ML17215A306: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:'DESIGNFEATURESVOLUME5.4.2Thetotalwaterandsteamvolumeofthereactorcoolantsystemisl0,93I+275cubicfeetatanominalTavgof572oF.5.5METEOROLOGICALTOWERLOCATION5.5.IThemeteorologicaltowershallbelocatedasshownonFigureS.l-I.5.6FUELSTORAGECRITICALITY5.6.IThespentfuelstorageracksaredesignedandshallbemaintainedwith:a.Akeffequivalenttolessthanorequalto0.95whenfloodedwithunboratedwater,whichincludesaconservativeallowanceof0.024hkeffforTotalUncertainty.b.Anominal8.96inchcenter-to-centerdistancebetweenfuelassembliesplacedinthestorageracks.c.AboronconcentrationgreaterthanorequaltoI720ppm.RegionIcanbeusedtostorefuelwhichhasaU-235enrichmentlessthanorequalto4.5%.RegionIIcanbeusedtostorefuelwhichhasachievedsufficientburnupsuchthatstorageinRegionIisnotrequired.iyIDRAINAGE5.6.2Thespentfuelstoragepoolisdesignedandshallbemaintainedtopreventinadvertentdrainingofthepoolbelowelevation56feet.CAPACITY5.6.3Thespentfuelstoragepoolisdesignedandshallbemaintainedwithastorage!capacitylimitedtonomorethanII88fuelassemblies.5.7COMPONENTCYCLICORTRANSIENTLIMITS5.7.IThecomponentsidentifiedinTable5.7-IaredesignedandshallbemaintainedwithinthecyclicortransientlimitsofTable5.7-1.ST.LUCIE-UNIT2AmendmentNo.84031902288403i3PDRADOCK05000389>pPDR
 
NoSinificantHazardsConsiderationFloridaPowerandLightCompany(FPL)hasdeterminedthattheproposedamendmentinvolvesnosignificanthazardsconsiderations,focusingonthethreestandardssetforthinIOCFR50.92(c)asquotedbelow:TheCommissionmaymakeafinaldetermination,pursuanttotheproceduresin50.9I,thataproposedamendmenttoonoperatinglicenseforafacilitylicensedunder50.2l(b)or50.22orforatestingfacilityinvolvesnosignificanthazardsconsiderations,ifoperationofthefacilityinaccordancewiththeproposedamendmentwouldnot:I.Involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated;or2.Createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated;or3.Involveasignificantreductioninamarginofsafety.FPLhasdeterminedthattheactivitiesassociatedwiththisamendmentrequestdonotmeetanyofthesignificanthazardsconsiderationstandardsofIOCFR50.92(c)and,accordingly,anosignificanthazardsconsiderationfindingisjustified.Insupportofthisdetermination,thefollowingbackgroundinformationisprovided,followedbyadiscussionofeachoftheabovethreesignificanthazardsconsiderationstandards.~BackroundThereisonespentfuelpoolatSt.LucieUnit2.Theexistingrackshave300totalstoragecells,withacenter-to-centerspacingofl4inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-thirdofacoreisstoredinthefuelpool.Withthe300presentlyavailablestoragecells,St.LucieUnit2 I
wouldlosethefull-corereservestoragecapabilityafterthesecondrefueling,expectedtobeinl986.Therefore,toensurethatsufficientcapacitycontinuestoexistatSt.LucieUnit2,FPLhascontractedwithCombustionEngineering(C-E)fornewspentfuelstoragerackswhosedesignallowsformoredensestorageofspentfuel.ThenewrackshaveanultimatestoragecapacityofII88fuelassemblies,whichwillextendthefull-corereservestoragecapabilityuntill998.Thenewfuelstoragerackswillstorefuelintwodiscreteregionsofthespentfuelpool.RegionIincludessixmoduleshavingatotalof448storagecells.Onlyone-halfofthesecellswillbeavailableforstorageoffuelassemblies.Theunusedcellswillbeprovidedwithcellblockingdevices.The224availablecellsenablestorageoffuelassemblieswithUranium-235enrichmentsupto4.5%,whilemaintainingtherequiredsubcriticality(Keff<0.95).RegionIIincludesthirteenmoduleshavingatotalofII36storagecells,ofwhich852(75%)willbeavailableforstorageoffuelassemblies.Theunusedcellswillactasneutronfluxtraps(tomaintaintherequiredsubcriticality)andwillbeprovidedwithcellblockingdevices.RegionIIwillbeusedtostorefuelwhichhasexperiencedsufficientburnupsuchthatstorageinRegionIisnotrequired.Thenewfuelracksarefabricatedfrom304stainlesssteelwhichisO.I35inchesthick.Eachcellisformedbyweldingalongtheintersectingseamswhichenablestheassembledcells(module)tobecomeafree-standingstructurewhichisseismicallyqualifiedwithoutdependingonneighboringmodulesorfuelpoolwallsforsupport.Thenominalcenter-to-centerspacingofthecellswithinbothRegionIandIIis8.96inches.ThereisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthenewspentfuelracksareinstalled.Therefore,nospecialadministrativecontrolsorprocedureswillbenecessarytoprovideradiation'protection,andtheevaluationofaconstructionaccidentwithrespecttonuclearcriticalityorradioactivity'releaseisnotnecessary.
 
EvaluationThefollowingevaluationdemonstrates(withreferencetotheanalysiscontainedintheattachedSafetyAnalysisReport)thattheproposedamendmentinvolvesnosignificanthazardsconsiderations.I.InvolveasinificantincreaseintherobabilitorconseuencesofanaccidentreviousIevaIuated.Theanalysisofthisproposedrerackinghasbeenaccomplishedusingcurrentacceptedcodes,standards,andNRCguidanceasspecifiedinSection4.2oftheattachedSafetyAnalysisReport(SAR).Inthecourseoftheanalysis,FPLidentifiedthefollowingpotentialaccidentscenarios:(I)aspentfuelassemblydropinthespentfuelpool;(2)lossofspentfuelpoolcoolingsystemflow;(3)anextremewindorseismicevent;and(4)aspentfuelcaskdrop.Theoccurrenceoftheseaccidentsisnotaffectedbytheracksthemselves.Thus,theproposedrerackingcannotincreasetheprobabilityoftheseaccidents.Furthermore,thespentfuelrackswillbeinstalledpriortostorageofanyspentfuelinthespentfuelpool.Therefore,thereisnopotentialforanaccidentinvolvingspentfuelduringfuelrockinstallation.Similarly,theanalysisofthepotentialaccidents,summarizedbelow,hasshownthatthereisnosignificantincreaseintheconsequencesofanaccidentpreviouslyanalyzed.Theconsequencesofaspentfuelassemblydrophavebeenevaluatedwithrespecttonuclearcriticality(Section3.IoftheSAR)andwithrespecttoradioactivityrelease(Section5.3oftheSAR).Thepresenceofboroninthespentfuel.poolwaterensuresthattheneutronmultiplicationfactor(keff)remainslessthantheNRCacceptancecriterionof0.95forallaccidentconditions.Theconsequencesofadroppedfuel'ssemblywithrespecttoradioactivity'releasearenotaffected'by.thenewfuelrack.'esignitself.However,theanalysisin'Section5.3ofthisSARincludedmoreconservativeassumptions,relativetothoseinthepreviousFSARanalysis,tobracketfuturechangestofuelmanagement.Asaresult,thepredictedradioactivityreleasesareabout25%largerthanthosereportedpreviously,buttheincreasesarenot~~"significant"'ecausetheresultsareonlyl%ofNRCguidelines.Thus,theconsequencesofthespentfuelassemblydropaccidentwouldnotbesignificantlyincreasedfromthosepreviouslyevaluated.3
 
TotallossofspentfuelpoolcoolingflowhasbeenevaluatedandisreportedinSection3.2oftheattachedSAR.AsindicatedinSection3.2,morethan30hoursareavailabletorestorecoolingflowortoprovideanalternatemeansforcoolingbeforepoolboilingresultsinawaterlevellessthanthatwhichisneededtomaintainacceptableradiationdoselevels.Also,theanalysishasshownthatfuelcladdingintegrityismaintained.Thus,theconsequencesofthistypeaccident'wouldnotbesignificantlyincreasedfromthepreviouslyevaluatedlossofcoolingsystemflowaccident.TheconsequencesofaseismiceventhavebeenevaluatedandaresummarizedinSection4;3oftheattachedSAR.ThenewracksaretobedesignedandfabricatedtomeettheguidanceofapplicableportionsoftheNRCRegulatoryGuidesandcodesandstandardslistedinSection4.2oftheSAR.ThemaximumstresseswithinthefuelrackswillbewithinthecriteriaspecifiedinSection4.4ofthisSAR.Also,movementanddeflectionofthefuelrackmodulesdoesnotresultincontactwithneighboringrack'modulesorthefuelpool-walls.Thefloorloadingfromthenewracksfilledwithspentfuelassembliesdoesnotexceedthestructuralcapacityofthefuelhandlingbuilding.AsindicatedinSection4.IoftheSAR,thefuelhandlingbuildingwalls,floors,andpartitionsaredesignedtowithstandhurricaneandtornadowinds;theprotectionfromtheseextremewindsisnotaffectedbythenewfuelrackdesign.Thus,theconsequencesofanextremewindorseismiceventwouldnotbesignificantlyincreasedfrompreviouslyevaluatedevents.TheconsequencesofaspentfuelcaskdropoutsidetheFuelHandlingBuildinghasbeenevaluatedandarereportedinSection5.3ofthisSAR.AsstatedinSection5.3,thespentfuelcaskispreventedfromdroppingontothespentfuelpoolracksbydesignofthefuelhandlingbuildingandoverheadcrane.Therefore,theconsequencesofthespentfuelcaskdroparenotaffectedbythenewfuelrackdesign.TheanalysisinSection5.3.includesmoreconservativeassumptions,relativetothoseinthepreviousFSARanalysis,tobracketfuturechangestofuelmanagement.Asaresult,thepre'dietedradioactivityrelease's'areabout25%la'rgerthanthosereportedpieviously,buttheincreasesarenot"significant"becausetheresultsareonly8%ofNRCguidelines.Thus,theconsequencesofacaskdropaccidentwouldnotbesignificantlyincreasedfrompreviouslyevaluatedaccidentanalysis.
Itisconcludedthattheproposedamendmenttorerackthespentfuelpoolswillnotinvolveasignificantincreaseintheprobabilityorconsequencesofan'accidentpreviouslyevaluated.2-Createtheossibilitofanewordifferentkindofaccidentfromanaccidentreviouslevaluated.FPLhasevaluatedtheproposedrerackiriginaccordancewiththeguidanceoftheNRCpositionpaperentitled"ReviewandAcceptanceofSpentFuelStorageandHandlingApplications",appropriateNRCRegulatoryGuides,appropriateNRCStandardReviewPlans,andappropriateIndustryCodesandStandardsaslistedinSection4.2oftheattachedSAR.Inaddition,FPLhasreviewedseveralpreviousNRCSafetyEvaluationReportsforrerackapplicationssimilartothisproposal.Asaresultofthisevaluationandthesereviews,FPLfindsthattheproposedrerackingdoesnot,inanyway,createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluatedforthe.SpentFuelPoolorFuelHandlingBuilding.3.,Involveasinificantreductioninamarinofsafet.TheNRCStaffsafetyevaluationreviewprocesshasestablishedthattheissueofmarginofsafety,whenappliedtoarerackingmodification,willneedtoaddressthefoltowingareas:2.3.NuclearcriticalityconsiderationsThermal-HydraulicconsiderationsMechanical,materialandstructuraIconsiderationsTheestablishedacceptancecriterionforcriticalityisthattheneutronmultiplicationfactor(keff)inspentfuelpoolsshallbelessthanorequalto0.95,includingall'uncertainties,underallconditions.'This'marginofsafety'hasbeenadheredtointhecriticalityanalysismethodsforthenewrackde'signasdiscussedinSection3.IoftheattachedSAR.Thatis,keffisalwayslessthan0.95,includinguncertaintiesatthe95/95probabilityandconfidencelevel.Inmeetingtheacceptancecriteriaforcriticalityinthespentfuelpool,theproposedamendmenttorerackthespentfuelpoolsdoesnotinvolveasignificantreductioninthemarginofsafetyfornuclearcriticality.5
 
Conservativemethodswereusedtocalculatetheincreaseintemperatureofthewaterinthespentfuelpoolanddemonstratemaintenanceoffuelcladdingintegrity.ThisevaluationusesthemethodsdescribedinSection3.2oftheSARindemonstratingthatthemarginsofsafetyaremaintained.Theproposedrerackingallowsanincreaseintheheatloadinthespentfuelpool;theevaluationshowsthattheexistingspentfuelcoolingsystem,undernormalconditions,willmaintainthepooltemperaturebelowthedesignbasislimit,assumingthemaximumheatloadinthepool.Sincethedesignbasislimitismet,thereisnotasignificantreductioninthemarginofsafety.Also,themaximumfuelcladdingtemperature,assumingtotallossoffuelpoolcooling,wouldremainbelow275F,ensuringmaintenanceoffuelcladdingintegrity.Thus,thereisnosignificantreductioninthemarginofsafetyfromathermal-hydraulicorspentfuelcoolingconcern.Themainsafetyfunctionofthespentfuelpoolandtheracksistomaintainthespentfuelassembliesinasafeconfigurationthrough'llenvironmentsandabnormalloadings,suchasanearthquake,dropofaspentfuelassembly,ordropofanyotherobjectduringroutinespentfuelhandling.Themechanical,material,andstructuralconsiderationsoftheproposedrerackaredescribedinSection4oftheattachedSAR.TheanalysisofSection4hasshownthatallcriteriaforfuelrackmovement,stresses,floorloadings,etc.,aremetandthatmarginsofsafetyarenotsignificantlyreduced.lnsummation,ithasbeenshownthattheproposedspentfuelstoragefacilitymodificationsandproposedTechnicalSpecificationsdonot:2.3.Involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated;orCreatethepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated;orInvolveasignificantreductioninamarginofsafety.Therefore,FPLhasdeterminedthattheproposedamendmentinvolvesnosignificanthazardsconsiderations.
SPENTFUELPOOLRERACKSAFETYANALYSISREPORT TAB"EOFCONTENTS~Pae
 
==1.0INTRODUCTION==
1.1LicenseAmendmentRequested1.2CurrentStatus1.3InterfaceswithOtherOrganizations1.4SummaryofReport1.5Conclusions2.0SUMMARYOFSPENTFUELRACKDESIGN3.0NUCLEARANDTHERMAL-HYDRAULICCONSIDERATIONS3.1NeutronMultiplicationFactor3.1.1NormalStorage3.1.2PostulatedAccidents3.1.3CalculationMethods3.1.4FuelRackModification3.1.5AcceptanceCriterionforCriticality3.2DecayHeatCalculationsfortheSpentFuelPool(Bulk)3.2.1DesignBases3.2.2SystemDescription3.2.3SafetyEvaluation3.3PotentialFuelandRackHandlingAccidents3.4TechnicalSpecifications3.5References4.0MECHANICAL,MATERIAL,ANDSTRUCTURALCONSIDERATIONS1-21-21-21-32-13-13-13-13-23-23-43-4'-43-43-63-63-103-103-114-14.14.24.34.44.54.64.7DescriptionofStructure4.1.1DescriptionofFuelHandlingBuilding4.1.2DescriptionofSpentFuelRacksApplicableCodes,Standards,andSpecificationsSeismicandImpactLoadsLoadsandLoadCombinationsDesignandAnalysisProcedures4.5;1MethodologySumma'ry4.5.2ComputerCodeDescriptionsStructuralAcceptanceCriteriaMaterials,equalityControl,andSpecialConstructionTechniques4.7.1Materials4.7.2equalityControl4.7.3ConstructionTechniques4-14-14-14'-44-64-74-74-7.4-94-114-124-124-124-13 TABLEOFCONTENTS~Pae4.8TestingandIn-ServiceSurveillance4.9,References5.0COST/BENEFITASSESSMENTANDENVIRONMENTALIMPACT5.1Cost/BenefitAssessment5.1.1NeedforIncreasedStorageCapacity5.1.2ConstructionCosts5.1.3ConsiderationofAlternatives5.1.4ResourcesCommitted5.1.5ThermalImpactontheEnvironment5.2RadiologicalEvaluation5.2.1SolidRadwaste5.2.2GaseousRadwaste5.2.3PersonnelExposure5.2.4RackDisposal5.3AccidentEvaluation5.3.1SpentFuelHandlingAccidents5.3.2Acceptability5.3.3FuelDecay5.3.4LoadsOverSpentFuel5.3.5Conclusions4-134-135-15-15-15-25-25-35-35-45-45-45-55-75-75-75-135-135-145-14
 
LISTOFTABLESTable~Pae5-15-2EstimatedSpentFuelPoolCapacityRequirementsReplacementCostforSt.LucieUnit25-165-175-3GammaIsotopicAnalysisforSt.LucieUnit15-4SpentFuelCaskDropAccidentAssumptions5-5SpentFuelCaskDropAccidentReleases5-225-65-7SpentFuelCaskDropOffsiteDosesFuelHandlingAccidentAssumptions5-235-245-8FuelHandlingAccidentReleases5-265-9FuelHandlingAccidentOffsiteDoses5-27 LISTOFFIGURES~FiereTitle~Pae3-1SpentFuelRackModuleforRegionI3-123-2SpentFuelRackModuleforRegionII3-133-3St.LucieUnit2SpentFuelStorageRackCriticalityvs.BurnupforFuelAssembliesinRegionII3-143-4SpentFuelStorageRackInitialEnrichmentvs.BurnupforFuelAssembliesinRegionII3-154-1TypicalSpentFuelStorageRackModule4-15.4-2TypicalSpentFuelRackModuleL-Insert4-164-3SpentFuelStorageModuleInstallation4-1744SpentfuelStorageModule4-184-5L-Inserts'-194-6SAPIVComputerCodeMembraneStressesandBendingMoments4-20 INTRODUCTIONLICENSEAMENDMENTREQUESTEDFloridaPower5Light(FPL)hascontractedforthepurchaseofnewspentfuelstoragerackstobeplacedintothespentfuelpoolofSt.LucieUnit2.Thesenewracksincreasetheamountofspentfuelthatcanbestoredintheexistingspentfuelpool.ThisSafetyAnalysisReportsupportsthisrequestforalicenseamendmenttotheSt.LucieUnit2FacilityOperatingLicenseNPF-16forthetechnicalspecificationrevisionsrequiredasaresultofinstallationanduseofthenewspentfuelstorageracks.CURRENTSTATUSThereisonespentfuelpoolatSt.LucieUnit2.Theexistingracksinthepoolhave300totalstoragecells,withacenter-to-centerspacingof14inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-thirdofacoreisstoredinthefuelpool.PertheFSAR,Section9.1,additionalstorageracksofthesamedesignmaybeinstalledtobringtotalcapacity,to675spentfuelassemblies(approximatelythreefullcores).Withthe300presentlyavailablestoragecells,St.LucieUnit2wouldlosethefull-corereservestoragecapabilityafterthesecondrefueling,expectedtobein1986;withadditionalracks,uptothemaximumof675,thecapabilitywouldbelostin1992.Therefore,toensurethatsufficientcapacitycontinuestoexistatSt.LucieUnit2tostoredischarged'fuelassemblies,FPLhasdecidedtoremovethepresentracksandhascontractedwithCombus-tionEngineering(C-E)fornewspentfuelstoragerackswhosedesign(MAXCAP&#x17d;)allowsformoredensestorageofspentfuel.Thenewrackshaveausablestoragecapacityof1076cells,extendingthefull-core-reservestoragecapabilityuntil1998.
Furtherreferenceswithinthisreporttothe"spentfuelracks"refertothenewdesign.Thedetailsofhowthespentfuelrack'esignmeetsthedesignrequirementsisprovidedinthisreport.INTERFACESWITHOTHERORGANIZATIONSFP8Lhasoverallresponsibilityforthismodification.C-Eisresponsibleforthedesignandfabricationofthenewspentfuelstorageracksandengineeringassistanceinreviewingthespentfuelpoolcoolingsystem.EbascoServices,Inc.isresponsibleforreviewingbuildingstructuralanalysisandaccidentevaluation.SUMMARYOFREPORTThisreportfollowstheguidanceoftheNRCpositionpaperentitled"ReviewandAcceptanceofSpentFuelStorageandHandlingApplica-tions",April1978,asamendedbyNRCletterdatedJanuary18,1979.Section2.0presentsasummaryofthespentfuelrackdesign.Sections3.0through5.0ofthisreportareconsistentwiththesection/subsectioncontent'ftheaboveNRCpositionpaper,SectionsIIIthroughV.Thisreportcontainsthenuclear,thermal-hydraulic,mechanical,material,structural,andradiologicaldesigncriteriaforthefuelracks.Thenuclearandthermal-hydraulicaspectsofthisreport(Section3.0)addresstheneutronmultiplicationfactor,consideringnormal.storageandhandlingofspentfuelaswellaspostulatedaccidents,withrespecttocriticalityandtheabi1'ityofthespentfuelpoolcoolingsystemtomaintainsufficientcooling.Mechanical,material,andstructuralaspects(Section4.0)involvethecapabilityofthefuelassemblies,storageracks,andspentfuelpoolsystemtowithstandeffectsofnaturalphenomenaandotherserviceloadingconditions.1-2 Theenvironmentalaspectsofthereport(Section5.0)concernthethermalandradiologicalreleasefromthefacilityundernormalandaccidentconditions.Thissectionalsoaddressestheoccupationalradiationexposures,generationofradioactivewaste,needforexpansion,commitmentofmaterialandnon-materialresources,andacost-benefitassessment.CONCLUSIONSOnthebasisoftheevaluationsandinformationpresentedinthisreport,plusoperatingexperiencewithhighdensityfuelstorageatSt.LucieUnit1,FP&LconcludesthattheproposedmodificationofSt.LucieUnit2spentfuelstoragefacilitiesprovidessafespentfuelstorage,andthatthemodificationisconsistentwiththefacilitydesignandoperatingcriteriaasprovidedintheFSARandoperatinglicense.1-3 SUMMARYOFSPENTFUELRACKDESIGNThespentfuelracksaredesignedtostorethe14x14designfuelfromSt.LucieUnit1andthe16x16fuelfromSt.LucieUnit2.Theserackshaveaninitialcapacitytostoreatotalof1076fuelassembliesintworegionsofthespentfuelpool.ByexpansionofRegionIIintoRegionI,thespentfuelrackshaveanultimatestoragecapacityof1188fuelassemblies.RegionIinitiallycontainsfour7xl1modulesandtwo7x10modules,i.e.,sixmoduleswith448storagecells.Onlyone-halfofthesecellswillbeavailableforstorageoffuelassemblies.Theunusedcellswillbeprovidedwithblockingdevices.Allcellscontain"L"insertswhicharestainlesssteelneutronabsorbers(seeFigure4-2).The224availablecellsenablestorageoffuelassemblies.withUranium-235enrichmentsupto4.5lwhilemaintainingtherequiredsubcriticality(kff<0.95).RegionIIinitiallycontainsone8x10moduleandtwelve8x11mod-ules,i.e.,thirteenmoduleswith1136storagecells,of'which852(75&#xc3;)areavailableforstorageoffuelassemblies.Theunusedcellsareneutronfluxtraps(tomaintaintherequiredsubcritical-ity)andareprovidedwithcellblockingdevices.RegionIIisusedtostorefuelwhichhasexperiencedsufficientburnupsuchthatstorageinRegionIisnotrequired.Thespentfuelracksarefabricatedfrom304stainlesssteelwhichis0.135inchesthick.Eachcellisformedbyweldingalongtheintersectingseamswhichenablestheassembledcellstobecomeafree-standingmodulewhichisseismicallyqualifiedwithoutdepend-ingonneighboringmodulesorfuelpoolwallsforsupport:The'ominalcenter-to-centerspacingofthecellswithinbothRegionIandIIis8.96inches.2-1 NUCLEARANDTHERMAL-HYDRAULICCONSIDERATIONSNEUTRONMULTIPLICATIONFACTORThefollowingsubsectionsdescribetheconditionsinthespentfuelpoolwhichareassumedincalculatingtheeffectiveneutronmulti-plicationfactor(Kff)theanalysismethodology,andtheanalysiseff'esults.NormalStoraea.Theanalysisconsidersthemostlimitingstoragecondition.InRegionItheracksaredesignedtostore4.5wtXU-235inacheckerboardfashion(Figure3-1)withcellblockingdevicesineveryotherstoragelocation.InRegionIIthefuelisstoredin3outof4locationswithcellblockingdevicesinIoutof4locations(Figure3-2).InthecriticalityanalysisforRegionII,creditwastakenforreactivitydepletioninthespentfuel(consistentwithRegula-toryGuide1.13,"SpentFuelStorageFacilityDesignHasis",DraftR2).b.Themoderatorisassumedtobepurewateratatemperatureapplicabletothedesignbasisconditionwhichyieldsthehighestreactivity.c.TheRegionIandRegionIIarrayswereassumedtobeinfiniteinlateralextentandinfiniteinlength.d.'echanicaluncertainties(manufacturingtolerances,uncertain'tyofassemblypositioninstorageracks,materialtolerances,,-etc.)aretreatedbyperformingsensitivitystudiesforthevariousuncertaintiesandapplyinganuncertaintyintheKffvalue.3-1
 
e.Nocontrolelementassemblies(CEAs)ornon-containedburnablepoisonsareassumedtobepresent.3.1.2PostulatedAccidentsThedoublecontingencyprincipleofANSIN16.1-1975statesthatitisnotnecessarytoassumeconcurrentlytwounlikelyindependenteventstoensureprotectionagainstacriticalityaccident.Thiscontingencyprincipleisappliedforthefollowingpostulatedaccidents:1)droppingofafuelelementontopoftheracks,2)droppingofotherobjectsintothespentfuelpool,3)deforma-tionandrelativepositionofracksduetotornadoorearthquake,and4)lossofonespentfuelpoolcoolingpump.Thedropofthespentfuelcaskontothespentfuelrackswasnotconsideredinthecriticalityanalysissinceitisphysicallyimpossibletotipthecaskintothepool(seeSection5.3.1).Thetechnicalspecifica-tionsrequirethattheboronconcentrationinthespentfuelpoolbegreaterthanorequalto1720ppmtoensurethatkffremainslessthanorequalto0.95fortheseaccidents.3.1.3CalculationMethodsAcalculationbiashasbeendeterminedfromthecomparisonbetweenthecalculationsandexperimentsandacalculationmethodologyhasbeendeterminedsuchthatKffwillbelessthanthecalculatedeffvalue95percentofthetimewitha95percentconfidencelevel.ThetotaluncertaintyvaluetobeappliedtothevalueofKffforeffthestorageracksisobtainedfromtheexpression:NTotalUncertainty=CalculationBias+[Eak.]=0.024i=1wherehk.arethevaluesofallotheruncertainties,including1mechanical,neutronic,andthermalvariations.3~2
 
CEPAKTheCEPAKlatticeprogramisemployedtocalculatethebasicbroadgroupcrosssectiondataforthefuelassembly,spentfuelrackstructure,andwater.Thisprogramisasynthesisofanumberofcomputercodes,manyofwhichweredevelopedatotherlaboratories,e.g.,FORM,THERMOS,andCINDER(References3-1,3-2,and3-3).Thesecodesareinterlinkedinaconsistentwaywithinputsfromanextensivelibraryofdifferentialcrosssectiondata.NUTESTNUTESTisatwo-dimensionalintegraltransportcodewhichemploysthecollisionprobabilitytechniquetocomputesub-regiondependentreactionratesinanexplicitgeometricrepresentationofthefuelrodsandassociatedstructureofafuelassembly.Thiscodeisusedtocalcul-atethefluxadvantagefactorswhichareappliedascorrec-tionfactorstothebasicbroadgroupcrosssectionscomputedbytheCEPAKlatticeprogramtoaccountforheterogeneouslatticeeffectsnotrepresentedineitherthemultigroupspectrumorhomogenizedcellspatialcalculation,e.g.,heterogeneousfastfissioneffectinfuelpellets.DOT-2WThespatialfluxsolutionandmultiplicationfactorforaninfinitearrayofindividualorclustersoffuelstoragecellsarecomputedwiththetwodimensional,discreteordinatestransportcode,DOT-2W(Reference3-4).Themajorfeaturesofthemethodusedinthis.codeare:a)'nergydependenceisconsideredusingthemultigrouptreatment.b)Thederivativetermsandspat'ialdependenceareapproximatedusingafinitedifferencetechnique.c)Dependenceuponthedirectionvariablesistreatedusingthediscreteordinatesmethod.3-3 d)ThescatteringintegralisevaluatedusingadiscreteordinatesquadratureincombinationwithaLegendreexpansionofthescatteringkerneltoapproximateanistropicscattering.3.1.4FuelRackModificationThepresentspentfuelracksforSt.LucieUnit2arebeingcomplete-lyreplacedasdescribedinSection1.2.ThedesignofthenewspentfuelracksisdescribedinSection4.1.3.1.5AccetanceCriterionforCriticalitTheacceptancecriterionfortheneutronmultiplicationfactor(Kff)isthatitbelessthanorequalto0.95,includinguncer-tainties,underallpostulatedconditions.ForRegionItheresult-ingneutronmultiplicationfactor(kff)is0.942includingalluncertaintiesandcalculationalbiases.ForRegionIIreactivitydepletionisafunctionofthepercentageofburnupachieved,notoftheinitialenrichment.Theresultingreactivity,includinguncer-taintiesandcalculationalbiases,asafunctionofburnupforseveralinitialenrichmentsisshowninFigure3-3.Theminimumallowableburnupforagiveninitialenrichmentisthatcorrespond-ingtokeff0.95.Whentheseminimumburnupvaluesareadjustedupwardstoaccountforaxially-dependentburnupdistribution.andare:plottedasafunctionofinitialenrichment,regionsofacceptableandunacceptableburnupareidentified(seeFigure3-4).3.2DECAYHEATCALCULATIONSFORTHESPENTFUELPOOL(BULK)3,2,1~0TheFuelPoolSystemprovidescontinuous'coolingforspentfuelassembliesstoredinthefuelpool.Thispermitsstorageofspentfuelassembliesinthefuelpoolfromthetimethefuelisunloadedfromthereactorvesseluntilitisshippedoffsite.3-4
 
TheFuelPoolCoolingSystemremovesthedecayheatfromone-thirdofacorebatch,whichisassumedtohaveundergoneirradiationforthreecycles,placedinthespentfuelpoolfivedaysaftershutdownandelevenpreviousrefuelingbatches.Withonefuelpoolpumpoperatingandonefuelpoolheatexchangerinserviceandwithacomponentcoolingwatertemperatureof100'F,themaximumspentfuelpoolwatertemperaturedoesnotexceed131'F.TheFuelPoolCoolingSystemalsoremovesthedecayheatproducedinthefuelfromafullcoreoff-loadplacedinthespentfuelpoolsevendaysafterreactorshutdown,inadditiontothedecayheatfromelevenpreviousbatchesofone-thirdcoreeach.Withtwofuelpoolpumpsandonefuelpoolheatexchangeroperating,andwithacomponentcoolingwatertemperatureof100'F,themaximumspentfuelpoolwatertemperaturedoesnotexceed148'F.Evaporativecooling.effectsareneglected,forconservatism,indeterminingthismaximumtemperature.IfRegionIIwereexpandedintoRegionItoreachtheultimatecapacityof1188fuelassemblies,thetotaldecayheatloadwouldbelessthanthatforthefullcoreoff-loadcasedescribedabovesincesuchanexpansionwouldprecludethehighdecayheattypicalofthefullcoreoff-loadedintoRegionI.VTheFuelPoolCoolingSystemalsoincludespurificationequipmentdesignedtoremovesolubleandinsolubleforeignmatterfromthefuelpoolwateranddustfromthefuelpoolsurface.Thismaintainsthefuelpoolwaterpurity'ndclarity,permittingvisualobserva-tionof.underwateroperations.Theminimumdesignlimitdepthofwateroverthespentfueltomaintaintheradiationdoselevelstolessthan2.5mrem/hris9feet'.The'technicalspecificationsrequiream'inimumdepthof23feetofwateroverthestoredspentfuelassemblies;thisissuffi-cienttomeetthe2.5mrem/hrdoselevelduringfuelmovement,tolimitthemaximumcontinuousradiationdoselevelsinworkingareastomuchlessthan2.5mrem/hrduringnormalstorage,andtoensure3-5
 
thattheoffsitedoseconsequencesduringanaccidentareaccept-able,Make-uptothefuelpoolisfromtherefuelingwatertank,whichismaintainedatatechnicalspecificationlimitofgreaterthanorequalto1720ppmboron.3.2.2SstemDescritionAdescriptionoftheFuelHandlingandStorageSystemsisprovidedinSection9.1oftheFSAR:ThePSIdiagramoftheFuelPoolSystemisshownonFigures9.1-6and9.1-7aoftheFSAR.ThesystemprocessflowdataareshowninTable9.1-5oftheFSAR.RadiationmonitoringforthespentfuelpoolareaandFuelHandlingBuildingstackisdiscussedinSection12.3.4oftheFSAR.TheFuelPoolCoolingSystemcomponentsandpipingaregualityGroupC,seismicCategoryIandaredescribedcompletelyinFSARSection9.1.3.3.2.3SafetEvaluationThecalculationsfortheamountofthermalenergythatmayhavetoberemovedbythespentfuelpoolcoolingsystemaremadeinaccord-ancewithBranchTechnicalPositionASB9-2,"ResidualDecayEnergyforLight-WaterReactorsforLong-TermCooling",whichispartoftheStandardReviewPlan(NUREG-0800).3.2.3.1NormalMaximumFuelPoolCoolingWithSingleFailureWithone-thirdofacorebatch,whichisassumedtohaveundergoneirradiationforthreecycles,placedinthespentfuelpoolfivedaysafter'reactorshutdownandelevenpreviousrefuelingbatches,theheatloadislessthan15.3x10Btu/hr.Underthesecondi-tions,withone'uelpoolpumpoperating(singleactivefailureofsecondpump)andonefuelpoolheatexchangerinservice,thespentfuelpooltemperaturedoesnotexceed131'F.3-6
 
3.2.3.2AbnormalMaximumFuelPoolCoolingForafullcoreunloading,itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown,alongwithelevenpreviousrefuelingbatchesofone-thirdcoreeach.Theresultantheatloadfromonefullcoreandelevenrefuelingbatchesis30.3x10Btu/hr,themaximumheatloadinthefuelpool.Under6theseconditions,withboththefuelpoolpumpsinservice,themaximumfuelpoolwatertempratureis148'F.PursuanttotheguidanceinSRP9.1.3(NUREG-0800),thereisnospentfuelpoolwaterbulkboiling,andacoolingsystemsinglefailureneednotbe,consideredforthiscondition.Thistemperatureislessthanthevalue(150'F),referredtoasTinSection4.4.3.2.3.3AccidentMaximumFuelPoolCoolingNotwithstandingtheguidanceinSRP9.1.3,thefuelpooltemperatureforthefullcoreoff-loadcasedescribedaboveisevaluatedwithonefuelpoolpumpinoperable.Theresultingfuelpoolequilibriumtemperatureis161'F.Again,thereisnospentfuelpoolwaterbulkboiling.3.2.3.4OverallPerformanceEvaluationThefuelpoolisprovidedwithaseismicCategoryIFuel,PoolCoolingSystemwhichmaintainsthewatertemperatureswithinaccept-ablelimits.TwoseismicCategoryIfuelpoolpumpsandtwoseismicCategoryIfuelpoolheatexchangersareavailablebefore,during,andafterapostulatedSafeShutdownEarthquake(SSE),andtherebyprovideadequatefuelpoolcoolingforthenormal,abnormalandacciden'tmaximumheatloadsdescribedabove.Asnotedpreviously,.SRP9.1.3doesnotsuggestsingleactivefailureconsiderationsevenfortheabnormalmaximumfuelpoolcoolinganalyses.3-7 Thepurificationloopnormallyrunsintermittentlyduringfuelpooloperationtomaintainthefuelpoolwaterpurityandclarity.Thepurificationsystemcanbeoperatedwitheitherthefuelpoolionexchangerorfuelpoolfilterbypassed.Localsamplepointsareprovidedtopermitanalysisoffuelpoolionexchangerandfuelpoolfilterefficiencies.Fortheabnormalconditionswherepooltemperatureisabove140'F,therewillbenodetrimentaleffectstofuelmovements,coolingsystemoperation,fuelandfuelassemblies,orpoolstructures.Thefuelpoolionexchangerwillbemanuallyisolatedbeforecoolingwatertemperaturereaches140'F.Allfuelpoolcoolingcomponentsaredesignedforatleast200'F.Instrumentationisavailablelocallywithacontrolroomalarmtomonitorpoolwatertemperatureandenableshutdownofthepurificationsystem(anintermittentoperation)soastopreventionexchangerresindamage.Addition-ally,anyconcernsrelatedtoincreasedfuelpoolbulktemperature,arenotexpectedtoaffecttheenvironmentalconditionstowhichtherefueling,equipmentoperatorswillbeexposed(e.g.,airtempera-ture,humidityofairborneactivity).Allconnectionstothefuelpoolaremadesoastoprecludethepossibilityofsiphondrainingofthefuelpool.Anyleakagefromthefuelpoolcoolingsystemisdetectedbyreductioninthefuelpoolinventory.Makeuptothefuelpoolisfromtherefuelingwatertank.Unacceptablelevelsofradioactivitytomaintenancepersonnelfromthespentfuelpoolarenotanticipatedwhileaheatexchangerisundergoingrepairs.Thefuelpoolheatexchangersareenclosedina~vseparateroomfromthefuelpool.Thisdesignfeatureassuresthatmaintenancepersonnelarenotsubjectedtounacceptablelevelsofradioactivity.Ouringsuchrepair,radiationlevelsinthefuelpoolareaaremonitoredcontinuouslyandaccesstothisareaisregulatedaccordingly;3-8 3.2.3.5TotalLossofFuelPoolCoolingAlthoughSRPs9.1.2and9.1.3(NUREG-0800)donotsuggestanalysisofthetotallossoffuelpoolcooling,thisscenariowasevaluatedtoensurethatampletimeisavailabletorestorecoolingortoprovidemakeupwatertothespentfuelpool.Multiplesources(seismicandnon-seismic)ofmakeupwaterexistasdiscussedinSubsection9.1.3.3.1oftheFSAR.Undertheassumptionthatallfuelpoolcoolingislostandthatmakeupwaterisnotsupplieduntilafterthepoolreachesboiling,thedecayheatinthespentfuelwillcauseboilinginatimeperioddependentuponthedecayheatload.Utilizingthemaximumfuelpooldecayheatload(Section3.2.3.2),thefuelpoolwaterinventorywouldtake3.9hourstoboil,withasubsequentboi1-offrateof62.8gpm.Atthisboil-offrate,1.4dayswouldpassbeforethewaterlevel-droppedtothelevel(nine'feetabovethefuel)requiredtomaintainacceptableradiationdoselevels(seeSection3.2.1).Thisismorethanenoughtimetoprovideindicationandalarmstotheoperatorsandtoprovidenecessaryrepairsorsupplymakeupwatertothespentfuelpool(seeFSARSection9.1.3.3.1).Forthenormaldecayheatload(Section3.2.3.1),thetimetoreachboilingconditionsis12.6hoursandthesubsequentboil-offrateis31.7gpm.Atthisboil-offrate,2.8dayswouldpassbeforethewaterleveldroppedtothelevelrequiredtomaintainacceptableradiationdoselevels.Thisismorethanenoughtimetorestorefuelpoolcoolingandprovidemakeupwater.forboththenormalandmaximumdecayheatloadsanalyzedassumingatotallossoffuelpoolcooling,themaximumcladdingtemperaturewasconservativelypredictedtobe275'F,thusensuringfuelclad-dingintegrity.3-9 POTENTIALFUELANDRACKHANDLINGACCIDENTSThespentfuelrackswillbeinstalledpriortostorageofanyspentfuelin.thespentfuelpool.Therefore,thereisnopotentialforanaccidentinvolvingspentfuelduringfuelrackinstallation.3.4TECHNICALSPECIFICATIONSTheproposedchangestothetechnicalspecificationsaresummarizedasfollows:1.Specification5.6.1a.ischangedtoindicatethetotaluncer-taintyvalueappliedtothevalueofKffforthespentfueleffstorageracks..2.Specification5.6.lb.ischangedtoshowthenominalcenter-to-centerdistanceforthespentfuelstorageracks.3.Specification5.6.1c.isaddedtospecifytherequiredboronconcentrationforthespentfuelpool.4.Specification5.6.1ischangedtodeletethestatementregard-ingdrystorageofnewfuelforthefirstcore.Thisstatementisnolongerapplicable.5.Specification5.6.1ischangedtoaddastatementdefiningtheenrichment/burnuprequirementsforstorageoffuelineachregionofthefuelpool.6.Specification5.6.3ischangedtoshowthecapacityofthespent'fuelstorager'acks.'I3-10 REFERENCES3-1FORM-AFourierTransformFastSpectrumCodefortheIBM-7090,McGoff,-D.J.,NAA-SR-Memor5766,September1960.3-2THERMOS-AthermalizationTransportTheoryCodeforReactorLatticeCalculations,Honeck,H.,BNL-5816,July1961.3-3CINDER-AOnePointDepletionandFissionProductProgram,England,T.R.,WAPD-TM-334,RevisedJune1964.34R.G.Soltesz,et.al.,"UsersManualforDOT-2WDiscreteOrdinatesTransportComputerCode,"WANL-TME-1982,December1969.3-11 FUELASSEMBlYCELLBLOCKINGDEVICE"L"INSERTR%SYSTEMSCOMBUSTIONENGINEERING.INC.SPENTFUELRACKMODULEFORREGIONIFigure3-12
 
FUELASSEMBLYCELLBLOCKINGDEVICEKQsvsTEMsCOMBUSTIONENGINEERING.INCSPENTFUELRACKMODULEFORREGIONIIFigure3-23-13
 
1.0COI0m~nCCg)ZITlI~n~g)C8CmzzcoOOm~8A0QZIll~IlDn0.90.80.70.60.5100002000030000BURNUP,IVIWD/MTU40000ENRICHMENTS4.5W/04.0W/03.5W/03.0'/02.5W/050000
 
DI-30,000AUcL'0,0000'-~10000ALLOWABLEBURNUPFORREGIONIIBURNUP~(11/00)x(ENRICHMENTW/0)13,900BURNUPREQUIRINGSTORAGEINREGIONI1.52.02.5.3.03$4.0INITIALU-235ENRICHMENT,W/0"4.55.0CL%SYSTEMSCOMBUSTIONENGINEERINGINCSPENTFUELSTORAGERACKINITIALENRICHNIENTvsBURNUPFORFUELASSEMBLIESINREGIONIIFigure3-15
 
4.0MECHANICAL,MATERIAL,ANDSTRUCTURALCONSIDERATIONS4.1DESCRIPTIONOFSTRUCTURE4.1.1DescritionoftheFuelHandlinBuildinAdescriptionoftheSpentFuelStoragePoolisprovidedinSection9.1.2oftheFSAR.Thespentfuelstoragepoolislocatedin,andanintegralpartof,theFuelHandlingBuilding.ThegeneralarrangementoftheFuelHandlingBuildingshowingthelocationofthespentfuelstoragefacilitiesisgivenonFigures1.2-16and1.2-17oftheFSARandtheFuelHandlingBuildingdesignisdescrib-edinSection3.8.4.1oftheFSAR.TheFuelHandlingBuildingexteriorwalls,floorsandinteriorpartitionsprovideradiationshieldingtoplantpersonnelandprotecttheequipmentfromtheeffectsofadverseatmosphericconditionsincludinghurricaneandtornadowinds,temperature,externalmissilesandcorrosiveenviron-ment.ThedesignloadingconditionsandallowablestressesfortheFuelHandlingBuildingaredescribedinsubsection3.8.4.3oftheFSAR.ThedynamicanalysisoftheFuelHandlingBuildingisdes-cribedinSection3.7oftheFSAR.TheSpentFuelPoolwallsandfloorsarelinedwithtype304stainlesssteel.Theseismiccate-goryIspentfuelpoolisbeinganalyzedconsideringthespentfuelracksandadditionalfuelassemblies,toensurethatthedesignmeetsthecriteriaspecifiedinFSARSection3.8.4.3.4.1.2DescritionofSentFuelRacks4.1.2.1DesignandFabricationofSpentFuelRacksThe,spentfuelstorageracksarefabricatedwith304stainlesssteelhavingamaximumcarboncontentof0.0655.TheracksaremonolithichoneycombstructureswithsquarefuelstoragelocationsasshowninFigure4-1.Eachstoragelocationisformedbyweldingstainlesssteelsectionsalongtheintersectingseams,permittingtheassemb 1 ledcavitiestobecometheloadbearingstructure,aswellasframingthestoragecellenclosures.Eachmoduleisfreestanding,andseismicallyqualifiedwithoutmechanicaldependenceonneighbor-ingmodulesorpoolwalls.Thisfeatureenablesremoteinstallation(orremovalifrequiredforpoolmaintenance)withminimaleffort.Reinforcingplatesattheupperperipheraledgesprovidetherequir-edstrengthforhandling.Stainlesssteelbars,whichareinsertedhorizontallythroughtherectangularslotsinthelowerregionofthemodule,supportthefuelassemblies.Thesesupportbars,whenweldedinplace,supportanentirerowoffuelassemblies.Semicircularpassagesatthebottomofeverycellwallallowcoolingwatertoflowtoallcells.Thesizeoftheopeningsprecludesblockagebyanycrudaccumula-tions.Loadingofthefuelracksisfacilitatedviaamovablelead-infunnelassemblycontainingfourlead-indevices.Theopeningsofthefunnelassemblyaresymmetricalandtheassemblysitsontopoftherackmodule.Themodulewallthicknessis0.135inch304stainlesssteel.TheL-insertsare0.188inchesthickandareshown,alongwiththecellblocks,inFigure4-'.AsindicatedinFigure4-3,L-insertsareusedonlyinRegionIandcellblocksareusedinbothRegionsIandII.ThecellblocksforRegionIIareremovableandaresimilartothoseforRegionIshowninFigure4-5.Thenominalpitchofthespentfuelracksisuniformthroughoutthenineteenmodulestobecontainedinthespentfuelpool.Thispitchis8.96inchescenter-to-centerinbothhorizontaldirections.AdditionaldetailsareshowninFigures4-4and'4-5.RegionIislocatedwithin6modulesandcomprisesatotalof448cavities..RegionIisthehigh-enrichment,coreoff-loadregion.The'fuelassembliesaretobestoredineveryotherlocationinacheckerboardconfiguration(seeFigure3-1).Thecheckerboardarrangementmakes505oftheRegionIultimatestoragecapacity4-2
 
Iinitiallyavailableforstorageoffuelwithhighfissileconcentra-tions.Theunused.cavitiesarefittedwithcellblockingdevicestopreventinadvertentinsertionoffuelintotheselocations.RegionImaybeexpandedintoRegionII,ifrequired,tostoreadditionalfuelwhichhasnotreachedtherequiredburnup.ThiswouldbeaccomplishedbytheadditionofL-insertsandcellblockingdevicesintoRegionII.RegionIisdesignedforatotalof224usablecavitiesforenrich-mentsuptoandincluding4.5w/oU-235.ThecavitiesinRegionIcontainanL-insert(Figure3-1).TheL-shapedstainlessinsertslockintothestoragecavityusingaspringlockingmechanismontheupperend(Figure4-2).Thislockingmechanismsnapsintooneoftheholesinthefoursurroundingcellwalls.TheseL-shaped304stainlessinsertsareneutronabsorbers.RegionIIconsistsofatotalof1136cavities.klithinRegionII,fuelassembliesarestoredin75%ofthetotalcavities(seeFigure3-2)foraninitialavailablestoragecapacityof852cavities.Cellblockingdevices'areusedtoprecludeplacementoffuelassemb-liesintoeveryfourthcavity,whichremainsemptyandprovidesafluxtrapforreactivitycontrol.'igure4-3showstheinstallationofRegionIandRegionIImodules.4.1.2.2SupportofSpentFuelRacksThespentfuelrackshavebeendesignedfordirectbearingontothespentfuelpoolfloor.A10"supportplateundertheperipheralcellsprovidesthebearingsurfacefortheracks.Fuelrackmodulelevelingisaccomplishedbyplacing10"squarestainlesssteelshimsbetweenthesupportplatesandthefuelpoolliner.4.1.2.3FuelHandlingThedesignofthespentfuelrackswillnotaffecttheconclusionsofthefuelhandlingaccidentspresentedintheFSAR(Section4-3 15.7.4)-andsummarizedbytheNRCintheSafetyEvaluationReport(NUREG-0843).Thatis,theradiologicaldosesforthepostulatedfuelcaskandfuelassemblydropaccidentsarewellwithinthe10CFR100criteria.ThefuelhandlingaccidentsarepresentedinSection5.3ofthisreport.Intheseanalysesthemaximumradialpowerpeakingfactorexperiencedbyaspentfuelassemblywasassumedtobe2.0inordertobracketfuturefuelmanagementchanges,whereastheanalysisintheFSARassumed1.65.Therefore,thereareincreasesinthedosesforthefuelhandlingaccidents.TheseincreasesarenotrelatedtothespentfuelrackdesignanddonotaffecttheconclusionsoftheanalysissincethedosesarestillwellwithinNRCguidelines(seeSections5.3.1.1and5.3.1.3).4.2APPLICABLECODES,STANDARDS,ANDSPECIFICATIONSThespentfuelracksaredesignedinaccordancewiththefollowing:1.CodeofFederalRegulations10CFRPart50:a)AppendixA"GeneralDesignCriteriaforNuclearPlants,"Criteria2,3,4,5,61,62,63.b)Appendix8"gualityAssuranceCriteriaforNuclearPowerPlantsandFuelReprocessingPlants."2.ASMEBoilerandPressureVesselCodeSectionIII,SubsectionNF,"NuclearPowerPlantComponents."3;'merican'SocietyforTestingMaterial'sDocuments:a)ASTM-A240-SpecificationforCorrosionResistingChromiumNickelSteelPlate,Sheet&StripforFusion-WeldedUnfiredPressureVessels.4-4
 
b)ASTM-A276-SpecificationforStainlessandMeatResist-ingBarsandShapes4.AmericanNationalStandardsInstitute:a)ANSI-N210,DesignObjectivesforLightWaterReactorSpentFuelStorageFacilitiesatNuclearPowerStations,1976.b)ANSI-N16.1,NuclearCriticalitySafetyinOperationswithFissionableMaterialsOutsideReactors,1975.5.UnitedStatesNuclearRegulatoryComnission:a)StandardReviewPlan,Section9.1.2,Rev.2"SpentFuelStorage."b)RegulatoryGuide1.13,Rev.2Draft,"SpentFuelStorageFacilityDesignBasis."c)RegulatoryGuide1.26,Rev.3"gualityGroupClassifica-tionandStandardsforWater,SteamandRadioactiveWasteContainingComponentsofNuclearPowerPlants."d)RegulatoryGuide1.29,Rev.3"SeismicDesignClassifica-tion."e)RegulatoryGuide1.31,Rev.2"ControlofStainlessSteelWelding"asmodifiedbyBran'chTechnicalPositionMTEB-51,"Interim.PositiononRegulatoryGuide1.31,"ControlofStainlessSteelWelding."f)RegulatoryGuide1.122,"DevelopmentofFloorDesignResponseSpectraforSeismicDesignofFloor-SupportedEquipmentorComponents,Rev.1,February1978.4-5 g)'egulatoryGuide1.70,"StandardFormatandContentofSafetyAnalysisReportforNuclearPowerPlants,Rev.3."h)NRCGuidance"ReviewandAcceptanceofSpentFuelStorageandHandlingApplications"April1978,andModificationsdatedJanuary18,1979.4.3SEISMICANDIMPACTLOADSMaximumloadstransmittedtothefloorbythespentfuelracksatSt.LucieUnit2aregivenbelow.Floor-RackInterfaceLoadsKIPSDeadWeightLiveOBENSEWOBEySSENSSSEEWSSEVNorth-South104.10*98.30East-West00028.60042.10VerticalDown59.7102.940.48.897.259.515.5Theseismicanalysisofthespentfuelrackinc'ludesanassessmentofthemaximumslidingandtippingthatcanbeexpected.Theracksareinstalledwithanominalgapof2"'betweenmodulesandareaminimumof12inchesfromthepoolwalls.Theanalysishasshownthatthemaximummotionoftheracks,includingtipping,slidingandthermalexpansionislessthanthegapbetweenadjacentmodules,therefore,nocontactispredicted.4-6 0'
LOADSANDLOADCOMBINATIONSTheloadsandloadcombinationsusedinthestructuralanalysisofthespentfuelracksarelistedbelowandareconsistentwithNRCguidancein"ReviewanAcceptanceofSpentFuelStorageandHandlingApplications"(Reference4-1).LoadCombination(ElasticAnalsis)AccetanceLimitD+LD+L+E0+L+ToD+L+To+ED+L+Ta+ED+L+Ta+E'ormallimitsofNF3231.1aNormallimitsofNF3231.1aLesserof2SyorSustressrangeLesserof2SyorSustressrangeLesserof2SyorSustressrangeFaulted.ConditionLimitsofNF3231.1cTheabbreviationsinthetableabovearethoseusedinSection3.8.4oftheStandardReviewPlanwhereeachtermisdefinedexceptforTawhichisdefinedasthehighesttemperatureassociatedwiththepostulatedabnormaldesignconditions.ConsistentwithNRCguidance(Reference4-1),theprovisionsofNF3231.1shallbeamendedbyparagraphsc.2,3,and4oftheRegula-toryGuide1.124entitled"DesignLimitsandLoadCombinationsforClass1Linear-TypeComponentsSupports."4.5DESIGNANDANALYSISPROCEDURES4.5.1Methodo1oSummarThespentfuelstorageracksaredesignedtowithstandforcesgeneratedduringnormaloperation,anOperatingBasisEarthquake,oraSafeShutdownEarthquake.Lateralandverticalseismicloads4-7 alongwithfluidforcesareconsideredtobeactingsimultaneouslyonthefuelracks.Theracksaredesignedtoassurerackstructuralintegritywhileatthesametimekeepingthefuelinasubcriticalstate.Linearresponsespectrummethodsareuse'dfortheverticaldirec-tion.Thelateralseismicresponsesofthespentfuelstorageracksaredeterminedusinganon-lineartimehistoryanalysis.Non-lineartimehistoryanalysesarep'erformedforthelateraldirectionsprimarilybecauseoffuelimpacting.Theeffectsofimpactingstructuressignificantlyinfluencethestressesinboththestoragestructureandthefueland,becausetheyarenon-linearinnature,canonlybeaccountedforbyperformingmorecomplexnon-lineartimehistoryanalyses.TheseismicinputusedfortheseanalysesconsistsoftheverticalresponsespectrumandthelateralaccelerationtimehistoriescorrespondingtothepoolfloorelevationatSt.LucieUnit2.TheanalysesareperformedinaccordancewithReg.Guide1.122,Revision1,February1978.Thefirststepintheanalyticalprocedureistodeterminethedynamiccharacteristicsofthefuelstorageracks.Thisis.donebydevelopingathree-dimensionalfiniteelementmodelofthestructureandsolvingforthenaturalfrequenciesandmodeshapesinair.ThefiniteelementcodeusedinthestudyisSAPIV(seeSection4.5;2).Theresultingdynamiccharacteristicsarethenincorporatedintoanon-linearrepresentationoftheentiresystem,whichincludesthefuelandthestorageracks.The.CfSHOCKcomputercode(seeSection4.5;2),isusedtodeterminethenon-lineartimehistoryresponseofthesystem.TheeffectsofimpactingbetweenthefuelandthestoragerackarerepresentedintheCESHOCKmodel.Becauseofthe4-8
 
closeproximityofthestructures,hydrodynamiccouplingeffectsbetweenthefuel,thestoragerackandthepoolarealsoincludedinthemodel.-(SeeReference4-2foradditionalinformation.)TheracksareanalyzedusingafiniteelementmodelintheSAPIVcodeandtheloadsfromSection4.3.SAPIVoutputconsistsofmembranestressesandbendingmomentsforeachelementasshowninFigure4-6.Whendealingwiththistypeofelement,theresultsaregivenperunitlength;therefore,thestresscausedbythemomentwillbearrivedatbythefollowingexpressions:oB=MC/Iforaunitlengthstrip,I=ltC=t/2C/I=6/tW0=6M/tThisapproachappliestoMx,M,andMxthus,thetotalstressinanyonedirectionwillbe:tmemb2Thebeamsusedatthebottomofeachcavityopeningtosupportthestoredfuelassemblyareincludedinthemodelas,lumpedmasseswithnostructuralrigidities.Thebeamsarethenanalyzedforaclearerunderstandingoftheexistingstresssituation.Againthestresscausedbythemomentwillbearrivedatbytheexpressiona=MC/Iandtheshearstressbytheexpressioncr=P/A.ComuterCodeDescritionsThecomputercodesusedintheseanalysesaredescribedinthefollowingsubsections.4-9 SAPIVSAPIVisageneralstructuralanalysisprogramforstaticanddynamicanalysisoflinearelasticcomplexstructures.Thefiniteelementdisplacementmethodisusedtosolveforthedisp'lacementsandcomputethestressesofeachelementofthestructure.Thestructurecanbecomposedofunlimitednumberofthree-dimensionaltruss,beam,plate,shell,solid,planestrain-planestress,thickshell,spring,axisymmetricelements.Theprogramcantreatthermalandvariousformsofmechanicalloadingaswellasinternalelementloadings.Oynamicanalysisoptionsconsistofeigenvaluesolutionsyieldingfrequenciesandmodeshapes,responsehistorybymodesuperposition,responsehistorybydirectionintegration,andresponsespectrumanalysis.'arthquaketypeofloadingaswellastimevaryingpressurecanbetreated.Theoutputconsistsofdisplacementsateachnodalpointaswellasinternalmemberforcesforeachelement.TheprogrambeingusedatC-Eisessentiallyequivalenttotheversionverified,documented,andreleasedbytheUniversityofCalifornia(Reference4-3).CESHOCKTheCESHOCKcomputercodeperformstransient,dynamicanalysesofnon-linearelasticsystems.Thesesystemscanbeeitheraxialmodelshavingonedegree-of-freedompernodeorlateraloneshavingonerotationalandonetranslationaldegreeoffreedompernode.Theresponseofasystemisdeterminedbynumericallyintegrating(usingaRunge-Kutta-Gilltechnique)itsequationsofmotion.Excitationcantaketheformofeitherinitialconditionsortimehistoriesofappliedaccelerations,velocitiesdisplacementsor4-10 forces.Thenon-linearitiescanconsistofgaps,friction,hyster-esisornon-linearsprings.Hydrodynamicactioncanalsobemodel-ed,withbothon-diagonal(addedmass)andoff-diagonal(coupling)termsbeingconsidered.Theprogramautomaticallysearchestheresponsetimehistoriesandprintsoutthemaximumandminimumvaluesofallnodalaccelera-tions,andmemberloadsandcangenerateanoptionaloutputtapecontainingthecompleteresponsehistories."CESHOCK"isanextensivelymodified,proprietaryversionofthe"SHOCK"computercodedevelopedbyV.K.GabrielsonandR.T.ReeseofSandiaLaboratories(Reference4-4).Itdiffersfromtheorig-inalintheareasofdamping,coefficientofrestitution,friction,hydrodynamiceffects,hysteresis,inputoftimehistories,outputoptions,allowableproblemsizeandthemannerofinputtingstiff-nesselements.CESHOCKhasbeenverifiedbydemonstrationthatitssolutionsaresubstantiallyidenticaltothoseobtainedbyhandcalculationsorfromacceptedanalyticalresultsviaanindependentcomputercode(References4-4and4-5).4.6STRUCTURALACCEPTANCECRITERIATheallowablestresslimitsfornormalandfaultedconditionsasdefinedintheASMECode,SectionIII,SubsectionNFare:Normal.OperatingConditions:PrimaryMembrane(P)=16,500psiPrimaryBending(Pb)=16,500psiShear(~)=11,000psiFaultedConditions:P=33,000psiP=33,000psib=22,000psis4-11
 
ForsimilarspentfuelstoragerackssuppliedbyCombustionEngineer-ingforanotherutility,themaximumbendingstressunderthefaultedconditionwas29,199psiascomparedtotheallowablelimitsgivenabove.ThemaximumstressfortheSt.LucieUnit2storagerackswillalsobewithintheaboveallowablelimits.4.7MATERIALS,QUALITYCONTROL,ANDSPECIALCONSTRUCTIONTECHNIQUES4.7.1MaterialsThespentfuelstorageracksarefabricatedfrom304stainlesssteelwithamaximumcarboncontentof0.065%andconformtoASTMspecifi-cationA240.Thestainlesssteelforthestoragecellwallsis0.135inchesthickandfortheLinsertsthestainlesssteelis0.188inchesthick.AsstatedinSection9.1oftheFSAR,thefuelracksbeingreplacedarealsomadeof304stainlesssteelandthefuelpoolchemistrycontrol(seeSection3.2.2)isthesameasthatdescribedintheFSAR.Therefore,thecompatibilityofthefuelrackmaterialwiththepoolwatershouldbethesameasthatsuamarizedintheFSARsafetyevaluationreport(NUREG-0843).4.7.2ualitControlFloridaPower8Light'sandCombustionEngineering'sQualityAssur-anceProgramsensurethatallmanufacturingandinstallationactiv-itiesconformtoacceptablequalityrequirementsthroughoutallareasofperformance.Thepertinentrequirementsof10CFR50,AppendixB,andCombustionEngineeringqualityassurancereportCENPD-210-A,Rev.3andSpecification00000-WQC-5.2willbefollow-ed.Inaddition',FloridaPower8Light'sTopicalQAReportFPL-NQA 12
 
100A(approvedbytheNRC)describesgualityAssurancerequirementswithwhichthedesign,procurement,andfabricationofthenewfuelstoragerackswillcomply.4.7.3ConstructionTechniuesThereiisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthesespentfuelracksareinstalled.Therefore,nospecialadministrativecontrolsorprocedureswillbenecessarytoprovideradiationprotection.Standardconstructiontechniquesandprocedureswillbeutilizedduringinstallationtoensureworkersafetyandcompliancewithguidelinesfromthemanufacturer.4.8TESTINGANDIN-SERVICESURVEILLANCESincethenewfuelracksdonotincludeboronpoisonplateinserts,thereisnorequirementforspecialtestingorsurveillance.4.9REFERENCES4-1NRCGuidance"Reviewand'AcceptanceofSpentFuelStorageandHandlingApplications",datedApril1978andmodifiedJanuary19,1979.4-2Longo,R.,andBailey,D.F.,"SeismicAnalysisofSpentFuelRacks"ANSpaperTS-7308presentedattheANSTopicalMeetingonOptionsforSpentFuelStorageatSavannah,Georgia,Sep-tember26-29,1982.'-3'Bathe,K.J.,Wilson,E.L.,andPeterson,F.E.,"SAPIV-A'tructuralAnalysisProgramforStaticandDynamicResponseof4-13
 
LinearSystems.",ReportNo.EERC,73-11,EarthquakeEngineeringResearchCenter,UniversityofCalifornia-Berkeley,June1973.4-4SCL-DR-65-34,"SHOCK-AComputerCodeforSolvingLumpedMassDynamicSystems",V.K.Fabrielson,January,1966.4-5TopicalReportonDynamicAnalysisofReactorVesselInternalsUnderLoss-of-CoolantAccidentConditionswithApplicationofAnalysistoCE800MweClassReactors,"CombustionEnineerin,Inc.,ReportCENPD-42,August1972(Proprietary).4-14 L-INSERTL-INSERTLOCKINGHOLEFUELASSEMBLYSUPPORTPLATESLOTFLOWPASSAGESK%SYSTEMS.COMBUSTIONENGINEERING.INC.TYPICALSPENTFUELSTORAGERACKMODULEFigure4-14-15 SYSTEMSCOMBUSriONENGiNEERING.INC.TYPICALSPENTFUELRACKMODULEL-INSERTFigure4-24-16
 
pp4~V~~lg4pgH'0v~a'RVI~Vgwgpq4ea0IIVVlv~Q'4<4u>as<V'4Q~vip.s~ovltOppRf0VIIL4VlQ4v~VWeg~w<VlH<gOu+IIII4$~+~R~lsglst4pw4OtgCFigureSYSTEMSCOMBUSTIONENGINEERING.INC.SPENTFUELSTORAGEMODULE1NSTALLATION4-17
 
IOOIfgCi3Cl+IQQQQQI0QQQ1ULjIC:1QQQQIIi.LI0QOI'rcrrtrootoovrtrvSCPltrotvtuULQC~0r-IlPlrrOPIIorptorvpoSCIltHtrrt111SC:ICl:I:QQ1SClltI/vO,,tC.PC~0pllorcorvroScrltPtrrtCrOvt"ICVtSrOOO~rtu'cv"IrfI~rp~II~P~~Crr(vtrltr~Ot~rl~8;~v511EPI>III~'ICPICr~~ffAIVICPICvcr~TkI~critVrrtSPOPPC0vlocprrpv1I~~I~~'OTE:Alldimensionsareininches.POWERCOMBUSTloNENGINEERING.INCSPENTFUELSTORAGEMODULEFigure4-18 8.740.1888.740SECTIONA.AAIIII4DETAILZ164.7/846WELDEDCELLBLOCKINGDEVICE"L"INSERTMODIFIED"L"INSERTSYSTEMSCOMBUSTIONENGINEERING.INCL-INSERTSFigure4-54-19
 
~vIov~xyMyyexyMx~LPOWERCOMBUSTIONENGINEERING.INCSAPIVCOMPUTERCODEMEMBRANESTRESSESANDBENDINGMOMENTSFigure4-64-20 COST/BENEFITASSESSMENTANOENVIRONMENTALIMPACT5.1COST/BENEFITASSESSMENT5.1.1NeedforIncreasedStoraeCaacitA.FP&Lcurrentlyhasnocontractualarrangementswithanyfuelreprocessingfacilities.FP&LexecutedthreecontractswiththeOepartmentofEnergy(OOE)onJune16,1983pursuanttotheNuclearWastePolicyActof1982,butthestorage/disposalfacilitieswillnotbeavailableforspentfuel.storageanyearlierthan1998.B.Table5-1includesaproposedrefuelingscheduleforSt.LucieUnit2,andtheexpectednumberoffuelassembliesthatwillbetransferredintothespentfuelpoolateachrefuelinguntilthetotalexistingcapacityisreached.Atpresentthelicens-edcapacityofUnit2is675storagecells.Allcalculationsinthetableforlossoffullcorereserve(FCR)arebasedonthenumberoflicensedtotalcellsinthepool.C.TheSt.LucieUnit2spentfuelpoolcontainsnospentfuelassembliesatthis'time.D.Atpresent,therearenocontrolrodassembliesorothercomponentsstoredintheSt.LucieUnit2spentfuelpool.E.Adoptionofthisproposedspentfuelstorageexpansionwouldnotnecessarilyextendthetimeperiodthatspentfuelassemb-lieswouldbestoredonsite.Spentfuel.couldbesentoffsi'teforfinaldisposition'underexistinglegislation,butthegovernmentfacilityisnotexpectedtobeavailableuntil1998.Asmattersnowstandanduntilalternatestoragefacilitiesareavailable,spentfuelassembliesonsitewillremainthere.5-1 F.TheestimatedatewhenthespentfuelpoolwillbefilledwiththeproposedincreaseinstoragecapacityisprovidedinTable5-1.5.1.2ConstructionCostsTotalconstructioncostassociatedwiththeproposedmodificationis2.4milliondollars.Thisfigureincludesthecostofdesigningandfabricatingthespentfuelracks;engineeringcostsforC-E,EbascoandFPSL;andinstallationandsupportcostsatthesite.5.1.3ConsiderationofAlternativesA.TherearenooperationalcommercialreprocessingfacilitiesavailableforFPL'sneeds,norarethereexpectedtobeanyintheforeseeablefuture.B.Atthepresenttime,therearenoexistingavailableindepen-dentspentfuelstoragefacilities.WhileplansarebeingformulatedbytheDOEforconstructionofaspentfuelstoragefacilitypertheNuclearWastePolicyActof1982,thisfacil-ityisnotexpectedtobeavailabletoacceptspentfuelanyearlierthan1998.C.Atpresent,FPLhasnolicensetotransshipfuelbetweenfacilities,norarepresentlyinstalledstorageracksatTurkeyPointUnits3and4capableof(orlicensedto)storefuelgeneratedatSt.LucieUnit2.St.LucieUnit1willlosefullcorereservecapacityuponstartupofcycle8spentfuelin1986.Therefore,transferofSt.LucieUnit,2spentfuelto't.LucieUnit1wouldonlycompoundthat.unit.'sstorageproblem'nd'snotaviableoption.5-2
 
D.Estimatesforcostsofreplacementpowerwerecalculatedbasedonthelastofficialrateofreturn.Theassumptionwasmadethattheunitcouldbeoperatedwithoutmaintainingfullcorereserve,thuscycle10in1996wouldbethelastrefuelingpossiblewithexistingstoragecapacity.Table5-2indicatestheaverageyearlyfuelcostincreasesforSt.LucieUnit2after3yearsofreactorshutdown.PlantshutdownwouldplaceaheavyfinancialburdenonFloridaresidentswithinFP8L'sserviceareaandcannotbejustified.5.1.4ResourcesCommittedRerackingofthespentfuelpoolwillnotresultinanyirreversibleandirretrievablecommitmentsofwater,landandairresources.Thelandareanowusedforthespentfuelpoolwillbeusedmoreeffi-cientlybysafelyincreasingthedensityoffuelstorage.ThematerialsusedfornewrackfabricationarediscussedinSection4.7.1ofthisreport.Thematerialsarenotexpectedtosignifi-cantlyforeclosealternativesavailablewithrespecttoanyotherlicensingactionsdesignedtoimprovethepossibleshortageofspentfuelstoragecapacity.5.1.5ThermalImactontheEnvironmentThethermalanalysisforthespentfuelpoolcoolingsystemispresentedinSection3.2ofthisreport.Thatanalysisincludedthemaximumspentfueldecayheatloadfornormal,abnormal,andacci-dentconditions.AsaresultofthererackingofSt.LucieUnit',themaximumdecayheatloadfornormalstorageincreasedfrom12.5x10Btu/hrto15.3x10Btu/hrandforabnormalandaccidentstoragetheheatloadincreasedfrom29.9x10Btu/hrto30.3x106Btu/hr.Thisincreasedheatloadresultsinanincreaseof6'Finthemaximumfuelpoolwatertemperatureforthe"normal"case,and1'Fforthe"abnormal"and"accident"cases.Sincetheevaporationrateisassumedtobezero,theincreaseddecayheatloadisalso5-3 theincreasedloadonthecoolingsystemandtheincreasedheatrejectedtotheenvironment.Thetotalplantheatloadrejectedtotheenvironmentisabout6.4x10Btu/hr(seeSection5.1.2.2.1of9~theEnvironmentalReportOperatingLicense).Therefore,theper-centageincreaseinheatrejectedtotheenvironmentislessthan0.05Kfornormalfuelstorageand0.01%foraccidentstorage.5.2RADIOLOGICALEVALUATION5.2.1SolidRadwasteNospentfueliscurrentlystoredintheUnit2spentfuelpool.St.LucieUnit2begancommercialoperationinAugust1983andwillnotberefueleduntilatleastOctober1984.Therefore,nosolidradioactivewasteiscurrentlygeneratedbythespentfuelpoolpurificationsystem,norwillanysolidradwastebegeneratedduringtheactualrerackingoperation.S'incethegreatmajorityofcontam-inationcollectedbythepurificationsystemderiveseitherfromfreshlyunloadedfuelortheintermixingofspentfuelpoolfluidwithprimaryfluidduringrefueling,increasingthestoragecapacityhasnosignificanteffectonthequantityofwastecollected.Theeffectivechangeinincreasingthestoragecapacityofthespent.fuelpoolistheretentionofolderfuelelementsinthepoolbeyondthetimewhen".heywouldhaveotherwisebeenshippedoffsitefordisposalorreprocessing.Operati.ngplantexperiencewithhighdensityfuelstorage(St.LucieUnitI),hasindicatedthatonly35cubicfeetofresinsaregenerat-edperyear.."''5;2.2Gaseous"RadwasteKrypton-85wouldonlybereleasedtothepoolwaterandsubsequentlytotherefuelingbuildingatmospherefromleakingfuelassemblies.Fornormaloperatingconditions,mostofthekryptonwouldcomefrom5-4
 
themostrecentlydischargedbatchoffuel.Afterthemostrecentbatchhascooledinthepoolfor12months,thepressurebuildupinafuelpinwhichcauses'thereleaseofkryptonwillbesmall.Thus,anyincreaseinKrypton-85activityattributedtotheincreaseinspentfuelpoolstoragecapacityisexpectedtobesmallcomparedtothetotalquantityofallnoblegasesreleased.Operatingplantexperiencewithhighdensityfuelstorage(St.LucieUnitI),indicatesthattherewerenomeasurablecontinuousreleasesofKrypton-85overthepasttwoyearsfromtheFuelHandlingBuildingventilationsystem.5.2.3PersonnelExosureA.DataisnotavailableregardingrecentgammaisotopicanalysisofSt.LucieUnit2spentfuelpoolwater.Inlieu,recentgammaisotopicanalysisisprovidedinTable5-3forSt.LucieUnitI,whichpresentlyuseshighdensityspentfuelstorageracks.FuelpoolactivitiesforSt.LucieUnit2areexpectedtobewithinthevaluespresentedintheFSARinSection'1.1.2.2andTable11.1-15.B.ExternaldoseequivalentratesarenotavailablefortheSt.LucieUnit2spentfuelpool;however,operatingplantexperi-ence(St.LucieUnit1)indicatesradiationlevelslessthanIMR/HRabovethesurfaceofthespentfuelpool.C.DataisnotavailableregardingairborneradionuclidesfortheSt.LucieUnit2spentfuelpool;however,operatingplant-experience(St.LucieUnit1)indicatesairbornelevelsaretypicallylessthantheminimumdetectableactivityofthe'quipment(GeLiDetector)usedforgammaspectroscopy.D.Sinceoperatingexperiencehasshownminimalairborneradio-activity,noincreasesindoserateinthespentfuelpoolareaoratthesiteboundaryareanticipated.5-5
 
E.Asstatedin5.2.1,baseduponoperatingplantexperiencewithhighdensityfuelstorageracks,therewillbenosignificantincreaseintheradioactivewastegeneratedbythespentfuelpoolpurificationsystem.Thisisbecausethereisnosignifi-cantincreaseintheradioactivitylevelsinthespentfuelpoolwaterwithhighdensityfuelstorageracks;thereforespentfuelpoolcoolingandpurificationfiltersneednotbereplacedmorefrequently.Thustheannualman-remburdenisnotexpectedtoincreaseduetotheincreasedfuelstorage.F.Mostofthecrudassociatedwithspentfuelstorageisreleasedsoonafterfuelisremovedfromthereactor.Oncefuelisplacedintothespentfuelstorageracks,additionalcrudcontributionisminimal.Thehighestpossiblewaterlevelwillbemaintainedinthespentfuelpool(>23feetabovethefuelassemblies)tokeepexposureaslowasreasonablyachievable.Afuelpoolskimmerisusedduringpurificationoperationstoremoveanyfloatingpollutants,therebyfurtherprecludingthedepositionofcrudonthespentfuelpoolwalls.G.Sections5.2.3.eand5.2.3.findicatethatoperatingexperiencewithhighdensityrackshasshownnosignificantincreaseinradioactivitylevelsinspentfuelpoolwaterordoseratesabovethespentfuelpool.AsstatedinSections5.2.1and5.2.3.e,operatingexperiencehasshownnoincreaseintheprocessingofsolidradioactivewasteorannualman-remburdenassociatedwithit.TheSt.LuciePlantRadiationProtectionprogramisdescribed.inChapter12oftheFSAR.BasedonexperiencewiththererackingofSt.LucieUnit1,nomodificationstotheprogram'reanticipatedasaresultoftheSt.LucieUnit2rerack.5-6
~~5.I.4~RkOiTheex>stingspentfuelstoragerackshaveneverbeenusedtostorespentfuelandconsequentlyarenotcontaminated.Therackswillbedisposedthroughroutineindustrialmeans.Thetotalweightoftheseracksisapproximately122,540pounds.Theracksconsistofeightmodules;fourweighingapproximately13,140poundseachandtheotherfourapproximately17,520poundseach.5.3ACCIDENTEVALUATION5.3.1SentFuelHandlinAccidents5.3.1.1CaskDropAsdiscussedinFSARSection9.1,theconstructionoftheFuelHandlingBuilding,thedesignofthecaskhandlingcraneandthetravellimitswitchinterlockcircuitryaresuchthatthespentfuelcaskcannottraverseoverthespentfuel.Fromthespentfuelcaskstorage,thecranemovesthecaskloadedwithspentfuelassembliesoutoftheFuelHandlingBuildingtothedecontaminationareaontotheshippingvehicleforoffsiteshipment.AsdiscussedinFSARSubsection9.1.4.3,althoughitisnotlikely,thepotentialdropofaspentfuelcaskisabout43ftjustoutsidetheFuelHandlingBuilding.Itisconservativelypostulatedthatacaskdropaccidentof43ftresultsinthedamageofalltheassembliescontainedinthecas,kandtheinstantaneousreleaseofactivitytotheatmosphere.Itisassumedthataspentfuelcaskcontaining10irradiatedfuelassembliesisinthepr'ocessofbeingmovedwiththecasksuspendedfromthecraneabovethetransportvehicle.Throughsomeunspeci-fiedfailure,thecaskbecomesdisengagedfromthecraneandfalls43ftontoanunyieldingsurface.Theactivityfromthedamagedfuelbundlesispostulatedtobereleasedtotheenvironment,atgroundlevel.5-7
 
TheanalysisisbasedonStandardReviewPlan15.7.5.ThemodelsusedforevaluationoftheradiologicaldosesaredescribedinAppendix158oftheFSAR.TheparametersandassumptionsusedarepresentedinTable5-4.ThedataforarealisticanalysisarealsoincludedinTable5-4forcomparisonpurposes.Thecaskdropaccidentanalysisassumesthatallthefuelisdamagedandallofthegapactivityisreleasedatgroundleveltotheenvironment.Thisconsistsof10percentofthenoblegases,30percentoftheKr-85and10percentoftheradioactiveiodineinthefuelrodsatthetimeoftheaccident.Thevaluesassumedforindividualfissionproductinventoriesincludedaradialpeakingfactorof2.0andaradioactivedecayof90days.TheactivityreleasetotheenvironmentispresentedinTable5-5.Themaximumoffsitedoseproducedisnomorethan24.0remforthetwo-hourinhalationthyroiddoseattheexclusionareaboundary.Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-6.Resultsarewellwithintheacceptancecriteriaof10CFR100andNRCguidelinesinSection15.7.5oftheNRCStandardReviewPlan(NUREG-0800).ThesedosesindicatethatresultsarelowerthanNRCguidelinesbyatleastafactorofthreeandthatthoseguidelineswouldbemetevenforaradialpowerpeakingfactorof6.2,ascomparedtothevalueof2.'0assumedinthisanalysis.'.3.1.2OverheadCraneNocran'ecapableofcarryingheavyloadscanmoveintheareaofthespentfuelpool.(Theanalysisoflight1'oadsissummarizedinSection5.3.4ofthisreport.)ProtectionagainstdroppingthespentfuelcaskintothespentfuelstoragepoolisprovidedbythebasiclayoutoftheFuelHandlingBuilding(refertoFSARFigures1.2-16and1.2-17).Thecaskhandlingarrangement(roofopeningvs.5-8 poollocation)makesitimpossibletopassthecaskoverthespentfuelpool.Thecaskisassignedaseparatestoragepooladjacenttothespentfuelpool.ThecaskdecontaminationandwashdownareasarelocatedoutsidetheFuelHandlingBuilding.TheplanatEleva-tion96.83feetshowsthelocationandsizeoftheroofopeningthroughwhichthefuelcaskcranehoistropescanpass.Thehori-zontalmovementoftheropes,andthereforeofthecranehook,islimitedbytheroofopening.Theplanatelevation19.50feetshowsthelocationanddimensionsofthespentfuelpool.Acomparisonofthetwoplansshowsthatthecranehookispreventedfromapproach-ingthespentfuelpoolbythelimitsoftheroofopening.AdditionalprotectionisaffordedbythetrolleybumpersandasetoflimitswitchesworkingtogetherwithbridgeandtrolleybrakestopreventmovementofthehookintotherestrictedareaasshownonPartialPlanAofFSARFigure1.2-16.Theprimarysetoflimitswitchesandbridgeandtrolleybrakesisbackedupbyanindepen-dentsecondarysetdesignedtoperformthesamefunction.Undertheseconditionsthehookmovementwithinthebuildingislimitedtoanarrowcorridorsufficienttobringthecaskintothebuildingandplaceitinthecenterofthecaskstoragepool.Therearenosafetyrelatedcomponentslocatedunderthetravelpathofthespentfuelcask.Acaskdroppedontoeitheroftheseparatingwallsbetweenthespentfuelpoolandcaskstoragepool,afterdroppingontoandtippingovertheexteriorwall,fallsbackintothecaskstoragepool.Thedesignofthecaskyokewillpreventthecaskfromdroppinginotherthanverticalorientation.PleaserefertoFSARFigures9.1-21and22whichillustratetheconceptofthedoubleyoke.Itisapparentthattwofailuremodesexist:.1.Onesideofthedoubleyokefailsandthenon-redundantmainhookdoesnot.Theconsequenceofthisisthat,sincethecask5-9
 
willstillbesupportedonthreesides,thecaskcenterofgravitywillnotdropandnosignificantpendulummotioncanbeinitiated.2.Onesideofthedoubleyokefails,followedbyfailureofthenon-redundantmainhook.Thecaskisexpectedtofallstraightdown.Insummary,thedoubleyokearrangementprovidesadequateprotectionagainsttheinitiationofpendulummotionintheeventofayokefailure.Thereisnoconceivablefailuremodewhichwouldcausethecasktofallovertheseparatingwallintothespentfuelpool.AsetofredundantupperlimitswitchespreventsthecranefromliftingthecaskaboveElevation62.5ft.5.3.1.3FuelAssemblyDropThepossibilityofafuelhandlingaccidentisremotebecauseofthemanyinterlocksandadministrativecontrolsandphysicallimitationsimposedonthefuelhandlingoperations(refertoFSARSubsection9.1.4).Allrefuelingoperationsareconductedinaccordancewithprescribedproceduresunderdirectsurveillanceofasupervisortechnicallytrainedinnuclearsafetyandfuelhandling.Notwithstandingtheabove,thefuelhandlingaccidentisassumedtooccurasaconsequenceofafailureofthefuelassemblyliftingmechanismresultinginthedroppingofaraisedfuelassemblyontothespentfuelpool.Theearliestanticipatedtimeatwhichaspentfuelassemblycouldbehandledisthreedaysaftershutdown.Forthisevaluation,droppingofafuelassemblyisassumedtooccur,breachingthecladdingandreleasingthevolatilefissionproductsfromthegasgapofthefuelpins.Inadditiontothearearadiationmonitorlocatedinthespentfuelcaskarea,portableradiationmonitors5-10 capableofemittingaudiblealarmsarelocatedinthisareaduringfuelhandlingoperations.DoorsintheFuelHandlingBuildingareclosedtomaintaincontrolledleakagecharacteristicsinthespentfuelpoolregionduringrefuelingoperationsinvolvingirradiatedfuel-.Shouldafuelassemblybedroppedinthefueltransfercanalorinthespentfuelpoolandreleaseradioactivityaboveapres-cribedlevel,theairborneradiationmonitorssoundanalarm,alertingpersonneltotheproblem.AirborneradiationmonitorsintheFuelHandlingBuildingisolatethenormalFuelHandlingBuildingVentilationSystemandautomaticallyinitiatethefiltrationsystems(refertoSubsection6.2.3oftheFSAR).Themodelsusedforevaluationoftheradiologicaldosesaredes-cribedinAppendix15BoftheFSAR.,AssumptionsandparametersusedinevhluatingthefuelhandlingaccidentareconsistentwithRegulatoryGuides1.13"SpentFuelStorageFacilityDesignBasis"December1975(Rl)and1.25"Assump-tionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaFuelHandlingAccidentintheFuelHandlingandStorageFacilityforBWRandPWRs"March1972(RO)recommendations,asshowninTable5-7.Theradioactiveinventoryofthe236fuelrodswasobtainedbymultiplyingtheactivityofthemostradioactivefuelrod72hoursaftershutdownbyafactorof236.ThecalculationalmethodsandassumptionsdescribedinRegulatoryGuide1.25(RO)applysince:a)thevaluesformaximumfuelrodpressurization,b)peaklinearpowerdensityforthehighestpowerassemblydischarged,c)maximumcenterlineoperatingfueltemperaturefortheassemblyinitemb)'bove,andd)averageburnupforthepeakassemblyinitemb)abovearelessthanthecorrespondingvaluesinRegulatoryGuide1.25(RO)..TheassumptionsandparametersacceptableforarealisticanalysisarealsoindicatedinTable5-7forcomparisonpurposes.5-11 TheradioactivityreleasedtotheenvironmentispresentedinTable5-8.Themaximumoffsitedoseproducedisnomorethan3.0remtwo-hourinhalationthyroiddoseattheexclusionareaboundary.Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-9.Resultsarewellwithintheacceptancecriteriaof10CFR100andNRCguidelinesinSection15.7.4oftheNRCStandardReviewPlan(NUREG-0800).ThesedosesindicatethatresultsarelessthanNRCguidelinesbyafactorof25andthatthoseguidelineswouldbemeteasilyevenforaradialpowerpeakingfactorgreaterthanthatassumedinthisanalysis.5.3.1.4SpentFuelHandlingMachineThespentfuelhandlingmachine,asshownonFSARFigure9.1-14,isatravelingbridgeandtrolleythatridesonrailsoverthespentfuelpool,fueltransferpoolandcaskloadingpit.Motorsonthebridgeandtrolleypositionthemachineoverthespentfuelassemblystorageracks,thenewfuelelevator,theupendingmachine,andfuelshippingcask.Anoverheadcraneisusedtotransfernewfuelfromthenewfuelstoragerackstothenewfuelelevator.Thespentfuelhandlingmachinehoistisprovidedwithalonghandlingtoolwhichengagesthefuelassemblyto'emoved.Oncethefuelassemblyisgrappled,thecableandhoistwinchraisethefuelassembly..Themachinethentransportsthefuelassemblyfromtheupendingmachinetothespentfuelstorageracks(spentfuel),fromthenewfuelelevatortotheupendingmachine(newfuel),orfromthespentfuelstoragerackstothefuelshippingcask.Thecontrolsforthespentfuelhandlingmachinearemountedonaconsolelocatedonthespentfuelhandlingmachinetrolley.Coor-dinatelocationofthe'bridgeisindicatedbysynchrosattheconsole,andthetrolleypositionisindicatedbyapointerand.targetsystem.5-12 Duringwithdrawalorinsertionofafuelassembly,theloadonthehoistcableismonitoredtoensurethatmovementisnotbeingrestricted.Overloadandunderloadsetpointsareprovidedtointerrupthoistoperationatpreassignedlevelsofcableload,therebyprotectingfuelassembliesduringhoistingoperations.Positivelockingisprovidedbetweenthegrapplingdeviceandthefuelassemblytopreventinadvertentuncoupling.Thedrivesforboththebridgeandthetrolleyprovideclosecontrolforaccuratepositioning,andbrakesareprovedtomaintainthepositiononceachieved.Inaddition,interlocksareinstalledsothatmovementofthespentfuelhandlingmachineisnotpossible'whenthehoistiswithdrawingorinsertinganassembly.Manually-operatedhandwheelsareprovidedforbridge,trolley,andwinchmotionsintheeventofapowerloss.5.3.2~Abeli~~~AsdescribedaboveinSection5.3.1.2,itisnotpossibletodropthespentfueicaskontothespentfuelracks.Forthedropofthecaskoutsidethefuelhandlingbuilding,theconservativeanalysissummarizedinSection5.3.l.1abovedemonstratedthatresultingradiologicaldosesarewellwithinacceptancecriteria.Inevaluatingthedropofafuelassemblyfromthespentfuelhandlingmachineintothespentfuelpool(Section5.3.1.3),itwasconservativelyassumedthatallfuelrodsinthedroppedfuelassemblyweredamaged.Theanalysisshowedthattheradiologicaldoseswerealsowellwithinacceptancecriteria.~'P5-13
~~f5.L3~F1DThepresenttechnicalspecificationonfueldecaytimepriortoremovalofirradiatedfuelfromthereactorvesselandthestoragecapacityofthespentfuelracksensurethatthetotaldecayheatloadfromthespentfuelpoolislessthanthecapacityofthefuelpoolcoolingheatexchanger.ThefuelpoolcoolinganalysisisdescribedinSection3.2.Also,thetechnicalspecificationonfueldecaytimepriortoremovaloffuelfromthereactorvesselensuresthattheassumptionsonradioactivitycontentofthefuelinthefuelassemblyandcaskdropaccidentanalyses(Sections5.3.1.1and5.3.1.3)aremet.5.3.4LoadsOverSentFuelAsdescribedinSection9.1oftheFSAR,therearenolightloads(objectslessthanorequaltotheweightofafuelassembly)whichcouldbecarriedoverspentfuelineitherthecontainmentbuildingorinthespentfuelpoolwhichwouldresultinfueldamagemoreseverethanthatassumedintheaccidentanalysis(i.e.,damageofallfuelrodsinonefuelassembly).AsdescribedinSection5.3.1.2above,thedesignsofthefuelhandlingbuildingandtheoverheadcraneensurethatheavyloadscannotbecarriedoverthespentfuelpool.5.3.5ConclusionsSincethespentfuelcaskcannotfallontothespentfuelracks,thehighercapacityofthespentfuelrackdesigndoesnotaffect,byitself,resultsofthefuelcaskdropaccidentdescribedabove(Section5.3.1.1).Also,thespentfuelrackdesigndoesnotaffect5-14
 
thefuelassemblydropaccidentanalysisbecausethedesignofthefuelracksprecludesdamagetomorethanonefuelassembly.There-fore,thefuelassemblydropaccidentisboundedbythedropofasinglefuelassembly,asdescribedinSection5.3.1.3.Sincetherewillbeonlyanegligiblechangeinradiologicalcondi-tionsinthefuelhandlingbuildingasaresultofthehighercapacityofthenewfuelracks,nochangeinFP&L'sradiationprotectionprogramisanticipated.Also,sincetheenvironmentalconsequencesofthefuelhandlingaccidentsdescribedinSections5.3.1.1and5.3.1.3arewellwithinNRCguidelines,therewillbenochangetoorimpactonthepreviousdeterminationsoftheFinalEnvironmentalStatement.Therefore,thenewfuelrackdesignandtheproposedlicenseamendmentswillnotsignificantlyaffectthequalityofthehumanenvironmentandissuanceofa10CFR51.5(c)(1)negativedeclarationisappropriate.5-15 7(83K17)/ds--:56TABLE5-1ESTIHATEDSPENTFUELPOOLCAPACITYREQUIREHENTSST.LUCIEUNIT2CycleNo.Approx.CycleStartupDateTotalNo.AssembliesinPoolfromallPreviousCclesSpacesRequiredforFullCoreReserveTotalNo.SpacesNeededDuringThisCcleExcessStorageAvailableAugmentedStorageReuired08/01/83212/06/84305/15/86412/01/8780164240217217217217217297381457ExistingCapacity(1)675675378294218NewCapacity(2)10761076779695619ExistingCapacityNewCapacity505/01/89.3282171305316'I2/01/9005/01/9212/01/93'05/01/951012/01/961105/01/98'212/01/991305/01/20011412/01/021505/01/04404492*568656732ee820896+9841060++114821721721721721721721721721721762170978587394910371113120112771365455367291203127393411019827436243852660269053.141217305(1)LicensedCapacityAtPresent~675Cells(2)NewRackInstallation=1584Total/1076InitiallyUsableCells*FCRLostat458StoredAssemblieswithExistingCapacityeeLastRefuelingPossiblewithExistingCapacity(AssumesNoFCRRequirements)+FCRLostat859StoredAssemblieswithNewCapacity++LastRefuelingPossiblewithNewCapacityRacks(AssumesNoFCRRequirements)
TABLE5-2REPLACEMENTCOSTFORST.LUCIEUNIT2BaseCaseProd.Cost$000EnergyGen.BySL2000MWHOutageCaseProd.Cost$O00)RelacementCost($000~$/MWH19987,295,5603,8127,970,697675,137177.1119998,422,4044,8189,343,839921,435191.2520009,069,1994,88310,117,8411,049,642214.96NOTES;SL2out5/1/98through12/31/2000BasedonSYPlongtermbasecase(7/22/83)5-17 TABLE5-3GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCELEVEL=4.66NUCLIDEHALF-LIFEUCI/ml1-SIGMAERRORIERRORXMPCAR-41KR-85KR-85MKR-87KR-88XE-131MXE-133XE-133MXE-135XE-135MXE-138I-130I-131I-132I-133I-134I-135NA-24CR-51MN-54MN-56CO-57CO-'58FE-59CO-60ZN-65NI-651.83H10.72Y4.48H76.30M2.84H11.90D5.24D2.19D9.08H15.65M14.17M12.36H8.04D2.30H20.80H52.60M6.61H15.00H27.70D312.50D2.58H270.90D70.80D44.60D5.27Y244.10D2.52H5.726E-075.062E-042.170E-066.082E-067.847E-067.595E-055.922E-061.676E-052.027E-061.856E-054.921E-051.807E-062.322E-062.078E-062.406E-062.187E-062.376E-063.758E-071.873E-051.493E-051.400E-067.839E-06<1.660E-031.965E-063.744E-042.181E-062.008E-06NUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDE1.347E-06NUCLIDE1.491E-066.072E-06NUCLIDE3.124E-06NUCLIDENUCLIDENOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTED9.02NOTDETECTED19.020.37NOTDETECTED0.83NOTDETECTEDNOTDETECTED0.000.000.000.005-18 TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCELEVEL=4.66NUCLIDEHALF-LIFEUCI/11111-SIGMAERRORgERROR'5MPCBR-82AG-110SN-113SB-124W-187NP-239RB-88ZR-95NB-95ZR-97NB-97MO-99TC-99MRU-103-SB-125CS-134CS-136CS-137BA-140PR-144LA-140CE-141CE-144AC-228RA-224PB-21235.30H252.20D115.00D60.20D23.90H2.35D17.80M63.98D35.15D16.90H72.10M66.02H6.02H39.35D2.77Y2.06Y13.10D30.17Y12.79D17.28M40.22H32.50D284.30D5.75Y5.75Y5.75Y1.770E-061.782E-063.903E-061.098E-055.660E-067.261E-065.229E-052.560E-061.468E-063.723E-053.356E-061.105E-051.800E-062.391E-06<3.757E-059.525E-041.471E-061.398E-031.047E-056.151E-043.028E-073.037E-06<1.382E-05-1.633E-05<4.398E-053.832E-06NUCLIDENOTNUCLIDENOTNUCLIDENOT9.856E-07NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOT.NUCLIDENOT5.973E-065.162E-06NUCLIDENOT5.860E-06NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTDETECTEDDETECTEDDETECTED8.'8DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED15.900.54DETECTED0.42DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED0.000.000.000.005-19
 
TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCELEVEL=4.66NUCLIDEHALF-LIFEUCI/ml1-SIGMAERROR5ERRORTL-208TH-234RA-226PB-214BI-214K-405.75Y1000.00Y1000.00Y1000.00Y1000.00Y1000.00Y<2.382E-06<1.943E-06<5.161E-05<5.089E-06<4.885E-06<3.860E-06NUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDTOTALACTIVITY=5.028E-03UCI/UNIT;TOTALXMPC=5-20 TABLE5-4SPENTFUELCASKDROPACCIDENTASSUMPTIONSl.Dataandassumptionsusedtoestimateradioactivesourcesfrompostulatedaccident:DesignBasisAssumtionsRealisticBasisAssumtionsb)c)d)PowerlevelBurnup(anytimeduringcorelife)SpentfueldamagedNumberofassembliesincore2700MwtNA100%2172700MwtNA0.1%2172.Dataandassumptionsusedtoestimateactivityreleasea)b)c)d)Assumedspentfueldecay.timepriortoaccidentRadialpeakingfactorFuelrodreleasefractions:(allofthegasgapactivityisreleased)Numberofassembliesinacask90days2.010Knoblegas30%Kr-8510%iodine1090days1.6510Knoblegas305Kr-85105iodine103.DispersionDataa)b)c)EZ/LPZdistance(kilometers)AssumedreleaselevelX/Q's(Sec/m)EAB(0-2hr)LPZ(0-8hrH1.56/1.61Ground1.6E-047.1E-051.56/1.61liround2.6E-057.4E-065-2T TABLE5-5SPENTFUELCASKDROPACCIDENTRELEASESActivityReleasetoEnvironment(Curies)FortheDesignBasisAnalysis~jsotoeI-131I-132I-133I-134I-135Kr-85mKr-85Kr-87Kr-88Xe-131mXe-133Xe-135Xe-138~Activtt2.91E+02W1.89E+042.36E+015-22 TABLE5-6SPENTFUELCASKDROPOFFSITEDOSESThyroidWholeBodyTwoHourExclusionAreaBoundarDose2.4x10rem6.1x10remEntireEventLowPoulationZoneDose1.1x10rem2.7x10rem5-23 TABLE5-7FUELHANDLINGACCIDENTASSUMPTIONSParameterDesignasisAssumtionsReaisticAssumtions1.Dataandassumptionsusedtoestimateradioactivesourcesfrompostulatedaccidents:a)Powerlevel(MWT)b)Radialpeakingfactorc)Burnupd)Decaytime(hr)e)Numberoffailedrodsf)Fractionoffissionproductgasescontainedinthegapregionofthefuelrods(percent)Kr-85OtherNobleGasesIodine'7002.04.5full-poweryearsat80Kplantfactor7223630101027001.554.5full-poweryearsat80%plantfactor72163010102.Dataandassumptionsusedtoestimateactivityreleased:a)Gapactivityreleasedtopool(percent)b)Minimumwaterdepthabovedamagedrods,(ft)c)Pooldecontaminationfactorfornoblegases.d)'ooldecontaminationfactorforiodine1002310023InorganicOrganicOverall13311005005-24
 
TABLE5-7(Cont'd)FUELHANDLINGACCIDENTASSUMPTIONSb)c)AssumedreleaselevelX/Q's(sec/m)EABLPZ4.DoseDataa)Methodofdosecalculationb)DoseconversionfactorsParametere)Iodinechemicalformreleasedtofuel.handlingInorganiciodine(percent)Organiciodine(percent)f)FilterEfficiencyIodineinorganic(percent)Iodineorganic(percent)Iodineparticulate3.DispersionData:a)EAB/LPZdistance(kilometers)DesignasisAssumtions75259550991.56/1.61Ground1.6x1057.1x10Appendix15B,Section15B.1Appendix15B,Table158-1.ea1stlcAssumtions75259595991.56/1.61Ground2.6x10-67.4x105-25
 
TABLE5-8FUELHANDLINGACCIDENTRELEASESActivityReleasedtotheEnvironment(Curies)FortheDesignBasisAnalysisISOTOPEI-131I-133Xe-131mXe-133Xe-135Kr-85236RODS3.4(+1)8.50)3.7(+2)9.3+41.4+2)1.9(+3)5-26 TABLE5-9FUELHANDLINGACCIDENTOFFSITEDOSESThyroidWholeBodyTwoHourExclusionAreaBoundarDose3.0x10rem1.1x10remEntireEventLowPoulationZoneDose1.3x10rem4.6x10rem5-27
}}

Revision as of 05:05, 27 April 2018

Proposed Tech Spec Changes Re Reracking of Spent Fuel Pool. NSHC & SAR Encl
ML17215A306
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 03/13/1984
From:
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17215A305 List:
References
NUDOCS 8403190228
Download: ML17215A306 (112)


Text

'DESIGNFEATURESVOLUME5.4.2Thetotalwaterandsteamvolumeofthereactorcoolantsystemisl0,93I+275cubicfeetatanominalTavgof572oF.5.5METEOROLOGICALTOWERLOCATION5.5.IThemeteorologicaltowershallbelocatedasshownonFigureS.l-I.5.6FUELSTORAGECRITICALITY5.6.IThespentfuelstorageracksaredesignedandshallbemaintainedwith:a.Akeffequivalenttolessthanorequalto0.95whenfloodedwithunboratedwater,whichincludesaconservativeallowanceof0.024hkeffforTotalUncertainty.b.Anominal8.96inchcenter-to-centerdistancebetweenfuelassembliesplacedinthestorageracks.c.AboronconcentrationgreaterthanorequaltoI720ppm.RegionIcanbeusedtostorefuelwhichhasaU-235enrichmentlessthanorequalto4.5%.RegionIIcanbeusedtostorefuelwhichhasachievedsufficientburnupsuchthatstorageinRegionIisnotrequired.iyIDRAINAGE5.6.2Thespentfuelstoragepoolisdesignedandshallbemaintainedtopreventinadvertentdrainingofthepoolbelowelevation56feet.CAPACITY5.6.3Thespentfuelstoragepoolisdesignedandshallbemaintainedwithastorage!capacitylimitedtonomorethanII88fuelassemblies.5.7COMPONENTCYCLICORTRANSIENTLIMITS5.7.IThecomponentsidentifiedinTable5.7-IaredesignedandshallbemaintainedwithinthecyclicortransientlimitsofTable5.7-1.ST.LUCIE-UNIT2AmendmentNo.84031902288403i3PDRADOCK05000389>pPDR

NoSinificantHazardsConsiderationFloridaPowerandLightCompany(FPL)hasdeterminedthattheproposedamendmentinvolvesnosignificanthazardsconsiderations,focusingonthethreestandardssetforthinIOCFR50.92(c)asquotedbelow:TheCommissionmaymakeafinaldetermination,pursuanttotheproceduresin50.9I,thataproposedamendmenttoonoperatinglicenseforafacilitylicensedunder50.2l(b)or50.22orforatestingfacilityinvolvesnosignificanthazardsconsiderations,ifoperationofthefacilityinaccordancewiththeproposedamendmentwouldnot:I.Involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated;or2.Createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated;or3.Involveasignificantreductioninamarginofsafety.FPLhasdeterminedthattheactivitiesassociatedwiththisamendmentrequestdonotmeetanyofthesignificanthazardsconsiderationstandardsofIOCFR50.92(c)and,accordingly,anosignificanthazardsconsiderationfindingisjustified.Insupportofthisdetermination,thefollowingbackgroundinformationisprovided,followedbyadiscussionofeachoftheabovethreesignificanthazardsconsiderationstandards.~BackroundThereisonespentfuelpoolatSt.LucieUnit2.Theexistingrackshave300totalstoragecells,withacenter-to-centerspacingofl4inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-thirdofacoreisstoredinthefuelpool.Withthe300presentlyavailablestoragecells,St.LucieUnit2 I

wouldlosethefull-corereservestoragecapabilityafterthesecondrefueling,expectedtobeinl986.Therefore,toensurethatsufficientcapacitycontinuestoexistatSt.LucieUnit2,FPLhascontractedwithCombustionEngineering(C-E)fornewspentfuelstoragerackswhosedesignallowsformoredensestorageofspentfuel.ThenewrackshaveanultimatestoragecapacityofII88fuelassemblies,whichwillextendthefull-corereservestoragecapabilityuntill998.Thenewfuelstoragerackswillstorefuelintwodiscreteregionsofthespentfuelpool.RegionIincludessixmoduleshavingatotalof448storagecells.Onlyone-halfofthesecellswillbeavailableforstorageoffuelassemblies.Theunusedcellswillbeprovidedwithcellblockingdevices.The224availablecellsenablestorageoffuelassemblieswithUranium-235enrichmentsupto4.5%,whilemaintainingtherequiredsubcriticality(Keff<0.95).RegionIIincludesthirteenmoduleshavingatotalofII36storagecells,ofwhich852(75%)willbeavailableforstorageoffuelassemblies.Theunusedcellswillactasneutronfluxtraps(tomaintaintherequiredsubcriticality)andwillbeprovidedwithcellblockingdevices.RegionIIwillbeusedtostorefuelwhichhasexperiencedsufficientburnupsuchthatstorageinRegionIisnotrequired.Thenewfuelracksarefabricatedfrom304stainlesssteelwhichisO.I35inchesthick.Eachcellisformedbyweldingalongtheintersectingseamswhichenablestheassembledcells(module)tobecomeafree-standingstructurewhichisseismicallyqualifiedwithoutdependingonneighboringmodulesorfuelpoolwallsforsupport.Thenominalcenter-to-centerspacingofthecellswithinbothRegionIandIIis8.96inches.ThereisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthenewspentfuelracksareinstalled.Therefore,nospecialadministrativecontrolsorprocedureswillbenecessarytoprovideradiation'protection,andtheevaluationofaconstructionaccidentwithrespecttonuclearcriticalityorradioactivity'releaseisnotnecessary.

EvaluationThefollowingevaluationdemonstrates(withreferencetotheanalysiscontainedintheattachedSafetyAnalysisReport)thattheproposedamendmentinvolvesnosignificanthazardsconsiderations.I.InvolveasinificantincreaseintherobabilitorconseuencesofanaccidentreviousIevaIuated.Theanalysisofthisproposedrerackinghasbeenaccomplishedusingcurrentacceptedcodes,standards,andNRCguidanceasspecifiedinSection4.2oftheattachedSafetyAnalysisReport(SAR).Inthecourseoftheanalysis,FPLidentifiedthefollowingpotentialaccidentscenarios:(I)aspentfuelassemblydropinthespentfuelpool;(2)lossofspentfuelpoolcoolingsystemflow;(3)anextremewindorseismicevent;and(4)aspentfuelcaskdrop.Theoccurrenceoftheseaccidentsisnotaffectedbytheracksthemselves.Thus,theproposedrerackingcannotincreasetheprobabilityoftheseaccidents.Furthermore,thespentfuelrackswillbeinstalledpriortostorageofanyspentfuelinthespentfuelpool.Therefore,thereisnopotentialforanaccidentinvolvingspentfuelduringfuelrockinstallation.Similarly,theanalysisofthepotentialaccidents,summarizedbelow,hasshownthatthereisnosignificantincreaseintheconsequencesofanaccidentpreviouslyanalyzed.Theconsequencesofaspentfuelassemblydrophavebeenevaluatedwithrespecttonuclearcriticality(Section3.IoftheSAR)andwithrespecttoradioactivityrelease(Section5.3oftheSAR).Thepresenceofboroninthespentfuel.poolwaterensuresthattheneutronmultiplicationfactor(keff)remainslessthantheNRCacceptancecriterionof0.95forallaccidentconditions.Theconsequencesofadroppedfuel'ssemblywithrespecttoradioactivity'releasearenotaffected'by.thenewfuelrack.'esignitself.However,theanalysisin'Section5.3ofthisSARincludedmoreconservativeassumptions,relativetothoseinthepreviousFSARanalysis,tobracketfuturechangestofuelmanagement.Asaresult,thepredictedradioactivityreleasesareabout25%largerthanthosereportedpreviously,buttheincreasesarenot~~"significant"'ecausetheresultsareonlyl%ofNRCguidelines.Thus,theconsequencesofthespentfuelassemblydropaccidentwouldnotbesignificantlyincreasedfromthosepreviouslyevaluated.3

TotallossofspentfuelpoolcoolingflowhasbeenevaluatedandisreportedinSection3.2oftheattachedSAR.AsindicatedinSection3.2,morethan30hoursareavailabletorestorecoolingflowortoprovideanalternatemeansforcoolingbeforepoolboilingresultsinawaterlevellessthanthatwhichisneededtomaintainacceptableradiationdoselevels.Also,theanalysishasshownthatfuelcladdingintegrityismaintained.Thus,theconsequencesofthistypeaccident'wouldnotbesignificantlyincreasedfromthepreviouslyevaluatedlossofcoolingsystemflowaccident.TheconsequencesofaseismiceventhavebeenevaluatedandaresummarizedinSection4;3oftheattachedSAR.ThenewracksaretobedesignedandfabricatedtomeettheguidanceofapplicableportionsoftheNRCRegulatoryGuidesandcodesandstandardslistedinSection4.2oftheSAR.ThemaximumstresseswithinthefuelrackswillbewithinthecriteriaspecifiedinSection4.4ofthisSAR.Also,movementanddeflectionofthefuelrackmodulesdoesnotresultincontactwithneighboringrack'modulesorthefuelpool-walls.Thefloorloadingfromthenewracksfilledwithspentfuelassembliesdoesnotexceedthestructuralcapacityofthefuelhandlingbuilding.AsindicatedinSection4.IoftheSAR,thefuelhandlingbuildingwalls,floors,andpartitionsaredesignedtowithstandhurricaneandtornadowinds;theprotectionfromtheseextremewindsisnotaffectedbythenewfuelrackdesign.Thus,theconsequencesofanextremewindorseismiceventwouldnotbesignificantlyincreasedfrompreviouslyevaluatedevents.TheconsequencesofaspentfuelcaskdropoutsidetheFuelHandlingBuildinghasbeenevaluatedandarereportedinSection5.3ofthisSAR.AsstatedinSection5.3,thespentfuelcaskispreventedfromdroppingontothespentfuelpoolracksbydesignofthefuelhandlingbuildingandoverheadcrane.Therefore,theconsequencesofthespentfuelcaskdroparenotaffectedbythenewfuelrackdesign.TheanalysisinSection5.3.includesmoreconservativeassumptions,relativetothoseinthepreviousFSARanalysis,tobracketfuturechangestofuelmanagement.Asaresult,thepre'dietedradioactivityrelease's'areabout25%la'rgerthanthosereportedpieviously,buttheincreasesarenot"significant"becausetheresultsareonly8%ofNRCguidelines.Thus,theconsequencesofacaskdropaccidentwouldnotbesignificantlyincreasedfrompreviouslyevaluatedaccidentanalysis.

Itisconcludedthattheproposedamendmenttorerackthespentfuelpoolswillnotinvolveasignificantincreaseintheprobabilityorconsequencesofan'accidentpreviouslyevaluated.2-Createtheossibilitofanewordifferentkindofaccidentfromanaccidentreviouslevaluated.FPLhasevaluatedtheproposedrerackiriginaccordancewiththeguidanceoftheNRCpositionpaperentitled"ReviewandAcceptanceofSpentFuelStorageandHandlingApplications",appropriateNRCRegulatoryGuides,appropriateNRCStandardReviewPlans,andappropriateIndustryCodesandStandardsaslistedinSection4.2oftheattachedSAR.Inaddition,FPLhasreviewedseveralpreviousNRCSafetyEvaluationReportsforrerackapplicationssimilartothisproposal.Asaresultofthisevaluationandthesereviews,FPLfindsthattheproposedrerackingdoesnot,inanyway,createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluatedforthe.SpentFuelPoolorFuelHandlingBuilding.3.,Involveasinificantreductioninamarinofsafet.TheNRCStaffsafetyevaluationreviewprocesshasestablishedthattheissueofmarginofsafety,whenappliedtoarerackingmodification,willneedtoaddressthefoltowingareas:2.3.NuclearcriticalityconsiderationsThermal-HydraulicconsiderationsMechanical,materialandstructuraIconsiderationsTheestablishedacceptancecriterionforcriticalityisthattheneutronmultiplicationfactor(keff)inspentfuelpoolsshallbelessthanorequalto0.95,includingall'uncertainties,underallconditions.'This'marginofsafety'hasbeenadheredtointhecriticalityanalysismethodsforthenewrackde'signasdiscussedinSection3.IoftheattachedSAR.Thatis,keffisalwayslessthan0.95,includinguncertaintiesatthe95/95probabilityandconfidencelevel.Inmeetingtheacceptancecriteriaforcriticalityinthespentfuelpool,theproposedamendmenttorerackthespentfuelpoolsdoesnotinvolveasignificantreductioninthemarginofsafetyfornuclearcriticality.5

Conservativemethodswereusedtocalculatetheincreaseintemperatureofthewaterinthespentfuelpoolanddemonstratemaintenanceoffuelcladdingintegrity.ThisevaluationusesthemethodsdescribedinSection3.2oftheSARindemonstratingthatthemarginsofsafetyaremaintained.Theproposedrerackingallowsanincreaseintheheatloadinthespentfuelpool;theevaluationshowsthattheexistingspentfuelcoolingsystem,undernormalconditions,willmaintainthepooltemperaturebelowthedesignbasislimit,assumingthemaximumheatloadinthepool.Sincethedesignbasislimitismet,thereisnotasignificantreductioninthemarginofsafety.Also,themaximumfuelcladdingtemperature,assumingtotallossoffuelpoolcooling,wouldremainbelow275F,ensuringmaintenanceoffuelcladdingintegrity.Thus,thereisnosignificantreductioninthemarginofsafetyfromathermal-hydraulicorspentfuelcoolingconcern.Themainsafetyfunctionofthespentfuelpoolandtheracksistomaintainthespentfuelassembliesinasafeconfigurationthrough'llenvironmentsandabnormalloadings,suchasanearthquake,dropofaspentfuelassembly,ordropofanyotherobjectduringroutinespentfuelhandling.Themechanical,material,andstructuralconsiderationsoftheproposedrerackaredescribedinSection4oftheattachedSAR.TheanalysisofSection4hasshownthatallcriteriaforfuelrackmovement,stresses,floorloadings,etc.,aremetandthatmarginsofsafetyarenotsignificantlyreduced.lnsummation,ithasbeenshownthattheproposedspentfuelstoragefacilitymodificationsandproposedTechnicalSpecificationsdonot:2.3.Involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated;orCreatethepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated;orInvolveasignificantreductioninamarginofsafety.Therefore,FPLhasdeterminedthattheproposedamendmentinvolvesnosignificanthazardsconsiderations.

SPENTFUELPOOLRERACKSAFETYANALYSISREPORT TAB"EOFCONTENTS~Pae

1.0INTRODUCTION

1.1LicenseAmendmentRequested1.2CurrentStatus1.3InterfaceswithOtherOrganizations1.4SummaryofReport1.5Conclusions2.0SUMMARYOFSPENTFUELRACKDESIGN3.0NUCLEARANDTHERMAL-HYDRAULICCONSIDERATIONS3.1NeutronMultiplicationFactor3.1.1NormalStorage3.1.2PostulatedAccidents3.1.3CalculationMethods3.1.4FuelRackModification3.1.5AcceptanceCriterionforCriticality3.2DecayHeatCalculationsfortheSpentFuelPool(Bulk)3.2.1DesignBases3.2.2SystemDescription3.2.3SafetyEvaluation3.3PotentialFuelandRackHandlingAccidents3.4TechnicalSpecifications3.5References4.0MECHANICAL,MATERIAL,ANDSTRUCTURALCONSIDERATIONS1-21-21-21-32-13-13-13-13-23-23-43-4'-43-43-63-63-103-103-114-14.14.24.34.44.54.64.7DescriptionofStructure4.1.1DescriptionofFuelHandlingBuilding4.1.2DescriptionofSpentFuelRacksApplicableCodes,Standards,andSpecificationsSeismicandImpactLoadsLoadsandLoadCombinationsDesignandAnalysisProcedures4.5;1MethodologySumma'ry4.5.2ComputerCodeDescriptionsStructuralAcceptanceCriteriaMaterials,equalityControl,andSpecialConstructionTechniques4.7.1Materials4.7.2equalityControl4.7.3ConstructionTechniques4-14-14-14'-44-64-74-74-7.4-94-114-124-124-124-13 TABLEOFCONTENTS~Pae4.8TestingandIn-ServiceSurveillance4.9,References5.0COST/BENEFITASSESSMENTANDENVIRONMENTALIMPACT5.1Cost/BenefitAssessment5.1.1NeedforIncreasedStorageCapacity5.1.2ConstructionCosts5.1.3ConsiderationofAlternatives5.1.4ResourcesCommitted5.1.5ThermalImpactontheEnvironment5.2RadiologicalEvaluation5.2.1SolidRadwaste5.2.2GaseousRadwaste5.2.3PersonnelExposure5.2.4RackDisposal5.3AccidentEvaluation5.3.1SpentFuelHandlingAccidents5.3.2Acceptability5.3.3FuelDecay5.3.4LoadsOverSpentFuel5.3.5Conclusions4-134-135-15-15-15-25-25-35-35-45-45-45-55-75-75-75-135-135-145-14

LISTOFTABLESTable~Pae5-15-2EstimatedSpentFuelPoolCapacityRequirementsReplacementCostforSt.LucieUnit25-165-175-3GammaIsotopicAnalysisforSt.LucieUnit15-4SpentFuelCaskDropAccidentAssumptions5-5SpentFuelCaskDropAccidentReleases5-225-65-7SpentFuelCaskDropOffsiteDosesFuelHandlingAccidentAssumptions5-235-245-8FuelHandlingAccidentReleases5-265-9FuelHandlingAccidentOffsiteDoses5-27 LISTOFFIGURES~FiereTitle~Pae3-1SpentFuelRackModuleforRegionI3-123-2SpentFuelRackModuleforRegionII3-133-3St.LucieUnit2SpentFuelStorageRackCriticalityvs.BurnupforFuelAssembliesinRegionII3-143-4SpentFuelStorageRackInitialEnrichmentvs.BurnupforFuelAssembliesinRegionII3-154-1TypicalSpentFuelStorageRackModule4-15.4-2TypicalSpentFuelRackModuleL-Insert4-164-3SpentFuelStorageModuleInstallation4-1744SpentfuelStorageModule4-184-5L-Inserts'-194-6SAPIVComputerCodeMembraneStressesandBendingMoments4-20 INTRODUCTIONLICENSEAMENDMENTREQUESTEDFloridaPower5Light(FPL)hascontractedforthepurchaseofnewspentfuelstoragerackstobeplacedintothespentfuelpoolofSt.LucieUnit2.Thesenewracksincreasetheamountofspentfuelthatcanbestoredintheexistingspentfuelpool.ThisSafetyAnalysisReportsupportsthisrequestforalicenseamendmenttotheSt.LucieUnit2FacilityOperatingLicenseNPF-16forthetechnicalspecificationrevisionsrequiredasaresultofinstallationanduseofthenewspentfuelstorageracks.CURRENTSTATUSThereisonespentfuelpoolatSt.LucieUnit2.Theexistingracksinthepoolhave300totalstoragecells,withacenter-to-centerspacingof14inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-thirdofacoreisstoredinthefuelpool.PertheFSAR,Section9.1,additionalstorageracksofthesamedesignmaybeinstalledtobringtotalcapacity,to675spentfuelassemblies(approximatelythreefullcores).Withthe300presentlyavailablestoragecells,St.LucieUnit2wouldlosethefull-corereservestoragecapabilityafterthesecondrefueling,expectedtobein1986;withadditionalracks,uptothemaximumof675,thecapabilitywouldbelostin1992.Therefore,toensurethatsufficientcapacitycontinuestoexistatSt.LucieUnit2tostoredischarged'fuelassemblies,FPLhasdecidedtoremovethepresentracksandhascontractedwithCombus-tionEngineering(C-E)fornewspentfuelstoragerackswhosedesign(MAXCAPŽ)allowsformoredensestorageofspentfuel.Thenewrackshaveausablestoragecapacityof1076cells,extendingthefull-core-reservestoragecapabilityuntil1998.

Furtherreferenceswithinthisreporttothe"spentfuelracks"refertothenewdesign.Thedetailsofhowthespentfuelrack'esignmeetsthedesignrequirementsisprovidedinthisreport.INTERFACESWITHOTHERORGANIZATIONSFP8Lhasoverallresponsibilityforthismodification.C-Eisresponsibleforthedesignandfabricationofthenewspentfuelstorageracksandengineeringassistanceinreviewingthespentfuelpoolcoolingsystem.EbascoServices,Inc.isresponsibleforreviewingbuildingstructuralanalysisandaccidentevaluation.SUMMARYOFREPORTThisreportfollowstheguidanceoftheNRCpositionpaperentitled"ReviewandAcceptanceofSpentFuelStorageandHandlingApplica-tions",April1978,asamendedbyNRCletterdatedJanuary18,1979.Section2.0presentsasummaryofthespentfuelrackdesign.Sections3.0through5.0ofthisreportareconsistentwiththesection/subsectioncontent'ftheaboveNRCpositionpaper,SectionsIIIthroughV.Thisreportcontainsthenuclear,thermal-hydraulic,mechanical,material,structural,andradiologicaldesigncriteriaforthefuelracks.Thenuclearandthermal-hydraulicaspectsofthisreport(Section3.0)addresstheneutronmultiplicationfactor,consideringnormal.storageandhandlingofspentfuelaswellaspostulatedaccidents,withrespecttocriticalityandtheabi1'ityofthespentfuelpoolcoolingsystemtomaintainsufficientcooling.Mechanical,material,andstructuralaspects(Section4.0)involvethecapabilityofthefuelassemblies,storageracks,andspentfuelpoolsystemtowithstandeffectsofnaturalphenomenaandotherserviceloadingconditions.1-2 Theenvironmentalaspectsofthereport(Section5.0)concernthethermalandradiologicalreleasefromthefacilityundernormalandaccidentconditions.Thissectionalsoaddressestheoccupationalradiationexposures,generationofradioactivewaste,needforexpansion,commitmentofmaterialandnon-materialresources,andacost-benefitassessment.CONCLUSIONSOnthebasisoftheevaluationsandinformationpresentedinthisreport,plusoperatingexperiencewithhighdensityfuelstorageatSt.LucieUnit1,FP&LconcludesthattheproposedmodificationofSt.LucieUnit2spentfuelstoragefacilitiesprovidessafespentfuelstorage,andthatthemodificationisconsistentwiththefacilitydesignandoperatingcriteriaasprovidedintheFSARandoperatinglicense.1-3 SUMMARYOFSPENTFUELRACKDESIGNThespentfuelracksaredesignedtostorethe14x14designfuelfromSt.LucieUnit1andthe16x16fuelfromSt.LucieUnit2.Theserackshaveaninitialcapacitytostoreatotalof1076fuelassembliesintworegionsofthespentfuelpool.ByexpansionofRegionIIintoRegionI,thespentfuelrackshaveanultimatestoragecapacityof1188fuelassemblies.RegionIinitiallycontainsfour7xl1modulesandtwo7x10modules,i.e.,sixmoduleswith448storagecells.Onlyone-halfofthesecellswillbeavailableforstorageoffuelassemblies.Theunusedcellswillbeprovidedwithblockingdevices.Allcellscontain"L"insertswhicharestainlesssteelneutronabsorbers(seeFigure4-2).The224availablecellsenablestorageoffuelassemblies.withUranium-235enrichmentsupto4.5lwhilemaintainingtherequiredsubcriticality(kff<0.95).RegionIIinitiallycontainsone8x10moduleandtwelve8x11mod-ules,i.e.,thirteenmoduleswith1136storagecells,of'which852(75Ã)areavailableforstorageoffuelassemblies.Theunusedcellsareneutronfluxtraps(tomaintaintherequiredsubcritical-ity)andareprovidedwithcellblockingdevices.RegionIIisusedtostorefuelwhichhasexperiencedsufficientburnupsuchthatstorageinRegionIisnotrequired.Thespentfuelracksarefabricatedfrom304stainlesssteelwhichis0.135inchesthick.Eachcellisformedbyweldingalongtheintersectingseamswhichenablestheassembledcellstobecomeafree-standingmodulewhichisseismicallyqualifiedwithoutdepend-ingonneighboringmodulesorfuelpoolwallsforsupport:The'ominalcenter-to-centerspacingofthecellswithinbothRegionIandIIis8.96inches.2-1 NUCLEARANDTHERMAL-HYDRAULICCONSIDERATIONSNEUTRONMULTIPLICATIONFACTORThefollowingsubsectionsdescribetheconditionsinthespentfuelpoolwhichareassumedincalculatingtheeffectiveneutronmulti-plicationfactor(Kff)theanalysismethodology,andtheanalysiseff'esults.NormalStoraea.Theanalysisconsidersthemostlimitingstoragecondition.InRegionItheracksaredesignedtostore4.5wtXU-235inacheckerboardfashion(Figure3-1)withcellblockingdevicesineveryotherstoragelocation.InRegionIIthefuelisstoredin3outof4locationswithcellblockingdevicesinIoutof4locations(Figure3-2).InthecriticalityanalysisforRegionII,creditwastakenforreactivitydepletioninthespentfuel(consistentwithRegula-toryGuide1.13,"SpentFuelStorageFacilityDesignHasis",DraftR2).b.Themoderatorisassumedtobepurewateratatemperatureapplicabletothedesignbasisconditionwhichyieldsthehighestreactivity.c.TheRegionIandRegionIIarrayswereassumedtobeinfiniteinlateralextentandinfiniteinlength.d.'echanicaluncertainties(manufacturingtolerances,uncertain'tyofassemblypositioninstorageracks,materialtolerances,,-etc.)aretreatedbyperformingsensitivitystudiesforthevariousuncertaintiesandapplyinganuncertaintyintheKffvalue.3-1

e.Nocontrolelementassemblies(CEAs)ornon-containedburnablepoisonsareassumedtobepresent.3.1.2PostulatedAccidentsThedoublecontingencyprincipleofANSIN16.1-1975statesthatitisnotnecessarytoassumeconcurrentlytwounlikelyindependenteventstoensureprotectionagainstacriticalityaccident.Thiscontingencyprincipleisappliedforthefollowingpostulatedaccidents:1)droppingofafuelelementontopoftheracks,2)droppingofotherobjectsintothespentfuelpool,3)deforma-tionandrelativepositionofracksduetotornadoorearthquake,and4)lossofonespentfuelpoolcoolingpump.Thedropofthespentfuelcaskontothespentfuelrackswasnotconsideredinthecriticalityanalysissinceitisphysicallyimpossibletotipthecaskintothepool(seeSection5.3.1).Thetechnicalspecifica-tionsrequirethattheboronconcentrationinthespentfuelpoolbegreaterthanorequalto1720ppmtoensurethatkffremainslessthanorequalto0.95fortheseaccidents.3.1.3CalculationMethodsAcalculationbiashasbeendeterminedfromthecomparisonbetweenthecalculationsandexperimentsandacalculationmethodologyhasbeendeterminedsuchthatKffwillbelessthanthecalculatedeffvalue95percentofthetimewitha95percentconfidencelevel.ThetotaluncertaintyvaluetobeappliedtothevalueofKffforeffthestorageracksisobtainedfromtheexpression:NTotalUncertainty=CalculationBias+[Eak.]=0.024i=1wherehk.arethevaluesofallotheruncertainties,including1mechanical,neutronic,andthermalvariations.3~2

CEPAKTheCEPAKlatticeprogramisemployedtocalculatethebasicbroadgroupcrosssectiondataforthefuelassembly,spentfuelrackstructure,andwater.Thisprogramisasynthesisofanumberofcomputercodes,manyofwhichweredevelopedatotherlaboratories,e.g.,FORM,THERMOS,andCINDER(References3-1,3-2,and3-3).Thesecodesareinterlinkedinaconsistentwaywithinputsfromanextensivelibraryofdifferentialcrosssectiondata.NUTESTNUTESTisatwo-dimensionalintegraltransportcodewhichemploysthecollisionprobabilitytechniquetocomputesub-regiondependentreactionratesinanexplicitgeometricrepresentationofthefuelrodsandassociatedstructureofafuelassembly.Thiscodeisusedtocalcul-atethefluxadvantagefactorswhichareappliedascorrec-tionfactorstothebasicbroadgroupcrosssectionscomputedbytheCEPAKlatticeprogramtoaccountforheterogeneouslatticeeffectsnotrepresentedineitherthemultigroupspectrumorhomogenizedcellspatialcalculation,e.g.,heterogeneousfastfissioneffectinfuelpellets.DOT-2WThespatialfluxsolutionandmultiplicationfactorforaninfinitearrayofindividualorclustersoffuelstoragecellsarecomputedwiththetwodimensional,discreteordinatestransportcode,DOT-2W(Reference3-4).Themajorfeaturesofthemethodusedinthis.codeare:a)'nergydependenceisconsideredusingthemultigrouptreatment.b)Thederivativetermsandspat'ialdependenceareapproximatedusingafinitedifferencetechnique.c)Dependenceuponthedirectionvariablesistreatedusingthediscreteordinatesmethod.3-3 d)ThescatteringintegralisevaluatedusingadiscreteordinatesquadratureincombinationwithaLegendreexpansionofthescatteringkerneltoapproximateanistropicscattering.3.1.4FuelRackModificationThepresentspentfuelracksforSt.LucieUnit2arebeingcomplete-lyreplacedasdescribedinSection1.2.ThedesignofthenewspentfuelracksisdescribedinSection4.1.3.1.5AccetanceCriterionforCriticalitTheacceptancecriterionfortheneutronmultiplicationfactor(Kff)isthatitbelessthanorequalto0.95,includinguncer-tainties,underallpostulatedconditions.ForRegionItheresult-ingneutronmultiplicationfactor(kff)is0.942includingalluncertaintiesandcalculationalbiases.ForRegionIIreactivitydepletionisafunctionofthepercentageofburnupachieved,notoftheinitialenrichment.Theresultingreactivity,includinguncer-taintiesandcalculationalbiases,asafunctionofburnupforseveralinitialenrichmentsisshowninFigure3-3.Theminimumallowableburnupforagiveninitialenrichmentisthatcorrespond-ingtokeff0.95.Whentheseminimumburnupvaluesareadjustedupwardstoaccountforaxially-dependentburnupdistribution.andare:plottedasafunctionofinitialenrichment,regionsofacceptableandunacceptableburnupareidentified(seeFigure3-4).3.2DECAYHEATCALCULATIONSFORTHESPENTFUELPOOL(BULK)3,2,1~0TheFuelPoolSystemprovidescontinuous'coolingforspentfuelassembliesstoredinthefuelpool.Thispermitsstorageofspentfuelassembliesinthefuelpoolfromthetimethefuelisunloadedfromthereactorvesseluntilitisshippedoffsite.3-4

TheFuelPoolCoolingSystemremovesthedecayheatfromone-thirdofacorebatch,whichisassumedtohaveundergoneirradiationforthreecycles,placedinthespentfuelpoolfivedaysaftershutdownandelevenpreviousrefuelingbatches.Withonefuelpoolpumpoperatingandonefuelpoolheatexchangerinserviceandwithacomponentcoolingwatertemperatureof100'F,themaximumspentfuelpoolwatertemperaturedoesnotexceed131'F.TheFuelPoolCoolingSystemalsoremovesthedecayheatproducedinthefuelfromafullcoreoff-loadplacedinthespentfuelpoolsevendaysafterreactorshutdown,inadditiontothedecayheatfromelevenpreviousbatchesofone-thirdcoreeach.Withtwofuelpoolpumpsandonefuelpoolheatexchangeroperating,andwithacomponentcoolingwatertemperatureof100'F,themaximumspentfuelpoolwatertemperaturedoesnotexceed148'F.Evaporativecooling.effectsareneglected,forconservatism,indeterminingthismaximumtemperature.IfRegionIIwereexpandedintoRegionItoreachtheultimatecapacityof1188fuelassemblies,thetotaldecayheatloadwouldbelessthanthatforthefullcoreoff-loadcasedescribedabovesincesuchanexpansionwouldprecludethehighdecayheattypicalofthefullcoreoff-loadedintoRegionI.VTheFuelPoolCoolingSystemalsoincludespurificationequipmentdesignedtoremovesolubleandinsolubleforeignmatterfromthefuelpoolwateranddustfromthefuelpoolsurface.Thismaintainsthefuelpoolwaterpurity'ndclarity,permittingvisualobserva-tionof.underwateroperations.Theminimumdesignlimitdepthofwateroverthespentfueltomaintaintheradiationdoselevelstolessthan2.5mrem/hris9feet'.The'technicalspecificationsrequiream'inimumdepthof23feetofwateroverthestoredspentfuelassemblies;thisissuffi-cienttomeetthe2.5mrem/hrdoselevelduringfuelmovement,tolimitthemaximumcontinuousradiationdoselevelsinworkingareastomuchlessthan2.5mrem/hrduringnormalstorage,andtoensure3-5

thattheoffsitedoseconsequencesduringanaccidentareaccept-able,Make-uptothefuelpoolisfromtherefuelingwatertank,whichismaintainedatatechnicalspecificationlimitofgreaterthanorequalto1720ppmboron.3.2.2SstemDescritionAdescriptionoftheFuelHandlingandStorageSystemsisprovidedinSection9.1oftheFSAR:ThePSIdiagramoftheFuelPoolSystemisshownonFigures9.1-6and9.1-7aoftheFSAR.ThesystemprocessflowdataareshowninTable9.1-5oftheFSAR.RadiationmonitoringforthespentfuelpoolareaandFuelHandlingBuildingstackisdiscussedinSection12.3.4oftheFSAR.TheFuelPoolCoolingSystemcomponentsandpipingaregualityGroupC,seismicCategoryIandaredescribedcompletelyinFSARSection9.1.3.3.2.3SafetEvaluationThecalculationsfortheamountofthermalenergythatmayhavetoberemovedbythespentfuelpoolcoolingsystemaremadeinaccord-ancewithBranchTechnicalPositionASB9-2,"ResidualDecayEnergyforLight-WaterReactorsforLong-TermCooling",whichispartoftheStandardReviewPlan(NUREG-0800).3.2.3.1NormalMaximumFuelPoolCoolingWithSingleFailureWithone-thirdofacorebatch,whichisassumedtohaveundergoneirradiationforthreecycles,placedinthespentfuelpoolfivedaysafter'reactorshutdownandelevenpreviousrefuelingbatches,theheatloadislessthan15.3x10Btu/hr.Underthesecondi-tions,withone'uelpoolpumpoperating(singleactivefailureofsecondpump)andonefuelpoolheatexchangerinservice,thespentfuelpooltemperaturedoesnotexceed131'F.3-6

3.2.3.2AbnormalMaximumFuelPoolCoolingForafullcoreunloading,itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown,alongwithelevenpreviousrefuelingbatchesofone-thirdcoreeach.Theresultantheatloadfromonefullcoreandelevenrefuelingbatchesis30.3x10Btu/hr,themaximumheatloadinthefuelpool.Under6theseconditions,withboththefuelpoolpumpsinservice,themaximumfuelpoolwatertempratureis148'F.PursuanttotheguidanceinSRP9.1.3(NUREG-0800),thereisnospentfuelpoolwaterbulkboiling,andacoolingsystemsinglefailureneednotbe,consideredforthiscondition.Thistemperatureislessthanthevalue(150'F),referredtoasTinSection4.4.3.2.3.3AccidentMaximumFuelPoolCoolingNotwithstandingtheguidanceinSRP9.1.3,thefuelpooltemperatureforthefullcoreoff-loadcasedescribedaboveisevaluatedwithonefuelpoolpumpinoperable.Theresultingfuelpoolequilibriumtemperatureis161'F.Again,thereisnospentfuelpoolwaterbulkboiling.3.2.3.4OverallPerformanceEvaluationThefuelpoolisprovidedwithaseismicCategoryIFuel,PoolCoolingSystemwhichmaintainsthewatertemperatureswithinaccept-ablelimits.TwoseismicCategoryIfuelpoolpumpsandtwoseismicCategoryIfuelpoolheatexchangersareavailablebefore,during,andafterapostulatedSafeShutdownEarthquake(SSE),andtherebyprovideadequatefuelpoolcoolingforthenormal,abnormalandacciden'tmaximumheatloadsdescribedabove.Asnotedpreviously,.SRP9.1.3doesnotsuggestsingleactivefailureconsiderationsevenfortheabnormalmaximumfuelpoolcoolinganalyses.3-7 Thepurificationloopnormallyrunsintermittentlyduringfuelpooloperationtomaintainthefuelpoolwaterpurityandclarity.Thepurificationsystemcanbeoperatedwitheitherthefuelpoolionexchangerorfuelpoolfilterbypassed.Localsamplepointsareprovidedtopermitanalysisoffuelpoolionexchangerandfuelpoolfilterefficiencies.Fortheabnormalconditionswherepooltemperatureisabove140'F,therewillbenodetrimentaleffectstofuelmovements,coolingsystemoperation,fuelandfuelassemblies,orpoolstructures.Thefuelpoolionexchangerwillbemanuallyisolatedbeforecoolingwatertemperaturereaches140'F.Allfuelpoolcoolingcomponentsaredesignedforatleast200'F.Instrumentationisavailablelocallywithacontrolroomalarmtomonitorpoolwatertemperatureandenableshutdownofthepurificationsystem(anintermittentoperation)soastopreventionexchangerresindamage.Addition-ally,anyconcernsrelatedtoincreasedfuelpoolbulktemperature,arenotexpectedtoaffecttheenvironmentalconditionstowhichtherefueling,equipmentoperatorswillbeexposed(e.g.,airtempera-ture,humidityofairborneactivity).Allconnectionstothefuelpoolaremadesoastoprecludethepossibilityofsiphondrainingofthefuelpool.Anyleakagefromthefuelpoolcoolingsystemisdetectedbyreductioninthefuelpoolinventory.Makeuptothefuelpoolisfromtherefuelingwatertank.Unacceptablelevelsofradioactivitytomaintenancepersonnelfromthespentfuelpoolarenotanticipatedwhileaheatexchangerisundergoingrepairs.Thefuelpoolheatexchangersareenclosedina~vseparateroomfromthefuelpool.Thisdesignfeatureassuresthatmaintenancepersonnelarenotsubjectedtounacceptablelevelsofradioactivity.Ouringsuchrepair,radiationlevelsinthefuelpoolareaaremonitoredcontinuouslyandaccesstothisareaisregulatedaccordingly;3-8 3.2.3.5TotalLossofFuelPoolCoolingAlthoughSRPs9.1.2and9.1.3(NUREG-0800)donotsuggestanalysisofthetotallossoffuelpoolcooling,thisscenariowasevaluatedtoensurethatampletimeisavailabletorestorecoolingortoprovidemakeupwatertothespentfuelpool.Multiplesources(seismicandnon-seismic)ofmakeupwaterexistasdiscussedinSubsection9.1.3.3.1oftheFSAR.Undertheassumptionthatallfuelpoolcoolingislostandthatmakeupwaterisnotsupplieduntilafterthepoolreachesboiling,thedecayheatinthespentfuelwillcauseboilinginatimeperioddependentuponthedecayheatload.Utilizingthemaximumfuelpooldecayheatload(Section3.2.3.2),thefuelpoolwaterinventorywouldtake3.9hourstoboil,withasubsequentboi1-offrateof62.8gpm.Atthisboil-offrate,1.4dayswouldpassbeforethewaterlevel-droppedtothelevel(nine'feetabovethefuel)requiredtomaintainacceptableradiationdoselevels(seeSection3.2.1).Thisismorethanenoughtimetoprovideindicationandalarmstotheoperatorsandtoprovidenecessaryrepairsorsupplymakeupwatertothespentfuelpool(seeFSARSection9.1.3.3.1).Forthenormaldecayheatload(Section3.2.3.1),thetimetoreachboilingconditionsis12.6hoursandthesubsequentboil-offrateis31.7gpm.Atthisboil-offrate,2.8dayswouldpassbeforethewaterleveldroppedtothelevelrequiredtomaintainacceptableradiationdoselevels.Thisismorethanenoughtimetorestorefuelpoolcoolingandprovidemakeupwater.forboththenormalandmaximumdecayheatloadsanalyzedassumingatotallossoffuelpoolcooling,themaximumcladdingtemperaturewasconservativelypredictedtobe275'F,thusensuringfuelclad-dingintegrity.3-9 POTENTIALFUELANDRACKHANDLINGACCIDENTSThespentfuelrackswillbeinstalledpriortostorageofanyspentfuelin.thespentfuelpool.Therefore,thereisnopotentialforanaccidentinvolvingspentfuelduringfuelrackinstallation.3.4TECHNICALSPECIFICATIONSTheproposedchangestothetechnicalspecificationsaresummarizedasfollows:1.Specification5.6.1a.ischangedtoindicatethetotaluncer-taintyvalueappliedtothevalueofKffforthespentfueleffstorageracks..2.Specification5.6.lb.ischangedtoshowthenominalcenter-to-centerdistanceforthespentfuelstorageracks.3.Specification5.6.1c.isaddedtospecifytherequiredboronconcentrationforthespentfuelpool.4.Specification5.6.1ischangedtodeletethestatementregard-ingdrystorageofnewfuelforthefirstcore.Thisstatementisnolongerapplicable.5.Specification5.6.1ischangedtoaddastatementdefiningtheenrichment/burnuprequirementsforstorageoffuelineachregionofthefuelpool.6.Specification5.6.3ischangedtoshowthecapacityofthespent'fuelstorager'acks.'I3-10 REFERENCES3-1FORM-AFourierTransformFastSpectrumCodefortheIBM-7090,McGoff,-D.J.,NAA-SR-Memor5766,September1960.3-2THERMOS-AthermalizationTransportTheoryCodeforReactorLatticeCalculations,Honeck,H.,BNL-5816,July1961.3-3CINDER-AOnePointDepletionandFissionProductProgram,England,T.R.,WAPD-TM-334,RevisedJune1964.34R.G.Soltesz,et.al.,"UsersManualforDOT-2WDiscreteOrdinatesTransportComputerCode,"WANL-TME-1982,December1969.3-11 FUELASSEMBlYCELLBLOCKINGDEVICE"L"INSERTR%SYSTEMSCOMBUSTIONENGINEERING.INC.SPENTFUELRACKMODULEFORREGIONIFigure3-12

FUELASSEMBLYCELLBLOCKINGDEVICEKQsvsTEMsCOMBUSTIONENGINEERING.INCSPENTFUELRACKMODULEFORREGIONIIFigure3-23-13

1.0COI0m~nCCg)ZITlI~n~g)C8CmzzcoOOm~8A0QZIll~IlDn0.90.80.70.60.5100002000030000BURNUP,IVIWD/MTU40000ENRICHMENTS4.5W/04.0W/03.5W/03.0'/02.5W/050000

DI-30,000AUcL'0,0000'-~10000ALLOWABLEBURNUPFORREGIONIIBURNUP~(11/00)x(ENRICHMENTW/0)13,900BURNUPREQUIRINGSTORAGEINREGIONI1.52.02.5.3.03$4.0INITIALU-235ENRICHMENT,W/0"4.55.0CL%SYSTEMSCOMBUSTIONENGINEERINGINCSPENTFUELSTORAGERACKINITIALENRICHNIENTvsBURNUPFORFUELASSEMBLIESINREGIONIIFigure3-15

4.0MECHANICAL,MATERIAL,ANDSTRUCTURALCONSIDERATIONS4.1DESCRIPTIONOFSTRUCTURE4.1.1DescritionoftheFuelHandlinBuildinAdescriptionoftheSpentFuelStoragePoolisprovidedinSection9.1.2oftheFSAR.Thespentfuelstoragepoolislocatedin,andanintegralpartof,theFuelHandlingBuilding.ThegeneralarrangementoftheFuelHandlingBuildingshowingthelocationofthespentfuelstoragefacilitiesisgivenonFigures1.2-16and1.2-17oftheFSARandtheFuelHandlingBuildingdesignisdescrib-edinSection3.8.4.1oftheFSAR.TheFuelHandlingBuildingexteriorwalls,floorsandinteriorpartitionsprovideradiationshieldingtoplantpersonnelandprotecttheequipmentfromtheeffectsofadverseatmosphericconditionsincludinghurricaneandtornadowinds,temperature,externalmissilesandcorrosiveenviron-ment.ThedesignloadingconditionsandallowablestressesfortheFuelHandlingBuildingaredescribedinsubsection3.8.4.3oftheFSAR.ThedynamicanalysisoftheFuelHandlingBuildingisdes-cribedinSection3.7oftheFSAR.TheSpentFuelPoolwallsandfloorsarelinedwithtype304stainlesssteel.Theseismiccate-goryIspentfuelpoolisbeinganalyzedconsideringthespentfuelracksandadditionalfuelassemblies,toensurethatthedesignmeetsthecriteriaspecifiedinFSARSection3.8.4.3.4.1.2DescritionofSentFuelRacks4.1.2.1DesignandFabricationofSpentFuelRacksThe,spentfuelstorageracksarefabricatedwith304stainlesssteelhavingamaximumcarboncontentof0.0655.TheracksaremonolithichoneycombstructureswithsquarefuelstoragelocationsasshowninFigure4-1.Eachstoragelocationisformedbyweldingstainlesssteelsectionsalongtheintersectingseams,permittingtheassemb 1 ledcavitiestobecometheloadbearingstructure,aswellasframingthestoragecellenclosures.Eachmoduleisfreestanding,andseismicallyqualifiedwithoutmechanicaldependenceonneighbor-ingmodulesorpoolwalls.Thisfeatureenablesremoteinstallation(orremovalifrequiredforpoolmaintenance)withminimaleffort.Reinforcingplatesattheupperperipheraledgesprovidetherequir-edstrengthforhandling.Stainlesssteelbars,whichareinsertedhorizontallythroughtherectangularslotsinthelowerregionofthemodule,supportthefuelassemblies.Thesesupportbars,whenweldedinplace,supportanentirerowoffuelassemblies.Semicircularpassagesatthebottomofeverycellwallallowcoolingwatertoflowtoallcells.Thesizeoftheopeningsprecludesblockagebyanycrudaccumula-tions.Loadingofthefuelracksisfacilitatedviaamovablelead-infunnelassemblycontainingfourlead-indevices.Theopeningsofthefunnelassemblyaresymmetricalandtheassemblysitsontopoftherackmodule.Themodulewallthicknessis0.135inch304stainlesssteel.TheL-insertsare0.188inchesthickandareshown,alongwiththecellblocks,inFigure4-'.AsindicatedinFigure4-3,L-insertsareusedonlyinRegionIandcellblocksareusedinbothRegionsIandII.ThecellblocksforRegionIIareremovableandaresimilartothoseforRegionIshowninFigure4-5.Thenominalpitchofthespentfuelracksisuniformthroughoutthenineteenmodulestobecontainedinthespentfuelpool.Thispitchis8.96inchescenter-to-centerinbothhorizontaldirections.AdditionaldetailsareshowninFigures4-4and'4-5.RegionIislocatedwithin6modulesandcomprisesatotalof448cavities..RegionIisthehigh-enrichment,coreoff-loadregion.The'fuelassembliesaretobestoredineveryotherlocationinacheckerboardconfiguration(seeFigure3-1).Thecheckerboardarrangementmakes505oftheRegionIultimatestoragecapacity4-2

Iinitiallyavailableforstorageoffuelwithhighfissileconcentra-tions.Theunused.cavitiesarefittedwithcellblockingdevicestopreventinadvertentinsertionoffuelintotheselocations.RegionImaybeexpandedintoRegionII,ifrequired,tostoreadditionalfuelwhichhasnotreachedtherequiredburnup.ThiswouldbeaccomplishedbytheadditionofL-insertsandcellblockingdevicesintoRegionII.RegionIisdesignedforatotalof224usablecavitiesforenrich-mentsuptoandincluding4.5w/oU-235.ThecavitiesinRegionIcontainanL-insert(Figure3-1).TheL-shapedstainlessinsertslockintothestoragecavityusingaspringlockingmechanismontheupperend(Figure4-2).Thislockingmechanismsnapsintooneoftheholesinthefoursurroundingcellwalls.TheseL-shaped304stainlessinsertsareneutronabsorbers.RegionIIconsistsofatotalof1136cavities.klithinRegionII,fuelassembliesarestoredin75%ofthetotalcavities(seeFigure3-2)foraninitialavailablestoragecapacityof852cavities.Cellblockingdevices'areusedtoprecludeplacementoffuelassemb-liesintoeveryfourthcavity,whichremainsemptyandprovidesafluxtrapforreactivitycontrol.'igure4-3showstheinstallationofRegionIandRegionIImodules.4.1.2.2SupportofSpentFuelRacksThespentfuelrackshavebeendesignedfordirectbearingontothespentfuelpoolfloor.A10"supportplateundertheperipheralcellsprovidesthebearingsurfacefortheracks.Fuelrackmodulelevelingisaccomplishedbyplacing10"squarestainlesssteelshimsbetweenthesupportplatesandthefuelpoolliner.4.1.2.3FuelHandlingThedesignofthespentfuelrackswillnotaffecttheconclusionsofthefuelhandlingaccidentspresentedintheFSAR(Section4-3 15.7.4)-andsummarizedbytheNRCintheSafetyEvaluationReport(NUREG-0843).Thatis,theradiologicaldosesforthepostulatedfuelcaskandfuelassemblydropaccidentsarewellwithinthe10CFR100criteria.ThefuelhandlingaccidentsarepresentedinSection5.3ofthisreport.Intheseanalysesthemaximumradialpowerpeakingfactorexperiencedbyaspentfuelassemblywasassumedtobe2.0inordertobracketfuturefuelmanagementchanges,whereastheanalysisintheFSARassumed1.65.Therefore,thereareincreasesinthedosesforthefuelhandlingaccidents.TheseincreasesarenotrelatedtothespentfuelrackdesignanddonotaffecttheconclusionsoftheanalysissincethedosesarestillwellwithinNRCguidelines(seeSections5.3.1.1and5.3.1.3).4.2APPLICABLECODES,STANDARDS,ANDSPECIFICATIONSThespentfuelracksaredesignedinaccordancewiththefollowing:1.CodeofFederalRegulations10CFRPart50:a)AppendixA"GeneralDesignCriteriaforNuclearPlants,"Criteria2,3,4,5,61,62,63.b)Appendix8"gualityAssuranceCriteriaforNuclearPowerPlantsandFuelReprocessingPlants."2.ASMEBoilerandPressureVesselCodeSectionIII,SubsectionNF,"NuclearPowerPlantComponents."3;'merican'SocietyforTestingMaterial'sDocuments:a)ASTM-A240-SpecificationforCorrosionResistingChromiumNickelSteelPlate,Sheet&StripforFusion-WeldedUnfiredPressureVessels.4-4

b)ASTM-A276-SpecificationforStainlessandMeatResist-ingBarsandShapes4.AmericanNationalStandardsInstitute:a)ANSI-N210,DesignObjectivesforLightWaterReactorSpentFuelStorageFacilitiesatNuclearPowerStations,1976.b)ANSI-N16.1,NuclearCriticalitySafetyinOperationswithFissionableMaterialsOutsideReactors,1975.5.UnitedStatesNuclearRegulatoryComnission:a)StandardReviewPlan,Section9.1.2,Rev.2"SpentFuelStorage."b)RegulatoryGuide1.13,Rev.2Draft,"SpentFuelStorageFacilityDesignBasis."c)RegulatoryGuide1.26,Rev.3"gualityGroupClassifica-tionandStandardsforWater,SteamandRadioactiveWasteContainingComponentsofNuclearPowerPlants."d)RegulatoryGuide1.29,Rev.3"SeismicDesignClassifica-tion."e)RegulatoryGuide1.31,Rev.2"ControlofStainlessSteelWelding"asmodifiedbyBran'chTechnicalPositionMTEB-51,"Interim.PositiononRegulatoryGuide1.31,"ControlofStainlessSteelWelding."f)RegulatoryGuide1.122,"DevelopmentofFloorDesignResponseSpectraforSeismicDesignofFloor-SupportedEquipmentorComponents,Rev.1,February1978.4-5 g)'egulatoryGuide1.70,"StandardFormatandContentofSafetyAnalysisReportforNuclearPowerPlants,Rev.3."h)NRCGuidance"ReviewandAcceptanceofSpentFuelStorageandHandlingApplications"April1978,andModificationsdatedJanuary18,1979.4.3SEISMICANDIMPACTLOADSMaximumloadstransmittedtothefloorbythespentfuelracksatSt.LucieUnit2aregivenbelow.Floor-RackInterfaceLoadsKIPSDeadWeightLiveOBENSEWOBEySSENSSSEEWSSEVNorth-South104.10*98.30East-West00028.60042.10VerticalDown59.7102.940.48.897.259.515.5Theseismicanalysisofthespentfuelrackinc'ludesanassessmentofthemaximumslidingandtippingthatcanbeexpected.Theracksareinstalledwithanominalgapof2"'betweenmodulesandareaminimumof12inchesfromthepoolwalls.Theanalysishasshownthatthemaximummotionoftheracks,includingtipping,slidingandthermalexpansionislessthanthegapbetweenadjacentmodules,therefore,nocontactispredicted.4-6 0'

LOADSANDLOADCOMBINATIONSTheloadsandloadcombinationsusedinthestructuralanalysisofthespentfuelracksarelistedbelowandareconsistentwithNRCguidancein"ReviewanAcceptanceofSpentFuelStorageandHandlingApplications"(Reference4-1).LoadCombination(ElasticAnalsis)AccetanceLimitD+LD+L+E0+L+ToD+L+To+ED+L+Ta+ED+L+Ta+E'ormallimitsofNF3231.1aNormallimitsofNF3231.1aLesserof2SyorSustressrangeLesserof2SyorSustressrangeLesserof2SyorSustressrangeFaulted.ConditionLimitsofNF3231.1cTheabbreviationsinthetableabovearethoseusedinSection3.8.4oftheStandardReviewPlanwhereeachtermisdefinedexceptforTawhichisdefinedasthehighesttemperatureassociatedwiththepostulatedabnormaldesignconditions.ConsistentwithNRCguidance(Reference4-1),theprovisionsofNF3231.1shallbeamendedbyparagraphsc.2,3,and4oftheRegula-toryGuide1.124entitled"DesignLimitsandLoadCombinationsforClass1Linear-TypeComponentsSupports."4.5DESIGNANDANALYSISPROCEDURES4.5.1Methodo1oSummarThespentfuelstorageracksaredesignedtowithstandforcesgeneratedduringnormaloperation,anOperatingBasisEarthquake,oraSafeShutdownEarthquake.Lateralandverticalseismicloads4-7 alongwithfluidforcesareconsideredtobeactingsimultaneouslyonthefuelracks.Theracksaredesignedtoassurerackstructuralintegritywhileatthesametimekeepingthefuelinasubcriticalstate.Linearresponsespectrummethodsareuse'dfortheverticaldirec-tion.Thelateralseismicresponsesofthespentfuelstorageracksaredeterminedusinganon-lineartimehistoryanalysis.Non-lineartimehistoryanalysesarep'erformedforthelateraldirectionsprimarilybecauseoffuelimpacting.Theeffectsofimpactingstructuressignificantlyinfluencethestressesinboththestoragestructureandthefueland,becausetheyarenon-linearinnature,canonlybeaccountedforbyperformingmorecomplexnon-lineartimehistoryanalyses.TheseismicinputusedfortheseanalysesconsistsoftheverticalresponsespectrumandthelateralaccelerationtimehistoriescorrespondingtothepoolfloorelevationatSt.LucieUnit2.TheanalysesareperformedinaccordancewithReg.Guide1.122,Revision1,February1978.Thefirststepintheanalyticalprocedureistodeterminethedynamiccharacteristicsofthefuelstorageracks.Thisis.donebydevelopingathree-dimensionalfiniteelementmodelofthestructureandsolvingforthenaturalfrequenciesandmodeshapesinair.ThefiniteelementcodeusedinthestudyisSAPIV(seeSection4.5;2).Theresultingdynamiccharacteristicsarethenincorporatedintoanon-linearrepresentationoftheentiresystem,whichincludesthefuelandthestorageracks.The.CfSHOCKcomputercode(seeSection4.5;2),isusedtodeterminethenon-lineartimehistoryresponseofthesystem.TheeffectsofimpactingbetweenthefuelandthestoragerackarerepresentedintheCESHOCKmodel.Becauseofthe4-8

closeproximityofthestructures,hydrodynamiccouplingeffectsbetweenthefuel,thestoragerackandthepoolarealsoincludedinthemodel.-(SeeReference4-2foradditionalinformation.)TheracksareanalyzedusingafiniteelementmodelintheSAPIVcodeandtheloadsfromSection4.3.SAPIVoutputconsistsofmembranestressesandbendingmomentsforeachelementasshowninFigure4-6.Whendealingwiththistypeofelement,theresultsaregivenperunitlength;therefore,thestresscausedbythemomentwillbearrivedatbythefollowingexpressions:oB=MC/Iforaunitlengthstrip,I=ltC=t/2C/I=6/tW0=6M/tThisapproachappliestoMx,M,andMxthus,thetotalstressinanyonedirectionwillbe:tmemb2Thebeamsusedatthebottomofeachcavityopeningtosupportthestoredfuelassemblyareincludedinthemodelas,lumpedmasseswithnostructuralrigidities.Thebeamsarethenanalyzedforaclearerunderstandingoftheexistingstresssituation.Againthestresscausedbythemomentwillbearrivedatbytheexpressiona=MC/Iandtheshearstressbytheexpressioncr=P/A.ComuterCodeDescritionsThecomputercodesusedintheseanalysesaredescribedinthefollowingsubsections.4-9 SAPIVSAPIVisageneralstructuralanalysisprogramforstaticanddynamicanalysisoflinearelasticcomplexstructures.Thefiniteelementdisplacementmethodisusedtosolveforthedisp'lacementsandcomputethestressesofeachelementofthestructure.Thestructurecanbecomposedofunlimitednumberofthree-dimensionaltruss,beam,plate,shell,solid,planestrain-planestress,thickshell,spring,axisymmetricelements.Theprogramcantreatthermalandvariousformsofmechanicalloadingaswellasinternalelementloadings.Oynamicanalysisoptionsconsistofeigenvaluesolutionsyieldingfrequenciesandmodeshapes,responsehistorybymodesuperposition,responsehistorybydirectionintegration,andresponsespectrumanalysis.'arthquaketypeofloadingaswellastimevaryingpressurecanbetreated.Theoutputconsistsofdisplacementsateachnodalpointaswellasinternalmemberforcesforeachelement.TheprogrambeingusedatC-Eisessentiallyequivalenttotheversionverified,documented,andreleasedbytheUniversityofCalifornia(Reference4-3).CESHOCKTheCESHOCKcomputercodeperformstransient,dynamicanalysesofnon-linearelasticsystems.Thesesystemscanbeeitheraxialmodelshavingonedegree-of-freedompernodeorlateraloneshavingonerotationalandonetranslationaldegreeoffreedompernode.Theresponseofasystemisdeterminedbynumericallyintegrating(usingaRunge-Kutta-Gilltechnique)itsequationsofmotion.Excitationcantaketheformofeitherinitialconditionsortimehistoriesofappliedaccelerations,velocitiesdisplacementsor4-10 forces.Thenon-linearitiescanconsistofgaps,friction,hyster-esisornon-linearsprings.Hydrodynamicactioncanalsobemodel-ed,withbothon-diagonal(addedmass)andoff-diagonal(coupling)termsbeingconsidered.Theprogramautomaticallysearchestheresponsetimehistoriesandprintsoutthemaximumandminimumvaluesofallnodalaccelera-tions,andmemberloadsandcangenerateanoptionaloutputtapecontainingthecompleteresponsehistories."CESHOCK"isanextensivelymodified,proprietaryversionofthe"SHOCK"computercodedevelopedbyV.K.GabrielsonandR.T.ReeseofSandiaLaboratories(Reference4-4).Itdiffersfromtheorig-inalintheareasofdamping,coefficientofrestitution,friction,hydrodynamiceffects,hysteresis,inputoftimehistories,outputoptions,allowableproblemsizeandthemannerofinputtingstiff-nesselements.CESHOCKhasbeenverifiedbydemonstrationthatitssolutionsaresubstantiallyidenticaltothoseobtainedbyhandcalculationsorfromacceptedanalyticalresultsviaanindependentcomputercode(References4-4and4-5).4.6STRUCTURALACCEPTANCECRITERIATheallowablestresslimitsfornormalandfaultedconditionsasdefinedintheASMECode,SectionIII,SubsectionNFare:Normal.OperatingConditions:PrimaryMembrane(P)=16,500psiPrimaryBending(Pb)=16,500psiShear(~)=11,000psiFaultedConditions:P=33,000psiP=33,000psib=22,000psis4-11

ForsimilarspentfuelstoragerackssuppliedbyCombustionEngineer-ingforanotherutility,themaximumbendingstressunderthefaultedconditionwas29,199psiascomparedtotheallowablelimitsgivenabove.ThemaximumstressfortheSt.LucieUnit2storagerackswillalsobewithintheaboveallowablelimits.4.7MATERIALS,QUALITYCONTROL,ANDSPECIALCONSTRUCTIONTECHNIQUES4.7.1MaterialsThespentfuelstorageracksarefabricatedfrom304stainlesssteelwithamaximumcarboncontentof0.065%andconformtoASTMspecifi-cationA240.Thestainlesssteelforthestoragecellwallsis0.135inchesthickandfortheLinsertsthestainlesssteelis0.188inchesthick.AsstatedinSection9.1oftheFSAR,thefuelracksbeingreplacedarealsomadeof304stainlesssteelandthefuelpoolchemistrycontrol(seeSection3.2.2)isthesameasthatdescribedintheFSAR.Therefore,thecompatibilityofthefuelrackmaterialwiththepoolwatershouldbethesameasthatsuamarizedintheFSARsafetyevaluationreport(NUREG-0843).4.7.2ualitControlFloridaPower8Light'sandCombustionEngineering'sQualityAssur-anceProgramsensurethatallmanufacturingandinstallationactiv-itiesconformtoacceptablequalityrequirementsthroughoutallareasofperformance.Thepertinentrequirementsof10CFR50,AppendixB,andCombustionEngineeringqualityassurancereportCENPD-210-A,Rev.3andSpecification00000-WQC-5.2willbefollow-ed.Inaddition',FloridaPower8Light'sTopicalQAReportFPL-NQA 12

100A(approvedbytheNRC)describesgualityAssurancerequirementswithwhichthedesign,procurement,andfabricationofthenewfuelstoragerackswillcomply.4.7.3ConstructionTechniuesThereiisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthesespentfuelracksareinstalled.Therefore,nospecialadministrativecontrolsorprocedureswillbenecessarytoprovideradiationprotection.Standardconstructiontechniquesandprocedureswillbeutilizedduringinstallationtoensureworkersafetyandcompliancewithguidelinesfromthemanufacturer.4.8TESTINGANDIN-SERVICESURVEILLANCESincethenewfuelracksdonotincludeboronpoisonplateinserts,thereisnorequirementforspecialtestingorsurveillance.4.9REFERENCES4-1NRCGuidance"Reviewand'AcceptanceofSpentFuelStorageandHandlingApplications",datedApril1978andmodifiedJanuary19,1979.4-2Longo,R.,andBailey,D.F.,"SeismicAnalysisofSpentFuelRacks"ANSpaperTS-7308presentedattheANSTopicalMeetingonOptionsforSpentFuelStorageatSavannah,Georgia,Sep-tember26-29,1982.'-3'Bathe,K.J.,Wilson,E.L.,andPeterson,F.E.,"SAPIV-A'tructuralAnalysisProgramforStaticandDynamicResponseof4-13

LinearSystems.",ReportNo.EERC,73-11,EarthquakeEngineeringResearchCenter,UniversityofCalifornia-Berkeley,June1973.4-4SCL-DR-65-34,"SHOCK-AComputerCodeforSolvingLumpedMassDynamicSystems",V.K.Fabrielson,January,1966.4-5TopicalReportonDynamicAnalysisofReactorVesselInternalsUnderLoss-of-CoolantAccidentConditionswithApplicationofAnalysistoCE800MweClassReactors,"CombustionEnineerin,Inc.,ReportCENPD-42,August1972(Proprietary).4-14 L-INSERTL-INSERTLOCKINGHOLEFUELASSEMBLYSUPPORTPLATESLOTFLOWPASSAGESK%SYSTEMS.COMBUSTIONENGINEERING.INC.TYPICALSPENTFUELSTORAGERACKMODULEFigure4-14-15 SYSTEMSCOMBUSriONENGiNEERING.INC.TYPICALSPENTFUELRACKMODULEL-INSERTFigure4-24-16

pp4~V~~lg4pgH'0v~a'RVI~Vgwgpq4ea0IIVVlv~Q'4<4u>as<V'4Q~vip.s~ovltOppRf0VIIL4VlQ4v~VWeg~w<VlH<gOu+IIII4$~+~R~lsglst4pw4OtgCFigureSYSTEMSCOMBUSTIONENGINEERING.INC.SPENTFUELSTORAGEMODULE1NSTALLATION4-17

IOOIfgCi3Cl+IQQQQQI0QQQ1ULjIC:1QQQQIIi.LI0QOI'rcrrtrootoovrtrvSCPltrotvtuULQC~0r-IlPlrrOPIIorptorvpoSCIltHtrrt111SC:ICl:I:QQ1SClltI/vO,,tC.PC~0pllorcorvroScrltPtrrtCrOvt"ICVtSrOOO~rtu'cv"IrfI~rp~II~P~~Crr(vtrltr~Ot~rl~8;~v511EPI>III~'ICPICr~~ffAIVICPICvcr~TkI~critVrrtSPOPPC0vlocprrpv1I~~I~~'OTE:Alldimensionsareininches.POWERCOMBUSTloNENGINEERING.INCSPENTFUELSTORAGEMODULEFigure4-18 8.740.1888.740SECTIONA.AAIIII4DETAILZ164.7/846WELDEDCELLBLOCKINGDEVICE"L"INSERTMODIFIED"L"INSERTSYSTEMSCOMBUSTIONENGINEERING.INCL-INSERTSFigure4-54-19

~vIov~xyMyyexyMx~LPOWERCOMBUSTIONENGINEERING.INCSAPIVCOMPUTERCODEMEMBRANESTRESSESANDBENDINGMOMENTSFigure4-64-20 COST/BENEFITASSESSMENTANOENVIRONMENTALIMPACT5.1COST/BENEFITASSESSMENT5.1.1NeedforIncreasedStoraeCaacitA.FP&Lcurrentlyhasnocontractualarrangementswithanyfuelreprocessingfacilities.FP&LexecutedthreecontractswiththeOepartmentofEnergy(OOE)onJune16,1983pursuanttotheNuclearWastePolicyActof1982,butthestorage/disposalfacilitieswillnotbeavailableforspentfuel.storageanyearlierthan1998.B.Table5-1includesaproposedrefuelingscheduleforSt.LucieUnit2,andtheexpectednumberoffuelassembliesthatwillbetransferredintothespentfuelpoolateachrefuelinguntilthetotalexistingcapacityisreached.Atpresentthelicens-edcapacityofUnit2is675storagecells.Allcalculationsinthetableforlossoffullcorereserve(FCR)arebasedonthenumberoflicensedtotalcellsinthepool.C.TheSt.LucieUnit2spentfuelpoolcontainsnospentfuelassembliesatthis'time.D.Atpresent,therearenocontrolrodassembliesorothercomponentsstoredintheSt.LucieUnit2spentfuelpool.E.Adoptionofthisproposedspentfuelstorageexpansionwouldnotnecessarilyextendthetimeperiodthatspentfuelassemb-lieswouldbestoredonsite.Spentfuel.couldbesentoffsi'teforfinaldisposition'underexistinglegislation,butthegovernmentfacilityisnotexpectedtobeavailableuntil1998.Asmattersnowstandanduntilalternatestoragefacilitiesareavailable,spentfuelassembliesonsitewillremainthere.5-1 F.TheestimatedatewhenthespentfuelpoolwillbefilledwiththeproposedincreaseinstoragecapacityisprovidedinTable5-1.5.1.2ConstructionCostsTotalconstructioncostassociatedwiththeproposedmodificationis2.4milliondollars.Thisfigureincludesthecostofdesigningandfabricatingthespentfuelracks;engineeringcostsforC-E,EbascoandFPSL;andinstallationandsupportcostsatthesite.5.1.3ConsiderationofAlternativesA.TherearenooperationalcommercialreprocessingfacilitiesavailableforFPL'sneeds,norarethereexpectedtobeanyintheforeseeablefuture.B.Atthepresenttime,therearenoexistingavailableindepen-dentspentfuelstoragefacilities.WhileplansarebeingformulatedbytheDOEforconstructionofaspentfuelstoragefacilitypertheNuclearWastePolicyActof1982,thisfacil-ityisnotexpectedtobeavailabletoacceptspentfuelanyearlierthan1998.C.Atpresent,FPLhasnolicensetotransshipfuelbetweenfacilities,norarepresentlyinstalledstorageracksatTurkeyPointUnits3and4capableof(orlicensedto)storefuelgeneratedatSt.LucieUnit2.St.LucieUnit1willlosefullcorereservecapacityuponstartupofcycle8spentfuelin1986.Therefore,transferofSt.LucieUnit,2spentfuelto't.LucieUnit1wouldonlycompoundthat.unit.'sstorageproblem'nd'snotaviableoption.5-2

D.Estimatesforcostsofreplacementpowerwerecalculatedbasedonthelastofficialrateofreturn.Theassumptionwasmadethattheunitcouldbeoperatedwithoutmaintainingfullcorereserve,thuscycle10in1996wouldbethelastrefuelingpossiblewithexistingstoragecapacity.Table5-2indicatestheaverageyearlyfuelcostincreasesforSt.LucieUnit2after3yearsofreactorshutdown.PlantshutdownwouldplaceaheavyfinancialburdenonFloridaresidentswithinFP8L'sserviceareaandcannotbejustified.5.1.4ResourcesCommittedRerackingofthespentfuelpoolwillnotresultinanyirreversibleandirretrievablecommitmentsofwater,landandairresources.Thelandareanowusedforthespentfuelpoolwillbeusedmoreeffi-cientlybysafelyincreasingthedensityoffuelstorage.ThematerialsusedfornewrackfabricationarediscussedinSection4.7.1ofthisreport.Thematerialsarenotexpectedtosignifi-cantlyforeclosealternativesavailablewithrespecttoanyotherlicensingactionsdesignedtoimprovethepossibleshortageofspentfuelstoragecapacity.5.1.5ThermalImactontheEnvironmentThethermalanalysisforthespentfuelpoolcoolingsystemispresentedinSection3.2ofthisreport.Thatanalysisincludedthemaximumspentfueldecayheatloadfornormal,abnormal,andacci-dentconditions.AsaresultofthererackingofSt.LucieUnit',themaximumdecayheatloadfornormalstorageincreasedfrom12.5x10Btu/hrto15.3x10Btu/hrandforabnormalandaccidentstoragetheheatloadincreasedfrom29.9x10Btu/hrto30.3x106Btu/hr.Thisincreasedheatloadresultsinanincreaseof6'Finthemaximumfuelpoolwatertemperatureforthe"normal"case,and1'Fforthe"abnormal"and"accident"cases.Sincetheevaporationrateisassumedtobezero,theincreaseddecayheatloadisalso5-3 theincreasedloadonthecoolingsystemandtheincreasedheatrejectedtotheenvironment.Thetotalplantheatloadrejectedtotheenvironmentisabout6.4x10Btu/hr(seeSection5.1.2.2.1of9~theEnvironmentalReportOperatingLicense).Therefore,theper-centageincreaseinheatrejectedtotheenvironmentislessthan0.05Kfornormalfuelstorageand0.01%foraccidentstorage.5.2RADIOLOGICALEVALUATION5.2.1SolidRadwasteNospentfueliscurrentlystoredintheUnit2spentfuelpool.St.LucieUnit2begancommercialoperationinAugust1983andwillnotberefueleduntilatleastOctober1984.Therefore,nosolidradioactivewasteiscurrentlygeneratedbythespentfuelpoolpurificationsystem,norwillanysolidradwastebegeneratedduringtheactualrerackingoperation.S'incethegreatmajorityofcontam-inationcollectedbythepurificationsystemderiveseitherfromfreshlyunloadedfuelortheintermixingofspentfuelpoolfluidwithprimaryfluidduringrefueling,increasingthestoragecapacityhasnosignificanteffectonthequantityofwastecollected.Theeffectivechangeinincreasingthestoragecapacityofthespent.fuelpoolistheretentionofolderfuelelementsinthepoolbeyondthetimewhen".heywouldhaveotherwisebeenshippedoffsitefordisposalorreprocessing.Operati.ngplantexperiencewithhighdensityfuelstorage(St.LucieUnitI),hasindicatedthatonly35cubicfeetofresinsaregenerat-edperyear.."5;2.2Gaseous"RadwasteKrypton-85wouldonlybereleasedtothepoolwaterandsubsequentlytotherefuelingbuildingatmospherefromleakingfuelassemblies.Fornormaloperatingconditions,mostofthekryptonwouldcomefrom5-4

themostrecentlydischargedbatchoffuel.Afterthemostrecentbatchhascooledinthepoolfor12months,thepressurebuildupinafuelpinwhichcauses'thereleaseofkryptonwillbesmall.Thus,anyincreaseinKrypton-85activityattributedtotheincreaseinspentfuelpoolstoragecapacityisexpectedtobesmallcomparedtothetotalquantityofallnoblegasesreleased.Operatingplantexperiencewithhighdensityfuelstorage(St.LucieUnitI),indicatesthattherewerenomeasurablecontinuousreleasesofKrypton-85overthepasttwoyearsfromtheFuelHandlingBuildingventilationsystem.5.2.3PersonnelExosureA.DataisnotavailableregardingrecentgammaisotopicanalysisofSt.LucieUnit2spentfuelpoolwater.Inlieu,recentgammaisotopicanalysisisprovidedinTable5-3forSt.LucieUnitI,whichpresentlyuseshighdensityspentfuelstorageracks.FuelpoolactivitiesforSt.LucieUnit2areexpectedtobewithinthevaluespresentedintheFSARinSection'1.1.2.2andTable11.1-15.B.ExternaldoseequivalentratesarenotavailablefortheSt.LucieUnit2spentfuelpool;however,operatingplantexperi-ence(St.LucieUnit1)indicatesradiationlevelslessthanIMR/HRabovethesurfaceofthespentfuelpool.C.DataisnotavailableregardingairborneradionuclidesfortheSt.LucieUnit2spentfuelpool;however,operatingplant-experience(St.LucieUnit1)indicatesairbornelevelsaretypicallylessthantheminimumdetectableactivityofthe'quipment(GeLiDetector)usedforgammaspectroscopy.D.Sinceoperatingexperiencehasshownminimalairborneradio-activity,noincreasesindoserateinthespentfuelpoolareaoratthesiteboundaryareanticipated.5-5

E.Asstatedin5.2.1,baseduponoperatingplantexperiencewithhighdensityfuelstorageracks,therewillbenosignificantincreaseintheradioactivewastegeneratedbythespentfuelpoolpurificationsystem.Thisisbecausethereisnosignifi-cantincreaseintheradioactivitylevelsinthespentfuelpoolwaterwithhighdensityfuelstorageracks;thereforespentfuelpoolcoolingandpurificationfiltersneednotbereplacedmorefrequently.Thustheannualman-remburdenisnotexpectedtoincreaseduetotheincreasedfuelstorage.F.Mostofthecrudassociatedwithspentfuelstorageisreleasedsoonafterfuelisremovedfromthereactor.Oncefuelisplacedintothespentfuelstorageracks,additionalcrudcontributionisminimal.Thehighestpossiblewaterlevelwillbemaintainedinthespentfuelpool(>23feetabovethefuelassemblies)tokeepexposureaslowasreasonablyachievable.Afuelpoolskimmerisusedduringpurificationoperationstoremoveanyfloatingpollutants,therebyfurtherprecludingthedepositionofcrudonthespentfuelpoolwalls.G.Sections5.2.3.eand5.2.3.findicatethatoperatingexperiencewithhighdensityrackshasshownnosignificantincreaseinradioactivitylevelsinspentfuelpoolwaterordoseratesabovethespentfuelpool.AsstatedinSections5.2.1and5.2.3.e,operatingexperiencehasshownnoincreaseintheprocessingofsolidradioactivewasteorannualman-remburdenassociatedwithit.TheSt.LuciePlantRadiationProtectionprogramisdescribed.inChapter12oftheFSAR.BasedonexperiencewiththererackingofSt.LucieUnit1,nomodificationstotheprogram'reanticipatedasaresultoftheSt.LucieUnit2rerack.5-6

~~5.I.4~RkOiTheex>stingspentfuelstoragerackshaveneverbeenusedtostorespentfuelandconsequentlyarenotcontaminated.Therackswillbedisposedthroughroutineindustrialmeans.Thetotalweightoftheseracksisapproximately122,540pounds.Theracksconsistofeightmodules;fourweighingapproximately13,140poundseachandtheotherfourapproximately17,520poundseach.5.3ACCIDENTEVALUATION5.3.1SentFuelHandlinAccidents5.3.1.1CaskDropAsdiscussedinFSARSection9.1,theconstructionoftheFuelHandlingBuilding,thedesignofthecaskhandlingcraneandthetravellimitswitchinterlockcircuitryaresuchthatthespentfuelcaskcannottraverseoverthespentfuel.Fromthespentfuelcaskstorage,thecranemovesthecaskloadedwithspentfuelassembliesoutoftheFuelHandlingBuildingtothedecontaminationareaontotheshippingvehicleforoffsiteshipment.AsdiscussedinFSARSubsection9.1.4.3,althoughitisnotlikely,thepotentialdropofaspentfuelcaskisabout43ftjustoutsidetheFuelHandlingBuilding.Itisconservativelypostulatedthatacaskdropaccidentof43ftresultsinthedamageofalltheassembliescontainedinthecas,kandtheinstantaneousreleaseofactivitytotheatmosphere.Itisassumedthataspentfuelcaskcontaining10irradiatedfuelassembliesisinthepr'ocessofbeingmovedwiththecasksuspendedfromthecraneabovethetransportvehicle.Throughsomeunspeci-fiedfailure,thecaskbecomesdisengagedfromthecraneandfalls43ftontoanunyieldingsurface.Theactivityfromthedamagedfuelbundlesispostulatedtobereleasedtotheenvironment,atgroundlevel.5-7

TheanalysisisbasedonStandardReviewPlan15.7.5.ThemodelsusedforevaluationoftheradiologicaldosesaredescribedinAppendix158oftheFSAR.TheparametersandassumptionsusedarepresentedinTable5-4.ThedataforarealisticanalysisarealsoincludedinTable5-4forcomparisonpurposes.Thecaskdropaccidentanalysisassumesthatallthefuelisdamagedandallofthegapactivityisreleasedatgroundleveltotheenvironment.Thisconsistsof10percentofthenoblegases,30percentoftheKr-85and10percentoftheradioactiveiodineinthefuelrodsatthetimeoftheaccident.Thevaluesassumedforindividualfissionproductinventoriesincludedaradialpeakingfactorof2.0andaradioactivedecayof90days.TheactivityreleasetotheenvironmentispresentedinTable5-5.Themaximumoffsitedoseproducedisnomorethan24.0remforthetwo-hourinhalationthyroiddoseattheexclusionareaboundary.Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-6.Resultsarewellwithintheacceptancecriteriaof10CFR100andNRCguidelinesinSection15.7.5oftheNRCStandardReviewPlan(NUREG-0800).ThesedosesindicatethatresultsarelowerthanNRCguidelinesbyatleastafactorofthreeandthatthoseguidelineswouldbemetevenforaradialpowerpeakingfactorof6.2,ascomparedtothevalueof2.'0assumedinthisanalysis.'.3.1.2OverheadCraneNocran'ecapableofcarryingheavyloadscanmoveintheareaofthespentfuelpool.(Theanalysisoflight1'oadsissummarizedinSection5.3.4ofthisreport.)ProtectionagainstdroppingthespentfuelcaskintothespentfuelstoragepoolisprovidedbythebasiclayoutoftheFuelHandlingBuilding(refertoFSARFigures1.2-16and1.2-17).Thecaskhandlingarrangement(roofopeningvs.5-8 poollocation)makesitimpossibletopassthecaskoverthespentfuelpool.Thecaskisassignedaseparatestoragepooladjacenttothespentfuelpool.ThecaskdecontaminationandwashdownareasarelocatedoutsidetheFuelHandlingBuilding.TheplanatEleva-tion96.83feetshowsthelocationandsizeoftheroofopeningthroughwhichthefuelcaskcranehoistropescanpass.Thehori-zontalmovementoftheropes,andthereforeofthecranehook,islimitedbytheroofopening.Theplanatelevation19.50feetshowsthelocationanddimensionsofthespentfuelpool.Acomparisonofthetwoplansshowsthatthecranehookispreventedfromapproach-ingthespentfuelpoolbythelimitsoftheroofopening.AdditionalprotectionisaffordedbythetrolleybumpersandasetoflimitswitchesworkingtogetherwithbridgeandtrolleybrakestopreventmovementofthehookintotherestrictedareaasshownonPartialPlanAofFSARFigure1.2-16.Theprimarysetoflimitswitchesandbridgeandtrolleybrakesisbackedupbyanindepen-dentsecondarysetdesignedtoperformthesamefunction.Undertheseconditionsthehookmovementwithinthebuildingislimitedtoanarrowcorridorsufficienttobringthecaskintothebuildingandplaceitinthecenterofthecaskstoragepool.Therearenosafetyrelatedcomponentslocatedunderthetravelpathofthespentfuelcask.Acaskdroppedontoeitheroftheseparatingwallsbetweenthespentfuelpoolandcaskstoragepool,afterdroppingontoandtippingovertheexteriorwall,fallsbackintothecaskstoragepool.Thedesignofthecaskyokewillpreventthecaskfromdroppinginotherthanverticalorientation.PleaserefertoFSARFigures9.1-21and22whichillustratetheconceptofthedoubleyoke.Itisapparentthattwofailuremodesexist:.1.Onesideofthedoubleyokefailsandthenon-redundantmainhookdoesnot.Theconsequenceofthisisthat,sincethecask5-9

willstillbesupportedonthreesides,thecaskcenterofgravitywillnotdropandnosignificantpendulummotioncanbeinitiated.2.Onesideofthedoubleyokefails,followedbyfailureofthenon-redundantmainhook.Thecaskisexpectedtofallstraightdown.Insummary,thedoubleyokearrangementprovidesadequateprotectionagainsttheinitiationofpendulummotionintheeventofayokefailure.Thereisnoconceivablefailuremodewhichwouldcausethecasktofallovertheseparatingwallintothespentfuelpool.AsetofredundantupperlimitswitchespreventsthecranefromliftingthecaskaboveElevation62.5ft.5.3.1.3FuelAssemblyDropThepossibilityofafuelhandlingaccidentisremotebecauseofthemanyinterlocksandadministrativecontrolsandphysicallimitationsimposedonthefuelhandlingoperations(refertoFSARSubsection9.1.4).Allrefuelingoperationsareconductedinaccordancewithprescribedproceduresunderdirectsurveillanceofasupervisortechnicallytrainedinnuclearsafetyandfuelhandling.Notwithstandingtheabove,thefuelhandlingaccidentisassumedtooccurasaconsequenceofafailureofthefuelassemblyliftingmechanismresultinginthedroppingofaraisedfuelassemblyontothespentfuelpool.Theearliestanticipatedtimeatwhichaspentfuelassemblycouldbehandledisthreedaysaftershutdown.Forthisevaluation,droppingofafuelassemblyisassumedtooccur,breachingthecladdingandreleasingthevolatilefissionproductsfromthegasgapofthefuelpins.Inadditiontothearearadiationmonitorlocatedinthespentfuelcaskarea,portableradiationmonitors5-10 capableofemittingaudiblealarmsarelocatedinthisareaduringfuelhandlingoperations.DoorsintheFuelHandlingBuildingareclosedtomaintaincontrolledleakagecharacteristicsinthespentfuelpoolregionduringrefuelingoperationsinvolvingirradiatedfuel-.Shouldafuelassemblybedroppedinthefueltransfercanalorinthespentfuelpoolandreleaseradioactivityaboveapres-cribedlevel,theairborneradiationmonitorssoundanalarm,alertingpersonneltotheproblem.AirborneradiationmonitorsintheFuelHandlingBuildingisolatethenormalFuelHandlingBuildingVentilationSystemandautomaticallyinitiatethefiltrationsystems(refertoSubsection6.2.3oftheFSAR).Themodelsusedforevaluationoftheradiologicaldosesaredes-cribedinAppendix15BoftheFSAR.,AssumptionsandparametersusedinevhluatingthefuelhandlingaccidentareconsistentwithRegulatoryGuides1.13"SpentFuelStorageFacilityDesignBasis"December1975(Rl)and1.25"Assump-tionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaFuelHandlingAccidentintheFuelHandlingandStorageFacilityforBWRandPWRs"March1972(RO)recommendations,asshowninTable5-7.Theradioactiveinventoryofthe236fuelrodswasobtainedbymultiplyingtheactivityofthemostradioactivefuelrod72hoursaftershutdownbyafactorof236.ThecalculationalmethodsandassumptionsdescribedinRegulatoryGuide1.25(RO)applysince:a)thevaluesformaximumfuelrodpressurization,b)peaklinearpowerdensityforthehighestpowerassemblydischarged,c)maximumcenterlineoperatingfueltemperaturefortheassemblyinitemb)'bove,andd)averageburnupforthepeakassemblyinitemb)abovearelessthanthecorrespondingvaluesinRegulatoryGuide1.25(RO)..TheassumptionsandparametersacceptableforarealisticanalysisarealsoindicatedinTable5-7forcomparisonpurposes.5-11 TheradioactivityreleasedtotheenvironmentispresentedinTable5-8.Themaximumoffsitedoseproducedisnomorethan3.0remtwo-hourinhalationthyroiddoseattheexclusionareaboundary.Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-9.Resultsarewellwithintheacceptancecriteriaof10CFR100andNRCguidelinesinSection15.7.4oftheNRCStandardReviewPlan(NUREG-0800).ThesedosesindicatethatresultsarelessthanNRCguidelinesbyafactorof25andthatthoseguidelineswouldbemeteasilyevenforaradialpowerpeakingfactorgreaterthanthatassumedinthisanalysis.5.3.1.4SpentFuelHandlingMachineThespentfuelhandlingmachine,asshownonFSARFigure9.1-14,isatravelingbridgeandtrolleythatridesonrailsoverthespentfuelpool,fueltransferpoolandcaskloadingpit.Motorsonthebridgeandtrolleypositionthemachineoverthespentfuelassemblystorageracks,thenewfuelelevator,theupendingmachine,andfuelshippingcask.Anoverheadcraneisusedtotransfernewfuelfromthenewfuelstoragerackstothenewfuelelevator.Thespentfuelhandlingmachinehoistisprovidedwithalonghandlingtoolwhichengagesthefuelassemblyto'emoved.Oncethefuelassemblyisgrappled,thecableandhoistwinchraisethefuelassembly..Themachinethentransportsthefuelassemblyfromtheupendingmachinetothespentfuelstorageracks(spentfuel),fromthenewfuelelevatortotheupendingmachine(newfuel),orfromthespentfuelstoragerackstothefuelshippingcask.Thecontrolsforthespentfuelhandlingmachinearemountedonaconsolelocatedonthespentfuelhandlingmachinetrolley.Coor-dinatelocationofthe'bridgeisindicatedbysynchrosattheconsole,andthetrolleypositionisindicatedbyapointerand.targetsystem.5-12 Duringwithdrawalorinsertionofafuelassembly,theloadonthehoistcableismonitoredtoensurethatmovementisnotbeingrestricted.Overloadandunderloadsetpointsareprovidedtointerrupthoistoperationatpreassignedlevelsofcableload,therebyprotectingfuelassembliesduringhoistingoperations.Positivelockingisprovidedbetweenthegrapplingdeviceandthefuelassemblytopreventinadvertentuncoupling.Thedrivesforboththebridgeandthetrolleyprovideclosecontrolforaccuratepositioning,andbrakesareprovedtomaintainthepositiononceachieved.Inaddition,interlocksareinstalledsothatmovementofthespentfuelhandlingmachineisnotpossible'whenthehoistiswithdrawingorinsertinganassembly.Manually-operatedhandwheelsareprovidedforbridge,trolley,andwinchmotionsintheeventofapowerloss.5.3.2~Abeli~~~AsdescribedaboveinSection5.3.1.2,itisnotpossibletodropthespentfueicaskontothespentfuelracks.Forthedropofthecaskoutsidethefuelhandlingbuilding,theconservativeanalysissummarizedinSection5.3.l.1abovedemonstratedthatresultingradiologicaldosesarewellwithinacceptancecriteria.Inevaluatingthedropofafuelassemblyfromthespentfuelhandlingmachineintothespentfuelpool(Section5.3.1.3),itwasconservativelyassumedthatallfuelrodsinthedroppedfuelassemblyweredamaged.Theanalysisshowedthattheradiologicaldoseswerealsowellwithinacceptancecriteria.~'P5-13

~~f5.L3~F1DThepresenttechnicalspecificationonfueldecaytimepriortoremovalofirradiatedfuelfromthereactorvesselandthestoragecapacityofthespentfuelracksensurethatthetotaldecayheatloadfromthespentfuelpoolislessthanthecapacityofthefuelpoolcoolingheatexchanger.ThefuelpoolcoolinganalysisisdescribedinSection3.2.Also,thetechnicalspecificationonfueldecaytimepriortoremovaloffuelfromthereactorvesselensuresthattheassumptionsonradioactivitycontentofthefuelinthefuelassemblyandcaskdropaccidentanalyses(Sections5.3.1.1and5.3.1.3)aremet.5.3.4LoadsOverSentFuelAsdescribedinSection9.1oftheFSAR,therearenolightloads(objectslessthanorequaltotheweightofafuelassembly)whichcouldbecarriedoverspentfuelineitherthecontainmentbuildingorinthespentfuelpoolwhichwouldresultinfueldamagemoreseverethanthatassumedintheaccidentanalysis(i.e.,damageofallfuelrodsinonefuelassembly).AsdescribedinSection5.3.1.2above,thedesignsofthefuelhandlingbuildingandtheoverheadcraneensurethatheavyloadscannotbecarriedoverthespentfuelpool.5.3.5ConclusionsSincethespentfuelcaskcannotfallontothespentfuelracks,thehighercapacityofthespentfuelrackdesigndoesnotaffect,byitself,resultsofthefuelcaskdropaccidentdescribedabove(Section5.3.1.1).Also,thespentfuelrackdesigndoesnotaffect5-14

thefuelassemblydropaccidentanalysisbecausethedesignofthefuelracksprecludesdamagetomorethanonefuelassembly.There-fore,thefuelassemblydropaccidentisboundedbythedropofasinglefuelassembly,asdescribedinSection5.3.1.3.Sincetherewillbeonlyanegligiblechangeinradiologicalcondi-tionsinthefuelhandlingbuildingasaresultofthehighercapacityofthenewfuelracks,nochangeinFP&L'sradiationprotectionprogramisanticipated.Also,sincetheenvironmentalconsequencesofthefuelhandlingaccidentsdescribedinSections5.3.1.1and5.3.1.3arewellwithinNRCguidelines,therewillbenochangetoorimpactonthepreviousdeterminationsoftheFinalEnvironmentalStatement.Therefore,thenewfuelrackdesignandtheproposedlicenseamendmentswillnotsignificantlyaffectthequalityofthehumanenvironmentandissuanceofa10CFR51.5(c)(1)negativedeclarationisappropriate.5-15 7(83K17)/ds--:56TABLE5-1ESTIHATEDSPENTFUELPOOLCAPACITYREQUIREHENTSST.LUCIEUNIT2CycleNo.Approx.CycleStartupDateTotalNo.AssembliesinPoolfromallPreviousCclesSpacesRequiredforFullCoreReserveTotalNo.SpacesNeededDuringThisCcleExcessStorageAvailableAugmentedStorageReuired08/01/83212/06/84305/15/86412/01/8780164240217217217217217297381457ExistingCapacity(1)675675378294218NewCapacity(2)10761076779695619ExistingCapacityNewCapacity505/01/89.3282171305316'I2/01/9005/01/9212/01/93'05/01/951012/01/961105/01/98'212/01/991305/01/20011412/01/021505/01/04404492*568656732ee820896+9841060++114821721721721721721721721721721762170978587394910371113120112771365455367291203127393411019827436243852660269053.141217305(1)LicensedCapacityAtPresent~675Cells(2)NewRackInstallation=1584Total/1076InitiallyUsableCells*FCRLostat458StoredAssemblieswithExistingCapacityeeLastRefuelingPossiblewithExistingCapacity(AssumesNoFCRRequirements)+FCRLostat859StoredAssemblieswithNewCapacity++LastRefuelingPossiblewithNewCapacityRacks(AssumesNoFCRRequirements)

TABLE5-2REPLACEMENTCOSTFORST.LUCIEUNIT2BaseCaseProd.Cost$000EnergyGen.BySL2000MWHOutageCaseProd.Cost$O00)RelacementCost($000~$/MWH19987,295,5603,8127,970,697675,137177.1119998,422,4044,8189,343,839921,435191.2520009,069,1994,88310,117,8411,049,642214.96NOTES;SL2out5/1/98through12/31/2000BasedonSYPlongtermbasecase(7/22/83)5-17 TABLE5-3GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCELEVEL=4.66NUCLIDEHALF-LIFEUCI/ml1-SIGMAERRORIERRORXMPCAR-41KR-85KR-85MKR-87KR-88XE-131MXE-133XE-133MXE-135XE-135MXE-138I-130I-131I-132I-133I-134I-135NA-24CR-51MN-54MN-56CO-57CO-'58FE-59CO-60ZN-65NI-651.83H10.72Y4.48H76.30M2.84H11.90D5.24D2.19D9.08H15.65M14.17M12.36H8.04D2.30H20.80H52.60M6.61H15.00H27.70D312.50D2.58H270.90D70.80D44.60D5.27Y244.10D2.52H5.726E-075.062E-042.170E-066.082E-067.847E-067.595E-055.922E-061.676E-052.027E-061.856E-054.921E-051.807E-062.322E-062.078E-062.406E-062.187E-062.376E-063.758E-071.873E-051.493E-051.400E-067.839E-06<1.660E-031.965E-063.744E-042.181E-062.008E-06NUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDE1.347E-06NUCLIDE1.491E-066.072E-06NUCLIDE3.124E-06NUCLIDENUCLIDENOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTED9.02NOTDETECTED19.020.37NOTDETECTED0.83NOTDETECTEDNOTDETECTED0.000.000.000.005-18 TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCELEVEL=4.66NUCLIDEHALF-LIFEUCI/11111-SIGMAERRORgERROR'5MPCBR-82AG-110SN-113SB-124W-187NP-239RB-88ZR-95NB-95ZR-97NB-97MO-99TC-99MRU-103-SB-125CS-134CS-136CS-137BA-140PR-144LA-140CE-141CE-144AC-228RA-224PB-21235.30H252.20D115.00D60.20D23.90H2.35D17.80M63.98D35.15D16.90H72.10M66.02H6.02H39.35D2.77Y2.06Y13.10D30.17Y12.79D17.28M40.22H32.50D284.30D5.75Y5.75Y5.75Y1.770E-061.782E-063.903E-061.098E-055.660E-067.261E-065.229E-052.560E-061.468E-063.723E-053.356E-061.105E-051.800E-062.391E-06<3.757E-059.525E-041.471E-061.398E-031.047E-056.151E-043.028E-073.037E-06<1.382E-05-1.633E-05<4.398E-053.832E-06NUCLIDENOTNUCLIDENOTNUCLIDENOT9.856E-07NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOT.NUCLIDENOT5.973E-065.162E-06NUCLIDENOT5.860E-06NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTDETECTEDDETECTEDDETECTED8.'8DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED15.900.54DETECTED0.42DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED0.000.000.000.005-19

TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCELEVEL=4.66NUCLIDEHALF-LIFEUCI/ml1-SIGMAERROR5ERRORTL-208TH-234RA-226PB-214BI-214K-405.75Y1000.00Y1000.00Y1000.00Y1000.00Y1000.00Y<2.382E-06<1.943E-06<5.161E-05<5.089E-06<4.885E-06<3.860E-06NUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDTOTALACTIVITY=5.028E-03UCI/UNIT;TOTALXMPC=5-20 TABLE5-4SPENTFUELCASKDROPACCIDENTASSUMPTIONSl.Dataandassumptionsusedtoestimateradioactivesourcesfrompostulatedaccident:DesignBasisAssumtionsRealisticBasisAssumtionsb)c)d)PowerlevelBurnup(anytimeduringcorelife)SpentfueldamagedNumberofassembliesincore2700MwtNA100%2172700MwtNA0.1%2172.Dataandassumptionsusedtoestimateactivityreleasea)b)c)d)Assumedspentfueldecay.timepriortoaccidentRadialpeakingfactorFuelrodreleasefractions:(allofthegasgapactivityisreleased)Numberofassembliesinacask90days2.010Knoblegas30%Kr-8510%iodine1090days1.6510Knoblegas305Kr-85105iodine103.DispersionDataa)b)c)EZ/LPZdistance(kilometers)AssumedreleaselevelX/Q's(Sec/m)EAB(0-2hr)LPZ(0-8hrH1.56/1.61Ground1.6E-047.1E-051.56/1.61liround2.6E-057.4E-065-2T TABLE5-5SPENTFUELCASKDROPACCIDENTRELEASESActivityReleasetoEnvironment(Curies)FortheDesignBasisAnalysis~jsotoeI-131I-132I-133I-134I-135Kr-85mKr-85Kr-87Kr-88Xe-131mXe-133Xe-135Xe-138~Activtt2.91E+02W1.89E+042.36E+015-22 TABLE5-6SPENTFUELCASKDROPOFFSITEDOSESThyroidWholeBodyTwoHourExclusionAreaBoundarDose2.4x10rem6.1x10remEntireEventLowPoulationZoneDose1.1x10rem2.7x10rem5-23 TABLE5-7FUELHANDLINGACCIDENTASSUMPTIONSParameterDesignasisAssumtionsReaisticAssumtions1.Dataandassumptionsusedtoestimateradioactivesourcesfrompostulatedaccidents:a)Powerlevel(MWT)b)Radialpeakingfactorc)Burnupd)Decaytime(hr)e)Numberoffailedrodsf)Fractionoffissionproductgasescontainedinthegapregionofthefuelrods(percent)Kr-85OtherNobleGasesIodine'7002.04.5full-poweryearsat80Kplantfactor7223630101027001.554.5full-poweryearsat80%plantfactor72163010102.Dataandassumptionsusedtoestimateactivityreleased:a)Gapactivityreleasedtopool(percent)b)Minimumwaterdepthabovedamagedrods,(ft)c)Pooldecontaminationfactorfornoblegases.d)'ooldecontaminationfactorforiodine1002310023InorganicOrganicOverall13311005005-24

TABLE5-7(Cont'd)FUELHANDLINGACCIDENTASSUMPTIONSb)c)AssumedreleaselevelX/Q's(sec/m)EABLPZ4.DoseDataa)Methodofdosecalculationb)DoseconversionfactorsParametere)Iodinechemicalformreleasedtofuel.handlingInorganiciodine(percent)Organiciodine(percent)f)FilterEfficiencyIodineinorganic(percent)Iodineorganic(percent)Iodineparticulate3.DispersionData:a)EAB/LPZdistance(kilometers)DesignasisAssumtions75259550991.56/1.61Ground1.6x1057.1x10Appendix15B,Section15B.1Appendix15B,Table158-1.ea1stlcAssumtions75259595991.56/1.61Ground2.6x10-67.4x105-25

TABLE5-8FUELHANDLINGACCIDENTRELEASESActivityReleasedtotheEnvironment(Curies)FortheDesignBasisAnalysisISOTOPEI-131I-133Xe-131mXe-133Xe-135Kr-85236RODS3.4(+1)8.50)3.7(+2)9.3+41.4+2)1.9(+3)5-26 TABLE5-9FUELHANDLINGACCIDENTOFFSITEDOSESThyroidWholeBodyTwoHourExclusionAreaBoundarDose3.0x10rem1.1x10remEntireEventLowPoulationZoneDose1.3x10rem4.6x10rem5-27