ML20095D231

From kanterella
Jump to navigation Jump to search
DC Cook Unit 1 LOCA-ECCS Analysis for Extended Exposure
ML20095D231
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 08/03/1983
From: Kayser W, Stout R, Tahvili T
SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER
To:
Shared Package
ML17326B148 List:
References
XN-NF-83-61, NUDOCS 8408230266
Download: ML20095D231 (33)


Text

- _ . - _ _ .

XN NF 83 61 l

f
D.C. COOK UNIT 1 LOCA-ECCS ANALYSIS I FOR EXTENDED EXPOSURE l i

AUGUST 1983 l

l l

RICHLAND, WA 99352 l

l l ERON NUCLEAR COMPANY,Inc.

BfhD 0

XN-NF-83-61 Issue Date: 8/3/83 D. C. COOK UNIT 1 LOCA-ECCS ANALYSIS FOR EXTENDED EXPOSURE Prepared by: 7/M [ f)

T. 'Tahv il i 7h7/83 PWR Safety Analysis Approved by: Mh W. V. Kayser, Manager 7/17 /P 3 PWR Safety Analysis L&

Approved by: , k, _ 61 1. #7JJ W //

R. B. Stout, Manager

  • Licensing & Safety Engineering Approved by: /

G. A. Sofer,' Manager Fuel Engineering & Technical Services gf ERON NUCLEAR COMPANY,Inc.

1

)

NUCLEAR REGULATORY COMMISSION DISCLAIMER IMPORTANT NOTICE REGARDING CONTENTS AND USE OF THIS DOCUMENT PLEASE READ CAREFULLY This technical report was <1enved through research and deveicoment programs sponsored by Exxon Nuclear Company, Inc. It is being sub-tmtted by Exxon Nuclear to the USNRC as part of a technical contre bution to facilitate safety analyses by licensees of the USNRC whicn utilize Exxon Nuciear faDricated reload fust or otner tecnnicai services provided by Exxon Nuclear for licht water power reactors and it is true and correct to the best of Exxon Nuc! ear's knowledge, information, and belief. The informanon contained hersin may be used by the USNRC ,

in its review of this report, and by limnsees or acolicants before the USNRC which are cusemers of Exxon Nuclear in their demonstracon of comoliance with the USN RC's regulacons.

Without deroganng from the foregoing, neither Exxon Nuclear nor any person acting nn its behaif:

A. Makes any warranty, express or implied, with resoect to the accuracy. completeness, or usefulnes of the infor.

mation contained in this document, or that the use of any information, accaratus, method, or process disclosed in this document will not infnnge privately owned ngnts:

or .

B. Assurnes any liaoilities with respect to the use of, or for darrages resulting from the use of, any information, ao-paratus, method, or process disclosed in this document.

XN NF F00,766 1

I s

e

- +-- , - - r.

w ,_

c -3 i XN-NF-83-61

=

i TABLE OF CONTENTS Se'ct ion - Page 1.0. INTRODUCTION AND

SUMMARY

........................... ~1

'2.0 ANALYTICAL AND SYSTEM'M00ELS ....................... 5

' 3.0 . SYSTEM ANALYSIS RESULTS ............................ 6 4.0L CONCLUSIONS ........................................ 27

5.0 REFERENCES

......................................... 28 s

I

+

1

c .

-s .

< ii XN-NF-83-61

t

~

~

LIST 0F TABLES

~

i <

~n i Table No. Page i

p-1.1. 0.C. Cook Unit 1 Exposure Sensitivity Results ... 3 4

- 3.1. 0.C. Cook Unit 1 Limiting Break Event Times' (1.0 DECLS) for 48 GWD/MTM Peak Pellet Extended Burnup Analys is . . . . . . . . . . . . . . . . . 7 p- =

I L- ,

i i

1 i

v Y

s: s

,'. 4 P m f

c.

t s

?

~

" iii XN-NF-83-61 LIST OF FIGURES Figure- Page

~

," 1.1 0.C. Cook Unit 1, Allowable' Total Peaking Factor As a Function of Peak Pellet Exposure .............. 4

'3.1' Axial Peaking Factor versus Rod Length ............. 8 3.2 Blowdown System Pressure' ........................... 9 3.3 Blowdown Break Flow Rate ........................... 10 3.4 Accumulator Flow Rate to Intact Loops .............. 11 3.5 Blowdown Core Inlet Flow Rate ...................... 12 3.6 Blowdown Core Outlet Flow Rate ..................... 13 3.7- Blowdown Hot Assembly Inlet Flow Rate .............. 14 3.8 . Blowdown Hot Assembly Outlet Flow Rate ............. 15 3.9 Blowdown PCT Node Cladding Temperature ............. 16 fs-3.10 Blowdown PCT Node Volume Average Fuel Temperature ........................................ 17 3.11 PCT Ncde Blowdown Heat Transfer Coefficient ........ 18 3.12 PCT Node Slowdown Depth of' Zirconium-Water Reaction ........................................... 19 3.13 . Normalized Core Power .............................. 20 3.14 -ICECON Containment Back Pressure ................... 21 3.15 Reflood Upper Plenum Pressure ...................... 22 3.16' Core Reflooding Rate ............................... 23 3.17 Reflood Downcomer Mixture Level .................... 24

-3.18 Reflood Core Mixture Level ......................... 25.

3.19 Cladding Surface Temperature During Heatup for ENC' Fuel at 48 GWD/MTM Peak Pellet Burnup .......... 26 i' .

1 XN-NF-83-61

1.0 INTRODUCTION

AND

SUMMARY

In 1976, Exxon Nuclear Company (ENC) performed a LOCA-ECCS analysis for ENC-fabricated fuel in the Donald C. Cook Unit I reactor and established peaking limits (l) assuring conformance to NRC 10 CFR 50.46 and Appendix K criteria.(2) Following the 1976 analysis, ENC performed an updated LOCA-ECCS analysis with the ENC WREM-IIA model and tne ENC ice condenser containment code, ICECON. That analysis was ^ documented in the XN-NF-81-07 report in February of 1981.(3)

This report extends the LOCA-ECCS results presented in XN-NF-81-07 to a peak. pellet exposure value of 48.0 GWD/MTU from the current 1imit of 42.2 GWD/MTU. The analysis was performed using the WREM-IIA ECCS evaluation model, with the following EXEM/PWR ECCS evaluation model(4) modifications:

. Fuel rod stored energy and fission gas release calculations were performed with the R00EX2(5) code.

. Fuel rod swelling and rupture was calculated with the ENC /NUREG-

'0630 clad rupture / blockage model.(14)

. The EXEM/PWR revised steam cooling model(4) was used in the T000EE2 heatup calculation.

The LOCA- analysis was performed for the previously established 1imiting break, the equivalent double-ended spiit break of the cold leg (1.0 DECLS).

Figure 1.1 plots the calculated LOCA-ECCS allowed total peaking versus

- exposure for ENC fuel in the D.C. Cook Unit I reactor. The current analysis

.is represented by the final point in F igure 1.1. The remaining values are

c  ;

l l

l I

2 XN-NF-83-61 i

'those presented in XN-NF-81-07. The corresponding linear heat generation rates and ECCS results are given in Table 1.1. The end-of-life (E0L) calculated peak cladding temperature (PCT) is 17360F, occurring at 262 seconds into the' accident at a location 9.25 feet from the bottom of the active core. As in the previous analysis, it was assumed that one of the LPSI pumps had failed. An earlier sensitivity study (15) showed that peak clad temperature (PCT) increased 420F when a conservative' estimate of maximum LPSI flow was assumed. Assuming the same PCT increase in the current analysis for the maximum LPSI flow case, the PCT will be 17780F, Operation of D.C. Cook T

Unit 1 at or below allowed total peak ing Fg of 1.82 and Fag' of 1.55 at a peak pellet burnup of 48 GWD/MTV assures compliance with NRC 10 CFR 50.46 LOCA-

'~

ECCS .1icensing requirements.

Details of the analytical models used are described in Section 2.0.

Section 3.0 shows the complete calculated results for the system analysis and the end-of-life ENC fuel heatup analysis. Conclusions are given in Section 4.0 and references in Secticn 5.0.

l

]

~ - _ _ _ _ _ - _ .

Table 1.1 D.C. Cook Unit 1 Exposure Sensitivity Results 12.0 23.5 34.5 42.2 48.0 Peak Pellet Burnup (GWD/MTU) BOL T 2.07 2.10 2.04 1.98 1.89 1.82 Total Peak in9, Fq ,

1.55 1.55 1.55 1.55 1.55 1.55 Enthalpy Rise, Nuclear, Fhi Peak Linear lleat Generation Rate 13.62 13.00 12.52 14.24 14.45 14.03 (kW/ft) 2199 2177 2195 2185 2186 1736 l

Peak Clad Temperature (PCI), OF l

Max. Local Zr/ll 20-Reaction, % 6.42 6.09 6.25 S.95 S.62 2.26

<l% <1% <l% <l% <l% <1%

Core Wide Zr/Il 20-React ion, %

47.'i 70.9 73.5 85.7 101.1 124.6 llot Rod Burst Iime, sec.

ilot Rod Burst Localion, t t. 6.0 6.25 6.5 6.5 6.75 9.75 230 232 263 271 294 262 Iime of PCI, sec.

7.81 7.0 7.25 7.25 7.50 9.25 PCI Location, ft.

Max. Zr/Il2 0-Reaction Localion, fL. 7.50 7.0 7.25 7.25 7.50 9.75 5

M b

b l

l

l 1 '

i 1l a M1 { t'3 r

o i 0 t

. 6 c

)

a F

2 8 g 1

n i

k

) 0 ae 9

8 er 8 P u 4 e 0 s

. ( 5 l o 1, ap 2 6 M T

t x oE 2 M T 4 / t

) ( D ee 8 W ll G bl 9 g ae 1,

wP i 0 E o

. 5 4 R l k U l a 4 S Ae 3 O ,P

( P X 1f 9 E o

) t 4 T in 0 E no L Ui i 0 L t

. 2, 3 E k c 5 P on ou 3 K Cf 2 A

( E .a P

C. s G Da

)

0 0 1 i

. . 2 1 2, 1 0 e 2

r 1 u

(

g i

e F i 0 1

)

7 0

2, 0

(

- _ - . 0 o 0 o 0 0 0 0 9 2 1 a.

1 i 2 2 2 o c-F iUa=}=E.Q"*.eM 1 ll 1llllilIfl\!!\1ll' l l

'T 5 XN-NF-83-61 2.0 ANALYTICAL AND SYSTEM MODELS The O.C. Cook Unit 1 extended burnup. analysis used the ENC WREM-IIA PWR ECCS evaluation model(6,7,8,9) and the following EXEM/PWR ECCS models:(4)

. ENC /NUREG-0630 clad rupture / blockage model

. Revised steam cooling model

. RODEX2 stored energy and fission gas release model The ENC ECCS evaluation model used in this analysis consists of the following computer codes: RODEX2(5) code for initial rod stored energy and internal fuel rod gas inventory calculations; RELAP4-EM(10) for the system and hot channel blowdown calculations; ICECON(11) for the computation of ice condenser containment back pressure; REFLEX (12) for computation of system reflood; and T000EE2(13) for the calculation of hot fuel rod heatup.

6 XN-NF-83-61 3.0 SYSTEM ANALYSIS RESULTS The D.C. Cook Unit 1 ECCS extended burcup analysis was performed for the previously identified limiting large break, the large cold leg split break with the break area equal to twice the pipe cross sectional flow area. This break is referred to as the equivalent double-ended cold leg split break (1.0 DECLS). The analysis was performed for a burnup condition with the peak pellet exposure equal to 48 GWD/MTM. The radial peaking was set at 1.55, with a maximum ax ial peak ing f actor of 1.17 shown in F igure 3.1.

Calculated event times for the 48 GWD/MTM peak pellet extended burnup ECCS analysis are given in Table 3.1. RELAP4-EM system blowdown results are given in Figures 3.2 through 3.6. Figures 3.7 through 3.12 present results of the RELAP4-EM hot channel calculation. Extended decay power is shown in Figure 3.13, and the ICECON computed containment pressure is given in Figure 3.14. REFLEX reflood results are shown in Figures 3.15 through 3.18. End-of-life T000EE2 results with Fh of 1.82 and FaH of 1.55 are shown in Figure 3.19.

~.

7 XN-NF-83-61 Table 3.1 0.C. Cook (Jnit 1 Limiting Break Event Times (1.0 DECLS) for 48 GWD/MTM Peak Pellet Extended Burnup Analysis Calculated Event Event Time (sec)

Start 0.0 Initiation of Break 0.05 Safety Injection Signal 0.65 Begin Accumulator Injection, Broken Loop 2.06 Begin Accumulator Injection, Intact Loop 15.50 End-of-Bypass 22.71 Begin Pumped Safety Injection 25.65 Accumulator Empty, Broken Loop 32.76 Bottom of Core Recovery 38.99 Accumulator Empty, Intact Loop- 50.36 Hot Rod Burst Ti'me 124.6 Peak Cladding Temperature Time 262.0 s

-_ _ _ - _ _ _ _ - _ _ _ __.--__l_ _ _ _ _ - - _ _ _ _ _ . _ - _ _ . ___ _ ._ _ . _ _ _ _ _ _ .

_ l n

c eat $a-0

_ _ ~ . 1 1

0 3

1 '

0

=

L F

9 1

3 0

  • 7 0 1

1

=

Z 7 F i 0

4 h t

2 g 4 n

. e

= I D . s.

oHT d 0 G l o

l D I s A E u L H s r

C e 0 .

. s.

c V E v 1 I r T o C A t

Y c L a C E f a 4 R g 8

. - n

. 8 i

. k 1 a

= e l'

Q F l a

3 i L ,

0 x E A U

F 5 1 1 2 .

X ,

0 3

5 e 1 r u

g 1 i F

K 1 O ,

0 O ,

C C

D - 0

- - ~

.a 4 oa aA

  • aA *a .d 1 Woe 0Gk u2HMGWD

- I llll ll1l1lllll! :l

9 XN-NF-83-61

. . . . . W i

g 3

U U W &

m

U / - A m - -

ax g

  • w C 1 Z

3 w g 1 o O m a Q

  • 3 O

gz N Lu =

J w M k  !

C O 3:

M W 3 J

U gzH =

W H Q

C 9

. m

= e u

O M O O "

C O

U -

c C

. , , i i a M M M N$ NI

( dISd ) 83SS38d HnN3"Id 83ddn

h l

I 10 XN-NF-83-61 e i i i i W g

g O

D IM m Ln

(.3 w m .

ax

~-

e O

2 Z LM cr 2

O cz2 2 Q 3 2 .

a c: -

O 14 J & %ca cI2 11.

G 5 in ta =

J _

N HE E U =

LM P- I C 3 o

. l a -

e M

M O

O  ?

U E u - ,

C g g t I f M M M N I TSRP ( 33S/W87 ) 3108 MO73 ( TS r ) NOIl3Nnr Md3M8 8

m._. .

1 -

11 XN-NF-83-51

. . . . . M g .

% E C

e a O a D W u m W 2, e - e m .

g -

w M e C w Z W 3 & 3, o x C  :::: --

2 C

seW 3

c a e- -

cza LL  :

C b c

M W $

a u

e Mr -

=

tu F- g C v v

C e

M "

e e

M * .

O m O o O ~=

y =

~

, .I

~

Q w

, , , i i W M MS M NI OMP -(03S/W81) 3108 MD 1.4 (1361NI) 801010WWOOOd ..

4 s

l _ - . . - . - - . . . . - - - . . .

M e-o em 12 XN-NF-83-61

. . . . . W g

B W a v

a cp 9

O m -

- .~ "

M 3 C

2 y y 3 Ct: ~'

C e o o

o

~

5% g 5 a - .

E LL h C 0 in w =

E J

O Ur H 53 W r c Q C i -

o .

o M

C v C h u C, -

u -

Q f i 1

I t ocoot oooos ococa ooom o oooot- ocorS 2EMP ( 33S/W87 ) 3108 M0ld 137NI 3H03

  • sad

s-e wr=

  • g 13 XN-NF-83-61 l

. . i i i W 3

e D W m U1 "3 u -

g 2

m -

  • u 3 Z,

b x -

O m 3a C  :

3 .

3% W C O 1-- @

J 5-LL.

CIll G b us w e J .

gI =

u H W f-- 2 C .:::

C e

- n M

M o P O '

5 u -

O u - -

o I I oooos oooo, ocooc ocoaz oooot o oco#

SEMP ( 33S /W 87 ) 3108 Mold 1371n0 3803

  • sad

l 14 XN-NF-83-61 i

, , , , , u z -

o z

E M

U T r

0 s =

Z - I

. O  %

3 w 6 m tn a O w Q m - - O -

  • M b C

2 3

w g C h

O m ?_

Q o 3 - -

22w $

O <

J P-C k Y C =

M W 5 J . -

SIH e U -

W H I o =

=

C N,

y Va O

O 3 O

g U -

. [

Q x

1 9 1 oca ost om os o os- ocfE SAP (335/W87) 3108 Mold 137NI A18W3SSO 10H t

u n, m - - _ _ _ _ _ _ _ _ _ - . _ _ _ - .

15 XN-NF-83-61

. . . i i z - -

m m

x

. 0 1

u =

r -

m ,

o e z ,

- o o w s g m

~

o m . -

g t w u o z E b 2 x -2 o e =

c 8 2 . -

.x <

o; ~wt-o a u. =

c =

us w se J .

3rH u s y &

m

=

o

. x M

o o o 6 o ._c, u -

. u O

, , _z-ora ost art os et o o#

8Mr ( 33S /W87 ) 3168 M0ld 1371n0 A18W3SSO 10H h --

16 XN-NF-83-61 z - -

m o

E

. y U

p . - .

3y N

C b 1 - g 3 W $

m O @

m . . .- -

M "

Z C '=

3 w e o E C O

m 2

3 - -

sm 5 O w z

-I >-

M LL U G  :-

M J W 5 I .

[ -

dI e U t-g  :

W H I O =

=

C e

c.

O a C u U 5, U -

. C O

e e i i i A Oost 00ST 00t1 00TT 000T 008 d 22BS ( 3 ) ( 10d ) 3Mnid83dW31 30038n5 0010

17 XN-NF-83-61

. . . . i W z -

t o

E I -

u ~

C H -

9

- o u  ?

o W u u

a ln -.

O w $

ax o C 5 Z W -

3 m #

C C m C - '

e 3 . 83 %

C W f J F-m LL-

  • CI- Nb a

u .

3r m zv 32 W P- E C-Q 4 05-

.m O

m

  • C e-o F y M -

C ,,

C C U 5 u - .  ;

C _

g t t t I mg g g MR WT Mtf d

-215 ( 3 ) ( 13NNdH3 10H ) 3BnidM3dH31 303 *0A0 3WG10A r  ;

h b'emm u na -mm _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _

- ~ . _ _ _ _ . _ _

18 XN-NF-83-61 l

, , , , , , , . . . . . . . . . , . . . . . . . . . . . . . . . , , , . . . . . . . , , g z -

D -i E .$i U

e 1

u p -

v

.O -

8 1 u O Q 3 w -

e cn m U w 5 ea - - e u N w w y C -

Z wg e

o 3 =

O - #

Q _

3 . . .g i C d y S J W 5 M k 3 C =

W W 2x J . -

Ur U M i W P- -

C 9 o

m m

o

~.mme s

o C C

U E

- ._n g -

~ w C

C 2283 ( d-213-MH/n18 $ ( 13NNdH3 10H J 'd3303 'SNdM1 103H

19 XN-NF-83-61

+

, . . . i W

Z -

2 o

E u

y .5 g =

C Z ~

G U 5-3 '

W [

m m O o -

m . -

g c

  • x .=

G "a Z w 3

C E.

C =

3 - -

3Ew I C  :: =

-J >- R.3 m u. .: a c =v m

N W U

J . -

UHI ==5-

=L W H +3 ~

C vm

3 C '

e -

  • N e

.g O o C u O  :

g eS::n O b C

9 f f I f uwo otoo o sooo o sooo o sooo o 2000 o con %

22WO ( S IIW ) NOI13038 02H-8Z .50 Hid30

r  !- i! Ii *, .f . I 8 ,=k h*

, .j i 4

-  :: " ~

0

- - - - - - 4 S

L ,

0 C . 5 3

E D

0 1 0

. . 6 3

L E

U F

5 .

01 1 . 5 X 1S 5 D 1 N O r e

R C w E E o W .

. MS t(

P O e P r E o M C D I E l i

e 2 T z 0

I . . 5 L

i L l a

A s M ii r

R o O N N 0

. . 0 1 1 3

1 K 3 O

O e C ar

. i

. 0 ig C .

5

. f D

., S y$

OZ g3o 8N't Eke ll 1Ill ,I l l jlll l lI

21 XN-NF-83-61 1

, , , , , , 3

- 3 e

5 z

zo7e

=

~

m e E o -

- 3 "s_

m z s C e .5 u .

m-W u

H M e a .

u u

w Q

c l d .

g x

C C

u u - ~2 c

=. , , ,

oc sa n t2 a 02 81 E

,++Bd ( dISd ) 3MnSS3Bd 1N3W18ddWO3 83M07 4

,2 ..

yr.
"
e. =-:- .. .. ;

.r..-t I'

22 XN-NF-83-61  ; ..*J. g

. -c.y!.. .-

g , f, .'

+,e+-. .:

, , , , , , 3

' t u,

. r,

. 3 'E. -

. ;< 9 .. .

Oe,,

.. f : - ..

.J -

g ^ .

... , j- ., ?..-

.1. . . . .

v..4 n .

e9 x .p -

< .  ;. w . ,.

= N 9'

f

~

3 l h., g.

I 1

k' ,.. .5 .

. .. e

,C - e 2:... - . a.. #.

t U

n. ;(, .-
  • 8

- 5e -

i 3 f

~

.j@@ 4 g a np-  :-R _- i '.,.

"o

= .

. $+ g.b*s.

ct g . I

{

-" e C m..' v.

J..

g  % ,.

- 3 's-m . 5 e

't m s , .;

g c e

Z ,

0"I Q

- u w ~ -- e -

.i;.

I = .

a:: i . : = z-ys 3 , . = _

~ .=

,3 =

i. =

, ,  :.- n gg D a . . . , .

A

= g - _

3. i> . .

ol I J g ,

g n

c:

C j =

. u w s - n& r- ,_

g .. t ..

y =

1

= -4 u . .. , . 4 - -

. g  ; .= _

s: :* ,.

l p- y [Q/.3.! i _;

m* ,

/ I

, ., - ): .

I ,

=

0 'E Y .

  • _g. t- '

Wn ,

). "O, ::.. -

c ,.

s .. . i,4 c: ' '; ', -:

. pl, ,.. '/

. a o m c.

i- a e-; . ::>

pt g .; . 9 a. . -

y l .

.:g .:a e.e :

e, ,

ci -

/  : '

v1 '

/

-,I o u.- i.

i.

l
o. s I 3

t,

'[ t a t 1 1 )

te or st tc s2 >2 02 R 2N+d ( dI54 J 380553Hd HON 3'id 83ddn

_ _._ ___ =__ _ <

23 XN-NF-83-61 1

1

)

, , i i . . 3

- 3 e

i f

- ,I -

?

i \

l

U i -

~ -

8 1

! c e o I .5 o -

G n o 5 H

s - , z~

e m, I e i

I' -

.5 3, wl  ; i =

E  : 1 se >

1' ~g e,= d e i e o a 2' .

l

=  ;

a  ; , = M g i 5 a e

c. .

u

e. ' ' -

c' ,! "I .t'. g 8

" 5 e

.' - y

e d

J i

s or

w. '

1u i x

g c: <

t C. .. , .,

"'  : 3 e

4 / 1 MI CI i

/  :

l O' -/ ,

U. i 1 J.*

QF i c '

y l

g , . .

N- 1

, .; ,.2 o*2 s *t 2*t so t*3 09 IA ( 33S /NI ) Sida G03733M

I e _.. _ _ _ _ _ _ -.. _ _ _ _ . _ . -

24 XN-NF-83-61

. . i i . . . 3

- . 3 e

't ,

1

- i

's

.m 4

l 1 =. uo

! w w

i  ! =

- e o

c.: 1 aur -

Ik . 6

  • Cf.

v c Mi i e >

M I t -

e E s t - a z ,- 4 i c w ,

a g- '  ! E' E

.sk I i

1 g == zx

,t . =

e z

m; .

e c b i = -

d ci i et c- I' -32

~

2 i

=i - -

s C

[

o =

! .= =

  • , W C m !' c

!. i ~

., 2 l- L :.-

H w;

t =

a a, s i

c'.. .

4

l. e m.

.- 1 .

.i  ;

  • s a l u
M- ' l

=

ot i

.F Q:  !  ;

u u, - I or 73 c' ]

I

' 1 I , , , I l.

l sz 62 oz at it # # 1 l

'dH ( 13 ) 7343'i 3MG1xIW 83WOONMCO

4 gce g g @hJ M 99 6.M w p pe e eeee m gm.s ee4 ms g g g , 3 25 XN-NF-83-61 l

l

. . . . . r 8 1

g 3

k.

h g =v G

a

\

\- l 2 ct! \.s I. 3

-s, A[ \s 13 3 -

I s w C

Zl '

w' s n en E:  !. c 3* 's 9 E ~~c

h. \, l 5

, e,

  • \ ~S C!

C,

. e%

e Cp  %

\

Sg

  • - N' 2 l ., # .=

\

mj '

s ..

,N  %,

1 w

I o '-  :

s*s t C s x

s, 12 We  % e

o. 's  ;

Ci N O. N N,

c x .

t , i e e ' N.x ,

I I l g 3 $ ) C JH ( 13 ) 13A37 3801XIW 3800 ,

n

O XN-NF-83-61 1 I t I i 3

9%

~ 0 2

8L l

=

ci 5 b o

  • / . e f -

f e 5_5

  • 4 g f

N { s e* \

a

?

! * .t n

c' sm 5~ -

" ~

wo oe Z v=

w c

U

=a n i *E  %?

u-

/ V e l 3w 91 JQ V

1 EE 5

w i s

i l U 6

C* E UO v

l H- c=

1 SM no es  : s r

W 4

,'s cea N cy o 4 e

3 N e ,.

T6

,

  • O n\ '& cu 1

b M

~  : .

g%

-9 i

g *Z Uw t.

1-

- M O g p P '

t. e 3l 4 * ,

a.-

c Q QI

  • e.

1 M O = w 9*e U U 5 hl N W \ ,

e w

\ s. ***

o

. E '* m

. > a -

g-

, e ' t -

0052 00 0 gt 00 0 *A

  • 3 -

38 it!M3d 0 i

, .___. ~ _ . , . . _ , . , _ _ _ , _ _ _ _ _ _ _ . . - - . _ . _ . . - . . , . -. , _ .

l 27 XN-NF-83-61 4.0' CONCLUSIONS The analysis of the limiting break (1.0 DECLS) for the O.C. Cook Unit i reactor with the ENC WREM-IIA and selected EXEM/PWR ECCS evaluation models T

. shows that the reactor can operate at allowed total peaking Fg of 1.82 and FaH of 1.55 at a peak pellet burnup of 48 GWD/MTM and continue to meet the NRC ,

10 CFR 50.46 criteria with analyses performed in conformance to 10 CFR 50 Appendix K requirements. Operation within the ECCS allowed limits as defined in Figure 1.1 and Table 1.1 assures that the NRC acceptance criteria are met.

That is:

(1) The calculated peak - fuel cladding temperature does not exceed 22000F.

(2) The calculated-local cladding' oxidation does not exceed 17% of the cladding thickness during or after quenching, and the temperature trans ient is terminated while the core geometry is amenable to cooling.

(3) The calculated core-wide reaction of cladding with water or steam does not exceed 1% of the total mass of zircaloy in the reacter.

-(4) System long term cooling capab11ities provided for previous cores will also cool ENC fueled cores.

28 XN-NF-83-61

5.0 REFERENCES

(1) " Donald C. Cook Unit 1 LOCA Analyses Using the ENC WREM-Based PWR

' ECCS Evaluation Model1(ENC WREM-II)," XN-76-51, October 1976 and Supplements; " Flow Blockage and Exposure Sensitivity Study for 0.C.

Cook Unit 1 Reload Fuel Using ENC WREM-II Model," XN-76-51 Supplement 1, January 1977; XN-NF-76-51(P) Suoplement 2, January 1978; XN-NF-76-51(P), Supplement 3, March 1978, Exxon Nuclear Company.

(2) U.S.N.R.C., " Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Apoendix K to 10 CFR 50. Federal Register, Volume 39, Number 3, January 4, 1974.

(3) "LOCA ECCS Reanalysis for D.C. Cook Unit 1 Using the ENC WREM-IIA PWR -ECCS dvaluation Model," XN-NF-81-07, February 1981, Exxon Nuclear Company.

(4) " Exxon Nuclear Company Evaluation Model EXEM/PWR ECCS Model Up-dates," XN-NF-82-20(P), Revision 1, August 1982; Supplement 1, March 1982 and Supplement 2, March 1982. Exxon Nuclear Company.

(5) "R00EX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," XN-NF-81-58(P), Revision 2, February 1983, Exxon Nuclear Company.

(6) Letter, G.F. Owsley (ENC) to 0.F. Ross (NRC), " Description of RELAP4-EM ENC 288," dated October 30, 1978.

(7) Letter, Thomas A. Ippolito (NRC) to Warren S. Nechodom (ENC),~" ENC-EM Update Evaluation," March 1979.

(8) " Exxon Nuclear Company WREM-Based Generic PWR ECCS Evaluation Model Update ENC WREM-II A," XN-NF-78-30, August 1978, and XN-NF-78-30, Amendment 1, February 1979, Exxon Nuclear Company.

(9) Letter, Thomas A. Ippolito (NRC) ' to Warren S. Nechodem (ENC),

" Topical Report Evaluation," dated March 30, 1979.

(10) Letter, T. A. Ippolito (NRC) to W.S. Nechodom (ENC), "SER for ENC RELAP4-EM Update," dated March 1979.

(11) "ICECON: A Computer Program Used to Calculate Containment Back Pressure for LOCA Analysis (Including Ice Condenser Plants)," XN-CC-39, Revision 1, November 1977, Exxon Nuclear Company.

(12) " Exxon Nuclear Company WREM-Based Generic PWR ECCS Evaluation Model Update ENC WREM-II A," XN-NF-78-30(A), May 1979, Exxon Nuclear Company.

R w .

29 XN-NF-83-61

,  ?-

I (13) G.N. Lauben, "T00DEE2: A Two-Dimensional Time Dependent Fuel

. Element Thermal Analysis Program," NRC Report NUREG-75/057, May 1975.

~

~.

(14) " Exxon Nuclear Company ECCS Cladding Swelling and Rupture Model,"

.XN,-NF-82-07(P), March 1982, Exxon Nuclear Company.

' ~

(15) Letter, H.G. Shaw (ENC) to H.L. Sobel (AEP), HGS:062:82, dated February 23, 1982.

s b

2 4

i f

4 e

. . - + . . _ , , - , , , , , _ . - - - - , ,. , , . , . , - , . - . . , - , - .,%-+,, . - . . , ---

v e,-~, - . - - - , , . .y,.-m._.,_---

J

?

!s:'

'XN-NF-83-61 Issue Date: 8/3/83'-

D. C.:. COOK UNIT 1 LOCA-ECCS ANALYSIS

~FOR EXTENDED EXPOSURE Distribution-J. C. Chandler S. E.'Jensen

'W. V. Kayser G. F. Owsley T. Tahvili American Electric Power (6)/H.G. Shaw Document Control (5) k L._ '