ML17249A374: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:0KN-N-79-103PE( | {{#Wiki_filter:0KN-N-79-103PE(lllklkPlljlllLEkk PILklll'NllllLE JIBMFET7kkkL7SIIS PEPBP'll'IIYM Iw3IIXEBQXIIBEbhSSEliNBILIIES DECEMBER1979RICHLAND, NA99352 EI'II-II XN-NF-79-103 0:IR/R1479R.E.GINNANUCLEARPLANTCYCLE10.SAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIES Prepared: | ||
G.J.Bussman,ManagerNeutronics andFuelManagement Approved: | |||
G.A.SofenagerNuclearFuesEngineering Concurred: | |||
J.N.Morgan,ManageLicensing andSafetyEngineering Concurred: | |||
L.J.Federico, ManagerNuclearFuelsProjectl'~/7E)j(ONNUCLEARCOMPANY,Inc. | |||
NUCLEARREGULATORY COMMISSION DISCLAIMER IMPORTANT NOTICEREGARDING CONTENTSANDUSEOFTHISDOCUMENTIrPLEASEREADCAREFULLY Thistechnical reportwasderivedthroughresearchanddevelopment programssponsored byExxonNuclearCompany,Inc.ItisbeingSub.mittedbyExxonNucleartotheUSNRCaspartofatechnical contri.butiontofacilitate safetyanalysesbylicensees oftheUSNRCwhichutilizeExxonNuclear.fabricated reioarlfuelorotherteclmical servicesprovidedbyExxonNuclearforliehtwaterpowerreactorsan<IitistrueandcorrecttothebestofExxonNuclear's knowledge, information, andbelief.Theinformation contained hereinmaybeusedbytheUSNRCinitsreviewofthisreport,andbylicensees orapplicants beforetheUSNQCwhicIIarecustomers otExxonNuclearintheirdemonstration ofcompliance wIththeUSNRC'sregulations. | |||
Withoutderogating fromtheforegoing, neitherExxonNuclearnoranypersonactingonitsbehalf:A.Makesanywarranty, expressorimplied,withrespecttotheaccuracy, completeness, orusefulness oftheinfor-mationcontained,in thisdocument, orthattheuseotanyinformation, apparatus, method,orprocessdisclosed inthisdocumentwillnotItffringe privately ownedrights;or8.Assumesanyliabilities withrespecttotheuseof,orfordan'agesresulting fromtheuseof,anyinformation, ap.paratus,method,orprocessdisclosed inthisdocument. | |||
XN-NF-FQO,766 XN-NF-79-103 TABLEOFCONTENTS'ection | |||
==1.0INTRODUCTION== | ==1.0INTRODUCTION== | ||
ANDSUMMARY.2. | |||
ANDSUMMARY.2.0OPERATING HISTORYOFTHEREFERENCE CYCLE.3.0GENERALDESCRIPTION 4.0FUELSYSTEMDESIGN.~Pae2595.0NUCLEARDESIGN.................'........ | |||
105.1PHYSICSCHARACTERISTICS 5.1.1POWERDISTRIBUTION CONSIDERATIONS. | |||
5.1.2CONTROLRODREACTIVITY REQUIREMENTS. | |||
125.1.3MODERATOR TEMPERATURE COEFFICIENT CONSIDERATIONS | |||
..135.2ANALYTICAL METHODOLOGY. | |||
136.0THERMALHYDRAULIC DESIGN.................... | |||
207.0ACCIDENTANDTRANSIENT ANALYSIS. | |||
7.1PLANTTRANSIENT ANDECCSANALYSESFORR.E.GINNA.7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10. | |||
==8.0REFERENCES== | ==8.0REFERENCES== | ||
.~~21212225 | .~~21212225 | ||
~~~.l~~~t~~t XN-NF-79- | ~~~.l~~~t~~t XN-NF-79-103 LISTOFTABLESTable~Pae3.1R.E.GINNACYCLE10FUELASSEMBLYDESIGNPARAMETERS | ||
-.....65.1R.E.GINNANEUTRONICS CHARACTERISTICS OFCYCLE10COMPAREDWITHCYCLE9DATA.................... | |||
155.2R.E.GINNACONTROLRODSHUTDOWNMARGINSANDREQUIREMENTS FORCYCLE10~~~~~~~~~~~~~~~~~~~~~~~~II7.1R.E.GINNAKINETICPARAMETERS | |||
.16~~237.2EJECTEDRODWORTHANDPEAKINGFACTORS..............24 | |||
\~~~~~~~~~l~~iI~~~~~ | \~~~~~~~~~l~~iI~~~~~ | ||
XN-NF-79- | XN-NF-79-103 LISTOFFIGURES~Fiure2.1R.E.GINNACYCLE9CRITICALBORONCURVE,PREDICTED VS.MEASUREDe~~~~~~~~~~~~~~~~~~~~~~~~2.2R.E.GINNAPOWERDISTRIBUTION COMPARISON TOMAPIX-245)505MWD/MTe~~~~~~~~~~~~~~~~~~~~~~3.1R.E.GINNACYCLE10LOADINGPATTERN.3.2R.E.GINNABOC10QUARTERCOREEXPOSUREDISTRIBUTION ANDREGIONID@~~~~~~~~~~~~~~~~~~~~~~~~5.1R.E.GINNACYCLE10AROCRITICALBORONCONCENTRATION VS.EXPOSURE~~~~~~~~~~~~~~~~~~~~~~~~~5.2R.E.GINNACYCLE10POWERDISTRIBUTION HFP,0MWD/MT1)254PPM5.3R.E.GINNACYCLE10POWERDISTRIBUTION HFP,9,500MWD/MTPPM~~~~~~~~~~~~~~~~~~~~~~~~~~7~Pae~~3478171818 t1~~~~~~I~li~~~~l XN-NF-79-103 R.E.GINNANUCLEARPLANTCYCLE10SAFETYANALYSISREPORTkgl | ||
==1.0INTRODUCTION== | ==1.0INTRODUCTION== | ||
ANDSUMMARYTheR.E. | |||
ANDSUMMARYTheR.E.GinnaNuclearplantwilloperateinCycle10beginning inearly1980withthreeregionsoffuelsuppliedbyExxonNuclearCompany(ENC).Theloadingwillconsistof32ENCassemblies inRegion12and4Westinghouse mixoxide(MOX)assemblies. | |||
Theremainder ofthecorecontains40once-burnt and32twice-burnt ENCassemblies and13exposedWestinghouse suppliedassemblies. | |||
Thecharacteristics ofthefuelandofthereloadedcoreresultinconformance withexistingTechnical Specification limitsregarding shutdownmarginprovisions andthermallimits.Thisdocumentprovidestheneutronic analysisfortheplantduringCycle10operation andthecontrolrodejectionanalysis. | |||
TheENCfueldesign.isunchanged fromthefueldesignusedinthe"Cycle 8and9ENCfuelreloads.ThepreviousPlantTransient Analysis'(2)remainsvalidforCycle10.TheECCSanalysisisapplicable toCycle10operation. | |||
Theconsequences oftherodejectionaccidentforCycle10areslightlylessseverethanthosecalculated forCycles8and9.The(4)(5)introduction ofthe4MOXassemblies intothereactorcoreleadstosmallchangesinthecoreaveragekineticparameters resulting inminimaleffectstothepreviousanalysesperformed forCycles8'and9(1,2,4)(1,3,5) | |||
~~~~~l~~~}i~~~~~~~ | ~~~~~l~~~}i~~~~~~~ | ||
XN-NF-79- | XN-NF-79-103 | ||
-~~--~~-~~=-:LL~=*~-:..t=~I-~~-~t44C-l:-f~I~~t*'Itj=~~~++4I~~=~~~~-~~~~~-~~-~*t-Ut'e.~----I.flGMO'NT.}'~-:.-::F.-T''re~t~-:CritTcatBoronCuve,,=P=red:.~-~-~- | |||
XN-NF-79-103.968.995-2.711.1101.129-1.68.920.938-1.92.949..965-1.661.1891.178'93.996.9633.43.794.7821.531.1081.131-2.03.9861.013-2.671.0291.048-1.811.0991.103-.361.1891.1681.801.0741.0512.19.663.6452.79.918.947-3.061.0301.051-2.00.9961.006-.991.2031.1911.011.0791.0552.27;977.974.31.953.968-1.551.0981.105-.631.1911.192-.081.0361.0211.471.1781.1492.52.714.711.42101;1951.179l.361.1881.1691.631.0721.0551.611.1731.1492.09.804.798.75.985.9632.28.772.782-1.281.0711.0511.90.651,.645.93.977.975.21.715.712.42MeasuredAssemblyPowerCalculated(XTGPWR) | ==2.0 OPERATING== | ||
XN-NF-79- | HISTORYOFTHEREFERENCE CYCLER.E.GinnaCycle9hasbeenchosenasthereference cyclewithrespecttoCycle10duetothecloseresemblance oftheneutronic characteristics betweenthesetwocycles.TheCycle9operation beganonApril3,1979,andasofNovember31,1979thecorehadaccruedabout6,714MWD/MT.TheCycle9loadingincluded40freshENCfuelassemblies with32exposedENCassemblies and49exposedWestinghouse assemblies. | ||
I 10XN-NF-79- | Themeasuredpowerpeakingfactorsathot-full-power, equilibrium xenonconditions, haveremainedconsiderably belowtheTechnical Specification | ||
XN-NF-79- | ,limitsthroughout Cycle9.Thetotalnuclearpeakingfactors,F,andtheradialnuclearpinpeakingfactor,FH,haveremainedbelow1.75and1.45,respectively. | ||
12XN-NF79-, | Cycle9operation hastypically beenrod'freewiththeDcontrolbankpositioned intherangeof218to222steps,225stepsbeingfullywithdrawn. | ||
13XN-NF-79103Thecontrol- | Itisanticipated thatsimilbrcontrolbankinsertions willbeseeninCycle10.Thecriticalboronconcentration ascalculated byENCforCycle9hasagreedtowithinabout8ppmcomparedtotheobservedvalues(seeFigure2.1).Alsothepredicted powerdistributions havetypically agreedtowithin+3percentofthe,measuredvalues(seeFigure2.2fortypicalcom-parison). | ||
14XN-NF-79- | -~~--~~-~~=-:LL~=*~-:..t=~I-~~-~t44C-l:-f~I~~t*'Itj=~~~++4I~~=~~~~-~~~~~-~~-~*t-Ut'e.~----I.flGMO'NT.}' | ||
15XN-NF-79- | ~-:.-::F.-T''re | ||
~-~.~~'-~~*~-~*~I~>>.~=~~~=~~-~-t~=~~4h~g~~=~=WtWI.~'~~\-~*~4~t~~~->>*~~~~=-~=~-~-~-~~-Figure5tlR.E. | ~t~-:CritTcatBoronCuve,,=P=red:.~-~-~- | ||
XN-NF-79-103 | |||
.968.995-2.711.1101.129-1.68.920.938-1.92.949..965-1.661.1891.178'93.996.9633.43.794.7821.531.1081.131-2.03.9861.013-2.671.0291.048-1.811.0991.103-.361.1891.1681.801.0741.0512.19.663.6452.79.918.947-3.061.0301.051-2.00.9961.006-.991.2031.1911.011.0791.0552.27;977.974.31.953.968-1.551.0981.105-.631.1911.192-.081.0361.0211.471.1781.1492.52.714.711.42101;1951.179l.361.1881.1691.631.0721.0551.611.1731.1492.09.804.798.75.985.9632.28.772.782-1.281.0711.0511.90.651,.645.93.977.975.21.715.712.42MeasuredAssemblyPowerCalculated (XTGPWR)x100c1213Calculated Measured%Difference NFq1.5281.5642.33F~H1.351F1.1051.3371.154-1.074.42Figure2.2R.E.GinnaPowerDistribution Comparison, ToMapIX-24,HFP,5,505MWD/MT I-l XN-NF-79-103 | |||
==3.0 GENERALDESCRIPTION== | |||
TheR.E.Ginnareactorconsistsof121assemblies, eachhavinga14xl4fuelrodarray.Eachassemblycontains179fuelrods,16RCCguidetubes,and1instrumentation tube.ThefuelrodsconsistofslightlyenrichedU02pelletsinsertedintozircaloytubes.TheRCCguidetubesandtheinstrumen-tationtubearemadeofSS-304L.EachENCassemblycontainsninezircaloyspacerswithInconelsprings;eightofthespacersarelocatedwithintheactivefuelregion.Fourofthe121assemblies containMixedOxide(Pu02plusU02)bearingfuelrods.TheMOXassemblies consistofthreeenrichment zonesofPu02utilizing naturalU02asthediluent.Theprojected Cycle10loadingpatternisshowninFigure3.1withtheassemblies identified bytheirFabrication ID'sandRegionID's.Theinitialenrichments ofthevariousregionsarelistedinTable3.1.BOC10exposures, basedonanEOC9exposureof9,570MHD/MT,alongwithRegionID'sareshowninFigure3.2.Thecoreconsistsof32freshENCassemblies at3.45w/oand4freshWestinghouse MOXassemblies loadedontheperiphery with72ENCand13Westinghouse exposedassemblies scatter-loaded inthecenterportionofthecore.Pertinent fuelassemblyparameters fortheCycle10fuelaredepictedinTable3.1.Thetransuranic | |||
: elements, including Am-241,havebeen\accounted foruptothetimeoftheanticipated reactorstartup. | |||
XN-NF-79-103 Table3.1R.E.GinnaCycle10FuelAssemblyDesignParameters 10Region12MOXEnrichment, wtXU-235NumberofAssemblies PelletDensi'ty, XTDPellet-to | |||
-CladDiametrical Gap,MilFuelStackHeight,inch7.57.5141.4142.03,1033,100133295,094,04094.032494.095.07.57.57.5142.0142.0141.43.2003.4502.626*RegionAverageBurnupatBOC10,MWD/MTNominalAssemblyWeight,KgU24,33917,8858,33500392.56373.78373,78373.78395.91***wtXPu(basedonassemblyaverage)*"inKgHM XNrNF-79-103 KJIH.GFE0CBA12HOX121212N09'12L1412L09M14K03L31M391212L01H011212M02L06N17L19M28L26N36L05N121212L02M33L21M23K05N30L24M20L121212MOXL32M40L2712K09M25M31K13N07K20N08K28K19N06N22L18H13K18M27K27L131212MOX12L15M15L20M24K26M05K17H29L25M38L301212Ll0M18L22N32K25M21L23M35L041212Ml0L0712M03N34L28N26L03M37K14L17H16M19L08M04LllMll12121212L2912L16121212MOX12FabricationorNewFuelRegionIdentification Figure3.1R.E.GinnaCycle10LoadingPattern XN-NF-79-103 DCB24,7367,51724,1177,80924,708012MOX7;52224,09311,34117,5789,5441019,816101224,11711,34217,5066,92616,0611010127,80917,5746,9281018,677106,393012]n24,7089,54916,0616,19810121219,809100a1212BOC10ExposureMWD/MTRegionID*120MOX1213*SeeTable3.1forRegiondefinitions fFigure3.2R.E.GinnaBOC10quarterCoreExposureDistribution andRegionID XN-NF-79-103 4.0FUEL.SYSTEMDESIGNAdescription oftheExxonNuclearsuppliedfueldesignanddesignmethodsiscontained inReference 1.Thisfuelhasbeenspecifically designedtobecompatible totheresidentfuelsuppliedbyWestinghouse. | |||
I 10XN-NF-79-103 | |||
==5.0 NUCLEARDESIGNTheneutronic== | |||
charactristicsoftheprojected Cycle10corearequitesimilartothoseoftheCycle9core(seeSection5.1).ThenucleardesignbasesfortheCycle10coreareasfollows:1)Thedesignshallpermitoperation withintheTechnical Specifications fortheR.E.Ginnaplant.2)ThelengthofCycle10shallbedetermined onthebasisofanassumedCycle9lengthof9,570MWD/MT.3)TheCycle10loadingpatternshallbeoptimized toachievepowerdistributions andcontrolrodreactivity worthsaccording tothefollowing constraints: | |||
a)ThepeakF~shallnotexceed2.32andthepeakFHshallnotexceed1.66(including uncertainties) inanysinglefuelrod.throughthecycleundernominalfullpoweroperation condi-tions.b)ThescramworthofallrodsminusthemostreactiveshallexceedBOCandEOCshutdownrequirements. | |||
4)TheCycle10coreshallhaveanegativepowercoefficient. | |||
5)TheMOXassemblies shallbelocatedinaregionofthereactorcoreastominimizetheeffectsonshutdownmarginprovisions andthermallimits.Theneutronic designmethodsutilizedtoensuretheaboverequirements areconsistent withthosedescribed inReferences 6,7,and8. | |||
XN-NF-79-103 5.1PHYSICSCHARACTERISTICS Theneutronic characteristics oftheCycle10corearecomparedwiththoseofCycle9andarepresented inTable5.1.Thedatapresented inthetableindicatethe'eutronic similarity betweenCycles9and10.TheCycle10loadingpatternisapplicable forCycle9lengthsof+700MWD/MTand-800MWD/MTaboutthenominallengthof9,570MWD/MT.Thecalculated boronletdowncurveforCycle10isshowninFigure5.1.Thecurveindicates aBOC10,noxenon,criticalboronconcentration of1,254ppm.At150MWD/MT,equilibrium xenon,thecriticalboronconcentration is921ppm.TheCycle10lengthisprojected tobe9,500+300 MWD/MTwith7ppmofboronatEOC.5.1.1PowerDistribution Considerations PRepresentative predicted powermapsforCycle10areshowninFigures5.2and5.3forBOCandEOCconditions, respectively. | |||
Thepowerdistributions wereobtainedfromathree-dimensional modelwithmoderator I,densityandDopplerfeedbackeffectsincorporated. | |||
Fortheprojected Cycle10loadingpatternthecalculated BOCnuclearpowerpeakingfactors,F~,NNNF,andFz,are,l.745, 1.433,and1.201,respectively. | |||
AtEOCconditions thecorresponding valuesare1.517,1.358,and1.098.TheTechnical Specifi-cationlimitsrelativetoF~andF>H,withthemeasurement uncertainties NNbackedout,are2.15and1.60.Additionally thepredicted axialFdistri-butionsarewellbelowtheaxiallydependent Technical Specification limitsonF~.TheBOCFvalueof1.745compareswiththemeasuredCycle9valueNinTable5.1of1.758. | |||
12XN-NF79-,103Thecontrolofthecorepowerdistribution isaccomplished byfollowing theprocedures asdiscussed inthereport,XN-76-40, "ExxonNuclearPowerDistribution ControlforPressurized WaterReactors", | |||
September 1976anditsaddendum. | |||
Theresultsreportedinthesedocuments demonstrate thatthePowerDistribution Control(PDC)procedures definedinthereportwillprotectanaxiallydependent Flimitwithapeakvalueof2.30.TheTechnical Specification limitforR.E.Ginnahasapeakof2.32andanaxialdependence identical tothatsupported bytheprocedures. | |||
Thephysicscharacteristics oftheGinnaCycle10corearesimilartothoseutilizedinthePDCsupporting analysis. | |||
TheGinnaTechnical Specification limitsonFcantherefore beprotected byoperation underthePDCprocedures asstatedinXN-76-40. | |||
5.1.2ControlRodReactivit Reuirements Detailedcalculations ofshutdownmarginsforCycle10arecomparedwithCycle9datainTable5.2.TheENCPlantTransient Simulation (PTS)Analysisindicates thattheminimumrequiredshutdownmarginis1,800pcmbaseduponthesteamline breakaccidentanalyzedforENCfuelattheEOCconditions. | |||
Avalueof1,900pcmisusedatEOCintheevaluation oftheshutdownmargintobeconsistent with'theTechnical Specifications. | |||
TheCycle10analysisindicates excessshutdownmarginsof1,414pcmattheBOCand344pcmattheEOC.TheCycle9analysisindicates excessshut-downmarginsforthatcycleof1,795pcmattheBOCand393pcmattheEOC.TheslightlylowerCycle10excessshutdownmargins,whencomparedtotheCycle9values,areduetoslightlylowercalculated rodworths. | |||
13XN-NF-79103Thecontrol-rodgroupsandinsertion limitsforCycle10willremainunchanged fromCycle9.Withtheselimitsthe'nominal worthofthecontrolbank,D-bank,insertedtotheinsertion limits'at HFPis122pcmat,BOCand'70pcmatEOC.Thecontrolrodshutdownrequirements inTable15.2allowforaHFPD-bankinsertion equivalent to300pcmforbothBOCandEOC.5.1.3Moderator TemeratureCoefficient Considerations Thereference Cycle10designcalculations indicatethatthemoderator temperature coefficient isnegativeatalltimesduringthecycleasshowninTable5.1.ThismeetstheTechnical Specification requirement thatthemoderator temperature coefficient benegativeatalltimesduringpoweroperation andthedesigncriteriathatthepowercoefficient benega-tive.Theleastnegativemoderator temperature coefficient occursatBOCHZPandis-2.0+2pcm/ | |||
F.ThiscompareswiththeBOC9HZPvalueof-2.0pcm/F.5.2ANALYTICAL METHODOLOGY ThemethodsusedintheCycle10coreanalysesaredescribed inReferences 6,7,and8.ThesemethodshavebeenverifiedforbothU02andPu02-U02lattices. | |||
Insummary,thereference neutronic designanalysisofthereloadcorewasperformed usingtheXTG(Reference 9)reactorsimulator system-.Theinputexposuredatawerebasedonquartercoredepletion calcu-lationsperformed fromCycle5toCycle9usingtheXTGcode.TheBOC5exposuredistribution wasobtainedfromplantdata.Thefuelshuffling betweenc'ycleswasaccounted forinthecalculations. | |||
14XN-NF-79-103 Predicted valuesofF~,Fx,andFwerestudied,withtheXTGreactormodel.Thecalculational thermal-hydraulic feedbackandaxialexposuredistribution effectsonpowershapes,rodworths,andcyclelifetimeareexplicitly includedintheanalysis. | |||
15XN-NF-79-103 Table5.1R.E.GinnaNeutronics Characteristics ofCycle10ComparedwithCycle9DataBOCCcle9EOCCcle10BOCEOC(CriticalBoronHFP,ARO,Equilibrium Xenon(ppm)HZP,ARONoXenon(ppm)Moderator Temperature Coefficient HFP,(pcm/oF)HZP,(pcm/oF)DopplerCoefficient, (pcm/F)BoronWorth,(pcm/ppm) | |||
HFPHZPTotalNuclearPeakingFactorFq,HFP961')12(1,410(2)-8.12-8.58-8.721.758(-7.6(2)-30.4-2.0-21.5-1.25to-2.09211,414-8.1-2.0-30.4-21.6-7.95,-8.621.7451.517-,1.35-1.84DelayedNeutronFraction.0061.0051.0058.0052ControlRodWorthofAllRodsInMinusMostReactiveRod,HZP,(pcm)ExcessShutdownMargin(pcm)Moderator PressureCoefficient (pcm/psi) 5,751)5,821.1,795()393(0.355';3415,6961,4143440.35(1)Extrapolated frommeasureddata(2)MeasuredData(3)70/PowerMap(4)Reference 5 | |||
16XN-NF-79-103 Table5.2,R.E.GinnaControlRodShutdownMarginsandRequirements forCycle10BOCCcle9**EOCCcle10BOCEOCControlRodWorthHZP,cmAllRodsInserted(ARI)ARIlessmostreactive(N-1)N-1lesslOXallowance L(N-1)*9lReactivit Insertion cm5,1765,2396,4076,6345,7515,8215,9496,4205,3415,6964,8075,125Moderator plusDopplerFluxRedistribution VoidSumoftheabovethreeRodInsertion Allowance TotalRequirements 1,431600502,0813002,3811,996600502,'6463002,9461,4431,93260060050502,0932,5823003002,3932,882Shutdown. | |||
Margin(N-l)*.9-TotalRequirements RequiredShutdownMargin*ExcessShutdownMargin2,7952,2931,0001,9001,7953931,4143442,4142,244100001,900*Technical Specification 3.10"*Calculated valuesfromReference 5 | |||
~-~.~~'-~~*~-~*~I~>>.~=~~~=~~-~-t~=~~4h~g~~=~=WtWI.~'~~\-~*~4~t~~~->>*~~~~=-~=~-~-~-~~-Figure5tlR.E.GinnaCycle10AROCriticalBoronConcentration vs.Exposurer4 el~~~~~~~~~~~~~~~~~~~~~~~I~~JLlII~~ | |||
I~~~~0~~I~I~I~~~~~~~~~~ | I~~~~0~~I~I~I~~~~~~~~~~ | ||
20XN-NF-79- | 20XN-NF-79-103 | ||
l~Ij 21XN-NF-79- | |||
22XN-NF-79- | ==6.0 THERMALHYDRAULIC== | ||
23XN-NF-79- | DESIGNThethermalandhydraulic considerations intheRegion12designareunchanged fromthosepresented inReference 4forRegion10fuel. | ||
25XN-NF-79- | l~Ij 21XN-NF-79-103 | ||
==7.0 ACCIDENTANDTRANSIENT== | |||
ANALYSIS7.1PLANTTRANSIENT ANDECCSANALYSESfORR.E.GINNATheECCSanalysisprovidedinReference 3isapplicable toallENCfuelresidinginthecoreduringCycle10operation. | |||
ThePlantTransient AnalysisreportedinXN-NF-77-40 fortheR.(2)E.Ginnaplantwasintendedtocoverallanticipated rangesofvaluesforallsignificant fueldependent plantparameters forCycle8andforallfuture7reloads.Table7.1presentsacomparison ofthekineticparameters usedinthePlantTransient Analysisandtheparameters calculated specifically forCycle10.Duetotheintroduction ofthe4MOXassemblies thereactivity worthofthe-boricacidusedbytheHPSIS(HighPressureSafetyInjection System)andtheBOCdelayedneutronfractionhavebeencalculated tobeoutsidetherangereportedintheXN-NF-77-40 analysis. | |||
Theanalysiswasreviewedanditwasfoundthatthechangeinboricacidworthaffectsthesmal,landlargesteamline breaktransients andthatthedelayedneutronfractionmostaffectsthefastuncontrolled rodwithdrawal transient. | |||
Theenveloping dataforbothsteamline breaksaretheEOCdataandforthefastuncontrolled rodwithdrawal areBOCdata.TheimpactoftheCycle10parameters (seeTable7.1)havebeenevaluated foreachofthetransients. | |||
Theresultsoftheevaluation forthetransients werefoundtobenearlyequivalent tothepreviousresultsandthatthefigureofmeritforthetransients werenotviolated, i.e.forthesmallsteamline breakthesystemdoesnotgocritical, forthelargesteamline breaktheMDNBRisgreaterthanthe1.30limitandfortheuncontrolled rodwithdrawal theMDNBRmarginisnotaltered. | |||
22XN-NF-79-103 7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10AControlRodEjectionAccidentisdefinedasthemechanical fail-ureofacontrolrodmechanism pressurehousing,resulting'in theejectionofaRodClusterControlAssembly(RCCA)anddriveshaft.Theconsequence ofthismechanical failureisarapidreactivity insertion togetherwithanadversecorepowerdistribution, possiblyleadingtolocalized fueldamage.~Therodejectionaccidentanalysispresented inthedocumentXN-NF-78-53isstillapplicable toCycle10operation. | |||
Thelocationofthe4MOXassemblies introduces minimaleffectsonejectedrodworthsandhotpelletpeakingfactors.Thee'jectedrodworthsandhotpelletpeakingfactorsarecal'culated usingtheXTGcode.Nocreditwastakenforthepoweiflattening effects,ofDopplerormoderator feedbackinthecalculation ofejectedrodworths'rpeaking'factors. | |||
Thecalculations madeforCycle10usingXTGweretwo-dimensional (x-y)withappropriate axialbucklingcorrec-tionterm's.Thetotal'eaking factors(F~)weredetermined astheproductoftheradialpeakingfacto'r(ascalculated usingXTG)andaconservative axialpeakingfactor;Thepelletenergydeposition resulting fromanejectedrodwasevaluated tobelessthanther'esultsreportedinReferences 4and5.Therodejectionaccidentwasfoundtoresultinenergydeposition oflessthan280cal/gmst'atedinRegulatory Guide1.77'andprovidesagreaterenergydeposition marg'inthanthatdetermined byReference 4.Theresultsofthecontrolrodejectiontransient forthiscasearepresented inTable7.2alongwithresults'fromReferences 4and5. | |||
23XN-NF-79-103 7.1R.E.GinnaKineticParameters Parameters | |||
,Moderator Temperature Coefficient (pcm/oF)Moderator PressureCoefficient (pcm/psia) | |||
Reference Cycle(1)BOCEC0.0-35.0+.25+.35Cycle10BC-8.1+.09EC-30.4+.35Moderator DensityCoefficient (pcm/gm/cm3) | |||
DopplerCoeffi:cient (pcm/F)-1.25-2.00-1.35-1.840.0+29635.0+6858.0+25740.0BoronWorthCoefficient (pcm/ppm) | |||
DelayedNeutronFraction-8.75-8.72.0061.0051-7.95.0058-8.62.0052Reference 2 | |||
XN-NF-7.9.-103 Table7.2EjectedRodWorthandPeakingFactors'~ | |||
BeforeEjection~C18()~C19()~C110(HFPHZPHFPHZPHFPHZP2,252.822.242.622.152.59F~AfterEjectionN4.36'.302.965.59gg4()601(MaximumRodWorthfromaFullInsertedBank(Xhp)0.4700.6400.3620.5530.2800.435EnergyDeposition (cal/gm)17137(1)Includesaconservative estimateofFatHFPof1.4andatHZPof1.8.(2)Reference 4,calculated withXTRAN.(3)Reference 5,calculated withXTGPWR.(4)Calculated withXTGPWR. | |||
25XN-NF-79-103 | |||
==8.0REFERENCES== | |||
1.XN-NF-77-52, "R.E.GinnaReloadFuelDesign",November, 1977.2.3.4.5.6.'XN-NF-77-40, "PlantTransient AnalysisforR.E.Ginna,Unit1NuclearPowerPlant",Revision1,July,1979.XN-NF-77-58, "ECCSAnalysisfortheR.E.GinnaReactorwithENCWREM-IIPWREvaluation Model",December, 1977.XN-NF-77-53, "R.E.GinnaNuclearPlantCycle8SafetyAnalysisReport",December, 1977.XN-NF-78-50, | |||
1.XN-NF-77-52,"R.E.GinnaReloadFuelDesign",November,1977.2.3.4.5.6.'XN-NF-77-40," | ="R.E.GinnaCycle9SafetyAnalysisReport,"December, 1978.F.B.Skogen,"ExxonNuclearNeutronics DesignMethodsforPres-surizedWaterReactors", | ||
IlxI 26XN-NF-79- | XN-75-27(A), | ||
ExxonNuclearCompany,April,1977.7.XN-75-27(A), | |||
Supplement 1toReference 6,April,1977.8.XN-75-27, Supplement 2toReference 6,December, 1977.9.XN-CC-28, Rev.3,"XTG:ATwoGroupThree-Dimensional ReactorSimulator Utilizing CoarseMeshSpacing(PWRVersion)", | |||
January,1975. | |||
IlxI 26XN-NF-79-103 R.E.GINNACYCLE10RELOADSAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIES DISTRIBUTION K.H.BlankG.J.Busselman L.J.FedericoR.L.Feuerbacher R.G.GrummerB.L.Johnson(2)M.R.KillgoreT.L.Krysinski C.E.LeachJ.N.MorganW.S.NechodomL.A.NielsenG.F.OwsleyJ.F.Patterson A.W.PrichardF.B.SkogenG.A.SoferA.V.Wojchouski C.H.WuRG&E/L.J.Federico(80)DocumentControl(10) lI1}} |
Revision as of 13:56, 29 June 2018
ML17249A374 | |
Person / Time | |
---|---|
Site: | Ginna |
Issue date: | 12/14/1979 |
From: | BUSSELMAN G J, JOHNSON B L, SOFER G A SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER |
To: | |
Shared Package | |
ML17249A368 | List: |
References | |
XN-NF-79-103, NUDOCS 7912280240 | |
Download: ML17249A374 (42) | |
Text
0KN-N-79-103PE(lllklkPlljlllLEkk PILklll'NllllLE JIBMFET7kkkL7SIIS PEPBP'll'IIYM Iw3IIXEBQXIIBEbhSSEliNBILIIES DECEMBER1979RICHLAND, NA99352 EI'II-II XN-NF-79-103 0:IR/R1479R.E.GINNANUCLEARPLANTCYCLE10.SAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIES Prepared:
G.J.Bussman,ManagerNeutronics andFuelManagement Approved:
G.A.SofenagerNuclearFuesEngineering Concurred:
J.N.Morgan,ManageLicensing andSafetyEngineering Concurred:
L.J.Federico, ManagerNuclearFuelsProjectl'~/7E)j(ONNUCLEARCOMPANY,Inc.
NUCLEARREGULATORY COMMISSION DISCLAIMER IMPORTANT NOTICEREGARDING CONTENTSANDUSEOFTHISDOCUMENTIrPLEASEREADCAREFULLY Thistechnical reportwasderivedthroughresearchanddevelopment programssponsored byExxonNuclearCompany,Inc.ItisbeingSub.mittedbyExxonNucleartotheUSNRCaspartofatechnical contri.butiontofacilitate safetyanalysesbylicensees oftheUSNRCwhichutilizeExxonNuclear.fabricated reioarlfuelorotherteclmical servicesprovidedbyExxonNuclearforliehtwaterpowerreactorsan<IitistrueandcorrecttothebestofExxonNuclear's knowledge, information, andbelief.Theinformation contained hereinmaybeusedbytheUSNRCinitsreviewofthisreport,andbylicensees orapplicants beforetheUSNQCwhicIIarecustomers otExxonNuclearintheirdemonstration ofcompliance wIththeUSNRC'sregulations.
Withoutderogating fromtheforegoing, neitherExxonNuclearnoranypersonactingonitsbehalf:A.Makesanywarranty, expressorimplied,withrespecttotheaccuracy, completeness, orusefulness oftheinfor-mationcontained,in thisdocument, orthattheuseotanyinformation, apparatus, method,orprocessdisclosed inthisdocumentwillnotItffringe privately ownedrights;or8.Assumesanyliabilities withrespecttotheuseof,orfordan'agesresulting fromtheuseof,anyinformation, ap.paratus,method,orprocessdisclosed inthisdocument.
XN-NF-FQO,766 XN-NF-79-103 TABLEOFCONTENTS'ection
1.0INTRODUCTION
ANDSUMMARY.2.0OPERATING HISTORYOFTHEREFERENCE CYCLE.3.0GENERALDESCRIPTION 4.0FUELSYSTEMDESIGN.~Pae2595.0NUCLEARDESIGN.................'........
105.1PHYSICSCHARACTERISTICS 5.1.1POWERDISTRIBUTION CONSIDERATIONS.
5.1.2CONTROLRODREACTIVITY REQUIREMENTS.
125.1.3MODERATOR TEMPERATURE COEFFICIENT CONSIDERATIONS
..135.2ANALYTICAL METHODOLOGY.
136.0THERMALHYDRAULIC DESIGN....................
207.0ACCIDENTANDTRANSIENT ANALYSIS.
7.1PLANTTRANSIENT ANDECCSANALYSESFORR.E.GINNA.7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10.
8.0REFERENCES
.~~21212225
~~~.l~~~t~~t XN-NF-79-103 LISTOFTABLESTable~Pae3.1R.E.GINNACYCLE10FUELASSEMBLYDESIGNPARAMETERS
-.....65.1R.E.GINNANEUTRONICS CHARACTERISTICS OFCYCLE10COMPAREDWITHCYCLE9DATA....................
155.2R.E.GINNACONTROLRODSHUTDOWNMARGINSANDREQUIREMENTS FORCYCLE10~~~~~~~~~~~~~~~~~~~~~~~~II7.1R.E.GINNAKINETICPARAMETERS
.16~~237.2EJECTEDRODWORTHANDPEAKINGFACTORS..............24
\~~~~~~~~~l~~iI~~~~~
XN-NF-79-103 LISTOFFIGURES~Fiure2.1R.E.GINNACYCLE9CRITICALBORONCURVE,PREDICTED VS.MEASUREDe~~~~~~~~~~~~~~~~~~~~~~~~2.2R.E.GINNAPOWERDISTRIBUTION COMPARISON TOMAPIX-245)505MWD/MTe~~~~~~~~~~~~~~~~~~~~~~3.1R.E.GINNACYCLE10LOADINGPATTERN.3.2R.E.GINNABOC10QUARTERCOREEXPOSUREDISTRIBUTION ANDREGIONID@~~~~~~~~~~~~~~~~~~~~~~~~5.1R.E.GINNACYCLE10AROCRITICALBORONCONCENTRATION VS.EXPOSURE~~~~~~~~~~~~~~~~~~~~~~~~~5.2R.E.GINNACYCLE10POWERDISTRIBUTION HFP,0MWD/MT1)254PPM5.3R.E.GINNACYCLE10POWERDISTRIBUTION HFP,9,500MWD/MTPPM~~~~~~~~~~~~~~~~~~~~~~~~~~7~Pae~~3478171818 t1~~~~~~I~li~~~~l XN-NF-79-103 R.E.GINNANUCLEARPLANTCYCLE10SAFETYANALYSISREPORTkgl
1.0INTRODUCTION
ANDSUMMARYTheR.E.GinnaNuclearplantwilloperateinCycle10beginning inearly1980withthreeregionsoffuelsuppliedbyExxonNuclearCompany(ENC).Theloadingwillconsistof32ENCassemblies inRegion12and4Westinghouse mixoxide(MOX)assemblies.
Theremainder ofthecorecontains40once-burnt and32twice-burnt ENCassemblies and13exposedWestinghouse suppliedassemblies.
Thecharacteristics ofthefuelandofthereloadedcoreresultinconformance withexistingTechnical Specification limitsregarding shutdownmarginprovisions andthermallimits.Thisdocumentprovidestheneutronic analysisfortheplantduringCycle10operation andthecontrolrodejectionanalysis.
TheENCfueldesign.isunchanged fromthefueldesignusedinthe"Cycle 8and9ENCfuelreloads.ThepreviousPlantTransient Analysis'(2)remainsvalidforCycle10.TheECCSanalysisisapplicable toCycle10operation.
Theconsequences oftherodejectionaccidentforCycle10areslightlylessseverethanthosecalculated forCycles8and9.The(4)(5)introduction ofthe4MOXassemblies intothereactorcoreleadstosmallchangesinthecoreaveragekineticparameters resulting inminimaleffectstothepreviousanalysesperformed forCycles8'and9(1,2,4)(1,3,5)
~~~~~l~~~}i~~~~~~~
XN-NF-79-103
2.0 OPERATING
HISTORYOFTHEREFERENCE CYCLER.E.GinnaCycle9hasbeenchosenasthereference cyclewithrespecttoCycle10duetothecloseresemblance oftheneutronic characteristics betweenthesetwocycles.TheCycle9operation beganonApril3,1979,andasofNovember31,1979thecorehadaccruedabout6,714MWD/MT.TheCycle9loadingincluded40freshENCfuelassemblies with32exposedENCassemblies and49exposedWestinghouse assemblies.
Themeasuredpowerpeakingfactorsathot-full-power, equilibrium xenonconditions, haveremainedconsiderably belowtheTechnical Specification
,limitsthroughout Cycle9.Thetotalnuclearpeakingfactors,F,andtheradialnuclearpinpeakingfactor,FH,haveremainedbelow1.75and1.45,respectively.
Cycle9operation hastypically beenrod'freewiththeDcontrolbankpositioned intherangeof218to222steps,225stepsbeingfullywithdrawn.
Itisanticipated thatsimilbrcontrolbankinsertions willbeseeninCycle10.Thecriticalboronconcentration ascalculated byENCforCycle9hasagreedtowithinabout8ppmcomparedtotheobservedvalues(seeFigure2.1).Alsothepredicted powerdistributions havetypically agreedtowithin+3percentofthe,measuredvalues(seeFigure2.2fortypicalcom-parison).
-~~--~~-~~=-:LL~=*~-:..t=~I-~~-~t44C-l:-f~I~~t*'Itj=~~~++4I~~=~~~~-~~~~~-~~-~*t-Ut'e.~----I.flGMO'NT.}'
~-:.-::F.-Tre
~t~-:CritTcatBoronCuve,,=P=red:.~-~-~-
XN-NF-79-103
.968.995-2.711.1101.129-1.68.920.938-1.92.949..965-1.661.1891.178'93.996.9633.43.794.7821.531.1081.131-2.03.9861.013-2.671.0291.048-1.811.0991.103-.361.1891.1681.801.0741.0512.19.663.6452.79.918.947-3.061.0301.051-2.00.9961.006-.991.2031.1911.011.0791.0552.27;977.974.31.953.968-1.551.0981.105-.631.1911.192-.081.0361.0211.471.1781.1492.52.714.711.42101;1951.179l.361.1881.1691.631.0721.0551.611.1731.1492.09.804.798.75.985.9632.28.772.782-1.281.0711.0511.90.651,.645.93.977.975.21.715.712.42MeasuredAssemblyPowerCalculated (XTGPWR)x100c1213Calculated Measured%Difference NFq1.5281.5642.33F~H1.351F1.1051.3371.154-1.074.42Figure2.2R.E.GinnaPowerDistribution Comparison, ToMapIX-24,HFP,5,505MWD/MT I-l XN-NF-79-103
3.0 GENERALDESCRIPTION
TheR.E.Ginnareactorconsistsof121assemblies, eachhavinga14xl4fuelrodarray.Eachassemblycontains179fuelrods,16RCCguidetubes,and1instrumentation tube.ThefuelrodsconsistofslightlyenrichedU02pelletsinsertedintozircaloytubes.TheRCCguidetubesandtheinstrumen-tationtubearemadeofSS-304L.EachENCassemblycontainsninezircaloyspacerswithInconelsprings;eightofthespacersarelocatedwithintheactivefuelregion.Fourofthe121assemblies containMixedOxide(Pu02plusU02)bearingfuelrods.TheMOXassemblies consistofthreeenrichment zonesofPu02utilizing naturalU02asthediluent.Theprojected Cycle10loadingpatternisshowninFigure3.1withtheassemblies identified bytheirFabrication ID'sandRegionID's.Theinitialenrichments ofthevariousregionsarelistedinTable3.1.BOC10exposures, basedonanEOC9exposureof9,570MHD/MT,alongwithRegionID'sareshowninFigure3.2.Thecoreconsistsof32freshENCassemblies at3.45w/oand4freshWestinghouse MOXassemblies loadedontheperiphery with72ENCand13Westinghouse exposedassemblies scatter-loaded inthecenterportionofthecore.Pertinent fuelassemblyparameters fortheCycle10fuelaredepictedinTable3.1.Thetransuranic
- elements, including Am-241,havebeen\accounted foruptothetimeoftheanticipated reactorstartup.
XN-NF-79-103 Table3.1R.E.GinnaCycle10FuelAssemblyDesignParameters 10Region12MOXEnrichment, wtXU-235NumberofAssemblies PelletDensi'ty, XTDPellet-to
-CladDiametrical Gap,MilFuelStackHeight,inch7.57.5141.4142.03,1033,100133295,094,04094.032494.095.07.57.57.5142.0142.0141.43.2003.4502.626*RegionAverageBurnupatBOC10,MWD/MTNominalAssemblyWeight,KgU24,33917,8858,33500392.56373.78373,78373.78395.91***wtXPu(basedonassemblyaverage)*"inKgHM XNrNF-79-103 KJIH.GFE0CBA12HOX121212N09'12L1412L09M14K03L31M391212L01H011212M02L06N17L19M28L26N36L05N121212L02M33L21M23K05N30L24M20L121212MOXL32M40L2712K09M25M31K13N07K20N08K28K19N06N22L18H13K18M27K27L131212MOX12L15M15L20M24K26M05K17H29L25M38L301212Ll0M18L22N32K25M21L23M35L041212Ml0L0712M03N34L28N26L03M37K14L17H16M19L08M04LllMll12121212L2912L16121212MOX12FabricationorNewFuelRegionIdentification Figure3.1R.E.GinnaCycle10LoadingPattern XN-NF-79-103 DCB24,7367,51724,1177,80924,708012MOX7;52224,09311,34117,5789,5441019,816101224,11711,34217,5066,92616,0611010127,80917,5746,9281018,677106,393012]n24,7089,54916,0616,19810121219,809100a1212BOC10ExposureMWD/MTRegionID*120MOX1213*SeeTable3.1forRegiondefinitions fFigure3.2R.E.GinnaBOC10quarterCoreExposureDistribution andRegionID XN-NF-79-103 4.0FUEL.SYSTEMDESIGNAdescription oftheExxonNuclearsuppliedfueldesignanddesignmethodsiscontained inReference 1.Thisfuelhasbeenspecifically designedtobecompatible totheresidentfuelsuppliedbyWestinghouse.
5.0 NUCLEARDESIGNTheneutronic
charactristicsoftheprojected Cycle10corearequitesimilartothoseoftheCycle9core(seeSection5.1).ThenucleardesignbasesfortheCycle10coreareasfollows:1)Thedesignshallpermitoperation withintheTechnical Specifications fortheR.E.Ginnaplant.2)ThelengthofCycle10shallbedetermined onthebasisofanassumedCycle9lengthof9,570MWD/MT.3)TheCycle10loadingpatternshallbeoptimized toachievepowerdistributions andcontrolrodreactivity worthsaccording tothefollowing constraints:
a)ThepeakF~shallnotexceed2.32andthepeakFHshallnotexceed1.66(including uncertainties) inanysinglefuelrod.throughthecycleundernominalfullpoweroperation condi-tions.b)ThescramworthofallrodsminusthemostreactiveshallexceedBOCandEOCshutdownrequirements.
4)TheCycle10coreshallhaveanegativepowercoefficient.
5)TheMOXassemblies shallbelocatedinaregionofthereactorcoreastominimizetheeffectsonshutdownmarginprovisions andthermallimits.Theneutronic designmethodsutilizedtoensuretheaboverequirements areconsistent withthosedescribed inReferences 6,7,and8.
XN-NF-79-103 5.1PHYSICSCHARACTERISTICS Theneutronic characteristics oftheCycle10corearecomparedwiththoseofCycle9andarepresented inTable5.1.Thedatapresented inthetableindicatethe'eutronic similarity betweenCycles9and10.TheCycle10loadingpatternisapplicable forCycle9lengthsof+700MWD/MTand-800MWD/MTaboutthenominallengthof9,570MWD/MT.Thecalculated boronletdowncurveforCycle10isshowninFigure5.1.Thecurveindicates aBOC10,noxenon,criticalboronconcentration of1,254ppm.At150MWD/MT,equilibrium xenon,thecriticalboronconcentration is921ppm.TheCycle10lengthisprojected tobe9,500+300 MWD/MTwith7ppmofboronatEOC.5.1.1PowerDistribution Considerations PRepresentative predicted powermapsforCycle10areshowninFigures5.2and5.3forBOCandEOCconditions, respectively.
Thepowerdistributions wereobtainedfromathree-dimensional modelwithmoderator I,densityandDopplerfeedbackeffectsincorporated.
Fortheprojected Cycle10loadingpatternthecalculated BOCnuclearpowerpeakingfactors,F~,NNNF,andFz,are,l.745, 1.433,and1.201,respectively.
AtEOCconditions thecorresponding valuesare1.517,1.358,and1.098.TheTechnical Specifi-cationlimitsrelativetoF~andF>H,withthemeasurement uncertainties NNbackedout,are2.15and1.60.Additionally thepredicted axialFdistri-butionsarewellbelowtheaxiallydependent Technical Specification limitsonF~.TheBOCFvalueof1.745compareswiththemeasuredCycle9valueNinTable5.1of1.758.
12XN-NF79-,103Thecontrolofthecorepowerdistribution isaccomplished byfollowing theprocedures asdiscussed inthereport,XN-76-40, "ExxonNuclearPowerDistribution ControlforPressurized WaterReactors",
September 1976anditsaddendum.
Theresultsreportedinthesedocuments demonstrate thatthePowerDistribution Control(PDC)procedures definedinthereportwillprotectanaxiallydependent Flimitwithapeakvalueof2.30.TheTechnical Specification limitforR.E.Ginnahasapeakof2.32andanaxialdependence identical tothatsupported bytheprocedures.
Thephysicscharacteristics oftheGinnaCycle10corearesimilartothoseutilizedinthePDCsupporting analysis.
TheGinnaTechnical Specification limitsonFcantherefore beprotected byoperation underthePDCprocedures asstatedinXN-76-40.
5.1.2ControlRodReactivit Reuirements Detailedcalculations ofshutdownmarginsforCycle10arecomparedwithCycle9datainTable5.2.TheENCPlantTransient Simulation (PTS)Analysisindicates thattheminimumrequiredshutdownmarginis1,800pcmbaseduponthesteamline breakaccidentanalyzedforENCfuelattheEOCconditions.
Avalueof1,900pcmisusedatEOCintheevaluation oftheshutdownmargintobeconsistent with'theTechnical Specifications.
TheCycle10analysisindicates excessshutdownmarginsof1,414pcmattheBOCand344pcmattheEOC.TheCycle9analysisindicates excessshut-downmarginsforthatcycleof1,795pcmattheBOCand393pcmattheEOC.TheslightlylowerCycle10excessshutdownmargins,whencomparedtotheCycle9values,areduetoslightlylowercalculated rodworths.
13XN-NF-79103Thecontrol-rodgroupsandinsertion limitsforCycle10willremainunchanged fromCycle9.Withtheselimitsthe'nominal worthofthecontrolbank,D-bank,insertedtotheinsertion limits'at HFPis122pcmat,BOCand'70pcmatEOC.Thecontrolrodshutdownrequirements inTable15.2allowforaHFPD-bankinsertion equivalent to300pcmforbothBOCandEOC.5.1.3Moderator TemeratureCoefficient Considerations Thereference Cycle10designcalculations indicatethatthemoderator temperature coefficient isnegativeatalltimesduringthecycleasshowninTable5.1.ThismeetstheTechnical Specification requirement thatthemoderator temperature coefficient benegativeatalltimesduringpoweroperation andthedesigncriteriathatthepowercoefficient benega-tive.Theleastnegativemoderator temperature coefficient occursatBOCHZPandis-2.0+2pcm/
F.ThiscompareswiththeBOC9HZPvalueof-2.0pcm/F.5.2ANALYTICAL METHODOLOGY ThemethodsusedintheCycle10coreanalysesaredescribed inReferences 6,7,and8.ThesemethodshavebeenverifiedforbothU02andPu02-U02lattices.
Insummary,thereference neutronic designanalysisofthereloadcorewasperformed usingtheXTG(Reference 9)reactorsimulator system-.Theinputexposuredatawerebasedonquartercoredepletion calcu-lationsperformed fromCycle5toCycle9usingtheXTGcode.TheBOC5exposuredistribution wasobtainedfromplantdata.Thefuelshuffling betweenc'ycleswasaccounted forinthecalculations.
14XN-NF-79-103 Predicted valuesofF~,Fx,andFwerestudied,withtheXTGreactormodel.Thecalculational thermal-hydraulic feedbackandaxialexposuredistribution effectsonpowershapes,rodworths,andcyclelifetimeareexplicitly includedintheanalysis.
15XN-NF-79-103 Table5.1R.E.GinnaNeutronics Characteristics ofCycle10ComparedwithCycle9DataBOCCcle9EOCCcle10BOCEOC(CriticalBoronHFP,ARO,Equilibrium Xenon(ppm)HZP,ARONoXenon(ppm)Moderator Temperature Coefficient HFP,(pcm/oF)HZP,(pcm/oF)DopplerCoefficient, (pcm/F)BoronWorth,(pcm/ppm)
HFPHZPTotalNuclearPeakingFactorFq,HFP961')12(1,410(2)-8.12-8.58-8.721.758(-7.6(2)-30.4-2.0-21.5-1.25to-2.09211,414-8.1-2.0-30.4-21.6-7.95,-8.621.7451.517-,1.35-1.84DelayedNeutronFraction.0061.0051.0058.0052ControlRodWorthofAllRodsInMinusMostReactiveRod,HZP,(pcm)ExcessShutdownMargin(pcm)Moderator PressureCoefficient (pcm/psi) 5,751)5,821.1,795()393(0.355';3415,6961,4143440.35(1)Extrapolated frommeasureddata(2)MeasuredData(3)70/PowerMap(4)Reference 5
16XN-NF-79-103 Table5.2,R.E.GinnaControlRodShutdownMarginsandRequirements forCycle10BOCCcle9**EOCCcle10BOCEOCControlRodWorthHZP,cmAllRodsInserted(ARI)ARIlessmostreactive(N-1)N-1lesslOXallowance L(N-1)*9lReactivit Insertion cm5,1765,2396,4076,6345,7515,8215,9496,4205,3415,6964,8075,125Moderator plusDopplerFluxRedistribution VoidSumoftheabovethreeRodInsertion Allowance TotalRequirements 1,431600502,0813002,3811,996600502,'6463002,9461,4431,93260060050502,0932,5823003002,3932,882Shutdown.
Margin(N-l)*.9-TotalRequirements RequiredShutdownMargin*ExcessShutdownMargin2,7952,2931,0001,9001,7953931,4143442,4142,244100001,900*Technical Specification 3.10"*Calculated valuesfromReference 5
~-~.~~'-~~*~-~*~I~>>.~=~~~=~~-~-t~=~~4h~g~~=~=WtWI.~'~~\-~*~4~t~~~->>*~~~~=-~=~-~-~-~~-Figure5tlR.E.GinnaCycle10AROCriticalBoronConcentration vs.Exposurer4 el~~~~~~~~~~~~~~~~~~~~~~~I~~JLlII~~
I~~~~0~~I~I~I~~~~~~~~~~
6.0 THERMALHYDRAULIC
DESIGNThethermalandhydraulic considerations intheRegion12designareunchanged fromthosepresented inReference 4forRegion10fuel.
l~Ij 21XN-NF-79-103
7.0 ACCIDENTANDTRANSIENT
ANALYSIS7.1PLANTTRANSIENT ANDECCSANALYSESfORR.E.GINNATheECCSanalysisprovidedinReference 3isapplicable toallENCfuelresidinginthecoreduringCycle10operation.
ThePlantTransient AnalysisreportedinXN-NF-77-40 fortheR.(2)E.Ginnaplantwasintendedtocoverallanticipated rangesofvaluesforallsignificant fueldependent plantparameters forCycle8andforallfuture7reloads.Table7.1presentsacomparison ofthekineticparameters usedinthePlantTransient Analysisandtheparameters calculated specifically forCycle10.Duetotheintroduction ofthe4MOXassemblies thereactivity worthofthe-boricacidusedbytheHPSIS(HighPressureSafetyInjection System)andtheBOCdelayedneutronfractionhavebeencalculated tobeoutsidetherangereportedintheXN-NF-77-40 analysis.
Theanalysiswasreviewedanditwasfoundthatthechangeinboricacidworthaffectsthesmal,landlargesteamline breaktransients andthatthedelayedneutronfractionmostaffectsthefastuncontrolled rodwithdrawal transient.
Theenveloping dataforbothsteamline breaksaretheEOCdataandforthefastuncontrolled rodwithdrawal areBOCdata.TheimpactoftheCycle10parameters (seeTable7.1)havebeenevaluated foreachofthetransients.
Theresultsoftheevaluation forthetransients werefoundtobenearlyequivalent tothepreviousresultsandthatthefigureofmeritforthetransients werenotviolated, i.e.forthesmallsteamline breakthesystemdoesnotgocritical, forthelargesteamline breaktheMDNBRisgreaterthanthe1.30limitandfortheuncontrolled rodwithdrawal theMDNBRmarginisnotaltered.
22XN-NF-79-103 7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10AControlRodEjectionAccidentisdefinedasthemechanical fail-ureofacontrolrodmechanism pressurehousing,resulting'in theejectionofaRodClusterControlAssembly(RCCA)anddriveshaft.Theconsequence ofthismechanical failureisarapidreactivity insertion togetherwithanadversecorepowerdistribution, possiblyleadingtolocalized fueldamage.~Therodejectionaccidentanalysispresented inthedocumentXN-NF-78-53isstillapplicable toCycle10operation.
Thelocationofthe4MOXassemblies introduces minimaleffectsonejectedrodworthsandhotpelletpeakingfactors.Thee'jectedrodworthsandhotpelletpeakingfactorsarecal'culated usingtheXTGcode.Nocreditwastakenforthepoweiflattening effects,ofDopplerormoderator feedbackinthecalculation ofejectedrodworths'rpeaking'factors.
Thecalculations madeforCycle10usingXTGweretwo-dimensional (x-y)withappropriate axialbucklingcorrec-tionterm's.Thetotal'eaking factors(F~)weredetermined astheproductoftheradialpeakingfacto'r(ascalculated usingXTG)andaconservative axialpeakingfactor;Thepelletenergydeposition resulting fromanejectedrodwasevaluated tobelessthanther'esultsreportedinReferences 4and5.Therodejectionaccidentwasfoundtoresultinenergydeposition oflessthan280cal/gmst'atedinRegulatory Guide1.77'andprovidesagreaterenergydeposition marg'inthanthatdetermined byReference 4.Theresultsofthecontrolrodejectiontransient forthiscasearepresented inTable7.2alongwithresults'fromReferences 4and5.
23XN-NF-79-103 7.1R.E.GinnaKineticParameters Parameters
,Moderator Temperature Coefficient (pcm/oF)Moderator PressureCoefficient (pcm/psia)
Reference Cycle(1)BOCEC0.0-35.0+.25+.35Cycle10BC-8.1+.09EC-30.4+.35Moderator DensityCoefficient (pcm/gm/cm3)
DopplerCoeffi:cient (pcm/F)-1.25-2.00-1.35-1.840.0+29635.0+6858.0+25740.0BoronWorthCoefficient (pcm/ppm)
DelayedNeutronFraction-8.75-8.72.0061.0051-7.95.0058-8.62.0052Reference 2
XN-NF-7.9.-103 Table7.2EjectedRodWorthandPeakingFactors'~
BeforeEjection~C18()~C19()~C110(HFPHZPHFPHZPHFPHZP2,252.822.242.622.152.59F~AfterEjectionN4.36'.302.965.59gg4()601(MaximumRodWorthfromaFullInsertedBank(Xhp)0.4700.6400.3620.5530.2800.435EnergyDeposition (cal/gm)17137(1)Includesaconservative estimateofFatHFPof1.4andatHZPof1.8.(2)Reference 4,calculated withXTRAN.(3)Reference 5,calculated withXTGPWR.(4)Calculated withXTGPWR.
8.0REFERENCES
1.XN-NF-77-52, "R.E.GinnaReloadFuelDesign",November, 1977.2.3.4.5.6.'XN-NF-77-40, "PlantTransient AnalysisforR.E.Ginna,Unit1NuclearPowerPlant",Revision1,July,1979.XN-NF-77-58, "ECCSAnalysisfortheR.E.GinnaReactorwithENCWREM-IIPWREvaluation Model",December, 1977.XN-NF-77-53, "R.E.GinnaNuclearPlantCycle8SafetyAnalysisReport",December, 1977.XN-NF-78-50,
="R.E.GinnaCycle9SafetyAnalysisReport,"December, 1978.F.B.Skogen,"ExxonNuclearNeutronics DesignMethodsforPres-surizedWaterReactors",
XN-75-27(A),
ExxonNuclearCompany,April,1977.7.XN-75-27(A),
Supplement 1toReference 6,April,1977.8.XN-75-27, Supplement 2toReference 6,December, 1977.9.XN-CC-28, Rev.3,"XTG:ATwoGroupThree-Dimensional ReactorSimulator Utilizing CoarseMeshSpacing(PWRVersion)",
January,1975.
IlxI 26XN-NF-79-103 R.E.GINNACYCLE10RELOADSAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIES DISTRIBUTION K.H.BlankG.J.Busselman L.J.FedericoR.L.Feuerbacher R.G.GrummerB.L.Johnson(2)M.R.KillgoreT.L.Krysinski C.E.LeachJ.N.MorganW.S.NechodomL.A.NielsenG.F.OwsleyJ.F.Patterson A.W.PrichardF.B.SkogenG.A.SoferA.V.Wojchouski C.H.WuRG&E/L.J.Federico(80)DocumentControl(10) lI1