ML17249A374: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:0KN-N-79-103PE(lllklkPlljlllLEkkPILklll'NllllLEJIBMFET7kkkL7SIISPEPBP'll'IIYMIw3IIXEBQXIIBEbhSSEliNBILIIESDECEMBER1979RICHLAND,NA99352 EI'II-II XN-NF-79-1030:IR/R1479R.E.GINNANUCLEARPLANTCYCLE10.SAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIESPrepared:G.J.Bussman,ManagerNeutronicsandFuelManagementApproved:G.A.SofenagerNuclearFuesEngineeringConcurred:J.N.Morgan,ManageLicensingandSafetyEngineeringConcurred:L.J.Federico,ManagerNuclearFuelsProjectl'~/7E)j(ONNUCLEARCOMPANY,Inc.
{{#Wiki_filter:0KN-N-79-103PE(lllklkPlljlllLEkk PILklll'NllllLE JIBMFET7kkkL7SIIS PEPBP'll'IIYM Iw3IIXEBQXIIBEbhSSEliNBILIIES DECEMBER1979RICHLAND, NA99352 EI'II-II XN-NF-79-103 0:IR/R1479R.E.GINNANUCLEARPLANTCYCLE10.SAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIES Prepared:
NUCLEARREGULATORYCOMMISSIONDISCLAIMERIMPORTANTNOTICEREGARDINGCONTENTSANDUSEOFTHISDOCUMENTIrPLEASEREADCAREFULLYThistechnicalreportwasderivedthroughresearchanddevelopmentprogramssponsoredbyExxonNuclearCompany,Inc.ItisbeingSub.mittedbyExxonNucleartotheUSNRCaspartofatechnicalcontri.butiontofacilitatesafetyanalysesbylicenseesoftheUSNRCwhichutilizeExxonNuclear.fabricatedreioarlfuelorotherteclmicalservicesprovidedbyExxonNuclearforliehtwaterpowerreactorsan<IitistrueandcorrecttothebestofExxonNuclear'sknowledge,information,andbelief.TheinformationcontainedhereinmaybeusedbytheUSNRCinitsreviewofthisreport,andbylicenseesorapplicantsbeforetheUSNQCwhicIIarecustomersotExxonNuclearintheirdemonstrationofcompliancewIththeUSNRC'sregulations.Withoutderogatingfromtheforegoing,neitherExxonNuclearnoranypersonactingonitsbehalf:A.Makesanywarranty,expressorimplied,withrespecttotheaccuracy,completeness,orusefulnessoftheinfor-mationcontained,inthisdocument,orthattheuseotanyinformation,apparatus,method,orprocessdisclosedinthisdocumentwillnotItffringeprivatelyownedrights;or8.Assumesanyliabilitieswithrespecttotheuseof,orfordan'agesresultingfromtheuseof,anyinformation,ap.paratus,method,orprocessdisclosedinthisdocument.XN-NF-FQO,766 XN-NF-79-103TABLEOFCONTENTS'ection
G.J.Bussman,ManagerNeutronics andFuelManagement Approved:
G.A.SofenagerNuclearFuesEngineering Concurred:
J.N.Morgan,ManageLicensing andSafetyEngineering Concurred:
L.J.Federico, ManagerNuclearFuelsProjectl'~/7E)j(ONNUCLEARCOMPANY,Inc.
NUCLEARREGULATORY COMMISSION DISCLAIMER IMPORTANT NOTICEREGARDING CONTENTSANDUSEOFTHISDOCUMENTIrPLEASEREADCAREFULLY Thistechnical reportwasderivedthroughresearchanddevelopment programssponsored byExxonNuclearCompany,Inc.ItisbeingSub.mittedbyExxonNucleartotheUSNRCaspartofatechnical contri.butiontofacilitate safetyanalysesbylicensees oftheUSNRCwhichutilizeExxonNuclear.fabricated reioarlfuelorotherteclmical servicesprovidedbyExxonNuclearforliehtwaterpowerreactorsan<IitistrueandcorrecttothebestofExxonNuclear's knowledge, information, andbelief.Theinformation contained hereinmaybeusedbytheUSNRCinitsreviewofthisreport,andbylicensees orapplicants beforetheUSNQCwhicIIarecustomers otExxonNuclearintheirdemonstration ofcompliance wIththeUSNRC'sregulations.
Withoutderogating fromtheforegoing, neitherExxonNuclearnoranypersonactingonitsbehalf:A.Makesanywarranty, expressorimplied,withrespecttotheaccuracy, completeness, orusefulness oftheinfor-mationcontained,in thisdocument, orthattheuseotanyinformation, apparatus, method,orprocessdisclosed inthisdocumentwillnotItffringe privately ownedrights;or8.Assumesanyliabilities withrespecttotheuseof,orfordan'agesresulting fromtheuseof,anyinformation, ap.paratus,method,orprocessdisclosed inthisdocument.
XN-NF-FQO,766 XN-NF-79-103 TABLEOFCONTENTS'ection


==1.0INTRODUCTION==
==1.0INTRODUCTION==
ANDSUMMARY.2.0OPERATINGHISTORYOFTHEREFERENCECYCLE.3.0GENERALDESCRIPTION4.0FUELSYSTEMDESIGN.~Pae2595.0NUCLEARDESIGN.................'........105.1PHYSICSCHARACTERISTICS5.1.1POWERDISTRIBUTIONCONSIDERATIONS.5.1.2CONTROLRODREACTIVITYREQUIREMENTS.125.1.3MODERATORTEMPERATURECOEFFICIENTCONSIDERATIONS..135.2ANALYTICALMETHODOLOGY.136.0THERMALHYDRAULICDESIGN....................207.0ACCIDENTANDTRANSIENTANALYSIS.7.1PLANTTRANSIENTANDECCSANALYSESFORR.E.GINNA.7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10.
 
ANDSUMMARY.2.0OPERATING HISTORYOFTHEREFERENCE CYCLE.3.0GENERALDESCRIPTION 4.0FUELSYSTEMDESIGN.~Pae2595.0NUCLEARDESIGN.................'........
105.1PHYSICSCHARACTERISTICS 5.1.1POWERDISTRIBUTION CONSIDERATIONS.
5.1.2CONTROLRODREACTIVITY REQUIREMENTS.
125.1.3MODERATOR TEMPERATURE COEFFICIENT CONSIDERATIONS
..135.2ANALYTICAL METHODOLOGY.
136.0THERMALHYDRAULIC DESIGN....................
207.0ACCIDENTANDTRANSIENT ANALYSIS.
7.1PLANTTRANSIENT ANDECCSANALYSESFORR.E.GINNA.7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10.


==8.0REFERENCES==
==8.0REFERENCES==
.~~21212225  
.~~21212225  
~~~.l~~~t~~t XN-NF-79-103LISTOFTABLESTable~Pae3.1R.E.GINNACYCLE10FUELASSEMBLYDESIGNPARAMETERS-.....65.1R.E.GINNANEUTRONICSCHARACTERISTICSOFCYCLE10COMPAREDWITHCYCLE9DATA....................155.2R.E.GINNACONTROLRODSHUTDOWNMARGINSANDREQUIREMENTSFORCYCLE10~~~~~~~~~~~~~~~~~~~~~~~~II7.1R.E.GINNAKINETICPARAMETERS.16~~237.2EJECTEDRODWORTHANDPEAKINGFACTORS..............24  
~~~.l~~~t~~t XN-NF-79-103 LISTOFTABLESTable~Pae3.1R.E.GINNACYCLE10FUELASSEMBLYDESIGNPARAMETERS
-.....65.1R.E.GINNANEUTRONICS CHARACTERISTICS OFCYCLE10COMPAREDWITHCYCLE9DATA....................
155.2R.E.GINNACONTROLRODSHUTDOWNMARGINSANDREQUIREMENTS FORCYCLE10~~~~~~~~~~~~~~~~~~~~~~~~II7.1R.E.GINNAKINETICPARAMETERS
.16~~237.2EJECTEDRODWORTHANDPEAKINGFACTORS..............24  
\~~~~~~~~~l~~iI~~~~~
\~~~~~~~~~l~~iI~~~~~
XN-NF-79-103LISTOFFIGURES~Fiure2.1R.E.GINNACYCLE9CRITICALBORONCURVE,PREDICTEDVS.MEASUREDe~~~~~~~~~~~~~~~~~~~~~~~~2.2R.E.GINNAPOWERDISTRIBUTIONCOMPARISONTOMAPIX-245)505MWD/MTe~~~~~~~~~~~~~~~~~~~~~~3.1R.E.GINNACYCLE10LOADINGPATTERN.3.2R.E.GINNABOC10QUARTERCOREEXPOSUREDISTRIBUTIONANDREGIONID@~~~~~~~~~~~~~~~~~~~~~~~~5.1R.E.GINNACYCLE10AROCRITICALBORONCONCENTRATIONVS.EXPOSURE~~~~~~~~~~~~~~~~~~~~~~~~~5.2R.E.GINNACYCLE10POWERDISTRIBUTIONHFP,0MWD/MT1)254PPM5.3R.E.GINNACYCLE10POWERDISTRIBUTIONHFP,9,500MWD/MTPPM~~~~~~~~~~~~~~~~~~~~~~~~~~7~Pae~~3478171818 t1~~~~~~I~li~~~~l XN-NF-79-103R.E.GINNANUCLEARPLANTCYCLE10SAFETYANALYSISREPORTkgl
XN-NF-79-103 LISTOFFIGURES~Fiure2.1R.E.GINNACYCLE9CRITICALBORONCURVE,PREDICTED VS.MEASUREDe~~~~~~~~~~~~~~~~~~~~~~~~2.2R.E.GINNAPOWERDISTRIBUTION COMPARISON TOMAPIX-245)505MWD/MTe~~~~~~~~~~~~~~~~~~~~~~3.1R.E.GINNACYCLE10LOADINGPATTERN.3.2R.E.GINNABOC10QUARTERCOREEXPOSUREDISTRIBUTION ANDREGIONID@~~~~~~~~~~~~~~~~~~~~~~~~5.1R.E.GINNACYCLE10AROCRITICALBORONCONCENTRATION VS.EXPOSURE~~~~~~~~~~~~~~~~~~~~~~~~~5.2R.E.GINNACYCLE10POWERDISTRIBUTION HFP,0MWD/MT1)254PPM5.3R.E.GINNACYCLE10POWERDISTRIBUTION HFP,9,500MWD/MTPPM~~~~~~~~~~~~~~~~~~~~~~~~~~7~Pae~~3478171818 t1~~~~~~I~li~~~~l XN-NF-79-103 R.E.GINNANUCLEARPLANTCYCLE10SAFETYANALYSISREPORTkgl


==1.0INTRODUCTION==
==1.0INTRODUCTION==
ANDSUMMARYTheR.E.GinnaNuclearplantwilloperateinCycle10beginninginearly1980withthreeregionsoffuelsuppliedbyExxonNuclearCompany(ENC).Theloadingwillconsistof32ENCassembliesinRegion12and4Westinghousemixoxide(MOX)assemblies.Theremainderofthecorecontains40once-burntand32twice-burntENCassembliesand13exposedWestinghousesuppliedassemblies.ThecharacteristicsofthefuelandofthereloadedcoreresultinconformancewithexistingTechnicalSpecificationlimitsregardingshutdownmarginprovisionsandthermallimits.ThisdocumentprovidestheneutronicanalysisfortheplantduringCycle10operationandthecontrolrodejectionanalysis.TheENCfueldesign.isunchangedfromthefueldesignusedinthe"Cycle8and9ENCfuelreloads.ThepreviousPlantTransientAnalysis'(2)remainsvalidforCycle10.TheECCSanalysisisapplicabletoCycle10operation.TheconsequencesoftherodejectionaccidentforCycle10areslightlylessseverethanthosecalculatedforCycles8and9.The(4)(5)introductionofthe4MOXassembliesintothereactorcoreleadstosmallchangesinthecoreaveragekineticparametersresultinginminimaleffectstothepreviousanalysesperformedforCycles8'and9(1,2,4)(1,3,5)  
 
ANDSUMMARYTheR.E.GinnaNuclearplantwilloperateinCycle10beginning inearly1980withthreeregionsoffuelsuppliedbyExxonNuclearCompany(ENC).Theloadingwillconsistof32ENCassemblies inRegion12and4Westinghouse mixoxide(MOX)assemblies.
Theremainder ofthecorecontains40once-burnt and32twice-burnt ENCassemblies and13exposedWestinghouse suppliedassemblies.
Thecharacteristics ofthefuelandofthereloadedcoreresultinconformance withexistingTechnical Specification limitsregarding shutdownmarginprovisions andthermallimits.Thisdocumentprovidestheneutronic analysisfortheplantduringCycle10operation andthecontrolrodejectionanalysis.
TheENCfueldesign.isunchanged fromthefueldesignusedinthe"Cycle 8and9ENCfuelreloads.ThepreviousPlantTransient Analysis'(2)remainsvalidforCycle10.TheECCSanalysisisapplicable toCycle10operation.
Theconsequences oftherodejectionaccidentforCycle10areslightlylessseverethanthosecalculated forCycles8and9.The(4)(5)introduction ofthe4MOXassemblies intothereactorcoreleadstosmallchangesinthecoreaveragekineticparameters resulting inminimaleffectstothepreviousanalysesperformed forCycles8'and9(1,2,4)(1,3,5)  
~~~~~l~~~}i~~~~~~~
~~~~~l~~~}i~~~~~~~
XN-NF-79-1032.0OPERATINGHISTORYOFTHEREFERENCECYCLER.E.GinnaCycle9hasbeenchosenasthereferencecyclewithrespecttoCycle10duetothecloseresemblanceoftheneutroniccharacteristicsbetweenthesetwocycles.TheCycle9operationbeganonApril3,1979,andasofNovember31,1979thecorehadaccruedabout6,714MWD/MT.TheCycle9loadingincluded40freshENCfuelassemblieswith32exposedENCassembliesand49exposedWestinghouseassemblies.Themeasuredpowerpeakingfactorsathot-full-power,equilibriumxenonconditions,haveremainedconsiderablybelowtheTechnicalSpecification,limitsthroughoutCycle9.Thetotalnuclearpeakingfactors,F,andtheradialnuclearpinpeakingfactor,FH,haveremainedbelow1.75and1.45,respectively.Cycle9operationhastypicallybeenrod'freewiththeDcontrolbankpositionedintherangeof218to222steps,225stepsbeingfullywithdrawn.ItisanticipatedthatsimilbrcontrolbankinsertionswillbeseeninCycle10.ThecriticalboronconcentrationascalculatedbyENCforCycle9hasagreedtowithinabout8ppmcomparedtotheobservedvalues(seeFigure2.1).Alsothepredictedpowerdistributionshavetypicallyagreedtowithin+3percentofthe,measuredvalues(seeFigure2.2fortypicalcom-parison).  
XN-NF-79-103
-~~--~~-~~=-:LL~=*~-:..t=~I-~~-~t44C-l:-f~I~~t*'Itj=~~~++4I~~=~~~~-~~~~~-~~-~*t-Ut'e.~----I.flGMO'NT.}'~-:.-::F.-T''re~t~-:CritTcatBoronCuve,,=P=red:.~-~-~-
 
XN-NF-79-103.968.995-2.711.1101.129-1.68.920.938-1.92.949..965-1.661.1891.178'93.996.9633.43.794.7821.531.1081.131-2.03.9861.013-2.671.0291.048-1.811.0991.103-.361.1891.1681.801.0741.0512.19.663.6452.79.918.947-3.061.0301.051-2.00.9961.006-.991.2031.1911.011.0791.0552.27;977.974.31.953.968-1.551.0981.105-.631.1911.192-.081.0361.0211.471.1781.1492.52.714.711.42101;1951.179l.361.1881.1691.631.0721.0551.611.1731.1492.09.804.798.75.985.9632.28.772.782-1.281.0711.0511.90.651,.645.93.977.975.21.715.712.42MeasuredAssemblyPowerCalculated(XTGPWR)x100c1213CalculatedMeasured%DifferenceNFq1.5281.5642.33F~H1.351F1.1051.3371.154-1.074.42Figure2.2R.E.GinnaPowerDistributionComparison,ToMapIX-24,HFP,5,505MWD/MT I-l XN-NF-79-1033.0GENERALDESCRIPTIONTheR.E.Ginnareactorconsistsof121assemblies,eachhavinga14xl4fuelrodarray.Eachassemblycontains179fuelrods,16RCCguidetubes,and1instrumentationtube.ThefuelrodsconsistofslightlyenrichedU02pelletsinsertedintozircaloytubes.TheRCCguidetubesandtheinstrumen-tationtubearemadeofSS-304L.EachENCassemblycontainsninezircaloyspacerswithInconelsprings;eightofthespacersarelocatedwithintheactivefuelregion.Fourofthe121assembliescontainMixedOxide(Pu02plusU02)bearingfuelrods.TheMOXassembliesconsistofthreeenrichmentzonesofPu02utilizingnaturalU02asthediluent.TheprojectedCycle10loadingpatternisshowninFigure3.1withtheassembliesidentifiedbytheirFabricationID'sandRegionID's.TheinitialenrichmentsofthevariousregionsarelistedinTable3.1.BOC10exposures,basedonanEOC9exposureof9,570MHD/MT,alongwithRegionID'sareshowninFigure3.2.Thecoreconsistsof32freshENCassembliesat3.45w/oand4freshWestinghouseMOXassembliesloadedontheperipherywith72ENCand13Westinghouseexposedassembliesscatter-loadedinthecenterportionofthecore.PertinentfuelassemblyparametersfortheCycle10fuelaredepictedinTable3.1.Thetransuranicelements,includingAm-241,havebeen\accountedforuptothetimeoftheanticipatedreactorstartup.
==2.0 OPERATING==
XN-NF-79-103Table3.1R.E.GinnaCycle10FuelAssemblyDesignParameters10Region12MOXEnrichment,wtXU-235NumberofAssembliesPelletDensi'ty,XTDPellet-to-CladDiametricalGap,MilFuelStackHeight,inch7.57.5141.4142.03,1033,100133295,094,04094.032494.095.07.57.57.5142.0142.0141.43.2003.4502.626*RegionAverageBurnupatBOC10,MWD/MTNominalAssemblyWeight,KgU24,33917,8858,33500392.56373.78373,78373.78395.91***wtXPu(basedonassemblyaverage)*"inKgHM XNrNF-79-103KJIH.GFE0CBA12HOX121212N09'12L1412L09M14K03L31M391212L01H011212M02L06N17L19M28L26N36L05N121212L02M33L21M23K05N30L24M20L121212MOXL32M40L2712K09M25M31K13N07K20N08K28K19N06N22L18H13K18M27K27L131212MOX12L15M15L20M24K26M05K17H29L25M38L301212Ll0M18L22N32K25M21L23M35L041212Ml0L0712M03N34L28N26L03M37K14L17H16M19L08M04LllMll12121212L2912L16121212MOX12FabricationorNewFuelRegionIdentificationFigure3.1R.E.GinnaCycle10LoadingPattern XN-NF-79-103DCB24,7367,51724,1177,80924,708012MOX7;52224,09311,34117,5789,5441019,816101224,11711,34217,5066,92616,0611010127,80917,5746,9281018,677106,393012]n24,7089,54916,0616,19810121219,809100a1212BOC10ExposureMWD/MTRegionID*120MOX1213*SeeTable3.1forRegiondefinitionsfFigure3.2R.E.GinnaBOC10quarterCoreExposureDistributionandRegionID XN-NF-79-1034.0FUEL.SYSTEMDESIGNAdescriptionoftheExxonNuclearsuppliedfueldesignanddesignmethodsiscontainedinReference1.ThisfuelhasbeenspecificallydesignedtobecompatibletotheresidentfuelsuppliedbyWestinghouse.
HISTORYOFTHEREFERENCE CYCLER.E.GinnaCycle9hasbeenchosenasthereference cyclewithrespecttoCycle10duetothecloseresemblance oftheneutronic characteristics betweenthesetwocycles.TheCycle9operation beganonApril3,1979,andasofNovember31,1979thecorehadaccruedabout6,714MWD/MT.TheCycle9loadingincluded40freshENCfuelassemblies with32exposedENCassemblies and49exposedWestinghouse assemblies.
I 10XN-NF-79-1035.0NUCLEARDESIGNTheneutroniccharactristicsoftheprojectedCycle10corearequitesimilartothoseoftheCycle9core(seeSection5.1).ThenucleardesignbasesfortheCycle10coreareasfollows:1)ThedesignshallpermitoperationwithintheTechnicalSpecificationsfortheR.E.Ginnaplant.2)ThelengthofCycle10shallbedeterminedonthebasisofanassumedCycle9lengthof9,570MWD/MT.3)TheCycle10loadingpatternshallbeoptimizedtoachievepowerdistributionsandcontrolrodreactivityworthsaccordingtothefollowingconstraints:a)ThepeakF~shallnotexceed2.32andthepeakFHshallnotexceed1.66(includinguncertainties)inanysinglefuelrod.throughthecycleundernominalfullpoweroperationcondi-tions.b)ThescramworthofallrodsminusthemostreactiveshallexceedBOCandEOCshutdownrequirements.4)TheCycle10coreshallhaveanegativepowercoefficient.5)TheMOXassembliesshallbelocatedinaregionofthereactorcoreastominimizetheeffectsonshutdownmarginprovisionsandthermallimits.TheneutronicdesignmethodsutilizedtoensuretheaboverequirementsareconsistentwiththosedescribedinReferences6,7,and8.
Themeasuredpowerpeakingfactorsathot-full-power, equilibrium xenonconditions, haveremainedconsiderably belowtheTechnical Specification
XN-NF-79-1035.1PHYSICSCHARACTERISTICSTheneutroniccharacteristicsoftheCycle10corearecomparedwiththoseofCycle9andarepresentedinTable5.1.Thedatapresentedinthetableindicatethe'eutronicsimilaritybetweenCycles9and10.TheCycle10loadingpatternisapplicableforCycle9lengthsof+700MWD/MTand-800MWD/MTaboutthenominallengthof9,570MWD/MT.ThecalculatedboronletdowncurveforCycle10isshowninFigure5.1.ThecurveindicatesaBOC10,noxenon,criticalboronconcentrationof1,254ppm.At150MWD/MT,equilibriumxenon,thecriticalboronconcentrationis921ppm.TheCycle10lengthisprojectedtobe9,500+300MWD/MTwith7ppmofboronatEOC.5.1.1PowerDistributionConsiderationsPRepresentativepredictedpowermapsforCycle10areshowninFigures5.2and5.3forBOCandEOCconditions,respectively.Thepowerdistributionswereobtainedfromathree-dimensionalmodelwithmoderatorI,densityandDopplerfeedbackeffectsincorporated.FortheprojectedCycle10loadingpatternthecalculatedBOCnuclearpowerpeakingfactors,F~,NNNF,andFz,are,l.745,1.433,and1.201,respectively.AtEOCconditionsthecorrespondingvaluesare1.517,1.358,and1.098.TheTechnicalSpecifi-cationlimitsrelativetoF~andF>H,withthemeasurementuncertaintiesNNbackedout,are2.15and1.60.AdditionallythepredictedaxialFdistri-butionsarewellbelowtheaxiallydependentTechnicalSpecificationlimitsonF~.TheBOCFvalueof1.745compareswiththemeasuredCycle9valueNinTable5.1of1.758.
,limitsthroughout Cycle9.Thetotalnuclearpeakingfactors,F,andtheradialnuclearpinpeakingfactor,FH,haveremainedbelow1.75and1.45,respectively.
12XN-NF79-,103Thecontrolofthecorepowerdistributionisaccomplishedbyfollowingtheproceduresasdiscussedinthereport,XN-76-40,"ExxonNuclearPowerDistributionControlforPressurizedWaterReactors",September1976anditsaddendum.TheresultsreportedinthesedocumentsdemonstratethatthePowerDistributionControl(PDC)proceduresdefinedinthereportwillprotectanaxiallydependentFlimitwithapeakvalueof2.30.TheTechnicalSpecificationlimitforR.E.Ginnahasapeakof2.32andanaxialdependenceidenticaltothatsupportedbytheprocedures.ThephysicscharacteristicsoftheGinnaCycle10corearesimilartothoseutilizedinthePDCsupportinganalysis.TheGinnaTechnicalSpecificationlimitsonFcanthereforebeprotectedbyoperationunderthePDCproceduresasstatedinXN-76-40.5.1.2ControlRodReactivitReuirementsDetailedcalculationsofshutdownmarginsforCycle10arecomparedwithCycle9datainTable5.2.TheENCPlantTransientSimulation(PTS)Analysisindicatesthattheminimumrequiredshutdownmarginis1,800pcmbaseduponthesteamlinebreakaccidentanalyzedforENCfuelattheEOCconditions.Avalueof1,900pcmisusedatEOCintheevaluationoftheshutdownmargintobeconsistentwith'theTechnicalSpecifications.TheCycle10analysisindicatesexcessshutdownmarginsof1,414pcmattheBOCand344pcmattheEOC.TheCycle9analysisindicatesexcessshut-downmarginsforthatcycleof1,795pcmattheBOCand393pcmattheEOC.TheslightlylowerCycle10excessshutdownmargins,whencomparedtotheCycle9values,areduetoslightlylowercalculatedrodworths.
Cycle9operation hastypically beenrod'freewiththeDcontrolbankpositioned intherangeof218to222steps,225stepsbeingfullywithdrawn.
13XN-NF-79103Thecontrol-rodgroupsandinsertionlimitsforCycle10willremainunchangedfromCycle9.Withtheselimitsthe'nominalworthofthecontrolbank,D-bank,insertedtotheinsertionlimits'atHFPis122pcmat,BOCand'70pcmatEOC.ThecontrolrodshutdownrequirementsinTable15.2allowforaHFPD-bankinsertionequivalentto300pcmforbothBOCandEOC.5.1.3ModeratorTemeratureCoefficientConsiderationsThereferenceCycle10designcalculationsindicatethatthemoderatortemperaturecoefficientisnegativeatalltimesduringthecycleasshowninTable5.1.ThismeetstheTechnicalSpecificationrequirementthatthemoderatortemperaturecoefficientbenegativeatalltimesduringpoweroperationandthedesigncriteriathatthepowercoefficientbenega-tive.TheleastnegativemoderatortemperaturecoefficientoccursatBOCHZPandis-2.0+2pcm/F.ThiscompareswiththeBOC9HZPvalueof-2.0pcm/F.5.2ANALYTICALMETHODOLOGYThemethodsusedintheCycle10coreanalysesaredescribedinReferences6,7,and8.ThesemethodshavebeenverifiedforbothU02andPu02-U02lattices.Insummary,thereferenceneutronicdesignanalysisofthereloadcorewasperformedusingtheXTG(Reference9)reactorsimulatorsystem-.Theinputexposuredatawerebasedonquartercoredepletioncalcu-lationsperformedfromCycle5toCycle9usingtheXTGcode.TheBOC5exposuredistributionwasobtainedfromplantdata.Thefuelshufflingbetweenc'ycleswasaccountedforinthecalculations.
Itisanticipated thatsimilbrcontrolbankinsertions willbeseeninCycle10.Thecriticalboronconcentration ascalculated byENCforCycle9hasagreedtowithinabout8ppmcomparedtotheobservedvalues(seeFigure2.1).Alsothepredicted powerdistributions havetypically agreedtowithin+3percentofthe,measuredvalues(seeFigure2.2fortypicalcom-parison).  
14XN-NF-79-103PredictedvaluesofF~,Fx,andFwerestudied,withtheXTGreactormodel.Thecalculationalthermal-hydraulicfeedbackandaxialexposuredistributioneffectsonpowershapes,rodworths,andcyclelifetimeareexplicitlyincludedintheanalysis.
-~~--~~-~~=-:LL~=*~-:..t=~I-~~-~t44C-l:-f~I~~t*'Itj=~~~++4I~~=~~~~-~~~~~-~~-~*t-Ut'e.~----I.flGMO'NT.}'
15XN-NF-79-103Table5.1R.E.GinnaNeutronicsCharacteristicsofCycle10ComparedwithCycle9DataBOCCcle9EOCCcle10BOCEOC(CriticalBoronHFP,ARO,EquilibriumXenon(ppm)HZP,ARONoXenon(ppm)ModeratorTemperatureCoefficientHFP,(pcm/oF)HZP,(pcm/oF)DopplerCoefficient,(pcm/F)BoronWorth,(pcm/ppm)HFPHZPTotalNuclearPeakingFactorFq,HFP961')12(1,410(2)-8.12-8.58-8.721.758(-7.6(2)-30.4-2.0-21.5-1.25to-2.09211,414-8.1-2.0-30.4-21.6-7.95,-8.621.7451.517-,1.35-1.84DelayedNeutronFraction.0061.0051.0058.0052ControlRodWorthofAllRodsInMinusMostReactiveRod,HZP,(pcm)ExcessShutdownMargin(pcm)ModeratorPressureCoefficient(pcm/psi)5,751)5,821.1,795()393(0.355';3415,6961,4143440.35(1)Extrapolatedfrommeasureddata(2)MeasuredData(3)70/PowerMap(4)Reference5 16XN-NF-79-103Table5.2,R.E.GinnaControlRodShutdownMarginsandRequirementsforCycle10BOCCcle9**EOCCcle10BOCEOCControlRodWorthHZP,cmAllRodsInserted(ARI)ARIlessmostreactive(N-1)N-1lesslOXallowanceL(N-1)*9lReactivitInsertioncm5,1765,2396,4076,6345,7515,8215,9496,4205,3415,6964,8075,125ModeratorplusDopplerFluxRedistributionVoidSumoftheabovethreeRodInsertionAllowanceTotalRequirements1,431600502,0813002,3811,996600502,'6463002,9461,4431,93260060050502,0932,5823003002,3932,882Shutdown.Margin(N-l)*.9-TotalRequirementsRequiredShutdownMargin*ExcessShutdownMargin2,7952,2931,0001,9001,7953931,4143442,4142,244100001,900*TechnicalSpecification3.10"*CalculatedvaluesfromReference5
~-:.-::F.-T''re
~-~.~~'-~~*~-~*~I~>>.~=~~~=~~-~-t~=~~4h~g~~=~=WtWI.~'~~\-~*~4~t~~~->>*~~~~=-~=~-~-~-~~-Figure5tlR.E.GinnaCycle10AROCriticalBoronConcentrationvs.Exposurer4 el~~~~~~~~~~~~~~~~~~~~~~~I~~JLlII~~
~t~-:CritTcatBoronCuve,,=P=red:.~-~-~-
XN-NF-79-103
.968.995-2.711.1101.129-1.68.920.938-1.92.949..965-1.661.1891.178'93.996.9633.43.794.7821.531.1081.131-2.03.9861.013-2.671.0291.048-1.811.0991.103-.361.1891.1681.801.0741.0512.19.663.6452.79.918.947-3.061.0301.051-2.00.9961.006-.991.2031.1911.011.0791.0552.27;977.974.31.953.968-1.551.0981.105-.631.1911.192-.081.0361.0211.471.1781.1492.52.714.711.42101;1951.179l.361.1881.1691.631.0721.0551.611.1731.1492.09.804.798.75.985.9632.28.772.782-1.281.0711.0511.90.651,.645.93.977.975.21.715.712.42MeasuredAssemblyPowerCalculated (XTGPWR)x100c1213Calculated Measured%Difference NFq1.5281.5642.33F~H1.351F1.1051.3371.154-1.074.42Figure2.2R.E.GinnaPowerDistribution Comparison, ToMapIX-24,HFP,5,505MWD/MT I-l XN-NF-79-103
 
==3.0 GENERALDESCRIPTION==
TheR.E.Ginnareactorconsistsof121assemblies, eachhavinga14xl4fuelrodarray.Eachassemblycontains179fuelrods,16RCCguidetubes,and1instrumentation tube.ThefuelrodsconsistofslightlyenrichedU02pelletsinsertedintozircaloytubes.TheRCCguidetubesandtheinstrumen-tationtubearemadeofSS-304L.EachENCassemblycontainsninezircaloyspacerswithInconelsprings;eightofthespacersarelocatedwithintheactivefuelregion.Fourofthe121assemblies containMixedOxide(Pu02plusU02)bearingfuelrods.TheMOXassemblies consistofthreeenrichment zonesofPu02utilizing naturalU02asthediluent.Theprojected Cycle10loadingpatternisshowninFigure3.1withtheassemblies identified bytheirFabrication ID'sandRegionID's.Theinitialenrichments ofthevariousregionsarelistedinTable3.1.BOC10exposures, basedonanEOC9exposureof9,570MHD/MT,alongwithRegionID'sareshowninFigure3.2.Thecoreconsistsof32freshENCassemblies at3.45w/oand4freshWestinghouse MOXassemblies loadedontheperiphery with72ENCand13Westinghouse exposedassemblies scatter-loaded inthecenterportionofthecore.Pertinent fuelassemblyparameters fortheCycle10fuelaredepictedinTable3.1.Thetransuranic
: elements, including Am-241,havebeen\accounted foruptothetimeoftheanticipated reactorstartup.
XN-NF-79-103 Table3.1R.E.GinnaCycle10FuelAssemblyDesignParameters 10Region12MOXEnrichment, wtXU-235NumberofAssemblies PelletDensi'ty, XTDPellet-to
-CladDiametrical Gap,MilFuelStackHeight,inch7.57.5141.4142.03,1033,100133295,094,04094.032494.095.07.57.57.5142.0142.0141.43.2003.4502.626*RegionAverageBurnupatBOC10,MWD/MTNominalAssemblyWeight,KgU24,33917,8858,33500392.56373.78373,78373.78395.91***wtXPu(basedonassemblyaverage)*"inKgHM XNrNF-79-103 KJIH.GFE0CBA12HOX121212N09'12L1412L09M14K03L31M391212L01H011212M02L06N17L19M28L26N36L05N121212L02M33L21M23K05N30L24M20L121212MOXL32M40L2712K09M25M31K13N07K20N08K28K19N06N22L18H13K18M27K27L131212MOX12L15M15L20M24K26M05K17H29L25M38L301212Ll0M18L22N32K25M21L23M35L041212Ml0L0712M03N34L28N26L03M37K14L17H16M19L08M04LllMll12121212L2912L16121212MOX12FabricationorNewFuelRegionIdentification Figure3.1R.E.GinnaCycle10LoadingPattern XN-NF-79-103 DCB24,7367,51724,1177,80924,708012MOX7;52224,09311,34117,5789,5441019,816101224,11711,34217,5066,92616,0611010127,80917,5746,9281018,677106,393012]n24,7089,54916,0616,19810121219,809100a1212BOC10ExposureMWD/MTRegionID*120MOX1213*SeeTable3.1forRegiondefinitions fFigure3.2R.E.GinnaBOC10quarterCoreExposureDistribution andRegionID XN-NF-79-103 4.0FUEL.SYSTEMDESIGNAdescription oftheExxonNuclearsuppliedfueldesignanddesignmethodsiscontained inReference 1.Thisfuelhasbeenspecifically designedtobecompatible totheresidentfuelsuppliedbyWestinghouse.
I 10XN-NF-79-103
 
==5.0 NUCLEARDESIGNTheneutronic==
charactristicsoftheprojected Cycle10corearequitesimilartothoseoftheCycle9core(seeSection5.1).ThenucleardesignbasesfortheCycle10coreareasfollows:1)Thedesignshallpermitoperation withintheTechnical Specifications fortheR.E.Ginnaplant.2)ThelengthofCycle10shallbedetermined onthebasisofanassumedCycle9lengthof9,570MWD/MT.3)TheCycle10loadingpatternshallbeoptimized toachievepowerdistributions andcontrolrodreactivity worthsaccording tothefollowing constraints:
a)ThepeakF~shallnotexceed2.32andthepeakFHshallnotexceed1.66(including uncertainties) inanysinglefuelrod.throughthecycleundernominalfullpoweroperation condi-tions.b)ThescramworthofallrodsminusthemostreactiveshallexceedBOCandEOCshutdownrequirements.
4)TheCycle10coreshallhaveanegativepowercoefficient.
5)TheMOXassemblies shallbelocatedinaregionofthereactorcoreastominimizetheeffectsonshutdownmarginprovisions andthermallimits.Theneutronic designmethodsutilizedtoensuretheaboverequirements areconsistent withthosedescribed inReferences 6,7,and8.
XN-NF-79-103 5.1PHYSICSCHARACTERISTICS Theneutronic characteristics oftheCycle10corearecomparedwiththoseofCycle9andarepresented inTable5.1.Thedatapresented inthetableindicatethe'eutronic similarity betweenCycles9and10.TheCycle10loadingpatternisapplicable forCycle9lengthsof+700MWD/MTand-800MWD/MTaboutthenominallengthof9,570MWD/MT.Thecalculated boronletdowncurveforCycle10isshowninFigure5.1.Thecurveindicates aBOC10,noxenon,criticalboronconcentration of1,254ppm.At150MWD/MT,equilibrium xenon,thecriticalboronconcentration is921ppm.TheCycle10lengthisprojected tobe9,500+300 MWD/MTwith7ppmofboronatEOC.5.1.1PowerDistribution Considerations PRepresentative predicted powermapsforCycle10areshowninFigures5.2and5.3forBOCandEOCconditions, respectively.
Thepowerdistributions wereobtainedfromathree-dimensional modelwithmoderator I,densityandDopplerfeedbackeffectsincorporated.
Fortheprojected Cycle10loadingpatternthecalculated BOCnuclearpowerpeakingfactors,F~,NNNF,andFz,are,l.745, 1.433,and1.201,respectively.
AtEOCconditions thecorresponding valuesare1.517,1.358,and1.098.TheTechnical Specifi-cationlimitsrelativetoF~andF>H,withthemeasurement uncertainties NNbackedout,are2.15and1.60.Additionally thepredicted axialFdistri-butionsarewellbelowtheaxiallydependent Technical Specification limitsonF~.TheBOCFvalueof1.745compareswiththemeasuredCycle9valueNinTable5.1of1.758.
12XN-NF79-,103Thecontrolofthecorepowerdistribution isaccomplished byfollowing theprocedures asdiscussed inthereport,XN-76-40, "ExxonNuclearPowerDistribution ControlforPressurized WaterReactors",
September 1976anditsaddendum.
Theresultsreportedinthesedocuments demonstrate thatthePowerDistribution Control(PDC)procedures definedinthereportwillprotectanaxiallydependent Flimitwithapeakvalueof2.30.TheTechnical Specification limitforR.E.Ginnahasapeakof2.32andanaxialdependence identical tothatsupported bytheprocedures.
Thephysicscharacteristics oftheGinnaCycle10corearesimilartothoseutilizedinthePDCsupporting analysis.
TheGinnaTechnical Specification limitsonFcantherefore beprotected byoperation underthePDCprocedures asstatedinXN-76-40.
5.1.2ControlRodReactivit Reuirements Detailedcalculations ofshutdownmarginsforCycle10arecomparedwithCycle9datainTable5.2.TheENCPlantTransient Simulation (PTS)Analysisindicates thattheminimumrequiredshutdownmarginis1,800pcmbaseduponthesteamline breakaccidentanalyzedforENCfuelattheEOCconditions.
Avalueof1,900pcmisusedatEOCintheevaluation oftheshutdownmargintobeconsistent with'theTechnical Specifications.
TheCycle10analysisindicates excessshutdownmarginsof1,414pcmattheBOCand344pcmattheEOC.TheCycle9analysisindicates excessshut-downmarginsforthatcycleof1,795pcmattheBOCand393pcmattheEOC.TheslightlylowerCycle10excessshutdownmargins,whencomparedtotheCycle9values,areduetoslightlylowercalculated rodworths.
13XN-NF-79103Thecontrol-rodgroupsandinsertion limitsforCycle10willremainunchanged fromCycle9.Withtheselimitsthe'nominal worthofthecontrolbank,D-bank,insertedtotheinsertion limits'at HFPis122pcmat,BOCand'70pcmatEOC.Thecontrolrodshutdownrequirements inTable15.2allowforaHFPD-bankinsertion equivalent to300pcmforbothBOCandEOC.5.1.3Moderator TemeratureCoefficient Considerations Thereference Cycle10designcalculations indicatethatthemoderator temperature coefficient isnegativeatalltimesduringthecycleasshowninTable5.1.ThismeetstheTechnical Specification requirement thatthemoderator temperature coefficient benegativeatalltimesduringpoweroperation andthedesigncriteriathatthepowercoefficient benega-tive.Theleastnegativemoderator temperature coefficient occursatBOCHZPandis-2.0+2pcm/
F.ThiscompareswiththeBOC9HZPvalueof-2.0pcm/F.5.2ANALYTICAL METHODOLOGY ThemethodsusedintheCycle10coreanalysesaredescribed inReferences 6,7,and8.ThesemethodshavebeenverifiedforbothU02andPu02-U02lattices.
Insummary,thereference neutronic designanalysisofthereloadcorewasperformed usingtheXTG(Reference 9)reactorsimulator system-.Theinputexposuredatawerebasedonquartercoredepletion calcu-lationsperformed fromCycle5toCycle9usingtheXTGcode.TheBOC5exposuredistribution wasobtainedfromplantdata.Thefuelshuffling betweenc'ycleswasaccounted forinthecalculations.
14XN-NF-79-103 Predicted valuesofF~,Fx,andFwerestudied,withtheXTGreactormodel.Thecalculational thermal-hydraulic feedbackandaxialexposuredistribution effectsonpowershapes,rodworths,andcyclelifetimeareexplicitly includedintheanalysis.
15XN-NF-79-103 Table5.1R.E.GinnaNeutronics Characteristics ofCycle10ComparedwithCycle9DataBOCCcle9EOCCcle10BOCEOC(CriticalBoronHFP,ARO,Equilibrium Xenon(ppm)HZP,ARONoXenon(ppm)Moderator Temperature Coefficient HFP,(pcm/oF)HZP,(pcm/oF)DopplerCoefficient, (pcm/F)BoronWorth,(pcm/ppm)
HFPHZPTotalNuclearPeakingFactorFq,HFP961')12(1,410(2)-8.12-8.58-8.721.758(-7.6(2)-30.4-2.0-21.5-1.25to-2.09211,414-8.1-2.0-30.4-21.6-7.95,-8.621.7451.517-,1.35-1.84DelayedNeutronFraction.0061.0051.0058.0052ControlRodWorthofAllRodsInMinusMostReactiveRod,HZP,(pcm)ExcessShutdownMargin(pcm)Moderator PressureCoefficient (pcm/psi) 5,751)5,821.1,795()393(0.355';3415,6961,4143440.35(1)Extrapolated frommeasureddata(2)MeasuredData(3)70/PowerMap(4)Reference 5
16XN-NF-79-103 Table5.2,R.E.GinnaControlRodShutdownMarginsandRequirements forCycle10BOCCcle9**EOCCcle10BOCEOCControlRodWorthHZP,cmAllRodsInserted(ARI)ARIlessmostreactive(N-1)N-1lesslOXallowance L(N-1)*9lReactivit Insertion cm5,1765,2396,4076,6345,7515,8215,9496,4205,3415,6964,8075,125Moderator plusDopplerFluxRedistribution VoidSumoftheabovethreeRodInsertion Allowance TotalRequirements 1,431600502,0813002,3811,996600502,'6463002,9461,4431,93260060050502,0932,5823003002,3932,882Shutdown.
Margin(N-l)*.9-TotalRequirements RequiredShutdownMargin*ExcessShutdownMargin2,7952,2931,0001,9001,7953931,4143442,4142,244100001,900*Technical Specification 3.10"*Calculated valuesfromReference 5
~-~.~~'-~~*~-~*~I~>>.~=~~~=~~-~-t~=~~4h~g~~=~=WtWI.~'~~\-~*~4~t~~~->>*~~~~=-~=~-~-~-~~-Figure5tlR.E.GinnaCycle10AROCriticalBoronConcentration vs.Exposurer4 el~~~~~~~~~~~~~~~~~~~~~~~I~~JLlII~~
I~~~~0~~I~I~I~~~~~~~~~~
I~~~~0~~I~I~I~~~~~~~~~~
20XN-NF-79-1036.0THERMALHYDRAULICDESIGNThethermalandhydraulicconsiderationsintheRegion12designareunchangedfromthosepresentedinReference4forRegion10fuel.
20XN-NF-79-103
l~Ij 21XN-NF-79-1037.0ACCIDENTANDTRANSIENTANALYSIS7.1PLANTTRANSIENTANDECCSANALYSESfORR.E.GINNATheECCSanalysisprovidedinReference3isapplicabletoallENCfuelresidinginthecoreduringCycle10operation.ThePlantTransientAnalysisreportedinXN-NF-77-40fortheR.(2)E.GinnaplantwasintendedtocoverallanticipatedrangesofvaluesforallsignificantfueldependentplantparametersforCycle8andforallfuture7reloads.Table7.1presentsacomparisonofthekineticparametersusedinthePlantTransientAnalysisandtheparameterscalculatedspecificallyforCycle10.Duetotheintroductionofthe4MOXassembliesthereactivityworthofthe-boricacidusedbytheHPSIS(HighPressureSafetyInjectionSystem)andtheBOCdelayedneutronfractionhavebeencalculatedtobeoutsidetherangereportedintheXN-NF-77-40analysis.Theanalysiswasreviewedanditwasfoundthatthechangeinboricacidworthaffectsthesmal,landlargesteamlinebreaktransientsandthatthedelayedneutronfractionmostaffectsthefastuncontrolledrodwithdrawaltransient.TheenvelopingdataforbothsteamlinebreaksaretheEOCdataandforthefastuncontrolledrodwithdrawalareBOCdata.TheimpactoftheCycle10parameters(seeTable7.1)havebeenevaluatedforeachofthetransients.Theresultsoftheevaluationforthetransientswerefoundtobenearlyequivalenttothepreviousresultsandthatthefigureofmeritforthetransientswerenotviolated,i.e.forthesmallsteamlinebreakthesystemdoesnotgocritical,forthelargesteamlinebreaktheMDNBRisgreaterthanthe1.30limitandfortheuncontrolledrodwithdrawaltheMDNBRmarginisnotaltered.
 
22XN-NF-79-1037.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10AControlRodEjectionAccidentisdefinedasthemechanicalfail-ureofacontrolrodmechanismpressurehousing,resulting'intheejectionofaRodClusterControlAssembly(RCCA)anddriveshaft.Theconsequenceofthismechanicalfailureisarapidreactivityinsertiontogetherwithanadversecorepowerdistribution,possiblyleadingtolocalizedfueldamage.~TherodejectionaccidentanalysispresentedinthedocumentXN-NF-78-53isstillapplicabletoCycle10operation.Thelocationofthe4MOXassembliesintroducesminimaleffectsonejectedrodworthsandhotpelletpeakingfactors.Thee'jectedrodworthsandhotpelletpeakingfactorsarecal'culatedusingtheXTGcode.Nocreditwastakenforthepoweiflatteningeffects,ofDopplerormoderatorfeedbackinthecalculationofejectedrodworths'rpeaking'factors.ThecalculationsmadeforCycle10usingXTGweretwo-dimensional(x-y)withappropriateaxialbucklingcorrec-tionterm's.Thetotal'eakingfactors(F~)weredeterminedastheproductoftheradialpeakingfacto'r(ascalculatedusingXTG)andaconservativeaxialpeakingfactor;Thepelletenergydepositionresultingfromanejectedrodwasevaluatedtobelessthanther'esultsreportedinReferences4and5.Therodejectionaccidentwasfoundtoresultinenergydepositionoflessthan280cal/gmst'atedinRegulatoryGuide1.77'andprovidesagreaterenergydepositionmarg'inthanthatdeterminedbyReference4.TheresultsofthecontrolrodejectiontransientforthiscasearepresentedinTable7.2alongwithresults'fromReferences4and5.
==6.0 THERMALHYDRAULIC==
23XN-NF-79-1037.1R.E.GinnaKineticParametersParameters,ModeratorTemperatureCoefficient(pcm/oF)ModeratorPressureCoefficient(pcm/psia)ReferenceCycle(1)BOCEC0.0-35.0+.25+.35Cycle10BC-8.1+.09EC-30.4+.35ModeratorDensityCoefficient(pcm/gm/cm3)DopplerCoeffi:cient(pcm/F)-1.25-2.00-1.35-1.840.0+29635.0+6858.0+25740.0BoronWorthCoefficient(pcm/ppm)DelayedNeutronFraction-8.75-8.72.0061.0051-7.95.0058-8.62.0052Reference2 XN-NF-7.9.-103Table7.2EjectedRodWorthandPeakingFactors'~BeforeEjection~C18()~C19()~C110(HFPHZPHFPHZPHFPHZP2,252.822.242.622.152.59F~AfterEjectionN4.36'.302.965.59gg4()601(MaximumRodWorthfromaFullInsertedBank(Xhp)0.4700.6400.3620.5530.2800.435EnergyDeposition(cal/gm)17137(1)IncludesaconservativeestimateofFatHFPof1.4andatHZPof1.8.(2)Reference4,calculatedwithXTRAN.(3)Reference5,calculatedwithXTGPWR.(4)CalculatedwithXTGPWR.
DESIGNThethermalandhydraulic considerations intheRegion12designareunchanged fromthosepresented inReference 4forRegion10fuel.
25XN-NF-79-10
l~Ij 21XN-NF-79-103
 
==7.0 ACCIDENTANDTRANSIENT==
ANALYSIS7.1PLANTTRANSIENT ANDECCSANALYSESfORR.E.GINNATheECCSanalysisprovidedinReference 3isapplicable toallENCfuelresidinginthecoreduringCycle10operation.
ThePlantTransient AnalysisreportedinXN-NF-77-40 fortheR.(2)E.Ginnaplantwasintendedtocoverallanticipated rangesofvaluesforallsignificant fueldependent plantparameters forCycle8andforallfuture7reloads.Table7.1presentsacomparison ofthekineticparameters usedinthePlantTransient Analysisandtheparameters calculated specifically forCycle10.Duetotheintroduction ofthe4MOXassemblies thereactivity worthofthe-boricacidusedbytheHPSIS(HighPressureSafetyInjection System)andtheBOCdelayedneutronfractionhavebeencalculated tobeoutsidetherangereportedintheXN-NF-77-40 analysis.
Theanalysiswasreviewedanditwasfoundthatthechangeinboricacidworthaffectsthesmal,landlargesteamline breaktransients andthatthedelayedneutronfractionmostaffectsthefastuncontrolled rodwithdrawal transient.
Theenveloping dataforbothsteamline breaksaretheEOCdataandforthefastuncontrolled rodwithdrawal areBOCdata.TheimpactoftheCycle10parameters (seeTable7.1)havebeenevaluated foreachofthetransients.
Theresultsoftheevaluation forthetransients werefoundtobenearlyequivalent tothepreviousresultsandthatthefigureofmeritforthetransients werenotviolated, i.e.forthesmallsteamline breakthesystemdoesnotgocritical, forthelargesteamline breaktheMDNBRisgreaterthanthe1.30limitandfortheuncontrolled rodwithdrawal theMDNBRmarginisnotaltered.
22XN-NF-79-103 7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10AControlRodEjectionAccidentisdefinedasthemechanical fail-ureofacontrolrodmechanism pressurehousing,resulting'in theejectionofaRodClusterControlAssembly(RCCA)anddriveshaft.Theconsequence ofthismechanical failureisarapidreactivity insertion togetherwithanadversecorepowerdistribution, possiblyleadingtolocalized fueldamage.~Therodejectionaccidentanalysispresented inthedocumentXN-NF-78-53isstillapplicable toCycle10operation.
Thelocationofthe4MOXassemblies introduces minimaleffectsonejectedrodworthsandhotpelletpeakingfactors.Thee'jectedrodworthsandhotpelletpeakingfactorsarecal'culated usingtheXTGcode.Nocreditwastakenforthepoweiflattening effects,ofDopplerormoderator feedbackinthecalculation ofejectedrodworths'rpeaking'factors.
Thecalculations madeforCycle10usingXTGweretwo-dimensional (x-y)withappropriate axialbucklingcorrec-tionterm's.Thetotal'eaking factors(F~)weredetermined astheproductoftheradialpeakingfacto'r(ascalculated usingXTG)andaconservative axialpeakingfactor;Thepelletenergydeposition resulting fromanejectedrodwasevaluated tobelessthanther'esultsreportedinReferences 4and5.Therodejectionaccidentwasfoundtoresultinenergydeposition oflessthan280cal/gmst'atedinRegulatory Guide1.77'andprovidesagreaterenergydeposition marg'inthanthatdetermined byReference 4.Theresultsofthecontrolrodejectiontransient forthiscasearepresented inTable7.2alongwithresults'fromReferences 4and5.
23XN-NF-79-103 7.1R.E.GinnaKineticParameters Parameters
,Moderator Temperature Coefficient (pcm/oF)Moderator PressureCoefficient (pcm/psia)
Reference Cycle(1)BOCEC0.0-35.0+.25+.35Cycle10BC-8.1+.09EC-30.4+.35Moderator DensityCoefficient (pcm/gm/cm3)
DopplerCoeffi:cient (pcm/F)-1.25-2.00-1.35-1.840.0+29635.0+6858.0+25740.0BoronWorthCoefficient (pcm/ppm)
DelayedNeutronFraction-8.75-8.72.0061.0051-7.95.0058-8.62.0052Reference 2
XN-NF-7.9.-103 Table7.2EjectedRodWorthandPeakingFactors'~
BeforeEjection~C18()~C19()~C110(HFPHZPHFPHZPHFPHZP2,252.822.242.622.152.59F~AfterEjectionN4.36'.302.965.59gg4()601(MaximumRodWorthfromaFullInsertedBank(Xhp)0.4700.6400.3620.5530.2800.435EnergyDeposition (cal/gm)17137(1)Includesaconservative estimateofFatHFPof1.4andatHZPof1.8.(2)Reference 4,calculated withXTRAN.(3)Reference 5,calculated withXTGPWR.(4)Calculated withXTGPWR.
25XN-NF-79-103
 
==8.0REFERENCES==


==38.0REFERENCES==
1.XN-NF-77-52, "R.E.GinnaReloadFuelDesign",November, 1977.2.3.4.5.6.'XN-NF-77-40, "PlantTransient AnalysisforR.E.Ginna,Unit1NuclearPowerPlant",Revision1,July,1979.XN-NF-77-58, "ECCSAnalysisfortheR.E.GinnaReactorwithENCWREM-IIPWREvaluation Model",December, 1977.XN-NF-77-53, "R.E.GinnaNuclearPlantCycle8SafetyAnalysisReport",December, 1977.XN-NF-78-50,
1.XN-NF-77-52,"R.E.GinnaReloadFuelDesign",November,1977.2.3.4.5.6.'XN-NF-77-40,"PlantTransientAnalysisforR.E.Ginna,Unit1NuclearPowerPlant",Revision1,July,1979.XN-NF-77-58,"ECCSAnalysisfortheR.E.GinnaReactorwithENCWREM-IIPWREvaluationModel",December,1977.XN-NF-77-53,"R.E.GinnaNuclearPlantCycle8SafetyAnalysisReport",December,1977.XN-NF-78-50,="R.E.GinnaCycle9SafetyAnalysisReport,"December,1978.F.B.Skogen,"ExxonNuclearNeutronicsDesignMethodsforPres-surizedWaterReactors",XN-75-27(A),ExxonNuclearCompany,April,1977.7.XN-75-27(A),Supplement1toReference6,April,1977.8.XN-75-27,Supplement2toReference6,December,1977.9.XN-CC-28,Rev.3,"XTG:ATwoGroupThree-DimensionalReactorSimulatorUtilizingCoarseMeshSpacing(PWRVersion)",January,1975.
="R.E.GinnaCycle9SafetyAnalysisReport,"December, 1978.F.B.Skogen,"ExxonNuclearNeutronics DesignMethodsforPres-surizedWaterReactors",
IlxI 26XN-NF-79-103R.E.GINNACYCLE10RELOADSAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIESDISTRIBUTIONK.H.BlankG.J.BusselmanL.J.FedericoR.L.FeuerbacherR.G.GrummerB.L.Johnson(2)M.R.KillgoreT.L.KrysinskiC.E.LeachJ.N.MorganW.S.NechodomL.A.NielsenG.F.OwsleyJ.F.PattersonA.W.PrichardF.B.SkogenG.A.SoferA.V.WojchouskiC.H.WuRG&E/L.J.Federico(80)DocumentControl(10) lI1}}
XN-75-27(A),
ExxonNuclearCompany,April,1977.7.XN-75-27(A),
Supplement 1toReference 6,April,1977.8.XN-75-27, Supplement 2toReference 6,December, 1977.9.XN-CC-28, Rev.3,"XTG:ATwoGroupThree-Dimensional ReactorSimulator Utilizing CoarseMeshSpacing(PWRVersion)",
January,1975.
IlxI 26XN-NF-79-103 R.E.GINNACYCLE10RELOADSAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIES DISTRIBUTION K.H.BlankG.J.Busselman L.J.FedericoR.L.Feuerbacher R.G.GrummerB.L.Johnson(2)M.R.KillgoreT.L.Krysinski C.E.LeachJ.N.MorganW.S.NechodomL.A.NielsenG.F.OwsleyJ.F.Patterson A.W.PrichardF.B.SkogenG.A.SoferA.V.Wojchouski C.H.WuRG&E/L.J.Federico(80)DocumentControl(10) lI1}}

Revision as of 13:56, 29 June 2018

Cycle 10 SAR W/Mixed Oxide Assemblies.
ML17249A374
Person / Time
Site: Ginna Constellation icon.png
Issue date: 12/14/1979
From: BUSSELMAN G J, JOHNSON B L, SOFER G A
SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER
To:
Shared Package
ML17249A368 List:
References
XN-NF-79-103, NUDOCS 7912280240
Download: ML17249A374 (42)


Text

0KN-N-79-103PE(lllklkPlljlllLEkk PILklll'NllllLE JIBMFET7kkkL7SIIS PEPBP'll'IIYM Iw3IIXEBQXIIBEbhSSEliNBILIIES DECEMBER1979RICHLAND, NA99352 EI'II-II XN-NF-79-103 0:IR/R1479R.E.GINNANUCLEARPLANTCYCLE10.SAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIES Prepared:

G.J.Bussman,ManagerNeutronics andFuelManagement Approved:

G.A.SofenagerNuclearFuesEngineering Concurred:

J.N.Morgan,ManageLicensing andSafetyEngineering Concurred:

L.J.Federico, ManagerNuclearFuelsProjectl'~/7E)j(ONNUCLEARCOMPANY,Inc.

NUCLEARREGULATORY COMMISSION DISCLAIMER IMPORTANT NOTICEREGARDING CONTENTSANDUSEOFTHISDOCUMENTIrPLEASEREADCAREFULLY Thistechnical reportwasderivedthroughresearchanddevelopment programssponsored byExxonNuclearCompany,Inc.ItisbeingSub.mittedbyExxonNucleartotheUSNRCaspartofatechnical contri.butiontofacilitate safetyanalysesbylicensees oftheUSNRCwhichutilizeExxonNuclear.fabricated reioarlfuelorotherteclmical servicesprovidedbyExxonNuclearforliehtwaterpowerreactorsan<IitistrueandcorrecttothebestofExxonNuclear's knowledge, information, andbelief.Theinformation contained hereinmaybeusedbytheUSNRCinitsreviewofthisreport,andbylicensees orapplicants beforetheUSNQCwhicIIarecustomers otExxonNuclearintheirdemonstration ofcompliance wIththeUSNRC'sregulations.

Withoutderogating fromtheforegoing, neitherExxonNuclearnoranypersonactingonitsbehalf:A.Makesanywarranty, expressorimplied,withrespecttotheaccuracy, completeness, orusefulness oftheinfor-mationcontained,in thisdocument, orthattheuseotanyinformation, apparatus, method,orprocessdisclosed inthisdocumentwillnotItffringe privately ownedrights;or8.Assumesanyliabilities withrespecttotheuseof,orfordan'agesresulting fromtheuseof,anyinformation, ap.paratus,method,orprocessdisclosed inthisdocument.

XN-NF-FQO,766 XN-NF-79-103 TABLEOFCONTENTS'ection

1.0INTRODUCTION

ANDSUMMARY.2.0OPERATING HISTORYOFTHEREFERENCE CYCLE.3.0GENERALDESCRIPTION 4.0FUELSYSTEMDESIGN.~Pae2595.0NUCLEARDESIGN.................'........

105.1PHYSICSCHARACTERISTICS 5.1.1POWERDISTRIBUTION CONSIDERATIONS.

5.1.2CONTROLRODREACTIVITY REQUIREMENTS.

125.1.3MODERATOR TEMPERATURE COEFFICIENT CONSIDERATIONS

..135.2ANALYTICAL METHODOLOGY.

136.0THERMALHYDRAULIC DESIGN....................

207.0ACCIDENTANDTRANSIENT ANALYSIS.

7.1PLANTTRANSIENT ANDECCSANALYSESFORR.E.GINNA.7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10.

8.0REFERENCES

.~~21212225

~~~.l~~~t~~t XN-NF-79-103 LISTOFTABLESTable~Pae3.1R.E.GINNACYCLE10FUELASSEMBLYDESIGNPARAMETERS

-.....65.1R.E.GINNANEUTRONICS CHARACTERISTICS OFCYCLE10COMPAREDWITHCYCLE9DATA....................

155.2R.E.GINNACONTROLRODSHUTDOWNMARGINSANDREQUIREMENTS FORCYCLE10~~~~~~~~~~~~~~~~~~~~~~~~II7.1R.E.GINNAKINETICPARAMETERS

.16~~237.2EJECTEDRODWORTHANDPEAKINGFACTORS..............24

\~~~~~~~~~l~~iI~~~~~

XN-NF-79-103 LISTOFFIGURES~Fiure2.1R.E.GINNACYCLE9CRITICALBORONCURVE,PREDICTED VS.MEASUREDe~~~~~~~~~~~~~~~~~~~~~~~~2.2R.E.GINNAPOWERDISTRIBUTION COMPARISON TOMAPIX-245)505MWD/MTe~~~~~~~~~~~~~~~~~~~~~~3.1R.E.GINNACYCLE10LOADINGPATTERN.3.2R.E.GINNABOC10QUARTERCOREEXPOSUREDISTRIBUTION ANDREGIONID@~~~~~~~~~~~~~~~~~~~~~~~~5.1R.E.GINNACYCLE10AROCRITICALBORONCONCENTRATION VS.EXPOSURE~~~~~~~~~~~~~~~~~~~~~~~~~5.2R.E.GINNACYCLE10POWERDISTRIBUTION HFP,0MWD/MT1)254PPM5.3R.E.GINNACYCLE10POWERDISTRIBUTION HFP,9,500MWD/MTPPM~~~~~~~~~~~~~~~~~~~~~~~~~~7~Pae~~3478171818 t1~~~~~~I~li~~~~l XN-NF-79-103 R.E.GINNANUCLEARPLANTCYCLE10SAFETYANALYSISREPORTkgl

1.0INTRODUCTION

ANDSUMMARYTheR.E.GinnaNuclearplantwilloperateinCycle10beginning inearly1980withthreeregionsoffuelsuppliedbyExxonNuclearCompany(ENC).Theloadingwillconsistof32ENCassemblies inRegion12and4Westinghouse mixoxide(MOX)assemblies.

Theremainder ofthecorecontains40once-burnt and32twice-burnt ENCassemblies and13exposedWestinghouse suppliedassemblies.

Thecharacteristics ofthefuelandofthereloadedcoreresultinconformance withexistingTechnical Specification limitsregarding shutdownmarginprovisions andthermallimits.Thisdocumentprovidestheneutronic analysisfortheplantduringCycle10operation andthecontrolrodejectionanalysis.

TheENCfueldesign.isunchanged fromthefueldesignusedinthe"Cycle 8and9ENCfuelreloads.ThepreviousPlantTransient Analysis'(2)remainsvalidforCycle10.TheECCSanalysisisapplicable toCycle10operation.

Theconsequences oftherodejectionaccidentforCycle10areslightlylessseverethanthosecalculated forCycles8and9.The(4)(5)introduction ofthe4MOXassemblies intothereactorcoreleadstosmallchangesinthecoreaveragekineticparameters resulting inminimaleffectstothepreviousanalysesperformed forCycles8'and9(1,2,4)(1,3,5)

~~~~~l~~~}i~~~~~~~

XN-NF-79-103

2.0 OPERATING

HISTORYOFTHEREFERENCE CYCLER.E.GinnaCycle9hasbeenchosenasthereference cyclewithrespecttoCycle10duetothecloseresemblance oftheneutronic characteristics betweenthesetwocycles.TheCycle9operation beganonApril3,1979,andasofNovember31,1979thecorehadaccruedabout6,714MWD/MT.TheCycle9loadingincluded40freshENCfuelassemblies with32exposedENCassemblies and49exposedWestinghouse assemblies.

Themeasuredpowerpeakingfactorsathot-full-power, equilibrium xenonconditions, haveremainedconsiderably belowtheTechnical Specification

,limitsthroughout Cycle9.Thetotalnuclearpeakingfactors,F,andtheradialnuclearpinpeakingfactor,FH,haveremainedbelow1.75and1.45,respectively.

Cycle9operation hastypically beenrod'freewiththeDcontrolbankpositioned intherangeof218to222steps,225stepsbeingfullywithdrawn.

Itisanticipated thatsimilbrcontrolbankinsertions willbeseeninCycle10.Thecriticalboronconcentration ascalculated byENCforCycle9hasagreedtowithinabout8ppmcomparedtotheobservedvalues(seeFigure2.1).Alsothepredicted powerdistributions havetypically agreedtowithin+3percentofthe,measuredvalues(seeFigure2.2fortypicalcom-parison).

-~~--~~-~~=-:LL~=*~-:..t=~I-~~-~t44C-l:-f~I~~t*'Itj=~~~++4I~~=~~~~-~~~~~-~~-~*t-Ut'e.~----I.flGMO'NT.}'

~-:.-::F.-Tre

~t~-:CritTcatBoronCuve,,=P=red:.~-~-~-

XN-NF-79-103

.968.995-2.711.1101.129-1.68.920.938-1.92.949..965-1.661.1891.178'93.996.9633.43.794.7821.531.1081.131-2.03.9861.013-2.671.0291.048-1.811.0991.103-.361.1891.1681.801.0741.0512.19.663.6452.79.918.947-3.061.0301.051-2.00.9961.006-.991.2031.1911.011.0791.0552.27;977.974.31.953.968-1.551.0981.105-.631.1911.192-.081.0361.0211.471.1781.1492.52.714.711.42101;1951.179l.361.1881.1691.631.0721.0551.611.1731.1492.09.804.798.75.985.9632.28.772.782-1.281.0711.0511.90.651,.645.93.977.975.21.715.712.42MeasuredAssemblyPowerCalculated (XTGPWR)x100c1213Calculated Measured%Difference NFq1.5281.5642.33F~H1.351F1.1051.3371.154-1.074.42Figure2.2R.E.GinnaPowerDistribution Comparison, ToMapIX-24,HFP,5,505MWD/MT I-l XN-NF-79-103

3.0 GENERALDESCRIPTION

TheR.E.Ginnareactorconsistsof121assemblies, eachhavinga14xl4fuelrodarray.Eachassemblycontains179fuelrods,16RCCguidetubes,and1instrumentation tube.ThefuelrodsconsistofslightlyenrichedU02pelletsinsertedintozircaloytubes.TheRCCguidetubesandtheinstrumen-tationtubearemadeofSS-304L.EachENCassemblycontainsninezircaloyspacerswithInconelsprings;eightofthespacersarelocatedwithintheactivefuelregion.Fourofthe121assemblies containMixedOxide(Pu02plusU02)bearingfuelrods.TheMOXassemblies consistofthreeenrichment zonesofPu02utilizing naturalU02asthediluent.Theprojected Cycle10loadingpatternisshowninFigure3.1withtheassemblies identified bytheirFabrication ID'sandRegionID's.Theinitialenrichments ofthevariousregionsarelistedinTable3.1.BOC10exposures, basedonanEOC9exposureof9,570MHD/MT,alongwithRegionID'sareshowninFigure3.2.Thecoreconsistsof32freshENCassemblies at3.45w/oand4freshWestinghouse MOXassemblies loadedontheperiphery with72ENCand13Westinghouse exposedassemblies scatter-loaded inthecenterportionofthecore.Pertinent fuelassemblyparameters fortheCycle10fuelaredepictedinTable3.1.Thetransuranic

elements, including Am-241,havebeen\accounted foruptothetimeoftheanticipated reactorstartup.

XN-NF-79-103 Table3.1R.E.GinnaCycle10FuelAssemblyDesignParameters 10Region12MOXEnrichment, wtXU-235NumberofAssemblies PelletDensi'ty, XTDPellet-to

-CladDiametrical Gap,MilFuelStackHeight,inch7.57.5141.4142.03,1033,100133295,094,04094.032494.095.07.57.57.5142.0142.0141.43.2003.4502.626*RegionAverageBurnupatBOC10,MWD/MTNominalAssemblyWeight,KgU24,33917,8858,33500392.56373.78373,78373.78395.91***wtXPu(basedonassemblyaverage)*"inKgHM XNrNF-79-103 KJIH.GFE0CBA12HOX121212N09'12L1412L09M14K03L31M391212L01H011212M02L06N17L19M28L26N36L05N121212L02M33L21M23K05N30L24M20L121212MOXL32M40L2712K09M25M31K13N07K20N08K28K19N06N22L18H13K18M27K27L131212MOX12L15M15L20M24K26M05K17H29L25M38L301212Ll0M18L22N32K25M21L23M35L041212Ml0L0712M03N34L28N26L03M37K14L17H16M19L08M04LllMll12121212L2912L16121212MOX12FabricationorNewFuelRegionIdentification Figure3.1R.E.GinnaCycle10LoadingPattern XN-NF-79-103 DCB24,7367,51724,1177,80924,708012MOX7;52224,09311,34117,5789,5441019,816101224,11711,34217,5066,92616,0611010127,80917,5746,9281018,677106,393012]n24,7089,54916,0616,19810121219,809100a1212BOC10ExposureMWD/MTRegionID*120MOX1213*SeeTable3.1forRegiondefinitions fFigure3.2R.E.GinnaBOC10quarterCoreExposureDistribution andRegionID XN-NF-79-103 4.0FUEL.SYSTEMDESIGNAdescription oftheExxonNuclearsuppliedfueldesignanddesignmethodsiscontained inReference 1.Thisfuelhasbeenspecifically designedtobecompatible totheresidentfuelsuppliedbyWestinghouse.

I 10XN-NF-79-103

5.0 NUCLEARDESIGNTheneutronic

charactristicsoftheprojected Cycle10corearequitesimilartothoseoftheCycle9core(seeSection5.1).ThenucleardesignbasesfortheCycle10coreareasfollows:1)Thedesignshallpermitoperation withintheTechnical Specifications fortheR.E.Ginnaplant.2)ThelengthofCycle10shallbedetermined onthebasisofanassumedCycle9lengthof9,570MWD/MT.3)TheCycle10loadingpatternshallbeoptimized toachievepowerdistributions andcontrolrodreactivity worthsaccording tothefollowing constraints:

a)ThepeakF~shallnotexceed2.32andthepeakFHshallnotexceed1.66(including uncertainties) inanysinglefuelrod.throughthecycleundernominalfullpoweroperation condi-tions.b)ThescramworthofallrodsminusthemostreactiveshallexceedBOCandEOCshutdownrequirements.

4)TheCycle10coreshallhaveanegativepowercoefficient.

5)TheMOXassemblies shallbelocatedinaregionofthereactorcoreastominimizetheeffectsonshutdownmarginprovisions andthermallimits.Theneutronic designmethodsutilizedtoensuretheaboverequirements areconsistent withthosedescribed inReferences 6,7,and8.

XN-NF-79-103 5.1PHYSICSCHARACTERISTICS Theneutronic characteristics oftheCycle10corearecomparedwiththoseofCycle9andarepresented inTable5.1.Thedatapresented inthetableindicatethe'eutronic similarity betweenCycles9and10.TheCycle10loadingpatternisapplicable forCycle9lengthsof+700MWD/MTand-800MWD/MTaboutthenominallengthof9,570MWD/MT.Thecalculated boronletdowncurveforCycle10isshowninFigure5.1.Thecurveindicates aBOC10,noxenon,criticalboronconcentration of1,254ppm.At150MWD/MT,equilibrium xenon,thecriticalboronconcentration is921ppm.TheCycle10lengthisprojected tobe9,500+300 MWD/MTwith7ppmofboronatEOC.5.1.1PowerDistribution Considerations PRepresentative predicted powermapsforCycle10areshowninFigures5.2and5.3forBOCandEOCconditions, respectively.

Thepowerdistributions wereobtainedfromathree-dimensional modelwithmoderator I,densityandDopplerfeedbackeffectsincorporated.

Fortheprojected Cycle10loadingpatternthecalculated BOCnuclearpowerpeakingfactors,F~,NNNF,andFz,are,l.745, 1.433,and1.201,respectively.

AtEOCconditions thecorresponding valuesare1.517,1.358,and1.098.TheTechnical Specifi-cationlimitsrelativetoF~andF>H,withthemeasurement uncertainties NNbackedout,are2.15and1.60.Additionally thepredicted axialFdistri-butionsarewellbelowtheaxiallydependent Technical Specification limitsonF~.TheBOCFvalueof1.745compareswiththemeasuredCycle9valueNinTable5.1of1.758.

12XN-NF79-,103Thecontrolofthecorepowerdistribution isaccomplished byfollowing theprocedures asdiscussed inthereport,XN-76-40, "ExxonNuclearPowerDistribution ControlforPressurized WaterReactors",

September 1976anditsaddendum.

Theresultsreportedinthesedocuments demonstrate thatthePowerDistribution Control(PDC)procedures definedinthereportwillprotectanaxiallydependent Flimitwithapeakvalueof2.30.TheTechnical Specification limitforR.E.Ginnahasapeakof2.32andanaxialdependence identical tothatsupported bytheprocedures.

Thephysicscharacteristics oftheGinnaCycle10corearesimilartothoseutilizedinthePDCsupporting analysis.

TheGinnaTechnical Specification limitsonFcantherefore beprotected byoperation underthePDCprocedures asstatedinXN-76-40.

5.1.2ControlRodReactivit Reuirements Detailedcalculations ofshutdownmarginsforCycle10arecomparedwithCycle9datainTable5.2.TheENCPlantTransient Simulation (PTS)Analysisindicates thattheminimumrequiredshutdownmarginis1,800pcmbaseduponthesteamline breakaccidentanalyzedforENCfuelattheEOCconditions.

Avalueof1,900pcmisusedatEOCintheevaluation oftheshutdownmargintobeconsistent with'theTechnical Specifications.

TheCycle10analysisindicates excessshutdownmarginsof1,414pcmattheBOCand344pcmattheEOC.TheCycle9analysisindicates excessshut-downmarginsforthatcycleof1,795pcmattheBOCand393pcmattheEOC.TheslightlylowerCycle10excessshutdownmargins,whencomparedtotheCycle9values,areduetoslightlylowercalculated rodworths.

13XN-NF-79103Thecontrol-rodgroupsandinsertion limitsforCycle10willremainunchanged fromCycle9.Withtheselimitsthe'nominal worthofthecontrolbank,D-bank,insertedtotheinsertion limits'at HFPis122pcmat,BOCand'70pcmatEOC.Thecontrolrodshutdownrequirements inTable15.2allowforaHFPD-bankinsertion equivalent to300pcmforbothBOCandEOC.5.1.3Moderator TemeratureCoefficient Considerations Thereference Cycle10designcalculations indicatethatthemoderator temperature coefficient isnegativeatalltimesduringthecycleasshowninTable5.1.ThismeetstheTechnical Specification requirement thatthemoderator temperature coefficient benegativeatalltimesduringpoweroperation andthedesigncriteriathatthepowercoefficient benega-tive.Theleastnegativemoderator temperature coefficient occursatBOCHZPandis-2.0+2pcm/

F.ThiscompareswiththeBOC9HZPvalueof-2.0pcm/F.5.2ANALYTICAL METHODOLOGY ThemethodsusedintheCycle10coreanalysesaredescribed inReferences 6,7,and8.ThesemethodshavebeenverifiedforbothU02andPu02-U02lattices.

Insummary,thereference neutronic designanalysisofthereloadcorewasperformed usingtheXTG(Reference 9)reactorsimulator system-.Theinputexposuredatawerebasedonquartercoredepletion calcu-lationsperformed fromCycle5toCycle9usingtheXTGcode.TheBOC5exposuredistribution wasobtainedfromplantdata.Thefuelshuffling betweenc'ycleswasaccounted forinthecalculations.

14XN-NF-79-103 Predicted valuesofF~,Fx,andFwerestudied,withtheXTGreactormodel.Thecalculational thermal-hydraulic feedbackandaxialexposuredistribution effectsonpowershapes,rodworths,andcyclelifetimeareexplicitly includedintheanalysis.

15XN-NF-79-103 Table5.1R.E.GinnaNeutronics Characteristics ofCycle10ComparedwithCycle9DataBOCCcle9EOCCcle10BOCEOC(CriticalBoronHFP,ARO,Equilibrium Xenon(ppm)HZP,ARONoXenon(ppm)Moderator Temperature Coefficient HFP,(pcm/oF)HZP,(pcm/oF)DopplerCoefficient, (pcm/F)BoronWorth,(pcm/ppm)

HFPHZPTotalNuclearPeakingFactorFq,HFP961')12(1,410(2)-8.12-8.58-8.721.758(-7.6(2)-30.4-2.0-21.5-1.25to-2.09211,414-8.1-2.0-30.4-21.6-7.95,-8.621.7451.517-,1.35-1.84DelayedNeutronFraction.0061.0051.0058.0052ControlRodWorthofAllRodsInMinusMostReactiveRod,HZP,(pcm)ExcessShutdownMargin(pcm)Moderator PressureCoefficient (pcm/psi) 5,751)5,821.1,795()393(0.355';3415,6961,4143440.35(1)Extrapolated frommeasureddata(2)MeasuredData(3)70/PowerMap(4)Reference 5

16XN-NF-79-103 Table5.2,R.E.GinnaControlRodShutdownMarginsandRequirements forCycle10BOCCcle9**EOCCcle10BOCEOCControlRodWorthHZP,cmAllRodsInserted(ARI)ARIlessmostreactive(N-1)N-1lesslOXallowance L(N-1)*9lReactivit Insertion cm5,1765,2396,4076,6345,7515,8215,9496,4205,3415,6964,8075,125Moderator plusDopplerFluxRedistribution VoidSumoftheabovethreeRodInsertion Allowance TotalRequirements 1,431600502,0813002,3811,996600502,'6463002,9461,4431,93260060050502,0932,5823003002,3932,882Shutdown.

Margin(N-l)*.9-TotalRequirements RequiredShutdownMargin*ExcessShutdownMargin2,7952,2931,0001,9001,7953931,4143442,4142,244100001,900*Technical Specification 3.10"*Calculated valuesfromReference 5

~-~.~~'-~~*~-~*~I~>>.~=~~~=~~-~-t~=~~4h~g~~=~=WtWI.~'~~\-~*~4~t~~~->>*~~~~=-~=~-~-~-~~-Figure5tlR.E.GinnaCycle10AROCriticalBoronConcentration vs.Exposurer4 el~~~~~~~~~~~~~~~~~~~~~~~I~~JLlII~~

I~~~~0~~I~I~I~~~~~~~~~~

20XN-NF-79-103

6.0 THERMALHYDRAULIC

DESIGNThethermalandhydraulic considerations intheRegion12designareunchanged fromthosepresented inReference 4forRegion10fuel.

l~Ij 21XN-NF-79-103

7.0 ACCIDENTANDTRANSIENT

ANALYSIS7.1PLANTTRANSIENT ANDECCSANALYSESfORR.E.GINNATheECCSanalysisprovidedinReference 3isapplicable toallENCfuelresidinginthecoreduringCycle10operation.

ThePlantTransient AnalysisreportedinXN-NF-77-40 fortheR.(2)E.Ginnaplantwasintendedtocoverallanticipated rangesofvaluesforallsignificant fueldependent plantparameters forCycle8andforallfuture7reloads.Table7.1presentsacomparison ofthekineticparameters usedinthePlantTransient Analysisandtheparameters calculated specifically forCycle10.Duetotheintroduction ofthe4MOXassemblies thereactivity worthofthe-boricacidusedbytheHPSIS(HighPressureSafetyInjection System)andtheBOCdelayedneutronfractionhavebeencalculated tobeoutsidetherangereportedintheXN-NF-77-40 analysis.

Theanalysiswasreviewedanditwasfoundthatthechangeinboricacidworthaffectsthesmal,landlargesteamline breaktransients andthatthedelayedneutronfractionmostaffectsthefastuncontrolled rodwithdrawal transient.

Theenveloping dataforbothsteamline breaksaretheEOCdataandforthefastuncontrolled rodwithdrawal areBOCdata.TheimpactoftheCycle10parameters (seeTable7.1)havebeenevaluated foreachofthetransients.

Theresultsoftheevaluation forthetransients werefoundtobenearlyequivalent tothepreviousresultsandthatthefigureofmeritforthetransients werenotviolated, i.e.forthesmallsteamline breakthesystemdoesnotgocritical, forthelargesteamline breaktheMDNBRisgreaterthanthe1.30limitandfortheuncontrolled rodwithdrawal theMDNBRmarginisnotaltered.

22XN-NF-79-103 7.2RODEJECTIONANALYSISFORR.E.GINNACYCLE10AControlRodEjectionAccidentisdefinedasthemechanical fail-ureofacontrolrodmechanism pressurehousing,resulting'in theejectionofaRodClusterControlAssembly(RCCA)anddriveshaft.Theconsequence ofthismechanical failureisarapidreactivity insertion togetherwithanadversecorepowerdistribution, possiblyleadingtolocalized fueldamage.~Therodejectionaccidentanalysispresented inthedocumentXN-NF-78-53isstillapplicable toCycle10operation.

Thelocationofthe4MOXassemblies introduces minimaleffectsonejectedrodworthsandhotpelletpeakingfactors.Thee'jectedrodworthsandhotpelletpeakingfactorsarecal'culated usingtheXTGcode.Nocreditwastakenforthepoweiflattening effects,ofDopplerormoderator feedbackinthecalculation ofejectedrodworths'rpeaking'factors.

Thecalculations madeforCycle10usingXTGweretwo-dimensional (x-y)withappropriate axialbucklingcorrec-tionterm's.Thetotal'eaking factors(F~)weredetermined astheproductoftheradialpeakingfacto'r(ascalculated usingXTG)andaconservative axialpeakingfactor;Thepelletenergydeposition resulting fromanejectedrodwasevaluated tobelessthanther'esultsreportedinReferences 4and5.Therodejectionaccidentwasfoundtoresultinenergydeposition oflessthan280cal/gmst'atedinRegulatory Guide1.77'andprovidesagreaterenergydeposition marg'inthanthatdetermined byReference 4.Theresultsofthecontrolrodejectiontransient forthiscasearepresented inTable7.2alongwithresults'fromReferences 4and5.

23XN-NF-79-103 7.1R.E.GinnaKineticParameters Parameters

,Moderator Temperature Coefficient (pcm/oF)Moderator PressureCoefficient (pcm/psia)

Reference Cycle(1)BOCEC0.0-35.0+.25+.35Cycle10BC-8.1+.09EC-30.4+.35Moderator DensityCoefficient (pcm/gm/cm3)

DopplerCoeffi:cient (pcm/F)-1.25-2.00-1.35-1.840.0+29635.0+6858.0+25740.0BoronWorthCoefficient (pcm/ppm)

DelayedNeutronFraction-8.75-8.72.0061.0051-7.95.0058-8.62.0052Reference 2

XN-NF-7.9.-103 Table7.2EjectedRodWorthandPeakingFactors'~

BeforeEjection~C18()~C19()~C110(HFPHZPHFPHZPHFPHZP2,252.822.242.622.152.59F~AfterEjectionN4.36'.302.965.59gg4()601(MaximumRodWorthfromaFullInsertedBank(Xhp)0.4700.6400.3620.5530.2800.435EnergyDeposition (cal/gm)17137(1)Includesaconservative estimateofFatHFPof1.4andatHZPof1.8.(2)Reference 4,calculated withXTRAN.(3)Reference 5,calculated withXTGPWR.(4)Calculated withXTGPWR.

25XN-NF-79-103

8.0REFERENCES

1.XN-NF-77-52, "R.E.GinnaReloadFuelDesign",November, 1977.2.3.4.5.6.'XN-NF-77-40, "PlantTransient AnalysisforR.E.Ginna,Unit1NuclearPowerPlant",Revision1,July,1979.XN-NF-77-58, "ECCSAnalysisfortheR.E.GinnaReactorwithENCWREM-IIPWREvaluation Model",December, 1977.XN-NF-77-53, "R.E.GinnaNuclearPlantCycle8SafetyAnalysisReport",December, 1977.XN-NF-78-50,

="R.E.GinnaCycle9SafetyAnalysisReport,"December, 1978.F.B.Skogen,"ExxonNuclearNeutronics DesignMethodsforPres-surizedWaterReactors",

XN-75-27(A),

ExxonNuclearCompany,April,1977.7.XN-75-27(A),

Supplement 1toReference 6,April,1977.8.XN-75-27, Supplement 2toReference 6,December, 1977.9.XN-CC-28, Rev.3,"XTG:ATwoGroupThree-Dimensional ReactorSimulator Utilizing CoarseMeshSpacing(PWRVersion)",

January,1975.

IlxI 26XN-NF-79-103 R.E.GINNACYCLE10RELOADSAFETYANALYSISREPORTWITHMIXEDOXIDEASSEMBLIES DISTRIBUTION K.H.BlankG.J.Busselman L.J.FedericoR.L.Feuerbacher R.G.GrummerB.L.Johnson(2)M.R.KillgoreT.L.Krysinski C.E.LeachJ.N.MorganW.S.NechodomL.A.NielsenG.F.OwsleyJ.F.Patterson A.W.PrichardF.B.SkogenG.A.SoferA.V.Wojchouski C.H.WuRG&E/L.J.Federico(80)DocumentControl(10) lI1