ML17326A883: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(5 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:SMA.8OC129-1 SECTION 1 EVALUATION OF D.C.COOK CONTAINMEiNT TO OETERMINE LIMITING INT""RNiAL UNIFORM PRESSURE CAPACITY Prepared for: american Electric Power Co.2 Broadway New York, N.Y.10004 16 March 1981 Prepared by: Structural Mechanics Associates 3645'i(arrensville Center Rd.Cleveland, Ohio 44122 (216)991-8841 TABLE OF COilTEl<TS
{{#Wiki_filter:SMA. 8OC129-1 SECTION 1 EVALUATION OF D.C. COOK CONTAINMEiNT TO OETERMINE LIMITING INT""RNiAL UNIFORM PRESSURE   CAPACITY Prepared for:
american   Electric Power Co.
2 Broadway New   York, N.Y. 10004 16 March 1981 Prepared by:
Structural Mechanics Associates 3645 'i(arrensville Center Rd.
Cleveland, Ohio 44122 (216) 991-8841


==1.0 Introduction==
TABLE OF COilTEl<TS 1.0 Introduction


===1.1 Purpose===
==1.1 Purpose and Scope==
and Scope of Report 1.2 Evaluation Criteria 1.3 Containment Description and Design Basis 1.4 Material Properties
of Report 1.2 Evaluation Criteria 1.3 Containment Description   and Design Basis 1.4 Material Properties 2.0 Identification of Limiting Failure i~iodes Associated with Uniform Static Internal Pressure 3.0 Potential Failure Mode Analysis 3.1 Shear Failure in Base Hat 3.2 blembrane Hoop Tension Failure of Concrete Cylinder 3.3 Pressure Capacity of Equipment Hatch Closure 3.3.1 Splice Plate Homent Capacity 3.3.1.1 Hand Calculation 3.3.1.2 Finite Element Analysis 3.3.2 Equipment Hatch Cover Plate Pressure Capacity 3.4 Pressure Capacity of Personnel Hatch 3.4.1 End Plate Closure 3.4.2 Door 4.0 Summary and  Conclusions
: 1. 0 INTRODUCTION PURPOSE  AND SCOPE  OF REPORT-The object of this report is to determine a best estimate of the  limiting uniform equivalent static internal pressure capacity of the containment structures for the O.C. Cook Nuclear Generating Units No. 1 and 2. The evaluation reported is limited to the reinforced concrete base mat, the reinforced concrete right circular cylinder and hemispherical dome as well as major containment penetrations including the equipment and personnel hatches. This report completes Phase I of a three phase effort which will include as Phase II an upper and lower bound estimate of the internal uniform equivalent static pressure capacity of the "as built" containment structures and Phase III which will consider potential time dependent localized non-uniform pressure load  effects.
1.2  EVALUATION CRITERIA The  evaluation to determining the limiting best estimate uniform  static pressure capacity of the containment structures is based on a linear elastic analysis of critical por tions of the structure up to stress levels limited by "as built" mean value samples of the yield in steel and ultimate strength of the concrete. It should be understood that the structural and leak tight integrity of a steel lined concrete containment shell and slab structure should be maintained well beyond actual yield of the steel reinforcement. This is due primarily to the relative high ductility of the steel liner, (ie. 20-23 percent uniform ultimate strain at rupture    ) compared to .the 40 ksi steel reinforcement (ie. 8-11 percent uniform ultimate strain at rupture) and strain hardening in the reinforcement. Hence the liner in general ~ould be able to accomodate relatively large nonlinear deformation of the concrete structure before significant leakage would occur. However, since deformations beyond the yield range are difficult to predict and localiz d deformations in the structure can significantly exceed those calculated globally, the limiting internal pressure has been determined conservatively considering only assumed elastic response up to the initial yield of the materials used.
It  is the author's opinion based on the observed results of model  tests that significant leakage (> 1.0 p rcent of containment volume) of the containment would not occur until oressures exceeded the limiting oressures calculated in this study by at least 20 percent. Assuming a composite coefficient of variation of 10 percent and a log normal distribution of material properties the probability of significant leakage at the pressure level defined in this study would      be  approximately 0.01. The probability of significant      leakage and upper and lower bounds on pressure  will be  evaluated  in more detail in Phase  II.


==2.0 Identification==
CONTAIililENT OESCRIPTIOH Atl0 DESIGN BASIS The  reactor containment structure is  a  reinforced concrete vertical cylinder with    a flat base and a hemispherical dome as shown in Ficure 1: A ductile welded steel liner with a thickness of 1/4-inch on the containment base and. 3/8-inch'on the Cylinder    is stud attached to the inside face of the concrete shell to insure a high degree of leak-tightness. The design objective of the containment structure is to contain all radioactive material which might be released from the reactor coolant system following a postulated loss of coolant accident. The structure serves as both a biological shield and a pressure container.
of Limiting Failure i~iodes Associated with Uniform Static Internal Pressure 3.0 Potential Failure Mode Analysis 3.1 Shear Failure in Base Hat 3.2 blembrane Hoop Tension Failure of Concrete Cylinder 3.3 Pressure Capacity of Equipment Hatch Closure 3.3.1 Splice Plate Homent Capacity 3.3.1.1 Hand Calculation 3.3.1.2 Finite Element Analysis 3.3.2 Equipment Hatch Cover Plate Pressure Capacity 3.4 Pressure Capacity of Personnel Hatch 3.4.1 End Plate Closure 3.4.2 Door 4.0 Summary and Conclusions
The  structure consists of side walls measuring 113-feet from the  liner  on the base to the springline of the dome, and has an inside diameter of 115-feet. The side wall thickness of the cylinder at tne base is 4.5 ft. tapering to 3 .5 ft., seven feet above the base mat and continuing at 3.5 ft. to the springline.
The reinforced concrete thickness of the dome varies uniformly from 3.5 ft. at the springline to 2.5 ft at the apex of the dome.
The inside radius of the dome is equal to the inside radius of the cylinder. The flat concrete base mat is 10-ft. thick with an outside diameter, of 140'-0" and with the bottom liner plate 1/4" thick located on top of this mat. The botto~ liner plate is covered with a 2-ft. structural slab of concrete which serves to carry internal equipment loads and forms the floor of the containment. The base mat is supported directly by relatively stiff soil.
The basic structural elements considered in the design of the containment structure is the base slab, side walls and dome acting as one structure under all loading conditions.       The liner is anchored to the concrete shell walls by means of stud anchors so that  it  forms an integral part of the entire composite structure under all membrane loadings. The reinforcing in the structure has an elastic response to all primary design loads.
The base mat is 10'-0" thick and 140'-0" in diameter.       The reinforcement in the top of the base slab consists primarily of one layer of 818S bars at 12" c/c in the hoop and 2 layers of 58S bars at 9" c/c in 'the radial directions. The bottom reinforcement consists of 2 layers of 818S bars at 12" c/c in the hoop and 3 layers of alternate 818S and 811 bars at 9" c/c in the radial directions. The base slab was poured in two five foot lifts which are tied together in order to transmit horizontal shear induced by bending moments by shear keys and vertical All bars at 6'-0" c/c spacing.


==1.0 INTRODUCTION==
The membrane hoop (horizontal) reinforcement in the cyclinder walls is generally in two rows, one on each face consisting of N18S at 18" c/c circumferentially extending to 20'bove the base mat reduced to 9" c/c spacing between 20'nd 57'bove the base and then increased to 12" c/c spacing between 57'nd above the base mat.                        113'springline)
The membrane meridional, (vertical) reinforcement in the containment shell consists primarily of two layers one on each face of 818S bars on 18" c/c. In the region of discontinuity base mat the amount of vertical reinforcement is doubled to 4 at'he layers of ~18 bars at 1S" c/c and at the cylinder dome intersection one vertical staggerd row of 411 bars at 18" c/c is added to the existing membrane vertical reinforcement to provide discontinuity bending    moment resistance.
In addition to the vertical and horizontal membrane and bending reinforcing steel, in plane diagonal reinforcement has been provided to carry seismically induced membrane shear.                The 45 degree diagonal bars consist of 811 bars spaced 3'-0" on the horizontal c/c placed in two rows in each face and in each direction. The diagonal reinforcement is embedded in and extends from the base mat to 4-3" above the springline into the dome for alternate bars and 7'-0" for the rest of the diagonals.
The dome  reinforcement consists of 818 bars at 18" c/c in each face  in each direction.
The containment structure encloses an ice condenser containment system which is designed to limit pressurization o the containment under design basis accident conditions to 12.0 psi. Other significant design load parameters are the equivalent safe shutdown earthquake loading of 0.2g zero period ground acceleration and a design basis tornado of 360 mph. wind and and 3.0 psi differential pressure.      Hot process pipe penetrating the containment are anchored in the containment shell with the anchors designed to resist the postulated rupture of the process line without loss of containment leak tight integrity.
A load factor of 1.5 (additional safety factor) is used with the internal pressure component of design load while a load factor of 1.0 is used with both the SSE and Tornado loading.
!)ATERIAL PROPERTIES The particular specified  minimum  materials properties            used      in the construction of the containments are summarized as follows:
(a)  concrete  fc =   3,500 psi at 28 day (ACI  308-63, 301,66, and 214-65)
(b)  reinforcing rod - fy    = 40,000 psi (ASTN  A 15)


PURPOSE AND SCOPE OF REPORT-The object of this report is to determine a best estimate of the limiting uniform equivalent static internal pressure capacity of the containment structures for the O.C.Cook Nuclear Generating Units No.1 and 2.The evaluation reported is limited to the reinforced concrete base mat, the reinforced concrete right circular cylinder and hemispherical dome as well as major containment penetrations including the equipment and personnel hatches.This report completes Phase I of a three phase effort which will include as Phase II an upper and lower bound estimate of the internal uniform equivalent static pressure capacity of the"as built" containment structures and Phase III which will consider potential time dependent localized non-uniform pressure load effects.1.2 EVALUATION CRITERIA The evaluation to determining the limiting best estimate uniform static pressure capacity of the containment structures is based on a linear elastic analysis of critical por tions of the structure up to stress levels limited by"as built" mean value samples of the yield in steel and ultimate strength of the concrete.It should be understood that the structural and leak tight integrity of a steel lined concrete containment shell and slab structure should be maintained well beyond actual yield of the steel reinforcement.
(c)  liner plate    =-  fy = 32,000  psi; fu  = 60,000  psi (ASTtl SA 442-Gr.60)
This is due primarily to the relative high ductility of the steel liner, (ie.20-23 percent uniform ultimate strain at rupture)compared to.the 40 ksi steel reinforcement (ie.8-11 percent uniform ultimate strain at rupture)and strain hardening in the reinforcement.
(d)  equipment hatch  fy = 38,000        psi; fu.= 70,000 psi (ASTH SA    516-Gr.70)
Hence the liner in general~ould be able to accomodate relatively large nonlinear deformation of the concrete structure before significant leakage would occur.However, since deformations beyond the yield range are difficult to predict and localiz d deformations in the structure can significantly exceed those calculated globally, the limiting internal pressure has been determined conservatively considering only assumed elastic response up to the initial yield of the materials used.It is the author's opinion based on the observed results of model tests that significant leakage (>1.0 p rcent of containment volume)of the containment would not occur until oressures exceeded the limiting oressures calculated in this study by at least 20 percent.Assuming a composite coefficient of variation of 10 percent and a log normal distribution of material properties the probability of significant leakage at the pressure level defined in this study would be approximately 0.01.The probability of significant leakage and upper and lower bounds on pressure will be evaluated in more detail in Phase II.
(e)  personnel    hatch  fy    =  38,000  psi; fu  =  70,000 psi (ASTt< SA  516-Gr.60)
CONTAIililENT OESCRIPTIOH Atl0 DESIGN BASIS The reactor containment structure is a reinforced concrete vertical cylinder with a flat base and a hemispherical dome as shown in Ficure 1: A ductile welded steel liner with a thickness of 1/4-inch on the containment base and.3/8-inch'on the Cylinder is stud attached to the inside face of the concrete shell to insure a high degree of leak-tightness.
(f)  hatch bolts    - fy  = 105,000  psi; fu  = 125,000 psi (ASTH SA    193-6r.87)
The design objective of the containment structure is to contain all radioactive material which might be released from the reactor coolant system following a postulated loss of coolant accident.The structure serves as both a biological shield and a pressure container.
In Table 1 can be found a summary of the "as built" strengths as  well as a measure of the dispersior. associated with the materials used in the containment construction, based on a limited sample of existing test record data.            As part of Phase II of this evaluation a more detailed evaluation of "as built" material property data will be developed.
The structure consists of side walls measuring 113-feet from the liner on the base to the springline of the dome, and has an inside diameter of 115-feet.The side wall thickness of the cylinder at tne base is 4.5 ft.tapering to 3.5 ft., seven feet above the base mat and continuing at 3.5 ft.to the springline.
2.0 IDENTIFICATION OF LItiITING FAILURE NODES ASSOCIATED MITH UNIFORi~l  TATIC N RNAL P E U In selecting the potential limiting failure modes associated with equivalent static uniform internal over pressurization of a PPR reinforced concrete ice containment a number of existing analyses have been reviewed'. These include the following references:
The reinforced concrete thickness of the dome varies uniformly from 3.5 ft.at the springline to 2.5 ft at the apex of the dome.The inside radius of the dome is equal to the inside radius of the cylinder.The flat concrete base mat is 10-ft.thick with an outside diameter, of 140'-0" and with the bottom liner plate 1/4" thick located on top of this mat.The botto~liner plate is covered with a 2-ft.structural slab of concrete which serves to carry internal equipment loads and forms the floor of the containment.
Harstead, G.A. "D.C. Cook Nuclear Power Plant, American Electric Power, Estimate of Ultimate Pressure Capacity of Containment Structure", Harstead Engineering Associates, Report prepared for the NRC Staff,   September,   1980. (See Attachment A)
The base mat is supported directly by relatively stiff soil.The basic structural elements considered in the design of the containment structure is the base slab, side walls and dome acting as one structure under all loading conditions.
(2)   Von Riesemann,    M.A. et.al. "Structural    Response of Indian Point    2 and 3 Containment      Oui ldings"  Summary  of Draft Report. results presented  to !IRC  Staff,  Technology-Exchange    t~eeting 5, 17 June 1980.
The liner is anchored to the concrete shell walls by means of stud anchors so that it forms an integral part of the entire composite structure under all membrane loadings.The reinforcing in the structure has an elastic response to all primary design loads.The base mat is 10'-0" thick and 140'-0" in diameter.The reinforcement in the top of the base slab consists primarily of one layer of 818S bars at 12" c/c in the hoop and 2 layers of 58S bars at 9" c/c in'the radial directions.
(3)  United Engineers and Constructors "Evaluation of Capability of Indian Point Containment Vessels Units 2 and 3" presented to NRC Staff, Technology Exchange ileeting 5, 17 June 1980.
The bottom reinforcement consists of 2 layers of 818S bars at 12" c/c in the hoop and 3 layers of alternate 818S and 811 bars at 9" c/c in the radial directions.
(4)  American    Electric    Power Service Corp., "D.C. Containment        Design Calculations,    AEP, 1969.
The base slab was poured in two five foot lifts which are tied together in order to transmit horizontal shear induced by bending moments by shear keys and vertical All bars at 6'-0" c/c spacing.  
(5)  S. 3arnes et.al. Indian Point !!uclear Generatin              Unit No. 2 Containment Desi n Repor~, '!estinghouse Nuc ear Energy ystems, United Engineers and Constructors, !larch, 1969.
(6)  Shulman,   J. "Analysis of     TVA Sequoyah    Containment Shell to Determine Response      of a Critical  Panel to Uniform Internal Pressure",    Offshore Power Systems, September, 1980.


The membrane hoop (horizontal) reinforcement in the cyclinder walls is generally in two rows, one on each face consisting of N18S at 18" c/c circumferentially extending to 20'bove the base mat reduced to 9" c/c spacing between 20'nd 57'bove the base and then increased to 12" c/c spacing between 57'nd 113'springline) above the base mat.The membrane meridional, (vertical) reinforcement in the containment shell consists primarily of two layers one on each face of 818S bars on 18" c/c.In the region of discontinuity at'he base mat the amount of vertical reinforcement is doubled to 4 layers of~18 bars at 1S" c/c and at the cylinder dome intersection one vertical staggerd row of 411 bars at 18" c/c is added to the existing membrane vertical reinforcement to provide discontinuity bending moment resistance.
Based on this review the following areas have been identified as potentially limiting the containment capacity to carry uniform internal pressure    load.
In addition to the vertical and horizontal membrane and bending reinforcing steel, in plane diagonal reinforcement has been provided to carry seismically induced membrane shear.The 45 degree diagonal bars consist of 811 bars spaced 3'-0" on the horizontal c/c placed in two rows in each face and in each direction.
(1)   Bending shear in the reinforced concrete containment base mat adjacent to reinforced concrete cylinder walls.
The diagonal reinforcement is embedded in and extends from the base mat to 4-3" above the springline into the dome for alternate bars and 7'-0" for the rest of the diagonals.
(2)   flembrane  tension in hoop direction in the reinforced concrete cylinder adjacent to the       base mat (assuming no rotational or shear restraint by the cylinder).
The dome reinforcement consists of 818 bars at 18" c/c in each face in each direction.
(3)  Bending moment in equipment hatch end        plate.
The containment structure encloses an ice condenser containment system which is designed to limit pressurization o the containment under design basis accident conditions to 12.0 psi.Other significant design load parameters are the equivalent safe shutdown earthquake loading of 0.2g zero period ground acceleration and a design basis tornado of 360 mph.wind and and 3.0 psi differential pressure.Hot process pipe penetrating the containment are anchored in the containment shell with the anchors designed to resist the postulated rupture of the process line without loss of containment leak tight integrity.
(4)  Bending moment in personnel        hatch end plate.
A load factor of 1.5 (additional safety factor)is used with the internal pressure component of design load while a load factor of 1.0 is used with both the SSE and Tornado loading.!)ATERIAL PROPERTIES The particular specified minimum materials properties used in the construction of the containments are summarized as follows: (a)concrete-fc=3,500 psi at 28 day (ACI-308-63, 301,66, and 214-65)(b)reinforcing rod-fy=40,000 psi (ASTN A 15)
3.0     POTENTIAL FAILURE blODE ANALYSIS 3.1  SHEAR FAILURE      IN BASE YAT The program used to determine net shear and tensile forces in the base slab is "GENSHL" which was developed by the Franklin Institute Research Laboratoryof Philadelphia. The program consists of a multi-layered static shell formulation where each shell layer may have different stiffness oroperties and can consider elastic foundation support conditions. This is the same program that was used in the original design and analysis of the base slab for design basis loadings.         A uniform soil reaction distribution is used for dead load plus internal uniform pressure case.
(c)liner plate=-fy=32,000 psi;fu=60,000 psi (ASTtl SA 442-Gr.60)(d)equipment hatch-fy=38,000 psi;fu.=70,000 psi (ASTH SA 516-Gr.70)(e)personnel hatch-fy=38,000 psi;fu=70,000 psi (ASTt<SA 516-Gr.60)(f)hatch bolts-fy=105,000 psi;fu=125,000 psi (ASTH SA 193-6r.87)
Results of the analysis are summarized as follows:
In Table 1 can be found a summary of the"as built" strengths as well as a measure of the dispersior.
: 1.      Specified minimum design strength of concrete at          28 days = 3,500 psi
associated with the materials used in the containment construction, based on a limited sample of existing test record data.As part of Phase II of this evaluation a more detailed evaluation of"as built" material property data will be developed.
: 2.      t<ean Sample  Value at 28 days                                    = 4,950 psi
: 3.      flinimum Sample Value      at  28 days                            = 4,156 psi Foundation Slab:
T = 120  inches d = 114  inches From computer    output  as shown    in Tables  2 and 3 at sections indicated in.
Figure 2:


==2.0 IDENTIFICATION==
Evaluation for lowest measured concrete strength value:
OF LItiITING FAILURE NODES ASSOCIATED MITH UNIFORi~l TATIC N RNAL P E U In selecting the potential limiting failure modes associated with equivalent static uniform internal over pressurization of a PPR reinforced concrete ice containment a number of existing analyses have been reviewed'.
Nxz                Qxs              Comp+
These include the following references:
k/in              k/in              Run Case 12.0 psi, internal pressure                1.898              -  2.948          Soil Par. 1 Assume 49.5 psi, internal pressure                7.829              -12. 160          Soil Par. 1 Oead  Load                                  1.300              0.193          Soil Par. 5 OL  + 49.5 psi pressure                    9.129              -12.353 v =  i~ = 12.353 x 1000        =  108.36 psi where:
Harstead, G.A."D.C.Cook Nuclear Power Plant, American Electric Power, Estimate of Ultimate Pressure Capacity of Containment Structure", Harstead Engineering Associates, Report prepared for the NRC Staff, September, 1980.(See Attachment A)(2)Von Riesemann, M.A.et.al."Structural Response of Indian Point 2 and 3 Containment Oui ldings" Summary of Draft Report.results presented to!IRC Staff, Technology-Exchange t~eeting 5, 17 June 1980.(3)(4)(5)(6)United Engineers and Constructors"Evaluation of Capability of Indian Point Containment Vessels Units 2 and 3" presented to NRC Staff, Technology Exchange ileeting 5, 17 June 1980.American Electric Power Service Corp.,"D.C.Containment Design Calculations, AEP, 1969.S.3arnes et.al.Indian Point!!uclear Generatin Unit No.2 Containment Desi n Repor~,'!estinghouse Nuc ear Energy ystems, United Engineers and Constructors,!larch, 1969.Shulman, J."Analysis of TVA Sequoyah Containment Shell to Determine Response of a Critical Panel to Uniform Internal Pressure", Offshore Power Systems, September, 1980.
Nxi  = membrane  tension in base slab Q  ia  = maximum  vertical shear in         base slab v    = maximum  shear stress      in base slab From AStlE Section III  Oivision          2 and  ACI-359-80 Code    for  Concrete Reactor Yessels and Containments            CC 3421.4.1 r
Based on this review the following areas have been identified as potentially limiting the containment capacity to carry uniform internal pressure load.(1)Bending shear in the reinforced concrete containment base mat adjacent to reinforced concrete cylinder walls.(2)flembrane tension in hoop direction in the reinforced concrete cylinder adjacent to the base mat (assuming no rotational or shear restraint by the cylinder).
I Using lowest measured        mean  value of concrete strength:
(3)Bending moment in equipment hatch end plate.(4)Bending moment in personnel hatch end plate.3.0 POTENTIAL FAILURE blODE ANALYSIS 3.1 SHEAR FAILURE IN BASE YAT The program used to determine net shear and tensile forces in the base slab is"GENSHL" which was developed by the Franklin Institute Research Laboratoryof Philadelphia.
r, vc  2r0    p fc (1  +  I Or002 Nu/Ag j j
The program consists of a multi-layered static shell formulation where each shell layer may have different stiffness oroperties and can consider elastic foundation support conditions.
rc  = 2 0 ~4166 ! 1     +
This is the same program that was used in the original design and analysis of the base slab for design basis loadings.A uniform soil reaction distribution is used for dead load plus internal uniform pressure case.Results of the analysis are summarized as follows: 1.Specified minimum design strength of concrete at 28 days=3,500 psi 2.t<ean Sample Value at 28 days 3.flinimum Sample Value at 28 days Foundation Slab:=4,950 psi=4,156 psi T=120 inches d=114 inches From computer output as shown in Tables 2 and 3 at sections indicated in.Figure 2:
[0 002    -9.129  x 1000  xt 1
flt vc = 2(64.46)[1      -  0.152]  = 103.59 psi Note:  Internal Pressure Capacity wherever noted              as   "Psi" means  "Psig"-
                                                                                              ~gggQgllXCLXt%
                                                                                              ~RX2~ M


Evaluation for lowest measured concrete strength value: Nxz Qxs k/in k/in Comp+Run Case 12.0 psi, internal pressure Assume 49.5 psi, internal pressure Oead Load OL+49.5 psi pressure 1.898 7.829 1.300 9.129-2.948-12.160-0.193-12.353 Soil Par.1 Soil Par.1 Soil Par.5 v=i~=12.353 x 1000=108.36 psi where: Nxi=membrane tension in base slab Q ia=maximum vertical shear in base slab v=maximum shear stress in base slab From AStlE Section III-Oivision 2 and ACI-359-80 Code for Concrete Reactor Yessels and Containments CC 3421.4.1 r I Using lowest measured mean value of concrete strength: vc-2r0 p fc (1+I Or002 Nu/Ag j j r-, rc=2 0~4166!1+[0 002 1-9.129 x 1000 xt fl t vc=2(64.46)[1
Evaluate    for mean  of  measured   concrete strength values Qx.a            Comp.
-0.152]=103.59 psi Note: Internal Pressure Capacity wherever noted as"Psi" means"Psig"-~gggQgllXCLXt%
k/in           k/in           Run Assume 53.8 psi, internal pressure                 8.509          -13.217        Soil Par. 1 Oead    Load                                1.300           0.193         Soil Par. 5 OL +   53.8 psi pressure                   9.809         -13.410 v =   13.410 (10                       vc = 2 74950 )1 + I 0.002   (- 9.809 x 1000~,
~RX2~M Evaluate for mean of measured concrete strength values k/in Qx.a k/in Comp.Run Assume 53.8 psi, internal pressure Oead Load OL+53.8 psi pressure 8.509 1.300 9.809-13.217-0.193-13.410 Soil Par.1 Soil Par.5 v=13.410 (10)1 x 114 v"-117.63 psi vc=2 74950)1+I 0.002 (-9.809 x 1000~, 1 balll vc=2 (70~356)C1-0.1635j vc=117.71 psi In like manner it can be shoNn for a specified minimum concrete strength fc=3500 psi that the internal pressure capacity is 46.4 psi.In this evaluation no credit is taken for the vertical/Ill bar at 6'/c in the base mat nor is any credit taken for shear capacity of the fill slab above the base mat.In table 4 can be found the limiting pressure capacity adjusted for the assumption of minimum specified and minimum sampled material properties as defined in Table 1.In Reference 1 the Hars ead report Pg.5-1-1 identified a failure mode based on the assumed pull out of the vertical membrane steel in the cylinder wall from the base mat as having a containment internal pressure capacity of 46 psi.Tne pull out failure mode capacity of 46 psi internal pressure capacity of the containment was determined ivithout consideration of the radial shear (diagonal tension)capacity of the concrete vihich is permitted by the ACI-359 code even in presence of membran tension.To ignore the shear capacity of the concrete is not in accordance riith normal design nor analysis procedures.
1 x 114
Hence the failure pressure in the concrete containment of 53.8 psi as defined by the calculations performed in this section is limiting.
                    )
3.2 MEHBRA</E HOOP T HSIO'l FAILURE OF COtlCRETE CYLII>OER i~lembrane load due to containment pressurization in the horizontal (hoop)direction P=p R where: P=membrane load in lbs/in of wall p=uniform internal pressure R=mean radius of wall (57.5 x 12=690 inches)Hembrane load capacity of reinforced concrete cylinder at its base neglecting discontinuity moment transfer: Available Reinforcement 1)2 Layers 818 bar hoop reinforcement at 18" c/c=8 in=5.33 in2/ft of wall ft 2)3/8" Liner plate=3/8" x 12=4.50 in2/ft of wall 3)2 Layers 811 bar diagonal reinforcement at 36" c/c considering only those bars acting in tension 2 x 1.56 x~2=1.47 in2/ft of wall 333 ft From Table 1 of this report the mean value of the reinforcement yield=49.8 ksi and liner plate=48.3 ksi P=(5.33 in2 x 49.8 ksi)+(4.50 in2 x 48.3 ksi)+(1.47 in 2 x 49.8 ks i)=265.4 k+217.4 k+73.2 k=556.0 kips/ft=46.33 kips/in From Eq.1 p=46,330 lbs/in=67.1 psi 690>n In Table 4 can be found th limiting pressure capacity adjusted for the assumption of minimum specified and minimum sampled material properties as defined in Table=l.  
balll         1 v "- 117.63    psi                      vc = 2 (70 ~ 356) C1 0.1635j vc = 117.71 psi In like   manner   it can be shoNn for a specified minimum concrete strength fc = 3500   psi that the internal pressure capacity is 46.4 psi.
In this evaluation no credit is taken for the vertical /Ill bar at   6'/c     in the base mat nor is any credit taken for shear capacity of the fill slab above the base mat.
In table   4 can be found the limiting pressure capacity adjusted   for the assumption of minimum specified and minimum sampled material properties as defined in Table 1.
In Reference   1 the Hars ead report Pg. 5-1-1 identified a failure   mode based   on the assumed pull out of the vertical membrane steel in the cylinder wall from the base mat as having a containment internal pressure capacity of 46 psi. Tne pull out failure mode capacity of 46 psi internal pressure capacity of the containment was determined ivithout consideration of the radial shear (diagonal tension) capacity of the concrete vihich is permitted by the ACI-359 code even in presence of membran tension. To ignore the shear capacity of the concrete is not in accordance riith normal design nor analysis procedures.         Hence the failure pressure in the concrete containment of 53.8 psi as defined by the calculations performed in this section is limiting.


===3.3 PRESSURE===
3.2  MEHBRA</E HOOP T      HSIO'l FAILURE      OF COtlCRETE CYLII>OER i~lembrane  load due to containment pressurization              in the horizontal (hoop) direction P  =p    R where:
CAPACITY OF THE EQUIPMENT HATCH CLOSURE The equipment hatch closures used on the D.C Cook Containments have been identified (Ref.l)as potentially limiting the capacity of the containment to carry internal pressure loads.The reasons for this limitation are identified as follows: 1.The end closure is in the form of a flat plate hence pressure induced loading must be carried by bending rather than membrane shell action.2.A bolted splice is used in a region of high bending moment which may limit the capacity of the hatch cover to carry pressure load.3.The far spaced bolt pattern and the relatively low rotational
P  = membrane     load in     lbs/in of wall p =  uniform internal pressure R  = mean  radius of wall (57.5          x 12 = 690    inches)
.stiffness of the equipment hatch barrel result in little rotational stiffness or fixed end moment capacity of the equipment hatch cover-barrel attachment.
Hembrane    load capacity of reinforced concrete cylinder at              its base neglecting discontinuity moment transfer:
This requires that the hatch be analyzed essentially as pin connected (allowed to rotate)rather than fixed (moment resistant) at its supports thereby significantly increasing center span moments in the hatch cover.Because of the presence of the unsymmetric splice and the unsymmetric insertion of the personnel hatch into the equipment hatch cover as shown in Figure 3 the evaluation of the equipment hatch uniform pressure capacity cannot be performed with a high degree of accuracy without recourse to a finite element formulation.
Available Reinforcement
Two such analyses were performed, one of the cover plate splice and the other of the equipment hatch cover plate including the effect of the splice and the inserted personnelhatch to determine.
: 1)    2  Layers 818 bar hoop reinforcement at 18" c/c =
their maximum internal pressure carrying capacities.
8 in       =  5.33  in2/ft of wall ft
~r 3.3.1 Splice Plate t1oment Ca acity 3.3.1.1 Hand Calculation
: 2)   3/8" Liner plate        =  3/8"   x 12 = 4.50      in2/ft of wall
-considering 1" full penetration weld detail as shown in Figure 4(1~Before proceeding to a review of the finite element analysis of the splice plate shown in Figure 4, a hand calculation was performed in order to have a basis of comparison with the more detailed finite element calculation (1)flote the Harstead report neglected the weld geometry in its calculation of stresses.
: 3)    2  Layers 811 bar diagonal reinforcement at 36" c/c considering only those bars acting in tension 2 1.56 x ~2 = 1.47          in2/ft of    wall 333    ft From Table      1  of this report the        mean  value of the reinforcement yield          = 49.8 ksi and      liner plate = 48.3 ksi P  = (5.33 in2 x 49.8          ksi)  + (4.50 in2 x 48.3 ksi)
Given: Splice as shown in Figure 4-check section at top of weld (a)95-1" A-193 Gr 87 bolts on a 224" length of splice=2.38" spacing between bolts on tension side of splice Limiting capacity of splice at top of weld is assumed at mean yield in outermost fiber of 2 inch splice plate on tension bolt , side of splice M2 PL=sZ=(53.2 ksi)1 (2.38)(4)=84.41 k-in/2.38 in.of splice Limited tensile capacity of splice plate Tx=t'I~x=1o5 in+T='M/1.5=S4.41/1.5=56.27 kips/boltMgoint T'jd=(56.27)x (2.5+4.0+1.875)=471.26 k-in/2.38 in.of splice Moment capacity/in of splice 471.26/2.38
              + (1.47 in 2     x  49. 8 ks i )
=198.01 k-in/in Moment capacity of 4" plate without splice M4<<PL=sZ=53.2 ksi(1)(1)16=141.87 k-in/in<198.01~s.".4" plate governs design Capacity of Splice=198.01]39,6 of 4" plate~87 Check section at base of weld Limiting capacity of splice at base of weld is assumed at mean yield in outermost.
              = 265.4 k + 217.4 k + 73.2 k
fiber of 2 inch splice plate plus 1" weld.(Minimum Specified F of the Held material=60.0 Ksi)M2<<PL+1<~weld=s Z=(53.2 Ksi)1 (2.38)9=189.92 K-in/2.38 in.of splice Limited tensile capacity of section Tx=M;x=2.5 in.T=M/2.5=189.92/2.5
              = 556.0   kips/ft    = 46.33    kips/in From Eq. 1 p =   46,330    lbs/in   = 67.1 psi 690  >n In Table 4 can be found th limiting pressure capacity adjusted for the    assumption of minimum specified and minimum sampled material properties          as defined in Table=       l.
=75.97 Kips/bolt Since 75.97>56.27 Kips top of weld limits design Check capacity of bolt From Table 1 Mean Yield of 1" bolt=121.3 Ksi Tensile area 1" bolt=0.605 sq.in.Pyie]d=121.3 x 0.606=73.51 Kips/bolt>56.27:.OK~


3.3.1.2 Finite Element Analysis In Figure 5 is the finite element model of the equipment hatch splice joint showing plate elements.Using the computer program AtlSYS for an applied moment to the 4 inch hatch cover plate equal to a reference containment internal pressure of 40 psi,.the.maximum outer most fiber stress in the 2 inch splice plate is 27.82 ksi in element 76.The maximum outer most fiber stress in the four inch plate is determined as 46.27 ksi in element 145.It appears therefore that the 4 inch rather than 2 inch plate at the joint controls design.This is due primarily to the weld which significantly increases the effective thickness of the splice plate at its connection to the four inch plate.3.3.2 E ui ment Hatch Cover Plate Pressure Capacity In reference 1 Harstead determined the equipment hatch capacity of 53.0 psi uniform pressure loading based on simple support boundary conditions of the cover as a uniform 4" thick circular plate having a diameter of 19'-10".8ecause of the effect of the unsymmetric splice and personnel hatch insert a finite element analysis of the plate is performed.
3.3 PRESSURE  CAPACITY OF THE EQUIPMENT HATCH CLOSURE The equipment hatch closures used on the D.C Cook Containments have been identified (Ref.l) as potentially limiting the capacity of the containment to carry internal pressure loads.
A finit el ment modeling of the plate which included the splice is shown in Figure 6.The personnel hatch because of its rigid equiva'lent 12" thick support ring connection to the equipment hatch is assumed to transmit only reaction loads due to pressure to the equipment hatch.The splice is modeled as an equivalent 12" x 4" beam parallel, to the splice and equal to the stiffness of the four inch plate across the splice.Using the computer program A"(SYS the maximum stress intensity in the cover plate is d termined in element 95 as shown in Figure 7 adjacent to the splice.The resultant limiting internal pressure load at element 95 is 45.1 psi for an"as built" mean yield stress of 53.2 ksi in the plate.From Sections 3.3.1.1 and 3.3.1.2 of this report it is determined that the splice plate has a greater moment capacity than the four inch plate.The limiting internal pressure capacity of the Equipment Hatch Cover Plate is therefore limited by the capacity of the four inch plate at 45.1 psi.In Table 4 can be found the limiting pressure capacity adjusted for the assumption of minimum specifi d and minimum sampled material properties.
The reasons for this limitation are identified as follows:
3'.4'RESSURE CAPACITY OF PERSOiklEL HATCH 3.4.1 End Plate Closure Hecause of the unsymmetric stiffening of the personnel hatch cover plate as snown in Figure 8, a finite element analysis of the plate is performed to determine its internal pressure retaining capacity.As in the case of the equipment hatch the loading from the personnel hatch door is transmitted to the personnel hatch closure plate as a reaction line load at the ooint of support.Also the plate is conservatively assumed simply supported rather than fixed end supported at its connection to the personnel hatch barrel because of the relative low rotational stiffness of the barrel.In Figure 9 is found the finite element model of the hatch showing all elements.The plat and stiffner system is analyzed using the computer program A ISYS.The maximum outermost fiber stress is determined in the door stiffner at element 87 as 79.3 ksi for a ref rence 70 psi internal pressure load.The pressure capacity p of the personnel hatch closure is determined:
: 1. The end  closure is in the form of a flat plate hence pressure induced loading must be carried by bending rather than membrane  shell action.
p=70 x 53;2=47.0 psi 79.3 3.4.2 Door The personnel hatch door is shown in Figure 8.It acts essentially as a one way spaning simoly supported stiffened plate.The total span of the 1/2" tliick plate is 42".The plate is stiffened by 3" x 1-1/4" solid plate stiffners on approximately 15 inch centers.Assuming a composite T section with the effective outstanding flange leg of tee equal to 8 times the flange thickness, the moment of inertia of the T section is 6.93 in4 and distances to the outermost fibers of the section are 1.03 and 2.47 inches respectively.
: 2. A bolted splice is used in a region of high bending moment which may limit the capacity of the hatch cover to carry pressure load.
tlaximum applied bending moment:)~i=1 b p 1 2 1 (15)(p)(422)3307.5 F Homent Capacity of Stiffen Ooor Section: H=sZ=(5 ,200)I=(53,200)6.93=149,261 c 22iT Limiting internal pressure p=149,261=45.1 psi 3307.5 In Table 4 can be found the limiting pressure capacity adjusted for the assumption of minimum specified and minimum sampled material properties.
: 3. The far spaced bolt pattern and the relatively low rotational    .
, 4.0 SUt"'u~'IARY Af'lD CONCLUS I OH From the summary results of the analysis presented in Table 4 it can be seen that the current limiting internal pressure capacity of the D.C.Cook Containments are the equipnent hatch closure plate and the equipment hatch door at 45.1 psi based on the use of mean"as built" material properties.
stiffness of the equipment hatch barrel result in little rotational stiffness or fixed end moment capacity of the equipment hatch cover-barrel attachment.     This requires that the hatch be analyzed essentially as pin connected (allowed to rotate) rather than fixed (moment resistant) at its supports thereby significantly increasing center span moments in the hatch cover.
It should also be pointed out that even if specified minimum material properties had been used as was the case reported in Ref.1 by Harstead the minimum capacity of the D.C.Cook'Containment is 32.3 psi based on the more detailed analyses reported herein rather than the 23.5 psi reported in Ref.1 which were based on more approximate hand calculations.
Because of the presence of the unsymmetric splice and the unsymmetric insertion of the personnel hatch into the equipment hatch cover as shown in Figure 3 the evaluation of the equipment hatch uniform pressure capacity cannot be performed with a high degree of accuracy without recourse to a finite element formulation. Two such analyses were performed, one of the cover plate splice and the other of the equipment hatch cover plate including the effect of the splice and the inserted personnelhatch to determine. their maximum internal pressure carrying capacities.
It should also be emphasized that the analytical assumption used in the more rigorous analyses reported in this study of the equipment and personnel hatches whose limiting failure modes were in bending still considered only elastic behavior and section properties.
                                                            ~r 3.3.1 Splice Plate    t1oment Ca  acity 3.3.1.1    Hand  Calculation  considering 1" full penetration weld  detail as shown in Figure 4(1~
It has long been established in the behavior of plate elements during test and as the'asis for the 1.5 increase in allowable bending versus menbrane stress limits of the ASt<E Boiler and Pressure Vessel Code that pl.ate and shell bending elements behave essentially elastic (small deformations) until the plastic section modulus is reached.Since the plastic section modulus for rectangular shapes associated with the hatch plates is 1.5 times the elastic section modulus there is significant additional safety margin in the hatch analysis which is not applicable to the membrane or shear type failure modes identified in the containment concrete shell and base mat.To quantify the effect of the plastic section modulus of the equipment hatch on the internal pressure capacity of the containment a non-linear elastic-plastic finite element analysis of the hatch cover plate using the computer Program Af"SYS was performed for the assumed fy=50.3 Ksi material property.Evaluation at 70 psi internal pressure or 1.64 times the elastic capacity of the cover plate indicated.that the maximum deflection of the plate is still linear and the maximum plastic strain was 1.8 times the elastic strain at yield.Therefore it is our conclusion that the D.C.Cook Containments as presently designed and constructed constitute a balanced design.That is, the true pressure retaining capacity of the hatches when the 1.5 factor discussed previously is applied is approximately the same as that of the concrete limiting portion of the containment, approximately 54.5 psi.On this basis we do not recommend any modification of the existing D.C.Cook'ontainment hatches.
Before proceeding to a review of the finite element analysis of the splice plate shown in Figure 4, a hand calculation was performed in order to have a basis of comparison with the more detailed finite element calculation (1) flote the Harstead report neglected      the weld geometry in its calculation of stresses.
0 0 Figure 1 O.C.Cook Containment Oimensions and General Arrangment Figure 2 Shear Failure Planes and General Arrangment of Reinforcement in the 8 base mat Figure 3 General Arrangment of the Equipment Hatch Closure Plate Figure 4 General Arrangment of the Equipment Hatch Closure Plate Splice Figure 5 Finite Element 51odel of Equipment Hatch Closure Plate Splice Figure 6 Finite Element tlodel of the Equipment Hatch Closure Plate'Figure 7 Oetailed Finite Element i~lode of the Equipment Hatch Closure Plate Figure 8 General Arrangement of the P rsonnel Hatch Closure , Plate Figure 9 Finite Element i'lodel of the Personnel Hatch Closure Plate Table 2 Computer Calculated Resultants Forces in the Containment Base Slab Oue.to Oead l!eight Table 3 Computer Calculated Resultant Forces in the Containment Base Slab Oue to a Reference 12.0 psi Internal Pressure TABLE 1 SU&iARY OF tiItfIMUN SPECIFIED AND AS BUILT MATERIAL PROPERTIES 1.LINER PLATE-SA442 SAMPLE SIZE=6 S=2.27 Cov.=0.047 2.EgUIPMEiNT HATCH-SA516 SAMPLE SIZE=5 S=2.74 Cov.=0.051~GRADE 60 SPECIFIED MINIMUt 1 MEAN SAMPLE VALUES i~lINIf'lUM SAMPLE VALUES GRADE 70 SPECIFIED MINIMUM i'lEAfl SAtlPLE VALUES MI fIMUM SAiiPLE VALUES YIELD 32.0 48.3 45.8 38.0 53.2 50.3 ksi ULTIMATE-60.0 64.7 62.4 70.0 81.2 80.2 3.e.5.BOLTING-SA193 SAtiPLE SIZE-2 ea.1/2" x 2-1/2" 1" x 5-1/2" (SPLICE)l-l/4" x 10" (COVER)REINFORCING ROD A15 18S SAMPLE SIZE 9 S=3.34 Cov.=0.067 CONCRETE-28 DAY STRENGTH-SAMiPLE SIZE 29 S=0.508 Cov.=0.103 GRADE 87 SP EC IFI ED i lI N Ii~lUM i~lEAN SAMPLE VALUES SPECIFIED MIiVIMUM i~iEAth SAMiPLE VALUES'PEC IFIED tlINIi~iUi~l flEAN SAMPLE VALUES GRADE 40 SPEC I FIED tlI N IMUM t1EAN SAMPLE VALUES MINIMUM SAt'lPLE VALUES UflIT 1 and 2 SPECIFIED t'lINIflUil flEAN SAt'1PLE VALUES YINItlUtl SAMPLE VALUE 105.0 119.0 105.0 121.3 105.0 120.1 40.0 49.8 44.3 125.0 137.0 125.0 141.0 125.0 140.3 70.0 81.8 75.5'.5 4.956 4.112 WV64VJI140
~409~i999)]l 0 lll 974~~ii0 vi SOLUTION FUNCTIONS IH SYSTEtt REFEREHCE FRAttf Table 2 Computer Calculated Resultant es in the Containment Base Slab Due to De Weight 1 0.207258K 04 R 0.220710K 04 3 0.2340638K 04 0.249031E 04 5 0.263875E 04 6 0.279153E 04 7 0.2940CEi5 04 8 0.310?2'?E 04 9 0.32737"E 04 10 0.344161E 04 11 0.361263E 04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.179783E 0.1816692E 0.183450 E 0.185155K 0.186 704 f 0.188343 E 0.189335E 0.191265K 0.19263>>E 0.193942K 0.195193K 04 0.834138E 05 04 0.548537K 05 04 0.243167E 05 04 0.8N924E 04 O4-O.42e949E 05 04-0.796689E 05 04-0.11C619E 06 04-0.159789E 06 04-0.20322lf 06 04-0.24S953K 06 04-0.29)069K 06-0.120054E"DR 0.0 0.148695C-OR 0.0 0.414161K-02 0.0 0.675165E-OR 0.0 0.9304051E DZ 0,0 0~117869E-0 1 0.0 0.141846K-ol 0.0 0~164i827E-Dl 0'0.186456E-01 0.0 0.2071452-01 0.0 0.226201E-ol 0.0-0.719304E-DR 0.70479OE-OR
-0'85N9E-02-0.64346.7E-02 0'36066K-DR
-0.603897K-OR 0.5646ii9E 02-0.56200034'.E-02
-0.4757042E-DR 0.421537K-DR
-0.361094K-02 0 9 163836.E 0 3 0.16218iiE 03 0.159343E-03 0.156762E 03 0.152896 E-03 0.148194" E-03 0.142618E-03 0.135108f-03 0.126616f-03 0.120092E-03 0.110472K-D3 ACTUAL STRESS RESULTAIITS-SIIELL REFERENCE FRAtlf-BODY 7%AT CEIITROIOc STATIOtl CEIITROIOS tlO;tlf RID~HOOP Hll LB/IH tt12 LB/IH H22 LB/IN 013 LB/IH Q23 LB/IH Hll IH-LB/IH H12 Itl-LB/IH tt22 IH-LB/IN 62.662 62.BII R 62.86R 62.811 3 62.65 6.Sll 62.85R 62.811 5 62.6562 62.811 6 62.R62 62.Cll 7 62.862 6".Sll 0.179783 E 0.1S1662E 0.183450 K 0.185155E 0.166784E 0.160>>343K 0.189335K 04 0.0 04 0.0 04 0.0 04 0.0 04 0.0 04 0.0 04 0.0 0.216753K 0.216602E 0.216593E 0.216720E 0.R16971E 0.217339E 0.217818E 04-0.207258K Q4-0.220710K 04-0.234638E 04-0.N9031E 04-0.626'3875E 04-0.279153E 04-0.2948ii E 04 0.0 04 0.0 04 0.0 04 0.0 04 0.0 04 0.0 04 0.0-0.192634E 05-0.488963f 05-0.80454ioiE 05-0.113994E 06-0.149570E 06-0~187235E 06-0.227037E 06 0.0 0.0 090 0.0 0.0 0,0'~0 06 0.0 06 0.0 06 0.0 06 0.0 8 62066R 62.611 0.191 4"f 04 0.0 0.218402E 04-0.310929K 04 0.0-0.269024K 9 62.862 62.811 0.192634if 04 0.0 0.219084K 04-0.327378E 04 0.0-0.313238E 10 60.06"61 011 0;19 W." E 04"0;0 0:039060r04=0".344161E"04 D.E-0.359717E ll 62.862 62.811 0.195193E 04 0.0-0.220726E 04-0.361263E 04 0.0-0.408547E 0 0,189855E 06 0~177062E 06 0.163588E 06 0,149402E Ob 0.134474E 06 0.11877ef 06 0.102285K Ob 0 849739E 05 0.668169E 05 0.47793if 05 0.278602K 05 STATION LAYER HO.HO.1 2 3 4 5 6 7 STRESS Sll INSIDE 0.14413K 01-0.46754E 02-0.1609iE-05
-0.465i7E 02 0.12971E 01<<0.40609E 02"0.13917E-05 0.13126E 01-0.46667E OR-O.16O44E-O5
-0.46276E 02 0~1113CE ol 0 403r59E 02-0.13820K-05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 RESULTANT STRESSES-PSI BOGY S STRESS Sll STRESS S12 STRESS S12 OUTSIDE INSIDE OUTSIDE STRESS S22 INSIDE 0.36946K 02 I 0.99142E-05 0.28696K 03 0.9C645K-05 0~3>>4313K 02 0.85744K 05 0.24?obf D3 STRESS S22 OUTSIOE 0.33971E 02 0.98951E-05 0.28607E 03 0 93099E 05 0.29374E 02 0.85194K-05 0.24529E 03


COOK PLAHT SOIL PARAtlETER STUDY tIO.1 LOAOItlG 3 DEAD IIEIGIIT 3 12-30-80 Computer Calculated.
Given: Splice as shown in Figure 4  check section at top of weld (a)    95  1" A-193 Gr 87        bolts on a 224" length of splice      =  2.38" spacing between        bolts on tension side of splice Limiting capacity of splice at top of weld is assumed at mean yield in outermost fiber of        2 inch splice plate on tension bolt
Resultant Forces i Containment Base Slab Due to a Referen.0 psi Internal Pressure SOLUTIOII FUIICTIOIIS IH SYSTEti REFfREtlcE FRAtiE 1 0.362819E 2 0.300629E 3 O.R40632E 4 0 18 6rSZE 5 0~126535E 6 0.721415C 7 0.19$453E 8-0.319680E 9-0.618996E 10-0.13054ZE ll-0.176029E 04 0.0 04 0.0 04 0.0 04 Q.o 04 0.0 03 0.0-03 0.0 03 0.0 03 0.0 04 0.0 04 0.0 0.12<i021E 04 0.125169E 04 0.126290E 04 0 12732rDE 04 0.1"6295E 04 0.129201E 04 0.1300<>5E 0<i 0.13OGReE O4 0.1315<>?E 04 0~132209f 04 0~13261ZE 04 0~197442E 0.1477Z6E 0.108624E 0.600810E 0.609194E 0 roQ246E 0.493393E 0 560519E 0.705932E O.926286C , 0.121891E 06"0.181325E 01 06-0.161004E Ol 06-0.180663E Ol 05-0.180361E 01 05 0.1600<>OE 01 05-0.179?RZE 01 05-0.179405E 01 05-0.179091E 01 05-0.178760E 01 05-0.1764i69E 01 06-0.178159E 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0-0.936208f-02
            , side of splice M2  PL = sZ =    (53.2 ksi)    1   (2.38)(4)  = 84.41  k-in/2.38 in. of splice Limited tensile capacity of splice plate Tx =  t'I~ x = 1o5 in+
-0.9>0639E-02-0.939061E-02
T  ='M/1.5  =  S4.41/1.5    = 56.27  kips/bolt T'   jd  =  (56.27) x (2.5 + 4.0 + 1.875) = 471.26 k-in/2.38 in. of splice Mgoint Moment    capacity /in of splice 471.26/2.38    =  198.01  k-in/in Moment    capacity of 4" plate without splice M4<<PL = sZ =      53.2   ksi(1)(1)   16 =  141.87  k-in/in  < 198.01
-0.93292QE-OZ
                                                              ~s
-0.923599E-02-O.912352 E-02-0.90039<>E-02
                                                                        .".4" plate governs design Capacity of Splice        =  198.01    ]39,6    of 4" plate
-0.866667E-02
                                      ~87 Check  section at base of weld
-0.878656E-02 "0.871393E-OR
-0.667<i6<iE-02 0.193628E-03 0 195016E 03 0 195358E 03 0.1'94910E-03 0.193908E-03 0.1925?GE-03 0.191125E-03 0.18975<IE-03 0.166653E-03 0.180003E" 03 0.187975E-03 ACTUAL STRESS RESULTAHTS-SIIELL REFEREtICE FRAtlE-BODY 7/AT CEIITROIO<
STAT IOII CEHIROIDS HO.ttCRIO.IIOOP till LG/IH O I'>LG/IH ll22 R13 LB/IH LB/IH O23 LG/IH till IH-LG/IH ti12.IH-LB/IH ti22 IH-LG/IH 1 62.662 62.811 2 62.662 62.611 3 62.862 62.611 62.662 62.611 5 62.662 62.811 6 62.662 6"..811 7 62.662 GZ.I>11 0~124021E 04 0.0 0.125169E 04 0.0 0.12629OE 04 0.0 0.1273 5E 0<i 0.0 0.126295E 04 0.0 0.129201E 0<i 0.0 0.13004.E 0<i 0.0 8 62.652 CR.GII 0.13062of 0<i 0.0 9 62.662 62.611 0.1 515<i?C 04 0.0 10 62.CGZ 62.811 0.132209E 0<i 0.0 ll 62.662 62.611 0.13"612E 0<i 0.0 0.163855E 0<>-0.362619E 04 0.0 0.16391<>E 04-0.3006 9E 04 0.0 0.16320?E 04-0.2<i0632E 04 0.0 0.163539E 04-0.162652C 04 0.0 0 163115E 0<>-0.12653rSE 04 0.0 0.1625<>if 04-0.'/21<>15E 03 0.0 0.1616"1C 04-0.193<ir>3F 03 0.0 0.16095?E 04 0.3196QCE 03 0.0 0.159956E 04 0.81699GE 03 0.0 O.l'>:GZOE 04 0.130542E 04 0.0 0.157549L 04 0~178029E 04 0.0 0.126612E 06 0.7622GOE 05 0.3669?GC 05 0.736369E 04-0.123520E 05"0.2296<i2E 05-0.2<>9$14E 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0-0.166653E 05 0.0-0.453569E 04 0.0 0 1712"1E 05 0 0 0.460396E 05 0.0 0.250910E 06 0.236913E 06 0.223955E 06 0~212269E 06 0.202044E 06 0.193441E 06.0.186555F 0.161563E 06 0.17652ZE 06 0.177466E 06 0.178462E 06 STATIOH LAYER IIO.IIO.STRESS 511 IH51DE RE ULTAHI'TRESSES-PSI STIIC55 511 Sll\L55 SIR OUTSJDE Il>SIDE BODY 8 STRESS 512 OUTSIDE STRESS 522 II>SIDE STRESS 522 OUTSIDE 1 2 3 5 6 7 0.2<i416E 01-0.73659E 02-0.25338E-05
-0.?319QE 02 0.2)749E 01-0.61216E 02-0.20934E-05 0.22035E Ol-0.73<i81E 02 0 2r5241E 05-0.72691E 02 0.18357E Ol-0.60709E 02-0.20738E-05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.60108E 02 0.15811E-04 0.457<ilE 03 0.1571ZE"04 0.53466E OR 0.131<ICE-04 0.37609E 03 0.5419?E 02 0~15773E-04 0.4556<if 03 0 15603E 04 0.45064E OR 0.13037E-04 0'7<>56E 03


TABLE 4 SUf1NARY OF LIHITING INTERNAL UNIFORt1 PRESSURE CAPACITY OF D.C.COOK CONTAINMENT INTERNAL PRESSURE CAPACITY (ELASTIC ANALYSIS)(See Subsection 4.0 for Plastic Analysis)CRITICAL FAILURE 110DE SPECIFIED MINI tlUN PROPERTIES LOlJEST ii/EASURED SNlPLE PROPERTY MEAN SAMPLE PROPERTY l.Bending Shearing Concrete Base t1at 2.Membrane Hoop Tension in Concrete Cylinder 3.Bending Capacity of Equipment Hatch 4.Bending Capacity of Personnel Hatch-(a)Closure Plate (b)Door fc=3500 psl;fc=59.16 Limiting internal pressure=45.8 psi fy=40,000 psi Limiting internal pressure=50.2 psi f>=38,000 psi Limiting internal pressure=32.3 psi fy=38.000 psi Limiting internal pressure=33.6 psi Limiting internal pressure=32.3 psi fc=4100 psi;fc=64 03 Limiting internal pressure=49.6 psi f>=44,300 psi Limiting internal pressure=61.2 psi f>=50,300 psi Limiting internal pressure=42.6 fy=50,300 psi Limiting.internal pressure=44.4 psi Limiting internal pressure=42.6 psi fc=4950 psi;fc=70 36 Limiting internal pressure=54.5 psi fy=49,800 psi Limiting internal pressure=67.1 psi fy=53,200 psi Limiting-internal pressure 45.1 fy=53,200 psi Limiting internal pressure=47.0 psi Limiting internal pressure=45.1 psi Note: Internal Pressure Capacity wherever noted as"psi" means"Psig" CCNTAILlHEMT Ql Qll STEEL LILlE ll>/b" THICK SPRlHG LlN IA Z STEEL LINER>io'HICK~g~~'I I 5&#x17d;ID.STREL LIQIR>/Z'HICK<ms'~r GROUQO FL."~QRAOK 4'lo"p BASE f 1~ToP op MAT leo'-0" OD~.GFCTtohJ A-A GECTIQN4,L F.LEYATIQQ Figure 1 D.C.Cook Containment Dimensions and General Arrangment
Limiting capacity of splice at base of weld is            assumed  at  mean yield in outermost. fiber of    2 inch splice plate plus 1" weld.
.CL.F.c,.I~I All L'I'.I7 a~h\~4 Sa , I,4$.TC H I~'nv 0'r;C gC...l.Y=fi//vi.Ii Ill~T~+II~~5-~n.)lc~gl" I." IICI-" Is)=i'']I.~5~~'L v g 7 7!w!!I g g Nd cc 14 I)-:)r Cl~I<I~'p->I" 4 A j I'I-L C Il-IO'2 A~~le."'.=v I'Pell'c)),'4IAtf+JLC
(Minimum Specified    F of the Held material = 60.0 Ksi)
~~5 A v~Gs e (cd~P.A><I3y QR I&p oP,c)w~.NOT=1.i V:<~irL.ii;
M2<< PL +  1<~  weld    = s Z =  (53.2 Ksi)   1  (2.38) 9 =   189.92  K  in/2.38 in. of splice Limited tensile capacity of section Tx = M; x = 2.5      in.
~N i<W=.(r.=)<IVEIl T'3 TnE C"=tIT"-R JF C3llT HN r-I I.c~-=r.T A:.-II:.,T"-G.
= M/2.5 =   189.92/2.5   = 75.97  Kips/bolt Since 75.97    > 56.27 Kips top of weld    limits design Check capacity of bolt From Table    1   Mean  Yield of 1" bolt  =   121.3 Ksi Tensile area 1" bolt      = 0.605 sq. in.
Figure 2 Shear Failure Planes and General Arrangement of Reinforcement in the Containment Base Mat 5'-31'i'-t5 YP h-32-!~/0"$HDLES ON 25O'I<" S.C.S4 EQUAL SPACES-BoLTS 8+EQ0AL S ppeES-..-SoLTS'.---~-~--------I=I 0'-30'O-3/<" 4 HOLCS, ON l24" S.C.Figure 3 General Arrangment of the Equipment Hatch Closure Plate I]I I)I e~S I~~0~>(
Pyie]d  = 121.3 x 0.606 = 73.51      Kips/bolt    > 56.27:. OK ~


<<)rLO<<%Oral<<
3.3.1.2    Finite  Element Analysis In Figure 5 is the finite element model of the equipment hatch splice joint showing plate elements.      Using the computer program AtlSYS for an applied moment to the 4 inch hatch cover plate equal to a reference containment internal pressure of 40 psi, .the. maximum outer most fiber stress in the 2 inch splice plate is 27.82 ksi in element 76. The maximum outer most fiber stress in the four inch plate is determined as 46.27 ksi in element 145. It appears therefore that the 4 inch rather than 2 inch plate at the joint controls design. This is due primarily to the weld which significantly increases the effective thickness of the splice plate at its connection to the four inch plate.
~0~.I~5~4'F 05 14$145 I~0 140 14<<1%0 I 5 I 1%0)~0%Bot.T Wal.b PIIOf:II IL), It/I t>I.I LC It%ltk lt)Ill%I Ie<<)~l 1~Cl I C TO 5)SC S I I tl 10~5 S Sl~4 101 0%OC 5~CI Ct 100 I~I~5 I~)5 C 5 Cl~5<<5 5~)0%7<<g~i I I~Cl IC t 20)0 4~4~4 4$~5~1 14 1%I I tl~tl tt t4~00-$.)l-4.15-4.Il-I~SC.<<.0$-5~)4 tWC 5100lh JOIST)Os4LVCIC 0101140 rOOCL I 4)I lt-.Sl eCI I lt I))t)4 CC Ori tev~v%1 t IP)55 4 IV 4.v<<S~)0 C.~0 0 4 raaSLO)I I<I>>~~r I'1nltr.Elefnent Hodel of'qul pmrnt I%Itch Clos>>rr I'intr'.Splice 31 PREP7-PLOT 34 2 27 3 37 28 38 31 3 42 47 48 19 5 6 53 51/6 e 0 12 12 8 91 12 1,4 1 3 14 1 1 15 1 2 2 1 8 1 8 8 5 3 76 7, 12 8 13 8 15 15 158 15 ,gf g~Qi I 16 15 1?PREP?EPLT ANSYS Figure 6 Finite Flement Model of the Equipment Hatch Closure Plate rg DI~S peal OF-'.2 12 64 o3 1 33 122 12 142/1j'6 125 143 15 68 75 128 145 154 155 Bc 129 1 g 131 130 147 148 157 156 2-~l" 132 138 139 149 158 15'52 158 161 159 160 cot T ANSY5 6 Figure 7 Detailed Finite Element Mode(of the Equipment Hatch Closure Plate
3.3.2  E ui ment Hatch Cover Plate Pressure Capacity In reference 1 Harstead determined the equipment hatch capacity of 53.0 psi uniform pressure loading based on simple support boundary conditions of the cover as a uniform 4" thick circular plate having a diameter of 19'-10". 8ecause of the effect of the unsymmetric splice and personnel hatch insert a finite element analysis of the plate is performed.
/63/i" g!DEPTH (y/'" DEPTH.(YVP)~I$~9'lz" DEPTH PLsrrE I IP/p I T'oY'Rw PEPTIC i" PLATE P./7)r F'CW EAS 3 DEPTH~4~!TVP3~4~>Figure 8 General Arrangement of the Personnel Hatch Closure Plate
A finit el ment modeling of the plate which included the splice is shown in Figure 6. The personnel hatch because of its rigid equiva'lent 12" thick support ring connection to the equipment hatch is assumed to transmit only reaction loads due to pressure to the equipment hatch. The splice is modeled as an equivalent 12" x 4" beam parallel, to the splice and equal to the stiffness of the four inch plate across the splice. Using the computer program A"(SYS the maximum stress intensity in the cover plate is d termined in element 95 as shown in Figure 7 adjacent to the splice.     The resultant limiting internal pressure load at element 95 is 45.1 psi for an "as built" mean yield stress of 53.2 ksi in the plate.
From Sections 3.3.1.1 and 3.3.1.2 of this report      it is determined that the splice plate has a greater moment capacity than the four inch plate.
The limiting internal pressure capacity of the     Equipment Hatch Cover Plate is therefore    limited by the capacity of the four inch plate at 45.1 psi. In Table 4 can be found the limiting pressure capacity adjusted for the assumption of minimum specifi d and minimum sampled material properties.
3'.4'RESSURE CAPACITY      OF PERSOiklEL HATCH 3.4.1      End Plate Closure


1 11 72 S9 16 33 29 821 28 14 720 2'?13 619 26 33 5 32 31 36 39 35 33 37 3iQ 12?48 56 3 14?55 62 046 54 61 20 ea 6 9 1 5 12 518 25 11 417 24 10 316 23 QiS 53 60 844 52 59 743 51 58 6<7 16 70 17 69 18 70.8-5'?.8-44.8-31.9-18 9-5'7.1 20.1 33.~46.0 SQ 0 Ala LOCK PLAY PLAYS AtlALVSls CEO?1ETRVANSYS Figure 9 Finite Element Model of the Personnel Hatch Closure Plate
Hecause of the unsymmetric stiffening of the personnel hatch cover plate as snown in Figure 8, a finite element analysis of the plate is performed to determine its internal pressure retaining capacity. As in the case of the equipment hatch the loading from the personnel hatch door is transmitted to the personnel hatch closure plate as a reaction line load at the ooint of support. Also the plate is conservatively assumed simply supported rather than fixed end supported at its connection to the personnel hatch barrel because of the relative  low rotational stiffness of the barrel.
In Figure 9 is found the finite element model of the hatch showing all elements.      The plat and stiffner system is analyzed using the computer program A ISYS.
The maximum outermost fiber stress is determined in the door stiffner at element 87 as 79.3 ksi for a ref rence 70 psi internal pressure load.      The pressure capacity p of the personnel hatch closure is determined:
p = 70 x  53;2 = 47.0 psi 79.3 3.4.2 Door The personnel    hatch door is shown in Figure 8. It acts essentially as a one way spaning simoly supported stiffened plate. The total span of the 1/2" tliick plate is 42". The plate is stiffened by 3" x 1-1/4" solid plate stiffners on approximately 15 inch centers. Assuming a composite T section with the effective outstanding flange leg of tee equal to 8 times the flange thickness, the moment of inertia of the T section is 6.93 in4 and distances to the outermost fibers of the section are 1.03 and 2.47 inches respectively.
tlaximum applied bending moment:
    )~i = 1 b p  1 2    1 (15) (p) (422)    3307.5 F
Homent Capacity    of Stiffen  Ooor  Section:
H =  sZ = (5  ,200) I = (53,200) 6.93    =  149,261 c              22iT Limiting internal pressure p =  149,261 = 45.1 psi 3307.5


SECTION 2 Phase II of the D.C.Cook Internal Pressure Containment Anal sis-Probabilistic Anal sis In this effort the variability of the"as-built" material parameters on the best estimate capacity of the containment to carry static uniform internal pressure is being evaluated.
In Table 4 can be found the limiting pressure capacity adjusted for    the assumption of minimum specified and minimum sampled material properties.
Four potential limiting failure modes have been identified by deterministic analysis.'wo of the modes involve potential failure by plate bending of the equip-ment and personnel hatch closure plates.The other two potentially limiting failure modes are by membrane tension failure of the main steel hoop reinforcement at the base of'he containment shell and shear (diagonal tension)failure of the concrete base met.The ACI-359 Code equation governing diagonal tension failure is based on test results hence it is also being evaluated in a probabilistic manner.Results of this statistical analysis will be probability density function of containment resistance defined for the two different contain-ment"as-built" material properties and in the case of shear in the base mat the statistical nature of the code defined failure equation.This evaluation should be completed by May 15, 1981.SECTION 3 Phase III of the D.C.Cook Internal Pressure Containment Anal sis-Localize D namic Loads In this evaluation dynamic analytical models of the contain-ment structure assuming localize dynamic pressure loading input are being prepared.The containment areas where the dynamic models are being de-veloped include the equipment and personnel hatch closure plates, the shell portion of the containment shell adjacent to the base mat and the bise mat adjacent to the cylinder shell juncture.The development of the dynamic models should be complete by May 30, 1981.Then using the internal pressure time history forcing functions, a dynamic analysis will be done to determine the forces and moments at the critical sections of the containment.  
, 4.0  SUt"'u~'IARY Af'lD CONCLUS I OH From the summary results of the analysis presented in Table 4    it can be seen that the current limiting internal pressure capacity of the D.C. Cook Containments are the equipnent hatch closure plate and the equipment hatch door at 45.1 psi based on the use of mean "as built" material properties.            It should also be pointed out that even if specified minimum material properties had been used as was the case reported in Ref. 1 by Harstead the minimum capacity of the D.C. Cook
      'Containment is 32.3 psi based on the more detailed analyses reported herein rather than the 23.5 psi reported in Ref. 1 which were based on more approximate hand calculations.
It should also be emphasized that the analytical assumption used in the more rigorous analyses reported in this study of the equipment and personnel hatches whose limiting failure modes were in bending still considered only elastic behavior and section properties. It has long been established in the behavior of plate elements during test and as the'asis for the 1.5 increase in allowable bending versus menbrane stress limits of the ASt<E Boiler and Pressure Vessel Code that pl.ate and shell bending elements behave essentially elastic (small deformations) until the plastic section modulus is reached. Since the plastic section modulus for rectangular shapes associated with the hatch plates is 1.5 times the elastic section modulus there is significant additional safety margin in the hatch analysis which is not applicable to the membrane or shear type failure modes identified in the containment concrete shell and base mat.
To  quantify the effect of the plastic section modulus of the equipment hatch on the internal pressure capacity of the containment a non-linear elastic-plastic finite element analysis of the hatch cover plate using the computer Program Af"SYS was performed for the assumed fy = 50.3 Ksi material property. Evaluation at 70 psi internal pressure or 1.64 times the elastic capacity of the cover plate indicated .that the maximum deflection of the plate is still linear and the maximum plastic strain was 1.8 times the elastic strain at yield.
Therefore it is our conclusion that the D.C. Cook Containments as presently designed and constructed constitute a balanced design. That is, the true pressure retaining capacity of the hatches when the 1.5 factor discussed previously is applied is approximately the same as that of the concrete limiting portion of the containment, approximately 54.5 psi. On this basis we do not recommend any modification of the existing D.C. Cook'ontainment hatches.


DONALD C.COOK NUCLEAR PLANT UNIT NOS.t AND 2 ATTACHMENT NO.2 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL 0  
0 0


==2.0 Distributed==
Figure  1 O.C. Cook Containment    Oimensions and General Arrangment Figure  2 Shear Failure Planes    and General    Arrangment of Reinforcement in the 8 base mat Figure  3 General Arrangment    of the Equipment Hatch Closure Plate Figure  4 General Arrangment    of the   Equipment Hatch Closure Plate Splice Figure  5 Finite  Element 51odel  of Equipment Hatch Closure Plate Splice Figure  6 Finite  Element tlodel  of the   Equipment Hatch Closure Plate
I nition S stem 2.1 Introduction Indiana 5 Michigan Electric Company (ISMECo.)has decided to install a Distributed Ignition System (DIS)in Unit Nos.1 and 2 of the Donald C.Cook Nuclear Plant.The DIS utilizes thermal resistance heating elements (glow plugs)located throughout the containment building.Operation of the DIS will be accomplished by means of manual control switches located in the main control room.2.2 Distributed I nition S stem Desi n The DIS is a two-train system employing sixty eight (68)igniter assemblies located throughout the containment building.Each train of thirty four (34)igniter assemblies is further divided into two groups one group of sixteen (16)assemblies in the general lower volume area and a second group of eighteen (18)assemblies in the general upper volume area-including the ice condenser upper plenum volume.Each igniter assembly consists of a General Motors type 7G AC glow plug and a Dongan Electric control power transformer (model 52-20-435) mounted in a sealed box housing as shown in Figure 2.The igniter box is a water tight enclosure meeting NEMA-4 specifications.
'Figure  7 Oetailed Finite Element    i~lode  of the   Equipment Hatch Closure Plate Figure  8 General Arrangement    of the   P  rsonnel Hatch Closure    ,
A copper plate is employed as a heat shield to minimize temperature rise inside the igniter box and a drip shield is utilized to minimize direct water impingement on the thermal element.The transformer is seismically mounted to the igniter box using unistrut.The entire igniter assembly is seismically mounted so as to prevent any possible interferences with safety-related equipment during/after a design basis seismic event. The normal and emergency power sources for each train of igniters meets Electrical Class lE specifications and the electrical train separation criteria commensurate with a Class 1E system are maintained in the DIS design.The DIS will be a manual system controllable from the main control room.Two control switches per train will be located on auxiliary relay panels A7 and A8 in the main control room.The control switches are of the two-position type,'off'nd'on', and red and green indicating.
Plate Figure   9 Finite  Element i'lodel  of the Personnel      Hatch Closure Plate Table  2  Computer Calculated Resultants        Forces in the Containment Base Slab    Oue .to  Oead  l!eight Table  3  Computer Calculated Resultant        Forces in the Containment Base Slab    Oue  to a  Reference 12.0 psi Internal Pressure
lights are provided above each switch.Control room annunciation will be provided to indicate loss of power and failure to operate due to hypothetical control circuit equipment mal:functions.


===2.3 JIIAIAb1===
TABLE 1    SU &iARY OF    tiItfIMUN SPECIFIED    AND AS  BUILT MATERIAL PROPERTIES
The igniter assembly is a 16" x 12" x 8" enclosure meeting NET-4 specifications.
: 1. LINER PLATE  SA442            ~
The igniter is protected from direct water impingement by a 1/8" steel plate (10" x 18" galvanized steel)drip shield welded to the top of the enclosure.
GRADE    60                        YIELD      ULTIMATE ksi SAMPLE  SIZE = 6                 SPECIFIED MINIMUt      1           32.0      -60.0 S = 2.27                          MEAN SAMPLE VALUES                  48.3      64.7 Cov. = 0.047                      i~lINIf'lUM SAMPLE VALUES            45.8      62.4
The igniter is mounted to the enclosure through a 6" x 4" x 1/4" copper, plate to reduce the temperature rise.inside the enclosure during.periods of combustion.
: 2. EgUIPMEiNT HATCH  SA516          GRADE    70 SAMPLE SIZE = 5                  SPECIFIED MINIMUM                    38.0      70.0 S = 2.74                          i'lEAfl SAtlPLE VALUES              53.2       81.2 Cov. = 0.051                      MI fIMUM SAiiPLE VALUES              50.3      80.2
All electrical connections inside the igniter assembly;its associated condulet box, and the two splice boxes per train utilized in the DIS are protected with heat shrink tubing to enhance system performance in an adverse environment.
: 3. BOLTING  SA193                  GRADE 87 SAtiPLE SIZE  2  ea.
In addition, all DIS cables inside containment are routed in conduit and hence are protected from the environment associ'ated with hydrogen combustion.
1/2"  x  2-1/2"                  SP EC  IFI      lI ED i N Ii~lUM          105.0      125.0 i~lEAN SAMPLE VALUES                119.0      137.0 1" x 5-1/2" (SPLICE)              SPECIFIED MIiVIMUM                  105.0      125.0 i~iEAth SAMiPLE    VALUES          121.3      141.0 l-l/4" x    10" (COVER)                 IFIED tlINIi~iUi~l
Access to the interior of the igniter'3 assembly is through a hinged cover plate secured with screws.A bead of silicone rubber will be placed around all bolt holes in the igniter assembly.Details of the igniter assembly and its condulet box are given in Figure Nos.1 and 2.
                                                              'PEC 105.0      125.0 flEAN SAMPLE VALUES                120.1     140.3
2.4 I niter Assembl Locations Igniter assemblies are distributed throughout the containment to promote combustion of lean hydrogen/air/steam mixtures.The DIS will minimize the potential for hydrogen accumulation and preclude detonations in the unlikely event of a degraded core cooling event similar in nature to the TflI-2 accident involving substantive hydrogen generation.
: e. REINFORCING ROD A15              GRADE 40 18S                      SPEC  I FIED  tlI N IMUM            40.0      70.0 SAMPLE SIZE 9                    t1EAN SAMPLE VALUES                  49.8       81.8 S = 3.34                          MINIMUM SAt'lPLE VALUES              44.3      75.5 Cov. = 0.067
The containment air recirculation/hydrogen skimmer system, in conjunction with upper and lower volume containment sprays, provides sufficient mixing so as to prevent the stratification or pocketing of hydrogen in the various compartments of the containment building.Approximate igniter assembly locations are listed in Table 2-1.A general view of.the containment structure is provided in Figure 3 and approximate
: 5.             28 DAY STRENGTH    UflIT 1 and 2 CONCRETE SPECIFIED t'lINIflUil                          '.5 SAMiPLE  SIZE 29                 flEAN SAt'1PLE VALUES                            4.956 S =  0.508                        YINItlUtl SAMPLE VALUE                          4.112 Cov. = 0.103
~~~~~~~~~~~~~~~igniter locations shown in Figure Nos.4, 5 and 6.The locations given are for D.C.Cook Unit No.2 and are typical for Unit No.1.'inor'.variations'n ig-niter locations may be required in.Unit iVo.1'in consideration of physical inter-ferences with.existing equipment.
A'schematic representation of the DIS electrical network inside containment is provided in Figure Nos.7 and 8.One of the questions raised by members of the NRC staff during our meeting of March 18, 1981 dealt with the need, or lack thereof, to install igniter assemblies in the instrument, room.to date indicate that except for potential between the instrument room and either the The results of our reviews.performed in-leakage there is no communicatio'n general lower volume or the pipe tunnel (annulus region)with the exception of the flow path-through the hydrogen skimmer ductwork.
The above notwithstanding, it should be noted that any leakage into the instrument room would, in all probability, be significantly less than the hydrogen skimmer flow (100 CFt1 per train)out of the room, thus preventing I the accumulation of hydrogen to combustible levels.It should also be noted, that the effects of hydrogen combustion on'required'quipment located in the instrument room, pressurizer pressure and pressurizer level transmitters, is, for all intents and purposes, bounded by the calculations contained in Attachment No.4 of this submittal.
TABLE 2-1 IGNITER ASSEMBLY LOCATIONS*
Sheet 1 of 2 No.TRAIN'A'om artment/Area-El evati on No TRAIN'B'om artment/Area-El evati on A-1 A-2 A-3 A-6 A-7 A-8 A-9 A-10 A-11 A-12 A-15 A-16 A-17 A-18 A-19 A-20 A-21 A-22 A-23 A-24 A-25 A'-26 A-27 A-28 A-29Ice Cond.Upper Plenum Ice Cond.Upper Plunum Ice Cond.Upper Plenum Ice Cond.Upper Plenum Ice Cond.Upper Plenum Ice Cond.Upper Plenum Ice Cond.Upper Plenum Inside&#xb9;1 SG Enclosure Inside&#xb9;2 SG Enclosure Inside&#xb9;3 SG Enclosure Inside&#xb9;4 SG Enclosure Inside PZR Enclosure Outside&#xb9;1 SG Enclosure Outside&#xb9;2 SG Enclosure Outside&#xb9;3 SG Enclosure Outside&#xb9;4 SG Enclosure Outside PZR Enclosure Primary Shield Wall Primary.Shield Hall Primary Shield Wall Primary Shield Hall Primary Shield Wall Primary Shield Wall East Fan/Accumulator Room East Fan/Accumulator Room West Fan/Accumulator Room Hest Fan/Accumulator Room Vicinity of PRT Upper Volume Dome Area Upper Volume Dome Area 708'09'09'09'09'10'09'86'86'86'86' 686'59'662'62'62'62'47'48' 648'48'41'48'31'29'34'18'60'60'-1 B-2 B-3 B-4 B-6 B-7 B-8 B-9 B-10 B-11 B-12 B-13 B-14 B-15 B-16 B-17 B-18 B-19 B-20 B-21 B-22 B-23 B-24 B-25 B-26 B-27 B-28 B-29 B-30 Ice Cond.Upper Plenum Ice Cond.Upper Plenum Ice Cond.Upper Plenum Ice Cond.Upper Plenum Ice Cond.Upper Plenum Ice Cond.Upper Plenum Ice Cond.Upper Plenum Inside&#xb9;1 SG Enclosure Inside&#xb9;2 SG Enclosure Inside&#xb9;3 SG Enclosure Inside&#xb9;4 SG Enclosure Inside PZR Enclosure Outside&#xb9;1 SG Enclosure Outside&#xb9;2 SG Enclosure Outside&#xb9;3 SG Enclosure Outside&#xb9;4 SG Enclosure Outside PZR Enclosure Primary Shield Wall Primary Shield Wall Primary Shield Hall Primary Shield Wall Primary Shield Wall Primary Shield Wall East Fan/Accumulator Room East Fan/Accumulator Room West Fan/Accumulator Room Hest Fan/Accumulator Room Vicinity of PRT Upper Volume Dome Area Upper Volume Dome Area 709'09'09'09'09'09'09'86'86'86'85'82'62'59'59'59'59'42'37'36'36'37'45'30'29'23'34'18'60'60'


Sheet 2 of 2Ho.TRAIN'A'om ar tment/Area-El evation No.TRAIN'B'om artment/Area-Elevation A-31 A-32 A-33 A-34 Upper Volume Dome Area-760'pper Volume Dome Area-748'pper Volume Dome Area-748'pper Volume Dome Area-748'-31 B-32 B-33 B-34 Upper Volume Dome Area-760'pper Volume Dome Area-748'pper Volume Dome Area-748'pper Volume Dome Area-748'EY: SG-Steam Generator PZR-Pressurizer PRT-Pressurizer Relief Tank locations given are for Donald C.Cook Unit No.2 and are typical for~~~~it No.1.  
WV64VJI140 ~ 409 ~ i999)]l  0 lll 974 ~  ~  ii0 vi Table 2       Computer Calculated Resultant                          es in the SOLUTION FUNCTIONS            IH  SYSTEtt REFEREHCE FRAttf                  Containment Base Slab Due to De                        Weight 1  0.207258K 04        0.0                      0.179783E 04        0.834138E 05 -0.120054E"DR        0.0          -0.719304E-DR        0 9 163836. E 0 3 R  0.220710K 04        0.0                      0.1816692E 04        0.548537K 05 0.148695C-OR        0.0            0.70479OE-OR        0.16218iiE 03 3  0.2340638K 04        0.0                      0. 183450 E 04      0.243167E 05 0.414161K-02        0.0          -0 '85N9E-02          0.159343E-03 0.249031E 04        0.0                      0.185155K 04        0.8N924E 04 0.675165E-OR          0.0          -0.64346.7E-02        0.156762E 03 5  0.263875E 04        0.0                                  f
: 0. 186 704 O4      -O.42e949E 05 0.9304051E DZ        0,0            0 '36066K-DR        0. 152896 E-03 6  0.279153E 04        0.0                      0. 188343 E 04      -0.796689E 05 0 ~ 117869E-0 1      0. 0          -0.603897K-OR        0. 148194" E-03 7  0. 2940CEi5 04      0.0                      0.189335E 04        -0.11C619E 06 0.141846K-ol        0.0            0.5646ii9E 02      0.142618E-03 8  0.310?2'?E 04        0.0                    0.191265K 04        -0.159789E 06 0 ~ 164i827E-Dl      0'           -0.56200034'.E-02    0. 135108f -03 9  0.32737"E 04        0.0                    0.19263>>E 04        -0.20322lf 06 0.186456E-01        0.0          -0.4757042E-DR        0.126616f-03 10  0. 344161E 04        0.0                    0. 193942K 04        -0.24S953K 06 0.2071452-01        0.0            0.421537K-DR        0.120092E-03 11  0.361263E 04        0.0                    0. 195193K 04        -0.29)069K 06    0.226201E-ol    0.0          -0.361094K-02        0.110472K-D3 ACTUAL STRESS RESULTAIITS-SIIELL REFERENCE FRAtlf-BODY 7
                                                      %AT CEIITROIOc STATIOtl CEIITROIOS                      Hll                tt12                H22            013            Q23          Hll              H12                tt22 tlO;    tlfRID ~ HOOP              LB/IH                LB/IH              LB/IN          LB/IH          LB/IH      IH-LB/IH          Itl-LB/IH            IH-LB/IN 62.662    62.BII 0. 179783 E            04 0.0                  0.216753K 04-0.207258K 04    0.0        -0.192634E 05 0.0                        0,189855E 06 R  62.86R    62.811 0. 1S1662E              04 0.0                  0.216602E Q4-0. 220710K 04    0.0        -0.488963f 05 0.0                        0 ~ 177062E 06 3  62.65      6 .Sll 0. 183450 K            04 0.0                  0. 216593E 04-0.234638E 04    0.0        -0.80454ioiE 05 090                      0.163588E 06 62.85R    62.811 0. 185155E              04 0.0                  0.216720E 04-0.N9031E 04      0.0        -0.113994E 06 0.0                        0,149402E Ob 5  62.6562    62.811 0.166784E              04 0.0                  0. R16971E 04-0.626'3875E 04 0.0          -0.149570E 06 0.0                        0.134474E 06 6  62.R62    62.Cll      0. 160>>343K 04        0.0                  0.217339E 04-0.279153E 04 0.0            -0 ~ 187235E 06 0,0'                     0.11877ef 06 7  62.862    6".Sll      0.189335K          04 0.0                  0. 217818E 04-0.2948ii E 04 0.0          -0.227037E 06 ~ 0                        0. 102285K Ob 8  62066R    62.611 0.191 4"f              04 0.0                  0.218402E 04-0.310929K 04 0.0            -0.269024K 06 0.0                        0 849739E  05 9  62.862    62.811 0.192634if              04 0.0                  0.219084K 04-0.327378E 04 0.0            -0. 313238E    06  0.0                0.668169E 05 10  60.06 "61 011 0;19 W."E                  04"0;0                  0:039060r04=0".344161E"04 D.E            -0.359717E      06  0.0                0.47793if  05 ll  62.862 62.811 0.195193E                  04 0.0        -
0.220726E 04-0.361263E 04 0.0            -0.408547E 0
06  0.0                0.278602K 05 RESULTANT STRESSES-PSI          BOGY  S STATION LAYER              STRESS    Sll          STRESS    Sll    STRESS S12        STRESS S12      STRESS S22            STRESS S22 HO.        HO.              INSIDE              OUTSIDE            INSIDE          OUTSIDE            INSIDE              OUTSIOE I
1        0.14413K 01            0.13126E 01        0.0              0.0            0.36946K 02            0.33971E 02 2       -0.46754E 02          -0.46667E OR        0.0              0.0            0.99142E-05          0. 98951E-05 3      -0.1609iE-05          -O.16O44E-O5        0.0              0.0            0.28696K 03            0.28607E 03 4      -0.465i7E 02          -0.46276E 02        0.0              0.0            0.9C645K-05            0 93099E 05 5        0.12971E 01            0 ~ 1113CE ol      0.0              0.0            0 ~ 3>>4313K 02        0.29374E 02 6      <<0.40609E 02            0 403r59E 02      0.0              0.0            0.85744K 05            0.85194K-05 7      "0. 13917E-05          -0. 13820K-05        0.0              0.0            0.24?obf    D3        0.24529E 03


'IL~  
3        Computer Calculated. Resultant Forces                      i Containment Base Slab              Due  to    a  Referen    .0 psi COOK PLAHT    SOIL PARAtlETER STUDY tIO. 1                          12-30-80 LOAOItlG 3 DEAD IIEIGIIT                                                                              Internal Pressure SOLUTIOII FUIICTIOIIS      IH  SYSTEti REFfREtlcE FRAtiE 1  0.362819E 04      0.0                0.12<i021E 04          0 ~ 197442E  06 "0.181325E 01        0.0          -0.936208f-02        0. 193628E-03 2  0.300629E 04      0.0                0.125169E 04          0.1477Z6E 06 -0.161004E Ol            0.0          -0.9 >0639E-02      0 195016E    03 3  O.R40632E 04      0.0                0.126290E 04          0. 108624E 06 -0.180663E Ol          0.0          -0. 939061E-02      0 195358E    03 4  0 18 6rSZE 04      Q.o                0 12732rDE 04          0.600810E 05 -0.180361E 01            0.0          -0.93292QE-OZ        0.1'94910E-03 5  0 ~ 126535E 04    0.0                0.1"6295E 04          0. 609194E 05 0.1600<>OE 01          0.0          -0.923599E-02        0. 193908E-03 6  0.721415C 03      0.0-              0.129201E 04          0 roQ246E 05 -0.179?RZE 01            0.0          -O. 912352 E-02      0.1925?GE-03 7  0.19$ 453E 03      0.0                0.1300<>5E 0<i        0.493393E 05 -0.179405E 01            0.0          -0.90039<>E-02      0.191125E-03 8  -0.319680E 03      0.0                0.13OGReE O4          0 560519E    05  -0.179091E    01    0.0          -0.866667E-02        0. 18975<IE-03 9  -0.618996E 03      0.0                0.1315<>?E 04          0.705932E 05      -0.178760E    01    0.0          -0.878656E-02        0. 166653E-03 10  -0.13054ZE 04      0.0                0 ~ 132209f 04        O.926286C 05      -0.1764i69E  01    0.0          "0.871393E-OR        0. 180003E" 03 ll  -0.176029E 04      0.0                0 ~ 13261ZE 04      ,  0.121891E 06      -0.178159E    01    0.0          -0. 667<i6<iE-02    0. 187975E-03 ACTUAL STRESS RESULTAHTS-SIIELL REFEREtICE FRAtlE-BODY                    7
*<<~<<tII<<~<<t r (tl~~<<II'I II~1/I<<'<<<<A 1
                                              /AT CEIITROIO<
STAT IOII CEHIROIDS                  till            O I '>                ll22            R13              O23            till              ti12 .          ti22 HO.      ttCRIO. IIOOP          LG/IH            LG/IH                LB/IH            LB/IH            LG/IH        IH-LG/IH        IH-LB/IH            IH-LG/IH 1  62.662    62.811    0 ~ 124021E  04 0.0                  0.163855E 0<>-0.362619E 04 0.0                  0.126612E 06 0.0                  0.250910E 06 2  62.662    62.611    0.125169E 04 0.0                      0.16391<>E  04-0.3006    9E 04  0.0            0.7622GOE 05 0.0                  0. 236913E 06 3  62.862    62.611    0.12629OE 04 0.0                      0.16320?E 04-0.2<i0632E 04        0.0            0.3669?GC 05 0.0                  0.223955E 06 62.662    62.611    0.1273 5E 0<i 0.0                      0.163539E 04-0.162652C 04        0.0            0.736369E 04 0.0                  0 ~ 212269E 06 5  62.662    62.811    0.126295E 04 0.0                      0 163115E 0<>-0.12653rSE      04  0.0          -0.123520E 05 0.0                    0.202044E  06 6  62.662    6"..811  0. 129201E 0<i 0. 0                    0.1625<>if  04-0.'/21<>15E  03  0.0          "0.2296<i2E 05 0.0                  0.193441E  06.
7  62.662    GZ.I>11 0.13004. E 0<i 0.0                      0.1616"1C    04-0.193<ir>3F  03  0.0          -0.2<>9$ 14E 05 0.0                  0.186555F 8  62.652    CR.GII 0.13062of 0<i 0.0                        0.16095?E    04 0.3196QCE    03  0.0          -0.166653E 05 0.0                    0.161563E  06 9  62.662    62.611 0.1 515<i?C 04 0.0                        0.159956E    04 0.81699GE    03  0.0          -0.453569E 04 0.0                    0.17652ZE  06 10    62.CGZ    62.811 0.132209E 0<i 0.0                        O.l'>:GZOE 04 0.130542E      04  0.0          0 1712"1E 05 0 0                    0.177466E  06 ll    62.662    62.611 0.13"612E 0<i 0.0                        0.157549L 04 0 ~ 178029E      04  0.0          0.460396E 05 0.0                    0.178462E  06 RE  ULTAHI'TRESSES-PSI              BODY    8 STATIOH LAYER          STRESS 511            STIIC55 511          Sll\L55 SIR        STRESS 512      STRESS 522          STRESS 522 IIO.      IIO.        IH51DE              OUTSJDE                Il>SIDE          OUTSIDE            II>SIDE          OUTSIDE 1     0.2<i416E 01          0.22035E Ol          0.0                0.0              0.60108E 02        0.5419?E 02 2    -0.73659E 02        -0.73<i81E 02            0.0                0.0              0.15811E-04        0 ~ 15773E-04 3    -0.25338E-05            0 2r5241E 05        0.0                0.0              0.457<ilE 03        0.4556<if 03
                                    -0.?319QE 02        -0.72691E 02            0.0                0.0              0.1571ZE"04        0 15603E    04 5      0.2)749E 01          0.18357E Ol          0.0                0.0              0.53466E OR        0.45064E OR 6    -0.61216E 02        -0.60709E 02            0.0                0.0              0. 131<ICE-04      0.13037E-04 7    -0.20934E-05        -0.20738E-05            0.0                0.0              0.37609E 03        0 '7<>56E 03


N I f i I P I"~p't 7 AEP: NRC: 0500A 768'pper Volume Polar Crane 715'pper e Plenum I)@drogen Recombiner 692'ce Bed Pressurizer Lower Inlet Doors I (I (I I 1 I I'ZKf" 1l Steam Generators 650'7" Lower.Volume Instrument Room Recirculation Fan Pressurizer Relief Tank 4q>'r Reactor Yessel I', FIGURE 3 Section'A-A'levation 618 FIGURE 4 g A-i<East Fan/Accumulator Room Pr,imary Shi el d Ha'il Crane Hall I l9-I A 10 X i I nstr ument Room L O 8-2>g~--A>+V E'.Hest Fan/Accumulator Room 4 8-2W Q-i7 Q I D.C.Cook Unit No.2 Containment.
TABLE 4         SUf1NARY OF  LIHITING INTERNAL    UNIFORt1 PRESSURE  CAPACITY OF D.C. COOK CONTAINMENT INTERNAL PRESSURE    CAPACITY (ELASTIC ANALYSIS)
Plan Beloved El evati on 652'7" Pressurizer Relief Tank Train'B" Igniter Train'A'gniter FI 6~A-Z 8-c.Ice Condenser p~lO~p, t5 g~g P/j/~+M/Q/D.C.Cook Unit No.2 Containment Plan Above Elevation 652'7" Train'B'gniter a Train'A'gniter L~~
(See Subsection    4.0  for Plastic Analysis)
FIGURE 5 0, Pl atform Elevation 748'5" Platform Elevation 759''"32+33 I Ice Condenser Top Deck Doors Elevation 715'.C.Cook Unit Ho.2 Containment Plan Above Elevation 715' 0 0 1 4 I r t I I I I I I I I 4 I I I I I I I 4 I'I I I I 1 I I t I 1 I I'I 4~I I I I I 1 I~I 4 1 I~I I I I I I 1 4'1 t I i 1 i 4 I~I I 4~I't i 4 i~I 4 I I 1'I I-'4 I 1~~4 I~I~'I'I I!I I t 1 1 1 I 4 i 4 i~4 I (~4 4~I I I I I f I I I I I I I~I I I I I I I I I.'I}'I I I'I I I I~t!I I z7Bx 4 I 4~jg'm uzi!:Iik i 7'L~~L.g I AZ~i Q~+I t I" 4'1 I 1 1 4 4 I~~.~1'I 4 I I~4 4 4 4 4 1 I~~I I I'I I 1~44 l~~I 4'I I'~4 f~I 4'4 I 4 I'4 i 4, 1'}4 I 4 i I 4 4'I~~~f ,'I I I+2Mzw&&U7-I 1'~4~4 t I~I~I'J I 4~I 1 I'I~I 1.-!4~,'(4', 4~1 I 4 I I I 4 I 4!i*4'4'4 Il~,~s I~.'~4 1~~,~4'I I t I 1 4~I I I~I I~1 I!I I t I I 1~a~I 4~~~4 I I~I i;'4 I 4 1 1 1 I I 1 I I~1 I tl'!I}I'i I I I 4 4 4~4 I~I 4 i I I'1 I I I I I~!}I I I I I I;'4 I}I 4 i I I I~I s 4 I I!~~t!I.I I I I i i'i I~1 ,N~I I I I I~I 1 I I I 4 I 1 I I 4 i 1 I f I Q I I~I 4 t I I I i (I I I I I I I I 4 I I 1/Q I f/il 4 4 1 I~I I I i i~1 4 I I a I I'I I 4 x~mWA C2e~4 I'4 4 1 t t~'4 4 4 I~''t 4 4~I I I~j k I 4 I 1 I I I I~s I 4 tl 4 J~as~t 4 4 4 92-'ing~+7 1~'.4 t I I i+(IWII}1 4 I I i I I I a~4 1~t,~~~1 I 4-~4 i 1't 4 4 1~I~i t~~I I I*4 4~I~~f I I I 1'r 4 II I 1 I*~}I I't I', I I I 4 I I 4 I I 4-'4}Va t-='4 w+~g 4 I f~ts~I~4 4 1 I I 4 44.1(.'I 4 ttett I I I I 4 l i~'I 4 I t I~I I I i~4 4 I I 1 I I I 1 I I I I I I I (I I I I I I~''t I I!1~I*a I'.''"}I I I I I~~1 I 4 I~JI I 4 1 I I I I I I 6~AH s I I I k I I I 4 I I!I~'.~I I I i'I I 4~4 4 1 I I I 1~.I I~}'I I e I I I'i~.1 I!I\.I I I I s 1 f I~4 I~!I I I 4 I I 4 I 4 I I k I!I I s I'1 4 I 1 1 I I I 1'I 4 I.I I 4 s I" i: k I I-I 4 f 4~I I';f i 1~4-'I I 1 1 i 4*I 4 i I I I 4 i J I 4, t~.I I I t i~4 4 4 i I 1 i'I I 1 4" 1 k'.I!I 4 I I I~li~I'I','4 J k 4 4 4 4 1 4~~1 4 s~I r v~EiddA.4~4 (1 k 4:4'/T 1 4 I I I I I I I I I'9a I 4 I t I's~4 1 t P~~cf EAHLZI i t I i 1 1~I I 4~1 i I eke~&44 M Me4d~.~4 I 4 I 1~"'4-'4 I I I I 4 i I}i I!I I I I" t I i~I I.I I I I I I I i I I 4 I I I I I!I I I I I I I I (I 1'I I I I I I I I f I 1 I I~4~I 4 1~'4't 4 4
CRITICAL FAILURE            SPECIFIED    MINI tlUN                    LOlJEST ii/EASURED                      MEAN SAMPLE 110DE                      PROPERTIES                            SNlPLE PROPERTY                          PROPERTY
'I c I I 1 c I p 1~1 I~i~It I'I~~~c 1'i c c 1-1*r~1 P',~1 I I I I tl i," i c I T I.~/~pg I t~I II~c h I 1+c I c v.BE???: A&7&w7AJW v lt~I dC~i-cczxzemw II~I I I~r c~'I~I I I I~~~I g, c I 1"/Q, ff I c~~t c'I t II I 1 I I 11-.1~i I c c I S~vczw<WAX'~PfZ&7 CPS-:2.+W~7ERB i~lil~I I*c t c XA'/WAN EE2&#xc3;/~A>..rr?
: l. Bending Shearing          fc = 3500 psl; fc        = 59.16          fc = 4100 psi; fc      = 64 03        fc = 4950 psi; fc    = 70 36 Concrete Base t1at        Limiting internal                          Limiting internal                      Limiting internal pressure = 45.8 psi                        pressure    = 49.6 psi                pressure  = 54.5 psi
I[~i~~c c,i~c~w ci I c i)c j t--.~~-i+I t I~I L'-Li'c=-~~~~c=~c*.=v 1'~c P 8z....f/'I+'~v 1+c~c I 1.I li i MJP>'1'{~'OP{:*<<, I~~I~+gj~I I i" I'I I~u I I I,~1~.~o 1 II r, I f'Gq.a~P C II~~1 IMP III I II*~~:::&E?I?ER?rt~
: 2. Membrane Hoop Tension      fy  = 40,000 psi                          f> = 44,300 psi                        fy  = 49,800 psi in Concrete Cylinder      Limiting internal                          Limiting internal                      Limiting internal pressure = 50.2 psi                        pressure = 61.2 psi                    pressure = 67.1 psi
~:CJR+EW: C r??WRIER 7/YEnZ7:: YXF Z e~im~RS:-.c de/.tl v I'~t I t I*LZ r r=Au'2 CRa~~..r r&iH wWzd:NA'd mAl.z>-.~II IV~;C~{?a;c I n der~o.4;'507 c z~MMJ&f',~I v I 1 t'1 I I~c c I i~j+4'J'.
: 3. Bending Capacity  of      f> = 38,000 psi                            f> = 50,300 psi                        fy = 53,200 psi Equipment Hatch            Limiting internal                          Limiting internal                      Limiting-internal pressure  = 32.3 psi                    pressure    = 42.6                    pressure 45.1
DONALD C.COOK NUCLEAR PLANT UNIT NOS.1 AND 2 ATTACHMENT NO.3 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL
: 4. Bending Capacity of        fy  = 38.000 psi                          fy =  50,300 psi                        fy = 53,200  psi Personnel Hatch-(a) Closure Plate          Limiting internal                          Limiting .internal                      Limiting internal pressure  =  33.6 psi                    pressure    = 44.4 psi                  pressure  =  47.0 psi (b)    Door                Limiting internal                          Limiting internal                      Limiting internal pressure  =  32.3 psi                    pressure    = 42.6 psi                pressure  =  45.1 psi Note:   Internal Pressure Capacity wherever noted      as  "psi"  means  "Psig"


===3.0 Inade===
CCNTAILlHEMT Ql Qll STEEL LILlE            ll
uate Core Coolin H dro en Control E ui ment 3.1 Introduction There are two primary concerns associated with an inadequate core cooling (ICC)event similar to the TMI-2 accident involving the release of substantive amounts of hydrogen and subsequent combustion uti li zing the Distributed Igni tion System (DIS).These concerns involve, (1)the abi lity to achieve and maintain the reactor coolant system in a safe shutdown condition and (2)maintenance of containment integrity through adequate hydrogen control.The equipment located inside reactor containment required to perform the above functions is identified in this section.The survivability of the equipment discussed herein during periods of hydrogen combustion is addressed in Attachment No.4 of this submittal.
                  >/b" THICK SPRlHG LlN                                                          ~ ~
The containment response to hydrogen combustion is contained in Offshore Power System (OPS)Report No.36A05 previously transmitted to the Commission as Attachment No.2 to our first quarterly report on hydrogen issues (AEP:NRC:00500 dated 12 January 1981).The analyses performed by OPS utilizing the CLASIX computer code clearly indicate that the peak pressure resulting from hydrogen combustion is well below the ultimate strength of the Cook Plant containments.
Z STEEL LINER                                  ~
3.2~Ei EE Table 3-1 lists the active components inside containment required to function during and (or)after periods of hydrogen combustion.
g
The location of these components and their susceptibility to hydrogen combustion effects are addressed bel ow.
                >io'HICK IA I I 5'  ID.
STREL LIQIR                  "
                  >/Z'HICK                      ~QRAOK                                f GROUQO  FL.                                       1 4'lo"p BASE
                                                                                    ~ToP    op MAT
            <ms'~r
                                ~.
leo'-0"  OD GFCTtohJ      A-A GECTIQN4,L          F.LEYATIQQ Figure    1  D.C. Cook Containment Dimensions and General Arrangment


(1)Steam Generator Narrow-Ran e Level Monitors.Three safety-grade differential pressure transmitters (tL P)are employed on each steam generator to monitor narrow-range steam generator water level.The kP transmitters, manufactured by ITT 8arton, are fully qualified for post-accident use inside containment (LOCA/MSL8 qualification).
  .F. c, All L'
These transmitters are located in the general lower volume, with two transmitters per steam generator mounted nearly eleven feet below the maximum containment flood level of 614'levation.
                . I~I
Clasix run JVAC4 (see Attachment No.2 to our AEP:NRC:00500 submittal-OPS Report No.36A05)represents the minimum time to'ombustion for the S2D cases run to date.and hence represents the case for which the minimum containment water level would exist at the time of'nitial combustion.
                        . CL I'.
Figure No.32 of the OPS report shows the initial combustion to occur in the lower compartment approximately 4,600 seconds into the S2D event sequence.Assuming that water is transferred to the containment from the refueling water storage tank (RWST)solely via two containment spray pumps, it is cle'ar that the minimum usable Rl<ST volume specified in the Plant Technical Specifi-cations (350,000 gallons)would have effectively been delivered to the containment pump long before the onset of combustion.
I I
In addition, the OPS report shows that approximately 22.4X of the initial ice inventory has been melted during the LOTIC portion of the analysis;up to a time of 3480 seconds.Assuming the initial ice inventory to be the Technical Specification minimum value of 2.37 million pounds;
                                                  ~ 4 a
~'  it is thus shown that in excess of 530,000 pounds of ice has been.melted prior to combustion.
                                                        ~
This ice melt is equivalent to approxi-.mately.80,000 gallons of additional water in the containment.
                                                          'nv
Combining the ice melt with the Rl<ST water yields a total containment"water inventory of 430,000 gallons, well-in excess of the water inventory which would result in submergence of two level transmitters per steam generator.
                                                            ~  h 7\
Thus, it is clear that the steam generator narrow-.range level monitoring function would not be susceptible to the effects.of a hydrogen combustion environment.
Sa
'(2)Pressurizer Pressure and Pressurizer Level Monitors-The pressure transmitters and the kP transmitters utilized for.the pressurizer (PZR)pressure and level monitoring functions, respectively are located in the instrument room.These transmitters,-manufactured by ITT Barton, are fully qualified for post-accident use-.inside containment (LOCA/MSLB qualification).
                                                          , I,4$. TC H                    0'r; C
As stated in Section'2.4 of Attachment No.2 of this submittal, our reViews performed to'date indicate that there is no comnunication between the instrument room and either lower compartment or the pipe tunnel (annulus region)-;other than the hydrogen skiomer ductwork.In addition, the CLASIX H=analyses do not predict combustion in the dead-ended volume, of which the instrument room is a part.Hence, the information available at-this time indicates that the PZR pressure and level transmitters would II not be exposed to a hydrogen combustion environment in the unlikely event of a degraded core cooling event involving the generation of substantive amounts of hydrogen.
gC...
I~e (3(~333 tll-3 3 T The RCS wide-range pressure transmitters are located in the lo.rer compartment nearly eleven feet below maximum containment floodup level.The transmitters, manufactured by ITT Barton, are fully qualified for post-accident use inside containment (LOCA/MSLB qualifi-cation).For reasons set forth in Item (1)above, these transmitters would be submerged prior to initiation'f combustion and hence would not be exposed to a hydrogen combustion environment in the unlikely event of a degraded core cooling event involving the generation of ,substantive amounts of hydrogen.(4)Core Exit Thermocou les The effects of a hydrogen combustion environment on the core-exit thermocouple cable is addressed in Attachment No.4 to this submittal.(Ri~RCS (RT The hot leg and cold leg RTQs, located in the lower compartment,-are fully qualified for post-accident use (LOCA/MSLB qualification).
l.Y= fi lc  ~
3 The cable associated with the RTDs is addressed in Attachment No.4 to this submittal.
                    . Iivi Ill                        ~    5          -~ n.)
tl=(6)Air Recirculation H dro en Skimmer Fans ('he air recirculation/hydrogen skimmer fans are located in the uppe~cd.,partment and the Pan motors are fully qualified for post-accident use'(LOCA/MSLB qualification).
                                  ~ + II~
(7).Distributed I nition S stem DIS Com onents The DIS components inside containment are the igniter assemblies; splice boxes and condulet boxes, and the ancillary cable.All DIS cable inside containment is routed in conduit and thus is protected
                                ~T
    /                                                                                                                gl" I .
IICI  -"
/
14
                '']I.
7 7
                                                                                  ~  ~
v g
Is) =    i
                                                                                  'L                          !w!  !
Nd I
cc g
g                I) -:
                                                              ~ 5
        )r        Cl I
                      ~
                                                                                                                                )),'4IAtf+JLC ~~
I ~ 'p->I" 4 A      j A    ~
A    v~Gs          e
                                                                                                        ~P.A> <
(cd 5
I3y QR I & p oP,c)w~ .
                                              ~le."'. =v I'          Pell'c                NOT=
: 1. i V:<~irL.ii;~N i<W=. (r.=)
                                                                                            <IVEIl TnE C"=tIT"-R C3llT T'3                               JF          HN I'I-L    C    Il-IO'2                                                                      r-I I.     c ~ -=r. T      A:.-      II:.,T"-G.
Figure      2      Shear  Failure Planes and General Arrangement of Reinforcement in the Containment Base Mat


.from a hydrogen burn.All electrical connections inside the igniter.assembly, its associated condulet box, and the two splice boxes per train utilized in the DIS are protected with heat shrink tubing to.enhance system performance in an adverse environment.
5'-31'i'-t5 YP h                                        32 -  ! ~/0" $ HDLES ON 25O'I<" S.C.
The igniter assembly itself is a sealed enclosure meeting NEMA-4 specifications.
S4 EQUAL SPACES-                 BoLTS
h
                                                          -- - ~ -~ ------I=
;.Table 3-1 ,;Donald C.Cook Nuclear Plarlt Unit Nos.1 and 2.Inade uate Core Coolin/H droqen Control E ui ment*-{1,)',Narrow-range Steam Generator Level Monitors.(2)Pressurizer Level Monitors{3)Pressurizer Pressure Monitors-':(4)RCS Wide-Range Pressure Monitors-.:{5): Core Exit Thermocouples
I 8+ EQ0AL  S ppeES-   ..-                         0'-30'O-3/<"
-{6)RCS Loops RTDs--{7)Air Recirculation/Hydrogen Skimmer Fans=-.(8)Distributed Ignition System Components
SoLTS                                                      4 HOLCS, ON      l24" S.C.
*inside reactor containment
Figure 3 General Arrangment of the Equipment Hatch Closure Plate


DONALD C.COOK NUCLEAR PLANT UNIT NOS.1 AND 2 ATTACHMENT NO.4 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AAD CONTROL 4.0 E ui ment Survivabilit This attachment to the quarterly report addresses the issue of the survivability of equipment exposed to a hydrogen combustion atmosphere inside containment.
I] I          I) I e ~
Heat-transfer models have been developed to determine the effects of hydrogen burns on critical components (see Table 3-1 in Attachment 3).The models are presented in this attachment followed by a calculation made for a representative piece of equipment.
I  ~ ~ 0 S
Particular attention has been devoted to a number of individual pieces of equipment, each of which is discussed separately.
~>(
4.1~G1 A In order to characterize the environment to which a piece of critical~~~equipment is subjected during and subsequent to a hydrogen burn, two heat-transfer models have been developed.
 
The first heat-transfer model is a time dependent heat-transfer analysis which calculates the lower compartment environ-ment as a result of a hydrogen burn.This model takes into account the presence of structural heat sinks and sprays in the lower compartment and assumes that during a hydrogen burn energy is removed by the ice condenser.
<<)rLO<<%Oral<< ~
The burn itself is modelled by an energy input rate to the compartment.
0
At the onset of the combustion, the lower compartment is assumed to be isothermal; energy is then introduced into the compartment for a duration of 20 seconds, comparable to the time of a hydrogen burn in the containment.
~ .I ~
As a result of the burn, the temperature of the compartment atmosphere begins to rise rapidly;concurrently, heat is being transferred to the structural heat sinks and removed by the ice condenser and by)he lower compartment sprays.Heat transfer to the containment sinks is characterized by both convection and  
5~4  '
F  05 14$      145  I~ 0    140    14<<      1%0    I5 I      1%0
)  ~ 0%
IL)
Bot.T                  Wal.b            , It/I t PIIOf:II                            It%      ltk    lt)
                                                                          > I . I LC                                            Ill%I Ie<<)                                                C II      tl  10 ~                  101            100    I  ~ I            ~5
                                                                                                                                                                <<5      %7
                                                                                                                                                                                              ~
TO                            ~4      0%      OC              ~5    I                                                        g i
I
                    ~ l        1~        Cl I              5)    SC  S  5  S      Sl            5~      CI      Ct      ~ )    5    C    5 Cl    5~      )0 I
IC          t      20                                                                      )0    4    ~    4 ~4    4$      ~5      ~1
  ~  Cl 14      1%    I        I tl  ~ tl      tt                t4
  ~  00
                -$ .)l  -4.15  -4. Il  -I SC      .<<.0$      -5 ~ )4    I 4)      I  lt  -.Sl              eCI      I lt    I  ))  t )4 t  IP    )  55    4 IV  4.v<< S ~ )0  C. ~ 0
                                                                                                            ~ %1
                                            ~
tWC      5100lh JOIST) Os4LVCIC    0101140 rOOCL                                                CC Ori tev    v                                  0      4                          raaSLO    )
I I<I >> ~ ~ r      I'1nltr. Elefnent Hodel      of'qul pmrnt        I%Itch Clos>>rr I'intr'.
Splice
 
31 PREP7-PLOT 42              51
                                                                        /
6          e 34 53                  0 12 2 27    3  37          5 28                    6 38 47                                    12 48                                      1,4  1  3 8
31 19                              91      14    1 3
12 1          15 76 1
2 2                              7,              12 13                15 1                                8            8 8
8        5 3 1                                    8                                    158 15          15
                                                                ,gf 16 g
Qi  I
                                                                      ~
15      1
?PREP?                                                                                          EPLT ANSYS Figure 6      Finite    Flement Model  of the  Equipment Hatch Closure Plate
 
rg DI
                          ~    '.2 S  peal 12 OF-o3      1  33    122 64 12 142
                          /1j'6 143 125 15 68 75                                        145    154 128 155 129 147                      156 130 Bc                                  148          157 1 g    131 132 149                158 2
            - ~l"                              138 158                159 139 15'52                160 161 cot  T ANSY5 6 Figure 7      Detailed Finite Element Mode(of the Closure Plate                                      Equipment Hatch
 
(y
          /'"
g!
                /
63/i" DEPTH 9'lz" DEPTH IP/p DEPTH (YVP)
I T'oY'Rw PEPTIC
                                                ~  I I
                                                                                  ~
PLsrrE                                      i" PLATE P
                                                                            ./
: 7) r F'CW EAS 3  DEPTH~ 4        ~
!TVP3                                                              ~  4
                                                          ~ >
Figure 8    General Arrangement  of the Personnel Hatch Closure Plate
 
1 11 72 S9 36  39 33 29 5 32        35  33        3iQ    12 16 821 28    31          37        ?48  56      3 14 720  2'?                          14?  55  62 33 13 619  26                          046  54  61 20                          12 518  25                          QiS  53  60        7    16 ea    6    11  417 24                          844  52  59        70    17 9  1    5    10  316 23                          743  51  58  6<    69    18 70.8  -5'?.8    -44.8    -31.9  -18 9    -5 '    7.1  20.1    33. ~    46.0      SQ  0 Ala  LOCK PLAY PLAYS    AtlALVSls                                                    CEO?1ETRVANSYS Figure    9      Finite  Element Model  of the Personnel  Hatch Closure Plate
 
SECTION 2 Phase  II of the D.C. Cook Internal Pressure Containment    Anal sis-Probabilistic Anal sis In this effort the variability of the "as-built" material parameters on the best estimate capacity of the containment to carry static uniform internal pressure is being evaluated. Four potential limiting failure    modes have been  identified  by deterministic analysis.
'wo of    the modes involve potential failure by plate bending of the equip-ment and personnel hatch closure plates.      The other two potentially limiting failure modes are by membrane tension failure of the main steel hoop reinforcement at the base of'he containment shell and shear (diagonal tension) failure of the concrete base met. The ACI-359 Code equation governing diagonal tension failure is based on test results hence  it  is also being evaluated in a probabilistic manner.
Results of this statistical analysis will be probability density function of containment resistance defined for the two different contain-ment "as-built" material properties and in the case of shear in the base mat the  statistical  nature of the code defined  failure equation. This evaluation should    be completed by May 15, 1981.
SECTION 3 Phase  III of  the D.C. Cook  Internal Pressure Containment Anal  sis-Localize  D namic Loads In this evaluation dynamic analytical models of the contain-ment  structure assuming localize dynamic pressure loading input are being prepared. The containment areas where the dynamic models are being de-veloped include the equipment and personnel hatch closure plates, the shell portion of the containment shell adjacent to the base mat and the bise mat adjacent to the cylinder shell juncture.
The development of the dynamic models should be complete by May  30, 1981. Then using the internal pressure time history forcing functions, a dynamic analysis will be done to determine the forces and moments  at the critical sections of the containment.
 
DONALD C. COOK NUCLEAR PLANT UNIT NOS. t AND 2 ATTACHMENT NO. 2 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL
 
0 2.0    Distributed I nition  S  stem 2.1    Introduction Indiana 5 Michigan Electric Company (ISMECo.) has decided to install  a  Distributed Ignition      System (DIS)  in Unit  Nos. 1  and 2 of the Donald C. Cook Nuclear Plant.          The DIS utilizes  thermal resistance      heating elements    (glow plugs) located throughout the containment building.              Operation of the  DIS  will be  accomplished by means of manual control switches located in the main control room.
2.2    Distributed I nition      S  stem Desi n The DIS  is a  two-train system employing sixty eight (68) igniter assemblies    located throughout the containment building.            Each  train of thirty four (34) igniter assemblies is further divided into two groups                one group of sixteen (16)    assemblies    in the general lower volume area        and a second group  of eighteen (18) assemblies in the general upper          volume area    - including the ice condenser upper plenum volume.
Each  igniter  assembly consists    of a General Motors type      7G AC glow plug and a Dongan      Electric control    power transformer      (model 52-20-435) mounted  in  a sealed box housing as shown in Figure 2.          The  igniter  box  is a water  tight enclosure    meeting NEMA-4 specifications.        A  copper plate is employed as a heat    shield to minimize temperature rise inside the igniter box              and a  drip shield is utilized to minimize direct water impingement              on the thermal    element.
The  transformer is seismically mounted to the igniter box using unistrut.
The  entire igniter assembly is seismically          mounted so as    to prevent any possible interferences with safety-related equipment during/after                a  design basis seismic event.
 
The normal and emergency          power sources    for each  train of igniters meets  Electrical Class lE specifications            and the    electrical train separation criteria  commensurate      with  a  Class  1E system are maintained      in the  DIS design.
The DIS  will be  a manual      system  controllable from the      main control room.      Two control switches per train will            be  located    on auxiliary relay panels      A7 and A8 in the  main  control room.        The  control switches are of the two-position type,
'off'nd    'on',  and red and green        indicating. lights are provided      above each switch. Control room annunciation          will  be  provided to indicate loss of power and failure to operate      due    to hypothetical control        circuit  equipment mal:functions.
2.3    JIIAIAb1 The  igniter    assembly    is  a 16"  x 12" x 8" enclosure meeting NET-4 specifications.      The  igniter is protected        from  direct water    impingement by    a 1/8" steel plate (10" x 18" galvanized steel) drip shield welded to the top of the enclosure.      The  igniter is      mounted  to the enclosure through      a 6" x 4" x 1/4" copper, plate to reduce the temperature                rise. inside the enclosure during. periods of combustion.            All electrical connections inside the igniter assembly;  its associated condulet box, and the two splice boxes per train utilized in the    DIS are    protected with heat shrink tubing to enhance system performance in an adverse environment.              In addition,    all  DIS cables    inside containment are routed in conduit and hence are protected from the environment associ'ated with hydrogen combustion.
    '3 Access to the    interior of  the  igniter assembly  is through    a  hinged cover plate secured with screws.            A bead  of silicone rubber  will be  placed around      all bolt holes in the igniter assembly. Details of the igniter assembly        and  its condulet box are given in Figure Nos. and 2. 1
: 2. 4      I niter  Assembl  Locations Igniter assemblies are distributed throughout the containment to promote combustion      of lean hydrogen/air/steam mixtures.          The DIS    will minimize the potential for hydrogen accumulation and preclude detonations in the unlikely event of      a  degraded core cooling event      similar in nature to the TflI-2 accident involving substantive hydrogen generation.                The containment air recirculation/hydrogen        skimmer system,    in conjunction with upper          and lower volume containment sprays, provides          sufficient mixing      so as  to prevent the    stratification or pocketing of      hydrogen in the various compartments            of the containment building.
Approximate  igniter  assembly locations are      listed in    Table 2-1. A general view of. the containment structure          is provided in Figure
                                                    ~
3 and  approximate igniter locations shown in Figure Nos. 4, 5 and 6. The locations given are
~  ~                        ~                                              ~
for D. C. Cook Unit No. 2 and are typical for Unit No. 1.'inor'.variations'n ig-
        ~  ~              ~                                    ~
                                                                                      ~          ~  ~
niter locations may be required in. Unit iVo. 1'in consideration of physical inter-ferences with. existing equipment.        A'schematic representation          of the  DIS  electrical network inside containment is provided in Figure Nos.              7 and  8.
One  of the questions raised    by members    of the    NRC  staff during our meeting of March 18, 1981 dealt with the need,            or lack thereof, to install igniter    assemblies  in the instrument, room.      The  results of our reviews. performed to date indicate that except for potential in-leakage there is                  no communicatio'n between the instrument room and        either the general lower        volume    or the pipe tunnel (annulus region) with the exception of the flow path-through the hydrogen skimmer ductwork.
 
The above  notwithstanding,    it should  be noted  that  any leakage into the instrument  room would,  in all probability,    be  significantly less    than the hydrogen skimmer flow (100    CFt1  per  train) out of the  room, thus preventing I
the accumulation of hydrogen to combustible levels.          It should  also be  noted, that the effects of hydrogen combustion      on  'required'quipment located in the instrument room, pressurizer pressure and pressurizer level transmitters, is, for all intents  and purposes,    bounded by the  calculations contained in Attachment No. 4 of  this submittal.
 
TABLE 2-1                        Sheet  1 of 2 IGNITER ASSEMBLY LOCATIONS*
TRAIN                                                                              TRAIN
                                                                                                      'B'om
                    'A'om No.      artment/Area-El evati on                                                No        artment/Area-El evati on A-1  Ice Cond. Upper Plenum                                                            Ice Cond. Upper Plenum A-2  Ice Cond. Upper Plunum                                                      B-2  Ice Cond. Upper Plenum A-3  Ice Cond. Upper Plenum                                                      B-3  Ice Cond. Upper Plenum Ice Cond. Upper Plenum                                                      B-4  Ice Cond. Upper Plenum Ice Cond. Upper Plenum                                                            Ice Cond. Upper Plenum A-6  Ice Cond. Upper Plenum            708'09'09'09'09'10'09'86'86'86'86' B-6  Ice Cond. Upper Plenum A-7  Ice Cond. Upper Plenum                                                      B-7  Ice Cond. Upper Plenum A-8  Inside &#xb9;1  SG      Enclosure                                                B-8  Inside &#xb9;1 SG Enclosure A-9  Inside &#xb9;2  SG Enclosure                                                      B-9  Inside &#xb9;2 SG Enclosure A-10  Inside &#xb9;3  SG Enclosure                                                      B-10  Inside &#xb9;3 SG Enclosure A-11  Inside &#xb9;4  SG Enclosure                                                      B-11  Inside &#xb9;4 SG Enclosure A-12  Inside PZR Enclosure                                                        B-12  Inside PZR Enclosure 686'59' Outside &#xb9;1 SG Enclosure                                                      B-13  Outside &#xb9;1 SG Enclosure Outside &#xb9;2 SG Enclosure                                                      B-14  Outside &#xb9;2 SG Enclosure A-15  Outside &#xb9;3 SG Enclosure                                                      B-15  Outside &#xb9;3 SG Enclosure          709'09'09'09'09'09'09'86'86'86'85'82'62'59'59'59'59'42'37'36'36'37'45'30'29'23'34'18'60'60' A-16  Outside &#xb9;4 SG Enclosure            662'62'62'62'47'48' B-16  Outside &#xb9;4 SG Enclosure A-17  Outside PZR Enclosure                                                        B-17  Outside PZR Enclosure A-18  Primary Shield Wall                                                          B-18  Primary Shield Wall A-19  Primary. Shield Hall                                                        B-19  Primary Shield Wall A-20  Primary Shield Wall                                                          B-20  Primary Shield Hall A-21  Primary Shield Hall                                                          B-21 Primary Shield Wall A-22  Primary Shield Wall                                                          B-22 Primary Shield Wall A-23  Primary Shield Wall                  648'48'41'48'31'29'34'18'60'60'-1 B-23 Primary Shield Wall A-24  East Fan/Accumulator Room                                                    B-24 East Fan/Accumulator      Room A-25  East Fan/Accumulator Room                                                    B-25 East Fan/Accumulator      Room A'-26 West Fan/Accumulator Room                                                    B-26 West Fan/Accumulator      Room A-27  Hest Fan/Accumulator Room                                                    B-27 Hest Fan/Accumulator      Room A-28  Vicinity of      PRT                                                          B-28 Vicinity of  PRT A-29  Upper Volume Dome Area                                                        B-29 Upper Volume Dome Area Upper Volume Dome Area                                                        B-30 Upper Volume Dome Area
 
Sheet 2  of        2 TRAIN                                                TRAIN
                                                                                'B'om
                          'A'om Ho.              ar tment/Area-El evation                  No.          artment/Area-Elevation A-31      Upper Volume Dome Area      -                          Upper Volume Dome Area    -
A-32                Volume Dome Area    - 760'pper B-32          Volume Dome Area    -  760'pper A-33                Volume Dome Area    - 748'-31 748'pper B-33          Volume Dome Area    -  748'pper A-34                Volume Dome Area    - 748'pper B-34          Volume Dome Area    -  748'pper 748'EY:
SG    -  Steam Generator PZR    - Pressurizer PRT    - Pressurizer Relief    Tank locations given are for Donald
            ~        ~
C. Cook Unit No. 2 and are typical for it No.~ 1.~
 
IL ~
 
<<  ~
t II <<
~<<  t r          (tl          ~
                                        ~
II
                  'I II
                            ~ 1 I
                                  /
                    <<A 1
 
N I
f i
I P
I "~
p
      't 7
 
AEP: NRC: 0500A 768'pper Volume Polar Crane
                                                                  @drogen 715'pper e                                              Recombiner Plenum                                                                  692 I  )                                                        'ce
(                1 Bed          I  I        I                                  Steam I    I
(                                              Generators Pressurizer Lower Inlet I
                                                  'ZKf"                        650'7" Doors 1l                      Lower
                                                                        .Volume Instrument                                                            Recirculation Fan Room 4q >'
r Reactor Pressurizer      Yessel      I',
Relief Tank FIGURE 3
 
Section                                  FIGURE 4
                  'A-A'levation 618 East Fan/Accumulator g
I Room A-i<
I Pr,imary Shi el d Crane Hall                                        l9-Ha'il A 10 X  i                  I nstr ument Room 8-2>  Lg~--              A >+
O                  V E'.
Pressurizer Relief Tank 4 8-2W Hest Fan/Accumulator                  Q-i7 Train 'B " Igniter Room Q
I D. C. Cook    Unit    No. 2            Train  'A'gniter Containment. Plan      Beloved El evati on 652    '7"
 
FI 6
      ~ A-Z Ice 8-c.        Condenser p~lO
              ~p,    t5 /j ~+M //
Q/
g~g P Train  'B'gniter a Train  'A'gniter D. C. Cook Unit  No. 2 Containment Plan Above Elevation 652'7"
 
L
  ~ ~
 
FIGURE 5 0, Pl atform I
Elevation 748'5"
                '"32                    +33 Platform Elevation 759'                                Ice Condenser Top Deck Doors Elevation 715'.
C. Cook  Unit Ho. 2 Containment Plan Above Elevation 715'
 
0 0
 
r t I I                      I                                                      I I                                  ~                      ~      I              1              ~              ~,            ~                      4                  '
1      4      I I '                    I      I
                                                                                'I 1            I
                                                                                                      ~
I I
I I I I                      I
                                                                                                                                                                                                                                                  ~jg'm                                                                                          ~
                                                                                                                                                                                                                                                                                                                                                    ~                            ~            f            'I
                                                                                                                                                                                                                                                                                                                                                                                                              ,            I                I I        I      t              I    1      4    ~
uzi 4
4      t I        ~
I I I
                                                                                                                                                                                                                                                                                                                                                +2Mzw&&U7                                                                                                                  I z7Bx 7'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ~              I'            J I 4 I I I                                                          I I            1            I            ~
I      4 I
I I I I I 1                                                                              1 I    1'            ~      4    ~                                                                                                                4 I
I 4                    I I              t                    I      ~            I I I                I            I                                                                4 I
                                                                                                                                                                                                                                              !:Iik                                    i                                                                                                                    ~      I      4 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ~
I      '                      I                        4 I
I    4 1
                  ~      I 4
                                  't i        4 1
i t
                                                                  ~
I i I
1 4
i I
4      I      ~
I 4                                                                                                                                    1~44  I      I    '
l    ~
I I                              I            I        '
4      ~,'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ~      I        1
(      4      ',
4 L~~L.                                                                                                                                                                                                                                                                                          I                                            '                    Il
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ~      1              4                              '4            4
                          '                        I                                                                    I                                  I AZ~i I                                                                                        4 I                              I  'I      I                  I
                                                                                        ~
1
                                  '4                                                                                                                                                                                          g
                                                                                                                    ~
I    I I I
I I
I 1      ~      ~
I I      '
I I
I I                                            Q ~+                                                                                                                                                                          I I I
i 4      I 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ~,        ~
                                          .                                            }
i                                    '
I    ! I            I      t      1        1    1                      I I I I                            I f I                ~t                          !
I  t I  "        4'                        ~    4    f  ~                        I 4        4,                    1 I        4
                                                                                                                                                                                                                                                                                                                                                                                                                                                      }                                                                      ~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ~
4 I      4        i    4      i              I I I                      I            I I                                                                          1    I      1    1    4    4  I  ~  ~    .    ~    1                I  4  I  I      ~ 4        4          4                                                          4 i I 4
I                                              I
    ~    4      I      (      ~                4    4      ~                    ~    I      I            I    I                                                                                                                                          4    1                        4                                  '4    I  4        I'                                                4            4                                                              s I    I        i    (                              I    I    a                      I I I      I      I      ~        I            I                                                                        i'                          i I                    t I                                                                                            'I    I        4 I !            I              I t          I 4
    ~
I 1
I I I      I;      '1'              I I I 4      I I I ~
                                                                        } I 4 i
                                                                                              !} II                I I    I I
                                                                                                                                ~    I                          ~    1 I I I 4 I I I I I I I 1                                                                                      x~mWA I
f/il
                                                                                                                                                                                              ,N s
                                                                                                                                                                                                                                                                                                                                                /Q I    1
                  ~
                          ~
a 4
                                  ~
                                    ~
I I t
I 4    ~
I      .      I            I I I i I I
                                                                                                                                                                                      ~      I I
C2e~
I I I                  I      I                    I          i i;                                                                                                                                                                      I                                                                      4
          ~      ~                      4        I I          ~                          4        4      4    ~                                                                  I    ~        1                          4        1                                        1 I                        '
4                                  4        I      ~                                                                                                                                    I                  I              I                                                                      4  4    1      I    ~
I            4              1      1      1    I                                                                                                                                                    I      I                I                f                  Q I I                                                                                                                                                                                                                                                                                                                          I  I        I      i i I      1
      ~    1      I      tl      '                ! I }
                                                                                                                                                                                                                                                                                                                                  -'ing ~ +7 I '                                                                                                                                                                                                                                                                                                                I                              ~            4 i        I                                                        I      4    i                                                                                                                                                                                                    ~                                1 4                                                                                                                                            I I I        ~                                                                                                                                    4 4
I 1    t        t
                            ~
                                                                                              '                          't 92 4~
                                                                          ~
                                                                                                                                                                                                                                                                                                                                                                                                                          ~4
'4
            '4                                                                                                                                                                                                                                  4 4
4                                                                                                                                                                  't      4 a
1 i+
4      4 1
I                                                                                                                                                            j    k  I    4                              ~      s    I    4                                                                            I          I            1        ~    '. 4  t                                                            ~      t,            ~
I        I I          I I
                                                                                                                                                                                                                                                                                                                                                                                                          ~      ~    1      I      4        -    ~
1 IWII              }                4                                                          4            4      1              ~        I
                                                                                                                                                                                      ~as              tl    4              J                                                                                                          (                                  1 I    I i      I    I I                                                          i                                      ~        i        t
                                                                                                                                                                                                              ~t 4
4 t
4 I
                                                                                                                                                                                                                                          '4} w 4
44.1(.'I                                                                                      4                                                      4 1  'r 4
Va                              -=
f
                                                                                                                                                                                                                                                        +~
                                                                                                                                                                                                                                                          ~ts g      4
                                                                                                                                                                                                                                                                          ~I                                                                                                                                          ttett
* a
                                                      ~            ~                                          I            ~                II    I    1    I    *      ~}                                                                    I I I I I                                l i          I                I              I I I 1 I 4                                              1 I I          't  I                I I 4                                                                                                                                                                                                                ~      'I    4      I t I                          I I I I I I ( I I I                                                                                                                                                                                                                                                                      I I I I ~                                                t
                                                                                                        ~      f                      I    4          I          I I I I
* 4              4                            I I                        I                                                                                                                                    ~    4    4    1    I    I                                                                                                                                ~    I      I        I      i    ~      I                        I              !    1      ~    I 6~ I!AH
                                                            ~
I                                              "} I                  I I                I        I                              I    4                                                                        I      I    I  I      I  I s    I        I I
I    k      I        I      I      4                I                      I      ~    '.    ~    I i '
                                                                                          ~    ~        1                              ~    JI    I I      I                                            I        I              4      ~      4    4      1    I    I      I 4    1 I      I 1              ~      .                    I            i      ~      .              1                      I !          I  \    . I I                                                                                                                                                                                                                s I ~            }    '
I I            e      I I            I    '
1              f                            I      ~      4 I    ~
I    4    I    4  I I      ~
I li
                        'I
                                ~
1 4
I 1
I I I I I
I      ',                          4      f    4
                                                                                                                              '4
                                                                                                                              ~
J    k  4 4    4      4 4
1 I
                                                                                                                                                                                          ~
                                                                                                                                                                                                ~
I I 4    I k
4
:4'/
T      I'9a
                                                                                                                                                                                                                                                                                                                                                                                                                          ! I I I      k s
I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ~
I I
4 I
I 1
1 I I t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ~
4 4
1                                .
I i:
1    4                                                                                          1    4 I      4        s
                "                                                                                                                                                                                                                                                                                                                                                                        4 I                              k        I I -                I f      i                                                                                                                                                                                                                                            I    I                I        I                                                t    I' I              I                                            1      ~              4
                                                                                                  -'            I I      1      1        i      4 I      4              I      4,            t                                                                              s    ~
r s
i M
1
                                                                                                  ~      .      I I                                                                                      I                                                4          ~    4        (
I                "
P~~ cfeke~&44 I      4      1      ~
I I I                  4            i      J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -'
I t            i      ~      4        4 4      i      I      1              i      '            I I
4            4 I      1      4"              1 k
I i
I      ! I          4      I I                                                                                v~EiddA.                                                                    !                I  I EAHLZI Me4d~.                                                                                                  i      t I      I I      i 4
1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ~
1          ~
I I I.                      t                  ~
i                                                                                                                                                  I                                I                        I                                                                                I        (            I      1        '            I      1              i I                                                        4 I                      I I            I I I                I            I              I                                                                                                                                                I I                                        I      I                                                                            ~
I              ~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              '      4 I 4                                                                                                                                                I              I                                                                                                                                                                                                I            I                                                                                                                4  1 i                                                                                                                                                  I                      I      I                                                                            I                                                            I      I                  f I                                                                          1      I      I      ~                              't          4 I      I I            4                      I }          i              I            !            I    I
 
4 c        I  p      1              ~  1 I ~  i
                                      'I  c    I  I    1 1
                                                        -1                                                                                                                                                                                                                  v I
      ~  It
          'I  ~  ~
T        I        .              ~/~              pg                  I      t                                                                                        A&7&w7AJW                    . BE???:
v
* I r                        ~
lt        ~                  I II    ~        c                                                                c  I    c
                                      ~    1 dC          ~i cczxzemw
~  c 1
    'i c  c I
P',
tl    i,
                                  ~    1 I I I i c I                                                  h      I  1      +
c I t II ~
I I        I
                    ~
11 II      I 1 I
I I 1
c
                                                                                                                                                                                                                                                              ~
c i
I S~vczw r    c  ~              ~ I I I        I g,  ff c
I            ~  ~
                                                                                                                                                                                                                                                                                                  <WAX'~PfZ&7 I    1        "/Q,                                  I c
                                            ~    I
                                                                                                                                                                                                                    ~      ~    t                                                    CPS-:2.+W~7ERB i~lil ~I                                I
* c      t L'-Li '
I c          [~i          ~
c,                i                                                                                                                                    I
                                                                                ~        c i
                                                                                                                ~  w
                                                                                                                              ~
ci  I c
                                                                                                                                              ~
c          =~  c c
                                                                                                                                                                            =-
                                                                                                                                                                                .=
                                                                                                                                                                                  ~      ~
v  1'~c
                                                                                                                                                                                              ~
P
                                                                                                                                                                                                                                    +'
XA'/WAN                                                                      c
                                                                                                    --.~ ~-i+ I
                                                                                                                    )    c j
t t                    I EE2&#xc3;/~A>..rr?                                                                                                                              8z          ....              f/'
v      +
I    1  .          I  li
                                                                                                                      ~
I C      II    ~                                                            ::: &E?I?ER?rt~
                                                                                                                                                                                                                                                                                              ~:CJR+EW:
                                            ~        1 c
                                    ~        c
                                                                                                                                                                    'I  I  ~
r??WRIER    7/YEnZ7::
                                                                                      ~    i
                                                                                                              ~+                  gj~
C MJP>'1'{
                                                              'OP{:
                                                                                                      ~    I 1~.
II    r,
                                                                                                                                                                ~o I
I f
1 u
I,    ~
I III I
IMP
                                                                                                                                                                                                                              ~  1 II
* YXFZ e~im~RS: .
Gq.a~                                                                                                        ~    ~
                                                                  *          <<,        I    ~
I    I i
                                                                                                                                        "  I P
c                                                                                                                          tl                                v LZ
                                                                                                              ~  t                                I I'
t    I c
c IV      ~                      I  n de/.                  wWzd:NA'dmAl.z>                                                                                                                        ;C~{?a;                          der~                                o. 4; '507 r r&iH
* z~MMJ&f',
                                                            -.          ~
r r=Au'2 CRa~~..
II
        ~
I        t  '          I      I ~
i~j +4    c
                                                                                                                                                                              'J'.
c                I I          v                                                    1                1
 
DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACHMENT NO. 3 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL
 
3.0  Inade uate Core Coolin      H dro en Control    E  ui ment 3.1    Introduction There are two primary concerns associated        with  an inadequate    core cooling (ICC) event similar to the TMI-2 accident involving the release of substantive amounts of hydrogen and subsequent combustion uti li zing the Distributed Igni tion    System  (DIS). These concerns involve, (1) the abi lity to achieve  and  maintain the reactor coolant system in        a  safe shutdown condition  and  (2) maintenance of containment      integrity through    adequate hydrogen  control. The equipment  located inside reactor containment required to perform the    above  functions is identified in this section.        The  survivability of the equipment discussed herein during periods of hydrogen combustion is addressed  in Attachment    No. 4 of this submittal.      The containment response      to hydrogen combustion      is contained in Offshore    Power System (OPS) Report No.
36A05  previously transmitted to the Commission        as Attachment No. 2      to our first quarterly    report  on hydrogen  issues  (AEP:NRC:00500 dated 12 January 1981).
The analyses    performed by    OPS utilizing  the  CLASIX computer code    clearly indicate that the    peak pressure    resulting from hydrogen combustion is well below the ultimate strength      of the  Cook  Plant containments.
3.2    ~Ei          EE Table 3-1    lists  the active components inside containment required to function during    and  (or) after periods of hydrogen combustion.          The  location of these  components    and  their susceptibility to    hydrogen combustion    effects are addressed  bel ow.
 
(1)    Steam Generator Narrow-Ran e Level          Monitors
      .Three safety-grade      differential pressure transmitters          (tL P) are employed on each steam generator to monitor narrow-range steam generator water level.        The    kP  transmitters, manufactured      by ITT 8arton, are    fully qualified for post-accident          use  inside containment (LOCA/MSL8    qualification).      These  transmitters are located in the general lower volume, with two transmitters per steam generator mounted    nearly eleven feet below the        maximum  containment flood level of 614'levation.
Clasix run    JVAC4  (see Attachment No.      2  to our  AEP:NRC:00500 submittal -    OPS  Report No. 36A05) represents        the minimum time to for the  S2D  cases    run to date .and hence represents      the case
                                                                                  'ombustion for  which the minimum containment water level would              exist at the time of'nitial      combustion.      Figure No. 32 of the      OPS  report  shows  the initial    combustion to occur      in the lower    compartment approximately 4,600 seconds      into the  S2D  event sequence.      Assuming  that water is transferred to the containment from the refueling water storage tank (RWST)    solely via two containment spray        pumps,  it is  cle'ar that the minimum usable Rl<ST volume        specified in the Plant Technical Specifi-cations (350,000 gallons) would have effectively been delivered to the containment    pump  long before the onset of combustion.          In addition, the  OPS    report  shows  that approximately      22.4X  of the  initial  ice inventory has      been melted    during the    LOTIC  portion of the analysis; up  to  a  time of 3480 seconds.        Assuming the    initial  ice inventory to be  the Technical Specification minimum value of 2.37              million  pounds;
 
~
 
it is  thus shown that in excess of 530,000 pounds of ice has been
  .melted    prior to combustion. This ice melt is equivalent to approxi-
. mately .80,000 gallons of additional water in the containment.
Combining the ice melt with the Rl<ST water yields a total containment "water inventory of 430,000 gallons, well-in excess of the water inventory which would result in submergence of two level transmitters per steam generator.        Thus,  it is  clear that the  steam generator narrow-
  .range level monitoring      function would not    be susceptible to the effects
  .of  a hydrogen combustion environment.
  '(2) Pressurizer        Pressure  and  Pressurizer Level Monitors The pressure    transmitters    and  the kP transmitters utilized      for
  .the pressurizer (PZR) pressure and level monitoring functions, respectively are located in the instrument room.            These  transmitters,
  -manufactured by ITT Barton, are          fully qualified for post-accident    use
  -.inside containment      (LOCA/MSLB  qualification). As  stated in Section
    '2.4 of Attachment No.      2  of this submittal, our reViews performed to indicate that there is      no comnunication between    the instrument  'date room and    either lower    compartment or the pipe tunnel (annulus region)
  -;other than the hydrogen skiomer ductwork.          In addition, the    CLASIX H
    =analyses  do not  predict combustion in the dead-ended volume, of which the instrument room is a part. Hence, the information available at
  -this time indicates that the PZR pressure and level transmitters would II not  be exposed  to  a  hydrogen combustion environment      in the unlikely event of  a degraded    core cooling event involving the generation of substantive amounts of hydrogen.
 
I ~
e
 
(3(  ~333    tll -3          3            T The RCS wide-range            pressure transmitters are located in the lo.rer compartment nearly eleven feet below                  maximum  containment floodup level. The      transmitters, manufactured          by ITT Barton, are    fully qualified for post-accident              use  inside containment    (LOCA/MSLB qualifi-cation).          For reasons    set forth in Item (1) above, these transmitters would be submerged            prior to    initiation'f combustion        and hence would not be exposed to          a  hydrogen combustion environment          in the unlikely event of        a  degraded core cooling event          involving the generation of
,substantive amounts of hydrogen.
(4)  Core        Exit  Thermocou    les The      effects of    a  hydrogen combustion environment on the core
-exit thermocouple cable is addressed in Attachment                    No. 4  to this submittal.
(Ri  ~RCS    (        RT The      hot leg    and  cold leg    RTQs,  located in the lower compartment,
-are  fully qualified for post-accident                  use (LOCA/MSLB    qualification).
3 The  cable associated with the                RTDs  is addressed in Attachment      No. 4 to this submittal.
tl
=(6)  Air Recirculation            H  dro en Skimmer Fans air recirculation/hydrogen          skimmer fans are located      in the
('he uppe~  cd.,partment and the            Pan  motors are  fully qualified for    post-accident use'(LOCA/MSLB qualification).
(7). Distributed I            nition    S stem    DIS  Com  onents The DIS components            inside containment        are the  igniter assemblies; splice  boxes and condulet boxes, and                the ancillary cable. All DIS cable inside containment is routed in conduit and thus is protected
 
.from  a hydrogen burn. All electrical connections inside the igniter
.assembly,  its associated  condulet box, and the two splice boxes per train utilized in    the DIS are protected with heat shrink tubing to
.enhance  system performance  in an adverse environment. The igniter assembly  itself is  a sealed enclosure meeting  NEMA-4 specifications.
h
 
                                    ;.Table 3-1
                ,;Donald C. Cook Nuclear Plarlt Unit Nos. 1  and 2
            .Inade uate Core Coolin /H droqen Control      E  ui ment*
            -{1,) ',Narrow-range Steam  Generator Level Monitors
            .(2)    Pressurizer Level Monitors
{3) Pressurizer Pressure Monitors
          -':(4)  RCS Wide-Range Pressure    Monitors
          -.:{5): Core Exit Thermocouples
            -{6)    RCS Loops RTDs
          --{7)    Air Recirculation/Hydrogen    Skimmer Fans
          =-.(8)  Distributed Ignition  System Components
*inside reactor containment
 
DONALD C. COOK NUCLEAR PLANT  UNIT NOS. 1 AND 2 ATTACHMENT NO. 4 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AAD CONTROL
 
4.0 E ui ment   Survivabilit This attachment to the quarterly report addresses             the issue of the survivability of equipment exposed to           a hydrogen combustion atmosphere inside containment.         Heat-transfer models have     been developed   to determine the effects of hydrogen burns         on critical   components   (see Table 3-1     in ).     The models are presented       in this attachment followed         by a calculation   made   for a representative piece of equipment.         Particular attention has been devoted       to a number   of individual pieces of equipment,         each   of which is discussed separately.
4.1     ~G1     A In order to characterize the environment to which             a piece of   critical
    ~
equipment   is subjected during
            ~      ~
and subsequent     to a hydrogen burn, two heat-transfer   models have been developed.         The first heat-transfer     model   is a time dependent   heat-transfer analysis which calculates the lower compartment environ-ment as a   result of     a hydrogen   burn. This model takes into account the presence of structural heat sinks         and sprays   in the lower compartment       and assumes   that during     a hydrogen burn energy     is removed by the   ice condenser.
The burn itself is     modelled by an energy input rate to the compartment.
At the onset of the combustion, the lower compartment is assumed to be isothermal; energy is then introduced into the compartment               for   a duration of 20 seconds,   comparable to the time       of a hydrogen burn     in the containment.       As a result of the burn, the temperature of the           compartment atmosphere       begins to rise rapidly; concurrently, heat is being transferred to the structural heat sinks and removed by the ice condenser and by )he lower compartment sprays.
Heat transfer to the containment sinks is characterized             by both convection and


radiation.
radiation.
Conservative assumptions have been made in the calculation with regard to parameters such as gas emissivity and configuration factors.~~After 20 seconds, the atmosphere temperature is observed to decrease exponentially, whereas the containment wall temperature continues to rise over the next twenty seconds (see Figure 4-1)until the time when the atmosphere temperature falls below the wall temperature.
        ~
The maximum atmos-phere temperature calculated does not exceed 500 F.Sensitivity studies of various parameters used in the analysis are presented in Figures 4-2 and 4-3.Figure 4-2 depicts the results obtained when the heat transfer coefficient,"h", from atmosphere to wall is varied;as"h" vanishes, the peak atmosphere temperature approaches the CLASIX results.It can also be noted that, in general, the peak temperature is fairly insensitive to small variations in the values of the heat transfer coefficient chosen.Perturbations in the spray flow rate also reveal small increases (n 15&#xc3;)in the peak temperature, see Figure 4-3.These analyses clearly show that if containment structural heat sinks are considered, the containment environment is not expected to experience temperatures in excess of 500 F.The equipment included in the critical list of components (Table 3-1)is qualified for LOCA and MSLB events;which includes exposure to 340 F for a period in excess of one hour.Comparison between the MSLB conditions and the data presented in Figure 4-1 indicates that equipment, which is'subjdcted P to a hydrogen burn of the magnitude predicted by CLASIX, will*experience environmental conditions no more severe than those of a MSLB event.The second heat-transfer model attempts to describe and define the environmental condi ti ons for equi pment which is located in the path traversed by the hydrogen flame.A Barton pressure transmitter has.been selected as a representative piece of equipment to be investigated. Prior to hydrogen ignition, the transmitter casing and its internals are assured to be in thermal equilibrium with the containment environment.
            ~  Conservative assumptions have been         made in the calculation with regard to parameters         such as gas   emissivity and configuration factors.
At the onset of a hydrogen burn, it is postulated that ignition occurs in-the vicinity of the transmitter and the casing is subjected to a very high hydrogen flame temperature
After   20 seconds,     the atmosphere temperature is observed to decrease exponentially, whereas the containment wall temperature continues to rise over the next twenty seconds           (see Figure 4-1)   until the time   when the atmosphere     temperature     falls below the wall temperature.       The maximum atmos-phere temperature       calculated does not exceed     500 F.
(~2000 F)initially as the flame front moves away from the component.
Sensitivity studies of various parameters           used in the analysis are presented in Figures 4-2 and 4-3.             Figure 4-2 depicts the results obtained when   the heat transfer       coefficient,"h",   from atmosphere   to wall is varied; as "h" vanishes, the peak atmosphere temperature approaches               the CLASIX results.
The temperature to which the transmitter surface is exposed will then decrease gradually and will eventually approach long-time results calculated by the previous heat-transfer model.This temperature profile will provide the outside boundary condition needed to evaluate the temperature rise on the inside surface of the transmitter.
It can   also   be noted   that, in general, the     peak temperature   is fairly insensitive to small variations in the values of the heat transfer coefficient chosen.     Perturbations in the spray flow rate also reveal small increases (n   15&#xc3;)   in the   peak temperature,     see Figure 4-3. These analyses   clearly show   that   if containment     structural heat sinks are considered, the containment environment       is not expected to experience temperatures in         excess   of 500 F.
The one-dimension.time-dependent conduction heat transfer equation is evaluated assuming that the inside surface-is an adiabatic boundary.This model treats the trans--.mitter casing as a one-dimensional slab.The time dependent temperature
The equipment       included in the     critical list of   components   (Table 3-1)   is qualified for     LOCA and MSLB     events; which includes exposure to       340 F   for a period in excess of one hour.           Comparison between the MSLB conditions and the data presented in Figure 4-1 indicates that equipment, which is 'subjdcted P
'profile to be used on the outside surface is imposed as a convective boundary condition.
to a hydrogen     burn of the magnitude predicted by CLASIX,         will*experience environmental conditions no more severe than those of a               MSLB event.
Two different temperature profiles, which reflect the environment temperature to which the transmitter is exposed, have been employed in this calculation.
The second     heat-transfer     model attempts   to describe   and define the environmental condi       ti ons for equi pment which   is located in the path traversed by the hydrogen flame.           A Barton pressure transmitter has.been       selected   as a representative piece of equipment to           be investigated.
The first profile represents a hydrogen flame temperature of'2000 F for a duration of one second at the onset prior to a linear decay to-1000 F in the next second;temperature continues to decrease to 300 F from two to six seconds and eventually approaches 150 F after 10 seconds (see Figure 4-4), curve A.This temperature profile is similar to the one used by TVA in its equipment survivability calculations.
The other profile, see Figure 4-4, curve 8, decays exponentially from 2000 F to 150 F over a period of 18 seconds and is similar to the one used in the Duke analysis.A computer code was used to analyze the temperature rise in a 1/4" carbon steel casing given the aforementioned boundary conditions.
The heat transfer coefficient assumed in the code includes both convective and radiative transport.
0 The temperature transients at the inside surface calculated from the two temperature profiles are depicted in Figure 4-5.Curve (A)of Figure 4-5,-which corresponds to the curve.A of Figure 4-4, showed that the initial-temperature rise is very abrupt during the first few seconds;later on the inside surface reaches a maximum temperature of 171 F at 10 seconds prior to a gradual decrease.The temperature response depicted by curve (B)of.Figure 4-5 indicates.that there is a more gradual rise over the initial 15 seconds and that the temperature reaches its maximum of 175 F at about 30 seconds before a slow decay begins.Based on this analysis, one can assume that for a single hydrogen burn, the inside casing temperature will rise no more than 30 F..Additionally, if one assumes that there is a total of eight consecutive burns and that between each burn the inside casing surface temperature is held constant, the temperature profile will be a stepwise function similar to the one presented in Figure 4-6.Each temperature increase (30oF.)can be interpreted as the heatup of the casing resulting from one hydrogen burn.Between each burn, the temperature I at the inside casing is assumed to be constant which implies that no credit is given to the cooling of the component subsequent to any burn.In addition, the time interval between combustions is assumed to be substantially shorter'than what is predicted by CLASIX;only 100 second intervals are used in this calculation.
Based on the stepwise curve, a conservative linear heatup temperature profile at the inside surface of the casing is used, see Figure 4-6.Utilizing this linear temperature response at the inside of the trans-~mitter casing, a heat transfer analysis has been performed to'evaluate the heatup rate of the air and the subcomponents inside the casing.Results indicate that the heatup rate of the air inside is slightly below the temperature of the casing and that the heatup rate of the subcomponents is estimated to be approximately 50 F over seven burns, or,7 F per burn..It is important to bear in mind that conservative assumptions have been.used in obtaining the above results.The.heat transfer analysis clearly indicates that for most equipment-.which is environmentally.
qualified for LOCA or HSLB events, elevated temperatures resulted from hydrogen burns of the magnitude and duration:.discussed do not appear to pose any threat to its abi lity to sur vive in a=~2D,-type event.-4e2 Survivabilit of Particular Pieces of E ui ment s~~This section of Attachment 4 discusses the survivabi lity of particular
-:pieces of equipment needed for the mitigation and control of a S2D-type sequence.Thesepieces of equipment require either particular evaluations or, else, the analysis presented in Section 4.1 does not apply to them..a)Cables'-The burning of hydrogen inside containment by use of a Distributed Ignition System (DIS)results in very short duration exposure fires and may-involve cables which are exposed in trays.Inside the Cook containment buildings power and control cables are-either installed in conduits or in cable trays.Cables installed in conduits are not likely to burn as a result of exposure to short-duration exposure fires.These cables cannot propagate a-fire even if they burn since the flame resulting from the.combustion is-entirely confined to the conduit and cannot cause failure of cables~~~~in adjacent enclosures.  -In the case of the control cables where the current carried by the conductors is small relative to the thermal rating of the conductors,.the cables are installed in trays with solid steel sides, bottoms and covers..Hence, it is not likely for a hydrogen burn inside containment to ignite any control cables installed in trays.However, upon exiti ng a tr ay, either mid-span through a hole in the tray cover or at the end of the tray span, a portion of the cable becomes exposed for a very short length until the cables either enter a conduit whi ch faci litates entry into terminal devices.or until the cables are connected to the device or containment penetration
:,(below flood level)..All control cables inside containment needed for inadequate core cooling mitigation equipment are qualified for flame resistance in accordance
.:with either IPCEA Standard S-19-81 or IEEE-383.Hence, for the exposed portions:of the control cables and cables entirely contained in trays or conduits, it is extremely likely that the cables will survive hydrogen burns inside contain-s ment.Furthermore, the cable will be wet due to the actuation of containment sprays making the possibility of ignition from a short duration exposure to ,fire even more r'emote.For the case of power cables, they are installed in conduits or in-expanded metal trays without covers and are sized to accommodate the full.load current of connected equipment without exceeding their continuous rated.temperature.
1Jhen installed in expanded metal cable trays,'he cables are laid typically one layer deep with spaces between adjacent cables and secured to the bottom of the tray to maintain this spacing.The power cables for ICC'equipment may be exposed to hydrogen burning inside containment but they are q ualified for flame resistance in accordance with IEEE-383 or S-19-81.Further, since the power cables are exposed (open trays)they will be wet due to the effect of containment sprays.Testing results have been reported by L.J.Klamerus of Sandia on IEEE-383 cables.Private communication with Nr.Klamerus revealedthat the cables used in the experiment were X-link polyethylene cables.They were selected f'r the test because they were believed to be most susceptible to exposure fi.re fai lure.Reported results indicate that the time to electrical short for these cables ranges from five to nine minutes.Review of ICC equipment power cables at Cook confirms the fact that they are either insulated by g palon or a synthetic compound made by Kerite.Both types of materials are believed to exhibit superior fire resisting capability than those tested by Sandia Laboratory.
Therefore, despite the fact that power cables at Cook might be exposed to a two to three minutes total duration of hydrogen burns experimental evidence support the contention that it is very likely that they will be able to survive hydrogen burns typical of those discussed for a S2D-type event.b)Air Recirculation Fans There are two air recirculation fans at Cook and both of them are located in the upper compartment.
These two centri,fugal fans have a total capacity of 80,000 cfm and discharge the flow into the two fan/accumulator rooms.At the exit of each fan there is a backdrop damper which opens as a result of flow through the fan.The damper is gravity loaded and is expected to close if there is an"overpressure in the fan/accumulator room.The CLASIX results predict burns in the upper compartment with pressure differentials 1b  unaccounted for in the design of the system.Fan integrity is being evaluated both from the point of view of casing damage and overspeeding
-of the wheel and motor.c)Steam Inertin and Pol urethane.Insulation Burn In a S D-type event, hydrogen release begins approximately 3800 seconds after the onset of a small break.Results obtained from the March code for Sequoyah indicate that during the initial 700 seconds, the steam con'centration at the lower compar tment reaches a maximum of 78/prior to decaying to 45/, see Figure 4-7.Subsequently, the steam concentration-continues to decrease to approximately 25/at onset of the hydrogen release.Data reported by the U.S.Bureau of Nines indicate that little change.to the lower flammability limit of hydrogen is noted when steam concentration in the mixture is kept below 308.Therefore, with a 254 steam concentration
-in the lower compartment, the effects of steam upon hydrogen combustion should be minimal.'oreover, lower compartment sprays at Cook would further serve to enhance condensation of steam and to promote rapi d temperature r eduction in the.lower compartment.
Thus, it is expected that the steam concentration in the Cook lower compartment will be substantially lower than.what has been presented in Figure 4-7.Therefore, it is unlikely that Cook will experience steam.inerting in a S2D-like event except possibly during the initial 1000 seconds.In addition, data presented by Lawrence Livermore Laboratory in their igniter test program clearly show that steam concentrations up to 40&#xc3;do not inhibit the ignition of hydrogen by the glow plugs nor the abi lity of the igniters to function as designed.In spite of the fact that there would be a higher steam concentration in the lower compartment, evidence indi cates 1


.that the glow plug igniters will perform their intended functions as~~~~-required.
Prior to hydrogen ignition, the transmitter casing                and  its internals are assured to be        in thermal equilibrium with the containment environment.
It is conceivable that at the upper plenum of ice-condenser, a:higher hydrogen concentration may be present as a result of steam stripping by the ice condenser.
At the onset of       a hydrogen burn, it is postulated that ignition occurs in
It has also been postulated that combustion may first-occur at that location and that it may even burn in a continuous manner.However, it must be pointed out that the likelihood of the above scenario=diminishes if the assumption on steam inerting at the lower compartment is considered unrealistic.
-the   vicinity of the transmitter          and the casing    is subjected to    a  very high hydrogen flame temperature          (~2000    F)  initially as  the flame front      moves away from the component.             The temperature    to which the transmitter surface is   exposed  will then    decrease  gradually    and  will eventually    approach long-time results calculated by the previous heat-transfer model.                   This temperature profile will provide the outside            boundary condition needed to evaluate the temperature      rise  on  the inside surface of the transmitter.           The one-dimension
Given the complexity of this issue, the question of burning in the.upper plenum of the ice condenser will continue to be investigated by AEP.'Moreover, upcoming results from the modified version of CLASIX should be able to provide additional information on this subject.If hydrogen combustion is-assumed to occur at the upper plenum for an extended period of time, it has been postulated that the integrity of the polyurethane insulation may be threatened by the presence of hot gases.This question is being addressed-at AEP simultaneously with the upper plenum burn issue.The results of our evaluations will be transmitted to the NRC in the next quarterly report.
.time-dependent conduction heat            transfer equation is evaluated        assuming    that the inside surface-is          an  adiabatic boundary.     This model treats the trans-
0 4-.4~~=I~~~-.l~~~=4~~~~~\4 4~i-i 44~'4=-4 I 44 4~-4 4 4~4~4 4~4~LON3~C.<i'!"-,-'kg 4 4 I 4~=1'I 4 l 4 4 j"'pFt-5c 4&-4 I 4 4':.ahk:kkkjki~.-
-.mitter casing as a one-dimensional            slab. The time dependent      temperature to  be used on      the outside surface is imposed as        a   convective boundary
-.4=-4.4:-=-=.~4~=-~4-4 k X'4tpk ($QQ)FIGURE 4-1 TEYiPERATURE RESPOi(SES OF LOMER CGlk1PARTHENT ATi)OSPHERE ANO MALL/
                                                                                              'profile condition.
,-Jooo.~-1 i i.ji t-l'0--.tj Oo-I'i-~t~t I~I t I Ii~j r'!t i"""'T"!''e~!t~I)~~!,.1!l.,'t~~I t~~~=-I~>>i t~~~I i~I a 1 a s~1~t I~<<~~~I~~w I I V 1 it Ii-I 1~''j t I I I-I 4 1...>>J ji-!-!Lj 0:;!!!1Tj:I-C~r~>XT Pi=SR I'~!I j--fk 1/l.I;t..11 T'J''I,'".'~ijatjj I i~-~LI:, I L!1!I j.-0 I I~~Ej 1 i I!j~-I I ,k!I jk j~I~t j I 1 I-1 I I=~t I:1!I',!,1 I 1 i;',I<<i', FIGURE I 1-1!~I i ft>>I'I I I I 1 I t 1~t T-l~I I I'i.t'1 I 1 1 l I I!!HEIST VRI!NSF R.COhF-FICieJT I'I>>IT>>I>>'.(I'I/j',.
Two  different temperature profiles,         which  reflect    the environment temperature to which the transmitter is exposed, have been employed in                      this calculation.       The  first profile      represents  a hydrogen flame temperature        of
):;i'-2 EFFECTS OF!IEAT TRANSFER COEFFICIENT YARIATIONS ON t1AXIt1UM ATMOSPHERE TEt1PERATURE'N LOWER COt1PARTt1EttT
'2000 F    for  a  duration of      one second    at the onset prior to      a linear  decay      to
'lk"r.(0->>j I>>-I~-~-Tt...LL a Et~f~I f>>~C t-.t-lt: I-f i!f j~t rr r't.j t,.t i),~~($q ill III I I I!!(Uo I (i+pQQ/, P!I(Q gQ,r (r/SIC)>>>>I>,r'rrr''t,i'-('I FIGURE",4-'3, EFFECTS OF SPRAY FLO>>'t RATE VARIATIONS ON PEAK I LI LLLI l (iATNoSPHERE TEN ERATURE IN LO((ER,CONPA(ITNENT
-1000 F  in the next second; temperature continues to decrease to                300 F from two  to six  seconds    and  eventually approaches      150 F  after    10 seconds  (see Figure 4-4), curve A. This temperature              profile is similar to the one used by TVA  in its equipment        survivability calculations. The other profile, see Figure 4-4, curve 8, decays exponentially from 2000                F to  150 F  over  a period of  18 seconds    and  is similar to the      one used  in the  Duke    analysis. A  computer code was used      to analyze the temperature rise in        a  1/4" carbon steel casing given the aforementioned boundary conditions.               The  heat transfer coefficient assumed  in the    code includes both convective and        radiative transport.
''3!Iftt j 1 I 4 i I I+'.I.4~4=t-4 t I I 4 4~=~~'\i t~4.I'4 4~I 4 I=*t~I 4~~t-~==4 4 4 EM-:-':=3'*4*'I~-,-~~+:==+4*4 4 4 f t t-J m~-~-~~M 4 4 4~~~*~l 4>>=4 4=-+I I~t=.4.l*~l~t~.j~=-~-~~-.-=-.~--t-s.-~J..~t t~-~-4-~.XE.~.4='-~!''t t~tW+~~~4-I~+l 4 j 3 (2~t t 4~f 4<<t I I''l l~4~I*-J-~~4 I 4>>*44 4~*I 4 4 4 l 4 4 4~~t 4~=~4 f-'4-~~'-l~l-4-~>>~4~*~i~~}=-I 4}t~~J'!';~I+'1 3 t 4 I 4 I~>>~C I t t 4 200 t*~I It-~=~'I~4-~4~=I 3 4 t~}i r F>>flan.~t-<<4>>-t.<<I-FiGURE-'tf-}}.-'TEMPERATURE PROFILES USED-AS CONVECTIVE,:.
BOUNDARY CONDITIONS


0 4 h 4 I II 4 4 I~~I 4:.4~--~~~4 4 il'=~:"1 4 I-I=I-~~-=-4 1-I.~4~~r'I ASSU11ED INSIDE SORFACE-TEMPERATURE PROFILES=r~4 4~
0 The temperature        transients at the inside surface calculated from the two temperature      profiles are depicted in Figure 4-5.               Curve (A)  of Figure 4-5,
-which corresponds        to the curve.A of Figure 4-4,          showed    that the  initial
  -temperature  rise is very abrupt during the              first few  seconds;    later  on  the inside surface reaches          a maximum  temperature of      171 F  at  10 seconds    prior to a gradual decrease.        The temperature      response  depicted by curve (B) of
.Figure 4-5 indicates .that there is            a more    gradual  rise over the initial        15 seconds  and  that the temperature reaches its              maximum  of  175 F  at about 30 seconds  before    a  slow decay begins.
Based on    this analysis,        one can assume    that for    a  single hydrogen burn, the inside casing temperature            will rise    no more than 30 F..      Additionally,      if one assumes  that there is        a  total of eight consecutive        burns and  that    between each burn the inside casing surface temperature                is held constant, the temperature profile will be      a  stepwise      function similar to the      one presented    in Figure 4-6.
Each temperature      increase (30oF.) can be interpreted          as  the heatup of the casing resulting from one hydrogen burn.                Between each burn, the temperature I
at the inside casing is          assumed  to  be  constant which implies that        no  credit is  given to the cooling of the component subsequent                to any burn.     In addition, the time interval between combustions is assumed to be substantially shorter
  'than what  is predicted        by CLASIX; only 100 second        intervals are    used  in this calculation.      Based on      the stepwise curve,      a conservative linear heatup temperature  profile at the inside surface of the              casing is used, see Figure 4-6.
Utilizing this linear temperature              response  at the inside of the trans-
~
mitter casing,    a  heat transfer analysis has been performed to'evaluate the heatup rate  of the air        and  the subcomponents    inside the casing.        Results


VI 1 I)1!Ii I~1 I t f j f f 4 j!I I t>i~I QQ'.;~I'':&,.'~I, 1~~~f'I I.'gag<<I.I I I!~a4 o~I''~~!I r'>>~.e'.-t~~~~~I<<t.a I~>~j 4~~~l~-j>')',~/l j f 1 f=t"t I i.'i t')!v I IV'r-j!LOT<<V.".Rfffd<<'I a-h a)j',I-J->J;I\4 4 1 l'~g 0'OfACg, C-0 f'~t P/.',PTg," (O'T~P~%/~I'j 1 f.,<~O";l.<<"-!!,I ff~i f-4 v: l[J'f l'j jr 4 a r.~AT!'-: 3 F a 1 p*, RE:<<j-ONSef..o-1 iBASE=j-tl.)j t~~~~~Q.>>-"~'ljt-~>1.'1 t.,"<<'.i~!;--2-o-'-~~~~*I j-t l'~a!I!!!I l j'4!~a f i 4 1'tl" l~1'IIII,: ill k-A, Itt f;JJ..'>~(jl.tf LL X-l~1 IT[:t.l f-f<<'1 tl)j"-tj:-,i:.~I L0l4ER.;!~i:li<<I-: l II tl ll.ij!,.I 1!II!!j'}-I Qjh(pMTt.~~
indicate that the heatup rate of the air inside is slightly below the temperature of the casing and that the heatup rate              of the  subcomponents is estimated to        be  approximately 50    F over seven burns, or,7      F  per burn.
l L'i 4'1 ji,;ill t I~.0;4 I I i~I l~f II~~~I ,~1rl 4 1~I~~i l->1 1 l~I~~~-t I ij KO'0'0 I", FIGURE 4-i l II 4 I, O.t,.Da&#xc3;;1 l l;Qt-0 f;l): WOO 7 STEAN CONCENTRATION IN LOWER<l',C011PARTt1EfNT AS A FUNCTION OF TIt1E jl a 1 1 I 1 4+me!','!'(2c.),'
  .It is  important to bear in mind that conservative assumptions have been
.used  in obtaining the        above  results.
The .heat    transfer analysis clearly indicates that for          most equipment
-.which  is environmentally. qualified for        LOCA  or  HSLB  events, elevated temperatures      resulted from hydrogen burns of the magnitude          and  duration
:.discussed      do  not appear to pose any threat to        its  abi lity to  sur vive in  a
=~2D,-type event.
-4e2      Survivabilit of Particular          Pieces  of  E  ui ment This section of Attachment 4 discusses
                        ~
the survivabi  lity of  particular
-:pieces s          of equipment
                    ~
needed  for the mitigation    and  control of  a  S2D-type sequence.      These pieces    of equipment require either particular evaluations or, else, the analysis presented in Section 4.1              does not apply    to them.
          .a)    Cables
              '-The  burning of hydrogen inside containment by use of          a  Distributed Ignition    System (DIS)      results in very short duration exposure fires          and may
-involve cables which are exposed in trays.
Inside the      Cook  containment buildings power and control cables are
-either installed in conduits or in cable trays.
Cables    installed in conduits are not likely to        burn as a  result of exposure to short-duration exposure            fires. These cables cannot propagate        a
-fire    even  if they      burn since the flame    resulting from the. combustion is
-entirely confined to the conduit
      ~                                    ~
and cannot cause    failure of  cables in adjacent enclosures.
  ~      ~
 
                                                                  -In the case    of the control cables        where the  current carried by the conductors    is  small  relative to the thermal rating of the conductors,
  .the cables are installed in trays with solid steel sides, bottoms and covers.
  .Hence,    it is  not    likely for  a hydrogen burn inside containment to          ignite any  control cables installed in trays        . However, upon    exiti ng a  tr ay, either mid-span through a hole in the          tray cover or at the        end  of the tray span, a  portion of the cable      becomes  exposed    for  a  very short length    until the cables either enter      a conduit whi ch faci litates entry into terminal devices
  .or  until the cables      are connected to the device or containment penetration
:,(below  flood level ).
                .All control cables inside containment            needed  for inadequate core cooling mitigation equipment are qualified for flame resistance in accordance
  .:with either    IPCEA Standard      S-19-81 or IEEE-383.        Hence,  for the  exposed portions
:of the control cables      and cables    entirely contained in trays or conduits,          it is  extremely    likely that    the cables  will survive      hydrogen burns inside contain-s ment. Furthermore, the cable      will be    wet due to the actuation      of containment sprays making the      possibility of ignition      from a short duration exposure to
    ,fire  even more r'emote.
For the case of power cables, they are            installed in conduits or in
  -expanded metal      trays without covers      and are    sized to accommodate the      full
    .load current    of connected equipment without exceeding their continuous rated.
temperature.      1Jhen  installed in    expanded metal cable      trays,'he    cables are laid typically      one  layer  deep with spaces between adjacent cables          and secured to the bottom of the tray to maintain this spacing.                The power cables    for  ICC
  'equipment    may be exposed      to hydrogen burning inside containment but they are
 
q ualified  for flame resistance    in accordance with IEEE-383 or S-19-81.
Further, since the power cables are exposed (open trays) they              will be  wet due  to the effect of containment sprays.
Testing results have been reported by L.        J . Klamerus  of Sandia on IEEE-383    cables      . Private communication with      Nr . Klamerus      revealed that the cables    used  in the experiment    were  X-link polyethylene cables.
They were selected      f'r the test  because  they were believed to be most susceptible to exposure fi.re fai lure.        Reported  results indicate that the time to  electrical short for these cables        ranges from    five to nine minutes.
Review  of  ICC equipment power    cables at Cook confirms the      fact that they are either insulated by g palon or      a  synthetic  compound made by    Kerite. Both types of materials are believed to exhibit superior            fire resisting capability than those tested by Sandia Laboratory.
Therefore, despite the fact that power cables at          Cook  might be exposed to a two    to three minutes total duration of hydrogen burns experimental evidence support the contention        that  it is  very  likely that they will be able to survive hydrogen burns typical of those          discussed for a S2D-type event.
b)    Air Recirculation  Fans There are two  air recirculation    fans at Cook and both of them are located in the upper compartment.        These two    centri,fugal fans have  a  total capacity of 80,000 cfm and discharge the flow into the two fan/accumulator rooms. At the exit of each fan there is      a  backdrop damper which opens as a result of flow through the fan.        The damper    is gravity loaded    and is expected to close    if there  is an"overpressure in the fan/accumulator        room. The CLASIX results predict burns in the upper compartment with pressure differentials
 
1b unaccounted    for in the  design  of the  system. Fan  integrity is  being evaluated both from the point of view of casing damage and overspeeding
-  of the  wheel and motor.
c)  Steam  Inertin  and Pol urethane. Insulation Burn In  a S  D-type event, hydrogen release begins approximately 3800 seconds    after the onset of    a small break. Results obtained from the March code  for  Sequoyah  indicate that during the      initial  700 seconds,  the steam con'centration at the lower compar tment reaches        a maximum    of 78/ prior to decaying to 45/, see Figure 4-7.          Subsequently,    the steam concentration
-continues to decrease      to approximately 25/ at onset of the hydrogen release.
Data reported by the U.S. Bureau        of Nines        indicate that    little change
  .to the lower flammability      limit of  hydrogen  is noted  when steam  concentration in the mixture is kept below 308.          Therefore, with    a 254 steam  concentration in the lower compartment, the effects of          steam upon hydrogen combustion should be    minimal.'oreover, lower        compartment sprays    at  Cook would  further serve to enhance condensation        of steam and    to promote rapi d temperature r eduction  in the. lower compartment.      Thus,  it is  expected  that the  steam concentration in the      Cook  lower compartment    will  be  substantially lower than
  .what has been presented      in Figure 4-7. Therefore,    it is  unlikely that  Cook will experience steam .inerting in      a  S2D-like event except possibly during the initial 1000 seconds.
In addition, data presented by Lawrence Livermore Laboratory                in their igniter test program clearly show that steam concentrations up to 40&#xc3; do not inhibit the ignition of hydrogen by the glow plugs nor the abi lity of the igniters to function as designed. In spite of the fact that there would be a higher steam      concentration in the lower compartment, evidence indi cates 1
 
  .that the glow plug igniters
                              ~
will perform their
                                      ~
intended functions as
        ~
  -required.  ~
It is conceivable that at the upper plenum of ice- condenser,              a
:higher hydrogen concentration        may be  present as  a  result of    steam  stripping by the  ice condenser.      It has  also been postulated that combustion          may  first occur at that location and that          it may  even burn  in  a  continuous manner.
However,    it must be pointed out      that the likelihood of the        above scenario
=diminishes if the assumption on            steam  inerting at the lower      compartment    is considered    unrealistic.
Given the complexity    of this issue, the question of burning in the
  .upper plenum    of the ice condenser will continue to          be  investigated    by AEP.
  'Moreover, upcoming results from the modified version                of CLASIX  should be able to provide additional information          on this subject.      If hydrogen    combustion  is
-assumed    to occur at the upper plenum for          an extended    period of time,    it has been postulated    that the integrity of the polyurethane insulation              may be threatened by the presence of hot gases.              This question is being addressed
  -at AEP  simultaneously with the upper plenum burn issue.              The  results of our evaluations    will be transmitted to      the  NRC  in the next quarterly report.
 
0
              ~ ~  =  I ~ ~
            ~  -. l ~ ~      ~ \ 4                    ~ i- i 44                                                    -4
          ~  = 4  ~ ~                              ~  '    4=  4                              4                  4 ~
I 4                                                                        4 4 .4                ~ ~                  4                                                                                    4
                                                                                                                                ~ 4
~ 4
                                                                                                                                                "-,'kg 1'I 4 ~
4  ~                                                                              LON3~ C.<i'!
I 4 4
                                          ~=                                                      4 4 j"'pFt-4 4                            l
                                                                          &        4 5c                  4 4
I 4
4
                                                                                                        ~ =
                                                                            ': . ahk:kkkjki~.- .
4=4  . 4:  =  =.  ~
4
                                                                                                      ~      4-k X'4tpk
($ QQ )
4-1 TEYiPERATURE RESPOi(SES                  OF LOMER CGlk1PARTHENT ATi)OSPHERE ANO MALL
                            /FIGURE
 
  '!   t i      """'T"!'
1/
T
                                                                                                                                  'J''
                                                                                                                              ~ijatjj I,'".'
1!  I I'    ~
            '    e        ~                                                                                                             I t     ~            ~    ~
I )
    ,.1! l.,'t                                                              <<  ~
                                                                                    ~
                                                                                    ~
I~
w
                                                                                          ~
I I i
                                                                                                                                        - ~
!        ~        ~  I t       ~  ~
                                                                                                                                    ~
I                          V
                                                  ~ =-
Ii-I
                                          ~  >>     i t i
I
                                                                    ~
                                                                            ''j 1 it t
1 ~
I      l                                                                j.
a 1
a  s I        I
                                                                                                              .I
                                                                                                  !                                                                            -0
                                                                ~      ~                                      ;t..
t  1 I  ~     I                                11
                                                ~  ~    ~
I I
Jooo.                0
                        ~        i i
:;!!!1Tj:I-j-
1
                  .ji t-l                  C ~r~>XT Pi=SR
                              '0
                                                                            -!-!                  -fk
                                                          -I                                                                      LI:,
1...>>
4 J        Lj I
  -  .tj                                                      ji I'i- ~ Oo-t  ~t            I
                          ~  I t            Ii I
      ~
j r
L!
I    ~    ~
I Ej i
I!        I  ~        -I
                                                                                                                                                                                                  -1
                                                                                                                                                                                                  =
t
                                                                                                                                                                                                    ~
j I t
1 I I 1
j
                                                ,k! I                                                                  jk j                                                                I:1! I',
                                                                                                                                                                              ~   I ~
                                                                  !,1    I                              I  1-1 !  ~ I i ft  >>  I  'I   I I  I 1 I t  1
                                                                                                                                                              ~ t T-l I
                                                                                                                                                                        ~ I        I I'i.t'1      I 1 1 l I
                                                    ;',I<<i            1  i
                                                                                  !! HEIST      VRI!NSF R.          COhF-FICieJT                      I'I>>IT>>I>>  '.(I'I/j',.):;          i'-2
                                                            ', FIGURE                      EFFECTS OF !IEAT TRANSFER COEFFICIENT YARIATIONS ON t1AXIt1UM ATMOSPHERE TEt1PERATURE'N LOWER COt1PARTt1EttT
 
                                                          'l                                        k"r
                                                                  -Tt.
  >>j    I>> .      (0-I ~ - ~
                                                                                                              ..LL j
                                                      -lt: I-
                                        ~
f t-.
C a  Et t
i!f                                    ~  t rr
                ~
f      ~ I f r
I I I!!  (Uo I
( i ill III                                    Iftt
                                                          +pQQ /, P! I(Q gQ,r      ( r /SIC)                        j
                                                              >>>>I>,r'rrr''t,i'-(VARIATIONS
                                                                                          'I                  I 1
FIGURE",4-'3, EFFECTS OF SPRAY FLO>>'t RATE                ON PEAK
't.j
    ~
t,.t      $q i
                        ),        I LI LLLI l ( iATNoSPHERE  TEN ERATURE IN LO((ER,CONPA(ITNENT '
3!
        ~    (
 
                              ~  =~ ~
i  4 I
i 4
t I
                                                                      ~
I'
                                                                                                                                +~4 I
4
                                                                                                                                      ~
4 I
                                                                                                                                                        ~    I t =t-4 I
4        ~
4
                                                                                                                                                                                                        ~ I 4
                                                                                                                                                                                                                      -~ =
t
                                                                                                                                                                                                                                =  4
                                                                                                                                                                                                                  ':=
4  I    =
* t                                                                        4                                    4*
4                                                                                                                                                                                                                            *
                  '\
EM-:                    3    '
                                                                                                                                                                                    ~      -,'I          ~~+      :                        =    = +
4                                                                                                                                                                                                    4
* 4 4
f                                      t                                ~ M 4
t
                                                                                                                                                      -J  m~-~                        ~
4                                                                        4
                  ~
4
          ~                        ~
                                                                                                                    ~  l
                                                                                                                                                            - ~-
                                                                                                                                                                                                                                        ~  ~
t
                                                                                                                                                                                                                -.-=-. ~ --  t-s.-~
                                                              =-+
                                                                                                                ~t~
4                                                                                                                                                                                                                    ~ ~ -4
                                                                                                    *      ~
l                  .j 4>> =  4 I I l
t=.4 .
                                                            ~
                                                                                                                            ~=
J..          ~
t 3
          . XE.                                                              t                t                                   ~  ~  ~
4
                                                                                                                                                                              -I
          ~  . 4=        '-    ~
                                                                                                                                                                  ~+                      l j
    ~
                                                          '        '              ~    tW+                                                              4 (2
* I
                                                                                                                                                                                                          ~     t 4>> t                                                                                                                                                                              ~
                ~
                                                                                                                                                                                                        ~                                                      =~
f-'4-4 4~
4 4
                                                          ~        4    I 44
                                                                                                                                                                                                                                                                            ~
t t
                      'l 4
l
                            ~f I  I' 4<<
I
                                                                  ~4~                                                                                             l 4                                        ~l     l
                                                                                                                                                                                                                                                ~ '-
                                                                                                                                                                                                                                                    -4 4
                                            -~
4
                                        - J                                                                                                                          4  4
                        -~ >>
                                                                                                    ~ I+'1
                                                                                                          ~J 4
t
                                                                                                                      } t
                                                                                                                          ~
                                                                                                                                                                                                                                            ~          >>        ~
                                ~
4
                                          ~ *~  i    ~~        }=-I 3
4 C
I              4 I 4
I t
t 200                                                                                      ~  I                                                                                                          ~                  ~
4 t
* It
                                                                                                                                                                            ~ =
                                                                                                                                                                        ~        'I
                                                                          ~    }    i          r      F>>                  flan.        t 4
                                                                                                                                                                                                                    ~t-              <<4>>                 - t.<<                I 4  ~ =
I 3
                                                                          -FiGURE-'tf-}}.-'TEMPERATURE PROFILES USED-AS CONVECTIVE,:.
BOUNDARY CONDITIONS
 
0 4
h 4
I II 4
4 I    ~   ~
:. 4 I  4                                  ~    ~      4
                                              ~ -  ~        4 il'
                                    = ~:"1  4 I-~
                                          ~
I I=                                                  =- 4 1                       .~  4  ~
I
                                                  ~r
                          'I r ~
ASSU11ED  INSIDE SORFACE-TEMPERATURE PROFILES                    =    4 4 ~
 
v    ')
VI                                                                                                                                                                            f=
t"t I                                     IV i.'i       t I.'gag<<I.                                                        I I I
                                    ~a4                o
                                                                                                                                                                                                                              'r-j
                                                                  ~
I r'>>
I'        '                                                  I    ~  >  ~
                                                                  '            ~
      ~            ~      !  I
                        .      -            t        .e j                                                                                                                                                              I 1      I
                              )
1      !  Ii
                                                                                                                              /
                                                                                                                                                                                                                                                            '                a 4
                                                                                                            ~
                                                                                                                          ~
l j f 1
                                                                                                                                                                                                                    !LOT<<V.". Rfffd<<
I                  1                                                                                            ~                                                                                                                          I l '
              ~
I t f                    f f    4      j   !                                                              ~    l                                                                                                      \   4   4 1
                                                                                                                                                                                                                                                    ~
(O'T I I j
                    >              i g 0'OfACg, C-0 f'~t P/.',PTg,"
                                                                                                                                                                                                                                      ~ P~%/~
                                          ~
t                                                                                                                ~-
                                                                                                                                    >')',                                                                                                                    I' QQ '.;
I                                                                                                                              j
                                                                                    ~    ~                                                                                                                                                                        j
                                                                        'I
                                                        ~    ~
f j',I-
                                                                                          ~          ~
                                                                                                                                                                                                                                                        )
                                                                                          ~          I<<
J->J;
~
                    &,.'                                                                                                                                                                                    -h I,
I'':
a
                ~                  1         ~
t.
a a
ff      ~
i 1      f.,<~O"; l.
                            <<"-!!                                   f-4     v                                                                                                                                 r
,I                                                              : l
[
J'f     l'j                                                                                                               .~AT!'-:
                                                                                                                                                                                                      ..o F a   1 3
ONSef jr                                                                                                                  p*,<<j-     RE:
1 iBASE=j-                                                                   tl.
4
                                                                                                                                                                                                                                                                                    )j
  'ljt-.' ~
t   ~ ~   ~     ~   ~
X Q.>>-"                                                                                                         LL
                            ~   >  1 l~
-f<<
1 1
t
  .," <<'.i ~!;
k-A,          Itt f;JJ                                                                                                                              L0l4ER.;-:              ~i:li<<
    - 2-o '-                                                                                                               ..'
II Qjh(pMTt.~~
l !            I IT[                                            '1
  ~     ~       ~                 ~
* I                                 4 tl )j" tj:,i:.
a
                                                                ~
f   i                                                                         :t.l
                                                        !  1'tl" 4
l   ~
ill  1'IIII,:
tl !,..ij
                            '                                                                                           >~(
j-t          l
                                      ~     a
                                                                                                                                                                                                                  ~       I
  !              I!!!              I     l   j' jl.tf                                                                                                                              ll             1! II!!j'} -I l->
l
                                                .0; I               ~       -
t I
KO                      '0'0                    ~ ~
t, Da&#xc3;;
                                                                                                                                                                ~
I , ~ 1rl l
4 l;
1   ~   I   ~ ~
Qt-0 f; l ):
i         1   1 l     ~
WOO I   ~   ~
ji,;                                                                                                                      O jl                      +me!
1
                                            ~                                                           ij                                          .
I                                                                                                                                               ','!
4    I    I i                                                                                                                                                                                                a  1
                                                                                                                                                                                                                                                                          '(2c.)  ,'
FIGURE             4- 7     STEAN CONCENTRATION IN LOWER
                                                                                                                                                                                                                          <                         1 ill                                                                                                                                                                                                                            I l
l ',C011PARTt1EfNT AS A FUNCTION OF TIt1E 1
            'i i
                                            ~
I   l
                                                          ~
f                                                                                                                                                                                        4 L                  t                                  II                                                  II                    4 4   '1                                                                                                                                I,


==References:==
==References:==


(1)Klamerus, L.J.,"Fire Protection Research," quarterly Progress Report, October-December 1977, NUREG/CR-0366.
(1)   Klamerus, L. J ., "Fire Protection Research," quarterly   Progress Report, October - December 1977, NUREG/CR-0366.
(2)Private Communication, L.J.Klamerus to K.K.Shiu, March 1981.(3)Hertzberg, M.,"Flammability Limits and Pressure Development in H2-Air Mixtures," U.S.Bureau of Mines, PRC Report No.4305, January 1981.(4)Lowry, W.,"Preliminary Results of Thermal Igniter Experiments in H2-Air Steam Environments," Paper presented at the workshop on the impact of Hydrogen on Water Reactor Safety, Albuquerque, New Mexico, January 1981.(5)Sequoyah Nuclear Plant, Core Degradation Program, Yolume 2, Report on the Safety Evaluation of the IDIS, December 15, 1980.
(2)   Private Communication, L. J . Klamerus to K. K. Shiu, March 1981.
0 0 DONALD C.COOK NUCLEAR PLANT UNIT NOS.1 AND 2 ATTACNENT NO.5 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL  
(3)   Hertzberg, M., "Flammability Limits and Pressure Development in H2-Air Mixtures," U.S. Bureau of Mines,   PRC Report No. 4305, January 1981.
(4)   Lowry, W., "Preliminary Results   of Thermal   Igniter Experiments in H2-Air Steam Environments," Paper presented     at the workshop on the impact of Hydrogen on Water Reactor Safety, Albuquerque, New Mexico, January 1981.
(5)   Sequoyah Nuclear Plant, Core Degradation Program, Yolume 2, Report on the Safety Evaluation of the IDIS, December 15, 1980.
 
0 0
 
DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACNENT NO. 5 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL
 
5.0    Current Research Pro rams Several research programs have been undertaken by          AEP  to investigate hydrogen control    related  phenomena;    some  of these programs were discussed in the last quarterly report.        In this section    a number  of the current research programs    will be  reviewed; program status, revised        test plan  and program schedule    of  each effort  wi ll be  discussed  individually.
      ~RPRI  P AEP.,  along with Duke and TYA,are co-sponsors        of f'our  EPRI  research programs in which fundamental flame studies wi 11          be made;  research and development on various igniter types      will be    pursued; mixing and    distribution of    hydrogen  in prototypic containment environments          will be investigated    and  additional glow plug testing    will be  performed.
a)  Mhiteshell Nuclear Research Establishment This research  facility is    operated by 'Atomic Energy of Canada Limited.
Two  research programs    will be    pursued independently    at this  facility; namely, the hydrogen combustion phenomena study and the research and development of different igniter types.        Both  of these  programs  will be  undertaken with the collaboration of Ontario Hydro        as an  additional financial contributor to the work.
I The  first experimental    program  is designed to investigate various hydrogen combustion phenomena        and can'be  divided into four parts.      The  first part of this experimental effort entails performing nineteen ignition tests on  lean hydrogen mixtures.        The hydrogen    concentration to    be examined    in these tests will vary from 5.05 to        30&#xc3; by volume.      A spark  ignition  source which  is
 
i n the order of 0.5 joule will      be used  to ignite the mixture.      Details of the experimental set up and test vessel dimensions have been presented in the previous quarter      ly submittal. Fast response pressure transducers,        thermo-couples and ionization probes        will  be employed  to monitor  and  record various important test parameters.        Of the= nineteen tests planned the majority        of them  will be  conducted with the      ignition spark located near the bottom of the spherical test vessel.        Two  tests are planned in which the ignition source will be  located at the center of the vessel and one test is planned with the ignition  source near the top      of the vessel. These three  tests will    be used    to assess  the  effect of igniter location.
These  tests are anticipated to require approximately three            weeks  to complete. According to the      latest estimate provided    by HNRE, system shakedown is  being performed on the      test vessel  and on  the data acquisition system;      it is expected that data collection will begin          by  arly Nay.
Part  II II of the hydrogen combustion program includes        a  total of eighteen tests which are intended to study spherical deflagrations of              a hydrogen flame.      The hydrogen  concentrations that    will be investigated range from 105 to 42K whereas the steam concentrations will vary from 0 to 30&#xc3;.
With the exception of two tes ts in which i gni ti on will be ini ti ated at the bottom of the test vessel all tests will be performed using center ignition.
The'time required to complete these tests is approximately one month.          II Subsequent    to these tests the test vessel will      be  modified for the study of turbulent effects on hydrogen combustion.            Two weeks have been scheduled in the program plan to accomplish these modifications.
 
The  primary objective of the Part      III tests    is to investigate turbulent effects      upon completeness    of hydrogen burns,      and upon pressure    and temperature responses.        Turbulence in these tests        will  be  created by two different  means:    1) two 16" diameter vaniable speed fans and, 2) gratings.
The fans are    rated at  1500 cfm each and consequently        are capable of creating a  very turbulent environment.        The  gratings are    made  of 1/4" perforated plate with  50%  porosity  and  they are used to simulate obstacle-induced turbulence.      Six tests  will be  devoted to examining lean hydrogen combustion under turbulent conditions;        ignition will be initiated at the        bottom of the vessel. Four additional    tests will    be conducted using 14% and 20/ hydrogen-air  mixtures when the ignition source        will be    placed at the center of the test vessel.      The  time needed to complete these tests          is  expected to be about one month.
Part IV of the hydrogen combustion program entails              a  total of six 7
tests. Prior to performing these tests,          a week's time    is  needed  to set  up the vest rig which includes      a  sphere used  in the previous tests.        Ignition for these tests    will be initiated at either        the center of the sphere or at the end of the pipe    f'r hydrogen    mixtures of either      8%  or  20%. In addition to collecting the temperature        and pressure    data, ionization probes      will be  used to record flame propagation from          one compartment    to,another. The  final two tests using this test geometry include studying hydrogen combustion characteristics from  a 8%  or  a 10%  mixture to  a 6%  mixture. In these tests the pipe        will be I
filled with    a  8/ or'10% mixture, while the sphere is          filled with    a  6/ mixture.
Ignition will    be  initiated in the    pipe section. The  duration of these tests is anticipated to      be  about three weeks.


===5.0 Current===
The second experimental      program    that will  be carried through at the llhiteshell    facility involves      research   and development    effort on  various igniter types.     The    objective of this work is to perform extensive benchmark tests in   a six cubic foot spherical test vessel to identify igniter types and to demonstrate their combustion capability in             a  prototypic environment.
Research Pro rams Several research programs have been undertaken by AEP to investigate hydrogen control related phenomena; some of these programs were discussed in the last quarterly report.In this section a number of the current research programs will be reviewed;program status, revised test plan and program schedule of each effort wi ll be discussed individually.
The  testing program will begin in          May and last about four    months. Based on test data obtained, a'selection of igniters will then              be further tested in    a larger scale test vessel (600          ft3 )  at Acurex. Presently, besides the       GMAC 7G glow plugs, a few resistance-heating            glow plugs developed by Tayco      will also be examined.
~RPRI P AEP., along with Duke and TYA,are co-sponsors of f'our EPRI research programs in which fundamental flame studies wi 11 be made;research and development on various igniter types will be pursued;mixing and distribution of hydrogen in prototypic containment environments will be investigated and additional glow plug testing will be performed.
      ,b)  Acurex In the Acurex program, the test plan can also            be  divided into two parts; the   first part      is designed to   examine the  effectiveness    and  the performance    of. glow plugs in igniting        hydrogen under various     prototypic contain-ment conditions .      In these experiments, hydrogen flow rate, steam flow rate, water sprays parameters        and ignitor locations will'e varied to provide parametric studies on the          ability of glow plugs'o ignite hydrogen mixtures           .
a)Mhiteshell Nuclear Research Establishment This research facility is operated by'Atomic Energy of Canada Limited.Two research programs will be pursued independently at this facility;namely, the hydrogen combustion phenomena study and the research and development of different igniter types.Both of these programs will be undertaken with the collaboration of Ontario Hydro as an additional financial contributor to the work.I The first experimental program is designed to investigate various hydrogen combustion phenomena and can'be divided into four parts.The first part of this experimental effort entails performing nineteen ignition tests on lean hydrogen mixtures.The hydrogen concentration to be examined in these tests will vary from 5.05 to 30&#xc3;by volume.A spark ignition source which is
The effect of micro-fog        on glow  plug ignition and pressure transients          will also be investigated.      A number    of the experiments will attempt to provide data to correlate fogging      as a pressure    suppressant    with spray volume, spray drop size, and hydrogen    concentrations.       A strong ignition source, e.g., electric match, will be  used  in all the fogging-related tests.
A second  part of the test plan calls for testing          a selected number of igniters developed at the Whiteshell Nuclear            Research    Establishment. These will be large    scale confirmatory tests for ignition devices which have demonstrated    a  superior potential in igniting lean hydrogen mixtures              and  in
                          \


i n the order of 0.5 joule will be used to ignite the mixture.Details of the experimental set up and test vessel dimensions have been presented in the previous quarter ly submittal.
replacing the existing glow plug designs in the future.                     Their effectiveness
Fast response pressure transducers, thermo-couples and ionization probes will be employed to monitor and record various important test parameters.
                        ~                        ~      ~                      ~            ~
Of the=nineteen tests planned the majority of them will be conducted with the ignition spark located near the bottom of the spherical test vessel.Two tests are planned in which the ignition source will be located at the center of the vessel and one test is planned with the ignition source near the top of the vessel.These three tests will be used to assess the effect of igniter location.These tests are anticipated to require approximately three weeks to complete.According to the latest estimate provided by HNRE, system shakedown is being performed on the test vessel and on the data acquisition system;it is expected that data collection will begin by arly Nay.Part II of the hydrogen combustion program includes a total of II eighteen tests which are intended to study spherical deflagrations of a hydrogen flame.The hydrogen concentrations that will be investigated range from 105 to 42K whereas the steam concentrations will vary from 0 to 30&#xc3;.With the exception of two tes ts in which i gni ti on will be ini ti ated at the bottom of the test vessel all tests will be performed using center ignition.The'time required to complete these tests is approximately one month.II Subsequent to these tests the test vessel will be modified for the study of turbulent effects on hydrogen combustion.
        ~
Two weeks have been scheduled in the program plan to accomplish these modifications. The primary objective of the Part III tests is to investigate turbulent effects upon completeness of hydrogen burns, and upon pressure and temperature responses.
                                                                          ~
Turbulence in these tests will be created by two different means: 1)two 16" diameter vaniable speed fans and, 2)gratings.The fans are rated at 1500 cfm each and consequently are capable of creating a very turbulent environment.
in
The gratings are made of 1/4" perforated plate with 50%porosity and they are used to simulate obstacle-induced turbulence.
~
Six tests will be devoted to examining lean hydrogen combustion under turbulent conditions; ignition will be initiated at the bottom of the vessel.Four additional tests will be conducted using 14%and 20/hydrogen-air mixtures when the ignition source will be placed at the center of the test vessel.The time needed to complete these tests is expected to be about one month.Part IV of the hydrogen combustion program entails a total of six 7 tests.Prior to performing these tests, a week's time is needed to set up the vest rig which includes a sphere used in the previous tests.Ignition for these tests will be initiated at either the center of the sphere or at the end of the pipe f'r hydrogen mixtures of either 8%or 20%.In addition to collecting the temperature and pressure data, ionization probes will be used to record flame propagation from one compartment to,another.
a
The final two tests using this test geometry include studying hydrogen combustion characteristics from a 8%or a 10%mixture to a 6%mixture.In these tests the pipe will be I filled with a 8/or'10%mixture, while the sphere is filled with a 6/mixture.Ignition will be initiated in the pipe section.The duration of these tests is anticipated to be about three weeks.
                  ~
spray environment        will be
                                  ~
evaluated at Acurex's 600        ft  vessel. ~
Prior to carrying through the above described test 'plan,                   a   series of shakedown  tests will         be performed    to provide checks for consistency          and accuracy    of all instrumentation; specifically, results will                 be compared      with those obtained      at Mhiteshell        and from  the available    literature.
c)  Hanford  En  ineerin        Develo ment Laborator        HEDL The objective of this effort is to experimentally investigate aspects of hydrogen mixing and         distribution in      a  simulated ice condenser lower compartment geometry.           Hydrogen release      into the  compartment    will be   modelled by two approaches.        In the      first approach,     steam and hydrogen are introduced as a  jet into  the compartment simulating              a pipe break; in the second approach, hydrogen and steam are added              to the compartment      as a  diffuse source similar to pressurizer      relief    tank release.       In order to extend the rang        of  hydrogen concentration beyond        "4%%d,  helium  will be used as a simulation fluid in place of hydrogen. Confirmatory          tests will be performed to demonstrate that helium can indeed be used      to substitute hydrogen in these mixirig studies.
The first test        is scheduled to begin        some time in mid June and the whole  test  program    is expected to last approximately              two months. In the meantime,   similitude      and    scaling calculations are being done so          as  to properly model the necessary        parameters      that are vital to the investigation of mixing and  distribution.     Some      of the non-dimensional groups that are being examined are:    the Richardson number, the Reynolds number, and the Grashof number.
d)  Factor    Mutual Research AEP, Duke, TVA and EPRI          recently    came  to the conclusion that in order to better understand fogging              as a means    of hydrogen control and to eventually


-The second experimental program that will be carried through at the llhiteshell facility involves research and development effort on various igniter types.The objective of this work is to perform extensive benchmark tests in a six cubic foot spherical test vessel to identify igniter types and to demonstrate their combustion capability in a prototypic environment.
0 render     a decision     on its applicability     as a   viable solution to hydrogen mitigation, they would contract with Factory Mutual                 Research   to undertake a   research program to investigate fogging.               The objective of this program is to determine the effects of micro-fog               upon the lower   flammability limit (LFL) of hydrogen, to provide a relationship between dropsize and fogging density     on LFL and     to correlate the concentrations of lean hydrogen air mixtures with various fogging parameters.
The testing program will begin in May and last about four months.Based on test data obtained, a'selection of igniters will then be further tested in a larger scale test vessel (600 ft)at Acurex.Presently, besides the GMAC 7G 3 glow plugs, a few resistance-heating glow plugs developed by Tayco will also be examined.,b)Acurex In the Acurex program, the test plan can also be divided into two parts;the first part is designed to examine the effectiveness and the performance of.glow plugs in igniting hydrogen under various prototypic contain-&ment conditions
In order to ensure that the effects of fogging             on LFL are   properly reproduced,       a strong ignition source     has been proposed     and is likely to   be used   to initiate ignition         on all LFL tests.     The range of droplet sizes that is of interest to the utilities varies from                 a few microns   to hundreds of microns, whereas the fogging density varies from zero to a.few percent.                       Test parameters       that will   be measured
.In these experiments, hydrogen flow rate, steam flow rate, water sprays parameters and ignitor locations will'e varied to provide parametric studies on the ability of glow plugs'o ignite hydrogen mixtures.The effect of micro-fog on glow plug ignition and pressure transients will also be investigated.
                                              ~
A number of the experiments will attempt to provide data to correlate fogging as a pressure suppressant with spray volume, spray drop size, and hydrogen concentrations.
include temperature,       pressure, dropsize distribution.and fog.density distribution.
A strong ignition source, e.g., electric match, will be used in all the fogging-related tests.A second part of the test plan calls for testing a selected number of igniters developed at the Whiteshell Nuclear Research Establishment.
                                          ~    ~
These will be large scale confirmatory tests for ignition devices which have demonstrated a superior potential in igniting lean hydrogen mixtures and in\
  ~
replacing the existing glow plug designs in the future.Their effectiveness
schematic of. the experimental
~~~~~~~~~~~in a spray environment will be evaluated at Acurex's 600 ft vessel.Prior to carrying through the above described test'plan, a series of shakedown tests will be performed to provide checks for consistency and accuracy of all instrumentation; specifically, results will be compared with those obtained at Mhiteshell and from the available literature.
                ~                    ~
c)Hanford En ineerin Develo ment Laborator HEDL The objective of this effort is to experimentally investigate aspects of hydrogen mixing and distribution in a simulated ice condenser lower compartment geometry.Hydrogen release into the compartment will be modelled by two approaches.
                                                        ~  A set   up is   shown   in Figure 5-1.
In the first approach, steam and hydrogen are introduced as a jet into the compartment simulating a pipe break;in the second approach, hydrogen and steam are added to the compartment as a diffuse source similar to pressurizer relief tank release.In order to extend the rang of hydrogen concentration beyond"4%%d, helium will be used as a simulation fluid in place of hydrogen.Confirmatory tests will be performed to demonstrate that helium can indeed be used to substitute hydrogen in these mixirig studies.The first test is scheduled to begin some time in mid June and the whole test program is expected to last approximately two months.In the meantime, similitude and scaling calculations are being done so as to properly model the necessary parameters that are vital to the investigation of mixing and distribution.
A   detail test plan is being prepared           by Factory Mutual Research     with aid from     AEP and     the other participants.         The test vessel is   scheduled to become     available for test in approximately three weeks.                 Finally,   it is also the intent of this         effort to provide     the necessary and pertinent information
Some of the non-dimensional groups that are being examined are: the Richardson number, the Reynolds number, and the Grashof number.d)Factor Mutual Research AEP, Duke, TVA and EPRI recently came to the conclusion that in order to better understand fogging as a means of hydrogen control and to eventually 0 render a decision on its applicability as a viable solution to hydrogen mitigation, they would contract with Factory Mutual Research to undertake a research program to investigate fogging.The objective of this program is to determine the effects of micro-fog upon the lower flammability limit (LFL)of hydrogen, to provide a relationship between dropsize and fogging density on LFL and to correlate the concentrations of lean hydrogen air mixtures with various fogging parameters.
'o assist         in the selection of test parameters in the Acurex fogging tests.
In order to ensure that the effects of fogging on LFL are properly reproduced, a strong ignition source has been proposed and is likely to be used to initiate ignition on all LFL tests.The range of droplet sizes that is of interest to the utilities varies from a few microns to hundreds of microns, whereas the fogging density varies from zero to a.few percent.Test~~~~~~~parameters that will be measured include temperature, pressure, dropsize distribution.and fog.density distribution.
e)   CLASIX In the     AEP-NRC   meeting on March 18, 1981, the       staff expressed   interest in reviewing         a -number   of additional   CLASIX runs . The first concern   centers around the unique lower containment spray                 capability at   Cook and   its possible effect     upon     other compartment responses       during and subsequent to     a hydrogen burn.
A schematic of.the experimental set up is shown in Figure 5-1.A detail test plan is being prepared by Factory Mutual Research with aid from AEP and the other participants.
 
The test vessel is scheduled to become available for test in approximately three weeks.Finally, it is also the intent of this effort to provide the necessary and pertinent information
0 Reviews   at AEP indicate that in the   CLASIX   sensitivity study submitted to the NRC, spray parameters     such as spray   flow rate, droplet size, heat transfer characteristi'cs to the drop     and spray temperature     were   varied; minimal effects on the containment pressure and temperature responses           were noted. Thus, the available information from CLASIX, points out that variations in spray parameters   would not   significantly affect containment temperature         and pressure response.
'o assist in the selection of test parameters in the Acurex fogging tests.e)CLASIX In the AEP-NRC meeting on March 18, 1981, the staff expressed interest in reviewing a-number of additional CLASIX runs.The first concern centers around the unique lower containment spray capability at Cook and its possible effect upon other compartment responses during and subsequent to a hydrogen burn.
Another possible CLASIX run discussed         in the above mentioned meeting involved   initiating   hydrogen combustion   at 10% with   50% burn fraction.
0 Reviews at AEP indicate that in the CLASIX sensitivity study submitted to the NRC, spray parameters such as spray flow rate, droplet size, heat transfer characteristi'cs to the drop and spray temperature were varied;minimal effects on the containment pressure and temperature responses were noted.Thus, the available information from CLASIX, points out that variations in spray parameters would not significantly affect containment temperature and pressure response.Another possible CLASIX run discussed in the above mentioned meeting involved initiating hydrogen combustion at 10%with 50%burn fraction.Experimental measurements on completeness of hy'drogen combustion reported in the literature show that in spite of the large scattering in data around 5%to 7%, an initial 10/concentration consistently results in an almost 100%(1)burn.In addition, it has been shown that turbulence will further enhance completeness of combustion for lean hydrogen mixtures.Therefore, if the probability of incomplete combustion of 10%is indeed negligibly small, as it seems to be, its effects upon the containment need not be investigated.
Experimental measurements       on completeness   of hy'drogen combustion reported       in the literature   show that in spite of the large scattering in data around 5% to 7%, an   initial 10/ concentration consistently results in an almost           100%
It was suggested by the staff that a case with ignition initiated at 10%and then propagating to a 8%hydrogen concentration region should be studied.Both types of combustion would assume a 100%burn fraction.Close examination of the various cases presented in the CLASIX sensitivity studies reveals that there is one case (JVD15)which uses the exact input parameters requested by the staff.One burn was observed in the upper compartment with an estimated maximum pressure of 57 psia (only one air recirculation fan was assumed to be operational in the run).This maximum pressure is very close to the Cook containment elastic limit.However, since heat sinks have not been included in these sensitivity calculations, the results are likely.to be overly~~conservative.
(1) burn. In addition,   it has been shown that turbulence will further         enhance completeness     of combustion for lean hydrogen mixtures             . Therefore,   if the probability of incomplete combustion of         10%   is indeed negligibly small,       as it seems   to be,   its effects   upon the containment need not be investigated.
Floivmeter-Air pressure Mixer-Flowmeter-Regulator Water Flash Arrostor Air-Solo n old Op o r at ed Valve Solon old/Oporatod Valve Fog Nozzles/I X/I/I/H>-Air Mix Supply Line Spark Gap~Eloctrodes loniza tl on Prob o s For Flamo Spood lAoasuromonts 6" Dlcmeter~x~Longth I ih r'(I ii/il/I I I i I I I 4-Thermocoeploe, bRopSfhE: hl~sug~NQ7) peal~DrainFIGURE 5-1 EXPERIMENTAL ARRANGEl1ENT OF FOGGING TESTS  
It was   suggested   by the staff that   a case   with ignition initiated at 10% and then   propagating to   a 8% hydrogen concentration region should be studied. Both types   of combustion would   assume   a 100%   burn fraction. Close examination of the various cases presented in the CLASIX             sensitivity studies reveals that there is one case (JVD15) which uses the exact input parameters requested by the     staff. One   burn was observed in the upper compartment with an estimated maximum pressure       of 57 psia (only one air recirculation fan         was assumed   to be operational in the run).     This   maximum   pressure is very close to the Cook containment   elastic limit. However, since heat sinks have not been included in these
~
sensitivity calculations, the results are likely .to         be overly conservative. ~
 
Floivmeter                                               Flowmeter Mixer Air pressure                                                         Regulator Flash Arrostor Water                                                    Air Solo n old Op o r at ed Valve
                      /
Solon old Oporatod Valve                                         H>- Air Mix Supply Line
                                              /I  X Fog Nozzles
                                          / II
                                        /
                                            /                  Spark Gap
                                                                ~ Eloctrodes loniza tl on Prob os I ih r'(I ii
                                              /il               4     Thermocoeploe,
                                ~
For                                                    bRopSfhE: hl~sug~NQ7) peal~
Flamo Spood                    /    I lAoasuromonts                I    I i
6" Dlcmeter x ~    Longth I
I I
Drain FIGURE 5-1     EXPERIMENTAL ARRANGEl1ENT OF FOGGING TESTS


==References:==
==References:==


(1)Liu D.D.S., et al,"Some Results of WNRE Exper iments on, Hydrogen Combustion," Water Reactor Safety Workshop on the Impact of Hydrogen, Albuquerque, New Mexico, January 1981.(2)Hertzbert, M.,"Flammability Limits'nd Pressure Development in H2-Air Mixtures," U.S.Bureau of Mines, PRC Report No.4305, January 1981.
(1) Liu D. D. S., et al, "Some Results of WNRE Exper iments on, Hydrogen Combustion," Water Reactor Safety Workshop on the Impact of Hydrogen, Albuquerque, New Mexico, January 1981.
DONALD C.COOK NUCLEAR PLANT UNIT NOS.1 AND 2 ATTACNENT NO.5 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL t~  
(2) Hertzbert, M., "Flammability Limits'nd Pressure Development in H2-Air Mixtures," U. S. Bureau of Mines,   PRC Report No. 4305, January 1981.
 
DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACNENT NO. 5 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL
 
t~
5.0  Current Research        Pro rams Several research        programs have been undertaken          by AEP  to investigate hydrogen    control related      phenomena;      some  of these programs were di.scussed in the last quarterly report.            In this section        a  number  of the current research programs  will    be  reviewed; program status, revised            test plan  and program schedule  of  each    effort will    be  discussed    individually.
1.1  ~E AEP,  along with Duke and TVA,are co-sponsors                of four    EPRI research programs in which fundamental flame studies will                be made;    research and development on various  igniter      types  will be    pursued; mixing and      distribution of    hydrogen    in prototypic containment environments will                be  investigated    and  additional glow plug testing      will be    performed.
a)  Whiteshell Nuclear Research Establishment This research 1
facility is      operated by Atomic Energy of Canada Limited.
Two  research programs        will  be pursued      independently at this        facility; namely, the 'hydrogen combustion phenomena study and the research and development of different igniter types.            Both    of these    programs  will be    undertaken with the collaboration of Ontario Hydro              as an  additional financial contributor to the work.
The  first experimental        program    is designed to investigate various hydrogen combustion phenomena            and can be    divided into four parts.        The  first part of this experimental effort entails perfororing nineteen ignition tests on lean hydrogen        mixtures. The hydrogen      concentration to      be examined    in'these tests will vary from 5.0$ to            305 by volume.        A spark  ignition source    which  is
 
0 in the order of 0.5 joule    will  be used  to ignite the mixture.        Details of the experimental set up and test vessel dimensions have been presented in the previous quarterly submittal.        Fast response  pressure transducers,      thermo-couples and ionization probes      will  be employed  to monitor  and  record various important test parameters.      Of the nineteen tests planned the majority          of them  will be conducted wi th    the ignition spark located near the bottom of the spherical  test vessel. Two  tests are planned in which the ignition source will be located at the center of the vessel          and one  test is    planned with the i gnition source near the top of the vessel.          These three    tests will  be used    to assess  the  effect of igniter location.
These  tests are anticipated to require approximately three            weeks  to complete. According to the    latest estimate provided    by  WNRE,    system shakedown is being performed    on the test vessel and on the data acquisition system;            it is expected that data collection will begin          by early Nay.
Part  II of the hydrogen combustion program includes          a  total of eighteen tests which are intended to study spherical deflagrations of              a hydrogen flame. The hydrogen    concentrations    that will  be  investigated range from 105 to 421 whereas the steam concentrations          will vary from 0 to 30&#xc3;.
With the exception    of two  tests in which igni tion. will be initiated at the bottom of the    test vessel  all tests will be performed using center ignition.
The time  'required to complete these tests is approximately one month.
Subsequent  to these tests the test vessel will        be  modified for the study of turbulent effects on hydrogen combustion.            Two weeks have been scheduled jn the program plan to accomplish these modifications.
 
The  primary objective of the Part        III tests    is to investigate turbulent effects      upon completeness    of  hydrogen burns, and upon pressure        and temperature responses.        Turbulence in these tests        will  be created by two different  means:    1) two 16" diameter variable speed fans and, 2) gratings.
The fans  are rated at 1500 cfm each and consequently are capable of creating a very turbulent environment.          The gratings are    made  of 1/4" perforated plate with 50/ porosity      and  they are used to simulate obstacle-induced turbulence.      Six tests  will  be devoted  to examining lean hydrogen combustion under  turbulent conditions; igni tion will        be  initiated at the    bottom of the vessel. Four additional    tests will    be conducted    using 14/ and 20/ hydrogen-air  mixtures    when  the ignition source      will be    placed at the center of the test vessel.      The time needed      to complete these tests is expected to        be about one month.
Part IV of the hydrogen combustion program entails            a total of six tests. Prior to performing these tests,        a  week's time is needed to set up the test  rig which includes      a  sphere used  in the previous tests.      Ignition for these tests    will be i nitiated at either the center of the sphere or at              the end of the pipe    for hydrogen mixtures of either 8/ or 205. In addition to collecting the temperature        and pressure    data, ionization probes wi ll      be used to record flame propagation from one compartment to another.                The  final  two tests using this test geometry include studying hydrogen combustion characteristi                cs from  a 8&#xc3;  or  a 10&#xc3;  mixture to    a 6X  mixture. In these tests the pipe      will  be filled with a 8&#xc3; or 105 mixture, while          the sphere is    filled with  a 6X  mixture.
Ignition will be initiated in the pipe          section. The  duration of these tests is anticipated to      be  about three weeks'
 
~ ~
The second      experimental program that wi 11 be carried .through at the Whiteshell        facility involves    research and development        effort  on  various igniter types. The. objective of this work is to perform extensive benchmark tests in a six cubic foot spherical test vessel to identify igniter types and  to demonstrate their combustion capability in              a  prototypi c environment.
The  testing program will begi n in          May and  last about four      months. Based on test data obtained,          a selection of igni ters will then        be  further tested in      a larger scale test vessel (600            ft3 )  at Acurex. Presently, besides the        GMAC 7G glow plugs,      a  few resistance-heating      glow plugs developed by Tayco          will also be examined.
b)  Acurex In the Acurex program, the test plan            can also be    divided into two parts; the      first    part is designed to examine the effectiveness            and  the performance      of glow plugs in igniting        hydrogen under various        prototypic contain-ment    conditions    . In these experiments, hydrogen flow rate, steam flow rate, water sprays parameters          and  ignitor locations will        be  varied to provide parametric studies on the            ability of    glow plugs to    i gnite  hydr'ogen mixtures    .
The  effect of      mi cro-fog on glow    plug ignition and pressure transients wi 11 also be  investigated.        A number,  of the experiments will attempt to provide data to correlate fogging          as a  pressure suppressant      wi.th spray volume, spray drop        size, and hydrogen        concentrations.      A  strong ignition source, e.g., electric match, will be    used    in all the fogging-related tests.
A  second    part of the test plan calls for testing            a selected    number of igni ters developed at the Whitqshell Nuclear                Research    Establishment.      These will    be  large scale confirmatory tests for ignition devices which have demonstrated      a'uperior potential in igniti ng          lean hydrogen mixtures and in
 
h replacing the existing glow plug designs in the future.                  Their effectiveness in a  spray environment      will be. evaluated at    Acurex's 600    ft  vessel.
Prior to carrying through the'above described test plan,                a  series of shakedown    tests will    be performed  to provide checks for consistency          and accuracy    of all i nstrumentation; specifically, results will              be compared    with those obtained    at Whiteshell      and from  the available      literature.
c)    Hanford  En  ineerin    Develo ment Laborator          HEDL The  objective of this effort is to experimentally investigate aspects of  hydrogen mixing and        distribution in  a  simulated ice condenser lower compartment    geometry.      Hydrogen release    into the    compartment    will be  modelled by two approaches.        In the  first approach,    steam and hydrogen are introduced as a  jet into    the compartment simulating        a  pipe break; in the second approach, hydrogen and steam are added to the compartment as a                diffuse source simi lar to pressurizer    relief    tank release. In order to extend the range of hydrogen concentration beyond 45, helium          will be used as a simulation fluid in place of hydrogen.      Confirmatory    tests will be performed to demonstrate that helium can indeed be used      to substitute hydrogen in these mixing studies.
The  first  test is scheduled to begin        some  time in mid June and the whole    test  program  is expected to last approximately          two months. In the meantime,    similitude    and  scaling calculations are being        done so as    to properly model the necessary      parameters    that are vital to the investigation of mixing and  distribution.      Some  of the non-dimensional groups that are being examined are:    the Richardson number, the Reynolds number, and the Grashof number.
d)  Factor    Mutual Research AEP, Duke, TVA and EPRI        recently  came  to the conclusion that in order to better understand fogging          as a means  of hydrogen control        and to eventually
 
render    a  decision      on its applicability    as a  viable solution,to hydrogen mitigation, they would contract with Factory Mutual                  Research    to undertake a  research program to investigate fogging.                The  objective of this program is to determine the effects of micro-fog              upon the lower      flammability limit (LFL) of hydrogen, to provide            a  relationship    between dropsize and fogging density    on LFL and      to correlate the concentrations of lean hydrogen air mixtures with various fogging parameters.
In order to ensure that the effects of fogging              on LFL  are properly reproduced,      a  strong ignition source      has been proposed      and  is likely to    be used  to    initiate ignition        on all  LFL  tests. The range    of droplet sizes that is of interest to the          utilities  varies from    a few  microns to hundreds      of microns, whereas the fogging density varies from zero to                    a few percent.      Test parameters      that will    be measured  include temperature,      pressure,    dropsize distribution        and fog    density distribution.      A  sch'ematic  of the experimental set  up  is    shown    in Figure 5-1.
A  detail test plan is being prepared          by Factory Mutual Research        with aid from      AEP and      the other participants.      The  test vessel is scheduled to become    available for test in approximately three              weeks . Finally,  it is  also the intent of        this effort to provide the        necessary  and  pertinent information to assist in the se1ection of test parameters in the Acurex fogging tests.
e)    CLASIX In the    AEP-HRC  meeting on March 18, 1981, the        staff  expressed    interest in reviewing        a .number    of additional  CLASIX  runs. The  first. concern    centers around the unique lower containment spray                capability at    Cook and  its  possible ffect  upon    other compartment responses        during  and subsequent    to  a  hydrogen burn.


===5.0 Current===
Reviews    at  AEP indicate that in the    CLASIX  sensiti vity study submitted to the   NRC,    spray parameters    such as spray  flow rate, droplet si ze, heat transfer characteristics to the drop        and spray temperature      were  varied; minimal effects on, the containment pressure and temperature            responses  were noted.     Thus, the available information from CLASIX, points out that variations in spray parameters      would not  significantly affect containment temperature            and pressure response.
Research Pro rams Several research programs have been undertaken by AEP to investigate hydrogen control related phenomena; some of these programs were di.scussed in the last quarterly report.In this section a number of the current research programs will be reviewed;program status, revised test plan and program schedule of each effort will be discussed individually.
Another possible CLASIX run discussed          in the above mentioned meeting in'volved    initiating    hydrogen combustion at 10/ with        50%  burn  fraction.
1.1~E AEP, along with Duke and TVA,are co-sponsors of four EPRI research programs in which fundamental flame studies will be made;research and development on various igniter types will be pursued;mixing and distribution of hydrogen in prototypic containment environments will be investigated and additional glow plug testing will be performed.
Experimental measurements        on completeness  of hydrogen combustion reported in the   literature    show  that in spite of the Ilarge scattering in data around 5X  to   7X, an    initial  10&#xc3;  concentration consistently results in          an almost    100'5 (1) burn. In addition,    it has  been shown  that turbulence will further          enhance completeness      of combustion for lean hydrogen mixtures             . Therefore,    if the probability of incomplete combustion of           105  is indeed negligibly small,         as it seems      to be,  its effects  upon the containment need not be investigated.
a)Whiteshell Nuclear Research Establishment This research facility is operated by Atomic Energy of Canada Limited.1 Two research programs will be pursued independently at this facility;namely, the'hydrogen combustion phenomena study and the research and development of different igniter types.Both of these programs will be undertaken with the collaboration of Ontario Hydro as an additional financial contributor to the work.The first experimental program is designed to investigate various hydrogen combustion phenomena and can be divided into four parts.The first part of this experimental effort entails perfororing nineteen ignition tests on lean hydrogen mixtures.The hydrogen concentration to be examined in'these tests will vary from 5.0$to 305 by volume.A spark ignition source which is 0
It was  suggested  by the staff that    a  case with    ignition initiated at 10/    and then    propagating to  a 8/ hydrogen concentration region should            be studied.        Both types  of combustion  would assume a 100/ burn        fraction. Close examination of the various cases          presented    in the   CLASIX  sensitivity studies reveals that there is one case (JVD15) which uses the exact input parameters requested by the       staff. One  burn was observed in the upper compartment with an  estimated maximum pressure of 57 psia (only one            air recirculation      fan was assumed    to   be operational in the run). This    maximum  pressure is very close to the   Cook  containment    elastic limit. However, since heat sinks have not been included in these        sensitivity calculations, the results        are  likely to   be  overly conservative.
in the order of 0.5 joule will be used to ignite the mixture.Details of the experimental set up and test vessel dimensions have been presented in the previous quarterly submittal.
Fast response pressure transducers, thermo-couples and ionization probes will be employed to monitor and record various important test parameters.
Of the nineteen tests planned the majority of them will be conducted wi th the ignition spark located near the bottom of the spherical test vessel.Two tests are planned in which the ignition source will be located at the center of the vessel and one test is planned with the i gnition source near the top of the vessel.These three tests will be used to assess the effect of igniter location.These tests are anticipated to require approximately three weeks to complete.According to the latest estimate provided by WNRE, system shakedown is being performed on the test vessel and on the data acquisition system;it is expected that data collection will begin by early Nay.Part II of the hydrogen combustion program includes a total of eighteen tests which are intended to study spherical deflagrations of a hydrogen flame.The hydrogen concentrations that will be investigated range from 105 to 421 whereas the steam concentrations will vary from 0 to 30&#xc3;.With the exception of two tests in which igni tion.will be initiated at the bottom of the test vessel all tests will be performed using center ignition.The time'required to complete these tests is approximately one month.Subsequent to these tests the test vessel will be modified for the study of turbulent effects on hydrogen combustion.
Two weeks have been scheduled jn the program plan to accomplish these modifications.  


The primary objective of the Part III tests is to investigate turbulent effects upon completeness of hydrogen burns, and upon pressure and temperature responses.
ll ~
Turbulence in these tests will be created by two different means: 1)two 16" diameter variable speed fans and, 2)gratings.The fans are rated at 1500 cfm each and consequently are capable of creating a very turbulent environment.
y t
The gratings are made of 1/4" perforated plate with 50/porosity and they are used to simulate obstacle-induced turbulence.
Six tests will be devoted to examining lean hydrogen combustion under turbulent conditions; igni tion will be initiated at the bottom of the vessel.Four additional tests will be conducted using 14/and 20/hydrogen-air mixtures when the ignition source will be placed at the center of the test vessel.The time needed to complete these tests is expected to be about one month.Part IV of the hydrogen combustion program entails a total of six tests.Prior to performing these tests, a week's time is needed to set up the test rig which includes a sphere used in the previous tests.Ignition for these tests will be i nitiated at either the center of the sphere or at the end of the pipe for hydrogen mixtures of either 8/or 205.In addition to collecting the temperature and pressure data, ionization probes wi ll be used to record flame propagation from one compartment to another.The final two tests using this test geometry include studying hydrogen combustion characteristi cs from a 8&#xc3;or a 10&#xc3;mixture to a 6X mixture.In these tests the pipe will be filled with a 8&#xc3;or 105 mixture, while the sphere is filled with a 6X mixture.Ignition will be initiated in the pipe section.The duration of these tests is anticipated to be about three weeks'
~~
The second experimental program that wi 11 be carried.through at the Whiteshell facility involves research and development effort on various igniter types.The.objective of this work is to perform extensive benchmark tests in a six cubic foot spherical test vessel to identify igniter types and to demonstrate their combustion capability in a prototypi c environment.
The testing program will begi n in May and last about four months.Based on test data obtained, a selection of igni ters will then be further tested in a larger scale test vessel (600 ft)at Acurex.Presently, besides the GMAC 7G 3 glow plugs, a few resistance-heating glow plugs developed by Tayco will also be examined.b)Acurex In the Acurex program, the test plan can also be divided into two parts;the first part is designed to examine the effectiveness and the performance of glow plugs in igniting hydrogen under various prototypic contain-ment conditions
.In these experiments, hydrogen flow rate, steam flow rate, water sprays parameters and ignitor locations will be varied to provide parametric studies on the ability of glow plugs to i gnite hydr'ogen mixtures.The effect of mi cro-fog on glow plug ignition and pressure transients wi 11 also be investigated.
A number, of the experiments will attempt to provide data to correlate fogging as a pressure suppressant wi.th spray volume, spray drop size, and hydrogen concentrations.
A strong ignition source, e.g., electric match, will be used in all the fogging-related tests.A second part of the test plan calls for testing a selected number of igni ters developed at the Whitqshell Nuclear Research Establishment.
These will be large scale confirmatory tests for ignition devices which have demonstrated a'uperior potential in igniti ng lean hydrogen mixtures and in h
replacing the existing glow plug designs in the future.Their effectiveness in a spray environment will be.evaluated at Acurex's 600 ft vessel.Prior to carrying through the'above described test plan, a series of shakedown tests will be performed to provide checks for consistency and accuracy of all i nstrumentation; specifically, results will be compared with those obtained at Whiteshell and from the available literature.
c)Hanford En ineerin Develo ment Laborator HEDL The objective of this effort is to experimentally investigate aspects of hydrogen mixing and distribution in a simulated ice condenser lower compartment geometry.Hydrogen release into the compartment will be modelled by two approaches.
In the first approach, steam and hydrogen are introduced as a jet into the compartment simulating a pipe break;in the second approach, hydrogen and steam are added to the compartment as a diffuse source simi lar to pressurizer relief tank release.In order to extend the range of hydrogen concentration beyond 45, helium will be used as a simulation fluid in place of hydrogen.Confirmatory tests will be performed to demonstrate that helium can indeed be used to substitute hydrogen in these mixing studies.The first test is scheduled to begin some time in mid June and the whole test program is expected to last approximately two months.In the meantime, similitude and scaling calculations are being done so as to properly model the necessary parameters that are vital to the investigation of mixing and distribution.
Some of the non-dimensional groups that are being examined are: the Richardson number, the Reynolds number, and the Grashof number.d)Factor Mutual Research AEP, Duke, TVA and EPRI recently came to the conclusion that in order to better understand fogging as a means of hydrogen control and to eventually


render a decision on its applicability as a viable solution,to hydrogen mitigation, they would contract with Factory Mutual Research to undertake a research program to investigate fogging.The objective of this program is to determine the effects of micro-fog upon the lower flammability limit (LFL)of hydrogen, to provide a relationship between dropsize and fogging density on LFL and to correlate the concentrations of lean hydrogen air mixtures with various fogging parameters.
Floemeter                                                   Flowm et or Mixer Alr Pror."o uro Regulator Flash Arrostor V/ator                                                   Air Solenoid   Operated Valve
In order to ensure that the effects of fogging on LFL are properly reproduced, a strong ignition source has been proposed and is likely to be used to initiate ignition on all LFL tests.The range of droplet sizes that is of interest to the utilities varies from a few microns to hundreds of microns, whereas the fogging density varies from zero to a few percent.Test parameters that will be measured include temperature, pressure, dropsize distribution and fog density distribution.
                          /
A sch'ematic of the experimental set up is shown in Figure 5-1.A detail test plan is being prepared by Factory Mutual Research with aid from AEP and the other participants.
Solenoid Oporatod Valve                                         H   Air Mix Supply Line 2
The test vessel is scheduled to become available for test in approximately three weeks.Finally, it is also the intent of this effort to provide the necessary and pertinent information to assist in the se1ection of test parameters in the Acurex fogging tests.e)CLASIX In the AEP-HRC meeting on March 18, 1981, the staff expressed interest in reviewing a.number of additional CLASIX runs.The first.concern centers around the unique lower containment spray capability at Cook and its possible ffect upon other compartment responses during and subsequent to a hydrogen burn.
                                                  /gi i Fog Nozzles                / II Spark Gap
Reviews at AEP indicate that in the CLASIX sensiti vity study submitted to the NRC, spray parameters such as spray flow rate, droplet si ze, heat transfer characteristics to the drop and spray temperature were varied;minimal effects on, the containment pressure and temperature responses were noted.Thus, the available information from CLASIX, points out that variations in spray parameters would not significantly affect containment temperature and pressure response.Another possible CLASIX run discussed in the above mentioned meeting in'volved initiating hydrogen combustion at 10/with 50%burn fraction.Experimental measurements on completeness of hydrogen combustion reported in the literature show that in spite of the large scattering in data around I 5X to 7X, an initial 10&#xc3;concentration consistently results in an almost 100'5 (1)burn.In addition, it has been shown that turbulence will further enhance completeness of combustion for lean hydrogen mixtures.Therefore, if the probability of incomplete combustion of 105 is indeed negligibly small, as it seems to be, its effects upon the containment need not be investigated.
                                                                ~ Eioctrod os
It was suggested by the staff that a case with ignition initiated at 10/and then propagating to a 8/hydrogen concentration region should be studied.Both types of combustion would assume a 100/burn fraction.Close examination of the various cases presented in the CLASIX sensitivity studies reveals that there is one case (JVD15)which uses the exact input parameters requested by the staff.One burn was observed in the upper compartment with an estimated maximum pressure of 57 psia (only one air recirculation fan was assumed to be operational in the run).This maximum pressure is very close to the Cook containment elastic limit.However, since heat sinks have not been included in these sensitivity calculations, the results are likely to be overly conservative.
                                                      /i iia loni za tl on Pro b e s       /(I ii
ll~y!t Floemeter-Alr Pror."o uro Mixer Flowm et or-Regulator V/ator Flash Arrostor Air-Solenoid Operated Valve/Solenoid Oporatod Valve Fog Nozzles/gi i/I I H-Air Mix Supply Line 2 Spark Gap~Eioctrod os loni za tl on Pro b e s For Flamo Spood Moasurom ants O" nromolor~x~Lnnnth/i iia/(I ii/'l I I I I I I ihermocouplos, bROPS!~M EAsuk lNQ PEVlcC Drain FIGURE 5-1 EXPERIMENTAL ARRANGEMENT OF FOGGING TESTS  
                                              /'                         ihermocouplos,
                                  ~
l For Flamo Spood                                            bROPS!~   M EAsuk lNQ PEVlcC I
Moasurom ants                I      I O" nromolor x~      Lnnnth                    I I
I Drain FIGURE 5-1       EXPERIMENTAL ARRANGEMENT OF FOGGING TESTS


==References:==
==References:==


(1)Liu D.D.S., et al,"Some Results of WNRE Experiments on-Hydrogen Combustion," Water Reactor Safety Workshop on the Impact of Hydrogen, Albuquerque, New Mexico, January 1.981.(2)Hertzbert, M.,"Flammability Limits and Pressure Development in H2-Air Mixtures," U.S.Bureau of Mines, PRC Report No.4305,.January 1981.
(1)   Liu D. D. S., et al, "Some Results of   WNRE Experiments on
DONALD C.COOK NUCLEAR PLANT UNIT NOS.1 AND 2 ATTACHMENT NO.6 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL I
    - Hydrogen Combustion," Water Reactor Safety Workshop on the Impact of Hydrogen, Albuquerque,   New Mexico, January 1.981.
6.0 Core Coolin Ca abilit Subse uent to H dro en Combustion 6.1'ntroduction The write-up below addresses the existing components necessary to achieve and maintain a safe shutdown condition subsequent to a reactor trip and to maintain a safe shutdown condition and contain-ment integrity via adequate hydrogen control during and after a hypothetical degraded core cooling event.I 6.2 Safe Shutdown The three primary functions to be performed in order to achieve and maintain a safe shutdown condition subsequent to a reactor trip are: (1)circulation of reactor coolant (2)residual heat removal (3)control of RCS pressure'he methods 6y which.each.o$these functions can be'erformed,.-, and the necessary equipment located inside containment, are discussed below.6.2.1-Circulation of Reactor Coolant Circulation of reactor coolant is provided by natural*circulation with the reactor core serving as the heat source and the steam generators serving as the heat sink.Water is provided to the steam generators via the safety-grade Auxiliary Feedwater System (AFS)or, if offsite power is available and sufficient steam is available, via the normal feedwater system..The AFS can be aligned to take suction from the Essential Service Water Syst'm, which itself, takes suction from Lake i Michigan, thus assuring a virtually limitless supply of cooling water for the steam generators.
(2)   Hertzbert, M., "Flammability Limits   and Pressure Development in H2-Air Mixtures," U. S. Bureau of Mines,   PRC Report No. 4305,.
Steam release paths include turbine bypass (if offsite power is available) using the main condenser, the main steam safety valves, and the main steam power operated relief valves.Those portions of the reactor coolant system, main feed-water system, auxiliary feedwater system, and main steam system inside containment contain no active components required to operate to assure coolant circulation and operation of said systems wo'ul'.d not be.adversel'y-affected'y;"a hydrogen combustion environment.
January 1981.
The equipment located inside containment needed to.assure adequate reactor coolant circulation is listed below.The susceptibility of this equipment to a hydrogen combustion environment and the effects of such an environment on equipment operation are addressed in Attachment Nos.3 and 4 of this submittal, respectively.
 
l.Steam Generator Narrow-Range Level Monitors 2.Pressurizer Water Level Monitors 3.Pressurizer Pressure Monitors 4.Loop RTDs 5.Core Exit Thermocouples 6.RCS Wide Range Pressure Monitors 1  
DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACHMENT NO. 6 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL
 
I 6.0   Core Coolin         Ca abilit   Subse uent   to H dro en Combustion 6.1 'ntroduction The   write-up below addresses       the existing components necessary to achieve and maintain           a safe shutdown condition subsequent to         a reactor       trip and to maintain     a safe shutdown condition and contain-ment   integrity via       adequate   hydrogen control during and       after a hypothetical degraded core cooling event.
I 6.2   Safe Shutdown The     three primary functions to       be performed   in order to achieve and   maintain     a safe shutdown condition subsequent       to a reactor   trip are:
(1)   circulation of reactor coolant (2)   residual heat removal (3)   control of       RCS pressure
            'he       methods 6y which. each. o$ these     functions   can   be'erformed,.-,
and   the necessary equipment located inside containment, are discussed below.
6.2.1     -
Circulation of Reactor Coolant Circulation of reactor coolant is provided           by natural circulation with the reactor core serving         as the heat source and the steam     generators   serving as the heat sink.     Water   is provided to the steam generators         via the safety-grade Auxiliary Feedwater System (AFS)       or, if offsite   power is available     and sufficient   steam   is available, via the     normal feedwater system.
                . The AFS can be     aligned to take suction from the Essential Service Water Syst'm, which i                              itself,takes suction from Lake
 
Michigan, thus assuring     a virtually limitless   supply of cooling water for the steam generators.         Steam release paths include turbine bypass     (if offsite   power is available) using the main condenser,     the main steam safety valves, and the main steam power operated       relief valves.
Those portions of the reactor coolant system, main feed-water system, auxiliary feedwater system, and main steam system inside containment contain     no active components required to operate to assure coolant circulation and operation of said systems wo'ul'.d not be .adversel'y -affected'y;"a hydrogen combustion environment.
The equipment   located inside containment needed to
. assure adequate   reactor coolant circulation is listed below.
The susceptibility of this equipment to a hydrogen         combustion environment and the effects of such an environment         on equipment operation are addressed     in Attachment   Nos. 3 and 4   of this submittal, respectively.
: l. Steam Generator   Narrow-Range Level Monitors
: 2. Pressurizer Water Level Monitors
: 3. Pressurizer Pressure Monitors
: 4. Loop RTDs
: 5. Core Exit Thermocouples
: 6. RCS Wide Range Pressure     Monitors
 
1 6.2.2 Residual Heat Removal Residual heat    is  removed  via the steam generators utilizing the methods and equipment described in 6.2.1 above.                For the same  reasons  set forth in 6.2.1, this function is not adversely affected    by a hydrogen combustion environment.
6.2.3 RCS  Pressure  Control Subsequent    to  a  reactor    trip,  RCS  pressure is maintained utilizing    the '.natural    circulation'quipment described          above, with the pressurizer        (PZR)  safety valves serving    as high pressure protection.        The PZR  safety valves are self contained, spring loaded valves and would not          be  adversely affected by    a hydrogen combustion environment.
A second  aspect of      RCS  pressure maintenance deals with isolation of the various        branch  lines attached  .to the RCS.
Each  of these potential leakage paths, including the              method of isolation, is discussed below.
(1)  Pressurizer Power      0  crated Relief Valves      PORVs Each PORV    is normally closed      and i.s designed  to  fail closed upon loss of        air or loss of    power.
In addition,    a  block valve is located upstream of each PORV  to assure    RCS  isolation in the event that      PORV leakage were to develop.
 
(2) Letdown Line Letdown  isolation is provided                  by three  parallel fail-closed air operated valves located inside contain-ment and a    fail-'closed air operated valve outside containment.      These valves      will automatically              close on a sa fety  in j ecti on  si gnal  .
(3) Excess Letdown/Seal        Mater In 'ection Flow from the excess        letdown heat exchanger                is directed.
to the reactor coolant          pump    seal water return            line (connection inside containment) which is isolated by two motor operated      valves in series, one inside reactor containment and one outside containment.                        These valves will automatically        close  on a            safety injection signal.
(4) Residual Heat Removal          RHR    Letdown'he RHR  letdown    line is isolated                by two normally closed motor operated valves in series located inside reactor containment.      Both valves are                interlocked with    RCS wide-range pressure      to automatically close                on  increasing pressure above 600 psig and cannot be opened                        until RCS pressure has decreased        below 426 psig.                In addition, the valve control switches are administratively key locked closed'in the main control          room          during power operation.
 
(5)  Reactor Vessel Head Vent The  reactor vessel      head vent system  consists of two
                          -.redundant  parallel paths,    each path  containing two normally closed, solenoid actuated valves in series for isolation.      These valves are designed      to  fail  closed upon loss    of power.
6.3      H  dro en Control      E  ui ment Operation of the containment          air recirculation/hydrogen
        .:skimmer (CAR/HYS) fans and the DIS            in conjunction with the containment spray system (CTS) further assures            the combustion of'lean hydrogen mixtures without posing          a  threat to the containment structure via overpressurization.          The  portion of the  CTS  inside containment
      .xontains      no  active components      and hence CTS  operation is not adversely
:affected by      a  hydrogen combustion environment.          The  active components inside containment used for hydrogen control are the                CAR/HYS  fans
      -,and the DIS.          The  electrical    hydrogen recombiners would be used to
        'remove residual hydrogen            (less than  4 volume  percent) from the
        .containment subsequent        to  DIS  operation.
:6. 4    ECCS    Injection    Subse  uent to Combustion
:An  evaluation has been      made  to verify  ECCS  injection capability subsequent      to hydrogen combustion inside containment.            The  results o'f  this evaluation indicated that high-head safety injection (SI)
(charging pumps) flow path via the BIT and the intermediate/low head
        'SI (SI and      RHR  pumps)  flow path to the    RCS  cold legs  will be  unaffected
 
by hydrogen combustion.      These  flow paths contain motor operated valves inside containment.      These valves    receive    a  signal to open on a SI  signal despite the fact they are normally in the open position, thus providing  further assurance of    ECCS  injection capability.        No mechanism has been  identified    whereby the environment associated with hydrogen combustion would result in closure of these valves.
With the refueling water storage tank        (RWST)    available, twelve weight percent boric acid can be delivered to the            RCS by  aligning the suction of the charging pumps to the        RWST  and  aligning the pump(s) discharge to the boron injection tank (BIT).            A second    flow path involves alignment of the charging      pump  suction to the discharge of the boric acid transfer pumps, which are themselves aligned to take suction from the boric acid tanks with the discharge of the charging pumps  again aligned to the BIT.      Neither of the above described flow paths  utilize  components  (eg. valves) inside containment which are required to change position/function in        a  hydrogen burn environment.
In the event that the contents of the      RWST  had  already been injected coolant injection is achieved by aligning the charging pump(s) suction to the discharge of the residual heat removal              (RHR)  pump(s);
with the  RHR  pump(s) taking suction from the containment recirculation sump. This  third flow  path does not  utilize    any  active  components inside containment which are susceptible to          a  hydrogen combustion environment.
 
The  subject valves are  fully qualified for    post-accident
  .use inside containment (LOCA/MSLB    qualification). In addition,
  ;the analyses  described in Attachment No. 4  to this report clearly show that the environmental conditions associated with hydrogen
  .combustion are less severe than the environment to.which they have
:been  qualified; thus assuring  maintenance  of the aforementioned
  .flow paths. The normally closed motor operated valves in the intermediate/low  head SI flow path have also    been  qualified for use
  -in a LOCA/NSLB environment and would be expected      to remain in operation
:subsequent  to hydrogen combustion; thus providing another      ECCS injection path.


====6.2.2 Residual====
DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACHMENT NO. 7 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL
Heat Removal Residual heat is removed via the steam generators utilizing the methods and equipment described in 6.2.1 above.For the same reasons set forth in 6.2.1, this function is not adversely affected by a hydrogen combustion environment.
6.2.3 RCS Pressure Control Subsequent to a reactor trip, RCS pressure is maintained utilizing the'.natural circulation'quipment described above, with the pressurizer (PZR)safety valves serving as high pressure protection.
The PZR safety valves are self contained, spring loaded valves and would not be adversely affected by a hydrogen combustion environment.
A second aspect of RCS pressure maintenance deals with isolation of the various branch lines attached.to the RCS.Each of these potential leakage paths, including the method of isolation, is discussed below.(1)Pressurizer Power 0 crated Relief Valves PORVs Each PORV is normally closed and i.s designed to fail closed upon loss of air or loss of power.In addition, a block valve is located upstream of each PORV to assure RCS isolation in the event that PORV leakage were to develop.  (2)Letdown Line Letdown isolation is provided by three parallel fail-closed air operated valves located inside contain-ment and a fail-'closed air operated valve outside containment.
These valves will automatically close on a sa fety in j ecti on si gnal.(3)Excess Letdown/Seal Mater In'ection Flow from the excess letdown heat exchanger is directed.to the reactor coolant pump seal water return line (connection inside containment) which is isolated by two motor operated valves in series, one inside reactor containment and one outside containment.
These valves will automatically close on a safety injection signal.(4)Residual Heat Removal RHR Letdown'he RHR letdown line is isolated by two normally closed motor operated valves in series located inside reactor containment.
Both valves are interlocked with RCS wide-range pressure to automatically close on increasing pressure above 600 psig and cannot be opened until RCS pressure has decreased below 426 psig.In addition, the valve control switches are administratively key locked closed'in the main control room during power operation.  (5)Reactor Vessel Head Vent The reactor vessel head vent system consists of two-.redundant parallel paths, each path containing two normally closed, solenoid actuated valves in series for isolation.
These valves are designed to fail closed upon loss of power.6.3 H dro en Control E ui ment Operation of the containment air recirculation/hydrogen
.:skimmer (CAR/HYS)fans and the DIS in conjunction with the containment spray system (CTS)further assures the combustion of'lean hydrogen mixtures without posing a threat to the containment structure via overpressurization.
The portion of the CTS inside containment.xontains no active components and hence CTS operation is not adversely:affected by a hydrogen combustion environment.
The active components inside containment used for hydrogen control are the CAR/HYS fans-,and the DIS.The electrical hydrogen recombiners would be used to'remove residual hydrogen (less than 4 volume percent)from the.containment subsequent to DIS operation.
:6.4 ECCS Injection Subse uent to Combustion
:An evaluation has been made to verify ECCS injection capability subsequent to hydrogen combustion inside containment.
The results o'f this evaluation indicated that high-head safety injection (SI)(charging pumps)flow path via the BIT and the intermediate/low head'SI (SI and RHR pumps)flow path to the RCS cold legs will be unaffected by hydrogen combustion.
These flow paths contain motor operated valves inside containment.
These valves receive a signal to open on a SI signal despite the fact they are normally in the open position, thus providing further assurance of ECCS injection capability.
No mechanism has been identified whereby the environment associated with hydrogen combustion would result in closure of these valves.With the refueling water storage tank (RWST)available, twelve weight percent boric acid can be delivered to the RCS by aligning the suction of the charging pumps to the RWST and aligning the pump(s)discharge to the boron injection tank (BIT).A second flow path involves alignment of the charging pump suction to the discharge of the boric acid transfer pumps, which are themselves aligned to take suction from the boric acid tanks with the discharge of the charging pumps again aligned to the BIT.Neither of the above described flow paths utilize components (eg.valves)inside containment which are required to change position/function in a hydrogen burn environment.
In the event that the contents of the RWST had already been injected coolant injection is achieved by aligning the charging pump(s)suction to the discharge of the residual heat removal (RHR)pump(s);with the RHR pump(s)taking suction from the containment recirculation sump.This third flow path does not utilize any active components inside containment which are susceptible to a hydrogen combustion environment.


The subject valves are fully qualified for post-accident.use inside containment (LOCA/MSLB qualification).
                ~
In addition,;the analyses described in Attachment No.4 to this report clearly show that the environmental conditions associated with hydrogen.combustion are less severe than the environment to.which they have:been qualified; thus assuring maintenance of the aforementioned.flow paths.The normally closed motor operated valves in the-intermediate/low head SI flow path have also been qualified for use-in a LOCA/NSLB environment and would be expected to remain in operation:subsequent to hydrogen combustion; thus providing another ECCS injection path.  
7.0
  ~
              ~
Preliminar    Safet    Evaluation Indiana  5  Michigan Electric Co.    ( IQ1ECo.) has decided to    install a  Distributed Ignition      System (DIS)    in the Donald  C. Cook    Nuclear Plant Unit  Nos. 1  and 2. The DIS  in conjunction with operation of existing safety-related equipment provides additional hydrogen control capability in the extremely unlikely event of          a  degraded core event    similar in nature to the TMI-2 accident involving the generation of substantive amounts of hydrogen.
The DIS,  described in detail in Attachment No.        2  of this report, is  designed to assure combustion        of lean hydrogen/air/steam mixtures        and hence  will minimize      the pressure and temperature transients associated with hydrogen combustion.         Conservative analyses of the containment response have  previously    been submitted    via our  first quarterly    report (AEP:NRC:00500).
The  results of these analyses indicate that deliberate ignition of lean hydrogen mixtures using the DIS          will result in    pressures  below the ultimate strength of the      Cook  Plant containments.      The  effects of  a  hydrogen combustion environment on necessary        equipment located inside containment has been evaluated and the results of          this evaluation presented in Attachment       No. 4 of this report.        It is  clear from our evaluation that the temperature effects oF  deliberate hydrogen combustion are less severe than those to which most of the necessary equipment        has been   qualified   (LOCA/MSLB  qualification). It has also been shown        that the ability to inject      emergency core cooling water is not affected      by hydrogen combustion.


DONALD C.COOK NUCLEAR PLANT UNIT NOS.1 AND 2 ATTACHMENT NO.7 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL
The extensive plant modifications and enhanced operator training implemented subsequently    to the TNI-2 accident have effectively reduced the already low probability of occurrence of events which could result in the generation of substantive amounts of hydrogen at the Cook Plant'.       The DIS, in conjunction with existing plant equipment>will provide      an additional level of mitigation capability for hypothetical events well beyond the design basis  of the  Cook Units, further enhancing the defense-in-depth
.philosophy. Installation of the  DIS provides  further assurance that operation of the  Cook  Plant will in  no way adversely effect the health and safety of the general public.


==7.0 Preliminar==
Safet Evaluation
~~~Indiana 5 Michigan Electric Co.(IQ1ECo.)has decided to install a Distributed Ignition System (DIS)in the Donald C.Cook Nuclear Plant Unit Nos.1 and 2.The DIS in conjunction with operation of existing safety-related equipment provides additional hydrogen control capability in the extremely unlikely event of a degraded core event similar in nature to the TMI-2 accident involving the generation of substantive amounts of hydrogen.The DIS, described in detail in Attachment No.2 of this report, is designed to assure combustion of lean hydrogen/air/steam mixtures and hence will minimize the pressure and temperature transients associated with hydrogen combustion.
Conservative analyses of the containment response have previously been submitted via our first quarterly report (AEP:NRC:00500).
The results of these analyses indicate that deliberate ignition of lean hydrogen mixtures using the DIS will result in pressures below the ultimate strength of the Cook Plant containments.
The effects of a hydrogen combustion environment on necessary equipment located inside containment has been evaluated and the results of this evaluation presented in Attachment No.4 of this report.It is clear from our evaluation that the temperature effects oF deliberate hydrogen combustion are less severe than those to which most of the necessary equipment has been qualified (LOCA/MSLB qualification).
It has also been shown that the ability to inject emergency core cooling water is not affected by hydrogen combustion.
The extensive plant modifications and enhanced operator training implemented subsequently to the TNI-2 accident have effectively reduced the already low probability of occurrence of events which could result in the generation of substantive amounts of hydrogen at the Cook Plant'.The DIS, in conjunction with existing plant equipment>will provide an additional level of mitigation capability for hypothetical events well beyond the design basis of the Cook Units, further enhancing the defense-in-depth.philosophy.
Installation of the DIS provides further assurance that operation of the Cook Plant will in no way adversely effect the health and safety of the general public.
ah 4}}
ah 4}}

Latest revision as of 02:10, 24 February 2020

Evaluation of Facility Containment to Determine Limiting Internal Uniform Pressure Capacity. Prepared for American Electric Power Co
ML17326A883
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 03/16/1981
From:
STRUCTURAL MECHANICS ASSOCIATES
To:
Shared Package
ML17326A884 List:
References
SMA-80C129-1, NUDOCS 8104290520
Download: ML17326A883 (155)


Text

{{#Wiki_filter:SMA. 8OC129-1 SECTION 1 EVALUATION OF D.C. COOK CONTAINMEiNT TO OETERMINE LIMITING INT""RNiAL UNIFORM PRESSURE CAPACITY Prepared for: american Electric Power Co. 2 Broadway New York, N.Y. 10004 16 March 1981 Prepared by: Structural Mechanics Associates 3645 'i(arrensville Center Rd. Cleveland, Ohio 44122 (216) 991-8841

TABLE OF COilTEl<TS 1.0 Introduction

1.1 Purpose and Scope

of Report 1.2 Evaluation Criteria 1.3 Containment Description and Design Basis 1.4 Material Properties 2.0 Identification of Limiting Failure i~iodes Associated with Uniform Static Internal Pressure 3.0 Potential Failure Mode Analysis 3.1 Shear Failure in Base Hat 3.2 blembrane Hoop Tension Failure of Concrete Cylinder 3.3 Pressure Capacity of Equipment Hatch Closure 3.3.1 Splice Plate Homent Capacity 3.3.1.1 Hand Calculation 3.3.1.2 Finite Element Analysis 3.3.2 Equipment Hatch Cover Plate Pressure Capacity 3.4 Pressure Capacity of Personnel Hatch 3.4.1 End Plate Closure 3.4.2 Door 4.0 Summary and Conclusions

1. 0 INTRODUCTION PURPOSE AND SCOPE OF REPORT-The object of this report is to determine a best estimate of the limiting uniform equivalent static internal pressure capacity of the containment structures for the O.C. Cook Nuclear Generating Units No. 1 and 2. The evaluation reported is limited to the reinforced concrete base mat, the reinforced concrete right circular cylinder and hemispherical dome as well as major containment penetrations including the equipment and personnel hatches. This report completes Phase I of a three phase effort which will include as Phase II an upper and lower bound estimate of the internal uniform equivalent static pressure capacity of the "as built" containment structures and Phase III which will consider potential time dependent localized non-uniform pressure load effects.

1.2 EVALUATION CRITERIA The evaluation to determining the limiting best estimate uniform static pressure capacity of the containment structures is based on a linear elastic analysis of critical por tions of the structure up to stress levels limited by "as built" mean value samples of the yield in steel and ultimate strength of the concrete. It should be understood that the structural and leak tight integrity of a steel lined concrete containment shell and slab structure should be maintained well beyond actual yield of the steel reinforcement. This is due primarily to the relative high ductility of the steel liner, (ie. 20-23 percent uniform ultimate strain at rupture ) compared to .the 40 ksi steel reinforcement (ie. 8-11 percent uniform ultimate strain at rupture) and strain hardening in the reinforcement. Hence the liner in general ~ould be able to accomodate relatively large nonlinear deformation of the concrete structure before significant leakage would occur. However, since deformations beyond the yield range are difficult to predict and localiz d deformations in the structure can significantly exceed those calculated globally, the limiting internal pressure has been determined conservatively considering only assumed elastic response up to the initial yield of the materials used. It is the author's opinion based on the observed results of model tests that significant leakage (> 1.0 p rcent of containment volume) of the containment would not occur until oressures exceeded the limiting oressures calculated in this study by at least 20 percent. Assuming a composite coefficient of variation of 10 percent and a log normal distribution of material properties the probability of significant leakage at the pressure level defined in this study would be approximately 0.01. The probability of significant leakage and upper and lower bounds on pressure will be evaluated in more detail in Phase II.

CONTAIililENT OESCRIPTIOH Atl0 DESIGN BASIS The reactor containment structure is a reinforced concrete vertical cylinder with a flat base and a hemispherical dome as shown in Ficure 1: A ductile welded steel liner with a thickness of 1/4-inch on the containment base and. 3/8-inch'on the Cylinder is stud attached to the inside face of the concrete shell to insure a high degree of leak-tightness. The design objective of the containment structure is to contain all radioactive material which might be released from the reactor coolant system following a postulated loss of coolant accident. The structure serves as both a biological shield and a pressure container. The structure consists of side walls measuring 113-feet from the liner on the base to the springline of the dome, and has an inside diameter of 115-feet. The side wall thickness of the cylinder at tne base is 4.5 ft. tapering to 3 .5 ft., seven feet above the base mat and continuing at 3.5 ft. to the springline. The reinforced concrete thickness of the dome varies uniformly from 3.5 ft. at the springline to 2.5 ft at the apex of the dome. The inside radius of the dome is equal to the inside radius of the cylinder. The flat concrete base mat is 10-ft. thick with an outside diameter, of 140'-0" and with the bottom liner plate 1/4" thick located on top of this mat. The botto~ liner plate is covered with a 2-ft. structural slab of concrete which serves to carry internal equipment loads and forms the floor of the containment. The base mat is supported directly by relatively stiff soil. The basic structural elements considered in the design of the containment structure is the base slab, side walls and dome acting as one structure under all loading conditions. The liner is anchored to the concrete shell walls by means of stud anchors so that it forms an integral part of the entire composite structure under all membrane loadings. The reinforcing in the structure has an elastic response to all primary design loads. The base mat is 10'-0" thick and 140'-0" in diameter. The reinforcement in the top of the base slab consists primarily of one layer of 818S bars at 12" c/c in the hoop and 2 layers of 58S bars at 9" c/c in 'the radial directions. The bottom reinforcement consists of 2 layers of 818S bars at 12" c/c in the hoop and 3 layers of alternate 818S and 811 bars at 9" c/c in the radial directions. The base slab was poured in two five foot lifts which are tied together in order to transmit horizontal shear induced by bending moments by shear keys and vertical All bars at 6'-0" c/c spacing.

The membrane hoop (horizontal) reinforcement in the cyclinder walls is generally in two rows, one on each face consisting of N18S at 18" c/c circumferentially extending to 20'bove the base mat reduced to 9" c/c spacing between 20'nd 57'bove the base and then increased to 12" c/c spacing between 57'nd above the base mat. 113'springline) The membrane meridional, (vertical) reinforcement in the containment shell consists primarily of two layers one on each face of 818S bars on 18" c/c. In the region of discontinuity base mat the amount of vertical reinforcement is doubled to 4 at'he layers of ~18 bars at 1S" c/c and at the cylinder dome intersection one vertical staggerd row of 411 bars at 18" c/c is added to the existing membrane vertical reinforcement to provide discontinuity bending moment resistance. In addition to the vertical and horizontal membrane and bending reinforcing steel, in plane diagonal reinforcement has been provided to carry seismically induced membrane shear. The 45 degree diagonal bars consist of 811 bars spaced 3'-0" on the horizontal c/c placed in two rows in each face and in each direction. The diagonal reinforcement is embedded in and extends from the base mat to 4-3" above the springline into the dome for alternate bars and 7'-0" for the rest of the diagonals. The dome reinforcement consists of 818 bars at 18" c/c in each face in each direction. The containment structure encloses an ice condenser containment system which is designed to limit pressurization o the containment under design basis accident conditions to 12.0 psi. Other significant design load parameters are the equivalent safe shutdown earthquake loading of 0.2g zero period ground acceleration and a design basis tornado of 360 mph. wind and and 3.0 psi differential pressure. Hot process pipe penetrating the containment are anchored in the containment shell with the anchors designed to resist the postulated rupture of the process line without loss of containment leak tight integrity. A load factor of 1.5 (additional safety factor) is used with the internal pressure component of design load while a load factor of 1.0 is used with both the SSE and Tornado loading. !)ATERIAL PROPERTIES The particular specified minimum materials properties used in the construction of the containments are summarized as follows: (a) concrete fc = 3,500 psi at 28 day (ACI 308-63, 301,66, and 214-65) (b) reinforcing rod - fy = 40,000 psi (ASTN A 15)

(c) liner plate =- fy = 32,000 psi; fu = 60,000 psi (ASTtl SA 442-Gr.60) (d) equipment hatch fy = 38,000 psi; fu.= 70,000 psi (ASTH SA 516-Gr.70) (e) personnel hatch fy = 38,000 psi; fu = 70,000 psi (ASTt< SA 516-Gr.60) (f) hatch bolts - fy = 105,000 psi; fu = 125,000 psi (ASTH SA 193-6r.87) In Table 1 can be found a summary of the "as built" strengths as well as a measure of the dispersior. associated with the materials used in the containment construction, based on a limited sample of existing test record data. As part of Phase II of this evaluation a more detailed evaluation of "as built" material property data will be developed. 2.0 IDENTIFICATION OF LItiITING FAILURE NODES ASSOCIATED MITH UNIFORi~l TATIC N RNAL P E U In selecting the potential limiting failure modes associated with equivalent static uniform internal over pressurization of a PPR reinforced concrete ice containment a number of existing analyses have been reviewed'. These include the following references: Harstead, G.A. "D.C. Cook Nuclear Power Plant, American Electric Power, Estimate of Ultimate Pressure Capacity of Containment Structure", Harstead Engineering Associates, Report prepared for the NRC Staff, September, 1980. (See Attachment A) (2) Von Riesemann, M.A. et.al. "Structural Response of Indian Point 2 and 3 Containment Oui ldings" Summary of Draft Report. results presented to !IRC Staff, Technology-Exchange t~eeting 5, 17 June 1980. (3) United Engineers and Constructors "Evaluation of Capability of Indian Point Containment Vessels Units 2 and 3" presented to NRC Staff, Technology Exchange ileeting 5, 17 June 1980. (4) American Electric Power Service Corp., "D.C. Containment Design Calculations, AEP, 1969. (5) S. 3arnes et.al. Indian Point !!uclear Generatin Unit No. 2 Containment Desi n Repor~, '!estinghouse Nuc ear Energy ystems, United Engineers and Constructors, !larch, 1969. (6) Shulman, J. "Analysis of TVA Sequoyah Containment Shell to Determine Response of a Critical Panel to Uniform Internal Pressure", Offshore Power Systems, September, 1980.

Based on this review the following areas have been identified as potentially limiting the containment capacity to carry uniform internal pressure load. (1) Bending shear in the reinforced concrete containment base mat adjacent to reinforced concrete cylinder walls. (2) flembrane tension in hoop direction in the reinforced concrete cylinder adjacent to the base mat (assuming no rotational or shear restraint by the cylinder). (3) Bending moment in equipment hatch end plate. (4) Bending moment in personnel hatch end plate. 3.0 POTENTIAL FAILURE blODE ANALYSIS 3.1 SHEAR FAILURE IN BASE YAT The program used to determine net shear and tensile forces in the base slab is "GENSHL" which was developed by the Franklin Institute Research Laboratoryof Philadelphia. The program consists of a multi-layered static shell formulation where each shell layer may have different stiffness oroperties and can consider elastic foundation support conditions. This is the same program that was used in the original design and analysis of the base slab for design basis loadings. A uniform soil reaction distribution is used for dead load plus internal uniform pressure case. Results of the analysis are summarized as follows:

1. Specified minimum design strength of concrete at 28 days = 3,500 psi
2. t<ean Sample Value at 28 days = 4,950 psi
3. flinimum Sample Value at 28 days = 4,156 psi Foundation Slab:

T = 120 inches d = 114 inches From computer output as shown in Tables 2 and 3 at sections indicated in. Figure 2:

Evaluation for lowest measured concrete strength value: Nxz Qxs Comp+ k/in k/in Run Case 12.0 psi, internal pressure 1.898 - 2.948 Soil Par. 1 Assume 49.5 psi, internal pressure 7.829 -12. 160 Soil Par. 1 Oead Load 1.300 0.193 Soil Par. 5 OL + 49.5 psi pressure 9.129 -12.353 v = i~ = 12.353 x 1000 = 108.36 psi where: Nxi = membrane tension in base slab Q ia = maximum vertical shear in base slab v = maximum shear stress in base slab From AStlE Section III Oivision 2 and ACI-359-80 Code for Concrete Reactor Yessels and Containments CC 3421.4.1 r I Using lowest measured mean value of concrete strength: r, vc 2r0 p fc (1 + I Or002 Nu/Ag j j rc = 2 0 ~4166 ! 1 + [0 002 -9.129 x 1000 xt 1 flt vc = 2(64.46)[1 - 0.152] = 103.59 psi Note: Internal Pressure Capacity wherever noted as "Psi" means "Psig"-

                                                                                              ~gggQgllXCLXt%
                                                                                              ~RX2~ M

Evaluate for mean of measured concrete strength values Qx.a Comp. k/in k/in Run Assume 53.8 psi, internal pressure 8.509 -13.217 Soil Par. 1 Oead Load 1.300 0.193 Soil Par. 5 OL + 53.8 psi pressure 9.809 -13.410 v = 13.410 (10 vc = 2 74950 )1 + I 0.002 (- 9.809 x 1000~, 1 x 114

                    )

balll 1 v "- 117.63 psi vc = 2 (70 ~ 356) C1 0.1635j vc = 117.71 psi In like manner it can be shoNn for a specified minimum concrete strength fc = 3500 psi that the internal pressure capacity is 46.4 psi. In this evaluation no credit is taken for the vertical /Ill bar at 6'/c in the base mat nor is any credit taken for shear capacity of the fill slab above the base mat. In table 4 can be found the limiting pressure capacity adjusted for the assumption of minimum specified and minimum sampled material properties as defined in Table 1. In Reference 1 the Hars ead report Pg. 5-1-1 identified a failure mode based on the assumed pull out of the vertical membrane steel in the cylinder wall from the base mat as having a containment internal pressure capacity of 46 psi. Tne pull out failure mode capacity of 46 psi internal pressure capacity of the containment was determined ivithout consideration of the radial shear (diagonal tension) capacity of the concrete vihich is permitted by the ACI-359 code even in presence of membran tension. To ignore the shear capacity of the concrete is not in accordance riith normal design nor analysis procedures. Hence the failure pressure in the concrete containment of 53.8 psi as defined by the calculations performed in this section is limiting.

3.2 MEHBRA</E HOOP T HSIO'l FAILURE OF COtlCRETE CYLII>OER i~lembrane load due to containment pressurization in the horizontal (hoop) direction P =p R where: P = membrane load in lbs/in of wall p = uniform internal pressure R = mean radius of wall (57.5 x 12 = 690 inches) Hembrane load capacity of reinforced concrete cylinder at its base neglecting discontinuity moment transfer: Available Reinforcement

1) 2 Layers 818 bar hoop reinforcement at 18" c/c =

8 in = 5.33 in2/ft of wall ft

2) 3/8" Liner plate = 3/8" x 12 = 4.50 in2/ft of wall
3) 2 Layers 811 bar diagonal reinforcement at 36" c/c considering only those bars acting in tension 2 x 1.56 x ~2 = 1.47 in2/ft of wall 333 ft From Table 1 of this report the mean value of the reinforcement yield = 49.8 ksi and liner plate = 48.3 ksi P = (5.33 in2 x 49.8 ksi) + (4.50 in2 x 48.3 ksi)
              +  (1.47 in 2     x  49. 8 ks i )
              = 265.4 k + 217.4 k + 73.2 k
              = 556.0    kips/ft     =  46.33    kips/in From Eq. 1 p =   46,330    lbs/in    =  67.1 psi 690   >n In Table 4 can be found th limiting pressure capacity adjusted for the    assumption of minimum specified and minimum sampled material properties           as defined in Table=       l.

3.3 PRESSURE CAPACITY OF THE EQUIPMENT HATCH CLOSURE The equipment hatch closures used on the D.C Cook Containments have been identified (Ref.l) as potentially limiting the capacity of the containment to carry internal pressure loads. The reasons for this limitation are identified as follows:

1. The end closure is in the form of a flat plate hence pressure induced loading must be carried by bending rather than membrane shell action.
2. A bolted splice is used in a region of high bending moment which may limit the capacity of the hatch cover to carry pressure load.
3. The far spaced bolt pattern and the relatively low rotational .

stiffness of the equipment hatch barrel result in little rotational stiffness or fixed end moment capacity of the equipment hatch cover-barrel attachment. This requires that the hatch be analyzed essentially as pin connected (allowed to rotate) rather than fixed (moment resistant) at its supports thereby significantly increasing center span moments in the hatch cover. Because of the presence of the unsymmetric splice and the unsymmetric insertion of the personnel hatch into the equipment hatch cover as shown in Figure 3 the evaluation of the equipment hatch uniform pressure capacity cannot be performed with a high degree of accuracy without recourse to a finite element formulation. Two such analyses were performed, one of the cover plate splice and the other of the equipment hatch cover plate including the effect of the splice and the inserted personnelhatch to determine. their maximum internal pressure carrying capacities.

                                                            ~r 3.3.1 Splice Plate    t1oment Ca  acity 3.3.1.1    Hand   Calculation   considering 1" full penetration weld   detail as shown in Figure 4(1~

Before proceeding to a review of the finite element analysis of the splice plate shown in Figure 4, a hand calculation was performed in order to have a basis of comparison with the more detailed finite element calculation (1) flote the Harstead report neglected the weld geometry in its calculation of stresses.

Given: Splice as shown in Figure 4 check section at top of weld (a) 95 1" A-193 Gr 87 bolts on a 224" length of splice = 2.38" spacing between bolts on tension side of splice Limiting capacity of splice at top of weld is assumed at mean yield in outermost fiber of 2 inch splice plate on tension bolt

            , side of splice M2  PL = sZ =     (53.2 ksi)     1   (2.38)(4)  = 84.41   k-in/2.38 in. of splice Limited tensile capacity of splice plate Tx =  t'I~ x = 1o5 in+

T ='M/1.5 = S4.41/1.5 = 56.27 kips/bolt T' jd = (56.27) x (2.5 + 4.0 + 1.875) = 471.26 k-in/2.38 in. of splice Mgoint Moment capacity /in of splice 471.26/2.38 = 198.01 k-in/in Moment capacity of 4" plate without splice M4<<PL = sZ = 53.2 ksi(1)(1) 16 = 141.87 k-in/in < 198.01

                                                              ~s
                                                                       .".4" plate governs design Capacity of Splice         =  198.01    ]39,6    of 4" plate
                                     ~87 Check  section at base of weld

Limiting capacity of splice at base of weld is assumed at mean yield in outermost. fiber of 2 inch splice plate plus 1" weld. (Minimum Specified F of the Held material = 60.0 Ksi) M2<< PL + 1<~ weld = s Z = (53.2 Ksi) 1 (2.38) 9 = 189.92 K in/2.38 in. of splice Limited tensile capacity of section Tx = M; x = 2.5 in. T = M/2.5 = 189.92/2.5 = 75.97 Kips/bolt Since 75.97 > 56.27 Kips top of weld limits design Check capacity of bolt From Table 1 Mean Yield of 1" bolt = 121.3 Ksi Tensile area 1" bolt = 0.605 sq. in. Pyie]d = 121.3 x 0.606 = 73.51 Kips/bolt > 56.27:. OK ~

3.3.1.2 Finite Element Analysis In Figure 5 is the finite element model of the equipment hatch splice joint showing plate elements. Using the computer program AtlSYS for an applied moment to the 4 inch hatch cover plate equal to a reference containment internal pressure of 40 psi, .the. maximum outer most fiber stress in the 2 inch splice plate is 27.82 ksi in element 76. The maximum outer most fiber stress in the four inch plate is determined as 46.27 ksi in element 145. It appears therefore that the 4 inch rather than 2 inch plate at the joint controls design. This is due primarily to the weld which significantly increases the effective thickness of the splice plate at its connection to the four inch plate. 3.3.2 E ui ment Hatch Cover Plate Pressure Capacity In reference 1 Harstead determined the equipment hatch capacity of 53.0 psi uniform pressure loading based on simple support boundary conditions of the cover as a uniform 4" thick circular plate having a diameter of 19'-10". 8ecause of the effect of the unsymmetric splice and personnel hatch insert a finite element analysis of the plate is performed. A finit el ment modeling of the plate which included the splice is shown in Figure 6. The personnel hatch because of its rigid equiva'lent 12" thick support ring connection to the equipment hatch is assumed to transmit only reaction loads due to pressure to the equipment hatch. The splice is modeled as an equivalent 12" x 4" beam parallel, to the splice and equal to the stiffness of the four inch plate across the splice. Using the computer program A"(SYS the maximum stress intensity in the cover plate is d termined in element 95 as shown in Figure 7 adjacent to the splice. The resultant limiting internal pressure load at element 95 is 45.1 psi for an "as built" mean yield stress of 53.2 ksi in the plate. From Sections 3.3.1.1 and 3.3.1.2 of this report it is determined that the splice plate has a greater moment capacity than the four inch plate. The limiting internal pressure capacity of the Equipment Hatch Cover Plate is therefore limited by the capacity of the four inch plate at 45.1 psi. In Table 4 can be found the limiting pressure capacity adjusted for the assumption of minimum specifi d and minimum sampled material properties. 3'.4'RESSURE CAPACITY OF PERSOiklEL HATCH 3.4.1 End Plate Closure

Hecause of the unsymmetric stiffening of the personnel hatch cover plate as snown in Figure 8, a finite element analysis of the plate is performed to determine its internal pressure retaining capacity. As in the case of the equipment hatch the loading from the personnel hatch door is transmitted to the personnel hatch closure plate as a reaction line load at the ooint of support. Also the plate is conservatively assumed simply supported rather than fixed end supported at its connection to the personnel hatch barrel because of the relative low rotational stiffness of the barrel. In Figure 9 is found the finite element model of the hatch showing all elements. The plat and stiffner system is analyzed using the computer program A ISYS. The maximum outermost fiber stress is determined in the door stiffner at element 87 as 79.3 ksi for a ref rence 70 psi internal pressure load. The pressure capacity p of the personnel hatch closure is determined: p = 70 x 53;2 = 47.0 psi 79.3 3.4.2 Door The personnel hatch door is shown in Figure 8. It acts essentially as a one way spaning simoly supported stiffened plate. The total span of the 1/2" tliick plate is 42". The plate is stiffened by 3" x 1-1/4" solid plate stiffners on approximately 15 inch centers. Assuming a composite T section with the effective outstanding flange leg of tee equal to 8 times the flange thickness, the moment of inertia of the T section is 6.93 in4 and distances to the outermost fibers of the section are 1.03 and 2.47 inches respectively. tlaximum applied bending moment:

    )~i = 1 b p  1 2    1 (15) (p) (422)     3307.5 F

Homent Capacity of Stiffen Ooor Section: H = sZ = (5 ,200) I = (53,200) 6.93 = 149,261 c 22iT Limiting internal pressure p = 149,261 = 45.1 psi 3307.5

In Table 4 can be found the limiting pressure capacity adjusted for the assumption of minimum specified and minimum sampled material properties. , 4.0 SUt"'u~'IARY Af'lD CONCLUS I OH From the summary results of the analysis presented in Table 4 it can be seen that the current limiting internal pressure capacity of the D.C. Cook Containments are the equipnent hatch closure plate and the equipment hatch door at 45.1 psi based on the use of mean "as built" material properties. It should also be pointed out that even if specified minimum material properties had been used as was the case reported in Ref. 1 by Harstead the minimum capacity of the D.C. Cook

     'Containment is 32.3 psi based on the more detailed analyses reported herein rather than the 23.5 psi reported in Ref. 1 which were based on more approximate hand calculations.

It should also be emphasized that the analytical assumption used in the more rigorous analyses reported in this study of the equipment and personnel hatches whose limiting failure modes were in bending still considered only elastic behavior and section properties. It has long been established in the behavior of plate elements during test and as the'asis for the 1.5 increase in allowable bending versus menbrane stress limits of the ASt<E Boiler and Pressure Vessel Code that pl.ate and shell bending elements behave essentially elastic (small deformations) until the plastic section modulus is reached. Since the plastic section modulus for rectangular shapes associated with the hatch plates is 1.5 times the elastic section modulus there is significant additional safety margin in the hatch analysis which is not applicable to the membrane or shear type failure modes identified in the containment concrete shell and base mat. To quantify the effect of the plastic section modulus of the equipment hatch on the internal pressure capacity of the containment a non-linear elastic-plastic finite element analysis of the hatch cover plate using the computer Program Af"SYS was performed for the assumed fy = 50.3 Ksi material property. Evaluation at 70 psi internal pressure or 1.64 times the elastic capacity of the cover plate indicated .that the maximum deflection of the plate is still linear and the maximum plastic strain was 1.8 times the elastic strain at yield. Therefore it is our conclusion that the D.C. Cook Containments as presently designed and constructed constitute a balanced design. That is, the true pressure retaining capacity of the hatches when the 1.5 factor discussed previously is applied is approximately the same as that of the concrete limiting portion of the containment, approximately 54.5 psi. On this basis we do not recommend any modification of the existing D.C. Cook'ontainment hatches.

0 0

Figure 1 O.C. Cook Containment Oimensions and General Arrangment Figure 2 Shear Failure Planes and General Arrangment of Reinforcement in the 8 base mat Figure 3 General Arrangment of the Equipment Hatch Closure Plate Figure 4 General Arrangment of the Equipment Hatch Closure Plate Splice Figure 5 Finite Element 51odel of Equipment Hatch Closure Plate Splice Figure 6 Finite Element tlodel of the Equipment Hatch Closure Plate 'Figure 7 Oetailed Finite Element i~lode of the Equipment Hatch Closure Plate Figure 8 General Arrangement of the P rsonnel Hatch Closure , Plate Figure 9 Finite Element i'lodel of the Personnel Hatch Closure Plate Table 2 Computer Calculated Resultants Forces in the Containment Base Slab Oue .to Oead l!eight Table 3 Computer Calculated Resultant Forces in the Containment Base Slab Oue to a Reference 12.0 psi Internal Pressure

TABLE 1 SU &iARY OF tiItfIMUN SPECIFIED AND AS BUILT MATERIAL PROPERTIES

1. LINER PLATE SA442 ~

GRADE 60 YIELD ULTIMATE ksi SAMPLE SIZE = 6 SPECIFIED MINIMUt 1 32.0 -60.0 S = 2.27 MEAN SAMPLE VALUES 48.3 64.7 Cov. = 0.047 i~lINIf'lUM SAMPLE VALUES 45.8 62.4

2. EgUIPMEiNT HATCH SA516 GRADE 70 SAMPLE SIZE = 5 SPECIFIED MINIMUM 38.0 70.0 S = 2.74 i'lEAfl SAtlPLE VALUES 53.2 81.2 Cov. = 0.051 MI fIMUM SAiiPLE VALUES 50.3 80.2
3. BOLTING SA193 GRADE 87 SAtiPLE SIZE 2 ea.

1/2" x 2-1/2" SP EC IFI lI ED i N Ii~lUM 105.0 125.0 i~lEAN SAMPLE VALUES 119.0 137.0 1" x 5-1/2" (SPLICE) SPECIFIED MIiVIMUM 105.0 125.0 i~iEAth SAMiPLE VALUES 121.3 141.0 l-l/4" x 10" (COVER) IFIED tlINIi~iUi~l

                                                              'PEC 105.0      125.0 flEAN SAMPLE VALUES                 120.1      140.3
e. REINFORCING ROD A15 GRADE 40 18S SPEC I FIED tlI N IMUM 40.0 70.0 SAMPLE SIZE 9 t1EAN SAMPLE VALUES 49.8 81.8 S = 3.34 MINIMUM SAt'lPLE VALUES 44.3 75.5 Cov. = 0.067
5. 28 DAY STRENGTH UflIT 1 and 2 CONCRETE SPECIFIED t'lINIflUil '.5 SAMiPLE SIZE 29 flEAN SAt'1PLE VALUES 4.956 S = 0.508 YINItlUtl SAMPLE VALUE 4.112 Cov. = 0.103

WV64VJI140 ~ 409 ~ i999)]l 0 lll 974 ~ ~ ii0 vi Table 2 Computer Calculated Resultant es in the SOLUTION FUNCTIONS IH SYSTEtt REFEREHCE FRAttf Containment Base Slab Due to De Weight 1 0.207258K 04 0.0 0.179783E 04 0.834138E 05 -0.120054E"DR 0.0 -0.719304E-DR 0 9 163836. E 0 3 R 0.220710K 04 0.0 0.1816692E 04 0.548537K 05 0.148695C-OR 0.0 0.70479OE-OR 0.16218iiE 03 3 0.2340638K 04 0.0 0. 183450 E 04 0.243167E 05 0.414161K-02 0.0 -0 '85N9E-02 0.159343E-03 0.249031E 04 0.0 0.185155K 04 0.8N924E 04 0.675165E-OR 0.0 -0.64346.7E-02 0.156762E 03 5 0.263875E 04 0.0 f

0. 186 704 O4 -O.42e949E 05 0.9304051E DZ 0,0 0 '36066K-DR 0. 152896 E-03 6 0.279153E 04 0.0 0. 188343 E 04 -0.796689E 05 0 ~ 117869E-0 1 0. 0 -0.603897K-OR 0. 148194" E-03 7 0. 2940CEi5 04 0.0 0.189335E 04 -0.11C619E 06 0.141846K-ol 0.0 0.5646ii9E 02 0.142618E-03 8 0.310?2'?E 04 0.0 0.191265K 04 -0.159789E 06 0 ~ 164i827E-Dl 0' -0.56200034'.E-02 0. 135108f -03 9 0.32737"E 04 0.0 0.19263>>E 04 -0.20322lf 06 0.186456E-01 0.0 -0.4757042E-DR 0.126616f-03 10 0. 344161E 04 0.0 0. 193942K 04 -0.24S953K 06 0.2071452-01 0.0 0.421537K-DR 0.120092E-03 11 0.361263E 04 0.0 0. 195193K 04 -0.29)069K 06 0.226201E-ol 0.0 -0.361094K-02 0.110472K-D3 ACTUAL STRESS RESULTAIITS-SIIELL REFERENCE FRAtlf-BODY 7
                                                     %AT CEIITROIOc STATIOtl CEIITROIOS                       Hll                 tt12                H22            013             Q23           Hll               H12                 tt22 tlO;    tlfRID ~ HOOP               LB/IH                LB/IH               LB/IN          LB/IH           LB/IH       IH-LB/IH           Itl-LB/IH            IH-LB/IN 62.662     62.BII 0. 179783 E             04 0.0                  0.216753K 04-0.207258K 04     0.0         -0.192634E 05 0.0                        0,189855E 06 R   62.86R     62.811 0. 1S1662E              04 0.0                  0.216602E Q4-0. 220710K 04    0.0         -0.488963f 05 0.0                        0 ~ 177062E 06 3   62.65      6 .Sll 0. 183450 K             04 0.0                  0. 216593E 04-0.234638E 04     0.0        -0.80454ioiE 05 090                      0.163588E 06 62.85R     62.811 0. 185155E              04 0.0                  0.216720E 04-0.N9031E 04      0.0         -0.113994E 06 0.0                        0,149402E Ob 5   62.6562    62.811 0.166784E               04 0.0                  0. R16971E 04-0.626'3875E 04 0.0          -0.149570E 06 0.0                        0.134474E 06 6   62.R62     62.Cll      0. 160>>343K 04        0.0                  0.217339E 04-0.279153E 04 0.0             -0 ~ 187235E 06 0,0'                     0.11877ef 06 7   62.862     6".Sll      0.189335K          04 0.0                  0. 217818E 04-0.2948ii E 04 0.0           -0.227037E 06 ~ 0                        0. 102285K Ob 8   62066R     62.611 0.191 4"f               04 0.0                  0.218402E 04-0.310929K 04 0.0             -0.269024K 06 0.0                        0 849739E   05 9   62.862     62.811 0.192634if              04 0.0                  0.219084K 04-0.327378E 04 0.0             -0. 313238E     06   0.0                 0.668169E 05 10   60.06 "61 011 0;19 W."E                   04"0;0                  0:039060r04=0".344161E"04 D.E             -0.359717E      06   0.0                 0.47793if   05 ll   62.862 62.811 0.195193E                   04 0.0         -

0.220726E 04-0.361263E 04 0.0 -0.408547E 0 06 0.0 0.278602K 05 RESULTANT STRESSES-PSI BOGY S STATION LAYER STRESS Sll STRESS Sll STRESS S12 STRESS S12 STRESS S22 STRESS S22 HO. HO. INSIDE OUTSIDE INSIDE OUTSIDE INSIDE OUTSIOE I 1 0.14413K 01 0.13126E 01 0.0 0.0 0.36946K 02 0.33971E 02 2 -0.46754E 02 -0.46667E OR 0.0 0.0 0.99142E-05 0. 98951E-05 3 -0.1609iE-05 -O.16O44E-O5 0.0 0.0 0.28696K 03 0.28607E 03 4 -0.465i7E 02 -0.46276E 02 0.0 0.0 0.9C645K-05 0 93099E 05 5 0.12971E 01 0 ~ 1113CE ol 0.0 0.0 0 ~ 3>>4313K 02 0.29374E 02 6 <<0.40609E 02 0 403r59E 02 0.0 0.0 0.85744K 05 0.85194K-05 7 "0. 13917E-05 -0. 13820K-05 0.0 0.0 0.24?obf D3 0.24529E 03

3 Computer Calculated. Resultant Forces i Containment Base Slab Due to a Referen .0 psi COOK PLAHT SOIL PARAtlETER STUDY tIO. 1 12-30-80 LOAOItlG 3 DEAD IIEIGIIT Internal Pressure SOLUTIOII FUIICTIOIIS IH SYSTEti REFfREtlcE FRAtiE 1 0.362819E 04 0.0 0.12<i021E 04 0 ~ 197442E 06 "0.181325E 01 0.0 -0.936208f-02 0. 193628E-03 2 0.300629E 04 0.0 0.125169E 04 0.1477Z6E 06 -0.161004E Ol 0.0 -0.9 >0639E-02 0 195016E 03 3 O.R40632E 04 0.0 0.126290E 04 0. 108624E 06 -0.180663E Ol 0.0 -0. 939061E-02 0 195358E 03 4 0 18 6rSZE 04 Q.o 0 12732rDE 04 0.600810E 05 -0.180361E 01 0.0 -0.93292QE-OZ 0.1'94910E-03 5 0 ~ 126535E 04 0.0 0.1"6295E 04 0. 609194E 05 0.1600<>OE 01 0.0 -0.923599E-02 0. 193908E-03 6 0.721415C 03 0.0- 0.129201E 04 0 roQ246E 05 -0.179?RZE 01 0.0 -O. 912352 E-02 0.1925?GE-03 7 0.19$ 453E 03 0.0 0.1300<>5E 0<i 0.493393E 05 -0.179405E 01 0.0 -0.90039<>E-02 0.191125E-03 8 -0.319680E 03 0.0 0.13OGReE O4 0 560519E 05 -0.179091E 01 0.0 -0.866667E-02 0. 18975<IE-03 9 -0.618996E 03 0.0 0.1315<>?E 04 0.705932E 05 -0.178760E 01 0.0 -0.878656E-02 0. 166653E-03 10 -0.13054ZE 04 0.0 0 ~ 132209f 04 O.926286C 05 -0.1764i69E 01 0.0 "0.871393E-OR 0. 180003E" 03 ll -0.176029E 04 0.0 0 ~ 13261ZE 04 , 0.121891E 06 -0.178159E 01 0.0 -0. 667<i6<iE-02 0. 187975E-03 ACTUAL STRESS RESULTAHTS-SIIELL REFEREtICE FRAtlE-BODY 7

                                              /AT CEIITROIO<

STAT IOII CEHIROIDS till O I '> ll22 R13 O23 till ti12 . ti22 HO. ttCRIO. IIOOP LG/IH LG/IH LB/IH LB/IH LG/IH IH-LG/IH IH-LB/IH IH-LG/IH 1 62.662 62.811 0 ~ 124021E 04 0.0 0.163855E 0<>-0.362619E 04 0.0 0.126612E 06 0.0 0.250910E 06 2 62.662 62.611 0.125169E 04 0.0 0.16391<>E 04-0.3006 9E 04 0.0 0.7622GOE 05 0.0 0. 236913E 06 3 62.862 62.611 0.12629OE 04 0.0 0.16320?E 04-0.2<i0632E 04 0.0 0.3669?GC 05 0.0 0.223955E 06 62.662 62.611 0.1273 5E 0<i 0.0 0.163539E 04-0.162652C 04 0.0 0.736369E 04 0.0 0 ~ 212269E 06 5 62.662 62.811 0.126295E 04 0.0 0 163115E 0<>-0.12653rSE 04 0.0 -0.123520E 05 0.0 0.202044E 06 6 62.662 6"..811 0. 129201E 0<i 0. 0 0.1625<>if 04-0.'/21<>15E 03 0.0 "0.2296<i2E 05 0.0 0.193441E 06. 7 62.662 GZ.I>11 0.13004. E 0<i 0.0 0.1616"1C 04-0.193<ir>3F 03 0.0 -0.2<>9$ 14E 05 0.0 0.186555F 8 62.652 CR.GII 0.13062of 0<i 0.0 0.16095?E 04 0.3196QCE 03 0.0 -0.166653E 05 0.0 0.161563E 06 9 62.662 62.611 0.1 515<i?C 04 0.0 0.159956E 04 0.81699GE 03 0.0 -0.453569E 04 0.0 0.17652ZE 06 10 62.CGZ 62.811 0.132209E 0:GZOE 04 0.130542E 04 0.0 0 1712"1E 05 0 0 0.177466E 06 ll 62.662 62.611 0.13"612E 0SIDE OUTSIDE II>SIDE OUTSIDE 1 0.2<i416E 01 0.22035E Ol 0.0 0.0 0.60108E 02 0.5419?E 02 2 -0.73659E 02 -0.73<i81E 02 0.0 0.0 0.15811E-04 0 ~ 15773E-04 3 -0.25338E-05 0 2r5241E 05 0.0 0.0 0.457<ilE 03 0.4556<if 03

                                    -0.?319QE 02        -0.72691E 02             0.0                 0.0              0.1571ZE"04         0 15603E     04 5       0.2)749E 01           0.18357E Ol          0.0                 0.0              0.53466E OR         0.45064E OR 6     -0.61216E 02        -0.60709E 02             0.0                 0.0              0. 131<ICE-04       0.13037E-04 7    -0.20934E-05        -0.20738E-05             0.0                 0.0              0.37609E 03         0 '7<>56E 03

TABLE 4 SUf1NARY OF LIHITING INTERNAL UNIFORt1 PRESSURE CAPACITY OF D.C. COOK CONTAINMENT INTERNAL PRESSURE CAPACITY (ELASTIC ANALYSIS) (See Subsection 4.0 for Plastic Analysis) CRITICAL FAILURE SPECIFIED MINI tlUN LOlJEST ii/EASURED MEAN SAMPLE 110DE PROPERTIES SNlPLE PROPERTY PROPERTY

l. Bending Shearing fc = 3500 psl; fc = 59.16 fc = 4100 psi; fc = 64 03 fc = 4950 psi; fc = 70 36 Concrete Base t1at Limiting internal Limiting internal Limiting internal pressure = 45.8 psi pressure = 49.6 psi pressure = 54.5 psi
2. Membrane Hoop Tension fy = 40,000 psi f> = 44,300 psi fy = 49,800 psi in Concrete Cylinder Limiting internal Limiting internal Limiting internal pressure = 50.2 psi pressure = 61.2 psi pressure = 67.1 psi
3. Bending Capacity of f> = 38,000 psi f> = 50,300 psi fy = 53,200 psi Equipment Hatch Limiting internal Limiting internal Limiting-internal pressure = 32.3 psi pressure = 42.6 pressure 45.1
4. Bending Capacity of fy = 38.000 psi fy = 50,300 psi fy = 53,200 psi Personnel Hatch-(a) Closure Plate Limiting internal Limiting .internal Limiting internal pressure = 33.6 psi pressure = 44.4 psi pressure = 47.0 psi (b) Door Limiting internal Limiting internal Limiting internal pressure = 32.3 psi pressure = 42.6 psi pressure = 45.1 psi Note: Internal Pressure Capacity wherever noted as "psi" means "Psig"

CCNTAILlHEMT Ql Qll STEEL LILlE ll

                  >/b" THICK SPRlHG LlN                                                           ~ ~

Z STEEL LINER ~ g

                >io'HICK IA I I 5'  ID.

STREL LIQIR "

                 >/Z'HICK                       ~QRAOK                                 f GROUQO  FL.                                        1 4'lo"p BASE
                                                                                    ~ToP    op MAT
            <ms'~r
                                ~.

leo'-0" OD GFCTtohJ A-A GECTIQN4,L F.LEYATIQQ Figure 1 D.C. Cook Containment Dimensions and General Arrangment

  .F. c, All L'
                . I~I
                        . CL I'.

I I

                                                  ~ 4 a
                                                        ~
                                                          'nv
                                                           ~   h 7\

Sa

                                                          , I,4$. TC H                    0'r; C

gC... l.Y= fi lc ~

                    . Iivi Ill                        ~    5           -~ n.)
                                  ~ + II~
                               ~T
   /                                                                                                                 gl" I .

IICI -"

/

14

               ]I.

7 7

                                                                                 ~   ~

v g Is) = i

                                                                                  'L                          !w!  !

Nd I cc g g I) -:

                                                             ~ 5
        )r         Cl I
                      ~
                                                                                                                               )),'4IAtf+JLC ~~

I ~ 'p->I" 4 A j A ~ A v~Gs e

                                                                                                       ~P.A> <

(cd 5 I3y QR I & p oP,c)w~ .

                                             ~le."'. =v I'          Pell'c                 NOT=
1. i V:<~irL.ii;~N i<W=. (r.=)
                                                                                           <IVEIl TnE C"=tIT"-R C3llT T'3                               JF          HN I'I-L     C    Il-IO'2                                                                      r-I I.      c ~ -=r. T      A:.-      II:.,T"-G.

Figure 2 Shear Failure Planes and General Arrangement of Reinforcement in the Containment Base Mat

5'-31'i'-t5 YP h 32 -  ! ~/0" $ HDLES ON 25O'I<" S.C. S4 EQUAL SPACES- BoLTS

                                                         -- - ~ -~ ------I=

I 8+ EQ0AL S ppeES- ..- 0'-30'O-3/<" SoLTS 4 HOLCS, ON l24" S.C. Figure 3 General Arrangment of the Equipment Hatch Closure Plate

I] I I) I e ~ I ~ ~ 0 S ~>(

<<)rLO<<%Oral<< ~

0

~ .I ~

5~4 ' F 05 14$ 145 I~ 0 140 14<< 1%0 I5 I 1%0

)  ~ 0%

IL) Bot.T Wal.b , It/I t PIIOf:II It% ltk lt)

                                                                         > I . I LC                                            Ill%I Ie<<)                                                 C II      tl   10 ~                  101             100    I  ~ I             ~5
                                                                                                                                                               <<5      %7
                                                                                                                                                                                              ~

TO ~4 0% OC ~5 I g i I

                   ~ l         1~         Cl I              5)     SC  S   5   S      Sl            5~      CI      Ct      ~ )    5    C    5 Cl     5~       )0 I

IC t 20 )0 4 ~ 4 ~4 4$ ~5 ~1

  ~  Cl 14      1%     I         I tl   ~ tl       tt                 t4
  ~  00
               -$ .)l   -4.15   -4. Il   -I SC      .<<.0$      -5 ~ )4    I 4)       I  lt  -.Sl               eCI      I lt     I   ))   t )4 t  IP     )  55    4 IV  4.v<< S ~ )0  C. ~ 0
                                                                                                           ~ %1
                                            ~

tWC 5100lh JOIST) Os4LVCIC 0101140 rOOCL CC Ori tev v 0 4 raaSLO ) I I> ~ ~ r I'1nltr. Elefnent Hodel of'qul pmrnt I%Itch Clos>>rr I'intr'. Splice

31 PREP7-PLOT 42 51

                                                                       /

6 e 34 53 0 12 2 27 3 37 5 28 6 38 47 12 48 1,4 1 3 8 31 19 91 14 1 3 12 1 15 76 1 2 2 7, 12 13 15 1 8 8 8 8 5 3 1 8 158 15 15

                                                                ,gf 16 g

Qi I

                                                                     ~

15 1 ?PREP? EPLT ANSYS Figure 6 Finite Flement Model of the Equipment Hatch Closure Plate

rg DI

                         ~    '.2 S  peal 12 OF-o3      1  33    122 64 12 142
                         /1j'6 143 125 15 68 75                                         145     154 128 155 129 147                      156 130 Bc                                  148          157 1 g    131 132 149                 158 2
            - ~l"                               138 158                159 139 15'52                 160 161 cot  T ANSY5 6 Figure 7      Detailed Finite Element Mode(of the Closure Plate                                       Equipment Hatch

(y

          /'"

g!

               /

63/i" DEPTH 9'lz" DEPTH IP/p DEPTH (YVP) I T'oY'Rw PEPTIC

                                                ~  I I
                                                                                 ~

PLsrrE i" PLATE P

                                                                            ./
7) r F'CW EAS 3 DEPTH~ 4 ~

!TVP3 ~ 4

                                                          ~ >

Figure 8 General Arrangement of the Personnel Hatch Closure Plate

1 11 72 S9 36 39 33 29 5 32 35 33 3iQ 12 16 821 28 31 37 ?48 56 3 14 720 2'? 14? 55 62 33 13 619 26 046 54 61 20 12 518 25 QiS 53 60 7 16 ea 6 11 417 24 844 52 59 70 17 9 1 5 10 316 23 743 51 58 6< 69 18 70.8 -5'?.8 -44.8 -31.9 -18 9 -5 ' 7.1 20.1 33. ~ 46.0 SQ 0 Ala LOCK PLAY PLAYS AtlALVSls CEO?1ETRVANSYS Figure 9 Finite Element Model of the Personnel Hatch Closure Plate

SECTION 2 Phase II of the D.C. Cook Internal Pressure Containment Anal sis-Probabilistic Anal sis In this effort the variability of the "as-built" material parameters on the best estimate capacity of the containment to carry static uniform internal pressure is being evaluated. Four potential limiting failure modes have been identified by deterministic analysis. 'wo of the modes involve potential failure by plate bending of the equip-ment and personnel hatch closure plates. The other two potentially limiting failure modes are by membrane tension failure of the main steel hoop reinforcement at the base of'he containment shell and shear (diagonal tension) failure of the concrete base met. The ACI-359 Code equation governing diagonal tension failure is based on test results hence it is also being evaluated in a probabilistic manner. Results of this statistical analysis will be probability density function of containment resistance defined for the two different contain-ment "as-built" material properties and in the case of shear in the base mat the statistical nature of the code defined failure equation. This evaluation should be completed by May 15, 1981. SECTION 3 Phase III of the D.C. Cook Internal Pressure Containment Anal sis-Localize D namic Loads In this evaluation dynamic analytical models of the contain-ment structure assuming localize dynamic pressure loading input are being prepared. The containment areas where the dynamic models are being de-veloped include the equipment and personnel hatch closure plates, the shell portion of the containment shell adjacent to the base mat and the bise mat adjacent to the cylinder shell juncture. The development of the dynamic models should be complete by May 30, 1981. Then using the internal pressure time history forcing functions, a dynamic analysis will be done to determine the forces and moments at the critical sections of the containment.

DONALD C. COOK NUCLEAR PLANT UNIT NOS. t AND 2 ATTACHMENT NO. 2 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL

0 2.0 Distributed I nition S stem 2.1 Introduction Indiana 5 Michigan Electric Company (ISMECo.) has decided to install a Distributed Ignition System (DIS) in Unit Nos. 1 and 2 of the Donald C. Cook Nuclear Plant. The DIS utilizes thermal resistance heating elements (glow plugs) located throughout the containment building. Operation of the DIS will be accomplished by means of manual control switches located in the main control room. 2.2 Distributed I nition S stem Desi n The DIS is a two-train system employing sixty eight (68) igniter assemblies located throughout the containment building. Each train of thirty four (34) igniter assemblies is further divided into two groups one group of sixteen (16) assemblies in the general lower volume area and a second group of eighteen (18) assemblies in the general upper volume area - including the ice condenser upper plenum volume. Each igniter assembly consists of a General Motors type 7G AC glow plug and a Dongan Electric control power transformer (model 52-20-435) mounted in a sealed box housing as shown in Figure 2. The igniter box is a water tight enclosure meeting NEMA-4 specifications. A copper plate is employed as a heat shield to minimize temperature rise inside the igniter box and a drip shield is utilized to minimize direct water impingement on the thermal element. The transformer is seismically mounted to the igniter box using unistrut. The entire igniter assembly is seismically mounted so as to prevent any possible interferences with safety-related equipment during/after a design basis seismic event.

The normal and emergency power sources for each train of igniters meets Electrical Class lE specifications and the electrical train separation criteria commensurate with a Class 1E system are maintained in the DIS design. The DIS will be a manual system controllable from the main control room. Two control switches per train will be located on auxiliary relay panels A7 and A8 in the main control room. The control switches are of the two-position type,

'off'nd     'on',  and red and green         indicating. lights are provided       above each switch. Control room annunciation           will  be   provided to indicate loss of power and failure to operate      due    to hypothetical control        circuit   equipment mal:functions.

2.3 JIIAIAb1 The igniter assembly is a 16" x 12" x 8" enclosure meeting NET-4 specifications. The igniter is protected from direct water impingement by a 1/8" steel plate (10" x 18" galvanized steel) drip shield welded to the top of the enclosure. The igniter is mounted to the enclosure through a 6" x 4" x 1/4" copper, plate to reduce the temperature rise. inside the enclosure during. periods of combustion. All electrical connections inside the igniter assembly; its associated condulet box, and the two splice boxes per train utilized in the DIS are protected with heat shrink tubing to enhance system performance in an adverse environment. In addition, all DIS cables inside containment are routed in conduit and hence are protected from the environment associ'ated with hydrogen combustion.

    '3 Access to the     interior of   the   igniter assembly   is through     a  hinged cover plate secured with screws.             A bead   of silicone rubber   will be   placed around       all bolt holes in the igniter assembly. Details of the igniter assembly         and   its condulet box are given in Figure Nos. and 2. 1
2. 4 I niter Assembl Locations Igniter assemblies are distributed throughout the containment to promote combustion of lean hydrogen/air/steam mixtures. The DIS will minimize the potential for hydrogen accumulation and preclude detonations in the unlikely event of a degraded core cooling event similar in nature to the TflI-2 accident involving substantive hydrogen generation. The containment air recirculation/hydrogen skimmer system, in conjunction with upper and lower volume containment sprays, provides sufficient mixing so as to prevent the stratification or pocketing of hydrogen in the various compartments of the containment building.

Approximate igniter assembly locations are listed in Table 2-1. A general view of. the containment structure is provided in Figure

                                                   ~

3 and approximate igniter locations shown in Figure Nos. 4, 5 and 6. The locations given are

~   ~                         ~                                              ~

for D. C. Cook Unit No. 2 and are typical for Unit No. 1.'inor'.variations'n ig-

       ~   ~               ~                                     ~
                                                                                      ~          ~  ~

niter locations may be required in. Unit iVo. 1'in consideration of physical inter-ferences with. existing equipment. A'schematic representation of the DIS electrical network inside containment is provided in Figure Nos. 7 and 8. One of the questions raised by members of the NRC staff during our meeting of March 18, 1981 dealt with the need, or lack thereof, to install igniter assemblies in the instrument, room. The results of our reviews. performed to date indicate that except for potential in-leakage there is no communicatio'n between the instrument room and either the general lower volume or the pipe tunnel (annulus region) with the exception of the flow path-through the hydrogen skimmer ductwork.

The above notwithstanding, it should be noted that any leakage into the instrument room would, in all probability, be significantly less than the hydrogen skimmer flow (100 CFt1 per train) out of the room, thus preventing I the accumulation of hydrogen to combustible levels. It should also be noted, that the effects of hydrogen combustion on 'required'quipment located in the instrument room, pressurizer pressure and pressurizer level transmitters, is, for all intents and purposes, bounded by the calculations contained in Attachment No. 4 of this submittal.

TABLE 2-1 Sheet 1 of 2 IGNITER ASSEMBLY LOCATIONS* TRAIN TRAIN

                                                                                                      'B'om
                   'A'om No.       artment/Area-El evati on                                                 No        artment/Area-El evati on A-1   Ice Cond. Upper Plenum                                                             Ice Cond. Upper Plenum A-2   Ice Cond. Upper Plunum                                                       B-2   Ice Cond. Upper Plenum A-3   Ice Cond. Upper Plenum                                                       B-3   Ice Cond. Upper Plenum Ice Cond. Upper Plenum                                                       B-4   Ice Cond. Upper Plenum Ice Cond. Upper Plenum                                                             Ice Cond. Upper Plenum A-6   Ice Cond. Upper Plenum             708'09'09'09'09'10'09'86'86'86'86' B-6   Ice Cond. Upper Plenum A-7   Ice Cond. Upper Plenum                                                      B-7   Ice Cond. Upper Plenum A-8   Inside ¹1  SG       Enclosure                                                B-8   Inside ¹1 SG Enclosure A-9   Inside ¹2  SG Enclosure                                                      B-9   Inside ¹2 SG Enclosure A-10  Inside ¹3  SG Enclosure                                                      B-10  Inside ¹3 SG Enclosure A-11  Inside ¹4  SG Enclosure                                                      B-11  Inside ¹4 SG Enclosure A-12  Inside PZR Enclosure                                                         B-12  Inside PZR Enclosure 686'59' Outside ¹1 SG Enclosure                                                      B-13  Outside ¹1 SG Enclosure Outside ¹2 SG Enclosure                                                      B-14  Outside ¹2 SG Enclosure A-15  Outside ¹3 SG Enclosure                                                      B-15  Outside ¹3 SG Enclosure           709'09'09'09'09'09'09'86'86'86'85'82'62'59'59'59'59'42'37'36'36'37'45'30'29'23'34'18'60'60' A-16  Outside ¹4 SG Enclosure             662'62'62'62'47'48' B-16  Outside ¹4 SG Enclosure A-17  Outside PZR Enclosure                                                        B-17  Outside PZR Enclosure A-18  Primary Shield Wall                                                          B-18  Primary Shield Wall A-19  Primary. Shield Hall                                                         B-19  Primary Shield Wall A-20  Primary Shield Wall                                                          B-20  Primary Shield Hall A-21  Primary Shield Hall                                                           B-21 Primary Shield Wall A-22  Primary Shield Wall                                                           B-22 Primary Shield Wall A-23  Primary Shield Wall                  648'48'41'48'31'29'34'18'60'60'-1 B-23 Primary Shield Wall A-24  East Fan/Accumulator Room                                                     B-24 East Fan/Accumulator      Room A-25  East Fan/Accumulator Room                                                     B-25 East Fan/Accumulator      Room A'-26 West Fan/Accumulator Room                                                     B-26 West Fan/Accumulator      Room A-27  Hest Fan/Accumulator Room                                                     B-27 Hest Fan/Accumulator      Room A-28  Vicinity of      PRT                                                          B-28 Vicinity of  PRT A-29  Upper Volume Dome Area                                                        B-29 Upper Volume Dome Area Upper Volume Dome Area                                                        B-30 Upper Volume Dome Area

Sheet 2 of 2 TRAIN TRAIN

                                                                                'B'om
                          'A'om Ho.              ar tment/Area-El evation                  No.          artment/Area-Elevation A-31       Upper Volume Dome Area       -                           Upper Volume Dome Area     -

A-32 Volume Dome Area - 760'pper B-32 Volume Dome Area - 760'pper A-33 Volume Dome Area - 748'-31 748'pper B-33 Volume Dome Area - 748'pper A-34 Volume Dome Area - 748'pper B-34 Volume Dome Area - 748'pper 748'EY: SG - Steam Generator PZR - Pressurizer PRT - Pressurizer Relief Tank locations given are for Donald

            ~        ~

C. Cook Unit No. 2 and are typical for it No.~ 1.~

IL ~

<<  ~

t II <<

~<<   t r          (tl           ~
                                       ~

II

                 'I II
                            ~ 1 I
                                 /
                    <<A 1

N I f i I P I "~ p

     't 7

AEP: NRC: 0500A 768'pper Volume Polar Crane

                                                                  @drogen 715'pper e                                               Recombiner Plenum                                                                   692 I   )                                                         'ce

( 1 Bed I I I Steam I I ( Generators Pressurizer Lower Inlet I

                                                  'ZKf"                        650'7" Doors 1l                       Lower
                                                                        .Volume Instrument                                                             Recirculation Fan Room 4q >'

r Reactor Pressurizer Yessel I', Relief Tank FIGURE 3

Section FIGURE 4

                  'A-A'levation 618 East Fan/Accumulator g

I Room A-i< I Pr,imary Shi el d Crane Hall l9-Ha'il A 10 X i I nstr ument Room 8-2> Lg~-- A >+ O V E'. Pressurizer Relief Tank 4 8-2W Hest Fan/Accumulator Q-i7 Train 'B " Igniter Room Q I D. C. Cook Unit No. 2 Train 'A'gniter Containment. Plan Beloved El evati on 652 '7"

FI 6

      ~ A-Z Ice 8-c.         Condenser p~lO
              ~p,     t5 /j ~+M //

Q/ g~g P Train 'B'gniter a Train 'A'gniter D. C. Cook Unit No. 2 Containment Plan Above Elevation 652'7"

L

 ~ ~

FIGURE 5 0, Pl atform I Elevation 748'5"

                '"32                     +33 Platform Elevation 759'                                Ice Condenser Top Deck Doors Elevation 715'.

C. Cook Unit Ho. 2 Containment Plan Above Elevation 715'

0 0

r t I I I I I ~ ~ I 1 ~ ~, ~ 4 ' 1 4 I I ' I I

                                                                               'I 1             I
                                                                                                     ~

I I I I I I I

                                                                                                                                                                                                                                                 ~jg'm                                                                                           ~
                                                                                                                                                                                                                                                                                                                                                    ~                             ~             f             'I
                                                                                                                                                                                                                                                                                                                                                                                                              ,             I                 I I        I       t               I     1      4    ~

uzi 4 4 t I ~ I I I

                                                                                                                                                                                                                                                                                                                                                +2Mzw&&U7                                                                                                                  I z7Bx 7'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ~               I'            J I 4 I I I                                                           I I            1             I             ~

I 4 I I I I I I 1 1 I 1' ~ 4 ~ 4 I I 4 I I t I ~ I I I I I 4 I

                                                                                                                                                                                                                                              !:Iik                                     i                                                                                                                     ~      I       4 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ~

I ' I 4 I I 4 1

                  ~       I 4
                                  't i        4 1

i t

                                                                 ~

I i I 1 4 i I 4 I ~ I 4 1~44 I I ' l ~ I I I I ' 4 ~,'

                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~      I        1

( 4 ', 4 L~~L. I ' Il

                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~      1               4                               '4            4
                          '                        I                                                                     I                                  I AZ~i I                                                                                        4 I                               I   'I       I                   I
                                                                                       ~

1

                                  '4                                                                                                                                                                                          g
                                                                                                                   ~

I I I I I I I 1 ~ ~ I I ' I I I I Q ~+ I I I i 4 I 4

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ~,         ~
                                          .                                            }

i ' I  ! I I t 1 1 1 I I I I I f I ~t  ! I t I " 4' ~ 4 f ~ I 4 4, 1 I 4

                                                                                                                                                                                                                                                                                                                                                                                                                                                     }                                                                       ~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~

4 I 4 i 4 i I I I I I I 1 I 1 1 4 4 I ~ ~ . ~ 1 I 4 I I ~ 4 4 4 4 i I 4 I I

    ~     4       I       (       ~                4     4       ~                     ~     I       I             I     I                                                                                                                                          4     1                         4                                  '4     I   4         I'                                                 4             4                                                               s I     I        i    (                               I    I    a                      I I I       I       I       ~        I             I                                                                        i'                          i I                     t I                                                                                             'I     I        4 I !            I              I t           I 4
    ~

I 1 I I I I; '1' I I I 4 I I I ~

                                                                        } I 4 i
                                                                                             !} II                 I I     I I
                                                                                                                                ~    I                           ~    1 I I I 4 I I I I I I I 1                                                                                       x~mWA I

f/il

                                                                                                                                                                                             ,N s
                                                                                                                                                                                                                                                                                                                                                /Q I     1
                  ~
                          ~

a 4

                                  ~
                                   ~

I I t I 4 ~ I . I I I I i I I

                                                                                                                                                                                      ~      I I

C2e~ I I I I I I i i; I 4

          ~       ~                       4        I I           ~                           4        4      4     ~                                                                   I     ~         1                          4        1                                         1 I                         '

4 4 I ~ I I I 4 4 1 I ~ I 4 1 1 1 I I I I f Q I I I I I i i I 1

     ~     1       I       tl      '                ! I }
                                                                                                                                                                                                                                                                                                                                 -'ing ~ +7 I '                                                                                                                                                                                                                                                                                                                 I                               ~             4 i        I                                                        I      4     i                                                                                                                                                                                                    ~                                 1 4                                                                                                                                             I I I        ~                                                                                                                                     4 4

I 1 t t

                           ~
                                                                                              '                           't 92 4~
                                                                         ~
                                                                                                                                                                                                                                                                                                                                                                                                                         ~4

'4

           '4                                                                                                                                                                                                                                  4 4

4 't 4 a 1 i+ 4 4 1 I j k I 4 ~ s I 4 I I 1 ~ '. 4 t ~ t, ~ I I I I I

                                                                                                                                                                                                                                                                                                                                                                                                         ~       ~     1       I       4        -     ~

1 IWII } 4 4 4 1 ~ I

                                                                                                                                                                                      ~as               tl     4              J                                                                                                           (                                   1 I     I i       I    I I                                                           i                                      ~        i        t
                                                                                                                                                                                                              ~t 4

4 t 4 I

                                                                                                                                                                                                                                          '4} w 4

44.1(.'I 4 4 1 'r 4 Va -= f

                                                                                                                                                                                                                                                       +~
                                                                                                                                                                                                                                                         ~ts g       4
                                                                                                                                                                                                                                                                          ~I                                                                                                                                           ttett
  • a
                                                     ~             ~                                          I            ~                II     I    1    I    *      ~}                                                                     I I I I I                                l i           I                I               I I I 1 I 4                                              1 I I           't  I                 I I 4                                                                                                                                                                                                                 ~       'I    4       I t I                          I I I I I I ( I I I                                                                                                                                                                                                                                                                       I I I I ~                                                 t
                                                                                                       ~      f                       I     4           I          I I I I
  • 4 4 I I I ~ 4 4 1 I I ~ I I I i ~ I I  ! 1 ~ I 6~ I!AH
                                                           ~

I "} I I I I I I 4 I I I I I I s I I I I k I I I 4 I I ~ '. ~ I i '

                                                                                         ~     ~        1                              ~     JI     I I       I                                            I        I              4       ~      4     4      1    I     I       I 4     1 I      I 1               ~       .                     I             i      ~      .              1                       I !           I   \    . I I                                                                                                                                                                                                                s I ~             }    '

I I e I I I ' 1 f I ~ 4 I ~ I 4 I 4 I I ~ I li

                       'I
                               ~

1 4 I 1 I I I I I I ', 4 f 4

                                                                                                                             '4
                                                                                                                              ~

J k 4 4 4 4 4 1 I

                                                                                                                                                                                          ~
                                                                                                                                                                                               ~

I I 4 I k 4

4'/

T I'9a

                                                                                                                                                                                                                                                                                                                                                                                                                          ! I I I      k s

I

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ~

I I 4 I I 1 1 I I t

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ~

4 4 1 . I i: 1 4 1 4 I 4 s

               "                                                                                                                                                                                                                                                                                                                                                                        4 I                               k        I I -                I f      i                                                                                                                                                                                                                                             I    I                I         I                                                 t    I' I               I                                             1      ~              4
                                                                                                  -'            I I       1       1        i      4 I      4              I      4,             t                                                                               s     ~

r s i M 1

                                                                                                  ~       .      I I                                                                                       I                                                4           ~     4        (

I " P~~ cfeke~&44 I 4 1 ~ I I I 4 i J -' I t i ~ 4 4 4 i I 1 i ' I I 4 4 I 1 4" 1 k I i I  ! I 4 I I v~EiddA.  ! I I EAHLZI Me4d~. i t I I I i 4 1

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~

1 ~ I I I. t ~ i I I I I ( I 1 ' I 1 i I 4 I I I I I I I I I I I I I ~ I ~

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              '      4 I 4                                                                                                                                                I               I                                                                                                                                                                                                 I             I                                                                                                                 4  1 i                                                                                                                                                  I                      I      I                                                                            I                                                             I      I                  f I                                                                          1      I       I       ~                              't          4 I       I I             4                       I }           i              I             !             I     I

4 c I p 1 ~ 1 I ~ i

                                     'I   c    I   I    1 1
                                                       -1                                                                                                                                                                                                                  v I
      ~   It
          'I   ~  ~

T I . ~/~ pg I t A&7&w7AJW . BE???: v

  • I r ~

lt ~ I II ~ c c I c

                                     ~    1 dC           ~i cczxzemw

~ c 1

   'i c   c I

P', tl i,

                                 ~    1 I I I i c I                                                   h       I   1       +

c I t II ~ I I I

                    ~

11 II I 1 I I I 1 c

                                                                                                                                                                                                                                                              ~

c i I S~vczw r c ~ ~ I I I I g, ff c I ~ ~

                                                                                                                                                                                                                                                                                                 <WAX'~PfZ&7 I    1        "/Q,                                   I c
                                           ~    I
                                                                                                                                                                                                                   ~      ~    t                                                    CPS-:2.+W~7ERB i~lil ~I                                I
  • c t L'-Li '

I c [~i ~ c, i I

                                                                                ~        c i
                                                                                                               ~   w
                                                                                                                              ~

ci I c

                                                                                                                                              ~

c =~ c c

                                                                                                                                                                            =-
                                                                                                                                                                               .=
                                                                                                                                                                                  ~      ~

v 1'~c

                                                                                                                                                                                             ~

P

                                                                                                                                                                                                                                    +'

XA'/WAN c

                                                                                                    --.~ ~-i+ I
                                                                                                                    )     c j

t t I EE2Ã/~A>..rr? 8z .... f/' v + I 1 . I li

                                                                                                                      ~

I C II ~  ::: &E?I?ER?rt~

                                                                                                                                                                                                                                                                                             ~:CJR+EW:
                                            ~        1 c
                                   ~         c
                                                                                                                                                                   'I   I  ~

r??WRIER 7/YEnZ7::

                                                                                     ~    i
                                                                                                              ~+                  gj~

C MJP>'1'{

                                                             'OP{:
                                                                                                     ~    I 1~.

II r,

                                                                                                                                                                ~o I

I f 1 u I, ~ I III I IMP

                                                                                                                                                                                                                             ~   1 II
  • YXFZ e~im~RS: .

Gq.a~ ~ ~

                                                                 *          <<,        I    ~

I I i

                                                                                                                                        "   I P

c tl v LZ

                                                                                                             ~   t                                I I'

t I c c IV ~ I n de/. wWzd:NA'dmAl.z> ;C~{?a; der~ o. 4; '507 r r&iH

  • z~MMJ&f',
                                                            -.          ~

r r=Au'2 CRa~~.. II

        ~

I t ' I I ~ i~j +4 c

                                                                                                                                                                             'J'.

c I I v 1 1

DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACHMENT NO. 3 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL

3.0 Inade uate Core Coolin H dro en Control E ui ment 3.1 Introduction There are two primary concerns associated with an inadequate core cooling (ICC) event similar to the TMI-2 accident involving the release of substantive amounts of hydrogen and subsequent combustion uti li zing the Distributed Igni tion System (DIS). These concerns involve, (1) the abi lity to achieve and maintain the reactor coolant system in a safe shutdown condition and (2) maintenance of containment integrity through adequate hydrogen control. The equipment located inside reactor containment required to perform the above functions is identified in this section. The survivability of the equipment discussed herein during periods of hydrogen combustion is addressed in Attachment No. 4 of this submittal. The containment response to hydrogen combustion is contained in Offshore Power System (OPS) Report No. 36A05 previously transmitted to the Commission as Attachment No. 2 to our first quarterly report on hydrogen issues (AEP:NRC:00500 dated 12 January 1981). The analyses performed by OPS utilizing the CLASIX computer code clearly indicate that the peak pressure resulting from hydrogen combustion is well below the ultimate strength of the Cook Plant containments. 3.2 ~Ei EE Table 3-1 lists the active components inside containment required to function during and (or) after periods of hydrogen combustion. The location of these components and their susceptibility to hydrogen combustion effects are addressed bel ow.

(1) Steam Generator Narrow-Ran e Level Monitors

     .Three safety-grade      differential pressure transmitters          (tL P) are employed on each steam generator to monitor narrow-range steam generator water level.         The    kP  transmitters, manufactured       by ITT 8arton, are     fully qualified for post-accident          use  inside containment (LOCA/MSL8     qualification).       These   transmitters are located in the general lower volume, with two transmitters per steam generator mounted     nearly eleven feet below the        maximum   containment flood level of 614'levation.

Clasix run JVAC4 (see Attachment No. 2 to our AEP:NRC:00500 submittal - OPS Report No. 36A05) represents the minimum time to for the S2D cases run to date .and hence represents the case

                                                                                 'ombustion for  which the minimum containment water level would               exist at the time of'nitial      combustion.      Figure No. 32 of the      OPS  report   shows  the initial     combustion to occur      in the lower    compartment approximately 4,600 seconds      into the   S2D   event sequence.      Assuming   that water is transferred to the containment from the refueling water storage tank (RWST)    solely via two containment spray         pumps,   it is  cle'ar that the minimum usable Rl<ST volume         specified in the Plant Technical Specifi-cations (350,000 gallons) would have effectively been delivered to the containment     pump   long before the onset of combustion.           In addition, the  OPS    report  shows  that approximately       22.4X   of the  initial   ice inventory has      been melted    during the     LOTIC  portion of the analysis; up  to   a  time of 3480 seconds.        Assuming the    initial   ice inventory to be  the Technical Specification minimum value of 2.37               million   pounds;

~

it is thus shown that in excess of 530,000 pounds of ice has been

 .melted    prior to combustion. This ice melt is equivalent to approxi-

. mately .80,000 gallons of additional water in the containment. Combining the ice melt with the Rl<ST water yields a total containment "water inventory of 430,000 gallons, well-in excess of the water inventory which would result in submergence of two level transmitters per steam generator. Thus, it is clear that the steam generator narrow-

  .range level monitoring       function would not    be susceptible to the effects
 .of   a hydrogen combustion environment.
 '(2) Pressurizer        Pressure   and  Pressurizer Level Monitors The pressure    transmitters    and  the kP transmitters utilized      for
  .the pressurizer (PZR) pressure and level monitoring functions, respectively are located in the instrument room.             These  transmitters,
 -manufactured by ITT Barton, are           fully qualified for post-accident     use
  -.inside containment      (LOCA/MSLB   qualification). As   stated in Section
   '2.4 of Attachment No.      2  of this submittal, our reViews performed to indicate that there is       no comnunication between     the instrument  'date room and    either lower    compartment or the pipe tunnel (annulus region)
 -;other than the hydrogen skiomer ductwork.           In addition, the     CLASIX H
   =analyses   do not  predict combustion in the dead-ended volume, of which the instrument room is a part. Hence, the information available at
 -this time indicates that the PZR pressure and level transmitters would II not  be exposed   to  a  hydrogen combustion environment       in the unlikely event of   a degraded    core cooling event involving the generation of substantive amounts of hydrogen.

I ~ e

(3( ~333 tll -3 3 T The RCS wide-range pressure transmitters are located in the lo.rer compartment nearly eleven feet below maximum containment floodup level. The transmitters, manufactured by ITT Barton, are fully qualified for post-accident use inside containment (LOCA/MSLB qualifi-cation). For reasons set forth in Item (1) above, these transmitters would be submerged prior to initiation'f combustion and hence would not be exposed to a hydrogen combustion environment in the unlikely event of a degraded core cooling event involving the generation of ,substantive amounts of hydrogen. (4) Core Exit Thermocou les The effects of a hydrogen combustion environment on the core -exit thermocouple cable is addressed in Attachment No. 4 to this submittal. (Ri ~RCS ( RT The hot leg and cold leg RTQs, located in the lower compartment, -are fully qualified for post-accident use (LOCA/MSLB qualification). 3 The cable associated with the RTDs is addressed in Attachment No. 4 to this submittal. tl =(6) Air Recirculation H dro en Skimmer Fans air recirculation/hydrogen skimmer fans are located in the ('he uppe~ cd.,partment and the Pan motors are fully qualified for post-accident use'(LOCA/MSLB qualification). (7). Distributed I nition S stem DIS Com onents The DIS components inside containment are the igniter assemblies; splice boxes and condulet boxes, and the ancillary cable. All DIS cable inside containment is routed in conduit and thus is protected

.from a hydrogen burn. All electrical connections inside the igniter .assembly, its associated condulet box, and the two splice boxes per train utilized in the DIS are protected with heat shrink tubing to .enhance system performance in an adverse environment. The igniter assembly itself is a sealed enclosure meeting NEMA-4 specifications. h

                                   ;.Table 3-1
               ,;Donald C. Cook Nuclear Plarlt Unit Nos. 1  and 2
           .Inade uate Core Coolin /H droqen Control      E   ui ment*
           -{1,) ',Narrow-range Steam   Generator Level Monitors
           .(2)    Pressurizer Level Monitors

{3) Pressurizer Pressure Monitors

          -':(4)   RCS Wide-Range Pressure    Monitors
         -.:{5): Core Exit Thermocouples
           -{6)    RCS Loops RTDs
          --{7)    Air Recirculation/Hydrogen    Skimmer Fans
          =-.(8)   Distributed Ignition   System Components
  • inside reactor containment

DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACHMENT NO. 4 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AAD CONTROL

4.0 E ui ment Survivabilit This attachment to the quarterly report addresses the issue of the survivability of equipment exposed to a hydrogen combustion atmosphere inside containment. Heat-transfer models have been developed to determine the effects of hydrogen burns on critical components (see Table 3-1 in ). The models are presented in this attachment followed by a calculation made for a representative piece of equipment. Particular attention has been devoted to a number of individual pieces of equipment, each of which is discussed separately. 4.1 ~G1 A In order to characterize the environment to which a piece of critical

    ~

equipment is subjected during

            ~       ~

and subsequent to a hydrogen burn, two heat-transfer models have been developed. The first heat-transfer model is a time dependent heat-transfer analysis which calculates the lower compartment environ-ment as a result of a hydrogen burn. This model takes into account the presence of structural heat sinks and sprays in the lower compartment and assumes that during a hydrogen burn energy is removed by the ice condenser. The burn itself is modelled by an energy input rate to the compartment. At the onset of the combustion, the lower compartment is assumed to be isothermal; energy is then introduced into the compartment for a duration of 20 seconds, comparable to the time of a hydrogen burn in the containment. As a result of the burn, the temperature of the compartment atmosphere begins to rise rapidly; concurrently, heat is being transferred to the structural heat sinks and removed by the ice condenser and by )he lower compartment sprays. Heat transfer to the containment sinks is characterized by both convection and

radiation.

       ~
            ~   Conservative assumptions have been         made  in the calculation with regard to parameters         such as gas    emissivity  and  configuration factors.

After 20 seconds, the atmosphere temperature is observed to decrease exponentially, whereas the containment wall temperature continues to rise over the next twenty seconds (see Figure 4-1) until the time when the atmosphere temperature falls below the wall temperature. The maximum atmos-phere temperature calculated does not exceed 500 F. Sensitivity studies of various parameters used in the analysis are presented in Figures 4-2 and 4-3. Figure 4-2 depicts the results obtained when the heat transfer coefficient,"h", from atmosphere to wall is varied; as "h" vanishes, the peak atmosphere temperature approaches the CLASIX results. It can also be noted that, in general, the peak temperature is fairly insensitive to small variations in the values of the heat transfer coefficient chosen. Perturbations in the spray flow rate also reveal small increases (n 15Ã) in the peak temperature, see Figure 4-3. These analyses clearly show that if containment structural heat sinks are considered, the containment environment is not expected to experience temperatures in excess of 500 F. The equipment included in the critical list of components (Table 3-1) is qualified for LOCA and MSLB events; which includes exposure to 340 F for a period in excess of one hour. Comparison between the MSLB conditions and the data presented in Figure 4-1 indicates that equipment, which is 'subjdcted P to a hydrogen burn of the magnitude predicted by CLASIX, will*experience environmental conditions no more severe than those of a MSLB event. The second heat-transfer model attempts to describe and define the environmental condi ti ons for equi pment which is located in the path traversed by the hydrogen flame. A Barton pressure transmitter has.been selected as a representative piece of equipment to be investigated.

Prior to hydrogen ignition, the transmitter casing and its internals are assured to be in thermal equilibrium with the containment environment. At the onset of a hydrogen burn, it is postulated that ignition occurs in -the vicinity of the transmitter and the casing is subjected to a very high hydrogen flame temperature (~2000 F) initially as the flame front moves away from the component. The temperature to which the transmitter surface is exposed will then decrease gradually and will eventually approach long-time results calculated by the previous heat-transfer model. This temperature profile will provide the outside boundary condition needed to evaluate the temperature rise on the inside surface of the transmitter. The one-dimension .time-dependent conduction heat transfer equation is evaluated assuming that the inside surface-is an adiabatic boundary. This model treats the trans- -.mitter casing as a one-dimensional slab. The time dependent temperature to be used on the outside surface is imposed as a convective boundary

                                                                                              'profile condition.

Two different temperature profiles, which reflect the environment temperature to which the transmitter is exposed, have been employed in this calculation. The first profile represents a hydrogen flame temperature of '2000 F for a duration of one second at the onset prior to a linear decay to

-1000 F   in the next second; temperature continues to decrease to                 300 F from two   to six   seconds     and  eventually approaches      150 F  after    10 seconds   (see Figure 4-4), curve A. This temperature               profile is similar to the one used by TVA   in its equipment        survivability calculations. The other profile, see Figure 4-4, curve 8, decays exponentially from 2000                F to   150 F  over  a period of  18 seconds     and   is similar to the      one used  in the  Duke    analysis. A  computer code was used      to analyze the temperature rise in         a  1/4" carbon steel casing given the aforementioned boundary conditions.               The  heat transfer coefficient assumed   in the    code includes both convective and         radiative transport.

0 The temperature transients at the inside surface calculated from the two temperature profiles are depicted in Figure 4-5. Curve (A) of Figure 4-5, -which corresponds to the curve.A of Figure 4-4, showed that the initial

 -temperature   rise is very abrupt during the              first few   seconds;    later   on  the inside surface reaches          a maximum   temperature of      171 F   at  10 seconds    prior to a gradual decrease.         The temperature       response   depicted by curve (B) of

.Figure 4-5 indicates .that there is a more gradual rise over the initial 15 seconds and that the temperature reaches its maximum of 175 F at about 30 seconds before a slow decay begins. Based on this analysis, one can assume that for a single hydrogen burn, the inside casing temperature will rise no more than 30 F.. Additionally, if one assumes that there is a total of eight consecutive burns and that between each burn the inside casing surface temperature is held constant, the temperature profile will be a stepwise function similar to the one presented in Figure 4-6. Each temperature increase (30oF.) can be interpreted as the heatup of the casing resulting from one hydrogen burn. Between each burn, the temperature I at the inside casing is assumed to be constant which implies that no credit is given to the cooling of the component subsequent to any burn. In addition, the time interval between combustions is assumed to be substantially shorter

 'than what   is predicted        by CLASIX; only 100 second         intervals are    used   in this calculation.      Based on      the stepwise curve,       a conservative linear heatup temperature   profile at the inside surface of the               casing is used, see Figure 4-6.

Utilizing this linear temperature response at the inside of the trans-

~

mitter casing, a heat transfer analysis has been performed to'evaluate the heatup rate of the air and the subcomponents inside the casing. Results

indicate that the heatup rate of the air inside is slightly below the temperature of the casing and that the heatup rate of the subcomponents is estimated to be approximately 50 F over seven burns, or,7 F per burn.

 .It is   important to bear in mind that conservative assumptions have been
.used   in obtaining the        above  results.

The .heat transfer analysis clearly indicates that for most equipment

-.which   is environmentally. qualified for         LOCA  or  HSLB  events, elevated temperatures       resulted from hydrogen burns of the magnitude           and   duration
.discussed do not appear to pose any threat to its abi lity to sur vive in a

=~2D,-type event. -4e2 Survivabilit of Particular Pieces of E ui ment This section of Attachment 4 discusses

                       ~

the survivabi lity of particular -:pieces s of equipment

                    ~

needed for the mitigation and control of a S2D-type sequence. These pieces of equipment require either particular evaluations or, else, the analysis presented in Section 4.1 does not apply to them.

         .a)    Cables
              '-The   burning of hydrogen inside containment by use of           a  Distributed Ignition     System (DIS)       results in very short duration exposure fires          and may
-involve cables which are exposed in trays.

Inside the Cook containment buildings power and control cables are -either installed in conduits or in cable trays. Cables installed in conduits are not likely to burn as a result of exposure to short-duration exposure fires. These cables cannot propagate a -fire even if they burn since the flame resulting from the. combustion is -entirely confined to the conduit

     ~                                    ~

and cannot cause failure of cables in adjacent enclosures.

 ~      ~
                                                                  -In the case    of the control cables        where the   current carried by the conductors     is   small  relative to the thermal rating of the conductors,
  .the cables are installed in trays with solid steel sides, bottoms and covers.
  .Hence,    it is  not    likely for   a hydrogen burn inside containment to           ignite any   control cables installed in trays        . However, upon     exiti ng a  tr ay, either mid-span through a hole in the          tray cover or at the        end  of the tray span, a  portion of the cable       becomes  exposed    for  a  very short length     until the cables either enter       a conduit whi ch faci litates entry into terminal devices
  .or   until the cables      are connected to the device or containment penetration
,(below flood level ).
                .All control cables inside containment            needed   for inadequate core cooling mitigation equipment are qualified for flame resistance in accordance
 .:with either     IPCEA Standard      S-19-81 or IEEE-383.        Hence,   for the  exposed portions
of the control cables and cables entirely contained in trays or conduits, it is extremely likely that the cables will survive hydrogen burns inside contain-s ment. Furthermore, the cable will be wet due to the actuation of containment sprays making the possibility of ignition from a short duration exposure to
    ,fire  even more r'emote.

For the case of power cables, they are installed in conduits or in

  -expanded metal       trays without covers      and are    sized to accommodate the      full
   .load current    of connected equipment without exceeding their continuous rated.

temperature. 1Jhen installed in expanded metal cable trays,'he cables are laid typically one layer deep with spaces between adjacent cables and secured to the bottom of the tray to maintain this spacing. The power cables for ICC

  'equipment     may be exposed      to hydrogen burning inside containment but they are

q ualified for flame resistance in accordance with IEEE-383 or S-19-81. Further, since the power cables are exposed (open trays) they will be wet due to the effect of containment sprays. Testing results have been reported by L. J . Klamerus of Sandia on IEEE-383 cables . Private communication with Nr . Klamerus revealed that the cables used in the experiment were X-link polyethylene cables. They were selected f'r the test because they were believed to be most susceptible to exposure fi.re fai lure. Reported results indicate that the time to electrical short for these cables ranges from five to nine minutes. Review of ICC equipment power cables at Cook confirms the fact that they are either insulated by g palon or a synthetic compound made by Kerite. Both types of materials are believed to exhibit superior fire resisting capability than those tested by Sandia Laboratory. Therefore, despite the fact that power cables at Cook might be exposed to a two to three minutes total duration of hydrogen burns experimental evidence support the contention that it is very likely that they will be able to survive hydrogen burns typical of those discussed for a S2D-type event. b) Air Recirculation Fans There are two air recirculation fans at Cook and both of them are located in the upper compartment. These two centri,fugal fans have a total capacity of 80,000 cfm and discharge the flow into the two fan/accumulator rooms. At the exit of each fan there is a backdrop damper which opens as a result of flow through the fan. The damper is gravity loaded and is expected to close if there is an"overpressure in the fan/accumulator room. The CLASIX results predict burns in the upper compartment with pressure differentials

1b unaccounted for in the design of the system. Fan integrity is being evaluated both from the point of view of casing damage and overspeeding - of the wheel and motor. c) Steam Inertin and Pol urethane. Insulation Burn In a S D-type event, hydrogen release begins approximately 3800 seconds after the onset of a small break. Results obtained from the March code for Sequoyah indicate that during the initial 700 seconds, the steam con'centration at the lower compar tment reaches a maximum of 78/ prior to decaying to 45/, see Figure 4-7. Subsequently, the steam concentration

-continues to decrease       to approximately 25/ at onset of the hydrogen release.

Data reported by the U.S. Bureau of Nines indicate that little change

  .to the lower flammability       limit of  hydrogen   is noted   when steam  concentration in the mixture is kept below 308.          Therefore, with     a 254 steam  concentration in the lower compartment, the effects of          steam upon hydrogen combustion should be    minimal.'oreover, lower        compartment sprays     at  Cook would   further serve to enhance condensation        of steam and    to promote rapi d temperature r eduction   in the. lower compartment.      Thus,   it is  expected   that the  steam concentration in the      Cook   lower compartment    will  be  substantially lower than
 .what has been presented       in Figure 4-7. Therefore,    it is  unlikely that   Cook will experience steam .inerting in       a  S2D-like event except possibly during the initial 1000 seconds.

In addition, data presented by Lawrence Livermore Laboratory in their igniter test program clearly show that steam concentrations up to 40Ã do not inhibit the ignition of hydrogen by the glow plugs nor the abi lity of the igniters to function as designed. In spite of the fact that there would be a higher steam concentration in the lower compartment, evidence indi cates 1

  .that the glow plug igniters
                             ~

will perform their

                                      ~

intended functions as

       ~
 -required.  ~

It is conceivable that at the upper plenum of ice- condenser, a

higher hydrogen concentration may be present as a result of steam stripping by the ice condenser. It has also been postulated that combustion may first occur at that location and that it may even burn in a continuous manner.

However, it must be pointed out that the likelihood of the above scenario =diminishes if the assumption on steam inerting at the lower compartment is considered unrealistic. Given the complexity of this issue, the question of burning in the

 .upper plenum     of the ice condenser will continue to           be  investigated    by AEP.
 'Moreover, upcoming results from the modified version                of CLASIX   should be able to provide additional information           on this subject.      If hydrogen    combustion   is

-assumed to occur at the upper plenum for an extended period of time, it has been postulated that the integrity of the polyurethane insulation may be threatened by the presence of hot gases. This question is being addressed

  -at AEP  simultaneously with the upper plenum burn issue.               The   results of our evaluations    will be transmitted to       the  NRC  in the next quarterly report.

0

              ~ ~  =   I ~ ~
            ~   -. l ~ ~      ~ \ 4                     ~ i- i 44                                                     -4
          ~   = 4  ~ ~                               ~   '    4=   4                              4                  4 ~

I 4 4 4 .4 ~ ~ 4 4

                                                                                                                               ~ 4

~ 4

                                                                                                                                                "-,'kg 1'I 4 ~

4 ~ LON3~ C.<i'! I 4 4

                                         ~=                                                      4 4 j"'pFt-4 4                             l
                                                                          &        4 5c                   4 4

I 4 4

                                                                                                       ~ =
                                                                            ': . ahk:kkkjki~.- .

4=4 . 4: = =. ~ 4

                                                                                                     ~      4-k X'4tpk

($ QQ ) 4-1 TEYiPERATURE RESPOi(SES OF LOMER CGlk1PARTHENT ATi)OSPHERE ANO MALL

                           /FIGURE
  '!    t i       """'T"!'

1/ T

                                                                                                                                 'J
                                                                                                                             ~ijatjj I,'".'

1! I I' ~

            '     e         ~                                                                                                             I t     ~             ~    ~

I )

   ,.1! l.,'t                                                               <<   ~
                                                                                   ~
                                                                                   ~

I~ w

                                                                                         ~

I I i

                                                                                                                                        - ~

! ~ ~ I t ~ ~

                                                                                                                                    ~

I V

                                                  ~ =-

Ii-I

                                         ~  >>     i t i

I

                                                                   ~
                                                                            j 1 it t

1 ~ I l j. a 1 a s I I

                                                                                                              .I
                                                                                                  !                                                                             -0
                                                               ~       ~                                      ;t..

t 1 I ~ I 11

                                               ~  ~    ~

I I Jooo. 0

                       ~         i i
!!!1Tj
I-j-

1

                  .ji t-l                  C ~r~>XT Pi=SR
                             '0
                                                                           -!-!                  -fk
                                                         -I                                                                       LI:,

1...>> 4 J Lj I

 -   .tj                                                       ji I'i- ~ Oo-t  ~t             I
                          ~   I t             Ii I
      ~

j r L! I ~ ~ I Ej i I! I ~ -I

                                                                                                                                                                                                 -1
                                                                                                                                                                                                 =

t

                                                                                                                                                                                                   ~

j I t 1 I I 1 j

                                                ,k! I                                                                   jk j                                                                I:1! I',
                                                                                                                                                                              ~    I ~
                                                                 !,1     I                               I   1-1 !  ~ I i ft   >>  I   'I    I I   I 1 I t  1
                                                                                                                                                             ~ t T-l I
                                                                                                                                                                       ~ I         I I'i.t'1       I 1 1 l I
                                                   ;',I<>IT>>I>>  '.(I'I/j',.):;           i'-2
                                                            ', FIGURE                      EFFECTS OF !IEAT TRANSFER COEFFICIENT YARIATIONS ON t1AXIt1UM ATMOSPHERE TEt1PERATURE'N LOWER COt1PARTt1EttT
                                                         'l                                        k"r
                                                                  -Tt.
 >>j    I>> .      (0-I  ~ - ~
                                                                                                              ..LL j
                                                     -lt: I-
                                        ~

f t-. C a Et t i!f ~ t rr

               ~

f ~ I f r I I I!! (Uo I ( i ill III Iftt

                                                         +pQQ /, P! I(Q gQ,r       ( r /SIC)                        j
                                                             >>>>I>,r'rrrt,i'-(VARIATIONS
                                                                                          'I                   I 1

FIGURE",4-'3, EFFECTS OF SPRAY FLO>>'t RATE ON PEAK 't.j

    ~

t,.t $q i

                        ),         I LI LLLI l ( iATNoSPHERE   TEN ERATURE IN LO((ER,CONPA(ITNENT '

3!

        ~    (
                             ~  =~ ~

i 4 I i 4 t I

                                                                     ~

I'

                                                                                                                               +~4 I

4

                                                                                                                                     ~

4 I

                                                                                                                                                       ~    I t =t-4 I

4 ~ 4

                                                                                                                                                                                                       ~ I 4
                                                                                                                                                                                                                      -~ =

t

                                                                                                                                                                                                                                =   4
                                                                                                                                                                                                                 ':=

4 I =

  • t 4 4*

4 *

                 '\

EM-: 3 '

                                                                                                                                                                                    ~       -,'I          ~~+      :                        =    = +

4 4

  • 4 4

f t ~ M 4 t

                                                                                                                                                      -J   m~-~                        ~

4 4

                 ~

4

         ~                         ~
                                                                                                                   ~   l
                                                                                                                                                           - ~-
                                                                                                                                                                                                                                        ~  ~

t

                                                                                                                                                                                                                -.-=-. ~ --   t-s.-~
                                                             =-+
                                                                                                                ~t~

4 ~ ~ -4

                                                                                                    *      ~

l .j 4>> = 4 I I l t=.4 .

                                                           ~
                                                                                                                            ~=

J.. ~ t 3

         . XE.                                                              t                 t                                    ~   ~  ~

4

                                                                                                                                                                              -I
         ~   . 4=         '-     ~
                                                                                                                                                                 ~+                       l j
    ~
                                                         '        '               ~    tW+                                                               4 (2
  • I
                                                                                                                                                                                                         ~     t 4>> t                                                                                                                                                                              ~
               ~
                                                                                                                                                                                                       ~                                                      =~

f-'4-4 4~ 4 4

                                                         ~        4     I 44
                                                                                                                                                                                                                                                                            ~

t t

                     'l 4

l

                           ~f I   I' 4<<

I

                                                                  ~4~                                                                                             l 4                                        ~l     l
                                                                                                                                                                                                                                               ~ '-
                                                                                                                                                                                                                                                    -4 4
                                            -~

4

                                        - J                                                                                                                           4  4
                        -~ >>
                                                                                                   ~ I+'1
                                                                                                          ~J 4

t

                                                                                                                     } t
                                                                                                                         ~
                                                                                                                                                                                                                                           ~          >>        ~
                               ~

4

                                          ~ *~  i     ~~        }=-I 3

4 C I 4 I 4 I t t 200 ~ I ~ ~ 4 t

  • It
                                                                                                                                                                           ~ =
                                                                                                                                                                       ~         'I
                                                                          ~     }    i           r       F>>                   flan.         t 4
                                                                                                                                                                                                                   ~t-              <<4>>                 - t.<<                 I 4   ~ =

I 3

                                                                          -FiGURE-'tf-}}.-'TEMPERATURE PROFILES USED-AS CONVECTIVE,:.

BOUNDARY CONDITIONS

0 4 h 4 I II 4 4 I ~ ~

. 4 I 4 ~ ~ 4
                                              ~ -  ~        4 il'
                                    = ~:"1  4 I-~
                                         ~

I I= =- 4 1 .~ 4 ~ I

                                                  ~r
                          'I r ~

ASSU11ED INSIDE SORFACE-TEMPERATURE PROFILES = 4 4 ~

v ') VI f= t"t I IV i.'i t I.'gag<<I. I I I

                                    ~a4                 o
                                                                                                                                                                                                                             'r-j
                                                                  ~

I r'>> I' ' I ~ > ~

                                                                  '            ~
     ~             ~      !   I
                        .       -            t         .e j                                                                                                                                                               I 1      I
                              )

1  ! Ii

                                                                                                                             /
                                                                                                                                                                                                                                                            '                 a 4
                                                                                                            ~
                                                                                                                         ~

l j f 1

                                                                                                                                                                                                                   !LOT<<V.". Rfffd<<

I 1 ~ I l '

              ~

I t f f f 4 j  ! ~ l \ 4 4 1

                                                                                                                                                                                                                                                   ~

(O'T I I j

                   >              i g 0'OfACg, C-0 f'~t P/.',PTg,"
                                                                                                                                                                                                                                      ~ P~%/~
                                         ~

t ~-

                                                                                                                                   >')',                                                                                                                     I' QQ '.;

I j

                                                                                    ~     ~                                                                                                                                                                        j
                                                                       'I
                                                        ~     ~

f j',I-

                                                                                          ~           ~
                                                                                                                                                                                                                                                        )
                                                                                          ~          I<<

J->J;

~
                   &,.'                                                                                                                                                                                     -h I,

I: a

                ~                  1          ~

t. a a ff ~ i 1 f.,<~O"; l.

                           <<"-!!                                    f-4     v                                                                                                                                  r

,I  : l [ J'f l'j .~AT!'-:

                                                                                                                                                                                                     ..o F a    1 3

ONSef jr p*,<<j- RE: 1 iBASE=j- tl. 4

                                                                                                                                                                                                                                                                                   )j
  'ljt-.' ~

t ~ ~ ~ ~ ~ X Q.>>-" LL

                            ~   >   1 l~

f -f<< 1 1 t

  .," <<'.i ~!;

k-A, Itt f;JJ L0l4ER.;-: ~i:li<<

    -  2-o '-                                                                                                                ..'

II Qjh(pMTt.~~ l ! I IT[ '1

  ~      ~       ~                  ~
  • I 4 tl )j" tj:,i:.

a

                                                                ~

f i :t.l

                                                       !  1'tl" 4

l ~ ill 1'IIII,: tl !,.I .ij

                            '                                                                                           >~(

j-t l

                                     ~     a
                                                                                                                                                                                                                 ~        I
 !               I!!!               I      l    j' jl.tf                                                                                                                               ll              1! II!!j'} -I l->

l

                                                .0; I               ~       -

t I KO '0'0 ~ ~ t, DaÃ;

                                                                                                                                                                ~

I , ~ 1rl l 4 l; 1 ~ I ~ ~ Qt-0 f; l ): i 1 1 l ~ WOO I ~ ~ ji,; O jl +me! 1

                                           ~                                                            ij                                           .

I ','! 4 I I i a 1

                                                                                                                                                                                                                                                                          '(2c.)  ,'

FIGURE 4- 7 STEAN CONCENTRATION IN LOWER

                                                                                                                                                                                                                          <                          1 ill                                                                                                                                                                                                                            I l

l ',C011PARTt1EfNT AS A FUNCTION OF TIt1E 1

           'i i
                                           ~

I l

                                                          ~

f 4 L t II II 4 4 '1 I,

References:

(1) Klamerus, L. J ., "Fire Protection Research," quarterly Progress Report, October - December 1977, NUREG/CR-0366. (2) Private Communication, L. J . Klamerus to K. K. Shiu, March 1981. (3) Hertzberg, M., "Flammability Limits and Pressure Development in H2-Air Mixtures," U.S. Bureau of Mines, PRC Report No. 4305, January 1981. (4) Lowry, W., "Preliminary Results of Thermal Igniter Experiments in H2-Air Steam Environments," Paper presented at the workshop on the impact of Hydrogen on Water Reactor Safety, Albuquerque, New Mexico, January 1981. (5) Sequoyah Nuclear Plant, Core Degradation Program, Yolume 2, Report on the Safety Evaluation of the IDIS, December 15, 1980.

0 0

DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACNENT NO. 5 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL

5.0 Current Research Pro rams Several research programs have been undertaken by AEP to investigate hydrogen control related phenomena; some of these programs were discussed in the last quarterly report. In this section a number of the current research programs will be reviewed; program status, revised test plan and program schedule of each effort wi ll be discussed individually.

     ~RPRI  P AEP.,  along with Duke and TYA,are co-sponsors         of f'our  EPRI  research programs in which fundamental flame studies wi 11          be made;  research and development on various igniter types      will be    pursued; mixing and    distribution of     hydrogen  in prototypic containment environments          will be investigated    and  additional glow plug testing     will be  performed.

a) Mhiteshell Nuclear Research Establishment This research facility is operated by 'Atomic Energy of Canada Limited. Two research programs will be pursued independently at this facility; namely, the hydrogen combustion phenomena study and the research and development of different igniter types. Both of these programs will be undertaken with the collaboration of Ontario Hydro as an additional financial contributor to the work. I The first experimental program is designed to investigate various hydrogen combustion phenomena and can'be divided into four parts. The first part of this experimental effort entails performing nineteen ignition tests on lean hydrogen mixtures. The hydrogen concentration to be examined in these tests will vary from 5.05 to 30Ã by volume. A spark ignition source which is

i n the order of 0.5 joule will be used to ignite the mixture. Details of the experimental set up and test vessel dimensions have been presented in the previous quarter ly submittal. Fast response pressure transducers, thermo-couples and ionization probes will be employed to monitor and record various important test parameters. Of the= nineteen tests planned the majority of them will be conducted with the ignition spark located near the bottom of the spherical test vessel. Two tests are planned in which the ignition source will be located at the center of the vessel and one test is planned with the ignition source near the top of the vessel. These three tests will be used to assess the effect of igniter location. These tests are anticipated to require approximately three weeks to complete. According to the latest estimate provided by HNRE, system shakedown is being performed on the test vessel and on the data acquisition system; it is expected that data collection will begin by arly Nay. Part II II of the hydrogen combustion program includes a total of eighteen tests which are intended to study spherical deflagrations of a hydrogen flame. The hydrogen concentrations that will be investigated range from 105 to 42K whereas the steam concentrations will vary from 0 to 30Ã. With the exception of two tes ts in which i gni ti on will be ini ti ated at the bottom of the test vessel all tests will be performed using center ignition. The'time required to complete these tests is approximately one month. II Subsequent to these tests the test vessel will be modified for the study of turbulent effects on hydrogen combustion. Two weeks have been scheduled in the program plan to accomplish these modifications.

The primary objective of the Part III tests is to investigate turbulent effects upon completeness of hydrogen burns, and upon pressure and temperature responses. Turbulence in these tests will be created by two different means: 1) two 16" diameter vaniable speed fans and, 2) gratings. The fans are rated at 1500 cfm each and consequently are capable of creating a very turbulent environment. The gratings are made of 1/4" perforated plate with 50% porosity and they are used to simulate obstacle-induced turbulence. Six tests will be devoted to examining lean hydrogen combustion under turbulent conditions; ignition will be initiated at the bottom of the vessel. Four additional tests will be conducted using 14% and 20/ hydrogen-air mixtures when the ignition source will be placed at the center of the test vessel. The time needed to complete these tests is expected to be about one month. Part IV of the hydrogen combustion program entails a total of six 7 tests. Prior to performing these tests, a week's time is needed to set up the vest rig which includes a sphere used in the previous tests. Ignition for these tests will be initiated at either the center of the sphere or at the end of the pipe f'r hydrogen mixtures of either 8% or 20%. In addition to collecting the temperature and pressure data, ionization probes will be used to record flame propagation from one compartment to,another. The final two tests using this test geometry include studying hydrogen combustion characteristics from a 8% or a 10% mixture to a 6% mixture. In these tests the pipe will be I filled with a 8/ or'10% mixture, while the sphere is filled with a 6/ mixture. Ignition will be initiated in the pipe section. The duration of these tests is anticipated to be about three weeks.

The second experimental program that will be carried through at the llhiteshell facility involves research and development effort on various igniter types. The objective of this work is to perform extensive benchmark tests in a six cubic foot spherical test vessel to identify igniter types and to demonstrate their combustion capability in a prototypic environment. The testing program will begin in May and last about four months. Based on test data obtained, a'selection of igniters will then be further tested in a larger scale test vessel (600 ft3 ) at Acurex. Presently, besides the GMAC 7G glow plugs, a few resistance-heating glow plugs developed by Tayco will also be examined.

     ,b)   Acurex In the Acurex program, the test plan can also            be  divided into two parts; the    first part      is designed to    examine the  effectiveness     and  the performance    of. glow plugs in igniting        hydrogen under various     prototypic contain-ment conditions .      In these experiments, hydrogen flow rate, steam flow rate, water sprays parameters         and  ignitor locations will'e varied to provide parametric studies on the          ability of glow plugs'o ignite hydrogen mixtures            .

The effect of micro-fog on glow plug ignition and pressure transients will also be investigated. A number of the experiments will attempt to provide data to correlate fogging as a pressure suppressant with spray volume, spray drop size, and hydrogen concentrations. A strong ignition source, e.g., electric match, will be used in all the fogging-related tests. A second part of the test plan calls for testing a selected number of igniters developed at the Whiteshell Nuclear Research Establishment. These will be large scale confirmatory tests for ignition devices which have demonstrated a superior potential in igniting lean hydrogen mixtures and in

                         \

replacing the existing glow plug designs in the future. Their effectiveness

                        ~                        ~      ~                      ~            ~
       ~
                                                                         ~

in ~ a

                 ~

spray environment will be

                                  ~

evaluated at Acurex's 600 ft vessel. ~ Prior to carrying through the above described test 'plan, a series of shakedown tests will be performed to provide checks for consistency and accuracy of all instrumentation; specifically, results will be compared with those obtained at Mhiteshell and from the available literature. c) Hanford En ineerin Develo ment Laborator HEDL The objective of this effort is to experimentally investigate aspects of hydrogen mixing and distribution in a simulated ice condenser lower compartment geometry. Hydrogen release into the compartment will be modelled by two approaches. In the first approach, steam and hydrogen are introduced as a jet into the compartment simulating a pipe break; in the second approach, hydrogen and steam are added to the compartment as a diffuse source similar to pressurizer relief tank release. In order to extend the rang of hydrogen concentration beyond "4%%d, helium will be used as a simulation fluid in place of hydrogen. Confirmatory tests will be performed to demonstrate that helium can indeed be used to substitute hydrogen in these mixirig studies. The first test is scheduled to begin some time in mid June and the whole test program is expected to last approximately two months. In the meantime, similitude and scaling calculations are being done so as to properly model the necessary parameters that are vital to the investigation of mixing and distribution. Some of the non-dimensional groups that are being examined are: the Richardson number, the Reynolds number, and the Grashof number. d) Factor Mutual Research AEP, Duke, TVA and EPRI recently came to the conclusion that in order to better understand fogging as a means of hydrogen control and to eventually

0 render a decision on its applicability as a viable solution to hydrogen mitigation, they would contract with Factory Mutual Research to undertake a research program to investigate fogging. The objective of this program is to determine the effects of micro-fog upon the lower flammability limit (LFL) of hydrogen, to provide a relationship between dropsize and fogging density on LFL and to correlate the concentrations of lean hydrogen air mixtures with various fogging parameters. In order to ensure that the effects of fogging on LFL are properly reproduced, a strong ignition source has been proposed and is likely to be used to initiate ignition on all LFL tests. The range of droplet sizes that is of interest to the utilities varies from a few microns to hundreds of microns, whereas the fogging density varies from zero to a.few percent. Test parameters that will be measured

                                             ~

include temperature, pressure, dropsize distribution.and fog.density distribution.

                                          ~    ~
  ~

schematic of. the experimental

               ~                    ~
                                                        ~   A set    up  is    shown   in Figure 5-1.

A detail test plan is being prepared by Factory Mutual Research with aid from AEP and the other participants. The test vessel is scheduled to become available for test in approximately three weeks. Finally, it is also the intent of this effort to provide the necessary and pertinent information 'o assist in the selection of test parameters in the Acurex fogging tests. e) CLASIX In the AEP-NRC meeting on March 18, 1981, the staff expressed interest in reviewing a -number of additional CLASIX runs . The first concern centers around the unique lower containment spray capability at Cook and its possible effect upon other compartment responses during and subsequent to a hydrogen burn.

0 Reviews at AEP indicate that in the CLASIX sensitivity study submitted to the NRC, spray parameters such as spray flow rate, droplet size, heat transfer characteristi'cs to the drop and spray temperature were varied; minimal effects on the containment pressure and temperature responses were noted. Thus, the available information from CLASIX, points out that variations in spray parameters would not significantly affect containment temperature and pressure response. Another possible CLASIX run discussed in the above mentioned meeting involved initiating hydrogen combustion at 10% with 50% burn fraction. Experimental measurements on completeness of hy'drogen combustion reported in the literature show that in spite of the large scattering in data around 5% to 7%, an initial 10/ concentration consistently results in an almost 100% (1) burn. In addition, it has been shown that turbulence will further enhance completeness of combustion for lean hydrogen mixtures . Therefore, if the probability of incomplete combustion of 10% is indeed negligibly small, as it seems to be, its effects upon the containment need not be investigated. It was suggested by the staff that a case with ignition initiated at 10% and then propagating to a 8% hydrogen concentration region should be studied. Both types of combustion would assume a 100% burn fraction. Close examination of the various cases presented in the CLASIX sensitivity studies reveals that there is one case (JVD15) which uses the exact input parameters requested by the staff. One burn was observed in the upper compartment with an estimated maximum pressure of 57 psia (only one air recirculation fan was assumed to be operational in the run). This maximum pressure is very close to the Cook containment elastic limit. However, since heat sinks have not been included in these

~

sensitivity calculations, the results are likely .to be overly conservative. ~

Floivmeter Flowmeter Mixer Air pressure Regulator Flash Arrostor Water Air Solo n old Op o r at ed Valve

                     /

Solon old Oporatod Valve H>- Air Mix Supply Line

                                              /I  X Fog Nozzles
                                          / II
                                        /
                                           /                   Spark Gap
                                                               ~ Eloctrodes loniza tl on Prob os I ih r'(I ii
                                             /il               4      Thermocoeploe,
                               ~

For bRopSfhE: hl~sug~NQ7) peal~ Flamo Spood / I lAoasuromonts I I i 6" Dlcmeter x ~ Longth I I I Drain FIGURE 5-1 EXPERIMENTAL ARRANGEl1ENT OF FOGGING TESTS

References:

(1) Liu D. D. S., et al, "Some Results of WNRE Exper iments on, Hydrogen Combustion," Water Reactor Safety Workshop on the Impact of Hydrogen, Albuquerque, New Mexico, January 1981. (2) Hertzbert, M., "Flammability Limits'nd Pressure Development in H2-Air Mixtures," U. S. Bureau of Mines, PRC Report No. 4305, January 1981.

DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACNENT NO. 5 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL

t~ 5.0 Current Research Pro rams Several research programs have been undertaken by AEP to investigate hydrogen control related phenomena; some of these programs were di.scussed in the last quarterly report. In this section a number of the current research programs will be reviewed; program status, revised test plan and program schedule of each effort will be discussed individually. 1.1 ~E AEP, along with Duke and TVA,are co-sponsors of four EPRI research programs in which fundamental flame studies will be made; research and development on various igniter types will be pursued; mixing and distribution of hydrogen in prototypic containment environments will be investigated and additional glow plug testing will be performed. a) Whiteshell Nuclear Research Establishment This research 1 facility is operated by Atomic Energy of Canada Limited. Two research programs will be pursued independently at this facility; namely, the 'hydrogen combustion phenomena study and the research and development of different igniter types. Both of these programs will be undertaken with the collaboration of Ontario Hydro as an additional financial contributor to the work. The first experimental program is designed to investigate various hydrogen combustion phenomena and can be divided into four parts. The first part of this experimental effort entails perfororing nineteen ignition tests on lean hydrogen mixtures. The hydrogen concentration to be examined in'these tests will vary from 5.0$ to 305 by volume. A spark ignition source which is

0 in the order of 0.5 joule will be used to ignite the mixture. Details of the experimental set up and test vessel dimensions have been presented in the previous quarterly submittal. Fast response pressure transducers, thermo-couples and ionization probes will be employed to monitor and record various important test parameters. Of the nineteen tests planned the majority of them will be conducted wi th the ignition spark located near the bottom of the spherical test vessel. Two tests are planned in which the ignition source will be located at the center of the vessel and one test is planned with the i gnition source near the top of the vessel. These three tests will be used to assess the effect of igniter location. These tests are anticipated to require approximately three weeks to complete. According to the latest estimate provided by WNRE, system shakedown is being performed on the test vessel and on the data acquisition system; it is expected that data collection will begin by early Nay. Part II of the hydrogen combustion program includes a total of eighteen tests which are intended to study spherical deflagrations of a hydrogen flame. The hydrogen concentrations that will be investigated range from 105 to 421 whereas the steam concentrations will vary from 0 to 30Ã. With the exception of two tests in which igni tion. will be initiated at the bottom of the test vessel all tests will be performed using center ignition. The time 'required to complete these tests is approximately one month. Subsequent to these tests the test vessel will be modified for the study of turbulent effects on hydrogen combustion. Two weeks have been scheduled jn the program plan to accomplish these modifications.

The primary objective of the Part III tests is to investigate turbulent effects upon completeness of hydrogen burns, and upon pressure and temperature responses. Turbulence in these tests will be created by two different means: 1) two 16" diameter variable speed fans and, 2) gratings. The fans are rated at 1500 cfm each and consequently are capable of creating a very turbulent environment. The gratings are made of 1/4" perforated plate with 50/ porosity and they are used to simulate obstacle-induced turbulence. Six tests will be devoted to examining lean hydrogen combustion under turbulent conditions; igni tion will be initiated at the bottom of the vessel. Four additional tests will be conducted using 14/ and 20/ hydrogen-air mixtures when the ignition source will be placed at the center of the test vessel. The time needed to complete these tests is expected to be about one month. Part IV of the hydrogen combustion program entails a total of six tests. Prior to performing these tests, a week's time is needed to set up the test rig which includes a sphere used in the previous tests. Ignition for these tests will be i nitiated at either the center of the sphere or at the end of the pipe for hydrogen mixtures of either 8/ or 205. In addition to collecting the temperature and pressure data, ionization probes wi ll be used to record flame propagation from one compartment to another. The final two tests using this test geometry include studying hydrogen combustion characteristi cs from a 8Ã or a 10Ã mixture to a 6X mixture. In these tests the pipe will be filled with a 8Ã or 105 mixture, while the sphere is filled with a 6X mixture. Ignition will be initiated in the pipe section. The duration of these tests is anticipated to be about three weeks'

~ ~ The second experimental program that wi 11 be carried .through at the Whiteshell facility involves research and development effort on various igniter types. The. objective of this work is to perform extensive benchmark tests in a six cubic foot spherical test vessel to identify igniter types and to demonstrate their combustion capability in a prototypi c environment. The testing program will begi n in May and last about four months. Based on test data obtained, a selection of igni ters will then be further tested in a larger scale test vessel (600 ft3 ) at Acurex. Presently, besides the GMAC 7G glow plugs, a few resistance-heating glow plugs developed by Tayco will also be examined. b) Acurex In the Acurex program, the test plan can also be divided into two parts; the first part is designed to examine the effectiveness and the performance of glow plugs in igniting hydrogen under various prototypic contain-ment conditions . In these experiments, hydrogen flow rate, steam flow rate, water sprays parameters and ignitor locations will be varied to provide parametric studies on the ability of glow plugs to i gnite hydr'ogen mixtures . The effect of mi cro-fog on glow plug ignition and pressure transients wi 11 also be investigated. A number, of the experiments will attempt to provide data to correlate fogging as a pressure suppressant wi.th spray volume, spray drop size, and hydrogen concentrations. A strong ignition source, e.g., electric match, will be used in all the fogging-related tests. A second part of the test plan calls for testing a selected number of igni ters developed at the Whitqshell Nuclear Research Establishment. These will be large scale confirmatory tests for ignition devices which have demonstrated a'uperior potential in igniti ng lean hydrogen mixtures and in

h replacing the existing glow plug designs in the future. Their effectiveness in a spray environment will be. evaluated at Acurex's 600 ft vessel. Prior to carrying through the'above described test plan, a series of shakedown tests will be performed to provide checks for consistency and accuracy of all i nstrumentation; specifically, results will be compared with those obtained at Whiteshell and from the available literature. c) Hanford En ineerin Develo ment Laborator HEDL The objective of this effort is to experimentally investigate aspects of hydrogen mixing and distribution in a simulated ice condenser lower compartment geometry. Hydrogen release into the compartment will be modelled by two approaches. In the first approach, steam and hydrogen are introduced as a jet into the compartment simulating a pipe break; in the second approach, hydrogen and steam are added to the compartment as a diffuse source simi lar to pressurizer relief tank release. In order to extend the range of hydrogen concentration beyond 45, helium will be used as a simulation fluid in place of hydrogen. Confirmatory tests will be performed to demonstrate that helium can indeed be used to substitute hydrogen in these mixing studies. The first test is scheduled to begin some time in mid June and the whole test program is expected to last approximately two months. In the meantime, similitude and scaling calculations are being done so as to properly model the necessary parameters that are vital to the investigation of mixing and distribution. Some of the non-dimensional groups that are being examined are: the Richardson number, the Reynolds number, and the Grashof number. d) Factor Mutual Research AEP, Duke, TVA and EPRI recently came to the conclusion that in order to better understand fogging as a means of hydrogen control and to eventually

render a decision on its applicability as a viable solution,to hydrogen mitigation, they would contract with Factory Mutual Research to undertake a research program to investigate fogging. The objective of this program is to determine the effects of micro-fog upon the lower flammability limit (LFL) of hydrogen, to provide a relationship between dropsize and fogging density on LFL and to correlate the concentrations of lean hydrogen air mixtures with various fogging parameters. In order to ensure that the effects of fogging on LFL are properly reproduced, a strong ignition source has been proposed and is likely to be used to initiate ignition on all LFL tests. The range of droplet sizes that is of interest to the utilities varies from a few microns to hundreds of microns, whereas the fogging density varies from zero to a few percent. Test parameters that will be measured include temperature, pressure, dropsize distribution and fog density distribution. A sch'ematic of the experimental set up is shown in Figure 5-1. A detail test plan is being prepared by Factory Mutual Research with aid from AEP and the other participants. The test vessel is scheduled to become available for test in approximately three weeks . Finally, it is also the intent of this effort to provide the necessary and pertinent information to assist in the se1ection of test parameters in the Acurex fogging tests. e) CLASIX In the AEP-HRC meeting on March 18, 1981, the staff expressed interest in reviewing a .number of additional CLASIX runs. The first. concern centers around the unique lower containment spray capability at Cook and its possible ffect upon other compartment responses during and subsequent to a hydrogen burn.

Reviews at AEP indicate that in the CLASIX sensiti vity study submitted to the NRC, spray parameters such as spray flow rate, droplet si ze, heat transfer characteristics to the drop and spray temperature were varied; minimal effects on, the containment pressure and temperature responses were noted. Thus, the available information from CLASIX, points out that variations in spray parameters would not significantly affect containment temperature and pressure response. Another possible CLASIX run discussed in the above mentioned meeting in'volved initiating hydrogen combustion at 10/ with 50% burn fraction. Experimental measurements on completeness of hydrogen combustion reported in the literature show that in spite of the Ilarge scattering in data around 5X to 7X, an initial 10Ã concentration consistently results in an almost 100'5 (1) burn. In addition, it has been shown that turbulence will further enhance completeness of combustion for lean hydrogen mixtures . Therefore, if the probability of incomplete combustion of 105 is indeed negligibly small, as it seems to be, its effects upon the containment need not be investigated. It was suggested by the staff that a case with ignition initiated at 10/ and then propagating to a 8/ hydrogen concentration region should be studied. Both types of combustion would assume a 100/ burn fraction. Close examination of the various cases presented in the CLASIX sensitivity studies reveals that there is one case (JVD15) which uses the exact input parameters requested by the staff. One burn was observed in the upper compartment with an estimated maximum pressure of 57 psia (only one air recirculation fan was assumed to be operational in the run). This maximum pressure is very close to the Cook containment elastic limit. However, since heat sinks have not been included in these sensitivity calculations, the results are likely to be overly conservative.

ll ~ y t

Floemeter Flowm et or Mixer Alr Pror."o uro Regulator Flash Arrostor V/ator Air Solenoid Operated Valve

                         /

Solenoid Oporatod Valve H Air Mix Supply Line 2

                                                 /gi i Fog Nozzles                / II Spark Gap
                                                                ~ Eioctrod os
                                                     /i iia loni za tl on Pro b e s        /(I ii
                                              /'                         ihermocouplos,
                                  ~

l For Flamo Spood bROPS!~ M EAsuk lNQ PEVlcC I Moasurom ants I I O" nromolor x~ Lnnnth I I I Drain FIGURE 5-1 EXPERIMENTAL ARRANGEMENT OF FOGGING TESTS

References:

(1) Liu D. D. S., et al, "Some Results of WNRE Experiments on

   - Hydrogen Combustion," Water Reactor Safety Workshop on the Impact of Hydrogen, Albuquerque,   New  Mexico, January 1.981.

(2) Hertzbert, M., "Flammability Limits and Pressure Development in H2-Air Mixtures," U. S. Bureau of Mines, PRC Report No. 4305,. January 1981.

DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACHMENT NO. 6 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL

I 6.0 Core Coolin Ca abilit Subse uent to H dro en Combustion 6.1 'ntroduction The write-up below addresses the existing components necessary to achieve and maintain a safe shutdown condition subsequent to a reactor trip and to maintain a safe shutdown condition and contain-ment integrity via adequate hydrogen control during and after a hypothetical degraded core cooling event. I 6.2 Safe Shutdown The three primary functions to be performed in order to achieve and maintain a safe shutdown condition subsequent to a reactor trip are: (1) circulation of reactor coolant (2) residual heat removal (3) control of RCS pressure

           'he       methods 6y which. each. o$ these      functions   can   be'erformed,.-,

and the necessary equipment located inside containment, are discussed below. 6.2.1 - Circulation of Reactor Coolant Circulation of reactor coolant is provided by natural circulation with the reactor core serving as the heat source and the steam generators serving as the heat sink. Water is provided to the steam generators via the safety-grade Auxiliary Feedwater System (AFS) or, if offsite power is available and sufficient steam is available, via the normal feedwater system.

               . The AFS can be     aligned to take suction from the Essential Service Water Syst'm, which i                              itself,takes  suction from Lake

Michigan, thus assuring a virtually limitless supply of cooling water for the steam generators. Steam release paths include turbine bypass (if offsite power is available) using the main condenser, the main steam safety valves, and the main steam power operated relief valves. Those portions of the reactor coolant system, main feed-water system, auxiliary feedwater system, and main steam system inside containment contain no active components required to operate to assure coolant circulation and operation of said systems wo'ul'.d not be .adversel'y -affected'y;"a hydrogen combustion environment. The equipment located inside containment needed to . assure adequate reactor coolant circulation is listed below. The susceptibility of this equipment to a hydrogen combustion environment and the effects of such an environment on equipment operation are addressed in Attachment Nos. 3 and 4 of this submittal, respectively.

l. Steam Generator Narrow-Range Level Monitors
2. Pressurizer Water Level Monitors
3. Pressurizer Pressure Monitors
4. Loop RTDs
5. Core Exit Thermocouples
6. RCS Wide Range Pressure Monitors

1 6.2.2 Residual Heat Removal Residual heat is removed via the steam generators utilizing the methods and equipment described in 6.2.1 above. For the same reasons set forth in 6.2.1, this function is not adversely affected by a hydrogen combustion environment. 6.2.3 RCS Pressure Control Subsequent to a reactor trip, RCS pressure is maintained utilizing the '.natural circulation'quipment described above, with the pressurizer (PZR) safety valves serving as high pressure protection. The PZR safety valves are self contained, spring loaded valves and would not be adversely affected by a hydrogen combustion environment. A second aspect of RCS pressure maintenance deals with isolation of the various branch lines attached .to the RCS. Each of these potential leakage paths, including the method of isolation, is discussed below. (1) Pressurizer Power 0 crated Relief Valves PORVs Each PORV is normally closed and i.s designed to fail closed upon loss of air or loss of power. In addition, a block valve is located upstream of each PORV to assure RCS isolation in the event that PORV leakage were to develop.

(2) Letdown Line Letdown isolation is provided by three parallel fail-closed air operated valves located inside contain-ment and a fail-'closed air operated valve outside containment. These valves will automatically close on a sa fety in j ecti on si gnal . (3) Excess Letdown/Seal Mater In 'ection Flow from the excess letdown heat exchanger is directed. to the reactor coolant pump seal water return line (connection inside containment) which is isolated by two motor operated valves in series, one inside reactor containment and one outside containment. These valves will automatically close on a safety injection signal. (4) Residual Heat Removal RHR Letdown'he RHR letdown line is isolated by two normally closed motor operated valves in series located inside reactor containment. Both valves are interlocked with RCS wide-range pressure to automatically close on increasing pressure above 600 psig and cannot be opened until RCS pressure has decreased below 426 psig. In addition, the valve control switches are administratively key locked closed'in the main control room during power operation.

(5) Reactor Vessel Head Vent The reactor vessel head vent system consists of two

                         -.redundant   parallel paths,     each path   containing two normally closed, solenoid actuated valves in series for isolation.      These valves are designed      to  fail  closed upon loss    of power.

6.3 H dro en Control E ui ment Operation of the containment air recirculation/hydrogen

       .:skimmer (CAR/HYS) fans and the DIS             in conjunction with the containment spray system (CTS) further assures             the combustion of'lean hydrogen mixtures without posing           a  threat to the containment structure via overpressurization.          The   portion of the   CTS  inside containment
      .xontains       no  active components       and hence CTS   operation is not adversely
affected by a hydrogen combustion environment. The active components inside containment used for hydrogen control are the CAR/HYS fans
     -,and the DIS.          The   electrical    hydrogen recombiners would be used to
       'remove residual hydrogen            (less than   4 volume  percent) from the
        .containment subsequent         to   DIS  operation.
6. 4 ECCS Injection Subse uent to Combustion
An evaluation has been made to verify ECCS injection capability subsequent to hydrogen combustion inside containment. The results o'f this evaluation indicated that high-head safety injection (SI)

(charging pumps) flow path via the BIT and the intermediate/low head

       'SI (SI and       RHR  pumps)   flow path to the     RCS  cold legs   will be   unaffected

by hydrogen combustion. These flow paths contain motor operated valves inside containment. These valves receive a signal to open on a SI signal despite the fact they are normally in the open position, thus providing further assurance of ECCS injection capability. No mechanism has been identified whereby the environment associated with hydrogen combustion would result in closure of these valves. With the refueling water storage tank (RWST) available, twelve weight percent boric acid can be delivered to the RCS by aligning the suction of the charging pumps to the RWST and aligning the pump(s) discharge to the boron injection tank (BIT). A second flow path involves alignment of the charging pump suction to the discharge of the boric acid transfer pumps, which are themselves aligned to take suction from the boric acid tanks with the discharge of the charging pumps again aligned to the BIT. Neither of the above described flow paths utilize components (eg. valves) inside containment which are required to change position/function in a hydrogen burn environment. In the event that the contents of the RWST had already been injected coolant injection is achieved by aligning the charging pump(s) suction to the discharge of the residual heat removal (RHR) pump(s); with the RHR pump(s) taking suction from the containment recirculation sump. This third flow path does not utilize any active components inside containment which are susceptible to a hydrogen combustion environment.

The subject valves are fully qualified for post-accident

 .use inside containment (LOCA/MSLB    qualification). In addition,
  ;the analyses  described in Attachment No. 4  to this report clearly show that the environmental conditions associated with hydrogen
 .combustion are less severe than the environment to.which they have
been qualified; thus assuring maintenance of the aforementioned
  .flow paths. The normally closed motor operated valves in the intermediate/low  head SI flow path have also    been  qualified for use
  -in a LOCA/NSLB environment and would be expected      to remain in operation
subsequent to hydrogen combustion; thus providing another ECCS injection path.

DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 AND 2 ATTACHMENT NO. 7 TO AEP:NRC:00500A SECOND QUARTERLY REPORT ON HYDROGEN MITIGATION AND CONTROL

                ~

7.0

 ~
             ~

Preliminar Safet Evaluation Indiana 5 Michigan Electric Co. ( IQ1ECo.) has decided to install a Distributed Ignition System (DIS) in the Donald C. Cook Nuclear Plant Unit Nos. 1 and 2. The DIS in conjunction with operation of existing safety-related equipment provides additional hydrogen control capability in the extremely unlikely event of a degraded core event similar in nature to the TMI-2 accident involving the generation of substantive amounts of hydrogen. The DIS, described in detail in Attachment No. 2 of this report, is designed to assure combustion of lean hydrogen/air/steam mixtures and hence will minimize the pressure and temperature transients associated with hydrogen combustion. Conservative analyses of the containment response have previously been submitted via our first quarterly report (AEP:NRC:00500). The results of these analyses indicate that deliberate ignition of lean hydrogen mixtures using the DIS will result in pressures below the ultimate strength of the Cook Plant containments. The effects of a hydrogen combustion environment on necessary equipment located inside containment has been evaluated and the results of this evaluation presented in Attachment No. 4 of this report. It is clear from our evaluation that the temperature effects oF deliberate hydrogen combustion are less severe than those to which most of the necessary equipment has been qualified (LOCA/MSLB qualification). It has also been shown that the ability to inject emergency core cooling water is not affected by hydrogen combustion.

The extensive plant modifications and enhanced operator training implemented subsequently to the TNI-2 accident have effectively reduced the already low probability of occurrence of events which could result in the generation of substantive amounts of hydrogen at the Cook Plant'. The DIS, in conjunction with existing plant equipment>will provide an additional level of mitigation capability for hypothetical events well beyond the design basis of the Cook Units, further enhancing the defense-in-depth .philosophy. Installation of the DIS provides further assurance that operation of the Cook Plant will in no way adversely effect the health and safety of the general public.

ah 4}}