ML17334B426: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 03/31/1990
| issue date = 03/31/1990
| title = DC Cook Unit 1 Reactor Vessel Rt PTS Evaluations.
| title = DC Cook Unit 1 Reactor Vessel Rt PTS Evaluations.
| author name = CHICOTTS J M, MEYER T A, RAY N K
| author name = Chicotts J, Meyer T, Ray N
| author affiliation = WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
| author affiliation = WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
| addressee name =  
| addressee name =  
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:APPROVED"INGENERAL"MECHANICALENGINEERINGDIVISIONAMERICANELECTRICPOWERSERVICECORP-PERDATESCPP4'.C.COOKUNIT1REACTORVESSELRTPTSEVALUATIONSgy~<3nenF~5J.M.ChicottsN.K.RayMARCH1990workperformedunderShopOrderNo.AOZP-108Approved:T.A.Meyer,MagerStructuralMaterialsandReliabilityTechnologyPreparedbyMestinghouseElectricCorporationfortheAmericanElectricPowerCompany4111si031290:10RESTINGHOUSEELECTRICCORPORATIONNuclearandAdvancedTechnologyOivisionP.O.8ox2728Pittsburgh,Pennsylvania15230(920728027i920713PDRADOCN050003i5PPDR TABLEOFCONTENTSSectionTABLEOFCONTENTSLISTOFTABLESLISTOFFIGURESTitle~PaeSUMMARYOFRESULTSPRESSURIZEDTHERMALSHOCK2-1ThePressurizedThermalShockRule2-12-2MethodsforCalculationofRTPTS2-32-3DeterminationofRTPTSValuesforAllBeltlineRegionMaterials2-52-4StatusofReactorVesselintegrityinTermsofRTPTSVersusFluenceResults2-6REFERENCES3-1etTEel031290:10 LISTOFTABLESTableTitle~Pae2-10,C.CookUnit1ReactorVesselBeltlineRegionMaterialProperties2-82-2SummaryofFluence(E>1.0MeV)UsedfortheEvaluationofRTPTS2-92-3RTPTSVa1uesPerPTSRulefor0~C~CookUnit12"10RTPTSValuesPerRegulatoryGuide1.99,Revision2for0.C.CookUnit12-114IIIel03I290:IO11 j
{{#Wiki_filter:APPROVED "IN GENERAL" MECHANICAL ENGINEERING DIVISION AMERICAN ELECTRIC POWER SERVICE CORP-PER                              DATES      C PP4'.
LISTOFFIGURES~FiereTitie~Pae2-12-22-3Identification"and-LocationofHeltlineRegionMaterialforthe..D..C.CookUnit1ReactorVesselRTPTSvs~FluenceperPTSRule-CookUnit1,RT>>~vs.FluenceperRegulatoryGuide1.99,Rekilion2,CookUnit1,2-72-112"12i111sl031290:10 SECT10N1SUMMARYOFRESULTSThePressurizedthermalshockevaluationswereperformedforD.C.CookUnit1ReactorVesselBeltlineregionmaterialsandresultedthefollowingconclusion:oUsingPTSrule:Thelimitingmaterialisfoundtobethecircumferentialweld(Table2-3).RTPTSvaluesare200'Fand216'Fforlifeupto23and32EFPYrespectively.Thesevaluesarebelowthescreeningcriteriaof300'Fforcircumferentialweld.oUsingRegulatoryGuide1.99,Revision2Thelimitingmaterialisfoundtobethecircumferentialweld(Table2-4).RTPTSvaluesare221'Fand238Fforlifeupto23and32EFPYrespectively.Thesevaluesarebelowthescreeningcriteriaof300'Fforcircumferentialweld.ll1le/0312QO:lO SECTION2PRESSURIZEDTHERMALSHOCK2-1.THEPRESSURIZEDTHERMALSHOCKRULEThePressurizedThermalShock(PTS)RulewasapprovedbytheU.S.NuclearI:1]RegulatoryCommissionersonJune20,1985,andappearedintheFederalRegisteronJuly23,1985.ThedatethattheRulewaspublishedintheFederalRegisteristhedatethattheRulebecamearegulatoryrequirement.1TheRuleoutlinesregulationstoaddressthepotentialforPTSeventsonpressurizedwaterreactor(PHR)vesselsinnuclearpowerplantsthatareoperatedwithalicensefromtheUnitedStatesNuclearRegulatoryCommission(USNRC).PTSeventshavebeenshownfromoperatingexperiencetobetransientsthatresultinarapidandseverecooldownintheprimarysystemcoincidentwithahighorincreasingprimarysystempressure.ThePTSconcern~~~~~arisesifoneofthesetransientsactsonthebeltlineregionofareactorvesselwhereareducedfractureresistanceexistsbecauseofneutronirradiation.SuchaneventmayproducethepropagationoffTawspostulatedtoexistneartheinnerwallsurface,therebypotent'iallyaffectingtheintegrityofthevessel.TheRuleestablishesthefollowingrequirementsforalldomestic,operatingPMRs:*TheRT~7~(measureoffractureresistance)ScreeningCriterionforthereh0'torvesselbeltlineregionis270'Fforplates,forgings,axialwelds300'Fforcircumferentialweldmaterials4111@/031290;102-1 6MonthsFromOateofRule:AllplantssubmittedtheirpresentRT>>~values(pertheprescribedmethodology)andprojectedRT>>~valuesattheexpirationdateoftheoperatinglicense.Thedat4thatthissubmittalhadtobereceivedbytheNRCforplantswithoperatinglicenseswasJanuary23,1986.9MonthsFromOateofRule:PlantsprojectedtoexceedthePTSScreeningCriterionhadtosubmitananalysisandascheduleforimplementationofsuchfluxreductionprogramsasarereasonablypracticabletoavoidreachingtheScreeningCriterion.ThedateforthissubmittalhadtobereceivedbytheNRCforplantswith'operatinglicensesbyApril23,1986.*Plant-specificPTSsafetyanalysesarerequiredbeforeaplantiswithin3yearsofreachingtheScreeningCriterion,includinganalysesofalternat,ivestominimizethePTSconcern.*NRCapprovalforoperationbeyondtheScreeningCriterionisrequired.Forapplicantsofoperatinglicenses,valuesoftheprojectedRTpTSaretobeprovidedintheFinalSafetyAnalysisReport.Thisrequirementisaddedaspartof10CFRPart50.34.0IntheRule,theNRCprovidesguidanceregardingthecalculationofthetoughnessstateofthereactorvesselmaterials-the"referencetemperaturefornil-ductilitytransition"(RTNOT).ForpurposesoftheRule,RTNOTisnowdefinedas"thereferencetemperatureforpressurizedthermalshock"(RTPTS)andcalculatedasprescribedby10CFR50.61(b)oftheRule.EachUSNRClicensedPMRwasrequiredtosubmitaprojectionofRTpTSvaluesfromthetimeofthesubmittaltothelicenseexpirationdate.Thisassessmentwasrequiredtobesubmittedwithin6monthsaftertheeffectivedateoftheRule,onJanuary23,1986,withupdateswheneverchangesoccuraffectingprojectedvalues.Thecalculationmustbemadeforeachweldandplate,orforging,inthereactorvesselbeltline.'4111s>031290:102-2 Calculationswerecarriedoutusingthelatestplantspecificmaterial~~~~~~~propertiesinaccordancewithboththecurrentPTSruleandRegulatoryI:1lGuide1.99-Revision2,whichwasrecentlyissuedasthelatestregulatorymethodforpredictingirradiationembrittlementofreactorvesselmaterials.TheNRCplanstoincorporateRevision2ofRegulatoryGuide1.99intothePTSrulewithoutchangingthePTSscreeningcriteriaperNRCGenericLetter88-11.TheRTPTSresultsforallCook,Unit1reactorvesselbeltline[3lregionmaterialsarepresentedfollowingadescriptionofthesetworegulatorycalculationalmethodologies.22METHODSFORCALCULATIONOFRTPTS2-2.1PTSRuleMethodololnthePTSRule,theNRCStaffhasselectedaconservativeanduniformmethodfordeterminingplant-specificvaluesofRTPTSatagiventime.TheprescribedequationsinthePTSruleforcalculatingRTPTSareactuallyoneofseveralwaystocalculateRTNOT.ForthepurposeofcomparisonwiththeScreeningCriterion,thevalueofRTPTSforthereactorvesselmustbecalculatedforeachweldandplate,orforginginthebeltlineregionasgivenbelow.Foreachmaterial,RTPTSistheloweroftheresultsgivenbyEquations1and2.Equation1:RTpTSI+M+[10+470(Cu)+350(Cu)(Nl)]fEquation2:RT=I+M+283f0'194PTS(2)4111giOQ~%0.102-3 whereI=theinitialreferencetransitiontemperatureoftheunirradiatedmaterialmeasuredasdefinedintheASHECode,NS-331,Ifameasuredvalueisnotavailable,thefollowinggenericmeanvaluesmustbeused:O'FforweldsmadewithLinde80flux,and-56'FforweldsmadewithLinde0091,1092and124andARCOS8-5weldfluxes.H=themargintobeaddedtocoveruncertaintiesinthevaluesofinitialRTNpTcopperandnieke1content,f1uence,andca1culationprocedures~InEquation1,M=48'FifameasuredvalueofIwasused,andM=59'FifthegenericmeanvalueofIwasused.InEquation2,M=O'FifameasuredvalueofIwasused,andM=34'FifthegenericmeanvalueofIwasused.CuandNi=thebestestimateweightpercentofcopperandnickelinthematerial.f=themaximumneutronfluence,inunitsof10n/cm(Egreaterthanor192equalto1MeV),attheclad-base-metalinterfaceontheinsidesurfaceofthevesselatthelocationwherethematerialinquestionreceivesthehighestfluencefortheperiodofserviceinquestion.Notethatthechemistryvaluesgiveninequations1and2arebestestimatemeanvalues.Themargin,M,increasestheRTPTSvaluestobeupperboundpredictions.Thus,themeanmaterialchemistryvaluesaretobeusedwhenavailablesoasnottocompoundconservatism.2-2.2ReoulatorGuide1.99Revision2HethodoloRevision2toRegulatoryGuide1.99wasissuedinMay1988.TheAdjustedl2]ReferenceTemperature(ART),basedonthemethodsofRegulatoryGuide1.99Revision2,canbecompactlydescribedbythesequenceofequationslistedbelow:4'Ills>071290;>02-4 ART=InitialRTNpy+ARTNDT+MargindRT=(CF]F(0.28-0.10LOGf)NDTwere,(3)(4)f=Neutronfluence,n/cm(E>1MeV),dividedby10CF=Chemistryfactorfromtablesforweldsandforbasemetal(platesandforgings)(ifnodatause0.35%Cuand1.0%Ni)Margin=2[ol+a<]'here,2(5)aIstandarddeviationofinitialRTNpyIftheinitialRTNpyismeasured,oIistobeestimatedfromtheprecisionofthetestmethod;otherwise,aIisobtainedfromthesamesetofdatathatisusedtogetinitialRTNpy.o<=StandarddeviationofLRTNDT,28'Fforweldsand17'Fforbasemetal[a>neednotexceed1/2timesARTNDTsurface]ThevalueofARTwillbeassumedtobetheRTPTSvalueforusewiththePTSrule.23DETERMINATIONOFRTpTS.VALUESFORALLBELTLINEREGIONMATERIALSFortheRTPTScalculation,thebestestimatecopperandnickelchemicalcompositionofthereactorvesselbeltlinematerialisnecessary.Thebeltlineregionisde'finedbytheRule]tobe"theregionofthereactorvessel(shellmaterialincludingwelds,heataffectedzones,andplatesorforgings)thatdirectlysurroundstheeffectiveheightoftheactivecoreandadjacentregionsofthereactorvesselthatarepredictedto~~~~~~~~~~~~~~~~~~~~experiencesufficientneutronirradiationdamagetobeconsideredintheselectionofthemostlimitingmaterialwithregardtoradiationdamage."Figure2-1identifiesthelocationofallbeltlineregionmaterialsforthereactorvessel.t1I1s/all200:l02-5 AsummaryofthepertinentchemicalandmechanicalpropertiesofthebeltlineregionplateandweldmaterialsandtheinitialRTNDTvaluesoftheCookUnit1reactorvesselarereproducedinTable2-1(Reference4,TableA-l).Alsoasummaryoffluence(E>1.0MeV)valuesusedfortheevaluationofRTPTSisprovidedinTable2-2(Reference4,Table6-14).Usingthemethodologyprescribedbeforeandthematerialproperties'discussedinthissection,theRTPTSvaluesforD.C.CookUnitLcanbedetermined.24STATUSOFREACTORVESSELINTEGRITYINTERMSOFRTpTSVERSUSFLUENCERESULTSUsingtheprescribedPTSRulemethodology,RTPTSvaluesweregeneratedforallbeltlineregionmaterialsoftheD.C.CookUnit1reactorvesselasafunctionofpertinentvessellifetimes.Thetabulatedresultsfromthis~~~evaluationarepresentedinTable2-3and2-4forallbeltlineregionmaterials.Figures2-2and2-3presenttheRTPTSversusfluenceforthebeltline.materialoftheCookUnit1vesselusingPTSruleandRegulatoryGuide1.99,Revision2,respectively,ThecurvesinthesefigurescanbeusedtoprovideguidancetoevaluatefuelreloadoptionsinrelationtotheNRCRTPTSScreeningCriterionforPTS,ifthiswouldeverbecomenecessary.Thatis,RTPTSvaluescanbereadilyprojectedforanyoptionsunderconsideration,providedthatfluenceisknown.il11@/031290:102-6  
C. COOK UNIT    1 REACTOR  VESSEL RTPTS EVALUATIONS gy~<3nenF       ~5 J. M. Chicotts N. K. Ray MARCH  1990 work performed under Shop Order No. AOZP-108 Approved:
~0LlflCIDNIT1GIE1NTEfSKD1ATESHELL0CL5IDID~eClh~Qlnao~0n0lQ0CLCI0wohrt'X7IDOh0CXl5IDOlCllIDIDIDu30~ooCACl TABLE2-1~~D.C.UNIT1REACTORVESSELBELTLINEREGIONMATERIALPROPERTIESPlateCuNiInitialComponentNo.(Wtl.)(Wtl.)RTNDT('F)IntermediateShellPlate84406-1.12.52IntermediateShellPlateB4406-2.15.5033IntermediateShellPlateB4406-3,15.4940LowerShellPlate84407-1.14.5528LowerShel1PlateB4407-2.12.59-12LowerShellPlateB4407-3.14.5038Longitudinalfields.28.74-56Circumferentialfields.28.74-56il11s/0311SO;102-8 TABLE2-2~~SUMMARYOFFLUENCE(E>1.0MeV)VALUESUSEDFORTHEEVALUATIONOFRTPTSComponent23EFPY32EFPYIntermediateShellPlate,84406-11,051.41IntermediateShellPlate,84406-2IntermediateShellPlate,84406-31.051.051.411.41LowerShellPlate,84407-11.051.41LowerShellPlate,84407-21.051.41LowerShellPlate,84407-31.051.41LongitudinalWeld0.7140.95CircumferentialWeld1.051.41Fluencesarein10n/cm(E>1.0MeV)194131s/032790:102-9 TABLE2-3RTpTSVALUESPERPTSRULEFOR0~C~COOKUNIT1RTPTSValues('F)LocationVesselMaterial23EFPYSCREENING32EFPYCRITERIAIntermediateshellplateB4406-11221282702IntermediateshellplateB4406-21691762703IntermediateshellplateB4406-3175183270LowershellplateB4407-1160167270LowershellplateB4407-21081142706LowershellplateB4407-31671742707MostLimitingLongitudinalweld180195270Circumferentialweld20030041IIsx001700:TO2-10 TABLE2-4RTPTSVALUESPERREGULATORYGUIDE199REVISION2FORD.C.COOKUNIT1RTPTSValues('F)LocationVesselMaterial23EFPYSCREENING32EFPYCRITEREA1Intermediateshellplate84406-1,1211282702IntermediateshellplateB4406-2173182270IntermediateshellplateB4406-31791882704Lowershellplate84407-11611692705LowershellplateB4407-21061132706Lowershellplate84407-3169177270MostLimitingLongitudinalweld1992152708Circumferentialweld2212383004111slO'322SO:10 280270260250240230220210200190180170160a15014013012011010090sa70Q10305Q7091113151719Fluence(x10E19)n/cm2TELOS+84406-3~+84406-2~84407-384407-1<84406-1484407-2ilIls/07llQO.IOFigure2-2.RTPTSvs.FluenceperPTSRule-CookUnit1 28027026025024023022021Q20Q19a18017016015014013Q12Q11Q10090807QalQ30507091113151719Fluence(x10619)n/cm2TELOS84406-384406-284407-384407-10-84406-1~84407-24111s/03129010Figure2-3.RTpT>vs.FluenceperRegulatoryGuide1.99,Revision2-CookUnit1 SECTION3REFERENCES[1]"AnalysisofPotentialPressurizedThermalShockEvents,"10CFRpart50,FinalRule,July23,1985.[2]RegulatoryGuide1.99,Revision2,"RadiationEmbrittlementofReactorVesselMaterials,"U.S.NuclearRegulatoryCommission,May,1988.[3]NRCGenericletter88-11,"NRCPositiononRadiationEmbrittlementofReactorVesselMaterialsanditsImpactonPlantOperations",July12,1988.[4]E.Terek,S,L.Anderson,L.Albertin,N.K.Ray,"AnalysisofCapsuleUfromtheAmericanElectricPowerCompanyD.C.CookUnit1ReactorVesselRadiationSurveillanceProgram."~1~i<llis/031290:l03-1 a'~\QeSECTION3REFERENCES[1]"AnalysisofPotentialPressurizedThermalShockEvents,"10CFRpart50,FinalRule,July23,1985.[2]RegulatoryGuide1.99,Revision2,"RadiationEmbrittlementofReactorVesselHaterials,"U.S.NuclearRegulatoryCommission,May,1988.[3]NRCGenericletter88-11,"NRCPositiononRadiationEmbrittlementofReactorVesselMaterialsanditsImpactonPlantOperations",July12,1988.[4]E.Terek,S.L.Anderson,L.Albertin,N.K.Ray,"AnalysisofCapsuleUfromtheAmericanElectricPowerCompanyD.C.CookUnit1ReactorVesselRadiationSurveillanceProgram."i)ills/03l290:103-1}}
T. A. Meyer,   M  ager Structural Materials and Reliability Technology Prepared by Mestinghouse Electric Corporation            for the American Electric Power Company REST INGHOUSE ELECTRIC CORPORATION Nuclear and Advanced Technology Oivision P.O. 8ox 2728 Pittsburgh, Pennsylvania 15230
(   920728027i 920713 PDR    ADOCN 050003i5 4111si031290:10            P                    PDR
 
TABLE OF CONTENTS Section                                    Title                      ~Pa e TABLE OF CONTENTS LIST  OF TABLES LIST  OF FIGURES
 
==SUMMARY==
OF RESULTS PRESSURIZED THERMAL SHOCK 2-1  The  Pressurized Thermal Shock Rule                2-1 2-2  Methods  for Calculation of                        2-3 RTPTS 2-3  Determination of    RTPTS Values  for All Beltline Region Materials                                    2-5 2-4  Status of Reactor Vessel    integrity in  Terms of RTP TS  Versus Fluence Resul  ts                    2-6 REFERENCES                                                3-1 et T Eel031290:10
 
LIST OF TABLES Table                                            Title                    ~Pa e 2-1          0, C. Cook Unit    1 Reactor Vessel    Beltline  Region Material Properties                                      2-8 2-2          Summary  of Fluence    (E > 1.0 MeV)                   2-9 Used  for the Evaluation of    RTPTS 2-3            RTP TS Va1 ues Per  PTS Rul e  for 0 ~ C ~ Cook Uni t 1 2"10 RTPTS  Values Per Regulatory Guide 1.99, Revi sion 2 for 0. C. Cook  Unit  1                              2-11 4I I I el03 I 290: IO 11
 
j LIST OF FIGURES
  ~Fi  ere                                Ti tie                    ~Pa e 2-1          Identification"and-Location of Heltline Region Material for the..D.. C. Cook Unit 1 Reactor Vessel              2-7 2-2          RTPTS vs  ~ Fluence per PTS Rule - Cook Uni t 1,       2-11 2-3          RT>>~ vs. Fluence per Regulatory Guide 1.99, Rekilion 2,   Cook Unit 1,                             2"12 i111sl031290:10
 
SECT10N  1
 
==SUMMARY==
OF RESULTS The    Pressurized thermal shock evaluations were performed for D. C. Cook Unit    1 Reactor Vessel Belt line region materials and resulted the following conclusion:
o    Using  PTS  rule:
The  limiting material is  found to be the circumferential weld (Table 2-3). RTPTS values are 200'F and 216'F for life up to 23 and 32 EFPY respectively. These values are below the screening criteria of 300'F for circumferential weld.
o    Using Regulatory Guide 1.99, Revision 2 The  limiting material is  found to be the circumferential weld (Table 2-4). RTPTS values are 221'F and 238 F for life up to 23 and 32 EFPY respectively. These values are below the screening criteria of 300'F for circumferential weld.
ll le/0312QO:lO 1
 
SECTION 2 PRESSURIZED THERMAL SHOCK 2-1. THE PRESSURIZED THERMAL SHOCK RULE The  Pressurized Thermal Shock (PTS) Rule I:1] was approved by the U.S. Nuclear Regulatory Commissioners on June 20, 1985, and appeared in the Federal Register on July 23, 1985. The date that the Rule was published in the Federal Register is the date that the Rule became a regulatory requirement.
1 The Rule          outlines regulations to address the potential for PTS events on pressurized water reactor (PHR) vessels in nuclear power plants that are operated with a license from the United States Nuclear Regulatory Commission (USNRC). PTS events have been shown from operating experience to be transients that result in a rapid and severe cooldown in the primary system coincident with a high or increasing primary system pressure. The PTS concern arises if one of these transients acts on the beltline region of a reactor
      ~       ~
vessel where a reduced fracture resistance exists because of neutron irradiation. Such an event may produce the propagation of fTaws postulated to
  ~       ~     ~
exist near the inner wall surface, thereby potent'ially affecting the integrity of the vessel.
The Rule          establishes  the following requirements  for all domestic, operating PMRs:
* The RT~7~ (measure    of fracture resistance) Screening Criterion for the reh0'tor vessel    beltline region is 270'F  for plates, forgings, axial welds 300'F  for circumferential weld materials 4111@/031290;10 2-1
 
6 Months From Oate    of Rule: All plants submitted their present RT>>~   values   (per the prescribed methodology) and projected RT>>~
values at the expiration date of the operating license. The dat4 that this submittal had to be received by the NRC for plants with operating licenses was January 23, 1986.
9 Months From Oate of Rule:     Plants projected to exceed the PTS Screening Criterion had to submit an analysis and a schedule for implementation of such flux reduction programs as are reasonably practicable to avoid reaching the Screening Criterion. The date for this submittal had to be received by the NRC for plants with'operating licenses by April 23, 1986.
* Plant-specific PTS safety analyses are required before a plant is within 3 years of reaching the Screening Criterion, including analyses of alternat,ives to minimize the PTS concern.
* NRC  approval for operation beyond the Screening Criterion is required.
For applicants of operating licenses, values of the projected RTpTS are to be provided in the Final Safety Analysis Report. This requirement is added as part of 10CFR Part 50.34.
0 In the Rule, the        NRC  provides guidance regarding the calculation of the toughness state of the reactor vessel materials - the "reference temperature for nil-ductility transition" (RTNOT). For purposes of the Rule, RTNOT is now defined as "the reference temperature for pressurized thermal shock" (RTPTS) and calculated as prescribed by 10 CFR 50.61(b) of the Rule.             Each USNRC licensed PMR was required to submit a projection of RTpTS values from the time of the submittal to the license expiration date. This assessment was required to be submitted within 6 months after the effective date of the Rule, on January 23, 1986, with updates whenever changes occur affecting projected values. The calculation must be made for each weld and plate, or forging, in the reactor vessel beltline.
  '411 1 s>031290:10 2-2
 
Calculations were carried out using the latest plant specific material
                  ~                             ~
properties in accordance with both the current PTS rule I:1l and Regulatory
                                          ~
        ~                 ~   ~
Guide 1.99-Revision 2                  ~
                                        , which was recently issued as the latest regulatory method for predicting irradiation embrittlement of reactor vessel materials.
The NRC plans to incorporate Revision 2 of Regulatory Guide 1.99 into the PTS rule without changing the PTS screening criteria per NRC Generic Letter 88-11 [3l . The RTPTS results for all Cook, Unit 1 reactor vessel beltline region materials are presented following a description of these two regulatory cal culational methodologies.
2 2        METHODS FOR CALCULATION OF RTPTS 2-2.1        PTS  Rule Methodolo ln the PTS Rule, the NRC Staff has selected a conservative and uniform method for determining plant-specific values of RTPTS at a given time.
The    prescribed equations in the PTS rule for calculating RTPTS are actually one of several ways to calculate RTNOT. For the purpose of comparison with the Screening Criterion, the value of RTPTS for the reactor vessel must be calculated for each weld and plate, or forging in the beltline region as given below. For each material, RTPTS is the lower of the results given by Equations          1 and 2.
Equation 1:
RTp TS      I +   M   + [ 10 + 470(Cu) + 350(Cu) (Nl ) ] f Equation 2:
RT         = I + M   + 283 f0'194                                      (2)
PTS 4111giOQ ~ %0.10 2-3
 
where I  = the  initial  reference transition temperature of the unirradiated material measured as defined in the ASHE Code, NS-331,                 If a measured value is not available, the following generic mean values must be used: O'F for welds made with Linde 80 flux, and -56'F for welds made with Linde 0091, 1092 and 124 and ARCOS      8-5 weld fluxes.
H =     the margin to be added to cover uncertainties in the values of initial RTNp T copper and ni eke        1 content, f 1 uence, and ca 1 cul ati on procedures  ~ In Equation 1, M=48'F        if  a measured value of I was used, and M=59'F        if  the generic mean value of I was used. In Equation 2, M=O'F                  if  a measured value of I was used, and        M=34'F  if the generic mean value of I was used.
Cu and Ni =         the best estimate weight percent of copper and nickel in the material.
f   = the maximum neutron fluence, in units of 10 19 n/cm 2 (E greater than or equal to 1 MeV), at the clad-base-metal interface on the inside surface of the vessel at the location where the material in question receives the highest fluence for the period of service in question.
Note      that the chemistry values given in equations          1 and 2  are best estimate mean      values. The margin, M,   increases    the RTPTS  values to be upper bound predictions. Thus, the mean material chemistry values are to be used when available so as not to compound conservatism.
2-2.2        Reoulator    Guide 1.99 Revision      2  Hethodolo Revision        2 l2] to Regulatory    Guide 1.99 was issued in May 1988. The Adjusted Reference Temperature            (ART), based on the methods of Regulatory Guide 1.99 Revision 2, can be compactly described by the sequence of equations                      listed below:
4'Ills>071290;>0 2-4
 
ART =     Initial        RTNpy
                                                          + ARTNDT + Margin                                        (3)
                              = (CF]F(0.28
                                                    - 0.10      LOG  f) dRT NDT w  ere,                               (4) f     =       Neutron fluence, n/cm                   (E > 1  MeV), divided by 10 CF =           Chemistry factor from tables                    for  welds and    for  base metal (plates      and  forgings)         (if no    data use 0.35%     Cu and 1.0%   Ni)
Margin         = 2
[ol 2 + a< ]     'here,                                                   (5) aI            standard deviation of                initial    RTNpy    If the initial RTNpy      is    measur ed,   oI i s to      be  estimated fr om the precision of the test method; otherwise, aI is obtained from the same set of data that is used to get initial RTNpy
                      .o<     =       Standard deviation of                LRTNDT,     28'F for welds      and 17'F for base metal
[a> need not exceed 1/2 times ARTNDT surface]
The value              of    ART    will be      assumed      to be the      RTPTS    value  for  use  with the    PTS rule.
2 3            DETERMINATION OF RTp TS. VALUES FOR ALL BELTLINE REG ION MATERIALS For the RTPTS calculation, the best estimate copper and nickel chemical composition of the reactor vessel beltline material is necessary.
The        beltline region is                    de'fined by the Rule                ] to be "the region of the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to
                                              ~
experience sufficient neutron irradiation damage to be considered in the
                                  ~   ~                   ~       ~     ~                             ~       ~
selection of the most limiting material with regard to radiation damage."
                ~                                     ~               ~         ~                     ~
                                                                                                                        ~
Figure 2-1 identifies the location of all beltline region materials for the
                            ~       ~   ~                   ~                         ~                   ~
reactor vessel.
t  I 1 s/all 200: l 0 1
2-5
 
A summary      of the pertinent chemical and mechanical properties of the beltline region plate and weld materials and the initial RTNDT values of the Cook Unit 1 reactor vessel are reproduced in Table 2-1 (Reference 4, Table A-l).
Also      a summary  of fluence  (E > 1.0 MeV) values    used for the evaluation of RTP TS      is provided in Table 2-2 (Reference 4, Table 6-14)     .
Using the methodology prescribed before and the material properties 'discussed in this section, the        RTPTS  values  for D. C. Cook  Unit L  can be determined.
2 4        STATUS OF REACTOR VESSEL INTEGRITY IN TERMS OF RTpTS VERSUS FLUENCE RESULTS Using the prescribed        PTS  Rule methodology, RTPTS values were generated    for all beltline region materials of          the D. C. Cook  Unit 1 reactor vessel as  a function of pertinent vessel lifetimes. The tabulated results from this
                ~
evaluation are presented in Table 2-3 and 2-4 for all beltline region materials.
          ~
                  ~
Figures 2-2 and 2-3 present the RTPTS versus fluence for the beltline .
material of the Cook Unit 1 vessel using PTS rule and Regulatory Guide 1.99, Revision 2, respectively, The curves in these figures can be used to provide guidance to evaluate fuel reload options in relation to the NRC RTPTS Screening Criterion for PTS,           if this would ever become necessary. That is, RTPTS values can be readily projected for any options under consideration, provided that fluence is known.
il11@/031290:10                                  2-6
 
~ 0 Ll fl C
ID NIT 1 GIE 1 NTEfSKD1ATE SHELL 0    CL ID 5
ID
          ~e Cl
    ~
hQl n
    ~
ao 0
n0    lQ 0 CL C I0 wo h rt' X7 ID
                ~o h      O o
05    CXl ID Ol Cll ID    ID ID u3 0
CA Cl
 
TABLE 2-1~ ~
D. C. UNIT 1 REACTOR VESSEL BELTLINE REGION MATERIAL PROPERTIES Plate      Cu    Ni        Initial Component                                      No.     (Wtl.) (Wtl.)     RTNDT('F)
Intermediate Shell Plate                      84406-1     .12     .52 Intermediate Shell Plate                      B4406-2     .15     .50          33 Intermediate Shell Plate                      B4406-3     ,15     .49          40 Lower Shell Plate                              84407-1     .14     .55          28 Lower Shel          1 Plate                    B4407-2     .12     .59         -12 Lower Shell Plate                              B4407-3     .14     .50          38 Longitudinal fields                                        .28     .74         -56 Circumferential fields                                    .28     .74         -56 il 1 1 s/0311SO;10 2-8
 
TABLE 2-2~ ~
 
==SUMMARY==
OF FLUENCE (E > 1.0 MeV) VALUES USED FOR THE EVALUATION OF RTP TS 23              32 Component                                    EFPY              EFPY Intermediate Shell Plate, 84406-1            1,05              1.41 Intermediate Shell Plate, 84406-2            1.05              1.41 Intermediate Shell Plate, 84406-3            1.05              1.41 Lower Shell Plate, 84407-1                    1.05              1.41 Lower Shell Plate, 84407-2                    1.05              1.41 Lower Shell Plate, 84407-3                    1.05              1.41 Longitudinal  Weld                          0.714            0.95 Circumferential    Weld                        1.05              1.41 Fluences are in 10 19 n/cm   (E > 1.0 MeV) 4131 s/032790:10 2-9
 
TABLE 2-3 RTp TS VALUES PER PTS RULE FOR 0 ~ C ~   COOK UNIT  1 RTPTS Values  ('F)
SCREENING Location                  Vessel Material              23      EFPY        32 EFPY      CRITERIA Intermediate shell                          122              128            270 plate B4406-1 2      Intermediate shell                          169              176            270 plate  B4406-2 3      Intermediate shell                          175              183          270 plate B4406-3 Lower  shell plate                          160              167            270 B4407-1 Lower  shell plate                        108                114            270 B4407-2 6      Lower  shell plate                        167                174            270 B4407-3 7        Most  Limiting                              180                195            270 Longitudinal weld Circumferential weld                        200                              300 41 I I sx001700: TO 2-10
 
TABLE 2-4 RTP TS VALUES PER REGULATORY GUIDE  1  99  REVISION 2 FOR  D. C. COOK UNIT  1 RTPTS Values  ('F)
SCREENING Location                Vessel Material                23 EFPY        32 EFPY      CRITEREA 1    Intermediate shell                          121            128            270 plate  84406-1, 2      Intermediate shell                          173          182              270 plate  B4406-2 Intermediate shell                        179            188            270 plate B4406-3 4    Lower  shell plate                          161            169            270 84407-1 5    Lower  shell plate                          106            113            270 B4407-2 6      Lower  shell plate                          169            177            270 84407-3 Most  Limiting                            199            215              270 Longitudinal weld 8      Circumferential weld                      221            238              300 4111slO'322SO:10
 
280 270 260 250 240 TELOS 230 220 210 200 190                                                                      +84406-3
                                                                                            ~+84406-2 180                                                                      ~84407-3 170                                                                        84407-1 160 a 150 140                                                                      <84406-1 130 4 84407-2 120 110 100 90 sa 70 Q1    03      05      Q7      09      11      13      15    17  19 Fluence (x 10E19)  n/cm 2 Figure 2-2.         vs. Fluence per  PTS  Rule - Cook Unit 1 RTPTS ilI ls/07llQO.IO
 
280 270 260 TELOS 250 240 230 220 21Q 20Q 84406-3 19a                                                                        84406-2 180                                                                        84407-3 84407-1 170 160 150 140 0-84406-1 13Q 12Q                                                                      ~84407-2 11Q 100 90 80 7Q al    Q3      05    07      09      11    13  15      17    19 Fluence (x 10619) n/cm 2 Figure 2-3. RTpT> vs. Fluence per Regulatory Guide 1.99, Revision  2  Cook Unit  1 4111s/031290 10
 
SECTION 3 REFERENCES
[1] "Analysis of Potential Pressurized      Thermal Shock Events," 10 CFR part 50, Final Rule, July 23, 1985.
[2] Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U.S. Nuclear Regulatory Commission, May, 1988.
[3]   NRC    Generic letter 88-11, "NRC Position on Radiation Embrittlement of Reactor Vessel Materials and its Impact on Plant Operations", July 12, 1988.
[4]   E. Terek, S, L. Anderson,   L. Albertin, N. K. Ray, "Analysis of Capsule U from the American Electric Power Company D. C. Cook Unit 1 Reactor Vessel Radiation Surveillance Program."
                                            ~ 1
                                                ~
i<llis/031290:l0 3-1
 
a'
  ~ \
SECTION 3 Qe REFERENCES
[1] "Analysis of Potential Pressurized Thermal      Shock  Events," 10 CFR part 50, Final Rule, July 23, 1985.
[2] Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Haterials," U.S. Nuclear Regulatory Commission, May, 1988.
[3]     NRC  Generic letter 88-11, "NRC Position on Radiation Embrittlement of Reactor Vessel Materials and its Impact on Plant Operations", July 12, 1988.
[4]   E. Terek, S. L. Anderson,   L. Albertin, N. K. Ray, "Analysis of Capsule U from the American Electric Power Company D. C. Cook Unit 1 Reactor Vessel Radiation Surveillance Program."
i)ills/03l290:10 3 -1}}

Latest revision as of 11:28, 22 October 2019

DC Cook Unit 1 Reactor Vessel Rt PTS Evaluations.
ML17334B426
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 03/31/1990
From: Chicotts J, Meyer T, Ray N
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17329A566 List:
References
NUDOCS 9207280271
Download: ML17334B426 (21)


Text

APPROVED "IN GENERAL" MECHANICAL ENGINEERING DIVISION AMERICAN ELECTRIC POWER SERVICE CORP-PER DATES C PP4'.

C. COOK UNIT 1 REACTOR VESSEL RTPTS EVALUATIONS gy~<3nenF ~5 J. M. Chicotts N. K. Ray MARCH 1990 work performed under Shop Order No. AOZP-108 Approved:

T. A. Meyer, M ager Structural Materials and Reliability Technology Prepared by Mestinghouse Electric Corporation for the American Electric Power Company REST INGHOUSE ELECTRIC CORPORATION Nuclear and Advanced Technology Oivision P.O. 8ox 2728 Pittsburgh, Pennsylvania 15230

( 920728027i 920713 PDR ADOCN 050003i5 4111si031290:10 P PDR

TABLE OF CONTENTS Section Title ~Pa e TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES

SUMMARY

OF RESULTS PRESSURIZED THERMAL SHOCK 2-1 The Pressurized Thermal Shock Rule 2-1 2-2 Methods for Calculation of 2-3 RTPTS 2-3 Determination of RTPTS Values for All Beltline Region Materials 2-5 2-4 Status of Reactor Vessel integrity in Terms of RTP TS Versus Fluence Resul ts 2-6 REFERENCES 3-1 et T Eel031290:10

LIST OF TABLES Table Title ~Pa e 2-1 0, C. Cook Unit 1 Reactor Vessel Beltline Region Material Properties 2-8 2-2 Summary of Fluence (E > 1.0 MeV) 2-9 Used for the Evaluation of RTPTS 2-3 RTP TS Va1 ues Per PTS Rul e for 0 ~ C ~ Cook Uni t 1 2"10 RTPTS Values Per Regulatory Guide 1.99, Revi sion 2 for 0. C. Cook Unit 1 2-11 4I I I el03 I 290: IO 11

j LIST OF FIGURES

~Fi ere Ti tie ~Pa e 2-1 Identification"and-Location of Heltline Region Material for the..D.. C. Cook Unit 1 Reactor Vessel 2-7 2-2 RTPTS vs ~ Fluence per PTS Rule - Cook Uni t 1, 2-11 2-3 RT>>~ vs. Fluence per Regulatory Guide 1.99, Rekilion 2, Cook Unit 1, 2"12 i111sl031290:10

SECT10N 1

SUMMARY

OF RESULTS The Pressurized thermal shock evaluations were performed for D. C. Cook Unit 1 Reactor Vessel Belt line region materials and resulted the following conclusion:

o Using PTS rule:

The limiting material is found to be the circumferential weld (Table 2-3). RTPTS values are 200'F and 216'F for life up to 23 and 32 EFPY respectively. These values are below the screening criteria of 300'F for circumferential weld.

o Using Regulatory Guide 1.99, Revision 2 The limiting material is found to be the circumferential weld (Table 2-4). RTPTS values are 221'F and 238 F for life up to 23 and 32 EFPY respectively. These values are below the screening criteria of 300'F for circumferential weld.

ll le/0312QO:lO 1

SECTION 2 PRESSURIZED THERMAL SHOCK 2-1. THE PRESSURIZED THERMAL SHOCK RULE The Pressurized Thermal Shock (PTS) Rule I:1] was approved by the U.S. Nuclear Regulatory Commissioners on June 20, 1985, and appeared in the Federal Register on July 23, 1985. The date that the Rule was published in the Federal Register is the date that the Rule became a regulatory requirement.

1 The Rule outlines regulations to address the potential for PTS events on pressurized water reactor (PHR) vessels in nuclear power plants that are operated with a license from the United States Nuclear Regulatory Commission (USNRC). PTS events have been shown from operating experience to be transients that result in a rapid and severe cooldown in the primary system coincident with a high or increasing primary system pressure. The PTS concern arises if one of these transients acts on the beltline region of a reactor

~ ~

vessel where a reduced fracture resistance exists because of neutron irradiation. Such an event may produce the propagation of fTaws postulated to

~ ~ ~

exist near the inner wall surface, thereby potent'ially affecting the integrity of the vessel.

The Rule establishes the following requirements for all domestic, operating PMRs:

  • The RT~7~ (measure of fracture resistance) Screening Criterion for the reh0'tor vessel beltline region is 270'F for plates, forgings, axial welds 300'F for circumferential weld materials 4111@/031290;10 2-1

6 Months From Oate of Rule: All plants submitted their present RT>>~ values (per the prescribed methodology) and projected RT>>~

values at the expiration date of the operating license. The dat4 that this submittal had to be received by the NRC for plants with operating licenses was January 23, 1986.

9 Months From Oate of Rule: Plants projected to exceed the PTS Screening Criterion had to submit an analysis and a schedule for implementation of such flux reduction programs as are reasonably practicable to avoid reaching the Screening Criterion. The date for this submittal had to be received by the NRC for plants with'operating licenses by April 23, 1986.

  • Plant-specific PTS safety analyses are required before a plant is within 3 years of reaching the Screening Criterion, including analyses of alternat,ives to minimize the PTS concern.
  • NRC approval for operation beyond the Screening Criterion is required.

For applicants of operating licenses, values of the projected RTpTS are to be provided in the Final Safety Analysis Report. This requirement is added as part of 10CFR Part 50.34.

0 In the Rule, the NRC provides guidance regarding the calculation of the toughness state of the reactor vessel materials - the "reference temperature for nil-ductility transition" (RTNOT). For purposes of the Rule, RTNOT is now defined as "the reference temperature for pressurized thermal shock" (RTPTS) and calculated as prescribed by 10 CFR 50.61(b) of the Rule. Each USNRC licensed PMR was required to submit a projection of RTpTS values from the time of the submittal to the license expiration date. This assessment was required to be submitted within 6 months after the effective date of the Rule, on January 23, 1986, with updates whenever changes occur affecting projected values. The calculation must be made for each weld and plate, or forging, in the reactor vessel beltline.

'411 1 s>031290:10 2-2

Calculations were carried out using the latest plant specific material

~ ~

properties in accordance with both the current PTS rule I:1l and Regulatory

~

~ ~ ~

Guide 1.99-Revision 2 ~

, which was recently issued as the latest regulatory method for predicting irradiation embrittlement of reactor vessel materials.

The NRC plans to incorporate Revision 2 of Regulatory Guide 1.99 into the PTS rule without changing the PTS screening criteria per NRC Generic Letter 88-11 [3l . The RTPTS results for all Cook, Unit 1 reactor vessel beltline region materials are presented following a description of these two regulatory cal culational methodologies.

2 2 METHODS FOR CALCULATION OF RTPTS 2-2.1 PTS Rule Methodolo ln the PTS Rule, the NRC Staff has selected a conservative and uniform method for determining plant-specific values of RTPTS at a given time.

The prescribed equations in the PTS rule for calculating RTPTS are actually one of several ways to calculate RTNOT. For the purpose of comparison with the Screening Criterion, the value of RTPTS for the reactor vessel must be calculated for each weld and plate, or forging in the beltline region as given below. For each material, RTPTS is the lower of the results given by Equations 1 and 2.

Equation 1:

RTp TS I + M + [ 10 + 470(Cu) + 350(Cu) (Nl ) ] f Equation 2:

RT = I + M + 283 f0'194 (2)

PTS 4111giOQ ~ %0.10 2-3

where I = the initial reference transition temperature of the unirradiated material measured as defined in the ASHE Code, NS-331, If a measured value is not available, the following generic mean values must be used: O'F for welds made with Linde 80 flux, and -56'F for welds made with Linde 0091, 1092 and 124 and ARCOS 8-5 weld fluxes.

H = the margin to be added to cover uncertainties in the values of initial RTNp T copper and ni eke 1 content, f 1 uence, and ca 1 cul ati on procedures ~ In Equation 1, M=48'F if a measured value of I was used, and M=59'F if the generic mean value of I was used. In Equation 2, M=O'F if a measured value of I was used, and M=34'F if the generic mean value of I was used.

Cu and Ni = the best estimate weight percent of copper and nickel in the material.

f = the maximum neutron fluence, in units of 10 19 n/cm 2 (E greater than or equal to 1 MeV), at the clad-base-metal interface on the inside surface of the vessel at the location where the material in question receives the highest fluence for the period of service in question.

Note that the chemistry values given in equations 1 and 2 are best estimate mean values. The margin, M, increases the RTPTS values to be upper bound predictions. Thus, the mean material chemistry values are to be used when available so as not to compound conservatism.

2-2.2 Reoulator Guide 1.99 Revision 2 Hethodolo Revision 2 l2] to Regulatory Guide 1.99 was issued in May 1988. The Adjusted Reference Temperature (ART), based on the methods of Regulatory Guide 1.99 Revision 2, can be compactly described by the sequence of equations listed below:

4'Ills>071290;>0 2-4

ART = Initial RTNpy

+ ARTNDT + Margin (3)

= (CF]F(0.28

- 0.10 LOG f) dRT NDT w ere, (4) f = Neutron fluence, n/cm (E > 1 MeV), divided by 10 CF = Chemistry factor from tables for welds and for base metal (plates and forgings) (if no data use 0.35% Cu and 1.0% Ni)

Margin = 2

[ol 2 + a< ] 'here, (5) aI standard deviation of initial RTNpy If the initial RTNpy is measur ed, oI i s to be estimated fr om the precision of the test method; otherwise, aI is obtained from the same set of data that is used to get initial RTNpy

.o< = Standard deviation of LRTNDT, 28'F for welds and 17'F for base metal

[a> need not exceed 1/2 times ARTNDT surface]

The value of ART will be assumed to be the RTPTS value for use with the PTS rule.

2 3 DETERMINATION OF RTp TS. VALUES FOR ALL BELTLINE REG ION MATERIALS For the RTPTS calculation, the best estimate copper and nickel chemical composition of the reactor vessel beltline material is necessary.

The beltline region is de'fined by the Rule ] to be "the region of the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to

~

experience sufficient neutron irradiation damage to be considered in the

~ ~ ~ ~ ~ ~ ~

selection of the most limiting material with regard to radiation damage."

~ ~ ~ ~ ~

~

Figure 2-1 identifies the location of all beltline region materials for the

~ ~ ~ ~ ~ ~

reactor vessel.

t I 1 s/all 200: l 0 1

2-5

A summary of the pertinent chemical and mechanical properties of the beltline region plate and weld materials and the initial RTNDT values of the Cook Unit 1 reactor vessel are reproduced in Table 2-1 (Reference 4, Table A-l).

Also a summary of fluence (E > 1.0 MeV) values used for the evaluation of RTP TS is provided in Table 2-2 (Reference 4, Table 6-14) .

Using the methodology prescribed before and the material properties 'discussed in this section, the RTPTS values for D. C. Cook Unit L can be determined.

2 4 STATUS OF REACTOR VESSEL INTEGRITY IN TERMS OF RTpTS VERSUS FLUENCE RESULTS Using the prescribed PTS Rule methodology, RTPTS values were generated for all beltline region materials of the D. C. Cook Unit 1 reactor vessel as a function of pertinent vessel lifetimes. The tabulated results from this

~

evaluation are presented in Table 2-3 and 2-4 for all beltline region materials.

~

~

Figures 2-2 and 2-3 present the RTPTS versus fluence for the beltline .

material of the Cook Unit 1 vessel using PTS rule and Regulatory Guide 1.99, Revision 2, respectively, The curves in these figures can be used to provide guidance to evaluate fuel reload options in relation to the NRC RTPTS Screening Criterion for PTS, if this would ever become necessary. That is, RTPTS values can be readily projected for any options under consideration, provided that fluence is known.

il11@/031290:10 2-6

~ 0 Ll fl C

ID NIT 1 GIE 1 NTEfSKD1ATE SHELL 0 CL ID 5

ID

~e Cl

~

hQl n

~

ao 0

n0 lQ 0 CL C I0 wo h rt' X7 ID

~o h O o

05 CXl ID Ol Cll ID ID ID u3 0

CA Cl

TABLE 2-1~ ~

D. C. UNIT 1 REACTOR VESSEL BELTLINE REGION MATERIAL PROPERTIES Plate Cu Ni Initial Component No. (Wtl.) (Wtl.) RTNDT('F)

Intermediate Shell Plate 84406-1 .12 .52 Intermediate Shell Plate B4406-2 .15 .50 33 Intermediate Shell Plate B4406-3 ,15 .49 40 Lower Shell Plate 84407-1 .14 .55 28 Lower Shel 1 Plate B4407-2 .12 .59 -12 Lower Shell Plate B4407-3 .14 .50 38 Longitudinal fields .28 .74 -56 Circumferential fields .28 .74 -56 il 1 1 s/0311SO;10 2-8

TABLE 2-2~ ~

SUMMARY

OF FLUENCE (E > 1.0 MeV) VALUES USED FOR THE EVALUATION OF RTP TS 23 32 Component EFPY EFPY Intermediate Shell Plate, 84406-1 1,05 1.41 Intermediate Shell Plate, 84406-2 1.05 1.41 Intermediate Shell Plate, 84406-3 1.05 1.41 Lower Shell Plate, 84407-1 1.05 1.41 Lower Shell Plate, 84407-2 1.05 1.41 Lower Shell Plate, 84407-3 1.05 1.41 Longitudinal Weld 0.714 0.95 Circumferential Weld 1.05 1.41 Fluences are in 10 19 n/cm (E > 1.0 MeV) 4131 s/032790:10 2-9

TABLE 2-3 RTp TS VALUES PER PTS RULE FOR 0 ~ C ~ COOK UNIT 1 RTPTS Values ('F)

SCREENING Location Vessel Material 23 EFPY 32 EFPY CRITERIA Intermediate shell 122 128 270 plate B4406-1 2 Intermediate shell 169 176 270 plate B4406-2 3 Intermediate shell 175 183 270 plate B4406-3 Lower shell plate 160 167 270 B4407-1 Lower shell plate 108 114 270 B4407-2 6 Lower shell plate 167 174 270 B4407-3 7 Most Limiting 180 195 270 Longitudinal weld Circumferential weld 200 300 41 I I sx001700: TO 2-10

TABLE 2-4 RTP TS VALUES PER REGULATORY GUIDE 1 99 REVISION 2 FOR D. C. COOK UNIT 1 RTPTS Values ('F)

SCREENING Location Vessel Material 23 EFPY 32 EFPY CRITEREA 1 Intermediate shell 121 128 270 plate 84406-1, 2 Intermediate shell 173 182 270 plate B4406-2 Intermediate shell 179 188 270 plate B4406-3 4 Lower shell plate 161 169 270 84407-1 5 Lower shell plate 106 113 270 B4407-2 6 Lower shell plate 169 177 270 84407-3 Most Limiting 199 215 270 Longitudinal weld 8 Circumferential weld 221 238 300 4111slO'322SO:10

280 270 260 250 240 TELOS 230 220 210 200 190 +84406-3

~+84406-2 180 ~84407-3 170 84407-1 160 a 150 140 <84406-1 130 4 84407-2 120 110 100 90 sa 70 Q1 03 05 Q7 09 11 13 15 17 19 Fluence (x 10E19) n/cm 2 Figure 2-2. vs. Fluence per PTS Rule - Cook Unit 1 RTPTS ilI ls/07llQO.IO

280 270 260 TELOS 250 240 230 220 21Q 20Q 84406-3 19a 84406-2 180 84407-3 84407-1 170 160 150 140 0-84406-1 13Q 12Q ~84407-2 11Q 100 90 80 7Q al Q3 05 07 09 11 13 15 17 19 Fluence (x 10619) n/cm 2 Figure 2-3. RTpT> vs. Fluence per Regulatory Guide 1.99, Revision 2 Cook Unit 1 4111s/031290 10

SECTION 3 REFERENCES

[1] "Analysis of Potential Pressurized Thermal Shock Events," 10 CFR part 50, Final Rule, July 23, 1985.

[2] Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U.S. Nuclear Regulatory Commission, May, 1988.

[3] NRC Generic letter 88-11, "NRC Position on Radiation Embrittlement of Reactor Vessel Materials and its Impact on Plant Operations", July 12, 1988.

[4] E. Terek, S, L. Anderson, L. Albertin, N. K. Ray, "Analysis of Capsule U from the American Electric Power Company D. C. Cook Unit 1 Reactor Vessel Radiation Surveillance Program."

~ 1

~

i<llis/031290:l0 3-1

a'

~ \

SECTION 3 Qe REFERENCES

[1] "Analysis of Potential Pressurized Thermal Shock Events," 10 CFR part 50, Final Rule, July 23, 1985.

[2] Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Haterials," U.S. Nuclear Regulatory Commission, May, 1988.

[3] NRC Generic letter 88-11, "NRC Position on Radiation Embrittlement of Reactor Vessel Materials and its Impact on Plant Operations", July 12, 1988.

[4] E. Terek, S. L. Anderson, L. Albertin, N. K. Ray, "Analysis of Capsule U from the American Electric Power Company D. C. Cook Unit 1 Reactor Vessel Radiation Surveillance Program."

i)ills/03l290:10 3 -1