ML17215A306: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:'DESIGNFEATURESVOLUME5.4.2Thetotalwaterandsteamvolumeofthereactorcoolantsystemisl0,93I+275cubicfeetatanominalTavgof572oF.5.5METEOROLOGICALTOWERLOCATION5.5.IThemeteorologicaltowershallbelocatedasshownonFigureS.l-I.5.6FUELSTORAGECRITICALITY5.6.IThespentfuelstorageracksaredesignedandshallbemaintainedwith:a.Akeffequivalenttolessthanorequalto0.95whenfloodedwithunboratedwater,whichincludesaconservativeallowanceof0.024hkeffforTotalUncertainty.b.Anominal8.96inchcenter-to-centerdistancebetweenfuelassembliesplacedinthestorageracks.c.AboronconcentrationgreaterthanorequaltoI720ppm.RegionIcanbeusedtostorefuelwhichhasaU-235enrichmentlessthanorequalto4.5%.RegionIIcanbeusedtostorefuelwhichhasachievedsufficientburnupsuchthatstorageinRegionIisnotrequired.iyIDRAINAGE5.6.2Thespentfuelstoragepoolisdesignedandshallbemaintainedtopreventinadvertentdrainingofthepoolbelowelevation56feet.CAPACITY5.6.3Thespentfuelstoragepoolisdesignedandshallbemaintainedwithastorage!capacitylimitedtonomorethanII88fuelassemblies.5.7COMPONENTCYCLICORTRANSIENTLIMITS5.7.IThecomponentsidentifiedinTable5.7-IaredesignedandshallbemaintainedwithinthecyclicortransientlimitsofTable5.7-1.ST.LUCIE-UNIT2AmendmentNo.84031902288403i3PDRADOCK05000389>pPDR  
{{#Wiki_filter:'DESIGNFEATURESVOLUME5.4.2Thetotalwaterandsteamvolumeofthereactorcoolantsystemisl0,93I+275cubicfeetatanominalTavgof572oF.5.5METEOROLOGICAL TOWERLOCATION5.5.IThemeteorological towershallbelocatedasshownonFigureS.l-I.5.6FUELSTORAGECRITICALITY 5.6.IThespentfuelstorageracksaredesignedandshallbemaintained with:a.Akeffequivalent tolessthanorequalto0.95whenfloodedwithunborated water,whichincludesaconservative allowance of0.024hkeffforTotalUncertainty.
b.Anominal8.96inchcenter-to-center distancebetweenfuelassemblies placedinthestorageracks.c.Aboronconcentration greaterthanorequaltoI720ppm.RegionIcanbeusedtostorefuelwhichhasaU-235enrichment lessthanorequalto4.5%.RegionIIcanbeusedtostorefuelwhichhasachievedsufficient burnupsuchthatstorageinRegionIisnotrequired.
iyIDRAINAGE5.6.2Thespentfuelstoragepoolisdesignedandshallbemaintained topreventinadvertent drainingofthepoolbelowelevation 56feet.CAPACITY5.6.3Thespentfuelstoragepoolisdesignedandshallbemaintained withastorage!capacitylimitedtonomorethanII88fuelassemblies.
5.7COMPONENT CYCLICORTRANSIENT LIMITS5.7.IThecomponents identifiedinTable5.7-Iaredesignedandshallbemaintained withinthecyclicortransient limitsofTable5.7-1.ST.LUCIE-UNIT2Amendment No.8403190228 8403i3PDRADOCK05000389>pPDR  


NoSinificantHazardsConsiderationFloridaPowerandLightCompany(FPL)hasdeterminedthattheproposedamendmentinvolvesnosignificanthazardsconsiderations,focusingonthethreestandardssetforthinIOCFR50.92(c)asquotedbelow:TheCommissionmaymakeafinaldetermination,pursuanttotheproceduresin50.9I,thataproposedamendmenttoonoperatinglicenseforafacilitylicensedunder50.2l(b)or50.22orforatestingfacilityinvolvesnosignificanthazardsconsiderations,ifoperationofthefacilityinaccordancewiththeproposedamendmentwouldnot:I.Involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated;or2.Createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated;or3.Involveasignificantreductioninamarginofsafety.FPLhasdeterminedthattheactivitiesassociatedwiththisamendmentrequestdonotmeetanyofthesignificanthazardsconsiderationstandardsofIOCFR50.92(c)and,accordingly,anosignificanthazardsconsiderationfindingisjustified.Insupportofthisdetermination,thefollowingbackgroundinformationisprovided,followedbyadiscussionofeachoftheabovethreesignificanthazardsconsiderationstandards.~BackroundThereisonespentfuelpoolatSt.LucieUnit2.Theexistingrackshave300totalstoragecells,withacenter-to-centerspacingofl4inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-thirdofacoreisstoredinthefuelpool.Withthe300presentlyavailablestoragecells,St.LucieUnit2 I
NoSinificantHazardsConsideration FloridaPowerandLightCompany(FPL)hasdetermined thattheproposedamendment involvesnosignificant hazardsconsiderations, focusingonthethreestandards setforthinIOCFR50.92(c)asquotedbelow:TheCommission maymakeafinaldetermination, pursuanttotheprocedures in50.9I,thataproposedamendment toonoperating licenseforafacilitylicensedunder50.2l(b)or50.22orforatestingfacilityinvolvesnosignificant hazardsconsiderations, ifoperation ofthefacilityinaccordance withtheproposedamendment wouldnot:I.Involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated; or2.Createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated; or3.Involveasignificant reduction inamarginofsafety.FPLhasdetermined thattheactivities associated withthisamendment requestdonotmeetanyofthesignificant hazardsconsideration standards ofIOCFR50.92(c)and,accordingly, anosignificant hazardsconsideration findingisjustified.
wouldlosethefull-corereservestoragecapabilityafterthesecondrefueling,expectedtobeinl986.Therefore,toensurethatsufficientcapacitycontinuestoexistatSt.LucieUnit2,FPLhascontractedwithCombustionEngineering(C-E)fornewspentfuelstoragerackswhosedesignallowsformoredensestorageofspentfuel.ThenewrackshaveanultimatestoragecapacityofII88fuelassemblies,whichwillextendthefull-corereservestoragecapabilityuntill998.Thenewfuelstoragerackswillstorefuelintwodiscreteregionsofthespentfuelpool.RegionIincludessixmoduleshavingatotalof448storagecells.Onlyone-halfofthesecellswillbeavailableforstorageoffuelassemblies.Theunusedcellswillbeprovidedwithcellblockingdevices.The224availablecellsenablestorageoffuelassemblieswithUranium-235enrichmentsupto4.5%,whilemaintainingtherequiredsubcriticality(Keff<0.95).RegionIIincludesthirteenmoduleshavingatotalofII36storagecells,ofwhich852(75%)willbeavailableforstorageoffuelassemblies.Theunusedcellswillactasneutronfluxtraps(tomaintaintherequiredsubcriticality)andwillbeprovidedwithcellblockingdevices.RegionIIwillbeusedtostorefuelwhichhasexperiencedsufficientburnupsuchthatstorageinRegionIisnotrequired.Thenewfuelracksarefabricatedfrom304stainlesssteelwhichisO.I35inchesthick.Eachcellisformedbyweldingalongtheintersectingseamswhichenablestheassembledcells(module)tobecomeafree-standingstructurewhichisseismicallyqualifiedwithoutdependingonneighboringmodulesorfuelpoolwallsforsupport.Thenominalcenter-to-centerspacingofthecellswithinbothRegionIandIIis8.96inches.ThereisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthenewspentfuelracksareinstalled.Therefore,nospecialadministrativecontrolsorprocedureswillbenecessarytoprovideradiation'protection,andtheevaluationofaconstructionaccidentwithrespecttonuclearcriticalityorradioactivity'releaseisnotnecessary.  
Insupportofthisdetermination, thefollowing background information isprovided, followedbyadiscussion ofeachoftheabovethreesignificant hazardsconsideration standards.
~BackroundThereisonespentfuelpoolatSt.LucieUnit2.Theexistingrackshave300totalstoragecells,withacenter-to-center spacingofl4inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-third ofacoreisstoredinthefuelpool.Withthe300presently available storagecells,St.LucieUnit2 I
wouldlosethefull-core reservestoragecapability afterthesecondrefueling, expectedtobeinl986.Therefore, toensurethatsufficient capacitycontinues toexistatSt.LucieUnit2,FPLhascontracted withCombustion Engineering (C-E)fornewspentfuelstoragerackswhosedesignallowsformoredensestorageofspentfuel.ThenewrackshaveanultimatestoragecapacityofII88fuelassemblies, whichwillextendthefull-core reservestoragecapability untill998.Thenewfuelstoragerackswillstorefuelintwodiscreteregionsofthespentfuelpool.RegionIincludessixmoduleshavingatotalof448storagecells.Onlyone-halfofthesecellswillbeavailable forstorageoffuelassemblies.
Theunusedcellswillbeprovidedwithcellblockingdevices.The224available cellsenablestorageoffuelassemblies withUranium-235 enrichments upto4.5%,whilemaintaining therequiredsubcriticality (Keff<0.95).RegionIIincludesthirteenmoduleshavingatotalofII36storagecells,ofwhich852(75%)willbeavailable forstorageoffuelassemblies.
Theunusedcellswillactasneutronfluxtraps(tomaintaintherequiredsubcriticality) andwillbeprovidedwithcellblockingdevices.RegionIIwillbeusedtostorefuelwhichhasexperienced sufficient burnupsuchthatstorageinRegionIisnotrequired.
Thenewfuelracksarefabricated from304stainless steelwhichisO.I35inchesthick.Eachcellisformedbyweldingalongtheintersecting seamswhichenablestheassembled cells(module)tobecomeafree-standing structure whichisseismically qualified withoutdepending onneighboring modulesorfuelpoolwallsforsupport.Thenominalcenter-to-center spacingofthecellswithinbothRegionIandIIis8.96inches.ThereisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthenewspentfuelracksareinstalled.
Therefore, nospecialadministrative controlsorprocedures willbenecessary toprovideradiation
'protection, andtheevaluation ofaconstruction accidentwithrespecttonuclearcriticality orradioactivity'release isnotnecessary.  


EvaluationThefollowingevaluationdemonstrates(withreferencetotheanalysiscontainedintheattachedSafetyAnalysisReport)thattheproposedamendmentinvolvesnosignificanthazardsconsiderations.I.InvolveasinificantincreaseintherobabilitorconseuencesofanaccidentreviousIevaIuated.Theanalysisofthisproposedrerackinghasbeenaccomplishedusingcurrentacceptedcodes,standards,andNRCguidanceasspecifiedinSection4.2oftheattachedSafetyAnalysisReport(SAR).Inthecourseoftheanalysis,FPLidentifiedthefollowingpotentialaccidentscenarios:(I)aspentfuelassemblydropinthespentfuelpool;(2)lossofspentfuelpoolcoolingsystemflow;(3)anextremewindorseismicevent;and(4)aspentfuelcaskdrop.Theoccurrenceoftheseaccidentsisnotaffectedbytheracksthemselves.Thus,theproposedrerackingcannotincreasetheprobabilityoftheseaccidents.Furthermore,thespentfuelrackswillbeinstalledpriortostorageofanyspentfuelinthespentfuelpool.Therefore,thereisnopotentialforanaccidentinvolvingspentfuelduringfuelrockinstallation.Similarly,theanalysisofthepotentialaccidents,summarizedbelow,hasshownthatthereisnosignificantincreaseintheconsequencesofanaccidentpreviouslyanalyzed.Theconsequencesofaspentfuelassemblydrophavebeenevaluatedwithrespecttonuclearcriticality(Section3.IoftheSAR)andwithrespecttoradioactivityrelease(Section5.3oftheSAR).Thepresenceofboroninthespentfuel.poolwaterensuresthattheneutronmultiplicationfactor(keff)remainslessthantheNRCacceptancecriterionof0.95forallaccidentconditions.Theconsequencesofadroppedfuel'ssemblywithrespecttoradioactivity'releasearenotaffected'by.thenewfuelrack.'esignitself.However,theanalysisin'Section5.3ofthisSARincludedmoreconservativeassumptions,relativetothoseinthepreviousFSARanalysis,tobracketfuturechangestofuelmanagement.Asaresult,thepredictedradioactivityreleasesareabout25%largerthanthosereportedpreviously,buttheincreasesarenot~~"significant"'ecausetheresultsareonlyl%ofNRCguidelines.Thus,theconsequencesofthespentfuelassemblydropaccidentwouldnotbesignificantlyincreasedfromthosepreviouslyevaluated.3  
Evaluation Thefollowing evaluation demonstrates (withreference totheanalysiscontained intheattachedSafetyAnalysisReport)thattheproposedamendment involvesnosignificant hazardsconsiderations.
I.Involveasinificantincreaseintherobabilit orconseuencesofanaccidentreviousIevaIuated.Theanalysisofthisproposedreracking hasbeenaccomplished usingcurrentacceptedcodes,standards, andNRCguidanceasspecified inSection4.2oftheattachedSafetyAnalysisReport(SAR).Inthecourseoftheanalysis, FPLidentified thefollowing potential accidentscenarios:
(I)aspentfuelassemblydropinthespentfuelpool;(2)lossofspentfuelpoolcoolingsystemflow;(3)anextremewindorseismicevent;and(4)aspentfuelcaskdrop.Theoccurrence oftheseaccidents isnotaffectedbytheracksthemselves.
Thus,theproposedreracking cannotincreasetheprobability oftheseaccidents.
Furthermore, thespentfuelrackswillbeinstalled priortostorageofanyspentfuelinthespentfuelpool.Therefore, thereisnopotential foranaccidentinvolving spentfuelduringfuelrockinstallation.
Similarly, theanalysisofthepotential accidents, summarized below,hasshownthatthereisnosignificant increaseintheconsequences ofanaccidentpreviously analyzed.
Theconsequences ofaspentfuelassemblydrophavebeenevaluated withrespecttonuclearcriticality (Section3.IoftheSAR)andwithrespecttoradioactivity release(Section5.3oftheSAR).Thepresenceofboroninthespentfuel.poolwaterensuresthattheneutronmultiplication factor(keff)remainslessthantheNRCacceptance criterion of0.95forallaccidentconditions.
Theconsequences ofadroppedfuel'ssemblywithrespecttoradioactivity'release arenotaffected'by.
thenewfuelrack.'esign itself.However,theanalysisin'Section5.3ofthisSARincludedmoreconservative assumptions, relativetothoseinthepreviousFSARanalysis, tobracketfuturechangestofuelmanagement.
Asaresult,thepredicted radioactivity releasesareabout25%largerthanthosereportedpreviously, buttheincreases arenot~~"significant"
'ecausetheresultsareonlyl%ofNRCguidelines.
Thus,theconsequences ofthespentfuelassemblydropaccidentwouldnotbesignificantly increased fromthosepreviously evaluated.
3  


TotallossofspentfuelpoolcoolingflowhasbeenevaluatedandisreportedinSection3.2oftheattachedSAR.AsindicatedinSection3.2,morethan30hoursareavailabletorestorecoolingflowortoprovideanalternatemeansforcoolingbeforepoolboilingresultsinawaterlevellessthanthatwhichisneededtomaintainacceptableradiationdoselevels.Also,theanalysishasshownthatfuelcladdingintegrityismaintained.Thus,theconsequencesofthistypeaccident'wouldnotbesignificantlyincreasedfromthepreviouslyevaluatedlossofcoolingsystemflowaccident.TheconsequencesofaseismiceventhavebeenevaluatedandaresummarizedinSection4;3oftheattachedSAR.ThenewracksaretobedesignedandfabricatedtomeettheguidanceofapplicableportionsoftheNRCRegulatoryGuidesandcodesandstandardslistedinSection4.2oftheSAR.ThemaximumstresseswithinthefuelrackswillbewithinthecriteriaspecifiedinSection4.4ofthisSAR.Also,movementanddeflectionofthefuelrackmodulesdoesnotresultincontactwithneighboringrack'modulesorthefuelpool-walls.Thefloorloadingfromthenewracksfilledwithspentfuelassembliesdoesnotexceedthestructuralcapacityofthefuelhandlingbuilding.AsindicatedinSection4.IoftheSAR,thefuelhandlingbuildingwalls,floors,andpartitionsaredesignedtowithstandhurricaneandtornadowinds;theprotectionfromtheseextremewindsisnotaffectedbythenewfuelrackdesign.Thus,theconsequencesofanextremewindorseismiceventwouldnotbesignificantlyincreasedfrompreviouslyevaluatedevents.TheconsequencesofaspentfuelcaskdropoutsidetheFuelHandlingBuildinghasbeenevaluatedandarereportedinSection5.3ofthisSAR.AsstatedinSection5.3,thespentfuelcaskispreventedfromdroppingontothespentfuelpoolracksbydesignofthefuelhandlingbuildingandoverheadcrane.Therefore,theconsequencesofthespentfuelcaskdroparenotaffectedbythenewfuelrackdesign.TheanalysisinSection5.3.includesmoreconservativeassumptions,relativetothoseinthepreviousFSARanalysis,tobracketfuturechangestofuelmanagement.Asaresult,thepre'dietedradioactivityrelease's'areabout25%la'rgerthanthosereportedpieviously,buttheincreasesarenot"significant"becausetheresultsareonly8%ofNRCguidelines.Thus,theconsequencesofacaskdropaccidentwouldnotbesignificantlyincreasedfrompreviouslyevaluatedaccidentanalysis.
Totallossofspentfuelpoolcoolingflowhasbeenevaluated andisreportedinSection3.2oftheattachedSAR.Asindicated inSection3.2,morethan30hoursareavailable torestorecoolingflowortoprovideanalternate meansforcoolingbeforepoolboilingresultsinawaterlevellessthanthatwhichisneededtomaintainacceptable radiation doselevels.Also,theanalysishasshownthatfuelcladdingintegrity ismaintained.
Itisconcludedthattheproposedamendmenttorerackthespentfuelpoolswillnotinvolveasignificantincreaseintheprobabilityorconsequencesofan'accidentpreviouslyevaluated.2-Createtheossibilitofanewordifferentkindofaccidentfromanaccidentreviouslevaluated.FPLhasevaluatedtheproposedrerackiriginaccordancewiththeguidanceoftheNRCpositionpaperentitled"ReviewandAcceptanceofSpentFuelStorageandHandlingApplications",appropriateNRCRegulatoryGuides,appropriateNRCStandardReviewPlans,andappropriateIndustryCodesandStandardsaslistedinSection4.2oftheattachedSAR.Inaddition,FPLhasreviewedseveralpreviousNRCSafetyEvaluationReportsforrerackapplicationssimilartothisproposal.Asaresultofthisevaluationandthesereviews,FPLfindsthattheproposedrerackingdoesnot,inanyway,createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluatedforthe.SpentFuelPoolorFuelHandlingBuilding.3.,Involveasinificantreductioninamarinofsafet.TheNRCStaffsafetyevaluationreviewprocesshasestablishedthattheissueofmarginofsafety,whenappliedtoarerackingmodification,willneedtoaddressthefoltowingareas:2.3.NuclearcriticalityconsiderationsThermal-HydraulicconsiderationsMechanical,materialandstructuraIconsiderationsTheestablishedacceptancecriterionforcriticalityisthattheneutronmultiplicationfactor(keff)inspentfuelpoolsshallbelessthanorequalto0.95,includingall'uncertainties,underallconditions.'This'marginofsafety'hasbeenadheredtointhecriticalityanalysismethodsforthenewrackde'signasdiscussedinSection3.IoftheattachedSAR.Thatis,keffisalwayslessthan0.95,includinguncertaintiesatthe95/95probabilityandconfidencelevel.Inmeetingtheacceptancecriteriaforcriticalityinthespentfuelpool,theproposedamendmenttorerackthespentfuelpoolsdoesnotinvolveasignificantreductioninthemarginofsafetyfornuclearcriticality.5  
Thus,theconsequences ofthistypeaccident'wouldnotbesignificantly increased fromthepreviously evaluated lossofcoolingsystemflowaccident.
Theconsequences ofaseismiceventhavebeenevaluated andaresummarized inSection4;3oftheattachedSAR.Thenewracksaretobedesignedandfabricated tomeettheguidanceofapplicable portionsoftheNRCRegulatory Guidesandcodesandstandards listedinSection4.2oftheSAR.Themaximumstresseswithinthefuelrackswillbewithinthecriteriaspecified inSection4.4ofthisSAR.Also,movementanddeflection ofthefuelrackmodulesdoesnotresultincontactwithneighboring rack'modulesorthefuelpool-walls.
Thefloorloadingfromthenewracksfilledwithspentfuelassemblies doesnotexceedthestructural capacityofthefuelhandlingbuilding.
Asindicated inSection4.IoftheSAR,thefuelhandlingbuildingwalls,floors,andpartitions aredesignedtowithstand hurricane andtornadowinds;theprotection fromtheseextremewindsisnotaffectedbythenewfuelrackdesign.Thus,theconsequences ofanextremewindorseismiceventwouldnotbesignificantly increased frompreviously evaluated events.Theconsequences ofaspentfuelcaskdropoutsidetheFuelHandlingBuildinghasbeenevaluated andarereportedinSection5.3ofthisSAR.AsstatedinSection5.3,thespentfuelcaskisprevented fromdroppingontothespentfuelpoolracksbydesignofthefuelhandlingbuildingandoverheadcrane.Therefore, theconsequences ofthespentfuelcaskdroparenotaffectedbythenewfuelrackdesign.TheanalysisinSection5.3.includesmoreconservative assumptions, relativetothoseinthepreviousFSARanalysis, tobracketfuturechangestofuelmanagement.
Asaresult,thepre'dieted radioactivity release's'are about25%la'rgerthanthosereportedpieviously, buttheincreases arenot"significant" becausetheresultsareonly8%ofNRCguidelines.
Thus,theconsequences ofacaskdropaccidentwouldnotbesignificantly increased frompreviously evaluated accidentanalysis.
Itisconcluded thattheproposedamendment torerackthespentfuelpoolswillnotinvolveasignificant increaseintheprobability orconsequences ofan'accident previously evaluated.
2-Createtheossibilit ofanewordifferent kindofaccidentfromanaccidentreviouslevaluated.
FPLhasevaluated theproposedrerackirig inaccordance withtheguidanceoftheNRCpositionpaperentitled"ReviewandAcceptance ofSpentFuelStorageandHandlingApplications",
appropriate NRCRegulatory Guides,appropriate NRCStandardReviewPlans,andappropriate IndustryCodesandStandards aslistedinSection4.2oftheattachedSAR.Inaddition, FPLhasreviewedseveralpreviousNRCSafetyEvaluation Reportsforrerackapplications similartothisproposal.
Asaresultofthisevaluation andthesereviews,FPLfindsthattheproposedreracking doesnot,inanyway,createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated forthe.SpentFuelPoolorFuelHandlingBuilding.
3.,Involveasinificantreduction inamarinofsafet.TheNRCStaffsafetyevaluation reviewprocesshasestablished thattheissueofmarginofsafety,whenappliedtoareracking modification, willneedtoaddressthefoltowingareas:2.3.Nuclearcriticality considerations Thermal-Hydraulic considerations Mechanical, materialandstructura Iconsiderations Theestablished acceptance criterion forcriticality isthattheneutronmultiplication factor(keff)inspentfuelpoolsshallbelessthanorequalto0.95,including all'uncertainties, underallconditions.
'This'margin ofsafety'has beenadheredtointhecriticality analysismethodsforthenewrackde'signasdiscussed inSection3.IoftheattachedSAR.Thatis,keffisalwayslessthan0.95,including uncertainties atthe95/95probability andconfidence level.Inmeetingtheacceptance criteriaforcriticality inthespentfuelpool,theproposedamendment torerackthespentfuelpoolsdoesnotinvolveasignificant reduction inthemarginofsafetyfornuclearcriticality.
5  


Conservativemethodswereusedtocalculatetheincreaseintemperatureofthewaterinthespentfuelpoolanddemonstratemaintenanceoffuelcladdingintegrity.ThisevaluationusesthemethodsdescribedinSection3.2oftheSARindemonstratingthatthemarginsofsafetyaremaintained.Theproposedrerackingallowsanincreaseintheheatloadinthespentfuelpool;theevaluationshowsthattheexistingspentfuelcoolingsystem,undernormalconditions,willmaintainthepooltemperaturebelowthedesignbasislimit,assumingthemaximumheatloadinthepool.Sincethedesignbasislimitismet,thereisnotasignificantreductioninthemarginofsafety.Also,themaximumfuelcladdingtemperature,assumingtotallossoffuelpoolcooling,wouldremainbelow275F,ensuringmaintenanceoffuelcladdingintegrity.Thus,thereisnosignificantreductioninthemarginofsafetyfromathermal-hydraulicorspentfuelcoolingconcern.Themainsafetyfunctionofthespentfuelpoolandtheracksistomaintainthespentfuelassembliesinasafeconfigurationthrough'llenvironmentsandabnormalloadings,suchasanearthquake,dropofaspentfuelassembly,ordropofanyotherobjectduringroutinespentfuelhandling.Themechanical,material,andstructuralconsiderationsoftheproposedrerackaredescribedinSection4oftheattachedSAR.TheanalysisofSection4hasshownthatallcriteriaforfuelrackmovement,stresses,floorloadings,etc.,aremetandthatmarginsofsafetyarenotsignificantlyreduced.lnsummation,ithasbeenshownthattheproposedspentfuelstoragefacilitymodificationsandproposedTechnicalSpecificationsdonot:2.3.Involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated;orCreatethepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated;orInvolveasignificantreductioninamarginofsafety.Therefore,FPLhasdeterminedthattheproposedamendmentinvolvesnosignificanthazardsconsiderations.
Conservative methodswereusedtocalculate theincreaseintemperature ofthewaterinthespentfuelpoolanddemonstrate maintenance offuelcladdingintegrity.
Thisevaluation usesthemethodsdescribed inSection3.2oftheSARindemonstrating thatthemarginsofsafetyaremaintained.
Theproposedreracking allowsanincreaseintheheatloadinthespentfuelpool;theevaluation showsthattheexistingspentfuelcoolingsystem,undernormalconditions, willmaintainthepooltemperature belowthedesignbasislimit,assumingthemaximumheatloadinthepool.Sincethedesignbasislimitismet,thereisnotasignificant reduction inthemarginofsafety.Also,themaximumfuelcladdingtemperature, assumingtotallossoffuelpoolcooling,wouldremainbelow275F,ensuringmaintenance offuelcladdingintegrity.
Thus,thereisnosignificant reduction inthemarginofsafetyfromathermal-hydraulic orspentfuelcoolingconcern.Themainsafetyfunctionofthespentfuelpoolandtheracksistomaintainthespentfuelassemblies inasafeconfiguration through'll environments andabnormalloadings, suchasanearthquake, dropofaspentfuelassembly, ordropofanyotherobjectduringroutinespentfuelhandling.
Themechanical,
: material, andstructural considerations oftheproposedrerackaredescribed inSection4oftheattachedSAR.TheanalysisofSection4hasshownthatallcriteriaforfuelrackmovement,
: stresses, floorloadings, etc.,aremetandthatmarginsofsafetyarenotsignificantly reduced.lnsummation, ithasbeenshownthattheproposedspentfuelstoragefacilitymodifications andproposedTechnical Specifications donot:2.3.Involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated; orCreatethepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated; orInvolveasignificant reduction inamarginofsafety.Therefore, FPLhasdetermined thattheproposedamendment involvesnosignificant hazardsconsiderations.
SPENTFUELPOOLRERACKSAFETYANALYSISREPORT TAB"EOFCONTENTS~Pae
SPENTFUELPOOLRERACKSAFETYANALYSISREPORT TAB"EOFCONTENTS~Pae


==1.0INTRODUCTION==
==1.0INTRODUCTION==
1.1LicenseAmendmentRequested1.2CurrentStatus1.3InterfaceswithOtherOrganizations1.4SummaryofReport1.5Conclusions2.0SUMMARYOFSPENTFUELRACKDESIGN3.0NUCLEARANDTHERMAL-HYDRAULICCONSIDERATIONS3.1NeutronMultiplicationFactor3.1.1NormalStorage3.1.2PostulatedAccidents3.1.3CalculationMethods3.1.4FuelRackModification3.1.5AcceptanceCriterionforCriticality3.2DecayHeatCalculationsfortheSpentFuelPool(Bulk)3.2.1DesignBases3.2.2SystemDescription3.2.3SafetyEvaluation3.3PotentialFuelandRackHandlingAccidents3.4TechnicalSpecifications3.5References4.0MECHANICAL,MATERIAL,ANDSTRUCTURALCONSIDERATIONS1-21-21-21-32-13-13-13-13-23-23-43-4'-43-43-63-63-103-103-114-14.14.24.34.44.54.64.7DescriptionofStructure4.1.1DescriptionofFuelHandlingBuilding4.1.2DescriptionofSpentFuelRacksApplicableCodes,Standards,andSpecificationsSeismicandImpactLoadsLoadsandLoadCombinationsDesignandAnalysisProcedures4.5;1MethodologySumma'ry4.5.2ComputerCodeDescriptionsStructuralAcceptanceCriteriaMaterials,equalityControl,andSpecialConstructionTechniques4.7.1Materials4.7.2equalityControl4.7.3ConstructionTechniques4-14-14-14'-44-64-74-74-7.4-94-114-124-124-124-13 TABLEOFCONTENTS~Pae4.8TestingandIn-ServiceSurveillance4.9,References5.0COST/BENEFITASSESSMENTANDENVIRONMENTALIMPACT5.1Cost/BenefitAssessment5.1.1NeedforIncreasedStorageCapacity5.1.2ConstructionCosts5.1.3ConsiderationofAlternatives5.1.4ResourcesCommitted5.1.5ThermalImpactontheEnvironment5.2RadiologicalEvaluation5.2.1SolidRadwaste5.2.2GaseousRadwaste5.2.3PersonnelExposure5.2.4RackDisposal5.3AccidentEvaluation5.3.1SpentFuelHandlingAccidents5.3.2Acceptability5.3.3FuelDecay5.3.4LoadsOverSpentFuel5.3.5Conclusions4-134-135-15-15-15-25-25-35-35-45-45-45-55-75-75-75-135-135-145-14


LISTOFTABLESTable~Pae5-15-2EstimatedSpentFuelPoolCapacityRequirementsReplacementCostforSt.LucieUnit25-165-175-3GammaIsotopicAnalysisforSt.LucieUnit15-4SpentFuelCaskDropAccidentAssumptions5-5SpentFuelCaskDropAccidentReleases5-225-65-7SpentFuelCaskDropOffsiteDosesFuelHandlingAccidentAssumptions5-235-245-8FuelHandlingAccidentReleases5-265-9FuelHandlingAccidentOffsiteDoses5-27 LISTOFFIGURES~FiereTitle~Pae3-1SpentFuelRackModuleforRegionI3-123-2SpentFuelRackModuleforRegionII3-133-3St.LucieUnit2SpentFuelStorageRackCriticalityvs.BurnupforFuelAssembliesinRegionII3-143-4SpentFuelStorageRackInitialEnrichmentvs.BurnupforFuelAssembliesinRegionII3-154-1TypicalSpentFuelStorageRackModule4-15.4-2TypicalSpentFuelRackModuleL-Insert4-164-3SpentFuelStorageModuleInstallation4-1744SpentfuelStorageModule4-184-5L-Inserts'-194-6SAPIVComputerCodeMembraneStressesandBendingMoments4-20 INTRODUCTIONLICENSEAMENDMENTREQUESTEDFloridaPower5Light(FPL)hascontractedforthepurchaseofnewspentfuelstoragerackstobeplacedintothespentfuelpoolofSt.LucieUnit2.Thesenewracksincreasetheamountofspentfuelthatcanbestoredintheexistingspentfuelpool.ThisSafetyAnalysisReportsupportsthisrequestforalicenseamendmenttotheSt.LucieUnit2FacilityOperatingLicenseNPF-16forthetechnicalspecificationrevisionsrequiredasaresultofinstallationanduseofthenewspentfuelstorageracks.CURRENTSTATUSThereisonespentfuelpoolatSt.LucieUnit2.Theexistingracksinthepoolhave300totalstoragecells,withacenter-to-centerspacingof14inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-thirdofacoreisstoredinthefuelpool.PertheFSAR,Section9.1,additionalstorageracksofthesamedesignmaybeinstalledtobringtotalcapacity,to675spentfuelassemblies(approximatelythreefullcores).Withthe300presentlyavailablestoragecells,St.LucieUnit2wouldlosethefull-corereservestoragecapabilityafterthesecondrefueling,expectedtobein1986;withadditionalracks,uptothemaximumof675,thecapabilitywouldbelostin1992.Therefore,toensurethatsufficientcapacitycontinuestoexistatSt.LucieUnit2tostoredischarged'fuelassemblies,FPLhasdecidedtoremovethepresentracksandhascontractedwithCombus-tionEngineering(C-E)fornewspentfuelstoragerackswhosedesign(MAXCAP&#x17d;)allowsformoredensestorageofspentfuel.Thenewrackshaveausablestoragecapacityof1076cells,extendingthefull-core-reservestoragecapabilityuntil1998.
1.1LicenseAmendment Requested 1.2CurrentStatus1.3Interfaces withOtherOrganizations 1.4SummaryofReport1.5Conclusions 2.0SUMMARYOFSPENTFUELRACKDESIGN3.0NUCLEARANDTHERMAL-HYDRAULIC CONSIDERATIONS 3.1NeutronMultiplication Factor3.1.1NormalStorage3.1.2Postulated Accidents 3.1.3Calculation Methods3.1.4FuelRackModification 3.1.5Acceptance Criterion forCriticality 3.2DecayHeatCalculations fortheSpentFuelPool(Bulk)3.2.1DesignBases3.2.2SystemDescription 3.2.3SafetyEvaluation 3.3Potential FuelandRackHandlingAccidents 3.4Technical Specifications 3.5References 4.0MECHANICAL,
Furtherreferenceswithinthisreporttothe"spentfuelracks"refertothenewdesign.Thedetailsofhowthespentfuelrack'esignmeetsthedesignrequirementsisprovidedinthisreport.INTERFACESWITHOTHERORGANIZATIONSFP8Lhasoverallresponsibilityforthismodification.C-Eisresponsibleforthedesignandfabricationofthenewspentfuelstorageracksandengineeringassistanceinreviewingthespentfuelpoolcoolingsystem.EbascoServices,Inc.isresponsibleforreviewingbuildingstructuralanalysisandaccidentevaluation.SUMMARYOFREPORTThisreportfollowstheguidanceoftheNRCpositionpaperentitled"ReviewandAcceptanceofSpentFuelStorageandHandlingApplica-tions",April1978,asamendedbyNRCletterdatedJanuary18,1979.Section2.0presentsasummaryofthespentfuelrackdesign.Sections3.0through5.0ofthisreportareconsistentwiththesection/subsectioncontent'ftheaboveNRCpositionpaper,SectionsIIIthroughV.Thisreportcontainsthenuclear,thermal-hydraulic,mechanical,material,structural,andradiologicaldesigncriteriaforthefuelracks.Thenuclearandthermal-hydraulicaspectsofthisreport(Section3.0)addresstheneutronmultiplicationfactor,consideringnormal.storageandhandlingofspentfuelaswellaspostulatedaccidents,withrespecttocriticalityandtheabi1'ityofthespentfuelpoolcoolingsystemtomaintainsufficientcooling.Mechanical,material,andstructuralaspects(Section4.0)involvethecapabilityofthefuelassemblies,storageracks,andspentfuelpoolsystemtowithstandeffectsofnaturalphenomenaandotherserviceloadingconditions.1-2 Theenvironmentalaspectsofthereport(Section5.0)concernthethermalandradiologicalreleasefromthefacilityundernormalandaccidentconditions.Thissectionalsoaddressestheoccupationalradiationexposures,generationofradioactivewaste,needforexpansion,commitmentofmaterialandnon-materialresources,andacost-benefitassessment.CONCLUSIONSOnthebasisoftheevaluationsandinformationpresentedinthisreport,plusoperatingexperiencewithhighdensityfuelstorageatSt.LucieUnit1,FP&LconcludesthattheproposedmodificationofSt.LucieUnit2spentfuelstoragefacilitiesprovidessafespentfuelstorage,andthatthemodificationisconsistentwiththefacilitydesignandoperatingcriteriaasprovidedintheFSARandoperatinglicense.1-3 SUMMARYOFSPENTFUELRACKDESIGNThespentfuelracksaredesignedtostorethe14x14designfuelfromSt.LucieUnit1andthe16x16fuelfromSt.LucieUnit2.Theserackshaveaninitialcapacitytostoreatotalof1076fuelassembliesintworegionsofthespentfuelpool.ByexpansionofRegionIIintoRegionI,thespentfuelrackshaveanultimatestoragecapacityof1188fuelassemblies.RegionIinitiallycontainsfour7xl1modulesandtwo7x10modules,i.e.,sixmoduleswith448storagecells.Onlyone-halfofthesecellswillbeavailableforstorageoffuelassemblies.Theunusedcellswillbeprovidedwithblockingdevices.Allcellscontain"L"insertswhicharestainlesssteelneutronabsorbers(seeFigure4-2).The224availablecellsenablestorageoffuelassemblies.withUranium-235enrichmentsupto4.5lwhilemaintainingtherequiredsubcriticality(kff<0.95).RegionIIinitiallycontainsone8x10moduleandtwelve8x11mod-ules,i.e.,thirteenmoduleswith1136storagecells,of'which852(75&#xc3;)areavailableforstorageoffuelassemblies.Theunusedcellsareneutronfluxtraps(tomaintaintherequiredsubcritical-ity)andareprovidedwithcellblockingdevices.RegionIIisusedtostorefuelwhichhasexperiencedsufficientburnupsuchthatstorageinRegionIisnotrequired.Thespentfuelracksarefabricatedfrom304stainlesssteelwhichis0.135inchesthick.Eachcellisformedbyweldingalongtheintersectingseamswhichenablestheassembledcellstobecomeafree-standingmodulewhichisseismicallyqualifiedwithoutdepend-ingonneighboringmodulesorfuelpoolwallsforsupport:The'ominalcenter-to-centerspacingofthecellswithinbothRegionIandIIis8.96inches.2-1 NUCLEARANDTHERMAL-HYDRAULICCONSIDERATIONSNEUTRONMULTIPLICATIONFACTORThefollowingsubsectionsdescribetheconditionsinthespentfuelpoolwhichareassumedincalculatingtheeffectiveneutronmulti-plicationfactor(Kff)theanalysismethodology,andtheanalysiseff'esults.NormalStoraea.Theanalysisconsidersthemostlimitingstoragecondition.InRegionItheracksaredesignedtostore4.5wtXU-235inacheckerboardfashion(Figure3-1)withcellblockingdevicesineveryotherstoragelocation.InRegionIIthefuelisstoredin3outof4locationswithcellblockingdevicesinIoutof4locations(Figure3-2).InthecriticalityanalysisforRegionII,creditwastakenforreactivitydepletioninthespentfuel(consistentwithRegula-toryGuide1.13,"SpentFuelStorageFacilityDesignHasis",DraftR2).b.Themoderatorisassumedtobepurewateratatemperatureapplicabletothedesignbasisconditionwhichyieldsthehighestreactivity.c.TheRegionIandRegionIIarrayswereassumedtobeinfiniteinlateralextentandinfiniteinlength.d.'echanicaluncertainties(manufacturingtolerances,uncertain'tyofassemblypositioninstorageracks,materialtolerances,,-etc.)aretreatedbyperformingsensitivitystudiesforthevariousuncertaintiesandapplyinganuncertaintyintheKffvalue.3-1
: MATERIAL, ANDSTRUCTURAL CONSIDERATIONS 1-21-21-21-32-13-13-13-13-23-23-43-4'-43-43-63-63-103-103-114-14.14.24.34.44.54.64.7Description ofStructure 4.1.1Description ofFuelHandlingBuilding4.1.2Description ofSpentFuelRacksApplicable Codes,Standards, andSpecifications SeismicandImpactLoadsLoadsandLoadCombinations DesignandAnalysisProcedures 4.5;1Methodology Summa'ry4.5.2ComputerCodeDescriptionsStructural Acceptance CriteriaMaterials, equalityControl,andSpecialConstruction Techniques 4.7.1Materials 4.7.2equalityControl4.7.3Construction Techniques 4-14-14-14'-44-64-74-74-7.4-94-114-124-124-124-13 TABLEOFCONTENTS~Pae4.8TestingandIn-Service Surveillance 4.9,References 5.0COST/BENEFIT ASSESSMENT ANDENVIRONMENTAL IMPACT5.1Cost/Benefit Assessment 5.1.1NeedforIncreased StorageCapacity5.1.2Construction Costs5.1.3Consideration ofAlternatives 5.1.4Resources Committed 5.1.5ThermalImpactontheEnvironment 5.2Radiological Evaluation 5.2.1SolidRadwaste5.2.2GaseousRadwaste5.2.3Personnel Exposure5.2.4RackDisposal5.3AccidentEvaluation 5.3.1SpentFuelHandlingAccidents 5.3.2Acceptability 5.3.3FuelDecay5.3.4LoadsOverSpentFuel5.3.5Conclusions 4-134-135-15-15-15-25-25-35-35-45-45-45-55-75-75-75-135-135-145-14


e.Nocontrolelementassemblies(CEAs)ornon-containedburnablepoisonsareassumedtobepresent.3.1.2PostulatedAccidentsThedoublecontingencyprincipleofANSIN16.1-1975statesthatitisnotnecessarytoassumeconcurrentlytwounlikelyindependenteventstoensureprotectionagainstacriticalityaccident.Thiscontingencyprincipleisappliedforthefollowingpostulatedaccidents:1)droppingofafuelelementontopoftheracks,2)droppingofotherobjectsintothespentfuelpool,3)deforma-tionandrelativepositionofracksduetotornadoorearthquake,and4)lossofonespentfuelpoolcoolingpump.Thedropofthespentfuelcaskontothespentfuelrackswasnotconsideredinthecriticalityanalysissinceitisphysicallyimpossibletotipthecaskintothepool(seeSection5.3.1).Thetechnicalspecifica-tionsrequirethattheboronconcentrationinthespentfuelpoolbegreaterthanorequalto1720ppmtoensurethatkffremainslessthanorequalto0.95fortheseaccidents.3.1.3CalculationMethodsAcalculationbiashasbeendeterminedfromthecomparisonbetweenthecalculationsandexperimentsandacalculationmethodologyhasbeendeterminedsuchthatKffwillbelessthanthecalculatedeffvalue95percentofthetimewitha95percentconfidencelevel.ThetotaluncertaintyvaluetobeappliedtothevalueofKffforeffthestorageracksisobtainedfromtheexpression:NTotalUncertainty=CalculationBias+[Eak.]=0.024i=1wherehk.arethevaluesofallotheruncertainties,including1mechanical,neutronic,andthermalvariations.3~2
LISTOFTABLESTable~Pae5-15-2Estimated SpentFuelPoolCapacityRequirements Replacement CostforSt.LucieUnit25-165-175-3GammaIsotopicAnalysisforSt.LucieUnit15-4SpentFuelCaskDropAccidentAssumptions 5-5SpentFuelCaskDropAccidentReleases5-225-65-7SpentFuelCaskDropOffsiteDosesFuelHandlingAccidentAssumptions 5-235-245-8FuelHandlingAccidentReleases5-265-9FuelHandlingAccidentOffsiteDoses5-27 LISTOFFIGURES~FiereTitle~Pae3-1SpentFuelRackModuleforRegionI3-123-2SpentFuelRackModuleforRegionII3-133-3St.LucieUnit2SpentFuelStorageRackCriticality vs.BurnupforFuelAssemblies inRegionII3-143-4SpentFuelStorageRackInitialEnrichment vs.BurnupforFuelAssemblies inRegionII3-154-1TypicalSpentFuelStorageRackModule4-15.4-2TypicalSpentFuelRackModuleL-Insert4-164-3SpentFuelStorageModuleInstallation 4-1744SpentfuelStorageModule4-184-5L-Inserts'-194-6SAPIVComputerCodeMembraneStressesandBendingMoments4-20 INTRODUCTION LICENSEAMENDMENT REQUESTED FloridaPower5Light(FPL)hascontracted forthepurchaseofnewspentfuelstoragerackstobeplacedintothespentfuelpoolofSt.LucieUnit2.Thesenewracksincreasetheamountofspentfuelthatcanbestoredintheexistingspentfuelpool.ThisSafetyAnalysisReportsupportsthisrequestforalicenseamendment totheSt.LucieUnit2FacilityOperating LicenseNPF-16forthetechnical specification revisions requiredasaresultofinstallation anduseofthenewspentfuelstorageracks.CURRENTSTATUSThereisonespentfuelpoolatSt.LucieUnit2.Theexistingracksinthepoolhave300totalstoragecells,withacenter-to-centerspacingof14inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-third ofacoreisstoredinthefuelpool.PertheFSAR,Section9.1,additional storageracksofthesamedesignmaybeinstalled tobringtotalcapacity, to675spentfuelassemblies (approximately threefullcores).Withthe300presently available storagecells,St.LucieUnit2wouldlosethefull-core reservestoragecapability afterthesecondrefueling, expectedtobein1986;withadditional racks,uptothemaximumof675,thecapability wouldbelostin1992.Therefore, toensurethatsufficient capacitycontinues toexistatSt.LucieUnit2tostoredischarged
'fuelassemblies, FPLhasdecidedtoremovethepresentracksandhascontracted withCombus-tionEngineering (C-E)fornewspentfuelstoragerackswhosedesign(MAXCAP&#x17d;)allowsformoredensestorageofspentfuel.Thenewrackshaveausablestoragecapacityof1076cells,extending thefull-core-reserve storagecapability until1998.
Furtherreferences withinthisreporttothe"spentfuelracks"refertothenewdesign.Thedetailsofhowthespentfuelrack'esignmeetsthedesignrequirements isprovidedinthisreport.INTERFACES WITHOTHERORGANIZATIONS FP8Lhasoverallresponsibility forthismodification.
C-Eisresponsible forthedesignandfabrication ofthenewspentfuelstorageracksandengineering assistance inreviewing thespentfuelpoolcoolingsystem.EbascoServices, Inc.isresponsible forreviewing buildingstructural analysisandaccidentevaluation.
SUMMARYOFREPORTThisreportfollowstheguidanceoftheNRCpositionpaperentitled"ReviewandAcceptance ofSpentFuelStorageandHandlingApplica-tions",April1978,asamendedbyNRCletterdatedJanuary18,1979.Section2.0presentsasummaryofthespentfuelrackdesign.Sections3.0through5.0ofthisreportareconsistent withthesection/subsection content'f theaboveNRCpositionpaper,SectionsIIIthroughV.Thisreportcontainsthenuclear,thermal-hydraulic, mechanical,
: material, structural, andradiological designcriteriaforthefuelracks.Thenuclearandthermal-hydraulic aspectsofthisreport(Section3.0)addresstheneutronmultiplication factor,considering normal.storageandhandlingofspentfuelaswellaspostulated accidents, withrespecttocriticality andtheabi1'ityofthespentfuelpoolcoolingsystemtomaintainsufficient cooling.Mechanical,
: material, andstructural aspects(Section4.0)involvethecapability ofthefuelassemblies, storageracks,andspentfuelpoolsystemtowithstand effectsofnaturalphenomena andotherserviceloadingconditions.
1-2 Theenvironmental aspectsofthereport(Section5.0)concernthethermalandradiological releasefromthefacilityundernormalandaccidentconditions.
Thissectionalsoaddresses theoccupational radiation exposures, generation ofradioactive waste,needforexpansion, commitment ofmaterialandnon-material resources, andacost-benefit assessment.
CONCLUSIONS Onthebasisoftheevaluations andinformation presented inthisreport,plusoperating experience withhighdensityfuelstorageatSt.LucieUnit1,FP&Lconcludes thattheproposedmodification ofSt.LucieUnit2spentfuelstoragefacilities providessafespentfuelstorage,andthatthemodification isconsistent withthefacilitydesignandoperating criteriaasprovidedintheFSARandoperating license.1-3 SUMMARYOFSPENTFUELRACKDESIGNThespentfuelracksaredesignedtostorethe14x14designfuelfromSt.LucieUnit1andthe16x16fuelfromSt.LucieUnit2.Theserackshaveaninitialcapacitytostoreatotalof1076fuelassemblies intworegionsofthespentfuelpool.Byexpansion ofRegionIIintoRegionI,thespentfuelrackshaveanultimatestoragecapacityof1188fuelassemblies.
RegionIinitially containsfour7xl1modulesandtwo7x10modules,i.e.,sixmoduleswith448storagecells.Onlyone-halfofthesecellswillbeavailable forstorageoffuelassemblies.
Theunusedcellswillbeprovidedwithblockingdevices.Allcellscontain"L"insertswhicharestainless steelneutronabsorbers (seeFigure4-2).The224available cellsenablestorageoffuelassemblies
.withUranium-235 enrichments upto4.5lwhilemaintaining therequiredsubcriticality (kff<0.95).RegionIIinitially containsone8x10moduleandtwelve8x11mod-ules,i.e.,thirteenmoduleswith1136storagecells,of'which852(75&#xc3;)areavailable forstorageoffuelassemblies.
Theunusedcellsareneutronfluxtraps(tomaintaintherequiredsubcritical-ity)andareprovidedwithcellblockingdevices.RegionIIisusedtostorefuelwhichhasexperienced sufficient burnupsuchthatstorageinRegionIisnotrequired.
Thespentfuelracksarefabricated from304stainless steelwhichis0.135inchesthick.Eachcellisformedbyweldingalongtheintersecting seamswhichenablestheassembled cellstobecomeafree-standing modulewhichisseismically qualified withoutdepend-ingonneighboring modulesorfuelpoolwallsforsupport:The'ominal center-to-center spacingofthecellswithinbothRegionIandIIis8.96inches.2-1 NUCLEARANDTHERMAL-HYDRAULIC CONSIDERATIONS NEUTRONMULTIPLICATION FACTORThefollowing subsections describetheconditions inthespentfuelpoolwhichareassumedincalculating theeffective neutronmulti-plication factor(Kff)theanalysismethodology, andtheanalysiseff'esults.NormalStoraea.Theanalysisconsiders themostlimitingstoragecondition.
InRegionItheracksaredesignedtostore4.5wtXU-235inacheckerboard fashion(Figure3-1)withcellblockingdevicesineveryotherstoragelocation.
InRegionIIthefuelisstoredin3outof4locations withcellblockingdevicesinIoutof4locations (Figure3-2).Inthecriticality analysisforRegionII,creditwastakenforreactivity depletion inthespentfuel(consistent withRegula-toryGuide1.13,"SpentFuelStorageFacilityDesignHasis",DraftR2).b.Themoderator isassumedtobepurewateratatemperature applicable tothedesignbasiscondition whichyieldsthehighestreactivity.
c.TheRegionIandRegionIIarrayswereassumedtobeinfiniteinlateralextentandinfiniteinlength.d.'echanical uncertainties (manufacturing tolerances, uncertain'ty ofassemblypositioninstorageracks,materialtolerances,,
-etc.)aretreatedbyperforming sensitivity studiesforthevariousuncertainties andapplyinganuncertainty intheKffvalue.3-1


CEPAKTheCEPAKlatticeprogramisemployedtocalculatethebasicbroadgroupcrosssectiondataforthefuelassembly,spentfuelrackstructure,andwater.Thisprogramisasynthesisofanumberofcomputercodes,manyofwhichweredevelopedatotherlaboratories,e.g.,FORM,THERMOS,andCINDER(References3-1,3-2,and3-3).Thesecodesareinterlinkedinaconsistentwaywithinputsfromanextensivelibraryofdifferentialcrosssectiondata.NUTESTNUTESTisatwo-dimensionalintegraltransportcodewhichemploysthecollisionprobabilitytechniquetocomputesub-regiondependentreactionratesinanexplicitgeometricrepresentationofthefuelrodsandassociatedstructureofafuelassembly.Thiscodeisusedtocalcul-atethefluxadvantagefactorswhichareappliedascorrec-tionfactorstothebasicbroadgroupcrosssectionscomputedbytheCEPAKlatticeprogramtoaccountforheterogeneouslatticeeffectsnotrepresentedineitherthemultigroupspectrumorhomogenizedcellspatialcalculation,e.g.,heterogeneousfastfissioneffectinfuelpellets.DOT-2WThespatialfluxsolutionandmultiplicationfactorforaninfinitearrayofindividualorclustersoffuelstoragecellsarecomputedwiththetwodimensional,discreteordinatestransportcode,DOT-2W(Reference3-4).Themajorfeaturesofthemethodusedinthis.codeare:a)'nergydependenceisconsideredusingthemultigrouptreatment.b)Thederivativetermsandspat'ialdependenceareapproximatedusingafinitedifferencetechnique.c)Dependenceuponthedirectionvariablesistreatedusingthediscreteordinatesmethod.3-3 d)ThescatteringintegralisevaluatedusingadiscreteordinatesquadratureincombinationwithaLegendreexpansionofthescatteringkerneltoapproximateanistropicscattering.3.1.4FuelRackModificationThepresentspentfuelracksforSt.LucieUnit2arebeingcomplete-lyreplacedasdescribedinSection1.2.ThedesignofthenewspentfuelracksisdescribedinSection4.1.3.1.5AccetanceCriterionforCriticalitTheacceptancecriterionfortheneutronmultiplicationfactor(Kff)isthatitbelessthanorequalto0.95,includinguncer-tainties,underallpostulatedconditions.ForRegionItheresult-ingneutronmultiplicationfactor(kff)is0.942includingalluncertaintiesandcalculationalbiases.ForRegionIIreactivitydepletionisafunctionofthepercentageofburnupachieved,notoftheinitialenrichment.Theresultingreactivity,includinguncer-taintiesandcalculationalbiases,asafunctionofburnupforseveralinitialenrichmentsisshowninFigure3-3.Theminimumallowableburnupforagiveninitialenrichmentisthatcorrespond-ingtokeff0.95.Whentheseminimumburnupvaluesareadjustedupwardstoaccountforaxially-dependentburnupdistribution.andare:plottedasafunctionofinitialenrichment,regionsofacceptableandunacceptableburnupareidentified(seeFigure3-4).3.2DECAYHEATCALCULATIONSFORTHESPENTFUELPOOL(BULK)3,2,1~0TheFuelPoolSystemprovidescontinuous'coolingforspentfuelassembliesstoredinthefuelpool.Thispermitsstorageofspentfuelassembliesinthefuelpoolfromthetimethefuelisunloadedfromthereactorvesseluntilitisshippedoffsite.3-4
e.Nocontrolelementassemblies (CEAs)ornon-contained burnablepoisonsareassumedtobepresent.3.1.2Postulated Accidents Thedoublecontingency principle ofANSIN16.1-1975statesthatitisnotnecessary toassumeconcurrently twounlikelyindependent eventstoensureprotection againstacriticality accident.
Thiscontingency principle isappliedforthefollowing postulated accidents:
1)droppingofafuelelementontopoftheracks,2)droppingofotherobjectsintothespentfuelpool,3)deforma-tionandrelativepositionofracksduetotornadoorearthquake, and4)lossofonespentfuelpoolcoolingpump.Thedropofthespentfuelcaskontothespentfuelrackswasnotconsidered inthecriticality analysissinceitisphysically impossible totipthecaskintothepool(seeSection5.3.1).Thetechnical specifica-tionsrequirethattheboronconcentration inthespentfuelpoolbegreaterthanorequalto1720ppmtoensurethatkffremainslessthanorequalto0.95fortheseaccidents.
3.1.3Calculation MethodsAcalculation biashasbeendetermined fromthecomparison betweenthecalculations andexperiments andacalculation methodology hasbeendetermined suchthatKffwillbelessthanthecalculated effvalue95percentofthetimewitha95percentconfidence level.Thetotaluncertainty valuetobeappliedtothevalueofKffforeffthestorageracksisobtainedfromtheexpression:
NTotalUncertainty
=Calculation Bias+[Eak.]=0.024i=1wherehk.arethevaluesofallotheruncertainties, including 1mechanical, neutronic, andthermalvariations.
3~2  


TheFuelPoolCoolingSystemremovesthedecayheatfromone-thirdofacorebatch,whichisassumedtohaveundergoneirradiationforthreecycles,placedinthespentfuelpoolfivedaysaftershutdownandelevenpreviousrefuelingbatches.Withonefuelpoolpumpoperatingandonefuelpoolheatexchangerinserviceandwithacomponentcoolingwatertemperatureof100'F,themaximumspentfuelpoolwatertemperaturedoesnotexceed131'F.TheFuelPoolCoolingSystemalsoremovesthedecayheatproducedinthefuelfromafullcoreoff-loadplacedinthespentfuelpoolsevendaysafterreactorshutdown,inadditiontothedecayheatfromelevenpreviousbatchesofone-thirdcoreeach.Withtwofuelpoolpumpsandonefuelpoolheatexchangeroperating,andwithacomponentcoolingwatertemperatureof100'F,themaximumspentfuelpoolwatertemperaturedoesnotexceed148'F.Evaporativecooling.effectsareneglected,forconservatism,indeterminingthismaximumtemperature.IfRegionIIwereexpandedintoRegionItoreachtheultimatecapacityof1188fuelassemblies,thetotaldecayheatloadwouldbelessthanthatforthefullcoreoff-loadcasedescribedabovesincesuchanexpansionwouldprecludethehighdecayheattypicalofthefullcoreoff-loadedintoRegionI.VTheFuelPoolCoolingSystemalsoincludespurificationequipmentdesignedtoremovesolubleandinsolubleforeignmatterfromthefuelpoolwateranddustfromthefuelpoolsurface.Thismaintainsthefuelpoolwaterpurity'ndclarity,permittingvisualobserva-tionof.underwateroperations.Theminimumdesignlimitdepthofwateroverthespentfueltomaintaintheradiationdoselevelstolessthan2.5mrem/hris9feet'.The'technicalspecificationsrequiream'inimumdepthof23feetofwateroverthestoredspentfuelassemblies;thisissuffi-cienttomeetthe2.5mrem/hrdoselevelduringfuelmovement,tolimitthemaximumcontinuousradiationdoselevelsinworkingareastomuchlessthan2.5mrem/hrduringnormalstorage,andtoensure3-5
CEPAKTheCEPAKlatticeprogramisemployedtocalculate thebasicbroadgroupcrosssectiondataforthefuelassembly, spentfuelrackstructure, andwater.Thisprogramisasynthesis ofanumberofcomputercodes,manyofwhichweredeveloped atotherlaboratories, e.g.,FORM,THERMOS,andCINDER(References 3-1,3-2,and3-3).Thesecodesareinterlinked inaconsistent waywithinputsfromanextensive libraryofdifferential crosssectiondata.NUTESTNUTESTisatwo-dimensional integraltransport codewhichemploysthecollision probability technique tocomputesub-region dependent reactionratesinanexplicitgeometric representation ofthefuelrodsandassociated structure ofafuelassembly.
Thiscodeisusedtocalcul-ate thefluxadvantage factorswhichareappliedascorrec-tionfactorstothebasicbroadgroupcrosssectionscomputedbytheCEPAKlatticeprogramtoaccountforheterogeneous latticeeffectsnotrepresented ineitherthemultigroup spectrumorhomogenized cellspatialcalculation, e.g.,heterogeneous fastfissioneffectinfuelpellets.DOT-2WThespatialfluxsolutionandmultiplication factorforaninfinitearrayofindividual orclustersoffuelstoragecellsarecomputedwiththetwodimensional, discreteordinates transport code,DOT-2W(Reference 3-4).Themajorfeaturesofthemethodusedinthis.codeare:a)'nergydependence isconsidered usingthemultigroup treatment.
b)Thederivative termsandspat'ialdependence areapproximated usingafinitedifference technique.
c)Dependence uponthedirection variables istreatedusingthediscreteordinates method.3-3 d)Thescattering integralisevaluated usingadiscreteordinates quadrature incombination withaLegendreexpansion ofthescattering kerneltoapproximate anistropic scattering.
3.1.4FuelRackModification ThepresentspentfuelracksforSt.LucieUnit2arebeingcomplete-lyreplacedasdescribed inSection1.2.Thedesignofthenewspentfuelracksisdescribed inSection4.1.3.1.5AccetanceCriterion forCriticalit Theacceptance criterion fortheneutronmultiplication factor(Kff)isthatitbelessthanorequalto0.95,including uncer-tainties, underallpostulated conditions.
ForRegionItheresult-ingneutronmultiplication factor(kff)is0.942including alluncertainties andcalculational biases.ForRegionIIreactivity depletion isafunctionofthepercentage ofburnupachieved, notoftheinitialenrichment.
Theresulting reactivity, including uncer-taintiesandcalculational biases,asafunctionofburnupforseveralinitialenrichments isshowninFigure3-3.Theminimumallowable burnupforagiveninitialenrichment isthatcorrespond-ingtokeff0.95.Whentheseminimumburnupvaluesareadjustedupwardstoaccountforaxially-dependent burnupdistribution.and are:plottedasafunctionofinitialenrichment, regionsofacceptable andunacceptable burnupareidentified (seeFigure3-4).3.2DECAYHEATCALCULATIONS FORTHESPENTFUELPOOL(BULK)3,2,1~0TheFuelPoolSystemprovidescontinuous
'coolingforspentfuelassemblies storedinthefuelpool.Thispermitsstorageofspentfuelassemblies inthefuelpoolfromthetimethefuelisunloadedfromthereactorvesseluntilitisshippedoffsite.3-4


thattheoffsitedoseconsequencesduringanaccidentareaccept-able,Make-uptothefuelpoolisfromtherefuelingwatertank,whichismaintainedatatechnicalspecificationlimitofgreaterthanorequalto1720ppmboron.3.2.2SstemDescritionAdescriptionoftheFuelHandlingandStorageSystemsisprovidedinSection9.1oftheFSAR:ThePSIdiagramoftheFuelPoolSystemisshownonFigures9.1-6and9.1-7aoftheFSAR.ThesystemprocessflowdataareshowninTable9.1-5oftheFSAR.RadiationmonitoringforthespentfuelpoolareaandFuelHandlingBuildingstackisdiscussedinSection12.3.4oftheFSAR.TheFuelPoolCoolingSystemcomponentsandpipingaregualityGroupC,seismicCategoryIandaredescribedcompletelyinFSARSection9.1.3.3.2.3SafetEvaluationThecalculationsfortheamountofthermalenergythatmayhavetoberemovedbythespentfuelpoolcoolingsystemaremadeinaccord-ancewithBranchTechnicalPositionASB9-2,"ResidualDecayEnergyforLight-WaterReactorsforLong-TermCooling",whichispartoftheStandardReviewPlan(NUREG-0800).3.2.3.1NormalMaximumFuelPoolCoolingWithSingleFailureWithone-thirdofacorebatch,whichisassumedtohaveundergoneirradiationforthreecycles,placedinthespentfuelpoolfivedaysafter'reactorshutdownandelevenpreviousrefuelingbatches,theheatloadislessthan15.3x10Btu/hr.Underthesecondi-tions,withone'uelpoolpumpoperating(singleactivefailureofsecondpump)andonefuelpoolheatexchangerinservice,thespentfuelpooltemperaturedoesnotexceed131'F.3-6
TheFuelPoolCoolingSystemremovesthedecayheatfromone-third ofacorebatch,whichisassumedtohaveundergone irradiation forthreecycles,placedinthespentfuelpoolfivedaysaftershutdownandelevenpreviousrefueling batches.Withonefuelpoolpumpoperating andonefuelpoolheatexchanger inserviceandwithacomponent coolingwatertemperature of100'F,themaximumspentfuelpoolwatertemperature doesnotexceed131'F.TheFuelPoolCoolingSystemalsoremovesthedecayheatproducedinthefuelfromafullcoreoff-loadplacedinthespentfuelpoolsevendaysafterreactorshutdown, inadditiontothedecayheatfromelevenpreviousbatchesofone-third coreeach.Withtwofuelpoolpumpsandonefuelpoolheatexchanger operating, andwithacomponent coolingwatertemperature of100'F,themaximumspentfuelpoolwatertemperature doesnotexceed148'F.Evaporative cooling.effectsareneglected, forconservatism, indetermining thismaximumtemperature.
IfRegionIIwereexpandedintoRegionItoreachtheultimatecapacityof1188fuelassemblies, thetotaldecayheatloadwouldbelessthanthatforthefullcoreoff-loadcasedescribed abovesincesuchanexpansion wouldprecludethehighdecayheattypicalofthefullcoreoff-loaded intoRegionI.VTheFuelPoolCoolingSystemalsoincludespurification equipment designedtoremovesolubleandinsoluble foreignmatterfromthefuelpoolwateranddustfromthefuelpoolsurface.Thismaintains thefuelpoolwaterpurity'nd clarity,permitting visualobserva-tionof.underwater operations.
Theminimumdesignlimitdepthofwateroverthespentfueltomaintaintheradiation doselevelstolessthan2.5mrem/hris9feet'.The'technical specifications requiream'inimumdepthof23feetofwateroverthestoredspentfuelassemblies; thisissuffi-cienttomeetthe2.5mrem/hrdoselevelduringfuelmovement, tolimitthemaximumcontinuous radiation doselevelsinworkingareastomuchlessthan2.5mrem/hrduringnormalstorage,andtoensure3-5


3.2.3.2AbnormalMaximumFuelPoolCoolingForafullcoreunloading,itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown,alongwithelevenpreviousrefuelingbatchesofone-thirdcoreeach.Theresultantheatloadfromonefullcoreandelevenrefuelingbatchesis30.3x10Btu/hr,themaximumheatloadinthefuelpool.Under6theseconditions,withboththefuelpoolpumpsinservice,themaximumfuelpoolwatertempratureis148'F.PursuanttotheguidanceinSRP9.1.3(NUREG-0800),thereisnospentfuelpoolwaterbulkboiling,andacoolingsystemsinglefailureneednotbe,consideredforthiscondition.Thistemperatureislessthanthevalue(150'F),referredtoasTinSection4.4.3.2.3.3AccidentMaximumFuelPoolCoolingNotwithstandingtheguidanceinSRP9.1.3,thefuelpooltemperatureforthefullcoreoff-loadcasedescribedaboveisevaluatedwithonefuelpoolpumpinoperable.Theresultingfuelpoolequilibriumtemperatureis161'F.Again,thereisnospentfuelpoolwaterbulkboiling.3.2.3.4OverallPerformanceEvaluationThefuelpoolisprovidedwithaseismicCategoryIFuel,PoolCoolingSystemwhichmaintainsthewatertemperatureswithinaccept-ablelimits.TwoseismicCategoryIfuelpoolpumpsandtwoseismicCategoryIfuelpoolheatexchangersareavailablebefore,during,andafterapostulatedSafeShutdownEarthquake(SSE),andtherebyprovideadequatefuelpoolcoolingforthenormal,abnormalandacciden'tmaximumheatloadsdescribedabove.Asnotedpreviously,.SRP9.1.3doesnotsuggestsingleactivefailureconsiderationsevenfortheabnormalmaximumfuelpoolcoolinganalyses.3-7 Thepurificationloopnormallyrunsintermittentlyduringfuelpooloperationtomaintainthefuelpoolwaterpurityandclarity.Thepurificationsystemcanbeoperatedwitheitherthefuelpoolionexchangerorfuelpoolfilterbypassed.Localsamplepointsareprovidedtopermitanalysisoffuelpoolionexchangerandfuelpoolfilterefficiencies.Fortheabnormalconditionswherepooltemperatureisabove140'F,therewillbenodetrimentaleffectstofuelmovements,coolingsystemoperation,fuelandfuelassemblies,orpoolstructures.Thefuelpoolionexchangerwillbemanuallyisolatedbeforecoolingwatertemperaturereaches140'F.Allfuelpoolcoolingcomponentsaredesignedforatleast200'F.Instrumentationisavailablelocallywithacontrolroomalarmtomonitorpoolwatertemperatureandenableshutdownofthepurificationsystem(anintermittentoperation)soastopreventionexchangerresindamage.Addition-ally,anyconcernsrelatedtoincreasedfuelpoolbulktemperature,arenotexpectedtoaffecttheenvironmentalconditionstowhichtherefueling,equipmentoperatorswillbeexposed(e.g.,airtempera-ture,humidityofairborneactivity).Allconnectionstothefuelpoolaremadesoastoprecludethepossibilityofsiphondrainingofthefuelpool.Anyleakagefromthefuelpoolcoolingsystemisdetectedbyreductioninthefuelpoolinventory.Makeuptothefuelpoolisfromtherefuelingwatertank.Unacceptablelevelsofradioactivitytomaintenancepersonnelfromthespentfuelpoolarenotanticipatedwhileaheatexchangerisundergoingrepairs.Thefuelpoolheatexchangersareenclosedina~vseparateroomfromthefuelpool.Thisdesignfeatureassuresthatmaintenancepersonnelarenotsubjectedtounacceptablelevelsofradioactivity.Ouringsuchrepair,radiationlevelsinthefuelpoolareaaremonitoredcontinuouslyandaccesstothisareaisregulatedaccordingly;3-8 3.2.3.5TotalLossofFuelPoolCoolingAlthoughSRPs9.1.2and9.1.3(NUREG-0800)donotsuggestanalysisofthetotallossoffuelpoolcooling,thisscenariowasevaluatedtoensurethatampletimeisavailabletorestorecoolingortoprovidemakeupwatertothespentfuelpool.Multiplesources(seismicandnon-seismic)ofmakeupwaterexistasdiscussedinSubsection9.1.3.3.1oftheFSAR.Undertheassumptionthatallfuelpoolcoolingislostandthatmakeupwaterisnotsupplieduntilafterthepoolreachesboiling,thedecayheatinthespentfuelwillcauseboilinginatimeperioddependentuponthedecayheatload.Utilizingthemaximumfuelpooldecayheatload(Section3.2.3.2),thefuelpoolwaterinventorywouldtake3.9hourstoboil,withasubsequentboi1-offrateof62.8gpm.Atthisboil-offrate,1.4dayswouldpassbeforethewaterlevel-droppedtothelevel(nine'feetabovethefuel)requiredtomaintainacceptableradiationdoselevels(seeSection3.2.1).Thisismorethanenoughtimetoprovideindicationandalarmstotheoperatorsandtoprovidenecessaryrepairsorsupplymakeupwatertothespentfuelpool(seeFSARSection9.1.3.3.1).Forthenormaldecayheatload(Section3.2.3.1),thetimetoreachboilingconditionsis12.6hoursandthesubsequentboil-offrateis31.7gpm.Atthisboil-offrate,2.8dayswouldpassbeforethewaterleveldroppedtothelevelrequiredtomaintainacceptableradiationdoselevels.Thisismorethanenoughtimetorestorefuelpoolcoolingandprovidemakeupwater.forboththenormalandmaximumdecayheatloadsanalyzedassumingatotallossoffuelpoolcooling,themaximumcladdingtemperaturewasconservativelypredictedtobe275'F,thusensuringfuelclad-dingintegrity.3-9 POTENTIALFUELANDRACKHANDLINGACCIDENTSThespentfuelrackswillbeinstalledpriortostorageofanyspentfuelin.thespentfuelpool.Therefore,thereisnopotentialforanaccidentinvolvingspentfuelduringfuelrackinstallation.3.4TECHNICALSPECIFICATIONSTheproposedchangestothetechnicalspecificationsaresummarizedasfollows:1.Specification5.6.1a.ischangedtoindicatethetotaluncer-taintyvalueappliedtothevalueofKffforthespentfueleffstorageracks..2.Specification5.6.lb.ischangedtoshowthenominalcenter-to-centerdistanceforthespentfuelstorageracks.3.Specification5.6.1c.isaddedtospecifytherequiredboronconcentrationforthespentfuelpool.4.Specification5.6.1ischangedtodeletethestatementregard-ingdrystorageofnewfuelforthefirstcore.Thisstatementisnolongerapplicable.5.Specification5.6.1ischangedtoaddastatementdefiningtheenrichment/burnuprequirementsforstorageoffuelineachregionofthefuelpool.6.Specification5.6.3ischangedtoshowthecapacityofthespent'fuelstorager'acks.'I3-10 REFERENCES3-1FORM-AFourierTransformFastSpectrumCodefortheIBM-7090,McGoff,-D.J.,NAA-SR-Memor5766,September1960.3-2THERMOS-AthermalizationTransportTheoryCodeforReactorLatticeCalculations,Honeck,H.,BNL-5816,July1961.3-3CINDER-AOnePointDepletionandFissionProductProgram,England,T.R.,WAPD-TM-334,RevisedJune1964.34R.G.Soltesz,et.al.,"UsersManualforDOT-2WDiscreteOrdinatesTransportComputerCode,"WANL-TME-1982,December1969.3-11 FUELASSEMBlYCELLBLOCKINGDEVICE"L"INSERTR%SYSTEMSCOMBUSTIONENGINEERING.INC.SPENTFUELRACKMODULEFORREGIONIFigure3-12
thattheoffsitedoseconsequences duringanaccidentareaccept-able,Make-uptothefuelpoolisfromtherefueling watertank,whichismaintained atatechnical specification limitofgreaterthanorequalto1720ppmboron.3.2.2SstemDescritionAdescription oftheFuelHandlingandStorageSystemsisprovidedinSection9.1oftheFSAR:ThePSIdiagramoftheFuelPoolSystemisshownonFigures9.1-6and9.1-7aoftheFSAR.ThesystemprocessflowdataareshowninTable9.1-5oftheFSAR.Radiation monitoring forthespentfuelpoolareaandFuelHandlingBuildingstackisdiscussed inSection12.3.4oftheFSAR.TheFuelPoolCoolingSystemcomponents andpipingaregualityGroupC,seismicCategoryIandaredescribed completely inFSARSection9.1.3.3.2.3SafetEvaluation Thecalculations fortheamountofthermalenergythatmayhavetoberemovedbythespentfuelpoolcoolingsystemaremadeinaccord-ancewithBranchTechnical PositionASB9-2,"Residual DecayEnergyforLight-Water ReactorsforLong-Term Cooling",
whichispartoftheStandardReviewPlan(NUREG-0800).
3.2.3.1NormalMaximumFuelPoolCoolingWithSingleFailureWithone-third ofacorebatch,whichisassumedtohaveundergone irradiation forthreecycles,placedinthespentfuelpoolfivedaysafter'reactorshutdownandelevenpreviousrefueling batches,theheatloadislessthan15.3x10Btu/hr.Underthesecondi-tions,withone'uelpoolpumpoperating (singleactivefailureofsecondpump)andonefuelpoolheatexchanger inservice,thespentfuelpooltemperature doesnotexceed131'F.3-6


FUELASSEMBLYCELLBLOCKINGDEVICEKQsvsTEMsCOMBUSTIONENGINEERING.INCSPENTFUELRACKMODULEFORREGIONIIFigure3-23-13
3.2.3.2AbnormalMaximumFuelPoolCoolingForafullcoreunloading, itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown, alongwithelevenpreviousrefueling batchesofone-third coreeach.Theresultant heatloadfromonefullcoreandelevenrefueling batchesis30.3x10Btu/hr,themaximumheatloadinthefuelpool.Under6theseconditions, withboththefuelpoolpumpsinservice,themaximumfuelpoolwatertemprature is148'F.PursuanttotheguidanceinSRP9.1.3(NUREG-0800),
thereisnospentfuelpoolwaterbulkboiling,andacoolingsystemsinglefailureneednotbe,considered forthiscondition.
Thistemperature islessthanthevalue(150'F),referredtoasTinSection4.4.3.2.3.3AccidentMaximumFuelPoolCoolingNotwithstanding theguidanceinSRP9.1.3,thefuelpooltemperature forthefullcoreoff-loadcasedescribed aboveisevaluated withonefuelpoolpumpinoperable.
Theresulting fuelpoolequilibrium temperature is161'F.Again,thereisnospentfuelpoolwaterbulkboiling.3.2.3.4OverallPerformance Evaluation ThefuelpoolisprovidedwithaseismicCategoryIFuel,PoolCoolingSystemwhichmaintains thewatertemperatures withinaccept-ablelimits.TwoseismicCategoryIfuelpoolpumpsandtwoseismicCategoryIfuelpoolheatexchangers areavailable before,during,andafterapostulated SafeShutdownEarthquake (SSE),andtherebyprovideadequatefuelpoolcoolingforthenormal,abnormalandacciden't maximumheatloadsdescribed above.Asnotedpreviously,.
SRP9.1.3doesnotsuggestsingleactivefailureconsiderations evenfortheabnormalmaximumfuelpoolcoolinganalyses.
3-7 Thepurification loopnormallyrunsintermittently duringfuelpooloperation tomaintainthefuelpoolwaterpurityandclarity.Thepurification systemcanbeoperatedwitheitherthefuelpoolionexchanger orfuelpoolfilterbypassed.
Localsamplepointsareprovidedtopermitanalysisoffuelpoolionexchanger andfuelpoolfilterefficiencies.
Fortheabnormalconditions wherepooltemperature isabove140'F,therewillbenodetrimental effectstofuelmovements, coolingsystemoperation, fuelandfuelassemblies, orpoolstructures.
Thefuelpoolionexchanger willbemanuallyisolatedbeforecoolingwatertemperature reaches140'F.Allfuelpoolcoolingcomponents aredesignedforatleast200'F.Instrumentation isavailable locallywithacontrolroomalarmtomonitorpoolwatertemperature andenableshutdownofthepurification system(anintermittent operation) soastopreventionexchanger resindamage.Addition-ally,anyconcernsrelatedtoincreased fuelpoolbulktemperature, arenotexpectedtoaffecttheenvironmental conditions towhichtherefueling, equipment operators willbeexposed(e.g.,airtempera-ture,humidityofairborneactivity).
Allconnections tothefuelpoolaremadesoastoprecludethepossibility ofsiphondrainingofthefuelpool.Anyleakagefromthefuelpoolcoolingsystemisdetectedbyreduction inthefuelpoolinventory.
Makeuptothefuelpoolisfromtherefueling watertank.Unacceptable levelsofradioactivity tomaintenance personnel fromthespentfuelpoolarenotanticipated whileaheatexchanger isundergoing repairs.Thefuelpoolheatexchangers areenclosedina~vseparateroomfromthefuelpool.Thisdesignfeatureassuresthatmaintenance personnel arenotsubjected tounacceptable levelsofradioactivity.
Ouringsuchrepair,radiation levelsinthefuelpoolareaaremonitored continuously andaccesstothisareaisregulated accordingly; 3-8 3.2.3.5TotalLossofFuelPoolCoolingAlthoughSRPs9.1.2and9.1.3(NUREG-0800) donotsuggestanalysisofthetotallossoffuelpoolcooling,thisscenariowasevaluated toensurethatampletimeisavailable torestorecoolingortoprovidemakeupwatertothespentfuelpool.Multiplesources(seismicandnon-seismic) ofmakeupwaterexistasdiscussed inSubsection 9.1.3.3.1oftheFSAR.Undertheassumption thatallfuelpoolcoolingislostandthatmakeupwaterisnotsupplieduntilafterthepoolreachesboiling,thedecayheatinthespentfuelwillcauseboilinginatimeperioddependent uponthedecayheatload.Utilizing themaximumfuelpooldecayheatload(Section3.2.3.2),
thefuelpoolwaterinventory wouldtake3.9hourstoboil,withasubsequent boi1-offrateof62.8gpm.Atthisboil-offrate,1.4dayswouldpassbeforethewaterlevel-droppedtothelevel(nine'feetabovethefuel)requiredtomaintainacceptable radiation doselevels(seeSection3.2.1).Thisismorethanenoughtimetoprovideindication andalarmstotheoperators andtoprovidenecessary repairsorsupplymakeupwatertothespentfuelpool(seeFSARSection9.1.3.3.1).
Forthenormaldecayheatload(Section3.2.3.1),
thetimetoreachboilingconditions is12.6hoursandthesubsequent boil-offrateis31.7gpm.Atthisboil-offrate,2.8dayswouldpassbeforethewaterleveldroppedtothelevelrequiredtomaintainacceptable radiation doselevels.Thisismorethanenoughtimetorestorefuelpoolcoolingandprovidemakeupwater.forboththenormalandmaximumdecayheatloadsanalyzedassumingatotallossoffuelpoolcooling,themaximumcladdingtemperature wasconservatively predicted tobe275'F,thusensuringfuelclad-dingintegrity.
3-9 POTENTIAL FUELANDRACKHANDLINGACCIDENTS Thespentfuelrackswillbeinstalled priortostorageofanyspentfuelin.thespentfuelpool.Therefore, thereisnopotential foranaccidentinvolving spentfuelduringfuelrackinstallation.
3.4TECHNICAL SPECIFICATIONS Theproposedchangestothetechnical specifications aresummarized asfollows:1.Specification 5.6.1a.ischangedtoindicatethetotaluncer-taintyvalueappliedtothevalueofKffforthespentfueleffstorageracks..2.Specification 5.6.lb.ischangedtoshowthenominalcenter-to-centerdistanceforthespentfuelstorageracks.3.Specification 5.6.1c.isaddedtospecifytherequiredboronconcentration forthespentfuelpool.4.Specification 5.6.1ischangedtodeletethestatement regard-ingdrystorageofnewfuelforthefirstcore.Thisstatement isnolongerapplicable.
5.Specification 5.6.1ischangedtoaddastatement definingtheenrichment/burnup requirements forstorageoffuelineachregionofthefuelpool.6.Specification 5.6.3ischangedtoshowthecapacityofthespent'fuelstorager'acks.'I3-10 REFERENCES 3-1FORM-AFourierTransform FastSpectrumCodefortheIBM-7090, McGoff,-D.J.,NAA-SR-Memor 5766,September 1960.3-2THERMOS-Athermalization Transport TheoryCodeforReactorLatticeCalculations, Honeck,H.,BNL-5816, July1961.3-3CINDER-AOnePointDepletion andFissionProductProgram,England,T.R.,WAPD-TM-334, RevisedJune1964.34R.G.Soltesz,et.al.,"UsersManualforDOT-2WDiscreteOrdinates Transport ComputerCode,"WANL-TME-1982, December1969.3-11 FUELASSEMBlYCELLBLOCKINGDEVICE"L"INSERTR%SYSTEMSCOMBUSTION ENGINEERING.
INC.SPENTFUELRACKMODULEFORREGIONIFigure3-12


1.0COI0m~nCCg)ZITlI~n~g)C8CmzzcoOOm~8A0QZIll~IlDn0.90.80.70.60.5100002000030000BURNUP,IVIWD/MTU40000ENRICHMENTS4.5W/04.0W/03.5W/03.0'/02.5W/050000
FUELASSEMBLYCELLBLOCKINGDEVICEKQsvsTEMsCOMBUSTION ENGINEERING.
INCSPENTFUELRACKMODULEFORREGIONIIFigure3-23-13


DI-30,000AUcL'0,0000'-~10000ALLOWABLEBURNUPFORREGIONIIBURNUP~(11/00)x(ENRICHMENTW/0)13,900BURNUPREQUIRINGSTORAGEINREGIONI1.52.02.5.3.03$4.0INITIALU-235ENRICHMENT,W/0"4.55.0CL%SYSTEMSCOMBUSTIONENGINEERINGINCSPENTFUELSTORAGERACKINITIALENRICHNIENTvsBURNUPFORFUELASSEMBLIESINREGIONIIFigure3-15
1.0COI0m~nCCg)ZITlI~n~g)C8CmzzcoOOm~8A0QZIll~IlDn0.90.80.70.60.5100002000030000BURNUP,IVIWD/MTU 40000ENRICHMENTS 4.5W/04.0W/03.5W/03.0'/02.5W/050000


4.0MECHANICAL,MATERIAL,ANDSTRUCTURALCONSIDERATIONS4.1DESCRIPTIONOFSTRUCTURE4.1.1DescritionoftheFuelHandlinBuildinAdescriptionoftheSpentFuelStoragePoolisprovidedinSection9.1.2oftheFSAR.Thespentfuelstoragepoolislocatedin,andanintegralpartof,theFuelHandlingBuilding.ThegeneralarrangementoftheFuelHandlingBuildingshowingthelocationofthespentfuelstoragefacilitiesisgivenonFigures1.2-16and1.2-17oftheFSARandtheFuelHandlingBuildingdesignisdescrib-edinSection3.8.4.1oftheFSAR.TheFuelHandlingBuildingexteriorwalls,floorsandinteriorpartitionsprovideradiationshieldingtoplantpersonnelandprotecttheequipmentfromtheeffectsofadverseatmosphericconditionsincludinghurricaneandtornadowinds,temperature,externalmissilesandcorrosiveenviron-ment.ThedesignloadingconditionsandallowablestressesfortheFuelHandlingBuildingaredescribedinsubsection3.8.4.3oftheFSAR.ThedynamicanalysisoftheFuelHandlingBuildingisdes-cribedinSection3.7oftheFSAR.TheSpentFuelPoolwallsandfloorsarelinedwithtype304stainlesssteel.Theseismiccate-goryIspentfuelpoolisbeinganalyzedconsideringthespentfuelracksandadditionalfuelassemblies,toensurethatthedesignmeetsthecriteriaspecifiedinFSARSection3.8.4.3.4.1.2DescritionofSentFuelRacks4.1.2.1DesignandFabricationofSpentFuelRacksThe,spentfuelstorageracksarefabricatedwith304stainlesssteelhavingamaximumcarboncontentof0.0655.TheracksaremonolithichoneycombstructureswithsquarefuelstoragelocationsasshowninFigure4-1.Eachstoragelocationisformedbyweldingstainlesssteelsectionsalongtheintersectingseams,permittingtheassemb-4-1 ledcavitiestobecometheloadbearingstructure,aswellasframingthestoragecellenclosures.Eachmoduleisfreestanding,andseismicallyqualifiedwithoutmechanicaldependenceonneighbor-ingmodulesorpoolwalls.Thisfeatureenablesremoteinstallation(orremovalifrequiredforpoolmaintenance)withminimaleffort.Reinforcingplatesattheupperperipheraledgesprovidetherequir-edstrengthforhandling.Stainlesssteelbars,whichareinsertedhorizontallythroughtherectangularslotsinthelowerregionofthemodule,supportthefuelassemblies.Thesesupportbars,whenweldedinplace,supportanentirerowoffuelassemblies.Semicircularpassagesatthebottomofeverycellwallallowcoolingwatertoflowtoallcells.Thesizeoftheopeningsprecludesblockagebyanycrudaccumula-tions.Loadingofthefuelracksisfacilitatedviaamovablelead-infunnelassemblycontainingfourlead-indevices.Theopeningsofthefunnelassemblyaresymmetricalandtheassemblysitsontopoftherackmodule.Themodulewallthicknessis0.135inch304stainlesssteel.TheL-insertsare0.188inchesthickandareshown,alongwiththecellblocks,inFigure4-'.AsindicatedinFigure4-3,L-insertsareusedonlyinRegionIandcellblocksareusedinbothRegionsIandII.ThecellblocksforRegionIIareremovableandaresimilartothoseforRegionIshowninFigure4-5.Thenominalpitchofthespentfuelracksisuniformthroughoutthenineteenmodulestobecontainedinthespentfuelpool.Thispitchis8.96inchescenter-to-centerinbothhorizontaldirections.AdditionaldetailsareshowninFigures4-4and'4-5.RegionIislocatedwithin6modulesandcomprisesatotalof448cavities..RegionIisthehigh-enrichment,coreoff-loadregion.The'fuelassembliesaretobestoredineveryotherlocationinacheckerboardconfiguration(seeFigure3-1).Thecheckerboardarrangementmakes505oftheRegionIultimatestoragecapacity4-2
DI-30,000AUcL'0,0000'-~10000ALLOWABLE BURNUPFORREGIONIIBURNUP~(11/00)x(ENRICHMENT W/0)13,900BURNUPREQUIRING STORAGEINREGIONI1.52.02.5.3.03$4.0INITIALU-235ENRICHMENT, W/0"4.55.0CL%SYSTEMSCOMBUSTION ENGINEERING INCSPENTFUELSTORAGERACKINITIALENRICHNIENT vsBURNUPFORFUELASSEMBLIES INREGIONIIFigure3-15


Iinitiallyavailableforstorageoffuelwithhighfissileconcentra-tions.Theunused.cavitiesarefittedwithcellblockingdevicestopreventinadvertentinsertionoffuelintotheselocations.RegionImaybeexpandedintoRegionII,ifrequired,tostoreadditionalfuelwhichhasnotreachedtherequiredburnup.ThiswouldbeaccomplishedbytheadditionofL-insertsandcellblockingdevicesintoRegionII.RegionIisdesignedforatotalof224usablecavitiesforenrich-mentsuptoandincluding4.5w/oU-235.ThecavitiesinRegionIcontainanL-insert(Figure3-1).TheL-shapedstainlessinsertslockintothestoragecavityusingaspringlockingmechanismontheupperend(Figure4-2).Thislockingmechanismsnapsintooneoftheholesinthefoursurroundingcellwalls.TheseL-shaped304stainlessinsertsareneutronabsorbers.RegionIIconsistsofatotalof1136cavities.klithinRegionII,fuelassembliesarestoredin75%ofthetotalcavities(seeFigure3-2)foraninitialavailablestoragecapacityof852cavities.Cellblockingdevices'areusedtoprecludeplacementoffuelassemb-liesintoeveryfourthcavity,whichremainsemptyandprovidesafluxtrapforreactivitycontrol.'igure4-3showstheinstallationofRegionIandRegionIImodules.4.1.2.2SupportofSpentFuelRacksThespentfuelrackshavebeendesignedfordirectbearingontothespentfuelpoolfloor.A10"supportplateundertheperipheralcellsprovidesthebearingsurfacefortheracks.Fuelrackmodulelevelingisaccomplishedbyplacing10"squarestainlesssteelshimsbetweenthesupportplatesandthefuelpoolliner.4.1.2.3FuelHandlingThedesignofthespentfuelrackswillnotaffecttheconclusionsofthefuelhandlingaccidentspresentedintheFSAR(Section4-3 15.7.4)-andsummarizedbytheNRCintheSafetyEvaluationReport(NUREG-0843).Thatis,theradiologicaldosesforthepostulatedfuelcaskandfuelassemblydropaccidentsarewellwithinthe10CFR100criteria.ThefuelhandlingaccidentsarepresentedinSection5.3ofthisreport.Intheseanalysesthemaximumradialpowerpeakingfactorexperiencedbyaspentfuelassemblywasassumedtobe2.0inordertobracketfuturefuelmanagementchanges,whereastheanalysisintheFSARassumed1.65.Therefore,thereareincreasesinthedosesforthefuelhandlingaccidents.TheseincreasesarenotrelatedtothespentfuelrackdesignanddonotaffecttheconclusionsoftheanalysissincethedosesarestillwellwithinNRCguidelines(seeSections5.3.1.1and5.3.1.3).4.2APPLICABLECODES,STANDARDS,ANDSPECIFICATIONSThespentfuelracksaredesignedinaccordancewiththefollowing:1.CodeofFederalRegulations10CFRPart50:a)AppendixA"GeneralDesignCriteriaforNuclearPlants,"Criteria2,3,4,5,61,62,63.b)Appendix8"gualityAssuranceCriteriaforNuclearPowerPlantsandFuelReprocessingPlants."2.ASMEBoilerandPressureVesselCodeSectionIII,SubsectionNF,"NuclearPowerPlantComponents."3;'merican'SocietyforTestingMaterial'sDocuments:a)ASTM-A240-SpecificationforCorrosionResistingChromiumNickelSteelPlate,Sheet&StripforFusion-WeldedUnfiredPressureVessels.4-4
4.0MECHANICAL,
: MATERIAL, ANDSTRUCTURAL CONSIDERATIONS 4.1DESCRIPTION OFSTRUCTURE 4.1.1DescritionoftheFuelHandlinBuildinAdescription oftheSpentFuelStoragePoolisprovidedinSection9.1.2oftheFSAR.Thespentfuelstoragepoolislocatedin,andanintegralpartof,theFuelHandlingBuilding.
Thegeneralarrangement oftheFuelHandlingBuildingshowingthelocationofthespentfuelstoragefacilities isgivenonFigures1.2-16and1.2-17oftheFSARandtheFuelHandlingBuildingdesignisdescrib-edinSection3.8.4.1oftheFSAR.TheFuelHandlingBuildingexteriorwalls,floorsandinteriorpartitions provideradiation shielding toplantpersonnel andprotecttheequipment fromtheeffectsofadverseatmospheric conditions including hurricane andtornadowinds,temperature, externalmissilesandcorrosive environ-ment.Thedesignloadingconditions andallowable stressesfortheFuelHandlingBuildingaredescribed insubsection 3.8.4.3oftheFSAR.ThedynamicanalysisoftheFuelHandlingBuildingisdes-cribedinSection3.7oftheFSAR.TheSpentFuelPoolwallsandfloorsarelinedwithtype304stainless steel.Theseismiccate-goryIspentfuelpoolisbeinganalyzedconsidering thespentfuelracksandadditional fuelassemblies, toensurethatthedesignmeetsthecriteriaspecified inFSARSection3.8.4.3.4.1.2DescritionofSentFuelRacks4.1.2.1DesignandFabrication ofSpentFuelRacksThe,spentfuelstorageracksarefabricated with304stainless steelhavingamaximumcarboncontentof0.0655.Theracksaremonolithic honeycomb structures withsquarefuelstoragelocations asshowninFigure4-1.Eachstoragelocationisformedbyweldingstainless steelsectionsalongtheintersecting seams,permitting theassemb-4-1 ledcavitiestobecometheloadbearingstructure, aswellasframingthestoragecellenclosures.
Eachmoduleisfreestanding, andseismically qualified withoutmechanical dependence onneighbor-ingmodulesorpoolwalls.Thisfeatureenablesremoteinstallation (orremovalifrequiredforpoolmaintenance) withminimaleffort.Reinforcing platesattheupperperipheral edgesprovidetherequir-edstrengthforhandling.
Stainless steelbars,whichareinsertedhorizontally throughtherectangular slotsinthelowerregionofthemodule,supportthefuelassemblies.
Thesesupportbars,whenweldedinplace,supportanentirerowoffuelassemblies.
Semicircular passagesatthebottomofeverycellwallallowcoolingwatertoflowtoallcells.Thesizeoftheopeningsprecludes blockagebyanycrudaccumula-tions.Loadingofthefuelracksisfacilitated viaamovablelead-infunnelassemblycontaining fourlead-indevices.Theopeningsofthefunnelassemblyaresymmetrical andtheassemblysitsontopoftherackmodule.Themodulewallthickness is0.135inch304stainless steel.TheL-insertsare0.188inchesthickandareshown,alongwiththecellblocks,inFigure4-'.Asindicated inFigure4-3,L-inserts areusedonlyinRegionIandcellblocksareusedinbothRegionsIandII.ThecellblocksforRegionIIareremovable andaresimilartothoseforRegionIshowninFigure4-5.Thenominalpitchofthespentfuelracksisuniformthroughout thenineteenmodulestobecontained inthespentfuelpool.Thispitchis8.96inchescenter-to-center inbothhorizontal directions.
Additional detailsareshowninFigures4-4and'4-5.RegionIislocatedwithin6modulesandcomprises atotalof448cavities..
RegionIisthehigh-enrichment, coreoff-loadregion.The'fuelassemblies aretobestoredineveryotherlocationinacheckerboard configuration (seeFigure3-1).Thecheckerboard arrangement makes505oftheRegionIultimatestoragecapacity4-2


b)ASTM-A276-SpecificationforStainlessandMeatResist-ingBarsandShapes4.AmericanNationalStandardsInstitute:a)ANSI-N210,DesignObjectivesforLightWaterReactorSpentFuelStorageFacilitiesatNuclearPowerStations,1976.b)ANSI-N16.1,NuclearCriticalitySafetyinOperationswithFissionableMaterialsOutsideReactors,1975.5.UnitedStatesNuclearRegulatoryComnission:a)StandardReviewPlan,Section9.1.2,Rev.2"SpentFuelStorage."b)RegulatoryGuide1.13,Rev.2Draft,"SpentFuelStorageFacilityDesignBasis."c)RegulatoryGuide1.26,Rev.3"gualityGroupClassifica-tionandStandardsforWater,SteamandRadioactiveWasteContainingComponentsofNuclearPowerPlants."d)RegulatoryGuide1.29,Rev.3"SeismicDesignClassifica-tion."e)RegulatoryGuide1.31,Rev.2"ControlofStainlessSteelWelding"asmodifiedbyBran'chTechnicalPositionMTEB-51,"Interim.PositiononRegulatoryGuide1.31,"ControlofStainlessSteelWelding."f)RegulatoryGuide1.122,"DevelopmentofFloorDesignResponseSpectraforSeismicDesignofFloor-SupportedEquipmentorComponents,Rev.1,February1978.4-5 g)'egulatoryGuide1.70,"StandardFormatandContentofSafetyAnalysisReportforNuclearPowerPlants,Rev.3."h)NRCGuidance"ReviewandAcceptanceofSpentFuelStorageandHandlingApplications"April1978,andModificationsdatedJanuary18,1979.4.3SEISMICANDIMPACTLOADSMaximumloadstransmittedtothefloorbythespentfuelracksatSt.LucieUnit2aregivenbelow.Floor-RackInterfaceLoadsKIPSDeadWeightLiveOBENSEWOBEySSENSSSEEWSSEVNorth-South104.10*98.30East-West00028.60042.10VerticalDown59.7102.940.48.897.259.515.5Theseismicanalysisofthespentfuelrackinc'ludesanassessmentofthemaximumslidingandtippingthatcanbeexpected.Theracksareinstalledwithanominalgapof2"'betweenmodulesandareaminimumof12inchesfromthepoolwalls.Theanalysishasshownthatthemaximummotionoftheracks,includingtipping,slidingandthermalexpansionislessthanthegapbetweenadjacentmodules,therefore,nocontactispredicted.4-6 0'
Iinitially available forstorageoffuelwithhighfissileconcentra-tions.Theunused.cavitiesarefittedwithcellblockingdevicestopreventinadvertent insertion offuelintotheselocations.
LOADSANDLOADCOMBINATIONSTheloadsandloadcombinationsusedinthestructuralanalysisofthespentfuelracksarelistedbelowandareconsistentwithNRCguidancein"ReviewanAcceptanceofSpentFuelStorageandHandlingApplications"(Reference4-1).LoadCombination(ElasticAnalsis)AccetanceLimitD+LD+L+E0+L+ToD+L+To+ED+L+Ta+ED+L+Ta+E'ormallimitsofNF3231.1aNormallimitsofNF3231.1aLesserof2SyorSustressrangeLesserof2SyorSustressrangeLesserof2SyorSustressrangeFaulted.ConditionLimitsofNF3231.1cTheabbreviationsinthetableabovearethoseusedinSection3.8.4oftheStandardReviewPlanwhereeachtermisdefinedexceptforTawhichisdefinedasthehighesttemperatureassociatedwiththepostulatedabnormaldesignconditions.ConsistentwithNRCguidance(Reference4-1),theprovisionsofNF3231.1shallbeamendedbyparagraphsc.2,3,and4oftheRegula-toryGuide1.124entitled"DesignLimitsandLoadCombinationsforClass1Linear-TypeComponentsSupports."4.5DESIGNANDANALYSISPROCEDURES4.5.1Methodo1oSummarThespentfuelstorageracksaredesignedtowithstandforcesgeneratedduringnormaloperation,anOperatingBasisEarthquake,oraSafeShutdownEarthquake.Lateralandverticalseismicloads4-7 alongwithfluidforcesareconsideredtobeactingsimultaneouslyonthefuelracks.Theracksaredesignedtoassurerackstructuralintegritywhileatthesametimekeepingthefuelinasubcriticalstate.Linearresponsespectrummethodsareuse'dfortheverticaldirec-tion.Thelateralseismicresponsesofthespentfuelstorageracksaredeterminedusinganon-lineartimehistoryanalysis.Non-lineartimehistoryanalysesarep'erformedforthelateraldirectionsprimarilybecauseoffuelimpacting.Theeffectsofimpactingstructuressignificantlyinfluencethestressesinboththestoragestructureandthefueland,becausetheyarenon-linearinnature,canonlybeaccountedforbyperformingmorecomplexnon-lineartimehistoryanalyses.TheseismicinputusedfortheseanalysesconsistsoftheverticalresponsespectrumandthelateralaccelerationtimehistoriescorrespondingtothepoolfloorelevationatSt.LucieUnit2.TheanalysesareperformedinaccordancewithReg.Guide1.122,Revision1,February1978.Thefirststepintheanalyticalprocedureistodeterminethedynamiccharacteristicsofthefuelstorageracks.Thisis.donebydevelopingathree-dimensionalfiniteelementmodelofthestructureandsolvingforthenaturalfrequenciesandmodeshapesinair.ThefiniteelementcodeusedinthestudyisSAPIV(seeSection4.5;2).Theresultingdynamiccharacteristicsarethenincorporatedintoanon-linearrepresentationoftheentiresystem,whichincludesthefuelandthestorageracks.The.CfSHOCKcomputercode(seeSection4.5;2),isusedtodeterminethenon-lineartimehistoryresponseofthesystem.TheeffectsofimpactingbetweenthefuelandthestoragerackarerepresentedintheCESHOCKmodel.Becauseofthe4-8
RegionImaybeexpandedintoRegionII,ifrequired, tostoreadditional fuelwhichhasnotreachedtherequiredburnup.Thiswouldbeaccomplished bytheadditionofL-inserts andcellblockingdevicesintoRegionII.RegionIisdesignedforatotalof224usablecavitiesforenrich-mentsuptoandincluding 4.5w/oU-235.ThecavitiesinRegionIcontainanL-insert(Figure3-1).TheL-shapedstainless insertslockintothestoragecavityusingaspringlockingmechanism ontheupperend(Figure4-2).Thislockingmechanism snapsintooneoftheholesinthefoursurrounding cellwalls.TheseL-shaped304stainless insertsareneutronabsorbers.
RegionIIconsistsofatotalof1136cavities.
klithinRegionII,fuelassemblies arestoredin75%ofthetotalcavities(seeFigure3-2)foraninitialavailable storagecapacityof852cavities.
Cellblockingdevices'are usedtoprecludeplacement offuelassemb-liesintoeveryfourthcavity,whichremainsemptyandprovidesafluxtrapforreactivity control.'igure 4-3showstheinstallation ofRegionIandRegionIImodules.4.1.2.2SupportofSpentFuelRacksThespentfuelrackshavebeendesignedfordirectbearingontothespentfuelpoolfloor.A10"supportplateundertheperipheral cellsprovidesthebearingsurfacefortheracks.Fuelrackmodulelevelingisaccomplished byplacing10"squarestainless steelshimsbetweenthesupportplatesandthefuelpoolliner.4.1.2.3FuelHandlingThedesignofthespentfuelrackswillnotaffecttheconclusions ofthefuelhandlingaccidents presented intheFSAR(Section4-3 15.7.4)-andsummarized bytheNRCintheSafetyEvaluation Report(NUREG-0843).
Thatis,theradiological dosesforthepostulated fuelcaskandfuelassemblydropaccidents arewellwithinthe10CFR100criteria.
Thefuelhandlingaccidents arepresented inSection5.3ofthisreport.Intheseanalysesthemaximumradialpowerpeakingfactorexperienced byaspentfuelassemblywasassumedtobe2.0inordertobracketfuturefuelmanagement changes,whereastheanalysisintheFSARassumed1.65.Therefore, thereareincreases inthedosesforthefuelhandlingaccidents.
Theseincreases arenotrelatedtothespentfuelrackdesignanddonotaffecttheconclusions oftheanalysissincethedosesarestillwellwithinNRCguidelines (seeSections5.3.1.1and5.3.1.3).
4.2APPLICABLE CODES,STANDARDS, ANDSPECIFICATIONS Thespentfuelracksaredesignedinaccordance withthefollowing:
1.CodeofFederalRegulations 10CFRPart50:a)AppendixA"GeneralDesignCriteriaforNuclearPlants,"Criteria2,3,4,5,61,62,63.b)Appendix8"gualityAssurance CriteriaforNuclearPowerPlantsandFuelReprocessing Plants."2.ASMEBoilerandPressureVesselCodeSectionIII,Subsection NF,"NuclearPowerPlantComponents."
3;'merican'Society forTestingMaterial's Documents:
a)ASTM-A240-Specification forCorrosion Resisting ChromiumNickelSteelPlate,Sheet&StripforFusion-WeldedUnfiredPressureVessels.4-4


closeproximityofthestructures,hydrodynamiccouplingeffectsbetweenthefuel,thestoragerackandthepoolarealsoincludedinthemodel.-(SeeReference4-2foradditionalinformation.)TheracksareanalyzedusingafiniteelementmodelintheSAPIVcodeandtheloadsfromSection4.3.SAPIVoutputconsistsofmembranestressesandbendingmomentsforeachelementasshowninFigure4-6.Whendealingwiththistypeofelement,theresultsaregivenperunitlength;therefore,thestresscausedbythemomentwillbearrivedatbythefollowingexpressions:oB=MC/Iforaunitlengthstrip,I=ltC=t/2C/I=6/tW0=6M/tThisapproachappliestoMx,M,andMxthus,thetotalstressinanyonedirectionwillbe:tmemb2Thebeamsusedatthebottomofeachcavityopeningtosupportthestoredfuelassemblyareincludedinthemodelas,lumpedmasseswithnostructuralrigidities.Thebeamsarethenanalyzedforaclearerunderstandingoftheexistingstresssituation.Againthestresscausedbythemomentwillbearrivedatbytheexpressiona=MC/Iandtheshearstressbytheexpressioncr=P/A.ComuterCodeDescritionsThecomputercodesusedintheseanalysesaredescribedinthefollowingsubsections.4-9 SAPIVSAPIVisageneralstructuralanalysisprogramforstaticanddynamicanalysisoflinearelasticcomplexstructures.Thefiniteelementdisplacementmethodisusedtosolveforthedisp'lacementsandcomputethestressesofeachelementofthestructure.Thestructurecanbecomposedofunlimitednumberofthree-dimensionaltruss,beam,plate,shell,solid,planestrain-planestress,thickshell,spring,axisymmetricelements.Theprogramcantreatthermalandvariousformsofmechanicalloadingaswellasinternalelementloadings.Oynamicanalysisoptionsconsistofeigenvaluesolutionsyieldingfrequenciesandmodeshapes,responsehistorybymodesuperposition,responsehistorybydirectionintegration,andresponsespectrumanalysis.'arthquaketypeofloadingaswellastimevaryingpressurecanbetreated.Theoutputconsistsofdisplacementsateachnodalpointaswellasinternalmemberforcesforeachelement.TheprogrambeingusedatC-Eisessentiallyequivalenttotheversionverified,documented,andreleasedbytheUniversityofCalifornia(Reference4-3).CESHOCKTheCESHOCKcomputercodeperformstransient,dynamicanalysesofnon-linearelasticsystems.Thesesystemscanbeeitheraxialmodelshavingonedegree-of-freedompernodeorlateraloneshavingonerotationalandonetranslationaldegreeoffreedompernode.Theresponseofasystemisdeterminedbynumericallyintegrating(usingaRunge-Kutta-Gilltechnique)itsequationsofmotion.Excitationcantaketheformofeitherinitialconditionsortimehistoriesofappliedaccelerations,velocitiesdisplacementsor4-10 forces.Thenon-linearitiescanconsistofgaps,friction,hyster-esisornon-linearsprings.Hydrodynamicactioncanalsobemodel-ed,withbothon-diagonal(addedmass)andoff-diagonal(coupling)termsbeingconsidered.Theprogramautomaticallysearchestheresponsetimehistoriesandprintsoutthemaximumandminimumvaluesofallnodalaccelera-tions,andmemberloadsandcangenerateanoptionaloutputtapecontainingthecompleteresponsehistories."CESHOCK"isanextensivelymodified,proprietaryversionofthe"SHOCK"computercodedevelopedbyV.K.GabrielsonandR.T.ReeseofSandiaLaboratories(Reference4-4).Itdiffersfromtheorig-inalintheareasofdamping,coefficientofrestitution,friction,hydrodynamiceffects,hysteresis,inputoftimehistories,outputoptions,allowableproblemsizeandthemannerofinputtingstiff-nesselements.CESHOCKhasbeenverifiedbydemonstrationthatitssolutionsaresubstantiallyidenticaltothoseobtainedbyhandcalculationsorfromacceptedanalyticalresultsviaanindependentcomputercode(References4-4and4-5).4.6STRUCTURALACCEPTANCECRITERIATheallowablestresslimitsfornormalandfaultedconditionsasdefinedintheASMECode,SectionIII,SubsectionNFare:Normal.OperatingConditions:PrimaryMembrane(P)=16,500psiPrimaryBending(Pb)=16,500psiShear(~)=11,000psiFaultedConditions:P=33,000psiP=33,000psib=22,000psis4-11
b)ASTM-A276-Specification forStainless andMeatResist-ingBarsandShapes4.AmericanNationalStandards Institute:
a)ANSI-N210,DesignObjectives forLightWaterReactorSpentFuelStorageFacilities atNuclearPowerStations, 1976.b)ANSI-N16.1,NuclearCriticality SafetyinOperations withFissionable Materials OutsideReactors, 1975.5.UnitedStatesNuclearRegulatory Comnission:
a)StandardReviewPlan,Section9.1.2,Rev.2"SpentFuelStorage."
b)Regulatory Guide1.13,Rev.2Draft,"SpentFuelStorageFacilityDesignBasis."c)Regulatory Guide1.26,Rev.3"gualityGroupClassifica-tionandStandards forWater,SteamandRadioactive WasteContaining Components ofNuclearPowerPlants."d)Regulatory Guide1.29,Rev.3"SeismicDesignClassifica-tion."e)Regulatory Guide1.31,Rev.2"ControlofStainless SteelWelding"asmodifiedbyBran'chTechnical PositionMTEB-51,"Interim.Position onRegulatory Guide1.31,"ControlofStainless SteelWelding."
f)Regulatory Guide1.122,"Development ofFloorDesignResponseSpectraforSeismicDesignofFloor-Supported Equipment orComponents, Rev.1,February1978.4-5 g)'egulatory Guide1.70,"Standard FormatandContentofSafetyAnalysisReportforNuclearPowerPlants,Rev.3."h)NRCGuidance"ReviewandAcceptance ofSpentFuelStorageandHandlingApplications" April1978,andModifications datedJanuary18,1979.4.3SEISMICANDIMPACTLOADSMaximumloadstransmitted tothefloorbythespentfuelracksatSt.LucieUnit2aregivenbelow.Floor-Rack Interface LoadsKIPSDeadWeightLiveOBENSEWOBEySSENSSSEEWSSEVNorth-South 104.10*98.30East-West 00028.60042.10VerticalDown59.7102.940.48.897.259.515.5Theseismicanalysisofthespentfuelrackinc'ludes anassessment ofthemaximumslidingandtippingthatcanbeexpected.
Theracksareinstalled withanominalgapof2"'between modulesandareaminimumof12inchesfromthepoolwalls.Theanalysishasshownthatthemaximummotionoftheracks,including tipping,slidingandthermalexpansion islessthanthegapbetweenadjacentmodules,therefore, nocontactispredicted.
4-6 0'
LOADSANDLOADCOMBINATIONS Theloadsandloadcombinations usedinthestructural analysisofthespentfuelracksarelistedbelowandareconsistent withNRCguidancein"ReviewanAcceptance ofSpentFuelStorageandHandlingApplications" (Reference 4-1).LoadCombination (ElasticAnalsis)AccetanceLimitD+LD+L+E0+L+ToD+L+To+ED+L+Ta+ED+L+Ta+E'ormallimitsofNF3231.1aNormallimitsofNF3231.1aLesserof2SyorSustressrangeLesserof2SyorSustressrangeLesserof2SyorSustressrangeFaulted.Condition LimitsofNF3231.1cTheabbreviations inthetableabovearethoseusedinSection3.8.4oftheStandardReviewPlanwhereeachtermisdefinedexceptforTawhichisdefinedasthehighesttemperature associated withthepostulated abnormaldesignconditions.
Consistent withNRCguidance(Reference 4-1),theprovisions ofNF3231.1shallbeamendedbyparagraphs c.2,3,and4oftheRegula-toryGuide1.124entitled"DesignLimitsandLoadCombinations forClass1Linear-Type Components Supports."
4.5DESIGNANDANALYSISPROCEDURES 4.5.1Methodo1oSummarThespentfuelstorageracksaredesignedtowithstand forcesgenerated duringnormaloperation, anOperating BasisEarthquake, oraSafeShutdownEarthquake.
Lateralandverticalseismicloads4-7 alongwithfluidforcesareconsidered tobeactingsimultaneously onthefuelracks.Theracksaredesignedtoassurerackstructural integrity whileatthesametimekeepingthefuelinasubcritical state.Linearresponsespectrummethodsareuse'dfortheverticaldirec-tion.Thelateralseismicresponses ofthespentfuelstorageracksaredetermined usinganon-linear timehistoryanalysis.
Non-linear timehistoryanalysesarep'erformed forthelateraldirections primarily becauseoffuelimpacting.
Theeffectsofimpacting structures significantly influence thestressesinboththestoragestructure andthefueland,becausetheyarenon-linear innature,canonlybeaccounted forbyperforming morecomplexnon-linear timehistoryanalyses.
Theseismicinputusedfortheseanalysesconsistsoftheverticalresponsespectrumandthelateralacceleration timehistories corresponding tothepoolfloorelevation atSt.LucieUnit2.Theanalysesareperformed inaccordance withReg.Guide1.122,Revision1,February1978.Thefirststepintheanalytical procedure istodetermine thedynamiccharacteristics ofthefuelstorageracks.Thisis.donebydeveloping athree-dimensional finiteelementmodelofthestructure andsolvingforthenaturalfrequencies andmodeshapesinair.ThefiniteelementcodeusedinthestudyisSAPIV(seeSection4.5;2).Theresulting dynamiccharacteristics arethenincorporated intoanon-linear representation oftheentiresystem,whichincludesthefuelandthestorageracks.The.CfSHOCK computercode(seeSection4.5;2),isusedtodetermine thenon-linear timehistoryresponseofthesystem.Theeffectsofimpacting betweenthefuelandthestoragerackarerepresented intheCESHOCKmodel.Becauseofthe4-8


ForsimilarspentfuelstoragerackssuppliedbyCombustionEngineer-ingforanotherutility,themaximumbendingstressunderthefaultedconditionwas29,199psiascomparedtotheallowablelimitsgivenabove.ThemaximumstressfortheSt.LucieUnit2storagerackswillalsobewithintheaboveallowablelimits.4.7MATERIALS,QUALITYCONTROL,ANDSPECIALCONSTRUCTIONTECHNIQUES4.7.1MaterialsThespentfuelstorageracksarefabricatedfrom304stainlesssteelwithamaximumcarboncontentof0.065%andconformtoASTMspecifi-cationA240.Thestainlesssteelforthestoragecellwallsis0.135inchesthickandfortheLinsertsthestainlesssteelis0.188inchesthick.AsstatedinSection9.1oftheFSAR,thefuelracksbeingreplacedarealsomadeof304stainlesssteelandthefuelpoolchemistrycontrol(seeSection3.2.2)isthesameasthatdescribedintheFSAR.Therefore,thecompatibilityofthefuelrackmaterialwiththepoolwatershouldbethesameasthatsuamarizedintheFSARsafetyevaluationreport(NUREG-0843).4.7.2ualitControlFloridaPower8Light'sandCombustionEngineering'sQualityAssur-anceProgramsensurethatallmanufacturingandinstallationactiv-itiesconformtoacceptablequalityrequirementsthroughoutallareasofperformance.Thepertinentrequirementsof10CFR50,AppendixB,andCombustionEngineeringqualityassurancereportCENPD-210-A,Rev.3andSpecification00000-WQC-5.2willbefollow-ed.Inaddition',FloridaPower8Light'sTopicalQAReportFPL-NQA-4-12
closeproximity ofthestructures, hydrodynamic couplingeffectsbetweenthefuel,thestoragerackandthepoolarealsoincludedinthemodel.-(SeeReference 4-2foradditional information.)
TheracksareanalyzedusingafiniteelementmodelintheSAPIVcodeandtheloadsfromSection4.3.SAPIVoutputconsistsofmembranestressesandbendingmomentsforeachelementasshowninFigure4-6.Whendealingwiththistypeofelement,theresultsaregivenperunitlength;therefore, thestresscausedbythemomentwillbearrivedatbythefollowing expressions:
oB=MC/Iforaunitlengthstrip,I=ltC=t/2C/I=6/tW0=6M/tThisapproachappliestoMx,M,andMxthus,thetotalstressinanyonedirection willbe:tmemb2Thebeamsusedatthebottomofeachcavityopeningtosupportthestoredfuelassemblyareincludedinthemodelas,lumpedmasseswithnostructural rigidities.
Thebeamsarethenanalyzedforaclearerunderstanding oftheexistingstresssituation.
Againthestresscausedbythemomentwillbearrivedatbytheexpression a=MC/Iandtheshearstressbytheexpression cr=P/A.ComuterCodeDescritionsThecomputercodesusedintheseanalysesaredescribed inthefollowing subsections.
4-9 SAPIVSAPIVisageneralstructural analysisprogramforstaticanddynamicanalysisoflinearelasticcomplexstructures.
Thefiniteelementdisplacement methodisusedtosolveforthedisp'lacements andcomputethestressesofeachelementofthestructure.
Thestructure canbecomposedofunlimited numberofthree-dimensional truss,beam,plate,shell,solid,planestrain-plane stress,thickshell,spring,axisymmetric elements.
Theprogramcantreatthermalandvariousformsofmechanical loadingaswellasinternalelementloadings.
Oynamicanalysisoptionsconsistofeigenvalue solutions yieldingfrequencies andmodeshapes,responsehistorybymodesuperposition, responsehistorybydirection integration, andresponsespectrumanalysis.'arthquake typeofloadingaswellastimevaryingpressurecanbetreated.Theoutputconsistsofdisplacements ateachnodalpointaswellasinternalmemberforcesforeachelement.TheprogrambeingusedatC-Eisessentially equivalent totheversionverified, documented, andreleasedbytheUniversity ofCalifornia (Reference 4-3).CESHOCKTheCESHOCKcomputercodeperformstransient, dynamicanalysesofnon-linear elasticsystems.Thesesystemscanbeeitheraxialmodelshavingonedegree-of-freedom pernodeorlateraloneshavingonerotational andonetranslational degreeoffreedompernode.Theresponseofasystemisdetermined bynumerically integrating (usingaRunge-Kutta-Gill technique) itsequations ofmotion.Excitation cantaketheformofeitherinitialconditions ortimehistories ofappliedaccelerations, velocities displacements or4-10 forces.Thenon-linearities canconsistofgaps,friction, hyster-esisornon-linear springs.Hydrodynamic actioncanalsobemodel-ed,withbothon-diagonal (addedmass)andoff-diagonal (coupling) termsbeingconsidered.
Theprogramautomatically searchestheresponsetimehistories andprintsoutthemaximumandminimumvaluesofallnodalaccelera-tions,andmemberloadsandcangenerateanoptionaloutputtapecontaining thecompleteresponsehistories.
"CESHOCK" isanextensively
: modified, proprietary versionofthe"SHOCK"computercodedeveloped byV.K.Gabrielson andR.T.ReeseofSandiaLaboratories (Reference 4-4).Itdiffersfromtheorig-inalintheareasofdamping,coefficient ofrestitution,
: friction, hydrodynamic effects,hysteresis, inputoftimehistories, outputoptions,allowable problemsizeandthemannerofinputting stiff-nesselements.
CESHOCKhasbeenverifiedbydemonstration thatitssolutions aresubstantially identical tothoseobtainedbyhandcalculations orfromacceptedanalytical resultsviaanindependent computercode(References 4-4and4-5).4.6STRUCTURAL ACCEPTANCE CRITERIATheallowable stresslimitsfornormalandfaultedconditions asdefinedintheASMECode,SectionIII,Subsection NFare:Normal.Operating Conditions:
PrimaryMembrane(P)=16,500psiPrimaryBending(Pb)=16,500psiShear(~)=11,000psiFaultedConditions:
P=33,000psiP=33,000psib=22,000psis4-11


100A(approvedbytheNRC)describesgualityAssurancerequirementswithwhichthedesign,procurement,andfabricationofthenewfuelstoragerackswillcomply.4.7.3ConstructionTechniuesThereiisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthesespentfuelracksareinstalled.Therefore,nospecialadministrativecontrolsorprocedureswillbenecessarytoprovideradiationprotection.Standardconstructiontechniquesandprocedureswillbeutilizedduringinstallationtoensureworkersafetyandcompliancewithguidelinesfromthemanufacturer.4.8TESTINGANDIN-SERVICESURVEILLANCESincethenewfuelracksdonotincludeboronpoisonplateinserts,thereisnorequirementforspecialtestingorsurveillance.
ForsimilarspentfuelstoragerackssuppliedbyCombustion Engineer-ingforanotherutility,themaximumbendingstressunderthefaultedcondition was29,199psiascomparedtotheallowable limitsgivenabove.ThemaximumstressfortheSt.LucieUnit2storagerackswillalsobewithintheaboveallowable limits.4.7MATERIALS, QUALITYCONTROL,ANDSPECIALCONSTRUCTION TECHNIQUES 4.7.1MaterialsThespentfuelstorageracksarefabricated from304stainless steelwithamaximumcarboncontentof0.065%andconformtoASTMspecifi-cationA240.Thestainless steelforthestoragecellwallsis0.135inchesthickandfortheLinsertsthestainless steelis0.188inchesthick.AsstatedinSection9.1oftheFSAR,thefuelracksbeingreplacedarealsomadeof304stainless steelandthefuelpoolchemistry control(seeSection3.2.2)isthesameasthatdescribed intheFSAR.Therefore, thecompatibility ofthefuelrackmaterialwiththepoolwatershouldbethesameasthatsuamarized intheFSARsafetyevaluation report(NUREG-0843).
4.7.2ualitControlFloridaPower8Light'sandCombustion Engineering's QualityAssur-anceProgramsensurethatallmanufacturing andinstallation activ-itiesconformtoacceptable qualityrequirements throughout allareasofperformance.
Thepertinent requirements of10CFR50,AppendixB,andCombustion Engineering qualityassurance reportCENPD-210-A, Rev.3andSpecification 00000-WQC-5.2 willbefollow-ed.Inaddition',
FloridaPower8Light'sTopicalQAReportFPL-NQA-4-12
 
100A(approved bytheNRC)describes gualityAssurance requirements withwhichthedesign,procurement, andfabrication ofthenewfuelstoragerackswillcomply.4.7.3Construction TechniuesThereiisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthesespentfuelracksareinstalled.
Therefore, nospecialadministrative controlsorprocedures willbenecessary toprovideradiation protection.
Standardconstruction techniques andprocedures willbeutilizedduringinstallation toensureworkersafetyandcompliance withguidelines fromthemanufacturer.
4.8TESTINGANDIN-SERVICE SURVEILLANCE Sincethenewfuelracksdonotincludeboronpoisonplateinserts,thereisnorequirement forspecialtestingorsurveillance.


==4.9REFERENCES==
==4.9REFERENCES==
4-1NRCGuidance"Reviewand'AcceptanceofSpentFuelStorageandHandlingApplications",datedApril1978andmodifiedJanuary19,1979.4-2Longo,R.,andBailey,D.F.,"SeismicAnalysisofSpentFuelRacks"ANSpaperTS-7308presentedattheANSTopicalMeetingonOptionsforSpentFuelStorageatSavannah,Georgia,Sep-tember26-29,1982.'-3'Bathe,K.J.,Wilson,E.L.,andPeterson,F.E.,"SAPIV-A'tructuralAnalysisProgramforStaticandDynamicResponseof4-13


LinearSystems.",ReportNo.EERC,73-11,EarthquakeEngineeringResearchCenter,UniversityofCalifornia-Berkeley,June1973.4-4SCL-DR-65-34,"SHOCK-AComputerCodeforSolvingLumpedMassDynamicSystems",V.K.Fabrielson,January,1966.4-5TopicalReportonDynamicAnalysisofReactorVesselInternalsUnderLoss-of-CoolantAccidentConditionswithApplicationofAnalysistoCE800MweClassReactors,"CombustionEnineerin,Inc.,ReportCENPD-42,August1972(Proprietary).4-14 L-INSERTL-INSERTLOCKINGHOLEFUELASSEMBLYSUPPORTPLATESLOTFLOWPASSAGESK%SYSTEMS.COMBUSTIONENGINEERING.INC.TYPICALSPENTFUELSTORAGERACKMODULEFigure4-14-15 SYSTEMSCOMBUSriONENGiNEERING.INC.TYPICALSPENTFUELRACKMODULEL-INSERTFigure4-24-16  
4-1NRCGuidance"Reviewand'Acceptance ofSpentFuelStorageandHandlingApplications",
datedApril1978andmodifiedJanuary19,1979.4-2Longo,R.,andBailey,D.F.,"SeismicAnalysisofSpentFuelRacks"ANSpaperTS-7308presented attheANSTopicalMeetingonOptionsforSpentFuelStorageatSavannah, Georgia,Sep-tember26-29,1982.'-3'Bathe,K.J.,Wilson,E.L.,andPeterson, F.E.,"SAPIV-A'tructural AnalysisProgramforStaticandDynamicResponseof4-13
 
LinearSystems.",
ReportNo.EERC,73-11, Earthquake Engineering ResearchCenter,University ofCalifornia
-Berkeley, June1973.4-4SCL-DR-65-34, "SHOCK-AComputerCodeforSolvingLumpedMassDynamicSystems",
V.K.Fabrielson, January,1966.4-5TopicalReportonDynamicAnalysisofReactorVesselInternals UnderLoss-of-Coolant AccidentConditions withApplication ofAnalysistoCE800MweClassReactors,"
Combustion Enineerin,Inc.,ReportCENPD-42, August1972(Proprietary).
4-14 L-INSERTL-INSERTLOCKINGHOLEFUELASSEMBLYSUPPORTPLATESLOTFLOWPASSAGESK%SYSTEMS.COMBUSTION ENGINEERING.
INC.TYPICALSPENTFUELSTORAGERACKMODULEFigure4-14-15 SYSTEMSCOMBUSriONENGiNEERING.
INC.TYPICALSPENTFUELRACKMODULEL-INSERTFigure4-24-16  


pp4~V~~lg4pgH'0v~a'RVI~Vgwgpq4ea0IIVVlv~Q'4<4u>as<V'4Q~vip.s~ovltOppRf0VIIL4VlQ4v~VWeg~w<VlH<gOu+IIII4$~+~R~lsglst4pw4OtgCFigureSYSTEMSCOMBUSTIONENGINEERING.INC.SPENTFUELSTORAGEMODULE1NSTALLATION4-17  
pp4~V~~lg4pgH'0v~a'RVI~Vgwgpq4ea0IIVVlv~Q'4<4u>as<V'4Q~vip.s~ovltOppRf0VIIL4VlQ4v~VWeg~w<VlH<gOu+IIII4$~+~R~lsglst4pw4OtgCFigureSYSTEMSCOMBUSTION ENGINEERING.
INC.SPENTFUELSTORAGEMODULE1NSTALLATION 4-17  


IOOIfgCi3Cl+IQQQQQI0QQQ1ULjIC:1QQQQIIi.LI0QOI'rcrrtrootoovrtrvSCPltrotvtuULQC~0r-IlPlrrOPIIorptorvpoSCIltHtrrt111SC:ICl:I:QQ1SClltI/vO,,tC.PC~0pllorcorvroScrltPtrrtCrOvt"ICVtSrOOO~rtu'cv"IrfI~rp~II~P~~Crr(vtrltr~Ot~rl~8;~v511EPI>III~'ICPICr~~ffAIVICPICvcr~TkI~critVrrtSPOPPC0vlocprrpv1I~~I~~'OTE:Alldimensionsareininches.POWERCOMBUSTloNENGINEERING.INCSPENTFUELSTORAGEMODULEFigure4-18 8.740.1888.740SECTIONA.AAIIII4DETAILZ164.7/846WELDEDCELLBLOCKINGDEVICE"L"INSERTMODIFIED"L"INSERTSYSTEMSCOMBUSTIONENGINEERING.INCL-INSERTSFigure4-54-19  
IOOIfgCi3Cl+IQQQQQI0QQQ1ULjIC:1QQQQIIi.LI0QOI'rcrrtrootoovrtrvSCPltrotvtuULQC~0r-IlPlrrOPIIorptorvpoSCIltHtrrt111SC:ICl:I:QQ1SClltI/vO,,tC.PC~0pllorcorvroScrltPtrrtCrOvt"ICVtSrOOO~rtu'cv"IrfI~rp~II~P~~Crr(vtrltr~Ot~rl~8;~v511EPI>III~'ICPICr~~ffAIVICPICvcr~TkI~critVrrtSPOPPC0vlocprrpv1 I~~I~~'OTE:Alldimensions areininches.POWERCOMBUSTloN ENGINEERING.
INCSPENTFUELSTORAGEMODULEFigure4-18 8.740.1888.740SECTIONA.AAIIII4DETAILZ164.7/846WELDEDCELLBLOCKINGDEVICE"L"INSERTMODIFIED"L"INSERTSYSTEMSCOMBUSTION ENGINEERING.
INCL-INSERTS Figure4-54-19  


~vIov~xyMyyexyMx~LPOWERCOMBUSTIONENGINEERING.INCSAPIVCOMPUTERCODEMEMBRANESTRESSESANDBENDINGMOMENTSFigure4-64-20 COST/BENEFITASSESSMENTANOENVIRONMENTALIMPACT5.1COST/BENEFITASSESSMENT5.1.1NeedforIncreasedStoraeCaacitA.FP&Lcurrentlyhasnocontractualarrangementswithanyfuelreprocessingfacilities.FP&LexecutedthreecontractswiththeOepartmentofEnergy(OOE)onJune16,1983pursuanttotheNuclearWastePolicyActof1982,butthestorage/disposalfacilitieswillnotbeavailableforspentfuel.storageanyearlierthan1998.B.Table5-1includesaproposedrefuelingscheduleforSt.LucieUnit2,andtheexpectednumberoffuelassembliesthatwillbetransferredintothespentfuelpoolateachrefuelinguntilthetotalexistingcapacityisreached.Atpresentthelicens-edcapacityofUnit2is675storagecells.Allcalculationsinthetableforlossoffullcorereserve(FCR)arebasedonthenumberoflicensedtotalcellsinthepool.C.TheSt.LucieUnit2spentfuelpoolcontainsnospentfuelassembliesatthis'time.D.Atpresent,therearenocontrolrodassembliesorothercomponentsstoredintheSt.LucieUnit2spentfuelpool.E.Adoptionofthisproposedspentfuelstorageexpansionwouldnotnecessarilyextendthetimeperiodthatspentfuelassemb-lieswouldbestoredonsite.Spentfuel.couldbesentoffsi'teforfinaldisposition'underexistinglegislation,butthegovernmentfacilityisnotexpectedtobeavailableuntil1998.Asmattersnowstandanduntilalternatestoragefacilitiesareavailable,spentfuelassembliesonsitewillremainthere.5-1 F.TheestimatedatewhenthespentfuelpoolwillbefilledwiththeproposedincreaseinstoragecapacityisprovidedinTable5-1.5.1.2ConstructionCostsTotalconstructioncostassociatedwiththeproposedmodificationis2.4milliondollars.Thisfigureincludesthecostofdesigningandfabricatingthespentfuelracks;engineeringcostsforC-E,EbascoandFPSL;andinstallationandsupportcostsatthesite.5.1.3ConsiderationofAlternativesA.TherearenooperationalcommercialreprocessingfacilitiesavailableforFPL'sneeds,norarethereexpectedtobeanyintheforeseeablefuture.B.Atthepresenttime,therearenoexistingavailableindepen-dentspentfuelstoragefacilities.WhileplansarebeingformulatedbytheDOEforconstructionofaspentfuelstoragefacilitypertheNuclearWastePolicyActof1982,thisfacil-ityisnotexpectedtobeavailabletoacceptspentfuelanyearlierthan1998.C.Atpresent,FPLhasnolicensetotransshipfuelbetweenfacilities,norarepresentlyinstalledstorageracksatTurkeyPointUnits3and4capableof(orlicensedto)storefuelgeneratedatSt.LucieUnit2.St.LucieUnit1willlosefullcorereservecapacityuponstartupofcycle8spentfuelin1986.Therefore,transferofSt.LucieUnit,2spentfuelto't.LucieUnit1wouldonlycompoundthat.unit.'sstorageproblem'nd'snotaviableoption.5-2  
~vIov~xyMyyexyMx~LPOWERCOMBUSTION ENGINEERING.
INCSAPIVCOMPUTERCODEMEMBRANESTRESSESANDBENDINGMOMENTSFigure4-64-20 COST/BENEFIT ASSESSMENT ANOENVIRONMENTAL IMPACT5.1COST/BENEFIT ASSESSMENT 5.1.1NeedforIncreased StoraeCaacitA.FP&Lcurrently hasnocontractual arrangements withanyfuelreprocessing facilities.
FP&Lexecutedthreecontracts withtheOepartment ofEnergy(OOE)onJune16,1983pursuanttotheNuclearWastePolicyActof1982,butthestorage/disposal facilities willnotbeavailable forspentfuel.storageanyearlierthan1998.B.Table5-1includesaproposedrefueling scheduleforSt.LucieUnit2,andtheexpectednumberoffuelassemblies thatwillbetransferred intothespentfuelpoolateachrefueling untilthetotalexistingcapacityisreached.Atpresentthelicens-edcapacityofUnit2is675storagecells.Allcalculations inthetableforlossoffullcorereserve(FCR)arebasedonthenumberoflicensedtotalcellsinthepool.C.TheSt.LucieUnit2spentfuelpoolcontainsnospentfuelassemblies atthis'time.D.Atpresent,therearenocontrolrodassemblies orothercomponents storedintheSt.LucieUnit2spentfuelpool.E.Adoptionofthisproposedspentfuelstorageexpansion wouldnotnecessarily extendthetimeperiodthatspentfuelassemb-lieswouldbestoredonsite.Spentfuel.couldbesentoffsi'teforfinaldisposition
'underexistinglegislation, butthegovernment facilityisnotexpectedtobeavailable until1998.Asmattersnowstandanduntilalternate storagefacilities areavailable, spentfuelassemblies onsitewillremainthere.5-1 F.TheestimatedatewhenthespentfuelpoolwillbefilledwiththeproposedincreaseinstoragecapacityisprovidedinTable5-1.5.1.2Construction CostsTotalconstruction costassociated withtheproposedmodification is2.4milliondollars.Thisfigureincludesthecostofdesigning andfabricating thespentfuelracks;engineering costsforC-E,EbascoandFPSL;andinstallation andsupportcostsatthesite.5.1.3Consideration ofAlternatives A.Therearenooperational commercial reprocessing facilities available forFPL'sneeds,norarethereexpectedtobeanyintheforeseeable future.B.Atthepresenttime,therearenoexistingavailable indepen-dentspentfuelstoragefacilities.
Whileplansarebeingformulated bytheDOEforconstruction ofaspentfuelstoragefacilitypertheNuclearWastePolicyActof1982,thisfacil-ityisnotexpectedtobeavailable toacceptspentfuelanyearlierthan1998.C.Atpresent,FPLhasnolicensetotransship fuelbetweenfacilities, norarepresently installed storageracksatTurkeyPointUnits3and4capableof(orlicensedto)storefuelgenerated atSt.LucieUnit2.St.LucieUnit1willlosefullcorereservecapacityuponstartupofcycle8spentfuelin1986.Therefore, transferofSt.LucieUnit,2spentfuelto't.LucieUnit1wouldonlycompoundthat.unit.'sstorageproblem'nd's notaviableoption.5-2  


D.Estimatesforcostsofreplacementpowerwerecalculatedbasedonthelastofficialrateofreturn.Theassumptionwasmadethattheunitcouldbeoperatedwithoutmaintainingfullcorereserve,thuscycle10in1996wouldbethelastrefuelingpossiblewithexistingstoragecapacity.Table5-2indicatestheaverageyearlyfuelcostincreasesforSt.LucieUnit2after3yearsofreactorshutdown.PlantshutdownwouldplaceaheavyfinancialburdenonFloridaresidentswithinFP8L'sserviceareaandcannotbejustified.5.1.4ResourcesCommittedRerackingofthespentfuelpoolwillnotresultinanyirreversibleandirretrievablecommitmentsofwater,landandairresources.Thelandareanowusedforthespentfuelpoolwillbeusedmoreeffi-cientlybysafelyincreasingthedensityoffuelstorage.ThematerialsusedfornewrackfabricationarediscussedinSection4.7.1ofthisreport.Thematerialsarenotexpectedtosignifi-cantlyforeclosealternativesavailablewithrespecttoanyotherlicensingactionsdesignedtoimprovethepossibleshortageofspentfuelstoragecapacity.5.1.5ThermalImactontheEnvironmentThethermalanalysisforthespentfuelpoolcoolingsystemispresentedinSection3.2ofthisreport.Thatanalysisincludedthemaximumspentfueldecayheatloadfornormal,abnormal,andacci-dentconditions.AsaresultofthererackingofSt.LucieUnit',themaximumdecayheatloadfornormalstorageincreasedfrom12.5x10Btu/hrto15.3x10Btu/hrandforabnormalandaccidentstoragetheheatloadincreasedfrom29.9x10Btu/hrto30.3x106Btu/hr.Thisincreasedheatloadresultsinanincreaseof6'Finthemaximumfuelpoolwatertemperatureforthe"normal"case,and1'Fforthe"abnormal"and"accident"cases.Sincetheevaporationrateisassumedtobezero,theincreaseddecayheatloadisalso5-3 theincreasedloadonthecoolingsystemandtheincreasedheatrejectedtotheenvironment.Thetotalplantheatloadrejectedtotheenvironmentisabout6.4x10Btu/hr(seeSection5.1.2.2.1of9~theEnvironmentalReportOperatingLicense).Therefore,theper-centageincreaseinheatrejectedtotheenvironmentislessthan0.05Kfornormalfuelstorageand0.01%foraccidentstorage.5.2RADIOLOGICALEVALUATION5.2.1SolidRadwasteNospentfueliscurrentlystoredintheUnit2spentfuelpool.St.LucieUnit2begancommercialoperationinAugust1983andwillnotberefueleduntilatleastOctober1984.Therefore,nosolidradioactivewasteiscurrentlygeneratedbythespentfuelpoolpurificationsystem,norwillanysolidradwastebegeneratedduringtheactualrerackingoperation.S'incethegreatmajorityofcontam-inationcollectedbythepurificationsystemderiveseitherfromfreshlyunloadedfuelortheintermixingofspentfuelpoolfluidwithprimaryfluidduringrefueling,increasingthestoragecapacityhasnosignificanteffectonthequantityofwastecollected.Theeffectivechangeinincreasingthestoragecapacityofthespent.fuelpoolistheretentionofolderfuelelementsinthepoolbeyondthetimewhen".heywouldhaveotherwisebeenshippedoffsitefordisposalorreprocessing.Operati.ngplantexperiencewithhighdensityfuelstorage(St.LucieUnitI),hasindicatedthatonly35cubicfeetofresinsaregenerat-edperyear.."''5;2.2Gaseous"RadwasteKrypton-85wouldonlybereleasedtothepoolwaterandsubsequentlytotherefuelingbuildingatmospherefromleakingfuelassemblies.Fornormaloperatingconditions,mostofthekryptonwouldcomefrom5-4  
D.Estimates forcostsofreplacement powerwerecalculated basedonthelastofficialrateofreturn.Theassumption wasmadethattheunitcouldbeoperatedwithoutmaintaining fullcorereserve,thuscycle10in1996wouldbethelastrefueling possiblewithexistingstoragecapacity.
Table5-2indicates theaverageyearlyfuelcostincreases forSt.LucieUnit2after3yearsofreactorshutdown.
Plantshutdownwouldplaceaheavyfinancial burdenonFloridaresidents withinFP8L'sserviceareaandcannotbejustified.
5.1.4Resources Committed Reracking ofthespentfuelpoolwillnotresultinanyirreversible andirretrievable commitments ofwater,landandairresources.
Thelandareanowusedforthespentfuelpoolwillbeusedmoreeffi-cientlybysafelyincreasing thedensityoffuelstorage.Thematerials usedfornewrackfabrication arediscussed inSection4.7.1ofthisreport.Thematerials arenotexpectedtosignifi-cantlyforeclose alternatives available withrespecttoanyotherlicensing actionsdesignedtoimprovethepossibleshortageofspentfuelstoragecapacity.
5.1.5ThermalImactontheEnvironment Thethermalanalysisforthespentfuelpoolcoolingsystemispresented inSection3.2ofthisreport.Thatanalysisincludedthemaximumspentfueldecayheatloadfornormal,abnormal, andacci-dentconditions.
Asaresultofthereracking ofSt.LucieUnit',themaximumdecayheatloadfornormalstorageincreased from12.5x10Btu/hrto15.3x10Btu/hrandforabnormalandaccidentstoragetheheatloadincreased from29.9x10Btu/hrto30.3x106Btu/hr.Thisincreased heatloadresultsinanincreaseof6'Finthemaximumfuelpoolwatertemperature forthe"normal"case,and1'Fforthe"abnormal" and"accident" cases.Sincetheevaporation rateisassumedtobezero,theincreased decayheatloadisalso5-3 theincreased loadonthecoolingsystemandtheincreased heatrejectedtotheenvironment.
Thetotalplantheatloadrejectedtotheenvironment isabout6.4x10Btu/hr(seeSection5.1.2.2.1of9~theEnvironmental ReportOperating License).
Therefore, theper-centageincreaseinheatrejectedtotheenvironment islessthan0.05Kfornormalfuelstorageand0.01%foraccidentstorage.5.2RADIOLOGICAL EVALUATION 5.2.1SolidRadwasteNospentfueliscurrently storedintheUnit2spentfuelpool.St.LucieUnit2begancommercial operation inAugust1983andwillnotberefueleduntilatleastOctober1984.Therefore, nosolidradioactive wasteiscurrently generated bythespentfuelpoolpurification system,norwillanysolidradwastebegenerated duringtheactualreracking operation.
S'incethegreatmajorityofcontam-inationcollected bythepurification systemderiveseitherfromfreshlyunloadedfuelortheintermixing ofspentfuelpoolfluidwithprimaryfluidduringrefueling, increasing thestoragecapacityhasnosignificant effectonthequantityofwastecollected.
Theeffective changeinincreasing thestoragecapacityofthespent.fuelpoolistheretention ofolderfuelelementsinthepoolbeyondthetimewhen".heywouldhaveotherwise beenshippedoffsitefordisposalorreprocessing.
Operati.ng plantexperience withhighdensityfuelstorage(St.LucieUnitI),hasindicated thatonly35cubicfeetofresinsaregenerat-edperyear.."''5;2.2Gaseous"Radwaste Krypton-85 wouldonlybereleasedtothepoolwaterandsubsequently totherefueling buildingatmosphere fromleakingfuelassemblies.
Fornormaloperating conditions, mostofthekryptonwouldcomefrom5-4  


themostrecentlydischargedbatchoffuel.Afterthemostrecentbatchhascooledinthepoolfor12months,thepressurebuildupinafuelpinwhichcauses'thereleaseofkryptonwillbesmall.Thus,anyincreaseinKrypton-85activityattributedtotheincreaseinspentfuelpoolstoragecapacityisexpectedtobesmallcomparedtothetotalquantityofallnoblegasesreleased.Operatingplantexperiencewithhighdensityfuelstorage(St.LucieUnitI),indicatesthattherewerenomeasurablecontinuousreleasesofKrypton-85overthepasttwoyearsfromtheFuelHandlingBuildingventilationsystem.5.2.3PersonnelExosureA.DataisnotavailableregardingrecentgammaisotopicanalysisofSt.LucieUnit2spentfuelpoolwater.Inlieu,recentgammaisotopicanalysisisprovidedinTable5-3forSt.LucieUnitI,whichpresentlyuseshighdensityspentfuelstorageracks.FuelpoolactivitiesforSt.LucieUnit2areexpectedtobewithinthevaluespresentedintheFSARinSection'1.1.2.2andTable11.1-15.B.ExternaldoseequivalentratesarenotavailablefortheSt.LucieUnit2spentfuelpool;however,operatingplantexperi-ence(St.LucieUnit1)indicatesradiationlevelslessthanIMR/HRabovethesurfaceofthespentfuelpool.C.DataisnotavailableregardingairborneradionuclidesfortheSt.LucieUnit2spentfuelpool;however,operatingplant-experience(St.LucieUnit1)indicatesairbornelevelsaretypicallylessthantheminimumdetectableactivityofthe'quipment(GeLiDetector)usedforgammaspectroscopy.D.Sinceoperatingexperiencehasshownminimalairborneradio-activity,noincreasesindoserateinthespentfuelpoolareaoratthesiteboundaryareanticipated.5-5  
themostrecentlydischarged batchoffuel.Afterthemostrecentbatchhascooledinthepoolfor12months,thepressurebuildupinafuelpinwhichcauses'the releaseofkryptonwillbesmall.Thus,anyincreaseinKrypton-85 activityattributed totheincreaseinspentfuelpoolstoragecapacityisexpectedtobesmallcomparedtothetotalquantityofallnoblegasesreleased.
Operating plantexperience withhighdensityfuelstorage(St.LucieUnitI),indicates thattherewerenomeasurable continuous releasesofKrypton-85 overthepasttwoyearsfromtheFuelHandlingBuildingventilation system.5.2.3Personnel ExosureA.Dataisnotavailable regarding recentgammaisotopicanalysisofSt.LucieUnit2spentfuelpoolwater.Inlieu,recentgammaisotopicanalysisisprovidedinTable5-3forSt.LucieUnitI,whichpresently useshighdensityspentfuelstorageracks.Fuelpoolactivities forSt.LucieUnit2areexpectedtobewithinthevaluespresented intheFSARinSection'1.1.2.2andTable11.1-15.B.Externaldoseequivalent ratesarenotavailable fortheSt.LucieUnit2spentfuelpool;however,operating plantexperi-ence(St.LucieUnit1)indicates radiation levelslessthanIMR/HRabovethesurfaceofthespentfuelpool.C.Dataisnotavailable regarding airborneradionuclides fortheSt.LucieUnit2spentfuelpool;however,operating plant-experience (St.LucieUnit1)indicates airbornelevelsaretypically lessthantheminimumdetectable activityofthe'quipment (GeLiDetector) usedforgammaspectroscopy.
D.Sinceoperating experience hasshownminimalairborneradio-activity, noincreases indoserateinthespentfuelpoolareaoratthesiteboundaryareanticipated.
5-5  


E.Asstatedin5.2.1,baseduponoperatingplantexperiencewithhighdensityfuelstorageracks,therewillbenosignificantincreaseintheradioactivewastegeneratedbythespentfuelpoolpurificationsystem.Thisisbecausethereisnosignifi-cantincreaseintheradioactivitylevelsinthespentfuelpoolwaterwithhighdensityfuelstorageracks;thereforespentfuelpoolcoolingandpurificationfiltersneednotbereplacedmorefrequently.Thustheannualman-remburdenisnotexpectedtoincreaseduetotheincreasedfuelstorage.F.Mostofthecrudassociatedwithspentfuelstorageisreleasedsoonafterfuelisremovedfromthereactor.Oncefuelisplacedintothespentfuelstorageracks,additionalcrudcontributionisminimal.Thehighestpossiblewaterlevelwillbemaintainedinthespentfuelpool(>23feetabovethefuelassemblies)tokeepexposureaslowasreasonablyachievable.Afuelpoolskimmerisusedduringpurificationoperationstoremoveanyfloatingpollutants,therebyfurtherprecludingthedepositionofcrudonthespentfuelpoolwalls.G.Sections5.2.3.eand5.2.3.findicatethatoperatingexperiencewithhighdensityrackshasshownnosignificantincreaseinradioactivitylevelsinspentfuelpoolwaterordoseratesabovethespentfuelpool.AsstatedinSections5.2.1and5.2.3.e,operatingexperiencehasshownnoincreaseintheprocessingofsolidradioactivewasteorannualman-remburdenassociatedwithit.TheSt.LuciePlantRadiationProtectionprogramisdescribed.inChapter12oftheFSAR.BasedonexperiencewiththererackingofSt.LucieUnit1,nomodificationstotheprogram'reanticipatedasaresultoftheSt.LucieUnit2rerack.5-6  
E.Asstatedin5.2.1,baseduponoperating plantexperience withhighdensityfuelstorageracks,therewillbenosignificant increaseintheradioactive wastegenerated bythespentfuelpoolpurification system.Thisisbecausethereisnosignifi-cantincreaseintheradioactivity levelsinthespentfuelpoolwaterwithhighdensityfuelstorageracks;therefore spentfuelpoolcoolingandpurification filtersneednotbereplacedmorefrequently.
~~5.I.4~RkOiTheex>stingspentfuelstoragerackshaveneverbeenusedtostorespentfuelandconsequentlyarenotcontaminated.Therackswillbedisposedthroughroutineindustrialmeans.Thetotalweightoftheseracksisapproximately122,540pounds.Theracksconsistofeightmodules;fourweighingapproximately13,140poundseachandtheotherfourapproximately17,520poundseach.5.3ACCIDENTEVALUATION5.3.1SentFuelHandlinAccidents5.3.1.1CaskDropAsdiscussedinFSARSection9.1,theconstructionoftheFuelHandlingBuilding,thedesignofthecaskhandlingcraneandthetravellimitswitchinterlockcircuitryaresuchthatthespentfuelcaskcannottraverseoverthespentfuel.Fromthespentfuelcaskstorage,thecranemovesthecaskloadedwithspentfuelassembliesoutoftheFuelHandlingBuildingtothedecontaminationareaontotheshippingvehicleforoffsiteshipment.AsdiscussedinFSARSubsection9.1.4.3,althoughitisnotlikely,thepotentialdropofaspentfuelcaskisabout43ftjustoutsidetheFuelHandlingBuilding.Itisconservativelypostulatedthatacaskdropaccidentof43ftresultsinthedamageofalltheassembliescontainedinthecas,kandtheinstantaneousreleaseofactivitytotheatmosphere.Itisassumedthataspentfuelcaskcontaining10irradiatedfuelassembliesisinthepr'ocessofbeingmovedwiththecasksuspendedfromthecraneabovethetransportvehicle.Throughsomeunspeci-fiedfailure,thecaskbecomesdisengagedfromthecraneandfalls43ftontoanunyieldingsurface.Theactivityfromthedamagedfuelbundlesispostulatedtobereleasedtotheenvironment,atgroundlevel.5-7  
Thustheannualman-remburdenisnotexpectedtoincreaseduetotheincreased fuelstorage.F.Mostofthecrudassociated withspentfuelstorageisreleasedsoonafterfuelisremovedfromthereactor.Oncefuelisplacedintothespentfuelstorageracks,additional crudcontribution isminimal.Thehighestpossiblewaterlevelwillbemaintained inthespentfuelpool(>23feetabovethefuelassemblies) tokeepexposureaslowasreasonably achievable.
Afuelpoolskimmerisusedduringpurification operations toremoveanyfloatingpollutants, therebyfurtherprecluding thedeposition ofcrudonthespentfuelpoolwalls.G.Sections5.2.3.eand5.2.3.findicatethatoperating experience withhighdensityrackshasshownnosignificant increaseinradioactivity levelsinspentfuelpoolwaterordoseratesabovethespentfuelpool.AsstatedinSections5.2.1and5.2.3.e,operating experience hasshownnoincreaseintheprocessing ofsolidradioactive wasteorannualman-remburdenassociated withit.TheSt.LuciePlantRadiation Protection programisdescribed
.inChapter12oftheFSAR.Basedonexperience withthereracking ofSt.LucieUnit1,nomodifications totheprogram'reanticipated asaresultoftheSt.LucieUnit2rerack.5-6  
~~5.I.4~RkOiTheex>stingspentfuelstoragerackshaveneverbeenusedtostorespentfuelandconsequently arenotcontaminated.
Therackswillbedisposedthroughroutineindustrial means.Thetotalweightoftheseracksisapproximately 122,540pounds.Theracksconsistofeightmodules;fourweighingapproximately 13,140poundseachandtheotherfourapproximately 17,520poundseach.5.3ACCIDENTEVALUATION 5.3.1SentFuelHandlinAccidents 5.3.1.1CaskDropAsdiscussed inFSARSection9.1,theconstruction oftheFuelHandlingBuilding, thedesignofthecaskhandlingcraneandthetravellimitswitchinterlock circuitry aresuchthatthespentfuelcaskcannottraverseoverthespentfuel.Fromthespentfuelcaskstorage,thecranemovesthecaskloadedwithspentfuelassemblies outoftheFuelHandlingBuildingtothedecontamination areaontotheshippingvehicleforoffsiteshipment.
Asdiscussed inFSARSubsection 9.1.4.3,althoughitisnotlikely,thepotential dropofaspentfuelcaskisabout43ftjustoutsidetheFuelHandlingBuilding.
Itisconservatively postulated thatacaskdropaccidentof43ftresultsinthedamageofalltheassemblies contained inthecas,kandtheinstantaneous releaseofactivitytotheatmosphere.
Itisassumedthataspentfuelcaskcontaining 10irradiated fuelassemblies isinthepr'ocessofbeingmovedwiththecasksuspended fromthecraneabovethetransport vehicle.Throughsomeunspeci-fiedfailure,thecaskbecomesdisengaged fromthecraneandfalls43ftontoanunyielding surface.Theactivityfromthedamagedfuelbundlesispostulated tobereleasedtotheenvironment, atgroundlevel.5-7  


TheanalysisisbasedonStandardReviewPlan15.7.5.ThemodelsusedforevaluationoftheradiologicaldosesaredescribedinAppendix158oftheFSAR.TheparametersandassumptionsusedarepresentedinTable5-4.ThedataforarealisticanalysisarealsoincludedinTable5-4forcomparisonpurposes.Thecaskdropaccidentanalysisassumesthatallthefuelisdamagedandallofthegapactivityisreleasedatgroundleveltotheenvironment.Thisconsistsof10percentofthenoblegases,30percentoftheKr-85and10percentoftheradioactiveiodineinthefuelrodsatthetimeoftheaccident.Thevaluesassumedforindividualfissionproductinventoriesincludedaradialpeakingfactorof2.0andaradioactivedecayof90days.TheactivityreleasetotheenvironmentispresentedinTable5-5.Themaximumoffsitedoseproducedisnomorethan24.0remforthetwo-hourinhalationthyroiddoseattheexclusionareaboundary.Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-6.Resultsarewellwithintheacceptancecriteriaof10CFR100andNRCguidelinesinSection15.7.5oftheNRCStandardReviewPlan(NUREG-0800).ThesedosesindicatethatresultsarelowerthanNRCguidelinesbyatleastafactorofthreeandthatthoseguidelineswouldbemetevenforaradialpowerpeakingfactorof6.2,ascomparedtothevalueof2.'0assumedinthisanalysis.'.3.1.2OverheadCraneNocran'ecapableofcarryingheavyloadscanmoveintheareaofthespentfuelpool.(Theanalysisoflight1'oadsissummarizedinSection5.3.4ofthisreport.)ProtectionagainstdroppingthespentfuelcaskintothespentfuelstoragepoolisprovidedbythebasiclayoutoftheFuelHandlingBuilding(refertoFSARFigures1.2-16and1.2-17).Thecaskhandlingarrangement(roofopeningvs.5-8 poollocation)makesitimpossibletopassthecaskoverthespentfuelpool.Thecaskisassignedaseparatestoragepooladjacenttothespentfuelpool.ThecaskdecontaminationandwashdownareasarelocatedoutsidetheFuelHandlingBuilding.TheplanatEleva-tion96.83feetshowsthelocationandsizeoftheroofopeningthroughwhichthefuelcaskcranehoistropescanpass.Thehori-zontalmovementoftheropes,andthereforeofthecranehook,islimitedbytheroofopening.Theplanatelevation19.50feetshowsthelocationanddimensionsofthespentfuelpool.Acomparisonofthetwoplansshowsthatthecranehookispreventedfromapproach-ingthespentfuelpoolbythelimitsoftheroofopening.AdditionalprotectionisaffordedbythetrolleybumpersandasetoflimitswitchesworkingtogetherwithbridgeandtrolleybrakestopreventmovementofthehookintotherestrictedareaasshownonPartialPlanAofFSARFigure1.2-16.Theprimarysetoflimitswitchesandbridgeandtrolleybrakesisbackedupbyanindepen-dentsecondarysetdesignedtoperformthesamefunction.Undertheseconditionsthehookmovementwithinthebuildingislimitedtoanarrowcorridorsufficienttobringthecaskintothebuildingandplaceitinthecenterofthecaskstoragepool.Therearenosafetyrelatedcomponentslocatedunderthetravelpathofthespentfuelcask.Acaskdroppedontoeitheroftheseparatingwallsbetweenthespentfuelpoolandcaskstoragepool,afterdroppingontoandtippingovertheexteriorwall,fallsbackintothecaskstoragepool.Thedesignofthecaskyokewillpreventthecaskfromdroppinginotherthanverticalorientation.PleaserefertoFSARFigures9.1-21and22whichillustratetheconceptofthedoubleyoke.Itisapparentthattwofailuremodesexist:.1.Onesideofthedoubleyokefailsandthenon-redundantmainhookdoesnot.Theconsequenceofthisisthat,sincethecask5-9  
TheanalysisisbasedonStandardReviewPlan15.7.5.Themodelsusedforevaluation oftheradiological dosesaredescribed inAppendix158oftheFSAR.Theparameters andassumptions usedarepresented inTable5-4.Thedataforarealistic analysisarealsoincludedinTable5-4forcomparison purposes.
Thecaskdropaccidentanalysisassumesthatallthefuelisdamagedandallofthegapactivityisreleasedatgroundleveltotheenvironment.
Thisconsistsof10percentofthenoblegases,30percentoftheKr-85and10percentoftheradioactive iodineinthefuelrodsatthetimeoftheaccident.
Thevaluesassumedforindividual fissionproductinventories includedaradialpeakingfactorof2.0andaradioactive decayof90days.Theactivityreleasetotheenvironment ispresented inTable5-5.Themaximumoffsitedoseproducedisnomorethan24.0remforthetwo-hourinhalation thyroiddoseattheexclusion areaboundary.
Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-6.Resultsarewellwithintheacceptance criteriaof10CFR100andNRCguidelines inSection15.7.5oftheNRCStandardReviewPlan(NUREG-0800).
ThesedosesindicatethatresultsarelowerthanNRCguidelines byatleastafactorofthreeandthatthoseguidelines wouldbemetevenforaradialpowerpeakingfactorof6.2,ascomparedtothevalueof2.'0assumedinthisanalysis.'.3.
1.2OverheadCraneNocran'ecapableofcarryingheavyloadscanmoveintheareaofthespentfuelpool.(Theanalysisoflight1'oadsissummarized inSection5.3.4ofthisreport.)Protection againstdroppingthespentfuelcaskintothespentfuelstoragepoolisprovidedbythebasiclayoutoftheFuelHandlingBuilding(refertoFSARFigures1.2-16and1.2-17).Thecaskhandlingarrangement (roofopeningvs.5-8 poollocation) makesitimpossible topassthecaskoverthespentfuelpool.Thecaskisassignedaseparatestoragepooladjacenttothespentfuelpool.Thecaskdecontamination andwashdownareasarelocatedoutsidetheFuelHandlingBuilding.
TheplanatEleva-tion96.83feetshowsthelocationandsizeoftheroofopeningthroughwhichthefuelcaskcranehoistropescanpass.Thehori-zontalmovementoftheropes,andtherefore ofthecranehook,islimitedbytheroofopening.Theplanatelevation 19.50feetshowsthelocationanddimensions ofthespentfuelpool.Acomparison ofthetwoplansshowsthatthecranehookisprevented fromapproach-ingthespentfuelpoolbythelimitsoftheroofopening.Additional protection isaffordedbythetrolleybumpersandasetoflimitswitchesworkingtogetherwithbridgeandtrolleybrakestopreventmovementofthehookintotherestricted areaasshownonPartialPlanAofFSARFigure1.2-16.Theprimarysetoflimitswitchesandbridgeandtrolleybrakesisbackedupbyanindepen-dentsecondary setdesignedtoperformthesamefunction.
Undertheseconditions thehookmovementwithinthebuildingislimitedtoanarrowcorridorsufficient tobringthecaskintothebuildingandplaceitinthecenterofthecaskstoragepool.Therearenosafetyrelatedcomponents locatedunderthetravelpathofthespentfuelcask.Acaskdroppedontoeitheroftheseparating wallsbetweenthespentfuelpoolandcaskstoragepool,afterdroppingontoandtippingovertheexteriorwall,fallsbackintothecaskstoragepool.Thedesignofthecaskyokewillpreventthecaskfromdroppinginotherthanverticalorientation.
PleaserefertoFSARFigures9.1-21and22whichillustrate theconceptofthedoubleyoke.Itisapparentthattwofailuremodesexist:.1.Onesideofthedoubleyokefailsandthenon-redundant mainhookdoesnot.Theconsequence ofthisisthat,sincethecask5-9  


willstillbesupportedonthreesides,thecaskcenterofgravitywillnotdropandnosignificantpendulummotioncanbeinitiated.2.Onesideofthedoubleyokefails,followedbyfailureofthenon-redundantmainhook.Thecaskisexpectedtofallstraightdown.Insummary,thedoubleyokearrangementprovidesadequateprotectionagainsttheinitiationofpendulummotionintheeventofayokefailure.Thereisnoconceivablefailuremodewhichwouldcausethecasktofallovertheseparatingwallintothespentfuelpool.AsetofredundantupperlimitswitchespreventsthecranefromliftingthecaskaboveElevation62.5ft.5.3.1.3FuelAssemblyDropThepossibilityofafuelhandlingaccidentisremotebecauseofthemanyinterlocksandadministrativecontrolsandphysicallimitationsimposedonthefuelhandlingoperations(refertoFSARSubsection9.1.4).Allrefuelingoperationsareconductedinaccordancewithprescribedproceduresunderdirectsurveillanceofasupervisortechnicallytrainedinnuclearsafetyandfuelhandling.Notwithstandingtheabove,thefuelhandlingaccidentisassumedtooccurasaconsequenceofafailureofthefuelassemblyliftingmechanismresultinginthedroppingofaraisedfuelassemblyontothespentfuelpool.Theearliestanticipatedtimeatwhichaspentfuelassemblycouldbehandledisthreedaysaftershutdown.Forthisevaluation,droppingofafuelassemblyisassumedtooccur,breachingthecladdingandreleasingthevolatilefissionproductsfromthegasgapofthefuelpins.Inadditiontothearearadiationmonitorlocatedinthespentfuelcaskarea,portableradiationmonitors5-10 capableofemittingaudiblealarmsarelocatedinthisareaduringfuelhandlingoperations.DoorsintheFuelHandlingBuildingareclosedtomaintaincontrolledleakagecharacteristicsinthespentfuelpoolregionduringrefuelingoperationsinvolvingirradiatedfuel-.Shouldafuelassemblybedroppedinthefueltransfercanalorinthespentfuelpoolandreleaseradioactivityaboveapres-cribedlevel,theairborneradiationmonitorssoundanalarm,alertingpersonneltotheproblem.AirborneradiationmonitorsintheFuelHandlingBuildingisolatethenormalFuelHandlingBuildingVentilationSystemandautomaticallyinitiatethefiltrationsystems(refertoSubsection6.2.3oftheFSAR).Themodelsusedforevaluationoftheradiologicaldosesaredes-cribedinAppendix15BoftheFSAR.,AssumptionsandparametersusedinevhluatingthefuelhandlingaccidentareconsistentwithRegulatoryGuides1.13"SpentFuelStorageFacilityDesignBasis"December1975(Rl)and1.25"Assump-tionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaFuelHandlingAccidentintheFuelHandlingandStorageFacilityforBWRandPWRs"March1972(RO)recommendations,asshowninTable5-7.Theradioactiveinventoryofthe236fuelrodswasobtainedbymultiplyingtheactivityofthemostradioactivefuelrod72hoursaftershutdownbyafactorof236.ThecalculationalmethodsandassumptionsdescribedinRegulatoryGuide1.25(RO)applysince:a)thevaluesformaximumfuelrodpressurization,b)peaklinearpowerdensityforthehighestpowerassemblydischarged,c)maximumcenterlineoperatingfueltemperaturefortheassemblyinitemb)'bove,andd)averageburnupforthepeakassemblyinitemb)abovearelessthanthecorrespondingvaluesinRegulatoryGuide1.25(RO)..TheassumptionsandparametersacceptableforarealisticanalysisarealsoindicatedinTable5-7forcomparisonpurposes.5-11 TheradioactivityreleasedtotheenvironmentispresentedinTable5-8.Themaximumoffsitedoseproducedisnomorethan3.0remtwo-hourinhalationthyroiddoseattheexclusionareaboundary.Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-9.Resultsarewellwithintheacceptancecriteriaof10CFR100andNRCguidelinesinSection15.7.4oftheNRCStandardReviewPlan(NUREG-0800).ThesedosesindicatethatresultsarelessthanNRCguidelinesbyafactorof25andthatthoseguidelineswouldbemeteasilyevenforaradialpowerpeakingfactorgreaterthanthatassumedinthisanalysis.5.3.1.4SpentFuelHandlingMachineThespentfuelhandlingmachine,asshownonFSARFigure9.1-14,isatravelingbridgeandtrolleythatridesonrailsoverthespentfuelpool,fueltransferpoolandcaskloadingpit.Motorsonthebridgeandtrolleypositionthemachineoverthespentfuelassemblystorageracks,thenewfuelelevator,theupendingmachine,andfuelshippingcask.Anoverheadcraneisusedtotransfernewfuelfromthenewfuelstoragerackstothenewfuelelevator.Thespentfuelhandlingmachinehoistisprovidedwithalonghandlingtoolwhichengagesthefuelassemblyto'emoved.Oncethefuelassemblyisgrappled,thecableandhoistwinchraisethefuelassembly..Themachinethentransportsthefuelassemblyfromtheupendingmachinetothespentfuelstorageracks(spentfuel),fromthenewfuelelevatortotheupendingmachine(newfuel),orfromthespentfuelstoragerackstothefuelshippingcask.Thecontrolsforthespentfuelhandlingmachinearemountedonaconsolelocatedonthespentfuelhandlingmachinetrolley.Coor-dinatelocationofthe'bridgeisindicatedbysynchrosattheconsole,andthetrolleypositionisindicatedbyapointerand.targetsystem.5-12 Duringwithdrawalorinsertionofafuelassembly,theloadonthehoistcableismonitoredtoensurethatmovementisnotbeingrestricted.Overloadandunderloadsetpointsareprovidedtointerrupthoistoperationatpreassignedlevelsofcableload,therebyprotectingfuelassembliesduringhoistingoperations.Positivelockingisprovidedbetweenthegrapplingdeviceandthefuelassemblytopreventinadvertentuncoupling.Thedrivesforboththebridgeandthetrolleyprovideclosecontrolforaccuratepositioning,andbrakesareprovedtomaintainthepositiononceachieved.Inaddition,interlocksareinstalledsothatmovementofthespentfuelhandlingmachineisnotpossible'whenthehoistiswithdrawingorinsertinganassembly.Manually-operatedhandwheelsareprovidedforbridge,trolley,andwinchmotionsintheeventofapowerloss.5.3.2~Abeli~~~AsdescribedaboveinSection5.3.1.2,itisnotpossibletodropthespentfueicaskontothespentfuelracks.Forthedropofthecaskoutsidethefuelhandlingbuilding,theconservativeanalysissummarizedinSection5.3.l.1abovedemonstratedthatresultingradiologicaldosesarewellwithinacceptancecriteria.Inevaluatingthedropofafuelassemblyfromthespentfuelhandlingmachineintothespentfuelpool(Section5.3.1.3),itwasconservativelyassumedthatallfuelrodsinthedroppedfuelassemblyweredamaged.Theanalysisshowedthattheradiologicaldoseswerealsowellwithinacceptancecriteria.~'P5-13  
willstillbesupported onthreesides,thecaskcenterofgravitywillnotdropandnosignificant pendulummotioncanbeinitiated.
~~f5.L3~F1DThepresenttechnicalspecificationonfueldecaytimepriortoremovalofirradiatedfuelfromthereactorvesselandthestoragecapacityofthespentfuelracksensurethatthetotaldecayheatloadfromthespentfuelpoolislessthanthecapacityofthefuelpoolcoolingheatexchanger.ThefuelpoolcoolinganalysisisdescribedinSection3.2.Also,thetechnicalspecificationonfueldecaytimepriortoremovaloffuelfromthereactorvesselensuresthattheassumptionsonradioactivitycontentofthefuelinthefuelassemblyandcaskdropaccidentanalyses(Sections5.3.1.1and5.3.1.3)aremet.5.3.4LoadsOverSentFuelAsdescribedinSection9.1oftheFSAR,therearenolightloads(objectslessthanorequaltotheweightofafuelassembly)whichcouldbecarriedoverspentfuelineitherthecontainmentbuildingorinthespentfuelpoolwhichwouldresultinfueldamagemoreseverethanthatassumedintheaccidentanalysis(i.e.,damageofallfuelrodsinonefuelassembly).AsdescribedinSection5.3.1.2above,thedesignsofthefuelhandlingbuildingandtheoverheadcraneensurethatheavyloadscannotbecarriedoverthespentfuelpool.5.3.5ConclusionsSincethespentfuelcaskcannotfallontothespentfuelracks,thehighercapacityofthespentfuelrackdesigndoesnotaffect,byitself,resultsofthefuelcaskdropaccidentdescribedabove(Section5.3.1.1).Also,thespentfuelrackdesigndoesnotaffect5-14  
2.Onesideofthedoubleyokefails,followedbyfailureofthenon-redundant mainhook.Thecaskisexpectedtofallstraightdown.Insummary,thedoubleyokearrangement providesadequateprotection againsttheinitiation ofpendulummotionintheeventofayokefailure.Thereisnoconceivable failuremodewhichwouldcausethecasktofallovertheseparating wallintothespentfuelpool.Asetofredundant upperlimitswitchespreventsthecranefromliftingthecaskaboveElevation 62.5ft.5.3.1.3FuelAssemblyDropThepossibility ofafuelhandlingaccidentisremotebecauseofthemanyinterlocks andadministrative controlsandphysicallimitations imposedonthefuelhandlingoperations (refertoFSARSubsection 9.1.4).Allrefueling operations areconducted inaccordance withprescribed procedures underdirectsurveillance ofasupervisor technically trainedinnuclearsafetyandfuelhandling.
Notwithstanding theabove,thefuelhandlingaccidentisassumedtooccurasaconsequence ofafailureofthefuelassemblyliftingmechanism resulting inthedroppingofaraisedfuelassemblyontothespentfuelpool.Theearliestanticipated timeatwhichaspentfuelassemblycouldbehandledisthreedaysaftershutdown.
Forthisevaluation, droppingofafuelassemblyisassumedtooccur,breaching thecladdingandreleasing thevolatilefissionproductsfromthegasgapofthefuelpins.Inadditiontothearearadiation monitorlocatedinthespentfuelcaskarea,portableradiation monitors5-10 capableofemittingaudiblealarmsarelocatedinthisareaduringfuelhandlingoperations.
DoorsintheFuelHandlingBuildingareclosedtomaintaincontrolled leakagecharacteristics inthespentfuelpoolregionduringrefueling operations involving irradiated fuel-.Shouldafuelassemblybedroppedinthefueltransfercanalorinthespentfuelpoolandreleaseradioactivity aboveapres-cribedlevel,theairborneradiation monitorssoundanalarm,alertingpersonnel totheproblem.Airborneradiation monitorsintheFuelHandlingBuildingisolatethenormalFuelHandlingBuildingVentilation Systemandautomatically initiatethefiltration systems(refertoSubsection 6.2.3oftheFSAR).Themodelsusedforevaluation oftheradiological dosesaredes-cribedinAppendix15BoftheFSAR.,Assumptions andparameters usedinevhluating thefuelhandlingaccidentareconsistent withRegulatory Guides1.13"SpentFuelStorageFacilityDesignBasis"December1975(Rl)and1.25"Assump-tionsUsedforEvaluating thePotential Radiological Consequences ofaFuelHandlingAccidentintheFuelHandlingandStorageFacilityforBWRandPWRs"March1972(RO)recommendations, asshowninTable5-7.Theradioactive inventory ofthe236fuelrodswasobtainedbymultiplying theactivityofthemostradioactive fuelrod72hoursaftershutdownbyafactorof236.Thecalculational methodsandassumptions described inRegulatory Guide1.25(RO)applysince:a)thevaluesformaximumfuelrodpressurization, b)peaklinearpowerdensityforthehighestpowerassemblydischarged, c)maximumcenterline operating fueltemperature fortheassemblyinitemb)'bove,andd)averageburnupforthepeakassemblyinitemb)abovearelessthanthecorresponding valuesinRegulatory Guide1.25(RO)..Theassumptions andparameters acceptable forarealistic analysisarealsoindicated inTable5-7forcomparison purposes.
5-11 Theradioactivity releasedtotheenvironment ispresented inTable5-8.Themaximumoffsitedoseproducedisnomorethan3.0remtwo-hourinhalation thyroiddoseattheexclusion areaboundary.
Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-9.Resultsarewellwithintheacceptance criteriaof10CFR100andNRCguidelines inSection15.7.4oftheNRCStandardReviewPlan(NUREG-0800).
ThesedosesindicatethatresultsarelessthanNRCguidelines byafactorof25andthatthoseguidelines wouldbemeteasilyevenforaradialpowerpeakingfactorgreaterthanthatassumedinthisanalysis.
5.3.1.4SpentFuelHandlingMachineThespentfuelhandlingmachine,asshownonFSARFigure9.1-14,isatraveling bridgeandtrolleythatridesonrailsoverthespentfuelpool,fueltransferpoolandcaskloadingpit.Motorsonthebridgeandtrolleypositionthemachineoverthespentfuelassemblystorageracks,thenewfuelelevator, theupendingmachine,andfuelshippingcask.Anoverheadcraneisusedtotransfernewfuelfromthenewfuelstoragerackstothenewfuelelevator.
Thespentfuelhandlingmachinehoistisprovidedwithalonghandlingtoolwhichengagesthefuelassemblyto'emoved.Oncethefuelassemblyisgrappled, thecableandhoistwinchraisethefuelassembly..
Themachinethentransports thefuelassemblyfromtheupendingmachinetothespentfuelstorageracks(spentfuel),fromthenewfuelelevatortotheupendingmachine(newfuel),orfromthespentfuelstoragerackstothefuelshippingcask.Thecontrolsforthespentfuelhandlingmachinearemountedonaconsolelocatedonthespentfuelhandlingmachinetrolley.Coor-dinatelocationofthe'bridgeisindicated bysynchrosattheconsole,andthetrolleypositionisindicated byapointerand.targetsystem.5-12 Duringwithdrawal orinsertion ofafuelassembly, theloadonthehoistcableismonitored toensurethatmovementisnotbeingrestricted.
Overloadandunderload setpoints areprovidedtointerrupt hoistoperation atpreassigned levelsofcableload,therebyprotecting fuelassemblies duringhoistingoperations.
Positivelockingisprovidedbetweenthegrappling deviceandthefuelassemblytopreventinadvertent uncoupling.
Thedrivesforboththebridgeandthetrolleyprovideclosecontrolforaccuratepositioning, andbrakesareprovedtomaintainthepositiononceachieved.
Inaddition, interlocks areinstalled sothatmovementofthespentfuelhandlingmachineisnotpossible'when thehoistiswithdrawing orinserting anassembly.
Manually-operated handwheels areprovidedforbridge,trolley,andwinchmotionsintheeventofapowerloss.5.3.2~Abeli~~~Asdescribed aboveinSection5.3.1.2,itisnotpossibletodropthespentfueicaskontothespentfuelracks.Forthedropofthecaskoutsidethefuelhandlingbuilding, theconservative analysissummarized inSection5.3.l.1abovedemonstrated thatresulting radiological dosesarewellwithinacceptance criteria.
Inevaluating thedropofafuelassemblyfromthespentfuelhandlingmachineintothespentfuelpool(Section5.3.1.3),
itwasconservatively assumedthatallfuelrodsinthedroppedfuelassemblyweredamaged.Theanalysisshowedthattheradiological doseswerealsowellwithinacceptance criteria.
~'P5-13  
~~f5.L3~F1DThepresenttechnical specification onfueldecaytimepriortoremovalofirradiated fuelfromthereactorvesselandthestoragecapacityofthespentfuelracksensurethatthetotaldecayheatloadfromthespentfuelpoolislessthanthecapacityofthefuelpoolcoolingheatexchanger.
Thefuelpoolcoolinganalysisisdescribed inSection3.2.Also,thetechnical specification onfueldecaytimepriortoremovaloffuelfromthereactorvesselensuresthattheassumptions onradioactivity contentofthefuelinthefuelassemblyandcaskdropaccidentanalyses(Sections 5.3.1.1and5.3.1.3)aremet.5.3.4LoadsOverSentFuelAsdescribed inSection9.1oftheFSAR,therearenolightloads(objectslessthanorequaltotheweightofafuelassembly) whichcouldbecarriedoverspentfuelineitherthecontainment buildingorinthespentfuelpoolwhichwouldresultinfueldamagemoreseverethanthatassumedintheaccidentanalysis(i.e.,damageofallfuelrodsinonefuelassembly).
Asdescribed inSection5.3.1.2above,thedesignsofthefuelhandlingbuildingandtheoverheadcraneensurethatheavyloadscannotbecarriedoverthespentfuelpool.5.3.5Conclusions Sincethespentfuelcaskcannotfallontothespentfuelracks,thehighercapacityofthespentfuelrackdesigndoesnotaffect,byitself,resultsofthefuelcaskdropaccidentdescribed above(Section5.3.1.1).Also,thespentfuelrackdesigndoesnotaffect5-14  


thefuelassemblydropaccidentanalysisbecausethedesignofthefuelracksprecludesdamagetomorethanonefuelassembly.There-fore,thefuelassemblydropaccidentisboundedbythedropofasinglefuelassembly,asdescribedinSection5.3.1.3.Sincetherewillbeonlyanegligiblechangeinradiologicalcondi-tionsinthefuelhandlingbuildingasaresultofthehighercapacityofthenewfuelracks,nochangeinFP&L'sradiationprotectionprogramisanticipated.Also,sincetheenvironmentalconsequencesofthefuelhandlingaccidentsdescribedinSections5.3.1.1and5.3.1.3arewellwithinNRCguidelines,therewillbenochangetoorimpactonthepreviousdeterminationsoftheFinalEnvironmentalStatement.Therefore,thenewfuelrackdesignandtheproposedlicenseamendmentswillnotsignificantlyaffectthequalityofthehumanenvironmentandissuanceofa10CFR51.5(c)(1)negativedeclarationisappropriate.5-15 7(83K17)/ds--:56TABLE5-1ESTIHATEDSPENTFUELPOOLCAPACITYREQUIREHENTSST.LUCIEUNIT2CycleNo.Approx.CycleStartupDateTotalNo.AssembliesinPoolfromallPreviousCclesSpacesRequiredforFullCoreReserveTotalNo.SpacesNeededDuringThisCcleExcessStorageAvailableAugmentedStorageReuired08/01/83212/06/84305/15/86412/01/8780164240217217217217217297381457ExistingCapacity(1)675675378294218NewCapacity(2)10761076779695619ExistingCapacityNewCapacity505/01/89.3282171305316'I2/01/9005/01/9212/01/93'05/01/951012/01/961105/01/98'212/01/991305/01/20011412/01/021505/01/04404492*568656732ee820896+9841060++114821721721721721721721721721721762170978587394910371113120112771365455367291203127393411019827436243852660269053.141217305(1)LicensedCapacityAtPresent~675Cells(2)NewRackInstallation=1584Total/1076InitiallyUsableCells*FCRLostat458StoredAssemblieswithExistingCapacityeeLastRefuelingPossiblewithExistingCapacity(AssumesNoFCRRequirements)+FCRLostat859StoredAssemblieswithNewCapacity++LastRefuelingPossiblewithNewCapacityRacks(AssumesNoFCRRequirements)
thefuelassemblydropaccidentanalysisbecausethedesignofthefuelracksprecludes damagetomorethanonefuelassembly.
TABLE5-2REPLACEMENTCOSTFORST.LUCIEUNIT2BaseCaseProd.Cost$000EnergyGen.BySL2000MWHOutageCaseProd.Cost$O00)RelacementCost($000~$/MWH19987,295,5603,8127,970,697675,137177.1119998,422,4044,8189,343,839921,435191.2520009,069,1994,88310,117,8411,049,642214.96NOTES;SL2out5/1/98through12/31/2000BasedonSYPlongtermbasecase(7/22/83)5-17 TABLE5-3GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCELEVEL=4.66NUCLIDEHALF-LIFEUCI/ml1-SIGMAERRORIERRORXMPCAR-41KR-85KR-85MKR-87KR-88XE-131MXE-133XE-133MXE-135XE-135MXE-138I-130I-131I-132I-133I-134I-135NA-24CR-51MN-54MN-56CO-57CO-'58FE-59CO-60ZN-65NI-651.83H10.72Y4.48H76.30M2.84H11.90D5.24D2.19D9.08H15.65M14.17M12.36H8.04D2.30H20.80H52.60M6.61H15.00H27.70D312.50D2.58H270.90D70.80D44.60D5.27Y244.10D2.52H5.726E-075.062E-042.170E-066.082E-067.847E-067.595E-055.922E-061.676E-052.027E-061.856E-054.921E-051.807E-062.322E-062.078E-062.406E-062.187E-062.376E-063.758E-071.873E-051.493E-051.400E-067.839E-06<1.660E-031.965E-063.744E-042.181E-062.008E-06NUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDE1.347E-06NUCLIDE1.491E-066.072E-06NUCLIDE3.124E-06NUCLIDENUCLIDENOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTED9.02NOTDETECTED19.020.37NOTDETECTED0.83NOTDETECTEDNOTDETECTED0.000.000.000.005-18 TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCELEVEL=4.66NUCLIDEHALF-LIFEUCI/11111-SIGMAERRORgERROR'5MPCBR-82AG-110SN-113SB-124W-187NP-239RB-88ZR-95NB-95ZR-97NB-97MO-99TC-99MRU-103-SB-125CS-134CS-136CS-137BA-140PR-144LA-140CE-141CE-144AC-228RA-224PB-21235.30H252.20D115.00D60.20D23.90H2.35D17.80M63.98D35.15D16.90H72.10M66.02H6.02H39.35D2.77Y2.06Y13.10D30.17Y12.79D17.28M40.22H32.50D284.30D5.75Y5.75Y5.75Y1.770E-061.782E-063.903E-061.098E-055.660E-067.261E-065.229E-052.560E-061.468E-063.723E-053.356E-061.105E-051.800E-062.391E-06<3.757E-059.525E-041.471E-061.398E-031.047E-056.151E-043.028E-073.037E-06<1.382E-05-1.633E-05<4.398E-053.832E-06NUCLIDENOTNUCLIDENOTNUCLIDENOT9.856E-07NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOT.NUCLIDENOT5.973E-065.162E-06NUCLIDENOT5.860E-06NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTDETECTEDDETECTEDDETECTED8.'8DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED15.900.54DETECTED0.42DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED0.000.000.000.005-19  
There-fore,thefuelassemblydropaccidentisboundedbythedropofasinglefuelassembly, asdescribed inSection5.3.1.3.Sincetherewillbeonlyanegligible changeinradiological condi-tionsinthefuelhandlingbuildingasaresultofthehighercapacityofthenewfuelracks,nochangeinFP&L'sradiation protection programisanticipated.
Also,sincetheenvironmental consequences ofthefuelhandlingaccidents described inSections5.3.1.1and5.3.1.3arewellwithinNRCguidelines, therewillbenochangetoorimpactonthepreviousdeterminations oftheFinalEnvironmental Statement.
Therefore, thenewfuelrackdesignandtheproposedlicenseamendments willnotsignificantly affectthequalityofthehumanenvironment andissuanceofa10CFR51.5(c)(1) negativedeclaration isappropriate.
5-15 7(83K17)/ds--:56 TABLE5-1ESTIHATED SPENTFUELPOOLCAPACITYREQUIREHENTS ST.LUCIEUNIT2CycleNo.Approx.CycleStartupDateTotalNo.Assemblies inPoolfromallPreviousCclesSpacesRequiredforFullCoreReserveTotalNo.SpacesNeededDuringThisCcleExcessStorageAvailable Augmented StorageReuired08/01/83212/06/84305/15/86412/01/8780164240217217217217217297381457ExistingCapacity(1) 675675378294218NewCapacity(2) 10761076779695619ExistingCapacityNewCapacity505/01/89.
3282171305316'I2/01/90 05/01/9212/01/93' 05/01/951012/01/961105/01/98'2 12/01/991305/01/2001 1412/01/021505/01/04404492*568656732ee820896+9841060++114821721721721721721721721721721762170978587394910371113120112771365455367291203127393411019827436243852660269053.141217305(1)LicensedCapacityAtPresent~675Cells(2)NewRackInstallation
=1584Total/1076 Initially UsableCells*FCRLostat458StoredAssemblies withExistingCapacityeeLastRefueling PossiblewithExistingCapacity(AssumesNoFCRRequirements)
+FCRLostat859StoredAssemblies withNewCapacity++LastRefueling PossiblewithNewCapacityRacks(AssumesNoFCRRequirements)
TABLE5-2REPLACEMENT COSTFORST.LUCIEUNIT2BaseCaseProd.Cost$000EnergyGen.BySL2000MWHOutageCaseProd.Cost$O00)RelacementCost($000~$/MWH19987,295,560 3,8127,970,697 675,137177.1119998,422,404 4,8189,343,839 921,435191.2520009,069,199 4,88310,117,841 1,049,642 214.96NOTES;SL2out5/1/98through12/31/2000 BasedonSYPlongtermbasecase(7/22/83) 5-17 TABLE5-3GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCE LEVEL=4.66NUCLIDEHALF-LIFE UCI/ml1-SIGMAERRORIERRORXMPCAR-41KR-85KR-85MKR-87KR-88XE-131MXE-133XE-133MXE-135XE-135MXE-138I-130I-131I-132I-133I-134I-135NA-24CR-51MN-54MN-56CO-57CO-'58FE-59CO-60ZN-65NI-651.83H10.72Y4.48H76.30M2.84H11.90D5.24D2.19D9.08H15.65M14.17M12.36H8.04D2.30H20.80H52.60M6.61H15.00H27.70D312.50D2.58H270.90D70.80D44.60D5.27Y244.10D2.52H5.726E-07 5.062E-04 2.170E-066.082E-06 7.847E-06 7.595E-05 5.922E-06 1.676E-05 2.027E-06 1.856E-05 4.921E-051.807E-06 2.322E-06 2.078E-06 2.406E-06 2.187E-062.376E-06 3.758E-07 1.873E-05 1.493E-05 1.400E-06 7.839E-06
<1.660E-03 1.965E-06 3.744E-04 2.181E-062.008E-06 NUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDE1.347E-06NUCLIDE1.491E-066.072E-06 NUCLIDE3.124E-06 NUCLIDENUCLIDENOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTED9.02NOTDETECTED19.020.37NOTDETECTED0.83NOTDETECTEDNOTDETECTED0.000.000.000.005-18 TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCE LEVEL=4.66NUCLIDEHALF-LIFE UCI/11111-SIGMAERRORgERROR'5MPCBR-82AG-110SN-113SB-124W-187NP-239RB-88ZR-95NB-95ZR-97NB-97MO-99TC-99MRU-103-SB-125CS-134CS-136CS-137BA-140PR-144LA-140CE-141CE-144AC-228RA-224PB-21235.30H252.20D115.00D60.20D23.90H2.35D17.80M63.98D35.15D16.90H72.10M66.02H6.02H39.35D2.77Y2.06Y13.10D30.17Y12.79D17.28M40.22H32.50D284.30D5.75Y5.75Y5.75Y1.770E-06 1.782E-06 3.903E-06 1.098E-05 5.660E-06 7.261E-06 5.229E-05 2.560E-06 1.468E-06 3.723E-05 3.356E-06 1.105E-05 1.800E-06 2.391E-06<3.757E-05 9.525E-04 1.471E-06 1.398E-03 1.047E-05 6.151E-04 3.028E-07 3.037E-06
<1.382E 1.633E-05
<4.398E-05 3.832E-06 NUCLIDENOTNUCLIDENOTNUCLIDENOT9.856E-07 NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOT.NUCLIDENOT5.973E-06 5.162E-06 NUCLIDENOT5.860E-06 NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTDETECTEDDETECTEDDETECTED8.'8DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED15.900.54DETECTED0.42DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED0.000.000.000.005-19  


TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCELEVEL=4.66NUCLIDEHALF-LIFEUCI/ml1-SIGMAERROR5ERRORTL-208TH-234RA-226PB-214BI-214K-405.75Y1000.00Y1000.00Y1000.00Y1000.00Y1000.00Y<2.382E-06<1.943E-06<5.161E-05<5.089E-06<4.885E-06<3.860E-06NUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDTOTALACTIVITY=5.028E-03UCI/UNIT;TOTALXMPC=5-20 TABLE5-4SPENTFUELCASKDROPACCIDENTASSUMPTIONSl.Dataandassumptionsusedtoestimateradioactivesourcesfrompostulatedaccident:DesignBasisAssumtionsRealisticBasisAssumtionsb)c)d)PowerlevelBurnup(anytimeduringcorelife)SpentfueldamagedNumberofassembliesincore2700MwtNA100%2172700MwtNA0.1%2172.Dataandassumptionsusedtoestimateactivityreleasea)b)c)d)Assumedspentfueldecay.timepriortoaccidentRadialpeakingfactorFuelrodreleasefractions:(allofthegasgapactivityisreleased)Numberofassembliesinacask90days2.010Knoblegas30%Kr-8510%iodine1090days1.6510Knoblegas305Kr-85105iodine103.DispersionDataa)b)c)EZ/LPZdistance(kilometers)AssumedreleaselevelX/Q's(Sec/m)EAB(0-2hr)LPZ(0-8hrH1.56/1.61Ground1.6E-047.1E-051.56/1.61liround2.6E-057.4E-065-2T TABLE5-5SPENTFUELCASKDROPACCIDENTRELEASESActivityReleasetoEnvironment(Curies)FortheDesignBasisAnalysis~jsotoeI-131I-132I-133I-134I-135Kr-85mKr-85Kr-87Kr-88Xe-131mXe-133Xe-135Xe-138~Activtt2.91E+02W1.89E+042.36E+015-22 TABLE5-6SPENTFUELCASKDROPOFFSITEDOSESThyroidWholeBodyTwoHourExclusionAreaBoundarDose2.4x10rem6.1x10remEntireEventLowPoulationZoneDose1.1x10rem2.7x10rem5-23 TABLE5-7FUELHANDLINGACCIDENTASSUMPTIONSParameterDesignasisAssumtionsReaisticAssumtions1.Dataandassumptionsusedtoestimateradioactivesourcesfrompostulatedaccidents:a)Powerlevel(MWT)b)Radialpeakingfactorc)Burnupd)Decaytime(hr)e)Numberoffailedrodsf)Fractionoffissionproductgasescontainedinthegapregionofthefuelrods(percent)Kr-85OtherNobleGasesIodine'7002.04.5full-poweryearsat80Kplantfactor7223630101027001.554.5full-poweryearsat80%plantfactor72163010102.Dataandassumptionsusedtoestimateactivityreleased:a)Gapactivityreleasedtopool(percent)b)Minimumwaterdepthabovedamagedrods,(ft)c)Pooldecontaminationfactorfornoblegases.d)'ooldecontaminationfactorforiodine1002310023InorganicOrganicOverall13311005005-24  
TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCE LEVEL=4.66NUCLIDEHALF-LIFE UCI/ml1-SIGMAERROR5ERRORTL-208TH-234RA-226PB-214BI-214K-405.75Y1000.00Y1000.00Y1000.00Y1000.00Y1000.00Y<2.382E-06
<1.943E-06
<5.161E-05
<5.089E-06
<4.885E-06
<3.860E-06 NUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDTOTALACTIVITY=5.028E-03 UCI/UNIT; TOTALXMPC=5-20 TABLE5-4SPENTFUELCASKDROPACCIDENTASSUMPTIONS l.Dataandassumptions usedtoestimateradioactive sourcesfrompostulated accident:
DesignBasisAssumtionsRealistic BasisAssumtionsb)c)d)PowerlevelBurnup(anytimeduringcorelife)SpentfueldamagedNumberofassemblies incore2700MwtNA100%2172700MwtNA0.1%2172.Dataandassumptions usedtoestimateactivityreleasea)b)c)d)Assumedspentfueldecay.timepriortoaccidentRadialpeakingfactorFuelrodreleasefractions:
(allofthegasgapactivityisreleased)
Numberofassemblies inacask90days2.010Knoblegas30%Kr-8510%iodine1090days1.6510Knoblegas305Kr-85105iodine103.Dispersion Dataa)b)c)EZ/LPZdistance(kilometers)
AssumedreleaselevelX/Q's(Sec/m)EAB(0-2hr)LPZ(0-8hrH1.56/1.61Ground1.6E-047.1E-051.56/1.61 liround2.6E-057.4E-065-2T TABLE5-5SPENTFUELCASKDROPACCIDENTRELEASESActivityReleasetoEnvironment (Curies)FortheDesignBasisAnalysis~jsotoeI-131I-132I-133I-134I-135Kr-85mKr-85Kr-87Kr-88Xe-131mXe-133Xe-135Xe-138~Activtt2.91E+02W1.89E+042.36E+015-22 TABLE5-6SPENTFUELCASKDROPOFFSITEDOSESThyroidWholeBodyTwoHourExclusion AreaBoundarDose2.4x10rem6.1x10remEntireEventLowPoulationZoneDose1.1x10rem2.7x10rem5-23 TABLE5-7FUELHANDLINGACCIDENTASSUMPTIONS Parameter DesignasisAssumtionsReaisticAssumtions1.Dataandassumptions usedtoestimateradioactive sourcesfrompostulated accidents:
a)Powerlevel(MWT)b)Radialpeakingfactorc)Burnupd)Decaytime(hr)e)Numberoffailedrodsf)Fractionoffissionproductgasescontained inthegapregionofthefuelrods(percent)
Kr-85OtherNobleGasesIodine'700 2.04.5full-power yearsat80Kplantfactor7223630101027001.554.5full-power yearsat80%plantfactor72163010102.Dataandassumptions usedtoestimateactivityreleased:
a)Gapactivityreleasedtopool(percent) b)Minimumwaterdepthabovedamagedrods,(ft)c)Pooldecontamination factorfornoblegases.d)'ooldecontamination factorforiodine1002310023Inorganic OrganicOverall13311005005-24  


TABLE5-7(Cont'd)FUELHANDLINGACCIDENTASSUMPTIONSb)c)AssumedreleaselevelX/Q's(sec/m)EABLPZ4.DoseDataa)Methodofdosecalculationb)DoseconversionfactorsParametere)Iodinechemicalformreleasedtofuel.handlingInorganiciodine(percent)Organiciodine(percent)f)FilterEfficiencyIodineinorganic(percent)Iodineorganic(percent)Iodineparticulate3.DispersionData:a)EAB/LPZdistance(kilometers)DesignasisAssumtions75259550991.56/1.61Ground1.6x1057.1x10Appendix15B,Section15B.1Appendix15B,Table158-1.ea1stlcAssumtions75259595991.56/1.61Ground2.6x10-67.4x105-25  
TABLE5-7(Cont'd)FUELHANDLINGACCIDENTASSUMPTIONS b)c)AssumedreleaselevelX/Q's(sec/m)EABLPZ4.DoseDataa)Methodofdosecalculation b)Doseconversion factorsParameter e)Iodinechemicalformreleasedtofuel.handlingInorganic iodine(percent)
Organiciodine(percent) f)FilterEfficiency Iodineinorganic (percent)
Iodineorganic(percent)
Iodineparticulate 3.Dispersion Data:a)EAB/LPZdistance(kilometers)
DesignasisAssumtions75259550991.56/1.61Ground1.6x1057.1x10Appendix15B,Section15B.1Appendix15B,Table158-1.ea1stlcAssumtions75259595991.56/1.61 Ground2.6x10-67.4x105-25  


TABLE5-8FUELHANDLINGACCIDENTRELEASESActivityReleasedtotheEnvironment(Curies)FortheDesignBasisAnalysisISOTOPEI-131I-133Xe-131mXe-133Xe-135Kr-85236RODS3.4(+1)8.50)3.7(+2)9.3+41.4+2)1.9(+3)5-26 TABLE5-9FUELHANDLINGACCIDENTOFFSITEDOSESThyroidWholeBodyTwoHourExclusionAreaBoundarDose3.0x10rem1.1x10remEntireEventLowPoulationZoneDose1.3x10rem4.6x10rem5-27}}
TABLE5-8FUELHANDLINGACCIDENTRELEASESActivityReleasedtotheEnvironment (Curies)FortheDesignBasisAnalysisISOTOPEI-131I-133Xe-131mXe-133Xe-135Kr-85236RODS3.4(+1)8.50)3.7(+2)9.3+41.4+2)1.9(+3)5-26 TABLE5-9FUELHANDLINGACCIDENTOFFSITEDOSESThyroidWholeBodyTwoHourExclusion AreaBoundarDose3.0x10rem1.1x10remEntireEventLowPoulationZoneDose1.3x10rem4.6x10rem5-27}}

Revision as of 17:15, 29 June 2018

Proposed Tech Spec Changes Re Reracking of Spent Fuel Pool. NSHC & SAR Encl
ML17215A306
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 03/13/1984
From:
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17215A305 List:
References
NUDOCS 8403190228
Download: ML17215A306 (112)


Text

'DESIGNFEATURESVOLUME5.4.2Thetotalwaterandsteamvolumeofthereactorcoolantsystemisl0,93I+275cubicfeetatanominalTavgof572oF.5.5METEOROLOGICAL TOWERLOCATION5.5.IThemeteorological towershallbelocatedasshownonFigureS.l-I.5.6FUELSTORAGECRITICALITY 5.6.IThespentfuelstorageracksaredesignedandshallbemaintained with:a.Akeffequivalent tolessthanorequalto0.95whenfloodedwithunborated water,whichincludesaconservative allowance of0.024hkeffforTotalUncertainty.

b.Anominal8.96inchcenter-to-center distancebetweenfuelassemblies placedinthestorageracks.c.Aboronconcentration greaterthanorequaltoI720ppm.RegionIcanbeusedtostorefuelwhichhasaU-235enrichment lessthanorequalto4.5%.RegionIIcanbeusedtostorefuelwhichhasachievedsufficient burnupsuchthatstorageinRegionIisnotrequired.

iyIDRAINAGE5.6.2Thespentfuelstoragepoolisdesignedandshallbemaintained topreventinadvertent drainingofthepoolbelowelevation 56feet.CAPACITY5.6.3Thespentfuelstoragepoolisdesignedandshallbemaintained withastorage!capacitylimitedtonomorethanII88fuelassemblies.

5.7COMPONENT CYCLICORTRANSIENT LIMITS5.7.IThecomponents identifiedinTable5.7-Iaredesignedandshallbemaintained withinthecyclicortransient limitsofTable5.7-1.ST.LUCIE-UNIT2Amendment No.8403190228 8403i3PDRADOCK05000389>pPDR

NoSinificantHazardsConsideration FloridaPowerandLightCompany(FPL)hasdetermined thattheproposedamendment involvesnosignificant hazardsconsiderations, focusingonthethreestandards setforthinIOCFR50.92(c)asquotedbelow:TheCommission maymakeafinaldetermination, pursuanttotheprocedures in50.9I,thataproposedamendment toonoperating licenseforafacilitylicensedunder50.2l(b)or50.22orforatestingfacilityinvolvesnosignificant hazardsconsiderations, ifoperation ofthefacilityinaccordance withtheproposedamendment wouldnot:I.Involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated; or2.Createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated; or3.Involveasignificant reduction inamarginofsafety.FPLhasdetermined thattheactivities associated withthisamendment requestdonotmeetanyofthesignificant hazardsconsideration standards ofIOCFR50.92(c)and,accordingly, anosignificant hazardsconsideration findingisjustified.

Insupportofthisdetermination, thefollowing background information isprovided, followedbyadiscussion ofeachoftheabovethreesignificant hazardsconsideration standards.

~BackroundThereisonespentfuelpoolatSt.LucieUnit2.Theexistingrackshave300totalstoragecells,withacenter-to-center spacingofl4inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-third ofacoreisstoredinthefuelpool.Withthe300presently available storagecells,St.LucieUnit2 I

wouldlosethefull-core reservestoragecapability afterthesecondrefueling, expectedtobeinl986.Therefore, toensurethatsufficient capacitycontinues toexistatSt.LucieUnit2,FPLhascontracted withCombustion Engineering (C-E)fornewspentfuelstoragerackswhosedesignallowsformoredensestorageofspentfuel.ThenewrackshaveanultimatestoragecapacityofII88fuelassemblies, whichwillextendthefull-core reservestoragecapability untill998.Thenewfuelstoragerackswillstorefuelintwodiscreteregionsofthespentfuelpool.RegionIincludessixmoduleshavingatotalof448storagecells.Onlyone-halfofthesecellswillbeavailable forstorageoffuelassemblies.

Theunusedcellswillbeprovidedwithcellblockingdevices.The224available cellsenablestorageoffuelassemblies withUranium-235 enrichments upto4.5%,whilemaintaining therequiredsubcriticality (Keff<0.95).RegionIIincludesthirteenmoduleshavingatotalofII36storagecells,ofwhich852(75%)willbeavailable forstorageoffuelassemblies.

Theunusedcellswillactasneutronfluxtraps(tomaintaintherequiredsubcriticality) andwillbeprovidedwithcellblockingdevices.RegionIIwillbeusedtostorefuelwhichhasexperienced sufficient burnupsuchthatstorageinRegionIisnotrequired.

Thenewfuelracksarefabricated from304stainless steelwhichisO.I35inchesthick.Eachcellisformedbyweldingalongtheintersecting seamswhichenablestheassembled cells(module)tobecomeafree-standing structure whichisseismically qualified withoutdepending onneighboring modulesorfuelpoolwallsforsupport.Thenominalcenter-to-center spacingofthecellswithinbothRegionIandIIis8.96inches.ThereisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthenewspentfuelracksareinstalled.

Therefore, nospecialadministrative controlsorprocedures willbenecessary toprovideradiation

'protection, andtheevaluation ofaconstruction accidentwithrespecttonuclearcriticality orradioactivity'release isnotnecessary.

Evaluation Thefollowing evaluation demonstrates (withreference totheanalysiscontained intheattachedSafetyAnalysisReport)thattheproposedamendment involvesnosignificant hazardsconsiderations.

I.Involveasinificantincreaseintherobabilit orconseuencesofanaccidentreviousIevaIuated.Theanalysisofthisproposedreracking hasbeenaccomplished usingcurrentacceptedcodes,standards, andNRCguidanceasspecified inSection4.2oftheattachedSafetyAnalysisReport(SAR).Inthecourseoftheanalysis, FPLidentified thefollowing potential accidentscenarios:

(I)aspentfuelassemblydropinthespentfuelpool;(2)lossofspentfuelpoolcoolingsystemflow;(3)anextremewindorseismicevent;and(4)aspentfuelcaskdrop.Theoccurrence oftheseaccidents isnotaffectedbytheracksthemselves.

Thus,theproposedreracking cannotincreasetheprobability oftheseaccidents.

Furthermore, thespentfuelrackswillbeinstalled priortostorageofanyspentfuelinthespentfuelpool.Therefore, thereisnopotential foranaccidentinvolving spentfuelduringfuelrockinstallation.

Similarly, theanalysisofthepotential accidents, summarized below,hasshownthatthereisnosignificant increaseintheconsequences ofanaccidentpreviously analyzed.

Theconsequences ofaspentfuelassemblydrophavebeenevaluated withrespecttonuclearcriticality (Section3.IoftheSAR)andwithrespecttoradioactivity release(Section5.3oftheSAR).Thepresenceofboroninthespentfuel.poolwaterensuresthattheneutronmultiplication factor(keff)remainslessthantheNRCacceptance criterion of0.95forallaccidentconditions.

Theconsequences ofadroppedfuel'ssemblywithrespecttoradioactivity'release arenotaffected'by.

thenewfuelrack.'esign itself.However,theanalysisin'Section5.3ofthisSARincludedmoreconservative assumptions, relativetothoseinthepreviousFSARanalysis, tobracketfuturechangestofuelmanagement.

Asaresult,thepredicted radioactivity releasesareabout25%largerthanthosereportedpreviously, buttheincreases arenot~~"significant"

'ecausetheresultsareonlyl%ofNRCguidelines.

Thus,theconsequences ofthespentfuelassemblydropaccidentwouldnotbesignificantly increased fromthosepreviously evaluated.

3

Totallossofspentfuelpoolcoolingflowhasbeenevaluated andisreportedinSection3.2oftheattachedSAR.Asindicated inSection3.2,morethan30hoursareavailable torestorecoolingflowortoprovideanalternate meansforcoolingbeforepoolboilingresultsinawaterlevellessthanthatwhichisneededtomaintainacceptable radiation doselevels.Also,theanalysishasshownthatfuelcladdingintegrity ismaintained.

Thus,theconsequences ofthistypeaccident'wouldnotbesignificantly increased fromthepreviously evaluated lossofcoolingsystemflowaccident.

Theconsequences ofaseismiceventhavebeenevaluated andaresummarized inSection4;3oftheattachedSAR.Thenewracksaretobedesignedandfabricated tomeettheguidanceofapplicable portionsoftheNRCRegulatory Guidesandcodesandstandards listedinSection4.2oftheSAR.Themaximumstresseswithinthefuelrackswillbewithinthecriteriaspecified inSection4.4ofthisSAR.Also,movementanddeflection ofthefuelrackmodulesdoesnotresultincontactwithneighboring rack'modulesorthefuelpool-walls.

Thefloorloadingfromthenewracksfilledwithspentfuelassemblies doesnotexceedthestructural capacityofthefuelhandlingbuilding.

Asindicated inSection4.IoftheSAR,thefuelhandlingbuildingwalls,floors,andpartitions aredesignedtowithstand hurricane andtornadowinds;theprotection fromtheseextremewindsisnotaffectedbythenewfuelrackdesign.Thus,theconsequences ofanextremewindorseismiceventwouldnotbesignificantly increased frompreviously evaluated events.Theconsequences ofaspentfuelcaskdropoutsidetheFuelHandlingBuildinghasbeenevaluated andarereportedinSection5.3ofthisSAR.AsstatedinSection5.3,thespentfuelcaskisprevented fromdroppingontothespentfuelpoolracksbydesignofthefuelhandlingbuildingandoverheadcrane.Therefore, theconsequences ofthespentfuelcaskdroparenotaffectedbythenewfuelrackdesign.TheanalysisinSection5.3.includesmoreconservative assumptions, relativetothoseinthepreviousFSARanalysis, tobracketfuturechangestofuelmanagement.

Asaresult,thepre'dieted radioactivity release's'are about25%la'rgerthanthosereportedpieviously, buttheincreases arenot"significant" becausetheresultsareonly8%ofNRCguidelines.

Thus,theconsequences ofacaskdropaccidentwouldnotbesignificantly increased frompreviously evaluated accidentanalysis.

Itisconcluded thattheproposedamendment torerackthespentfuelpoolswillnotinvolveasignificant increaseintheprobability orconsequences ofan'accident previously evaluated.

2-Createtheossibilit ofanewordifferent kindofaccidentfromanaccidentreviouslevaluated.

FPLhasevaluated theproposedrerackirig inaccordance withtheguidanceoftheNRCpositionpaperentitled"ReviewandAcceptance ofSpentFuelStorageandHandlingApplications",

appropriate NRCRegulatory Guides,appropriate NRCStandardReviewPlans,andappropriate IndustryCodesandStandards aslistedinSection4.2oftheattachedSAR.Inaddition, FPLhasreviewedseveralpreviousNRCSafetyEvaluation Reportsforrerackapplications similartothisproposal.

Asaresultofthisevaluation andthesereviews,FPLfindsthattheproposedreracking doesnot,inanyway,createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated forthe.SpentFuelPoolorFuelHandlingBuilding.

3.,Involveasinificantreduction inamarinofsafet.TheNRCStaffsafetyevaluation reviewprocesshasestablished thattheissueofmarginofsafety,whenappliedtoareracking modification, willneedtoaddressthefoltowingareas:2.3.Nuclearcriticality considerations Thermal-Hydraulic considerations Mechanical, materialandstructura Iconsiderations Theestablished acceptance criterion forcriticality isthattheneutronmultiplication factor(keff)inspentfuelpoolsshallbelessthanorequalto0.95,including all'uncertainties, underallconditions.

'This'margin ofsafety'has beenadheredtointhecriticality analysismethodsforthenewrackde'signasdiscussed inSection3.IoftheattachedSAR.Thatis,keffisalwayslessthan0.95,including uncertainties atthe95/95probability andconfidence level.Inmeetingtheacceptance criteriaforcriticality inthespentfuelpool,theproposedamendment torerackthespentfuelpoolsdoesnotinvolveasignificant reduction inthemarginofsafetyfornuclearcriticality.

5

Conservative methodswereusedtocalculate theincreaseintemperature ofthewaterinthespentfuelpoolanddemonstrate maintenance offuelcladdingintegrity.

Thisevaluation usesthemethodsdescribed inSection3.2oftheSARindemonstrating thatthemarginsofsafetyaremaintained.

Theproposedreracking allowsanincreaseintheheatloadinthespentfuelpool;theevaluation showsthattheexistingspentfuelcoolingsystem,undernormalconditions, willmaintainthepooltemperature belowthedesignbasislimit,assumingthemaximumheatloadinthepool.Sincethedesignbasislimitismet,thereisnotasignificant reduction inthemarginofsafety.Also,themaximumfuelcladdingtemperature, assumingtotallossoffuelpoolcooling,wouldremainbelow275F,ensuringmaintenance offuelcladdingintegrity.

Thus,thereisnosignificant reduction inthemarginofsafetyfromathermal-hydraulic orspentfuelcoolingconcern.Themainsafetyfunctionofthespentfuelpoolandtheracksistomaintainthespentfuelassemblies inasafeconfiguration through'll environments andabnormalloadings, suchasanearthquake, dropofaspentfuelassembly, ordropofanyotherobjectduringroutinespentfuelhandling.

Themechanical,

material, andstructural considerations oftheproposedrerackaredescribed inSection4oftheattachedSAR.TheanalysisofSection4hasshownthatallcriteriaforfuelrackmovement,
stresses, floorloadings, etc.,aremetandthatmarginsofsafetyarenotsignificantly reduced.lnsummation, ithasbeenshownthattheproposedspentfuelstoragefacilitymodifications andproposedTechnical Specifications donot:2.3.Involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated; orCreatethepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated; orInvolveasignificant reduction inamarginofsafety.Therefore, FPLhasdetermined thattheproposedamendment involvesnosignificant hazardsconsiderations.

SPENTFUELPOOLRERACKSAFETYANALYSISREPORT TAB"EOFCONTENTS~Pae

1.0INTRODUCTION

1.1LicenseAmendment Requested 1.2CurrentStatus1.3Interfaces withOtherOrganizations 1.4SummaryofReport1.5Conclusions 2.0SUMMARYOFSPENTFUELRACKDESIGN3.0NUCLEARANDTHERMAL-HYDRAULIC CONSIDERATIONS 3.1NeutronMultiplication Factor3.1.1NormalStorage3.1.2Postulated Accidents 3.1.3Calculation Methods3.1.4FuelRackModification 3.1.5Acceptance Criterion forCriticality 3.2DecayHeatCalculations fortheSpentFuelPool(Bulk)3.2.1DesignBases3.2.2SystemDescription 3.2.3SafetyEvaluation 3.3Potential FuelandRackHandlingAccidents 3.4Technical Specifications 3.5References 4.0MECHANICAL,

MATERIAL, ANDSTRUCTURAL CONSIDERATIONS 1-21-21-21-32-13-13-13-13-23-23-43-4'-43-43-63-63-103-103-114-14.14.24.34.44.54.64.7Description ofStructure 4.1.1Description ofFuelHandlingBuilding4.1.2Description ofSpentFuelRacksApplicable Codes,Standards, andSpecifications SeismicandImpactLoadsLoadsandLoadCombinations DesignandAnalysisProcedures 4.5;1Methodology Summa'ry4.5.2ComputerCodeDescriptionsStructural Acceptance CriteriaMaterials, equalityControl,andSpecialConstruction Techniques 4.7.1Materials 4.7.2equalityControl4.7.3Construction Techniques 4-14-14-14'-44-64-74-74-7.4-94-114-124-124-124-13 TABLEOFCONTENTS~Pae4.8TestingandIn-Service Surveillance 4.9,References 5.0COST/BENEFIT ASSESSMENT ANDENVIRONMENTAL IMPACT5.1Cost/Benefit Assessment 5.1.1NeedforIncreased StorageCapacity5.1.2Construction Costs5.1.3Consideration ofAlternatives 5.1.4Resources Committed 5.1.5ThermalImpactontheEnvironment 5.2Radiological Evaluation 5.2.1SolidRadwaste5.2.2GaseousRadwaste5.2.3Personnel Exposure5.2.4RackDisposal5.3AccidentEvaluation 5.3.1SpentFuelHandlingAccidents 5.3.2Acceptability 5.3.3FuelDecay5.3.4LoadsOverSpentFuel5.3.5Conclusions 4-134-135-15-15-15-25-25-35-35-45-45-45-55-75-75-75-135-135-145-14

LISTOFTABLESTable~Pae5-15-2Estimated SpentFuelPoolCapacityRequirements Replacement CostforSt.LucieUnit25-165-175-3GammaIsotopicAnalysisforSt.LucieUnit15-4SpentFuelCaskDropAccidentAssumptions 5-5SpentFuelCaskDropAccidentReleases5-225-65-7SpentFuelCaskDropOffsiteDosesFuelHandlingAccidentAssumptions 5-235-245-8FuelHandlingAccidentReleases5-265-9FuelHandlingAccidentOffsiteDoses5-27 LISTOFFIGURES~FiereTitle~Pae3-1SpentFuelRackModuleforRegionI3-123-2SpentFuelRackModuleforRegionII3-133-3St.LucieUnit2SpentFuelStorageRackCriticality vs.BurnupforFuelAssemblies inRegionII3-143-4SpentFuelStorageRackInitialEnrichment vs.BurnupforFuelAssemblies inRegionII3-154-1TypicalSpentFuelStorageRackModule4-15.4-2TypicalSpentFuelRackModuleL-Insert4-164-3SpentFuelStorageModuleInstallation 4-1744SpentfuelStorageModule4-184-5L-Inserts'-194-6SAPIVComputerCodeMembraneStressesandBendingMoments4-20 INTRODUCTION LICENSEAMENDMENT REQUESTED FloridaPower5Light(FPL)hascontracted forthepurchaseofnewspentfuelstoragerackstobeplacedintothespentfuelpoolofSt.LucieUnit2.Thesenewracksincreasetheamountofspentfuelthatcanbestoredintheexistingspentfuelpool.ThisSafetyAnalysisReportsupportsthisrequestforalicenseamendment totheSt.LucieUnit2FacilityOperating LicenseNPF-16forthetechnical specification revisions requiredasaresultofinstallation anduseofthenewspentfuelstorageracks.CURRENTSTATUSThereisonespentfuelpoolatSt.LucieUnit2.Theexistingracksinthepoolhave300totalstoragecells,withacenter-to-centerspacingof14inches,whichallowsfortheremovalofonefullcoreduringthatperiodoftimewhenone-third ofacoreisstoredinthefuelpool.PertheFSAR,Section9.1,additional storageracksofthesamedesignmaybeinstalled tobringtotalcapacity, to675spentfuelassemblies (approximately threefullcores).Withthe300presently available storagecells,St.LucieUnit2wouldlosethefull-core reservestoragecapability afterthesecondrefueling, expectedtobein1986;withadditional racks,uptothemaximumof675,thecapability wouldbelostin1992.Therefore, toensurethatsufficient capacitycontinues toexistatSt.LucieUnit2tostoredischarged

'fuelassemblies, FPLhasdecidedtoremovethepresentracksandhascontracted withCombus-tionEngineering (C-E)fornewspentfuelstoragerackswhosedesign(MAXCAPŽ)allowsformoredensestorageofspentfuel.Thenewrackshaveausablestoragecapacityof1076cells,extending thefull-core-reserve storagecapability until1998.

Furtherreferences withinthisreporttothe"spentfuelracks"refertothenewdesign.Thedetailsofhowthespentfuelrack'esignmeetsthedesignrequirements isprovidedinthisreport.INTERFACES WITHOTHERORGANIZATIONS FP8Lhasoverallresponsibility forthismodification.

C-Eisresponsible forthedesignandfabrication ofthenewspentfuelstorageracksandengineering assistance inreviewing thespentfuelpoolcoolingsystem.EbascoServices, Inc.isresponsible forreviewing buildingstructural analysisandaccidentevaluation.

SUMMARYOFREPORTThisreportfollowstheguidanceoftheNRCpositionpaperentitled"ReviewandAcceptance ofSpentFuelStorageandHandlingApplica-tions",April1978,asamendedbyNRCletterdatedJanuary18,1979.Section2.0presentsasummaryofthespentfuelrackdesign.Sections3.0through5.0ofthisreportareconsistent withthesection/subsection content'f theaboveNRCpositionpaper,SectionsIIIthroughV.Thisreportcontainsthenuclear,thermal-hydraulic, mechanical,

material, structural, andradiological designcriteriaforthefuelracks.Thenuclearandthermal-hydraulic aspectsofthisreport(Section3.0)addresstheneutronmultiplication factor,considering normal.storageandhandlingofspentfuelaswellaspostulated accidents, withrespecttocriticality andtheabi1'ityofthespentfuelpoolcoolingsystemtomaintainsufficient cooling.Mechanical,
material, andstructural aspects(Section4.0)involvethecapability ofthefuelassemblies, storageracks,andspentfuelpoolsystemtowithstand effectsofnaturalphenomena andotherserviceloadingconditions.

1-2 Theenvironmental aspectsofthereport(Section5.0)concernthethermalandradiological releasefromthefacilityundernormalandaccidentconditions.

Thissectionalsoaddresses theoccupational radiation exposures, generation ofradioactive waste,needforexpansion, commitment ofmaterialandnon-material resources, andacost-benefit assessment.

CONCLUSIONS Onthebasisoftheevaluations andinformation presented inthisreport,plusoperating experience withhighdensityfuelstorageatSt.LucieUnit1,FP&Lconcludes thattheproposedmodification ofSt.LucieUnit2spentfuelstoragefacilities providessafespentfuelstorage,andthatthemodification isconsistent withthefacilitydesignandoperating criteriaasprovidedintheFSARandoperating license.1-3 SUMMARYOFSPENTFUELRACKDESIGNThespentfuelracksaredesignedtostorethe14x14designfuelfromSt.LucieUnit1andthe16x16fuelfromSt.LucieUnit2.Theserackshaveaninitialcapacitytostoreatotalof1076fuelassemblies intworegionsofthespentfuelpool.Byexpansion ofRegionIIintoRegionI,thespentfuelrackshaveanultimatestoragecapacityof1188fuelassemblies.

RegionIinitially containsfour7xl1modulesandtwo7x10modules,i.e.,sixmoduleswith448storagecells.Onlyone-halfofthesecellswillbeavailable forstorageoffuelassemblies.

Theunusedcellswillbeprovidedwithblockingdevices.Allcellscontain"L"insertswhicharestainless steelneutronabsorbers (seeFigure4-2).The224available cellsenablestorageoffuelassemblies

.withUranium-235 enrichments upto4.5lwhilemaintaining therequiredsubcriticality (kff<0.95).RegionIIinitially containsone8x10moduleandtwelve8x11mod-ules,i.e.,thirteenmoduleswith1136storagecells,of'which852(75Ã)areavailable forstorageoffuelassemblies.

Theunusedcellsareneutronfluxtraps(tomaintaintherequiredsubcritical-ity)andareprovidedwithcellblockingdevices.RegionIIisusedtostorefuelwhichhasexperienced sufficient burnupsuchthatstorageinRegionIisnotrequired.

Thespentfuelracksarefabricated from304stainless steelwhichis0.135inchesthick.Eachcellisformedbyweldingalongtheintersecting seamswhichenablestheassembled cellstobecomeafree-standing modulewhichisseismically qualified withoutdepend-ingonneighboring modulesorfuelpoolwallsforsupport:The'ominal center-to-center spacingofthecellswithinbothRegionIandIIis8.96inches.2-1 NUCLEARANDTHERMAL-HYDRAULIC CONSIDERATIONS NEUTRONMULTIPLICATION FACTORThefollowing subsections describetheconditions inthespentfuelpoolwhichareassumedincalculating theeffective neutronmulti-plication factor(Kff)theanalysismethodology, andtheanalysiseff'esults.NormalStoraea.Theanalysisconsiders themostlimitingstoragecondition.

InRegionItheracksaredesignedtostore4.5wtXU-235inacheckerboard fashion(Figure3-1)withcellblockingdevicesineveryotherstoragelocation.

InRegionIIthefuelisstoredin3outof4locations withcellblockingdevicesinIoutof4locations (Figure3-2).Inthecriticality analysisforRegionII,creditwastakenforreactivity depletion inthespentfuel(consistent withRegula-toryGuide1.13,"SpentFuelStorageFacilityDesignHasis",DraftR2).b.Themoderator isassumedtobepurewateratatemperature applicable tothedesignbasiscondition whichyieldsthehighestreactivity.

c.TheRegionIandRegionIIarrayswereassumedtobeinfiniteinlateralextentandinfiniteinlength.d.'echanical uncertainties (manufacturing tolerances, uncertain'ty ofassemblypositioninstorageracks,materialtolerances,,

-etc.)aretreatedbyperforming sensitivity studiesforthevariousuncertainties andapplyinganuncertainty intheKffvalue.3-1

e.Nocontrolelementassemblies (CEAs)ornon-contained burnablepoisonsareassumedtobepresent.3.1.2Postulated Accidents Thedoublecontingency principle ofANSIN16.1-1975statesthatitisnotnecessary toassumeconcurrently twounlikelyindependent eventstoensureprotection againstacriticality accident.

Thiscontingency principle isappliedforthefollowing postulated accidents:

1)droppingofafuelelementontopoftheracks,2)droppingofotherobjectsintothespentfuelpool,3)deforma-tionandrelativepositionofracksduetotornadoorearthquake, and4)lossofonespentfuelpoolcoolingpump.Thedropofthespentfuelcaskontothespentfuelrackswasnotconsidered inthecriticality analysissinceitisphysically impossible totipthecaskintothepool(seeSection5.3.1).Thetechnical specifica-tionsrequirethattheboronconcentration inthespentfuelpoolbegreaterthanorequalto1720ppmtoensurethatkffremainslessthanorequalto0.95fortheseaccidents.

3.1.3Calculation MethodsAcalculation biashasbeendetermined fromthecomparison betweenthecalculations andexperiments andacalculation methodology hasbeendetermined suchthatKffwillbelessthanthecalculated effvalue95percentofthetimewitha95percentconfidence level.Thetotaluncertainty valuetobeappliedtothevalueofKffforeffthestorageracksisobtainedfromtheexpression:

NTotalUncertainty

=Calculation Bias+[Eak.]=0.024i=1wherehk.arethevaluesofallotheruncertainties, including 1mechanical, neutronic, andthermalvariations.

3~2

CEPAKTheCEPAKlatticeprogramisemployedtocalculate thebasicbroadgroupcrosssectiondataforthefuelassembly, spentfuelrackstructure, andwater.Thisprogramisasynthesis ofanumberofcomputercodes,manyofwhichweredeveloped atotherlaboratories, e.g.,FORM,THERMOS,andCINDER(References 3-1,3-2,and3-3).Thesecodesareinterlinked inaconsistent waywithinputsfromanextensive libraryofdifferential crosssectiondata.NUTESTNUTESTisatwo-dimensional integraltransport codewhichemploysthecollision probability technique tocomputesub-region dependent reactionratesinanexplicitgeometric representation ofthefuelrodsandassociated structure ofafuelassembly.

Thiscodeisusedtocalcul-ate thefluxadvantage factorswhichareappliedascorrec-tionfactorstothebasicbroadgroupcrosssectionscomputedbytheCEPAKlatticeprogramtoaccountforheterogeneous latticeeffectsnotrepresented ineitherthemultigroup spectrumorhomogenized cellspatialcalculation, e.g.,heterogeneous fastfissioneffectinfuelpellets.DOT-2WThespatialfluxsolutionandmultiplication factorforaninfinitearrayofindividual orclustersoffuelstoragecellsarecomputedwiththetwodimensional, discreteordinates transport code,DOT-2W(Reference 3-4).Themajorfeaturesofthemethodusedinthis.codeare:a)'nergydependence isconsidered usingthemultigroup treatment.

b)Thederivative termsandspat'ialdependence areapproximated usingafinitedifference technique.

c)Dependence uponthedirection variables istreatedusingthediscreteordinates method.3-3 d)Thescattering integralisevaluated usingadiscreteordinates quadrature incombination withaLegendreexpansion ofthescattering kerneltoapproximate anistropic scattering.

3.1.4FuelRackModification ThepresentspentfuelracksforSt.LucieUnit2arebeingcomplete-lyreplacedasdescribed inSection1.2.Thedesignofthenewspentfuelracksisdescribed inSection4.1.3.1.5AccetanceCriterion forCriticalit Theacceptance criterion fortheneutronmultiplication factor(Kff)isthatitbelessthanorequalto0.95,including uncer-tainties, underallpostulated conditions.

ForRegionItheresult-ingneutronmultiplication factor(kff)is0.942including alluncertainties andcalculational biases.ForRegionIIreactivity depletion isafunctionofthepercentage ofburnupachieved, notoftheinitialenrichment.

Theresulting reactivity, including uncer-taintiesandcalculational biases,asafunctionofburnupforseveralinitialenrichments isshowninFigure3-3.Theminimumallowable burnupforagiveninitialenrichment isthatcorrespond-ingtokeff0.95.Whentheseminimumburnupvaluesareadjustedupwardstoaccountforaxially-dependent burnupdistribution.and are:plottedasafunctionofinitialenrichment, regionsofacceptable andunacceptable burnupareidentified (seeFigure3-4).3.2DECAYHEATCALCULATIONS FORTHESPENTFUELPOOL(BULK)3,2,1~0TheFuelPoolSystemprovidescontinuous

'coolingforspentfuelassemblies storedinthefuelpool.Thispermitsstorageofspentfuelassemblies inthefuelpoolfromthetimethefuelisunloadedfromthereactorvesseluntilitisshippedoffsite.3-4

TheFuelPoolCoolingSystemremovesthedecayheatfromone-third ofacorebatch,whichisassumedtohaveundergone irradiation forthreecycles,placedinthespentfuelpoolfivedaysaftershutdownandelevenpreviousrefueling batches.Withonefuelpoolpumpoperating andonefuelpoolheatexchanger inserviceandwithacomponent coolingwatertemperature of100'F,themaximumspentfuelpoolwatertemperature doesnotexceed131'F.TheFuelPoolCoolingSystemalsoremovesthedecayheatproducedinthefuelfromafullcoreoff-loadplacedinthespentfuelpoolsevendaysafterreactorshutdown, inadditiontothedecayheatfromelevenpreviousbatchesofone-third coreeach.Withtwofuelpoolpumpsandonefuelpoolheatexchanger operating, andwithacomponent coolingwatertemperature of100'F,themaximumspentfuelpoolwatertemperature doesnotexceed148'F.Evaporative cooling.effectsareneglected, forconservatism, indetermining thismaximumtemperature.

IfRegionIIwereexpandedintoRegionItoreachtheultimatecapacityof1188fuelassemblies, thetotaldecayheatloadwouldbelessthanthatforthefullcoreoff-loadcasedescribed abovesincesuchanexpansion wouldprecludethehighdecayheattypicalofthefullcoreoff-loaded intoRegionI.VTheFuelPoolCoolingSystemalsoincludespurification equipment designedtoremovesolubleandinsoluble foreignmatterfromthefuelpoolwateranddustfromthefuelpoolsurface.Thismaintains thefuelpoolwaterpurity'nd clarity,permitting visualobserva-tionof.underwater operations.

Theminimumdesignlimitdepthofwateroverthespentfueltomaintaintheradiation doselevelstolessthan2.5mrem/hris9feet'.The'technical specifications requiream'inimumdepthof23feetofwateroverthestoredspentfuelassemblies; thisissuffi-cienttomeetthe2.5mrem/hrdoselevelduringfuelmovement, tolimitthemaximumcontinuous radiation doselevelsinworkingareastomuchlessthan2.5mrem/hrduringnormalstorage,andtoensure3-5

thattheoffsitedoseconsequences duringanaccidentareaccept-able,Make-uptothefuelpoolisfromtherefueling watertank,whichismaintained atatechnical specification limitofgreaterthanorequalto1720ppmboron.3.2.2SstemDescritionAdescription oftheFuelHandlingandStorageSystemsisprovidedinSection9.1oftheFSAR:ThePSIdiagramoftheFuelPoolSystemisshownonFigures9.1-6and9.1-7aoftheFSAR.ThesystemprocessflowdataareshowninTable9.1-5oftheFSAR.Radiation monitoring forthespentfuelpoolareaandFuelHandlingBuildingstackisdiscussed inSection12.3.4oftheFSAR.TheFuelPoolCoolingSystemcomponents andpipingaregualityGroupC,seismicCategoryIandaredescribed completely inFSARSection9.1.3.3.2.3SafetEvaluation Thecalculations fortheamountofthermalenergythatmayhavetoberemovedbythespentfuelpoolcoolingsystemaremadeinaccord-ancewithBranchTechnical PositionASB9-2,"Residual DecayEnergyforLight-Water ReactorsforLong-Term Cooling",

whichispartoftheStandardReviewPlan(NUREG-0800).

3.2.3.1NormalMaximumFuelPoolCoolingWithSingleFailureWithone-third ofacorebatch,whichisassumedtohaveundergone irradiation forthreecycles,placedinthespentfuelpoolfivedaysafter'reactorshutdownandelevenpreviousrefueling batches,theheatloadislessthan15.3x10Btu/hr.Underthesecondi-tions,withone'uelpoolpumpoperating (singleactivefailureofsecondpump)andonefuelpoolheatexchanger inservice,thespentfuelpooltemperature doesnotexceed131'F.3-6

3.2.3.2AbnormalMaximumFuelPoolCoolingForafullcoreunloading, itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown, alongwithelevenpreviousrefueling batchesofone-third coreeach.Theresultant heatloadfromonefullcoreandelevenrefueling batchesis30.3x10Btu/hr,themaximumheatloadinthefuelpool.Under6theseconditions, withboththefuelpoolpumpsinservice,themaximumfuelpoolwatertemprature is148'F.PursuanttotheguidanceinSRP9.1.3(NUREG-0800),

thereisnospentfuelpoolwaterbulkboiling,andacoolingsystemsinglefailureneednotbe,considered forthiscondition.

Thistemperature islessthanthevalue(150'F),referredtoasTinSection4.4.3.2.3.3AccidentMaximumFuelPoolCoolingNotwithstanding theguidanceinSRP9.1.3,thefuelpooltemperature forthefullcoreoff-loadcasedescribed aboveisevaluated withonefuelpoolpumpinoperable.

Theresulting fuelpoolequilibrium temperature is161'F.Again,thereisnospentfuelpoolwaterbulkboiling.3.2.3.4OverallPerformance Evaluation ThefuelpoolisprovidedwithaseismicCategoryIFuel,PoolCoolingSystemwhichmaintains thewatertemperatures withinaccept-ablelimits.TwoseismicCategoryIfuelpoolpumpsandtwoseismicCategoryIfuelpoolheatexchangers areavailable before,during,andafterapostulated SafeShutdownEarthquake (SSE),andtherebyprovideadequatefuelpoolcoolingforthenormal,abnormalandacciden't maximumheatloadsdescribed above.Asnotedpreviously,.

SRP9.1.3doesnotsuggestsingleactivefailureconsiderations evenfortheabnormalmaximumfuelpoolcoolinganalyses.

3-7 Thepurification loopnormallyrunsintermittently duringfuelpooloperation tomaintainthefuelpoolwaterpurityandclarity.Thepurification systemcanbeoperatedwitheitherthefuelpoolionexchanger orfuelpoolfilterbypassed.

Localsamplepointsareprovidedtopermitanalysisoffuelpoolionexchanger andfuelpoolfilterefficiencies.

Fortheabnormalconditions wherepooltemperature isabove140'F,therewillbenodetrimental effectstofuelmovements, coolingsystemoperation, fuelandfuelassemblies, orpoolstructures.

Thefuelpoolionexchanger willbemanuallyisolatedbeforecoolingwatertemperature reaches140'F.Allfuelpoolcoolingcomponents aredesignedforatleast200'F.Instrumentation isavailable locallywithacontrolroomalarmtomonitorpoolwatertemperature andenableshutdownofthepurification system(anintermittent operation) soastopreventionexchanger resindamage.Addition-ally,anyconcernsrelatedtoincreased fuelpoolbulktemperature, arenotexpectedtoaffecttheenvironmental conditions towhichtherefueling, equipment operators willbeexposed(e.g.,airtempera-ture,humidityofairborneactivity).

Allconnections tothefuelpoolaremadesoastoprecludethepossibility ofsiphondrainingofthefuelpool.Anyleakagefromthefuelpoolcoolingsystemisdetectedbyreduction inthefuelpoolinventory.

Makeuptothefuelpoolisfromtherefueling watertank.Unacceptable levelsofradioactivity tomaintenance personnel fromthespentfuelpoolarenotanticipated whileaheatexchanger isundergoing repairs.Thefuelpoolheatexchangers areenclosedina~vseparateroomfromthefuelpool.Thisdesignfeatureassuresthatmaintenance personnel arenotsubjected tounacceptable levelsofradioactivity.

Ouringsuchrepair,radiation levelsinthefuelpoolareaaremonitored continuously andaccesstothisareaisregulated accordingly; 3-8 3.2.3.5TotalLossofFuelPoolCoolingAlthoughSRPs9.1.2and9.1.3(NUREG-0800) donotsuggestanalysisofthetotallossoffuelpoolcooling,thisscenariowasevaluated toensurethatampletimeisavailable torestorecoolingortoprovidemakeupwatertothespentfuelpool.Multiplesources(seismicandnon-seismic) ofmakeupwaterexistasdiscussed inSubsection 9.1.3.3.1oftheFSAR.Undertheassumption thatallfuelpoolcoolingislostandthatmakeupwaterisnotsupplieduntilafterthepoolreachesboiling,thedecayheatinthespentfuelwillcauseboilinginatimeperioddependent uponthedecayheatload.Utilizing themaximumfuelpooldecayheatload(Section3.2.3.2),

thefuelpoolwaterinventory wouldtake3.9hourstoboil,withasubsequent boi1-offrateof62.8gpm.Atthisboil-offrate,1.4dayswouldpassbeforethewaterlevel-droppedtothelevel(nine'feetabovethefuel)requiredtomaintainacceptable radiation doselevels(seeSection3.2.1).Thisismorethanenoughtimetoprovideindication andalarmstotheoperators andtoprovidenecessary repairsorsupplymakeupwatertothespentfuelpool(seeFSARSection9.1.3.3.1).

Forthenormaldecayheatload(Section3.2.3.1),

thetimetoreachboilingconditions is12.6hoursandthesubsequent boil-offrateis31.7gpm.Atthisboil-offrate,2.8dayswouldpassbeforethewaterleveldroppedtothelevelrequiredtomaintainacceptable radiation doselevels.Thisismorethanenoughtimetorestorefuelpoolcoolingandprovidemakeupwater.forboththenormalandmaximumdecayheatloadsanalyzedassumingatotallossoffuelpoolcooling,themaximumcladdingtemperature wasconservatively predicted tobe275'F,thusensuringfuelclad-dingintegrity.

3-9 POTENTIAL FUELANDRACKHANDLINGACCIDENTS Thespentfuelrackswillbeinstalled priortostorageofanyspentfuelin.thespentfuelpool.Therefore, thereisnopotential foranaccidentinvolving spentfuelduringfuelrackinstallation.

3.4TECHNICAL SPECIFICATIONS Theproposedchangestothetechnical specifications aresummarized asfollows:1.Specification 5.6.1a.ischangedtoindicatethetotaluncer-taintyvalueappliedtothevalueofKffforthespentfueleffstorageracks..2.Specification 5.6.lb.ischangedtoshowthenominalcenter-to-centerdistanceforthespentfuelstorageracks.3.Specification 5.6.1c.isaddedtospecifytherequiredboronconcentration forthespentfuelpool.4.Specification 5.6.1ischangedtodeletethestatement regard-ingdrystorageofnewfuelforthefirstcore.Thisstatement isnolongerapplicable.

5.Specification 5.6.1ischangedtoaddastatement definingtheenrichment/burnup requirements forstorageoffuelineachregionofthefuelpool.6.Specification 5.6.3ischangedtoshowthecapacityofthespent'fuelstorager'acks.'I3-10 REFERENCES 3-1FORM-AFourierTransform FastSpectrumCodefortheIBM-7090, McGoff,-D.J.,NAA-SR-Memor 5766,September 1960.3-2THERMOS-Athermalization Transport TheoryCodeforReactorLatticeCalculations, Honeck,H.,BNL-5816, July1961.3-3CINDER-AOnePointDepletion andFissionProductProgram,England,T.R.,WAPD-TM-334, RevisedJune1964.34R.G.Soltesz,et.al.,"UsersManualforDOT-2WDiscreteOrdinates Transport ComputerCode,"WANL-TME-1982, December1969.3-11 FUELASSEMBlYCELLBLOCKINGDEVICE"L"INSERTR%SYSTEMSCOMBUSTION ENGINEERING.

INC.SPENTFUELRACKMODULEFORREGIONIFigure3-12

FUELASSEMBLYCELLBLOCKINGDEVICEKQsvsTEMsCOMBUSTION ENGINEERING.

INCSPENTFUELRACKMODULEFORREGIONIIFigure3-23-13

1.0COI0m~nCCg)ZITlI~n~g)C8CmzzcoOOm~8A0QZIll~IlDn0.90.80.70.60.5100002000030000BURNUP,IVIWD/MTU 40000ENRICHMENTS 4.5W/04.0W/03.5W/03.0'/02.5W/050000

DI-30,000AUcL'0,0000'-~10000ALLOWABLE BURNUPFORREGIONIIBURNUP~(11/00)x(ENRICHMENT W/0)13,900BURNUPREQUIRING STORAGEINREGIONI1.52.02.5.3.03$4.0INITIALU-235ENRICHMENT, W/0"4.55.0CL%SYSTEMSCOMBUSTION ENGINEERING INCSPENTFUELSTORAGERACKINITIALENRICHNIENT vsBURNUPFORFUELASSEMBLIES INREGIONIIFigure3-15

4.0MECHANICAL,

MATERIAL, ANDSTRUCTURAL CONSIDERATIONS 4.1DESCRIPTION OFSTRUCTURE 4.1.1DescritionoftheFuelHandlinBuildinAdescription oftheSpentFuelStoragePoolisprovidedinSection9.1.2oftheFSAR.Thespentfuelstoragepoolislocatedin,andanintegralpartof,theFuelHandlingBuilding.

Thegeneralarrangement oftheFuelHandlingBuildingshowingthelocationofthespentfuelstoragefacilities isgivenonFigures1.2-16and1.2-17oftheFSARandtheFuelHandlingBuildingdesignisdescrib-edinSection3.8.4.1oftheFSAR.TheFuelHandlingBuildingexteriorwalls,floorsandinteriorpartitions provideradiation shielding toplantpersonnel andprotecttheequipment fromtheeffectsofadverseatmospheric conditions including hurricane andtornadowinds,temperature, externalmissilesandcorrosive environ-ment.Thedesignloadingconditions andallowable stressesfortheFuelHandlingBuildingaredescribed insubsection 3.8.4.3oftheFSAR.ThedynamicanalysisoftheFuelHandlingBuildingisdes-cribedinSection3.7oftheFSAR.TheSpentFuelPoolwallsandfloorsarelinedwithtype304stainless steel.Theseismiccate-goryIspentfuelpoolisbeinganalyzedconsidering thespentfuelracksandadditional fuelassemblies, toensurethatthedesignmeetsthecriteriaspecified inFSARSection3.8.4.3.4.1.2DescritionofSentFuelRacks4.1.2.1DesignandFabrication ofSpentFuelRacksThe,spentfuelstorageracksarefabricated with304stainless steelhavingamaximumcarboncontentof0.0655.Theracksaremonolithic honeycomb structures withsquarefuelstoragelocations asshowninFigure4-1.Eachstoragelocationisformedbyweldingstainless steelsectionsalongtheintersecting seams,permitting theassemb-4-1 ledcavitiestobecometheloadbearingstructure, aswellasframingthestoragecellenclosures.

Eachmoduleisfreestanding, andseismically qualified withoutmechanical dependence onneighbor-ingmodulesorpoolwalls.Thisfeatureenablesremoteinstallation (orremovalifrequiredforpoolmaintenance) withminimaleffort.Reinforcing platesattheupperperipheral edgesprovidetherequir-edstrengthforhandling.

Stainless steelbars,whichareinsertedhorizontally throughtherectangular slotsinthelowerregionofthemodule,supportthefuelassemblies.

Thesesupportbars,whenweldedinplace,supportanentirerowoffuelassemblies.

Semicircular passagesatthebottomofeverycellwallallowcoolingwatertoflowtoallcells.Thesizeoftheopeningsprecludes blockagebyanycrudaccumula-tions.Loadingofthefuelracksisfacilitated viaamovablelead-infunnelassemblycontaining fourlead-indevices.Theopeningsofthefunnelassemblyaresymmetrical andtheassemblysitsontopoftherackmodule.Themodulewallthickness is0.135inch304stainless steel.TheL-insertsare0.188inchesthickandareshown,alongwiththecellblocks,inFigure4-'.Asindicated inFigure4-3,L-inserts areusedonlyinRegionIandcellblocksareusedinbothRegionsIandII.ThecellblocksforRegionIIareremovable andaresimilartothoseforRegionIshowninFigure4-5.Thenominalpitchofthespentfuelracksisuniformthroughout thenineteenmodulestobecontained inthespentfuelpool.Thispitchis8.96inchescenter-to-center inbothhorizontal directions.

Additional detailsareshowninFigures4-4and'4-5.RegionIislocatedwithin6modulesandcomprises atotalof448cavities..

RegionIisthehigh-enrichment, coreoff-loadregion.The'fuelassemblies aretobestoredineveryotherlocationinacheckerboard configuration (seeFigure3-1).Thecheckerboard arrangement makes505oftheRegionIultimatestoragecapacity4-2

Iinitially available forstorageoffuelwithhighfissileconcentra-tions.Theunused.cavitiesarefittedwithcellblockingdevicestopreventinadvertent insertion offuelintotheselocations.

RegionImaybeexpandedintoRegionII,ifrequired, tostoreadditional fuelwhichhasnotreachedtherequiredburnup.Thiswouldbeaccomplished bytheadditionofL-inserts andcellblockingdevicesintoRegionII.RegionIisdesignedforatotalof224usablecavitiesforenrich-mentsuptoandincluding 4.5w/oU-235.ThecavitiesinRegionIcontainanL-insert(Figure3-1).TheL-shapedstainless insertslockintothestoragecavityusingaspringlockingmechanism ontheupperend(Figure4-2).Thislockingmechanism snapsintooneoftheholesinthefoursurrounding cellwalls.TheseL-shaped304stainless insertsareneutronabsorbers.

RegionIIconsistsofatotalof1136cavities.

klithinRegionII,fuelassemblies arestoredin75%ofthetotalcavities(seeFigure3-2)foraninitialavailable storagecapacityof852cavities.

Cellblockingdevices'are usedtoprecludeplacement offuelassemb-liesintoeveryfourthcavity,whichremainsemptyandprovidesafluxtrapforreactivity control.'igure 4-3showstheinstallation ofRegionIandRegionIImodules.4.1.2.2SupportofSpentFuelRacksThespentfuelrackshavebeendesignedfordirectbearingontothespentfuelpoolfloor.A10"supportplateundertheperipheral cellsprovidesthebearingsurfacefortheracks.Fuelrackmodulelevelingisaccomplished byplacing10"squarestainless steelshimsbetweenthesupportplatesandthefuelpoolliner.4.1.2.3FuelHandlingThedesignofthespentfuelrackswillnotaffecttheconclusions ofthefuelhandlingaccidents presented intheFSAR(Section4-3 15.7.4)-andsummarized bytheNRCintheSafetyEvaluation Report(NUREG-0843).

Thatis,theradiological dosesforthepostulated fuelcaskandfuelassemblydropaccidents arewellwithinthe10CFR100criteria.

Thefuelhandlingaccidents arepresented inSection5.3ofthisreport.Intheseanalysesthemaximumradialpowerpeakingfactorexperienced byaspentfuelassemblywasassumedtobe2.0inordertobracketfuturefuelmanagement changes,whereastheanalysisintheFSARassumed1.65.Therefore, thereareincreases inthedosesforthefuelhandlingaccidents.

Theseincreases arenotrelatedtothespentfuelrackdesignanddonotaffecttheconclusions oftheanalysissincethedosesarestillwellwithinNRCguidelines (seeSections5.3.1.1and5.3.1.3).

4.2APPLICABLE CODES,STANDARDS, ANDSPECIFICATIONS Thespentfuelracksaredesignedinaccordance withthefollowing:

1.CodeofFederalRegulations 10CFRPart50:a)AppendixA"GeneralDesignCriteriaforNuclearPlants,"Criteria2,3,4,5,61,62,63.b)Appendix8"gualityAssurance CriteriaforNuclearPowerPlantsandFuelReprocessing Plants."2.ASMEBoilerandPressureVesselCodeSectionIII,Subsection NF,"NuclearPowerPlantComponents."

3;'merican'Society forTestingMaterial's Documents:

a)ASTM-A240-Specification forCorrosion Resisting ChromiumNickelSteelPlate,Sheet&StripforFusion-WeldedUnfiredPressureVessels.4-4

b)ASTM-A276-Specification forStainless andMeatResist-ingBarsandShapes4.AmericanNationalStandards Institute:

a)ANSI-N210,DesignObjectives forLightWaterReactorSpentFuelStorageFacilities atNuclearPowerStations, 1976.b)ANSI-N16.1,NuclearCriticality SafetyinOperations withFissionable Materials OutsideReactors, 1975.5.UnitedStatesNuclearRegulatory Comnission:

a)StandardReviewPlan,Section9.1.2,Rev.2"SpentFuelStorage."

b)Regulatory Guide1.13,Rev.2Draft,"SpentFuelStorageFacilityDesignBasis."c)Regulatory Guide1.26,Rev.3"gualityGroupClassifica-tionandStandards forWater,SteamandRadioactive WasteContaining Components ofNuclearPowerPlants."d)Regulatory Guide1.29,Rev.3"SeismicDesignClassifica-tion."e)Regulatory Guide1.31,Rev.2"ControlofStainless SteelWelding"asmodifiedbyBran'chTechnical PositionMTEB-51,"Interim.Position onRegulatory Guide1.31,"ControlofStainless SteelWelding."

f)Regulatory Guide1.122,"Development ofFloorDesignResponseSpectraforSeismicDesignofFloor-Supported Equipment orComponents, Rev.1,February1978.4-5 g)'egulatory Guide1.70,"Standard FormatandContentofSafetyAnalysisReportforNuclearPowerPlants,Rev.3."h)NRCGuidance"ReviewandAcceptance ofSpentFuelStorageandHandlingApplications" April1978,andModifications datedJanuary18,1979.4.3SEISMICANDIMPACTLOADSMaximumloadstransmitted tothefloorbythespentfuelracksatSt.LucieUnit2aregivenbelow.Floor-Rack Interface LoadsKIPSDeadWeightLiveOBENSEWOBEySSENSSSEEWSSEVNorth-South 104.10*98.30East-West 00028.60042.10VerticalDown59.7102.940.48.897.259.515.5Theseismicanalysisofthespentfuelrackinc'ludes anassessment ofthemaximumslidingandtippingthatcanbeexpected.

Theracksareinstalled withanominalgapof2"'between modulesandareaminimumof12inchesfromthepoolwalls.Theanalysishasshownthatthemaximummotionoftheracks,including tipping,slidingandthermalexpansion islessthanthegapbetweenadjacentmodules,therefore, nocontactispredicted.

4-6 0'

LOADSANDLOADCOMBINATIONS Theloadsandloadcombinations usedinthestructural analysisofthespentfuelracksarelistedbelowandareconsistent withNRCguidancein"ReviewanAcceptance ofSpentFuelStorageandHandlingApplications" (Reference 4-1).LoadCombination (ElasticAnalsis)AccetanceLimitD+LD+L+E0+L+ToD+L+To+ED+L+Ta+ED+L+Ta+E'ormallimitsofNF3231.1aNormallimitsofNF3231.1aLesserof2SyorSustressrangeLesserof2SyorSustressrangeLesserof2SyorSustressrangeFaulted.Condition LimitsofNF3231.1cTheabbreviations inthetableabovearethoseusedinSection3.8.4oftheStandardReviewPlanwhereeachtermisdefinedexceptforTawhichisdefinedasthehighesttemperature associated withthepostulated abnormaldesignconditions.

Consistent withNRCguidance(Reference 4-1),theprovisions ofNF3231.1shallbeamendedbyparagraphs c.2,3,and4oftheRegula-toryGuide1.124entitled"DesignLimitsandLoadCombinations forClass1Linear-Type Components Supports."

4.5DESIGNANDANALYSISPROCEDURES 4.5.1Methodo1oSummarThespentfuelstorageracksaredesignedtowithstand forcesgenerated duringnormaloperation, anOperating BasisEarthquake, oraSafeShutdownEarthquake.

Lateralandverticalseismicloads4-7 alongwithfluidforcesareconsidered tobeactingsimultaneously onthefuelracks.Theracksaredesignedtoassurerackstructural integrity whileatthesametimekeepingthefuelinasubcritical state.Linearresponsespectrummethodsareuse'dfortheverticaldirec-tion.Thelateralseismicresponses ofthespentfuelstorageracksaredetermined usinganon-linear timehistoryanalysis.

Non-linear timehistoryanalysesarep'erformed forthelateraldirections primarily becauseoffuelimpacting.

Theeffectsofimpacting structures significantly influence thestressesinboththestoragestructure andthefueland,becausetheyarenon-linear innature,canonlybeaccounted forbyperforming morecomplexnon-linear timehistoryanalyses.

Theseismicinputusedfortheseanalysesconsistsoftheverticalresponsespectrumandthelateralacceleration timehistories corresponding tothepoolfloorelevation atSt.LucieUnit2.Theanalysesareperformed inaccordance withReg.Guide1.122,Revision1,February1978.Thefirststepintheanalytical procedure istodetermine thedynamiccharacteristics ofthefuelstorageracks.Thisis.donebydeveloping athree-dimensional finiteelementmodelofthestructure andsolvingforthenaturalfrequencies andmodeshapesinair.ThefiniteelementcodeusedinthestudyisSAPIV(seeSection4.5;2).Theresulting dynamiccharacteristics arethenincorporated intoanon-linear representation oftheentiresystem,whichincludesthefuelandthestorageracks.The.CfSHOCK computercode(seeSection4.5;2),isusedtodetermine thenon-linear timehistoryresponseofthesystem.Theeffectsofimpacting betweenthefuelandthestoragerackarerepresented intheCESHOCKmodel.Becauseofthe4-8

closeproximity ofthestructures, hydrodynamic couplingeffectsbetweenthefuel,thestoragerackandthepoolarealsoincludedinthemodel.-(SeeReference 4-2foradditional information.)

TheracksareanalyzedusingafiniteelementmodelintheSAPIVcodeandtheloadsfromSection4.3.SAPIVoutputconsistsofmembranestressesandbendingmomentsforeachelementasshowninFigure4-6.Whendealingwiththistypeofelement,theresultsaregivenperunitlength;therefore, thestresscausedbythemomentwillbearrivedatbythefollowing expressions:

oB=MC/Iforaunitlengthstrip,I=ltC=t/2C/I=6/tW0=6M/tThisapproachappliestoMx,M,andMxthus,thetotalstressinanyonedirection willbe:tmemb2Thebeamsusedatthebottomofeachcavityopeningtosupportthestoredfuelassemblyareincludedinthemodelas,lumpedmasseswithnostructural rigidities.

Thebeamsarethenanalyzedforaclearerunderstanding oftheexistingstresssituation.

Againthestresscausedbythemomentwillbearrivedatbytheexpression a=MC/Iandtheshearstressbytheexpression cr=P/A.ComuterCodeDescritionsThecomputercodesusedintheseanalysesaredescribed inthefollowing subsections.

4-9 SAPIVSAPIVisageneralstructural analysisprogramforstaticanddynamicanalysisoflinearelasticcomplexstructures.

Thefiniteelementdisplacement methodisusedtosolveforthedisp'lacements andcomputethestressesofeachelementofthestructure.

Thestructure canbecomposedofunlimited numberofthree-dimensional truss,beam,plate,shell,solid,planestrain-plane stress,thickshell,spring,axisymmetric elements.

Theprogramcantreatthermalandvariousformsofmechanical loadingaswellasinternalelementloadings.

Oynamicanalysisoptionsconsistofeigenvalue solutions yieldingfrequencies andmodeshapes,responsehistorybymodesuperposition, responsehistorybydirection integration, andresponsespectrumanalysis.'arthquake typeofloadingaswellastimevaryingpressurecanbetreated.Theoutputconsistsofdisplacements ateachnodalpointaswellasinternalmemberforcesforeachelement.TheprogrambeingusedatC-Eisessentially equivalent totheversionverified, documented, andreleasedbytheUniversity ofCalifornia (Reference 4-3).CESHOCKTheCESHOCKcomputercodeperformstransient, dynamicanalysesofnon-linear elasticsystems.Thesesystemscanbeeitheraxialmodelshavingonedegree-of-freedom pernodeorlateraloneshavingonerotational andonetranslational degreeoffreedompernode.Theresponseofasystemisdetermined bynumerically integrating (usingaRunge-Kutta-Gill technique) itsequations ofmotion.Excitation cantaketheformofeitherinitialconditions ortimehistories ofappliedaccelerations, velocities displacements or4-10 forces.Thenon-linearities canconsistofgaps,friction, hyster-esisornon-linear springs.Hydrodynamic actioncanalsobemodel-ed,withbothon-diagonal (addedmass)andoff-diagonal (coupling) termsbeingconsidered.

Theprogramautomatically searchestheresponsetimehistories andprintsoutthemaximumandminimumvaluesofallnodalaccelera-tions,andmemberloadsandcangenerateanoptionaloutputtapecontaining thecompleteresponsehistories.

"CESHOCK" isanextensively

modified, proprietary versionofthe"SHOCK"computercodedeveloped byV.K.Gabrielson andR.T.ReeseofSandiaLaboratories (Reference 4-4).Itdiffersfromtheorig-inalintheareasofdamping,coefficient ofrestitution,
friction, hydrodynamic effects,hysteresis, inputoftimehistories, outputoptions,allowable problemsizeandthemannerofinputting stiff-nesselements.

CESHOCKhasbeenverifiedbydemonstration thatitssolutions aresubstantially identical tothoseobtainedbyhandcalculations orfromacceptedanalytical resultsviaanindependent computercode(References 4-4and4-5).4.6STRUCTURAL ACCEPTANCE CRITERIATheallowable stresslimitsfornormalandfaultedconditions asdefinedintheASMECode,SectionIII,Subsection NFare:Normal.Operating Conditions:

PrimaryMembrane(P)=16,500psiPrimaryBending(Pb)=16,500psiShear(~)=11,000psiFaultedConditions:

P=33,000psiP=33,000psib=22,000psis4-11

ForsimilarspentfuelstoragerackssuppliedbyCombustion Engineer-ingforanotherutility,themaximumbendingstressunderthefaultedcondition was29,199psiascomparedtotheallowable limitsgivenabove.ThemaximumstressfortheSt.LucieUnit2storagerackswillalsobewithintheaboveallowable limits.4.7MATERIALS, QUALITYCONTROL,ANDSPECIALCONSTRUCTION TECHNIQUES 4.7.1MaterialsThespentfuelstorageracksarefabricated from304stainless steelwithamaximumcarboncontentof0.065%andconformtoASTMspecifi-cationA240.Thestainless steelforthestoragecellwallsis0.135inchesthickandfortheLinsertsthestainless steelis0.188inchesthick.AsstatedinSection9.1oftheFSAR,thefuelracksbeingreplacedarealsomadeof304stainless steelandthefuelpoolchemistry control(seeSection3.2.2)isthesameasthatdescribed intheFSAR.Therefore, thecompatibility ofthefuelrackmaterialwiththepoolwatershouldbethesameasthatsuamarized intheFSARsafetyevaluation report(NUREG-0843).

4.7.2ualitControlFloridaPower8Light'sandCombustion Engineering's QualityAssur-anceProgramsensurethatallmanufacturing andinstallation activ-itiesconformtoacceptable qualityrequirements throughout allareasofperformance.

Thepertinent requirements of10CFR50,AppendixB,andCombustion Engineering qualityassurance reportCENPD-210-A, Rev.3andSpecification 00000-WQC-5.2 willbefollow-ed.Inaddition',

FloridaPower8Light'sTopicalQAReportFPL-NQA-4-12

100A(approved bytheNRC)describes gualityAssurance requirements withwhichthedesign,procurement, andfabrication ofthenewfuelstoragerackswillcomply.4.7.3Construction TechniuesThereiisnospentfuelintheSt.LucieUnit2spentfuelpoolatthistime,noristhereexpectedtobeanywhenthesespentfuelracksareinstalled.

Therefore, nospecialadministrative controlsorprocedures willbenecessary toprovideradiation protection.

Standardconstruction techniques andprocedures willbeutilizedduringinstallation toensureworkersafetyandcompliance withguidelines fromthemanufacturer.

4.8TESTINGANDIN-SERVICE SURVEILLANCE Sincethenewfuelracksdonotincludeboronpoisonplateinserts,thereisnorequirement forspecialtestingorsurveillance.

4.9REFERENCES

4-1NRCGuidance"Reviewand'Acceptance ofSpentFuelStorageandHandlingApplications",

datedApril1978andmodifiedJanuary19,1979.4-2Longo,R.,andBailey,D.F.,"SeismicAnalysisofSpentFuelRacks"ANSpaperTS-7308presented attheANSTopicalMeetingonOptionsforSpentFuelStorageatSavannah, Georgia,Sep-tember26-29,1982.'-3'Bathe,K.J.,Wilson,E.L.,andPeterson, F.E.,"SAPIV-A'tructural AnalysisProgramforStaticandDynamicResponseof4-13

LinearSystems.",

ReportNo.EERC,73-11, Earthquake Engineering ResearchCenter,University ofCalifornia

-Berkeley, June1973.4-4SCL-DR-65-34, "SHOCK-AComputerCodeforSolvingLumpedMassDynamicSystems",

V.K.Fabrielson, January,1966.4-5TopicalReportonDynamicAnalysisofReactorVesselInternals UnderLoss-of-Coolant AccidentConditions withApplication ofAnalysistoCE800MweClassReactors,"

Combustion Enineerin,Inc.,ReportCENPD-42, August1972(Proprietary).

4-14 L-INSERTL-INSERTLOCKINGHOLEFUELASSEMBLYSUPPORTPLATESLOTFLOWPASSAGESK%SYSTEMS.COMBUSTION ENGINEERING.

INC.TYPICALSPENTFUELSTORAGERACKMODULEFigure4-14-15 SYSTEMSCOMBUSriONENGiNEERING.

INC.TYPICALSPENTFUELRACKMODULEL-INSERTFigure4-24-16

pp4~V~~lg4pgH'0v~a'RVI~Vgwgpq4ea0IIVVlv~Q'4<4u>as<V'4Q~vip.s~ovltOppRf0VIIL4VlQ4v~VWeg~w<VlH<gOu+IIII4$~+~R~lsglst4pw4OtgCFigureSYSTEMSCOMBUSTION ENGINEERING.

INC.SPENTFUELSTORAGEMODULE1NSTALLATION 4-17

IOOIfgCi3Cl+IQQQQQI0QQQ1ULjIC:1QQQQIIi.LI0QOI'rcrrtrootoovrtrvSCPltrotvtuULQC~0r-IlPlrrOPIIorptorvpoSCIltHtrrt111SC:ICl:I:QQ1SClltI/vO,,tC.PC~0pllorcorvroScrltPtrrtCrOvt"ICVtSrOOO~rtu'cv"IrfI~rp~II~P~~Crr(vtrltr~Ot~rl~8;~v511EPI>III~'ICPICr~~ffAIVICPICvcr~TkI~critVrrtSPOPPC0vlocprrpv1 I~~I~~'OTE:Alldimensions areininches.POWERCOMBUSTloN ENGINEERING.

INCSPENTFUELSTORAGEMODULEFigure4-18 8.740.1888.740SECTIONA.AAIIII4DETAILZ164.7/846WELDEDCELLBLOCKINGDEVICE"L"INSERTMODIFIED"L"INSERTSYSTEMSCOMBUSTION ENGINEERING.

INCL-INSERTS Figure4-54-19

~vIov~xyMyyexyMx~LPOWERCOMBUSTION ENGINEERING.

INCSAPIVCOMPUTERCODEMEMBRANESTRESSESANDBENDINGMOMENTSFigure4-64-20 COST/BENEFIT ASSESSMENT ANOENVIRONMENTAL IMPACT5.1COST/BENEFIT ASSESSMENT 5.1.1NeedforIncreased StoraeCaacitA.FP&Lcurrently hasnocontractual arrangements withanyfuelreprocessing facilities.

FP&Lexecutedthreecontracts withtheOepartment ofEnergy(OOE)onJune16,1983pursuanttotheNuclearWastePolicyActof1982,butthestorage/disposal facilities willnotbeavailable forspentfuel.storageanyearlierthan1998.B.Table5-1includesaproposedrefueling scheduleforSt.LucieUnit2,andtheexpectednumberoffuelassemblies thatwillbetransferred intothespentfuelpoolateachrefueling untilthetotalexistingcapacityisreached.Atpresentthelicens-edcapacityofUnit2is675storagecells.Allcalculations inthetableforlossoffullcorereserve(FCR)arebasedonthenumberoflicensedtotalcellsinthepool.C.TheSt.LucieUnit2spentfuelpoolcontainsnospentfuelassemblies atthis'time.D.Atpresent,therearenocontrolrodassemblies orothercomponents storedintheSt.LucieUnit2spentfuelpool.E.Adoptionofthisproposedspentfuelstorageexpansion wouldnotnecessarily extendthetimeperiodthatspentfuelassemb-lieswouldbestoredonsite.Spentfuel.couldbesentoffsi'teforfinaldisposition

'underexistinglegislation, butthegovernment facilityisnotexpectedtobeavailable until1998.Asmattersnowstandanduntilalternate storagefacilities areavailable, spentfuelassemblies onsitewillremainthere.5-1 F.TheestimatedatewhenthespentfuelpoolwillbefilledwiththeproposedincreaseinstoragecapacityisprovidedinTable5-1.5.1.2Construction CostsTotalconstruction costassociated withtheproposedmodification is2.4milliondollars.Thisfigureincludesthecostofdesigning andfabricating thespentfuelracks;engineering costsforC-E,EbascoandFPSL;andinstallation andsupportcostsatthesite.5.1.3Consideration ofAlternatives A.Therearenooperational commercial reprocessing facilities available forFPL'sneeds,norarethereexpectedtobeanyintheforeseeable future.B.Atthepresenttime,therearenoexistingavailable indepen-dentspentfuelstoragefacilities.

Whileplansarebeingformulated bytheDOEforconstruction ofaspentfuelstoragefacilitypertheNuclearWastePolicyActof1982,thisfacil-ityisnotexpectedtobeavailable toacceptspentfuelanyearlierthan1998.C.Atpresent,FPLhasnolicensetotransship fuelbetweenfacilities, norarepresently installed storageracksatTurkeyPointUnits3and4capableof(orlicensedto)storefuelgenerated atSt.LucieUnit2.St.LucieUnit1willlosefullcorereservecapacityuponstartupofcycle8spentfuelin1986.Therefore, transferofSt.LucieUnit,2spentfuelto't.LucieUnit1wouldonlycompoundthat.unit.'sstorageproblem'nd's notaviableoption.5-2

D.Estimates forcostsofreplacement powerwerecalculated basedonthelastofficialrateofreturn.Theassumption wasmadethattheunitcouldbeoperatedwithoutmaintaining fullcorereserve,thuscycle10in1996wouldbethelastrefueling possiblewithexistingstoragecapacity.

Table5-2indicates theaverageyearlyfuelcostincreases forSt.LucieUnit2after3yearsofreactorshutdown.

Plantshutdownwouldplaceaheavyfinancial burdenonFloridaresidents withinFP8L'sserviceareaandcannotbejustified.

5.1.4Resources Committed Reracking ofthespentfuelpoolwillnotresultinanyirreversible andirretrievable commitments ofwater,landandairresources.

Thelandareanowusedforthespentfuelpoolwillbeusedmoreeffi-cientlybysafelyincreasing thedensityoffuelstorage.Thematerials usedfornewrackfabrication arediscussed inSection4.7.1ofthisreport.Thematerials arenotexpectedtosignifi-cantlyforeclose alternatives available withrespecttoanyotherlicensing actionsdesignedtoimprovethepossibleshortageofspentfuelstoragecapacity.

5.1.5ThermalImactontheEnvironment Thethermalanalysisforthespentfuelpoolcoolingsystemispresented inSection3.2ofthisreport.Thatanalysisincludedthemaximumspentfueldecayheatloadfornormal,abnormal, andacci-dentconditions.

Asaresultofthereracking ofSt.LucieUnit',themaximumdecayheatloadfornormalstorageincreased from12.5x10Btu/hrto15.3x10Btu/hrandforabnormalandaccidentstoragetheheatloadincreased from29.9x10Btu/hrto30.3x106Btu/hr.Thisincreased heatloadresultsinanincreaseof6'Finthemaximumfuelpoolwatertemperature forthe"normal"case,and1'Fforthe"abnormal" and"accident" cases.Sincetheevaporation rateisassumedtobezero,theincreased decayheatloadisalso5-3 theincreased loadonthecoolingsystemandtheincreased heatrejectedtotheenvironment.

Thetotalplantheatloadrejectedtotheenvironment isabout6.4x10Btu/hr(seeSection5.1.2.2.1of9~theEnvironmental ReportOperating License).

Therefore, theper-centageincreaseinheatrejectedtotheenvironment islessthan0.05Kfornormalfuelstorageand0.01%foraccidentstorage.5.2RADIOLOGICAL EVALUATION 5.2.1SolidRadwasteNospentfueliscurrently storedintheUnit2spentfuelpool.St.LucieUnit2begancommercial operation inAugust1983andwillnotberefueleduntilatleastOctober1984.Therefore, nosolidradioactive wasteiscurrently generated bythespentfuelpoolpurification system,norwillanysolidradwastebegenerated duringtheactualreracking operation.

S'incethegreatmajorityofcontam-inationcollected bythepurification systemderiveseitherfromfreshlyunloadedfuelortheintermixing ofspentfuelpoolfluidwithprimaryfluidduringrefueling, increasing thestoragecapacityhasnosignificant effectonthequantityofwastecollected.

Theeffective changeinincreasing thestoragecapacityofthespent.fuelpoolistheretention ofolderfuelelementsinthepoolbeyondthetimewhen".heywouldhaveotherwise beenshippedoffsitefordisposalorreprocessing.

Operati.ng plantexperience withhighdensityfuelstorage(St.LucieUnitI),hasindicated thatonly35cubicfeetofresinsaregenerat-edperyear.."5;2.2Gaseous"Radwaste Krypton-85 wouldonlybereleasedtothepoolwaterandsubsequently totherefueling buildingatmosphere fromleakingfuelassemblies.

Fornormaloperating conditions, mostofthekryptonwouldcomefrom5-4

themostrecentlydischarged batchoffuel.Afterthemostrecentbatchhascooledinthepoolfor12months,thepressurebuildupinafuelpinwhichcauses'the releaseofkryptonwillbesmall.Thus,anyincreaseinKrypton-85 activityattributed totheincreaseinspentfuelpoolstoragecapacityisexpectedtobesmallcomparedtothetotalquantityofallnoblegasesreleased.

Operating plantexperience withhighdensityfuelstorage(St.LucieUnitI),indicates thattherewerenomeasurable continuous releasesofKrypton-85 overthepasttwoyearsfromtheFuelHandlingBuildingventilation system.5.2.3Personnel ExosureA.Dataisnotavailable regarding recentgammaisotopicanalysisofSt.LucieUnit2spentfuelpoolwater.Inlieu,recentgammaisotopicanalysisisprovidedinTable5-3forSt.LucieUnitI,whichpresently useshighdensityspentfuelstorageracks.Fuelpoolactivities forSt.LucieUnit2areexpectedtobewithinthevaluespresented intheFSARinSection'1.1.2.2andTable11.1-15.B.Externaldoseequivalent ratesarenotavailable fortheSt.LucieUnit2spentfuelpool;however,operating plantexperi-ence(St.LucieUnit1)indicates radiation levelslessthanIMR/HRabovethesurfaceofthespentfuelpool.C.Dataisnotavailable regarding airborneradionuclides fortheSt.LucieUnit2spentfuelpool;however,operating plant-experience (St.LucieUnit1)indicates airbornelevelsaretypically lessthantheminimumdetectable activityofthe'quipment (GeLiDetector) usedforgammaspectroscopy.

D.Sinceoperating experience hasshownminimalairborneradio-activity, noincreases indoserateinthespentfuelpoolareaoratthesiteboundaryareanticipated.

5-5

E.Asstatedin5.2.1,baseduponoperating plantexperience withhighdensityfuelstorageracks,therewillbenosignificant increaseintheradioactive wastegenerated bythespentfuelpoolpurification system.Thisisbecausethereisnosignifi-cantincreaseintheradioactivity levelsinthespentfuelpoolwaterwithhighdensityfuelstorageracks;therefore spentfuelpoolcoolingandpurification filtersneednotbereplacedmorefrequently.

Thustheannualman-remburdenisnotexpectedtoincreaseduetotheincreased fuelstorage.F.Mostofthecrudassociated withspentfuelstorageisreleasedsoonafterfuelisremovedfromthereactor.Oncefuelisplacedintothespentfuelstorageracks,additional crudcontribution isminimal.Thehighestpossiblewaterlevelwillbemaintained inthespentfuelpool(>23feetabovethefuelassemblies) tokeepexposureaslowasreasonably achievable.

Afuelpoolskimmerisusedduringpurification operations toremoveanyfloatingpollutants, therebyfurtherprecluding thedeposition ofcrudonthespentfuelpoolwalls.G.Sections5.2.3.eand5.2.3.findicatethatoperating experience withhighdensityrackshasshownnosignificant increaseinradioactivity levelsinspentfuelpoolwaterordoseratesabovethespentfuelpool.AsstatedinSections5.2.1and5.2.3.e,operating experience hasshownnoincreaseintheprocessing ofsolidradioactive wasteorannualman-remburdenassociated withit.TheSt.LuciePlantRadiation Protection programisdescribed

.inChapter12oftheFSAR.Basedonexperience withthereracking ofSt.LucieUnit1,nomodifications totheprogram'reanticipated asaresultoftheSt.LucieUnit2rerack.5-6

~~5.I.4~RkOiTheex>stingspentfuelstoragerackshaveneverbeenusedtostorespentfuelandconsequently arenotcontaminated.

Therackswillbedisposedthroughroutineindustrial means.Thetotalweightoftheseracksisapproximately 122,540pounds.Theracksconsistofeightmodules;fourweighingapproximately 13,140poundseachandtheotherfourapproximately 17,520poundseach.5.3ACCIDENTEVALUATION 5.3.1SentFuelHandlinAccidents 5.3.1.1CaskDropAsdiscussed inFSARSection9.1,theconstruction oftheFuelHandlingBuilding, thedesignofthecaskhandlingcraneandthetravellimitswitchinterlock circuitry aresuchthatthespentfuelcaskcannottraverseoverthespentfuel.Fromthespentfuelcaskstorage,thecranemovesthecaskloadedwithspentfuelassemblies outoftheFuelHandlingBuildingtothedecontamination areaontotheshippingvehicleforoffsiteshipment.

Asdiscussed inFSARSubsection 9.1.4.3,althoughitisnotlikely,thepotential dropofaspentfuelcaskisabout43ftjustoutsidetheFuelHandlingBuilding.

Itisconservatively postulated thatacaskdropaccidentof43ftresultsinthedamageofalltheassemblies contained inthecas,kandtheinstantaneous releaseofactivitytotheatmosphere.

Itisassumedthataspentfuelcaskcontaining 10irradiated fuelassemblies isinthepr'ocessofbeingmovedwiththecasksuspended fromthecraneabovethetransport vehicle.Throughsomeunspeci-fiedfailure,thecaskbecomesdisengaged fromthecraneandfalls43ftontoanunyielding surface.Theactivityfromthedamagedfuelbundlesispostulated tobereleasedtotheenvironment, atgroundlevel.5-7

TheanalysisisbasedonStandardReviewPlan15.7.5.Themodelsusedforevaluation oftheradiological dosesaredescribed inAppendix158oftheFSAR.Theparameters andassumptions usedarepresented inTable5-4.Thedataforarealistic analysisarealsoincludedinTable5-4forcomparison purposes.

Thecaskdropaccidentanalysisassumesthatallthefuelisdamagedandallofthegapactivityisreleasedatgroundleveltotheenvironment.

Thisconsistsof10percentofthenoblegases,30percentoftheKr-85and10percentoftheradioactive iodineinthefuelrodsatthetimeoftheaccident.

Thevaluesassumedforindividual fissionproductinventories includedaradialpeakingfactorof2.0andaradioactive decayof90days.Theactivityreleasetotheenvironment ispresented inTable5-5.Themaximumoffsitedoseproducedisnomorethan24.0remforthetwo-hourinhalation thyroiddoseattheexclusion areaboundary.

Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-6.Resultsarewellwithintheacceptance criteriaof10CFR100andNRCguidelines inSection15.7.5oftheNRCStandardReviewPlan(NUREG-0800).

ThesedosesindicatethatresultsarelowerthanNRCguidelines byatleastafactorofthreeandthatthoseguidelines wouldbemetevenforaradialpowerpeakingfactorof6.2,ascomparedtothevalueof2.'0assumedinthisanalysis.'.3.

1.2OverheadCraneNocran'ecapableofcarryingheavyloadscanmoveintheareaofthespentfuelpool.(Theanalysisoflight1'oadsissummarized inSection5.3.4ofthisreport.)Protection againstdroppingthespentfuelcaskintothespentfuelstoragepoolisprovidedbythebasiclayoutoftheFuelHandlingBuilding(refertoFSARFigures1.2-16and1.2-17).Thecaskhandlingarrangement (roofopeningvs.5-8 poollocation) makesitimpossible topassthecaskoverthespentfuelpool.Thecaskisassignedaseparatestoragepooladjacenttothespentfuelpool.Thecaskdecontamination andwashdownareasarelocatedoutsidetheFuelHandlingBuilding.

TheplanatEleva-tion96.83feetshowsthelocationandsizeoftheroofopeningthroughwhichthefuelcaskcranehoistropescanpass.Thehori-zontalmovementoftheropes,andtherefore ofthecranehook,islimitedbytheroofopening.Theplanatelevation 19.50feetshowsthelocationanddimensions ofthespentfuelpool.Acomparison ofthetwoplansshowsthatthecranehookisprevented fromapproach-ingthespentfuelpoolbythelimitsoftheroofopening.Additional protection isaffordedbythetrolleybumpersandasetoflimitswitchesworkingtogetherwithbridgeandtrolleybrakestopreventmovementofthehookintotherestricted areaasshownonPartialPlanAofFSARFigure1.2-16.Theprimarysetoflimitswitchesandbridgeandtrolleybrakesisbackedupbyanindepen-dentsecondary setdesignedtoperformthesamefunction.

Undertheseconditions thehookmovementwithinthebuildingislimitedtoanarrowcorridorsufficient tobringthecaskintothebuildingandplaceitinthecenterofthecaskstoragepool.Therearenosafetyrelatedcomponents locatedunderthetravelpathofthespentfuelcask.Acaskdroppedontoeitheroftheseparating wallsbetweenthespentfuelpoolandcaskstoragepool,afterdroppingontoandtippingovertheexteriorwall,fallsbackintothecaskstoragepool.Thedesignofthecaskyokewillpreventthecaskfromdroppinginotherthanverticalorientation.

PleaserefertoFSARFigures9.1-21and22whichillustrate theconceptofthedoubleyoke.Itisapparentthattwofailuremodesexist:.1.Onesideofthedoubleyokefailsandthenon-redundant mainhookdoesnot.Theconsequence ofthisisthat,sincethecask5-9

willstillbesupported onthreesides,thecaskcenterofgravitywillnotdropandnosignificant pendulummotioncanbeinitiated.

2.Onesideofthedoubleyokefails,followedbyfailureofthenon-redundant mainhook.Thecaskisexpectedtofallstraightdown.Insummary,thedoubleyokearrangement providesadequateprotection againsttheinitiation ofpendulummotionintheeventofayokefailure.Thereisnoconceivable failuremodewhichwouldcausethecasktofallovertheseparating wallintothespentfuelpool.Asetofredundant upperlimitswitchespreventsthecranefromliftingthecaskaboveElevation 62.5ft.5.3.1.3FuelAssemblyDropThepossibility ofafuelhandlingaccidentisremotebecauseofthemanyinterlocks andadministrative controlsandphysicallimitations imposedonthefuelhandlingoperations (refertoFSARSubsection 9.1.4).Allrefueling operations areconducted inaccordance withprescribed procedures underdirectsurveillance ofasupervisor technically trainedinnuclearsafetyandfuelhandling.

Notwithstanding theabove,thefuelhandlingaccidentisassumedtooccurasaconsequence ofafailureofthefuelassemblyliftingmechanism resulting inthedroppingofaraisedfuelassemblyontothespentfuelpool.Theearliestanticipated timeatwhichaspentfuelassemblycouldbehandledisthreedaysaftershutdown.

Forthisevaluation, droppingofafuelassemblyisassumedtooccur,breaching thecladdingandreleasing thevolatilefissionproductsfromthegasgapofthefuelpins.Inadditiontothearearadiation monitorlocatedinthespentfuelcaskarea,portableradiation monitors5-10 capableofemittingaudiblealarmsarelocatedinthisareaduringfuelhandlingoperations.

DoorsintheFuelHandlingBuildingareclosedtomaintaincontrolled leakagecharacteristics inthespentfuelpoolregionduringrefueling operations involving irradiated fuel-.Shouldafuelassemblybedroppedinthefueltransfercanalorinthespentfuelpoolandreleaseradioactivity aboveapres-cribedlevel,theairborneradiation monitorssoundanalarm,alertingpersonnel totheproblem.Airborneradiation monitorsintheFuelHandlingBuildingisolatethenormalFuelHandlingBuildingVentilation Systemandautomatically initiatethefiltration systems(refertoSubsection 6.2.3oftheFSAR).Themodelsusedforevaluation oftheradiological dosesaredes-cribedinAppendix15BoftheFSAR.,Assumptions andparameters usedinevhluating thefuelhandlingaccidentareconsistent withRegulatory Guides1.13"SpentFuelStorageFacilityDesignBasis"December1975(Rl)and1.25"Assump-tionsUsedforEvaluating thePotential Radiological Consequences ofaFuelHandlingAccidentintheFuelHandlingandStorageFacilityforBWRandPWRs"March1972(RO)recommendations, asshowninTable5-7.Theradioactive inventory ofthe236fuelrodswasobtainedbymultiplying theactivityofthemostradioactive fuelrod72hoursaftershutdownbyafactorof236.Thecalculational methodsandassumptions described inRegulatory Guide1.25(RO)applysince:a)thevaluesformaximumfuelrodpressurization, b)peaklinearpowerdensityforthehighestpowerassemblydischarged, c)maximumcenterline operating fueltemperature fortheassemblyinitemb)'bove,andd)averageburnupforthepeakassemblyinitemb)abovearelessthanthecorresponding valuesinRegulatory Guide1.25(RO)..Theassumptions andparameters acceptable forarealistic analysisarealsoindicated inTable5-7forcomparison purposes.

5-11 Theradioactivity releasedtotheenvironment ispresented inTable5-8.Themaximumoffsitedoseproducedisnomorethan3.0remtwo-hourinhalation thyroiddoseattheexclusion areaboundary.

Thetwo-hourandentireeventdosesforboththyroidandwholebodyareshowninTable5-9.Resultsarewellwithintheacceptance criteriaof10CFR100andNRCguidelines inSection15.7.4oftheNRCStandardReviewPlan(NUREG-0800).

ThesedosesindicatethatresultsarelessthanNRCguidelines byafactorof25andthatthoseguidelines wouldbemeteasilyevenforaradialpowerpeakingfactorgreaterthanthatassumedinthisanalysis.

5.3.1.4SpentFuelHandlingMachineThespentfuelhandlingmachine,asshownonFSARFigure9.1-14,isatraveling bridgeandtrolleythatridesonrailsoverthespentfuelpool,fueltransferpoolandcaskloadingpit.Motorsonthebridgeandtrolleypositionthemachineoverthespentfuelassemblystorageracks,thenewfuelelevator, theupendingmachine,andfuelshippingcask.Anoverheadcraneisusedtotransfernewfuelfromthenewfuelstoragerackstothenewfuelelevator.

Thespentfuelhandlingmachinehoistisprovidedwithalonghandlingtoolwhichengagesthefuelassemblyto'emoved.Oncethefuelassemblyisgrappled, thecableandhoistwinchraisethefuelassembly..

Themachinethentransports thefuelassemblyfromtheupendingmachinetothespentfuelstorageracks(spentfuel),fromthenewfuelelevatortotheupendingmachine(newfuel),orfromthespentfuelstoragerackstothefuelshippingcask.Thecontrolsforthespentfuelhandlingmachinearemountedonaconsolelocatedonthespentfuelhandlingmachinetrolley.Coor-dinatelocationofthe'bridgeisindicated bysynchrosattheconsole,andthetrolleypositionisindicated byapointerand.targetsystem.5-12 Duringwithdrawal orinsertion ofafuelassembly, theloadonthehoistcableismonitored toensurethatmovementisnotbeingrestricted.

Overloadandunderload setpoints areprovidedtointerrupt hoistoperation atpreassigned levelsofcableload,therebyprotecting fuelassemblies duringhoistingoperations.

Positivelockingisprovidedbetweenthegrappling deviceandthefuelassemblytopreventinadvertent uncoupling.

Thedrivesforboththebridgeandthetrolleyprovideclosecontrolforaccuratepositioning, andbrakesareprovedtomaintainthepositiononceachieved.

Inaddition, interlocks areinstalled sothatmovementofthespentfuelhandlingmachineisnotpossible'when thehoistiswithdrawing orinserting anassembly.

Manually-operated handwheels areprovidedforbridge,trolley,andwinchmotionsintheeventofapowerloss.5.3.2~Abeli~~~Asdescribed aboveinSection5.3.1.2,itisnotpossibletodropthespentfueicaskontothespentfuelracks.Forthedropofthecaskoutsidethefuelhandlingbuilding, theconservative analysissummarized inSection5.3.l.1abovedemonstrated thatresulting radiological dosesarewellwithinacceptance criteria.

Inevaluating thedropofafuelassemblyfromthespentfuelhandlingmachineintothespentfuelpool(Section5.3.1.3),

itwasconservatively assumedthatallfuelrodsinthedroppedfuelassemblyweredamaged.Theanalysisshowedthattheradiological doseswerealsowellwithinacceptance criteria.

~'P5-13

~~f5.L3~F1DThepresenttechnical specification onfueldecaytimepriortoremovalofirradiated fuelfromthereactorvesselandthestoragecapacityofthespentfuelracksensurethatthetotaldecayheatloadfromthespentfuelpoolislessthanthecapacityofthefuelpoolcoolingheatexchanger.

Thefuelpoolcoolinganalysisisdescribed inSection3.2.Also,thetechnical specification onfueldecaytimepriortoremovaloffuelfromthereactorvesselensuresthattheassumptions onradioactivity contentofthefuelinthefuelassemblyandcaskdropaccidentanalyses(Sections 5.3.1.1and5.3.1.3)aremet.5.3.4LoadsOverSentFuelAsdescribed inSection9.1oftheFSAR,therearenolightloads(objectslessthanorequaltotheweightofafuelassembly) whichcouldbecarriedoverspentfuelineitherthecontainment buildingorinthespentfuelpoolwhichwouldresultinfueldamagemoreseverethanthatassumedintheaccidentanalysis(i.e.,damageofallfuelrodsinonefuelassembly).

Asdescribed inSection5.3.1.2above,thedesignsofthefuelhandlingbuildingandtheoverheadcraneensurethatheavyloadscannotbecarriedoverthespentfuelpool.5.3.5Conclusions Sincethespentfuelcaskcannotfallontothespentfuelracks,thehighercapacityofthespentfuelrackdesigndoesnotaffect,byitself,resultsofthefuelcaskdropaccidentdescribed above(Section5.3.1.1).Also,thespentfuelrackdesigndoesnotaffect5-14

thefuelassemblydropaccidentanalysisbecausethedesignofthefuelracksprecludes damagetomorethanonefuelassembly.

There-fore,thefuelassemblydropaccidentisboundedbythedropofasinglefuelassembly, asdescribed inSection5.3.1.3.Sincetherewillbeonlyanegligible changeinradiological condi-tionsinthefuelhandlingbuildingasaresultofthehighercapacityofthenewfuelracks,nochangeinFP&L'sradiation protection programisanticipated.

Also,sincetheenvironmental consequences ofthefuelhandlingaccidents described inSections5.3.1.1and5.3.1.3arewellwithinNRCguidelines, therewillbenochangetoorimpactonthepreviousdeterminations oftheFinalEnvironmental Statement.

Therefore, thenewfuelrackdesignandtheproposedlicenseamendments willnotsignificantly affectthequalityofthehumanenvironment andissuanceofa10CFR51.5(c)(1) negativedeclaration isappropriate.

5-15 7(83K17)/ds--:56 TABLE5-1ESTIHATED SPENTFUELPOOLCAPACITYREQUIREHENTS ST.LUCIEUNIT2CycleNo.Approx.CycleStartupDateTotalNo.Assemblies inPoolfromallPreviousCclesSpacesRequiredforFullCoreReserveTotalNo.SpacesNeededDuringThisCcleExcessStorageAvailable Augmented StorageReuired08/01/83212/06/84305/15/86412/01/8780164240217217217217217297381457ExistingCapacity(1) 675675378294218NewCapacity(2) 10761076779695619ExistingCapacityNewCapacity505/01/89.

3282171305316'I2/01/90 05/01/9212/01/93' 05/01/951012/01/961105/01/98'2 12/01/991305/01/2001 1412/01/021505/01/04404492*568656732ee820896+9841060++114821721721721721721721721721721762170978587394910371113120112771365455367291203127393411019827436243852660269053.141217305(1)LicensedCapacityAtPresent~675Cells(2)NewRackInstallation

=1584Total/1076 Initially UsableCells*FCRLostat458StoredAssemblies withExistingCapacityeeLastRefueling PossiblewithExistingCapacity(AssumesNoFCRRequirements)

+FCRLostat859StoredAssemblies withNewCapacity++LastRefueling PossiblewithNewCapacityRacks(AssumesNoFCRRequirements)

TABLE5-2REPLACEMENT COSTFORST.LUCIEUNIT2BaseCaseProd.Cost$000EnergyGen.BySL2000MWHOutageCaseProd.Cost$O00)RelacementCost($000~$/MWH19987,295,560 3,8127,970,697 675,137177.1119998,422,404 4,8189,343,839 921,435191.2520009,069,199 4,88310,117,841 1,049,642 214.96NOTES;SL2out5/1/98through12/31/2000 BasedonSYPlongtermbasecase(7/22/83) 5-17 TABLE5-3GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCE LEVEL=4.66NUCLIDEHALF-LIFE UCI/ml1-SIGMAERRORIERRORXMPCAR-41KR-85KR-85MKR-87KR-88XE-131MXE-133XE-133MXE-135XE-135MXE-138I-130I-131I-132I-133I-134I-135NA-24CR-51MN-54MN-56CO-57CO-'58FE-59CO-60ZN-65NI-651.83H10.72Y4.48H76.30M2.84H11.90D5.24D2.19D9.08H15.65M14.17M12.36H8.04D2.30H20.80H52.60M6.61H15.00H27.70D312.50D2.58H270.90D70.80D44.60D5.27Y244.10D2.52H5.726E-07 5.062E-04 2.170E-066.082E-06 7.847E-06 7.595E-05 5.922E-06 1.676E-05 2.027E-06 1.856E-05 4.921E-051.807E-06 2.322E-06 2.078E-06 2.406E-06 2.187E-062.376E-06 3.758E-07 1.873E-05 1.493E-05 1.400E-06 7.839E-06

<1.660E-03 1.965E-06 3.744E-04 2.181E-062.008E-06 NUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDENUCLIDE1.347E-06NUCLIDE1.491E-066.072E-06 NUCLIDE3.124E-06 NUCLIDENUCLIDENOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTEDNOTDETECTED9.02NOTDETECTED19.020.37NOTDETECTED0.83NOTDETECTEDNOTDETECTED0.000.000.000.005-18 TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCE LEVEL=4.66NUCLIDEHALF-LIFE UCI/11111-SIGMAERRORgERROR'5MPCBR-82AG-110SN-113SB-124W-187NP-239RB-88ZR-95NB-95ZR-97NB-97MO-99TC-99MRU-103-SB-125CS-134CS-136CS-137BA-140PR-144LA-140CE-141CE-144AC-228RA-224PB-21235.30H252.20D115.00D60.20D23.90H2.35D17.80M63.98D35.15D16.90H72.10M66.02H6.02H39.35D2.77Y2.06Y13.10D30.17Y12.79D17.28M40.22H32.50D284.30D5.75Y5.75Y5.75Y1.770E-06 1.782E-06 3.903E-06 1.098E-05 5.660E-06 7.261E-06 5.229E-05 2.560E-06 1.468E-06 3.723E-05 3.356E-06 1.105E-05 1.800E-06 2.391E-06<3.757E-05 9.525E-04 1.471E-06 1.398E-03 1.047E-05 6.151E-04 3.028E-07 3.037E-06

<1.382E 1.633E-05

<4.398E-05 3.832E-06 NUCLIDENOTNUCLIDENOTNUCLIDENOT9.856E-07 NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOT.NUCLIDENOT5.973E-06 5.162E-06 NUCLIDENOT5.860E-06 NUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTNUCLIDENOTDETECTEDDETECTEDDETECTED8.'8DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED15.900.54DETECTED0.42DETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTEDDETECTED0.000.000.000.005-19

TABLE5-3(Cont'd)GAMMAISOTOPICANALYSISFORST.LUCIEUNIT1PEAKWIDTH=0.00FWHM.CONFIDENCE LEVEL=4.66NUCLIDEHALF-LIFE UCI/ml1-SIGMAERROR5ERRORTL-208TH-234RA-226PB-214BI-214K-405.75Y1000.00Y1000.00Y1000.00Y1000.00Y1000.00Y<2.382E-06

<1.943E-06

<5.161E-05

<5.089E-06

<4.885E-06

<3.860E-06 NUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDNUCLIDENOTDETECTEDTOTALACTIVITY=5.028E-03 UCI/UNIT; TOTALXMPC=5-20 TABLE5-4SPENTFUELCASKDROPACCIDENTASSUMPTIONS l.Dataandassumptions usedtoestimateradioactive sourcesfrompostulated accident:

DesignBasisAssumtionsRealistic BasisAssumtionsb)c)d)PowerlevelBurnup(anytimeduringcorelife)SpentfueldamagedNumberofassemblies incore2700MwtNA100%2172700MwtNA0.1%2172.Dataandassumptions usedtoestimateactivityreleasea)b)c)d)Assumedspentfueldecay.timepriortoaccidentRadialpeakingfactorFuelrodreleasefractions:

(allofthegasgapactivityisreleased)

Numberofassemblies inacask90days2.010Knoblegas30%Kr-8510%iodine1090days1.6510Knoblegas305Kr-85105iodine103.Dispersion Dataa)b)c)EZ/LPZdistance(kilometers)

AssumedreleaselevelX/Q's(Sec/m)EAB(0-2hr)LPZ(0-8hrH1.56/1.61Ground1.6E-047.1E-051.56/1.61 liround2.6E-057.4E-065-2T TABLE5-5SPENTFUELCASKDROPACCIDENTRELEASESActivityReleasetoEnvironment (Curies)FortheDesignBasisAnalysis~jsotoeI-131I-132I-133I-134I-135Kr-85mKr-85Kr-87Kr-88Xe-131mXe-133Xe-135Xe-138~Activtt2.91E+02W1.89E+042.36E+015-22 TABLE5-6SPENTFUELCASKDROPOFFSITEDOSESThyroidWholeBodyTwoHourExclusion AreaBoundarDose2.4x10rem6.1x10remEntireEventLowPoulationZoneDose1.1x10rem2.7x10rem5-23 TABLE5-7FUELHANDLINGACCIDENTASSUMPTIONS Parameter DesignasisAssumtionsReaisticAssumtions1.Dataandassumptions usedtoestimateradioactive sourcesfrompostulated accidents:

a)Powerlevel(MWT)b)Radialpeakingfactorc)Burnupd)Decaytime(hr)e)Numberoffailedrodsf)Fractionoffissionproductgasescontained inthegapregionofthefuelrods(percent)

Kr-85OtherNobleGasesIodine'700 2.04.5full-power yearsat80Kplantfactor7223630101027001.554.5full-power yearsat80%plantfactor72163010102.Dataandassumptions usedtoestimateactivityreleased:

a)Gapactivityreleasedtopool(percent) b)Minimumwaterdepthabovedamagedrods,(ft)c)Pooldecontamination factorfornoblegases.d)'ooldecontamination factorforiodine1002310023Inorganic OrganicOverall13311005005-24

TABLE5-7(Cont'd)FUELHANDLINGACCIDENTASSUMPTIONS b)c)AssumedreleaselevelX/Q's(sec/m)EABLPZ4.DoseDataa)Methodofdosecalculation b)Doseconversion factorsParameter e)Iodinechemicalformreleasedtofuel.handlingInorganic iodine(percent)

Organiciodine(percent) f)FilterEfficiency Iodineinorganic (percent)

Iodineorganic(percent)

Iodineparticulate 3.Dispersion Data:a)EAB/LPZdistance(kilometers)

DesignasisAssumtions75259550991.56/1.61Ground1.6x1057.1x10Appendix15B,Section15B.1Appendix15B,Table158-1.ea1stlcAssumtions75259595991.56/1.61 Ground2.6x10-67.4x105-25

TABLE5-8FUELHANDLINGACCIDENTRELEASESActivityReleasedtotheEnvironment (Curies)FortheDesignBasisAnalysisISOTOPEI-131I-133Xe-131mXe-133Xe-135Kr-85236RODS3.4(+1)8.50)3.7(+2)9.3+41.4+2)1.9(+3)5-26 TABLE5-9FUELHANDLINGACCIDENTOFFSITEDOSESThyroidWholeBodyTwoHourExclusion AreaBoundarDose3.0x10rem1.1x10remEntireEventLowPoulationZoneDose1.3x10rem4.6x10rem5-27