 2 1.0 OECLG Break Event Times Event Time (sec.)Start Break Initiation Safety Injection Signal Accumulator Injection Broken Loop Intact Loop End of Bypass Safety Pump Injection Start of Ref lood Accumulator Empty Broken Loop Intact Loop 0.00 0.05 0.65 3.2 15.5 24.31 25.65 40.48 44.2 52.9 12 XN-NF-84-21(NP

)Revision 2 Table 3.4 1.0 DECLG Break Fuel Response Results for Cycle 5.Peak Rod Average Burnup (MWD/kg)Initial Peak Fuel Average Temperature (oF)Hot Rod Burst Time (sec)Elevation (ft)Channel Blockage Fraction Peak Clad Temperature

.Time (sec)Elevation (ft)'.Temperature (oF)Zr-Steam Reaction~Local Maximum Elevation (ft)~Local Maximum (X)*Core Maximum 2.0 2151 69.5 7.0.25 287 9.63 2007 9.63 4.6<1.0 10.0 2060 70.5 7.0.28 288 9.63 2014 9.63 4.7<1.0 47.0 1629 78.5 7.75.47 269 9.38 1993 9.38 4.5<1.0*Values 400 sec into LOCA transient.

13 XN-NF-84-21(NP)

Revision 2 Table 3.5 1.0 OECLG Break Fuel Response Results with an All ENC Core Peak Rod Average.Burnup (MWO/kg)Ini ti al Peak Fuel Average Temperature (oF)2.0 2151 10.0 2060 47.0 1629 Hot Rod Burst.Time (sec)Elevation (ft).Channel Blockage Fraction 69.1 7.0.25 70.1 7.0.28 78.3 7.75.47 Peak Clad Temperature

.Time (sec).Elevation (ft).Temperature (oF)Zr-Steam Reaction.Local Maximum Elevation (ft).Local Maximum (X)*.Core Maximum 292 9.63 2022 9.63 4.9<1.0 292 9.63 2030 9.62 5.0<1.0 274 9.38 2008 9.38 4.7<1.0*Values 400 sec into LOCA transient.

0 E p 5 o e'6erne 8 K6g O Nor i g5 IH~~CI~eR I 5 QEK]5 o gmK CI 1~0 DC COOK 2 17X17~DECL BONs 57 AVE PLUG,10X 343~3%PLUGS Q O u)S 0 K~3 k-Q K C)y 4-9 5 K O 1R, 16 zn 2.4 TAHE AFTER BREAK (SEC)F iqnre 3.P Downcomer Flow Rate Dnring Blowdown Period, 1.0 DECLG Break 1.0 DC COOK 2 17X17 DECL BDN 5X AVE'.PLUG 10/3+3-3X PLUG.12 2D TIHE AFTER BREAK f SEC)3a Figure 3.3 Upper Plenum Pressure During Olowdown Period, 1.0 OECLG Break al D tv Ul X'.y 1.0 DC COOK 2 17X1'j~DECL 8DNi 5l AVE.PLUG,10K 3+3.31 PLUG, 4J CKo Kg O 4 4J K 0 Qo CXg I 1P 1C 20 RA TAHE AFTER BREAK (SEC)Figure 3.cl Average Core Inlet Flow during Blowdown Period, 1.0 DECLG Break

~R LU V)K gg)CI>o 1 0 OC COOK 2 17X17 e OECL BONo 5X AVE PLUGS 10<'+3~3 X PLUG>C)po mS Q O I-D O 4Jy<a D C9 Cl 12 1C 20 2$TXME AFTER BRFAK l SEC)2I f iqure 3.5 Average Core Outlet Flow during Blowdown Period, 1.0 OCCLG Break D bio K J~8 wR K 1 0 OC COOK 2 17X17aOECL BONt 5~AVE~PLUG~10~3+3~3>PLUGS O Dg<o R up X D Z 12 16 2.0 RA TXHE AFTER ORF"'K (SEC)Figure 3.6 Total Break Flow during Blowdown Period, 1.0 DECLG Break 1 0 OC COOK R 1.0 OECLG BON<<a8%5 IjJ wl p Vessel Side~Pump Side TIME (SEC)Figure 3.7 Break Flow Enthalpy Ouring Blowdown, 1.0 DECLG Break tJ 4J g CA g CK 1.0 DC COOK 2 17X17~DECL BOH.5X AVE.Pl UG.10K 3'+3-3X PLUG Oa QO L o P-8 cr.Q K Og 12 1C 20 t4 TIHE AFTER 8REAK (SEC)Figure 3.0 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 DFCLG Break tJ 4J3 CA w~e4 K ld$CK fL 1 0 DC COOK 2 17X17 r DECL BDNr 5>AVE PLUGS 101 3+3 3X PLUGS Og K 4J.og K O 1-o Q O K K Og CK 12 1C 20 2l TXHE AFTER BREAK (SEC)a2 Figure 3.9 F)ow from Broken l.oop Accumulator during Blnwdown Period, 1.0 DECLG Break 1.0 DC COOK 2 17X17~DECL BOND 57 AVE.PLUGi10l 3+3-3X PLUG>lZ 16 20 24 TAHE AFTER BREAK (SEC)2a 32 Figure 3.10 Pressurizer Surge Line Flow during Blowdown Period, 1.0 DL'CLG Break l-0 OC COOK Z 1 0 OECLG t0 ti TZ~E~SE.C)X 8 I Z Vl I O CO I Figure 3.11 lleat Transfer Coeff icient during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NHD/kg Case 1.0 DC COOK 2.1.0 OE'CLG tD ZI TIVE t SEC)Figure 3.12 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NWD/kg Case r Jo~I M bjm 4 g gO X.O DC COOK a a.O DEcLc g 4 nl i 1t N RO tl TXVE t SEC)Figure 3.13 Oepth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case CD c4 U)3 OI 1 0 OC COOK R 1.0 DECLG 5II 5 oJ 8 B lS RD TXME l SEC)Figure 3.10 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, P.U NWO/kg Case R>c 8 2: (I EA ll g 0 CO I a i.O OC COOK Z.X-0 OECLG Figure 3.l5 Q.ÃN U 3f.TIVE (SEC)llot Assembly Inlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 HWD/kg Case 1.0 Dc COOK 2 1-0 DE'CLG 1$t0?I TXHE (SEC)Figure 3.16 I<ot Assembly Outlet I low during Blowdown Period, 1.0 DECLG Break, 2.0 I'1HD/kq Case IO R>c 8 2.'p Vl O CQ I o i.o DC COOK 2.x.o DECL&R9 24 TIME (SEC)32 40 Xl X 8 Z I EA 0 CO I U F igure 3.17 lleat Transfer Coeff ir.ient during Blowdown Period at PCT Node, 1.0 l)ECLG Break, 10.0 MWD/kg Case 1.0 DC COOK Z 1.0 DECLG ZO ZL TINE'SEC)Figure 3.18 Clad Surface Temperature during Blowdown I'eriod at PCT Node, 1.0 DFCLG Break, l0.0 NWD/kg Case l4 R7 OC I Vl O CO I o 1.0 OC COOK 2 1.0 OECLG H X z4 Oo H I-CJ CK bl I 4J CC i8<o lY H N og h Qg Z.O U TIME (SEC)Figure 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 HWD/kg Case (0 QX 8 H (I lA I 0 CO I o 1.0 DC COOK 2 1.0 DECLG Figure 3.20 ZO tl 3t TINE (SE'C)Average Fuel Teotperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 HWD/kg Case (0 Q X 8 I Vl 0 CO I o 1 0 OC COOK R 1.0 OECLG Figure 3.21 Lt 1C ZO R.l TIVE (SE'C))lot Rssembly tnlet Flaw during Olowdown Period, 1.0 OLCI.G llreak, 10.0 llWO/kg Case 10 Kl M 8 R I Vl O CO I 1.0 OC COOK 2.1 0 DfCLG za Z(TINE (SfC)Figure 3.22 tlot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 NHD/kg Case 3C 10 R>C 8 2: I CA O CO I M iM D l-0 OC COOK 2=1 0 OECLt Figure 3.23 1k lS t0 t4 2$TIvE t SEC)lleat Tansfer Coefficient during Blowdown Period at PCT Node, 1.0 DLCLG Break, 47.0 MHD/kg Case Z X lD I Z Vl O CO I Mm U 1-0 OC COOK P.1.0 QECLG LS za Kl TETE (SE'C)Figure 3.24 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 Hll0/kg Case

~N~S Qo~8 Oo 0~s kg 4J lZ gO CI$gp O AJ 1-0 OC COOk 2 1.0 DECL&R>c 8 K I Vl)0 00 I 0 lf 1S EO Rl tl"3E 1 TINE (SEC)Figure 3.25 Depth of Metal-Water Reaction During Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 MWD/kg Case 1 0 OC COOK 2 1.0 OECLG Figure 3.26 3R.'3C It LC t0 U tl TIt>E (SEC 1 Average Fuel Temperature dur ing Blowdown Period at PCT Location, 1.0 DECLG Break, 47.0 MWO/kg Case l0 R>c lD M I Vl 0 CO I o 1 0 OC COOK 2 1 0 DE'CLG I 1t lS 5l RA TAHE (SEC)ee Figure 3.27 (lot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MHD/kg Case 1.0 OC COOK 2, 1~0 OCCLG Figure 3.28 lf fO zl tl TIvE (SEC)Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MWD/kg Case

~8 Oy I.igure 3.29 1t 15 tD ZI 3a TIME AFTER EOB Y (SEC)Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 DECLG Break 1$tD-H El TXHE AFTER EOBY (SEC)-.Figure 3.30 Rccumulator Flow during Ref ill and Ref lood Periods, Intact Loop, 1.0 OECLG Break 300 250 200 150-100 50-0 0 50 100 150 200 Time (sec)After.Start 250 300 350 R>c ED M I Vl ll I 0 CO I Figure 3.31 IIPSI 0 LPSI Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OfCLG Break C V)CQ O 1000 800-600 400 P O O 200 0 0 50 100 150 200 Time (sec)After Start 300 350 I ignre 3.3?Hi'Sl 5 I.PSI Flow during Refill and Reflood Periods, Intact I oop, 1.0 I)ECLG llreak 22 21 P R O O 20 19 18 0 16 15 0 50 100 150 200 Time (sec)-After Start 250 Figure 3.33 Containment Back Pressure, 1.0 OECLG Break 300 350 g)X lD M'C I p Ul 0 00 I a CK 4J O 0 a 4J t'4~l K LL o X~4 Q (0 CO l$0 200 Z40 TINE (SECONDS)SR I Z Vl 0 00 I o Figiire 3.34 Horn" li"ed Pokier,'.C DECLu Break, Z.O Hl'ID/kg Case Zl X 8 (I lh O OO I H.O 160 200 210 210 TINE (SE'CONDS)320 3CO 100 Eigure 3.35 Normalized Power, 1.0 BECLG Break, 10.0 MWO/kg Case i0 320 iso Q.O NO ZOO ZEO TINED (SECONDS)I'igure 3.36 Normal ized Power, 1.0 DECLG Break, 47.0 NWD/kg Case DCC2 REFl 000.1 0 OECLG FULL ECCS FLOV FQ=2.04 1 55 3525 HMT.HIX CORE LESS SPCR 40 180 Z00 ZA0 Z00 TIHE FROM BOCREC (SEC)3ZO 400 R>c CD I Vl 0 CO I PO tV a I=i@ore 3.3/lief loocl Core Mixlisre I.evel, 1.0 OECI.G Break, Cycle 5 Core DCC2, REFLOODo 1.0 DECLG FULL ECCS FLOW FQ=2.0$1.55 3425 HWTiHIX CORE LESS SPCR 40 80 160 200 2AO 280 TIHE FROH BOCREC (SEC)<00 R>C ID (I Vl O 00 I U l inure 3.3A Reflood fjowocoioer Mixture Level, 1.0 DECLG Break, Cycle 5 Core OCC2 REFLOOD, 1.0 DECLG FULL ECCS fLOW F9=2.0i 1.55 3425 HMT,HIX CORE LESS SPCR 40 ao 160 200 240 2SO TIHE FROH BOCREC (SEC)360 400 R>c CD R (I I/l 0 CO I FO fO o I icjur>>3.39 Hei'lood tipper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core OCC2 REFLOOD.1.0 OECLG FULL ECCS FLOW FQ=2.04 1.55 3525 HWTiHIX CORE LESS SPCR 40 SO 120 160 200 RAO 280 TIME FROH BOCREC (SEC)I ignre 3.40 Core I-looding Rate, 1.0 DECI.G Break, Cycle 5 Core 380 400 R>C 8 R (I Vl 0 CO I~PO a OCC2.REFLOODo Al L ENC CORE-FOH=1-55 40 40 aso zaa zoo zea TXHE FROM BOCREC (SEC)3zo eao I igure 3.41 lhefloori Core HixIore l.evel, 1.0 DECI.G Break, All ENC Core OCC2.REFLOOO.ALL EHC CORE-FOH=1.55 LLJ PA X H K o O O a 40 IO 160 200 240 ZIO TIME FROM 80CREC (SEC)360 400 I igure 3.02 Ref loorl Onwncomer Mixture Level, 1.0 OECLG Break, All ENC Core OCC2 REFLOOOo ALL ENC CORE-FOH<<1 55 MO$0 44 X60 Zao Z.40 nl 0 TINE FROH BOCREC (SEC)Eigure 3.03 lief lood Upper Vier>iun Pressiire, 1.0 OECl.G Break, All ENC Core'360 400 R X 8 2 (I~'I/I 0 CO I a OCC2 REFLOOD, ALL EHC CORE-FOH=1.55 320 0 126 L60 5)0 240 TIME FROM BOCREC (SEC)I ignore 3A4 Core Ref loodirlg Rat.e, 1.0 DECI.G Break, All ENC Core 360 ioo

-FQ=2.05-FOH~1.55-2 HM tL g 5~al I bl CL Da K" K td CL'K id/C9 z, H Cl Qo O 1.PCT HOOE (HOOE 22 AT S-62 FT-)2.RUPTUREO HOOE (NOOE 11 AT 7.00 FT)CI CI%.0 40.0 S0.0 I'igure 3.45 200.0 320.0 360.0 120.0 160.0 200.0 Z(0.0 TIME-SECONDS TOOOEE2 Cladding Temperature versus Time, 1.0 DECLG Break, 2.HllD/Kg Case, Cycle 5 Core

-FQ=2.04-FOH~1.55-10 H 1-PCT NODE (NODE 22 AT$.62 FT)2..RUPTURED NODE (NODE 11 AT 1-00 FT-)40-0 I:ignite 3.06 80.0 ZS0.0 32,0.0 160.0 200.0 240.0 TIME-SECONDS TOODCE2 Cladding Temperature versus Time, 1.0 DECI.G Break, 10.IIWD/Kg Case, Cycle 5 Core 360.0 40.0 N 1-PCT)JODO'NODf Rl AT$.31 FT)(0 hJ hJ K C9~UJ~Q c5 I)LJ f)'o CJ: LL lLJ 0 K QJ CI)-5 C9 M Cl Qo g D 0 RUPTURED HODR l'NODE 1<.AT 1.15 FT-)Cl Cl Q).0 210.0 320.0 360.0 120.0 40.0 80.0 160.0?00'2<0.0 TINE-SECONDS I igrrre 3.47~l000l.:L2 Claddirrg Temperature versus Time, 1.0 OECLG Break, 4/.Hll0/Kg Case, Cycle 5 Core 40.0 RX 8 R I Vl 0 0)I

-FQ~R.O{-FOB=1.55" 2, HM i.PCT NODE (NODE 22 AT$.62 FT.)2-RUPTURED NODE (NODE).L AT 1.00 FT.)40.0 I'igure 3.0A a0.0 320.0 360.0 160.0 200.0 2(0-0 260.0 TIHE-SECONDS TOOOLC2 Cl i~lrliug TemperaLure versus Time, 1.0 OLCl.G Break, 2.NWO/Kg Case, All l:NC Core lORO

-FQ~L.0$-FOH=1 55-10 H 1-PCT NODE t NODE 22, AT 5.62 FT.)RUPTURED NODE t NODE 11 AT 1.OO FT.)40.0 I i gurt 3.49 320.0 ao.o 120.0 160.0 200.0 2io.o 280-0 TXHE-SECONDS f00f)EE2 Clarlding funperature versus 1 ime, 1.0 DECLG Break, 10.NWf)/Kg Case, All ENC Core FQ<2.04-FOH 3.=1-55-h7 M 1.PCT HQOE (HOOE 21 AT 0 31 FT)Z.RUPTURED HOOf (HOOE 14 AT 7.15 FT 1 40.0 Figure 3.50 320.0 80.0 120.0 160.0 200.0 240.0 280.0 TIME-SECONDS 100DEE2 Cladding Temperature versus Time, 1.0 DECI G Break, c17.HWD/Kg Case, Rll ENC Core l

64 XN-NF-84-21 (NP)Revision 2

4.0 CONCLUSION

S For breaks up to and including the double-ended severance of a reactor coolant pipe, the Donald C.Cook Unit 2 Emergency Core Cooling System will.meet the Acceptance Criteria as presented in 10 CFR 50.46 for operation with ENC 17xl/fuel operating in accordance with the LHGR limits noted in Table 2.1.That is: 1.The calculated peak fuel element clad temperature does not exceed the 2200oF limit.2.The amount of fuel element cladding that reacts chemically with water or steam does not exceed 1 percent of the total amount of zircaloy in the reactor.3.The cladding temperature transient is terminated at a time when the core geometry is still amenable to cooling.The hot fuel rod cladding oxidation limits of 17/are not exceeded during or after quenching.

4.The core temperature is reduced and decay heat is removed for an extended period of time, as required by the long-lived radio-activity remaining in the core.

XN-NF-84-21(NP)

Revision 2

5.0 REFERENCES

(2)(3)(4)(5)XN-NF-82-35,"Donald C.Cook Unit 2 LOCA ECCS Analysis Using EXEM/PWR Large Break Results," Exxon Nuclear Company, Inc., Rich-land, WA 99352, April 1982.XN-NF-82-35, Supplement 1,"Donald C.Cook Unit 2 Cycle 4 Limiting Break LOCA-ECCS Analysis Using EXEM/PWR," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1982.XN-NF-82-20(P), Rev.1, August 1982;and Supplement 4, July 1984,"Exxon Nuclear Company Evaluation Model EXEM/PWR ECCS Model Up-dates," Exxon Nuclear Company, Inc., Richland, WA 99352.XN-73-25,"GAPEXX: A Computer Program for Predicting Pellet-to-Cladding Heat Transfer Coefficients," Exxon Nuclear Company, Inc., Richland, WA, August 13, 1973.XN-NF-81-58(A), Rev.2,"RODEX2: Fuel Rod Thermal-Mechanical Re-sponse Evaluation Model," Exxon Nuclear Company, Inc., Richland, WA.99352, February 1983.(6)"Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50.(7)(8)(9)(10)(12)U.S.Nuclear Regulatory Commission letter, T.A.Ippolito (NRC)to W.S.Nechodom (ENC),"SER for ENC RELAP4-EM Update," March 1979.XN-CC-39, Rev.1,"ICECON: A Computer Program Used to Calculate Containment Backpressure for LOCA Analysis (Including Ice Condenser Plants)," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1977.XN-NF-78-30(A),"Exxon Nuclear Company WREM-Based Generic PWR ECCS Evaluation Model Update ENC WREM-IIA," Exxon Nuclear Company, Inc., Richland, WA 99352.May 1979.XN-NF-82-07(A), Rev.1,"Exxon Nuclear Company ECCS Cladding Swelling and Rupture Model," Exxon Nuclear Company, Inc., Richland, WA 99352, March 1982.G.N.Lauben, NRC Report NUREG-75/057,"TOODEE2: A Two-Dimensional 1>>D.C.Cook Unit 2 Technical Specification, Appendix"A" to License No.DPR-74, Amendment No.48.

66 XN-NF-84-21(NP)

Revision 2 (13)XN-NF-82-32(P), Supplement 2,"Plant Transient Analysis for the Donald C.Cook Unit 2 Reactor at 3425 MWt: Operation with 5%Steam Generator Tube Plugging," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984., (14)XN-NF-84-21(P),"Donald C.Cook Unit 2, Cycle 5, 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.(15)Letter, H.R.Denton (NRC)from J.C.Chandler (ENC), Re: Support-ing Documentation for Unit 2 Technical Specification Changes for Cycle 5 Reload, dated May 7, 1984 (JCC:076:84).

(16)XN-NF-84-21(P), Revision 1,"Donald C.Cook Unit 2 Cycle 5-5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, May 1984.

XN-NF-8'4-21(NP

)Revision 2 Issue Date: 8/7/84 DONALD C COOK UNIT 2 CYCLE 5 Sio STEAN, GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Distribution J.C.Chandler W.V.Kayser G.F.Owsley H.G.Shaw T.Tahvili AEP/H.G.Shaw (10)USNRC/J.C.

Chandler (15)Document Control (3)