ML17331B133: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:DONALDC.COOKUNITS1R2MIJNSTEAMSAHHYVALVELIFI'ETPOINTTOLERANCERELAXATIONNuclearandAdvancedTechnologyDivisionWestinghouseElectricCorporationDecember1993e1993WestinghouseElectricCorporationAllRightsReserved9312230047931217PDRADOCK05000315.PPDR SECL-91<29,Revision2TABLEOFCONTENTS~SEI~NPAEListofTablesListofFiguresnISafetyEvaluationCheckListIntroductionLicensingBasisEvaluationsVINon-LOCALOCAContainmentIntegritySteamGeneratorTubeRuptureComponentPerformanceSystemsEvaluationRadiologicalEvaluationPlantRiskAnalysis/PE)PlantRiskAnalysis(non-IPE)I&CSystemsTechnicalSpecifications517242425262626262727AssessmentofNoUnreviewedSafetyQuestionConclusionReferencesAppendixA:SignificantHazardsEvaluationAppendixB:RecommendedTechnicalSpecificationMarked-Ups28313291429R2.wpf LISTOFTABLESTABLEPAETable1:MainSteamSafetyValveLiftSetpointsTable2:DNBDesignBasisTransientsNotAffectedbyMSSVLiftSetpointToleranceIncreaseTable3:Unit1TurbineTripSequenceofEventsTable4:Unit2TurbineTripSequenceofEventsTable5:CurrentLicensingBasisSteamLineSafetyValvesperLoopTable6:MSSVSetpointIncreaseSteamLineSafetyValvesperLoopTable7:Unit1LowPressureLowTemperatureInputParametersTable7a:Unit1InitialInputParametersfortheSmallBreakLOCAAnalysisTable8:Unit1LowPressureHighTemperatureInputParametersTable9:Unit2LowPressureHighTemperatureInputParametersTable10:Unit1SmallBreakLOCAEvaluationTimeSequenceofEventsTable10a:Unit1SmallBreakLOCAAnalysisTimeSequenceofEventsTable11:Unit1SmallBreakLOCAEvaluationSummaryofResultsTable11a:Unit1SmallBreakLOCAAnalysisSummaryofResults333537383941424345Table12:Unit.2SmallBreakLOCAEvaluation46TimeSequenceofEvents47Table13:Unit2SmallBreakLOCAEvaluationSummaryofResults48ubxxx.wpf:Id-121393 SECI91<29,Revision2LISTOFFIGURES~IGURBFigurela:IllustrationofOvertemperatureandOverpowerhTProtectionforUnit1Figure1b-c:IllustrationofOvertemperatureandOverpowerhTProtectionforUnit2(mixedandfullV-SHcores)Figure2:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure3:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure4:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure5:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback;SteamGeneratorPressureandMSSVReliefRateFigure6:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure7:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure8:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure9:'nit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure10:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure11:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure12:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure13:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure14:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperature'1429R2.wpf SECL-91<29,Revision2LISTOFFIGURES(Continued)~FI@REFigure15:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure16:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure17:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure18:Figure19:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRUnit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure20:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure21:Unit1TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure22a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure23a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure24a-b:Figure25a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureUnit2TurbineTripEventWithoutOPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure26a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivityFeedback:PressurizerReliefRateFigure27a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure28a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBR91429Rz.wpf1v
{{#Wiki_filter:DONALDC.COOKUNITS1R2MIJNSTEAMSAHHYVALVELIFI'ETPOINT TOLERANCE RELAXATION NuclearandAdvancedTechnology DivisionWestinghouse ElectricCorporation December1993e1993Westinghouse ElectricCorporation AllRightsReserved9312230047 931217PDRADOCK05000315.PPDR SECL-91<29, Revision2TABLEOFCONTENTS~SEI~NPAEListofTablesListofFiguresnISafetyEvaluation CheckListIntroduction Licensing BasisEvaluations VINon-LOCALOCAContainment Integrity SteamGenerator TubeRuptureComponent Performance SystemsEvaluation Radiological Evaluation PlantRiskAnalysis/PE)PlantRiskAnalysis(non-IPE)
I&CSystemsTechnical Specifications 517242425262626262727Assessment ofNoUnreviewed SafetyQuestionConclusion References AppendixA:Significant HazardsEvaluation AppendixB:Recommended Technical Specification Marked-Ups 28313291429R2.wpf LISTOFTABLESTABLEPAETable1:MainSteamSafetyValveLiftSetpoints Table2:DNBDesignBasisTransients NotAffectedbyMSSVLiftSetpointTolerance IncreaseTable3:Unit1TurbineTripSequenceofEventsTable4:Unit2TurbineTripSequenceofEventsTable5:CurrentLicensing BasisSteamLineSafetyValvesperLoopTable6:MSSVSetpointIncreaseSteamLineSafetyValvesperLoopTable7:Unit1LowPressureLowTemperature InputParameters Table7a:Unit1InitialInputParameters fortheSmallBreakLOCAAnalysisTable8:Unit1LowPressureHighTemperature InputParameters Table9:Unit2LowPressureHighTemperature InputParameters Table10:Unit1SmallBreakLOCAEvaluation TimeSequenceofEventsTable10a:Unit1SmallBreakLOCAAnalysisTimeSequenceofEventsTable11:Unit1SmallBreakLOCAEvaluation SummaryofResultsTable11a:Unit1SmallBreakLOCAAnalysisSummaryofResults333537383941424345Table12:Unit.2SmallBreakLOCAEvaluation 46TimeSequenceofEvents47Table13:Unit2SmallBreakLOCAEvaluation SummaryofResults48ubxxx.wpf:
Id-121393 SECI91<29,Revision2LISTOFFIGURES~IGURBFigurela:Illustration ofOvertemperature andOverpower hTProtection forUnit1Figure1b-c:Illustration ofOvertemperature andOverpower hTProtection forUnit2(mixedandfullV-SHcores)Figure2:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:
Pressurizer PressureandWaterVolumeFigure3:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:
NuclearPowerandDNBRFigure4:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:
CoreAverageTemperature andLoopTemperature Figure5:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback; SteamGenerator PressureandMSSVReliefRateFigure6:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:
Pressurizer ReliefRateFigure7:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
Pressurizer PressureandWaterVolumeFigure8:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
NuclearPowerandDNBRFigure9:'nit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
CoreAverageTemperature andLoopTemperature Figure10:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
SteamGenerator PressureandMSSVReliefRateFigure11:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
Pressurizer ReliefRateFigure12:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
Pressurizer PressureandWaterVolumeFigure13:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
NuclearPowerandDNBRFigure14:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
CoreAverageTemperature andLoopTemperature
'1429R2.wp f
SECL-91<29, Revision2LISTOFFIGURES(Continued)
~FI@REFigure15:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
SteamGenerator PressureandMSSVReliefRateFigure16:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
Pressurizer ReliefRateFigure17:Unit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
Pressurizer PressureandWaterVolumeFigure18:Figure19:Unit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
NuclearPowerandDNBRUnit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
CoreAverageTemperature andLoopTemperature Figure20:Unit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
SteamGenerator PressureandMSSVReliefRateFigure21:Unit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
Pressurizer ReliefRateFigure22a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:
Pressurizer PressureandWaterVolumeFigure23a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:
NuclearPowerandDNBRFigure24a-b:Figure25a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:
CoreAverageTemperature andLoopTemperature Unit2TurbineTripEventWithoutOPressure Control,MinimumReactivity Feedback:
SteamGenerator PressureandMSSVReliefRateFigure26a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:
Pressurizer ReliefRateFigure27a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
Pressurizer PressureandWaterVolumeFigure28a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
NuclearPowerandDNBR91429Rz.wpf 1v


SECI91-429,Revision2LISTOFFIGURES(Continued)FIUREFigure29a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure30a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure31a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure32a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerPressureandWaterVolumeFigure33a-b:Unit1TurbineTripEventWithPressureControl,MaximumReactivityFeedback:NuclearPowerandDNBRFigure34a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure35a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure36a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivityFeedback:PressurizerReliefRateFigure37a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerPressureandWaterVolumeFigure38a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:NuclearPowerandDNBRFigure39a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:CoreAverageTemperatureandLoopTemperatureFigure40a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:SteamGeneratorPressureandMSSVReliefRateFigure41a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivityFeedback:PressurizerReliefRate91429R2.wpfv SECI91-429,Revision2CustomerReferenceNo(s).PO:04877-040-INWestinghouseReferenceNo(s).WESTINGHOUSENUCLEARSAFETYSAFETYEVALUATIONCHECKLIST1)NUCLEARPLANT(S):DONALD'CCOOKNITS1AND22)SUBJECT(TITLE):RELAXATINFMSSVSETPOINTTOLERANCETO+/-%3)Thewrittensafetyevaluationoftherevisedprocedure,designchangeormodificationrequiredby1OCFR50.59(b)hasbeenpreparedtotheextentrequiredandisattached.Ifasafetyevaluationisnotrequiredorisincompleteforanyreason,explainonPage2.PartsAandBofthisSafetyEvaluationCheckListaretobecompletedonlyonthebasisofthesafetyevaluationperformed.CHECKLIST-PARTA10CFR50.59(a)(1)(3.1)YesXNoAchangetotheplantasdescribedintheUFSAR?(3.2)YesNoX,,AchangetoproceduresasdescribedintheUFSAR?(3.3)YesNoXAtestorexperimentnotdescribedintheUFSAR?(3.4)YesXNoAchangetotheplanttechnicalspecifications?(SeenoteonPage2.)4)CHECKLIST-PartB10CFR50.59(a)(2)(JustificationforPartBanswersmustbeincludedonPage2.)(4.1)Yes(4.2)Yes(4.3)Yes(4.4)Yes(4.5)Yes(4.6)Yes(4.7)YesNoXWilltheprobabilityofanaccidentpreviouslyevaluatedintheUFSARbeincreased?NoXWilltheconsequencesofanaccidentpreviouslyevaluatedintheUFSARbeincreased?NoXMaythepossibilityofanaccidentwhichisdifferentthananyalreadyevaluatedintheUFSARbecreated?NoXWilltheprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARbeincreased?NoXWilltheconsequencesofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARbeincreased?NoXMaythepossibilityofamalfunctionofequipmentimportanttosafetydifferentthananyalreadyevaluatedintheUFSARbecreated?NoXWillthemargin'ofsafetyasdefinedinthebasestoanytechnicalspecificationsbereduced?91429R2.wpfvi SECL-91-429,Revision2NOTES:Iftheanswerstoanyoftheabovequestionsareunknown,indicateunder5)REMARKSandexplainbelow.IftheanswerstoanyoftheabovequestionsinPartA3.4orPartBcannotbeansweredinthenegative,basedonthewrittensafetyevaluation,thechangereviewwouldrequireanapplicationforlicenseamendmentasrequiredby10CFR50.59(c)andsubmittedtotheNRCpursuantto1OCFR50.90.5)REMARKS:TheattachedsafetyevaluationsummarizesthejustificationforanswersgiveninPartA3.4andPartBofthissafetyevaluationchecklist:'Referencetodocumentscontainingwrittensafetyevaluation:FRUFARPDATEPages:Tables:Figures:Reasonfor/DescriptionofChange:UFSARMark-userovidedbsearatetransmittal6)SAFETYEVALUATIONAPPROVALLADDER:16.1)Preparedby(NuclearSafety):6.2)Reviewedby(NuclearSafety):dccook.wpf-121093vn SECI91<29,Revision2DONALDC.COOKUNITS1&2INCREASEDIVORY&#xc3;ST1MHSAFRXYVALVESEIPOINTTOLERANCESAFEIYEVALUATIONI.INTRODUCTINAmericanElectricPowerServiceCorporation(AEPSC)hasfoundthatoveranoperatingcyclethesetpointoftheMainSteamSafetyValves(MSSVs)canchangebymorethan1%fromtheoriginalset-pressure.AEPSChasrequestedthatWestinghouseperformanevaluationtoincreasetheliftsetpointtoleranceontheMSSVsatDonaldC.CookUnits1&2.Thefollowingsafetyevaluationisprovidedtosupportchangingtheas-foundliftsetpointtoleranceasstatedbytheTechnicalSpecificationsfromJ1%to+3%.Duringnormalsurveillance,ifthevalvesarefoundtobewithin+3%,theywillbewithinthebasesoftheaccidentanalyses,however,thevalveswillberesettoJ1%toaccountforfutureaccumulationofdrift.Thus,thisevaluationpermitsaJ3%setpointtolerancetoaddressas-foundconditions.TheMSSVsarelocatedoutsidecontainmentupstreamoftheMainSteamIsolationValves.Thepurposeofthevalvesistopreventoverpressurizationofthesteamgenerators.Inordertoaccomplishthis,abankoffivevalvesislocatedoneachofthefoursteamgenerators,andthereliefcapacityisdesignedsuchthatthetotalsteamflowfromthe20valveswillboundthatproducedbythelimitinglicensing-basisanalysis.ForDonaldC.Cook,thetotalreliefcapacityofthe20valvesis17.153E6ibm/hrat1186.5psia(1171.5psig).Theliftsetpointsoftheindividualvalvesoneachsteamlinearestaggeredatdifferentpressurestominimizechatteringoncethevalvesareactuated.Staggeringthevalvesalsominimizesthetotalnumberofvalvesactuatedduringthosetransientswherelessthanthemaximumreliefcapacityisrequiredtherebyreducingmaintenancerequirementsonthevalves.TheactualsetpointsareprovidedinTable1andaredocumentedinTables4.7-1and3.7-4oftheUnits1and2TechnicalSpecifications,respectively(Reference1).91429Rz.wpf SECL-91<29,Revision2TheoperationoftheClass2mainsteamsafetyvalves(MSSVs)isgovernedbytheASMECode(Reference2).AEPSCwillmaintainthedesignbasisoftheMSSVsbyensuringthatthevalves,ifoutsidetheJ1%tolerance,willberecalibratedtowithinJ1%.Thepurposeofthisevaluationistoprovideaquantificationoftheeffectsofahigheras-foundliftsetpointtolerance.ThissafetyevaluationwilladdresstheeffectsoftheJ3%as-foundtoleranceonUFSARaccidentanalyses(non-LOCA,LOCA,SGTR)andwilldocumenthowtheeffectsareaccountedforwithintheaccidentanalysesandtheacceptabilityoftheincreaseintheliftsetpointtolerance.91<29R2.wpf SECI91-429,Revision2TABLE1MAINSTEAMSATINYVALVELIFI'ETPOINTValueNumberSV-1SV-1SV-2SV-2SV-3.LiftSeoint11065psig(1080psia)1065psig(1080psia)1075psig(1090psia)1075psig(1090psia)1085psig(1100psia)
SECI91-429,Revision2LISTOFFIGURES(Continued)
FIUREFigure29a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
CoreAverageTemperature andLoopTemperature Figure30a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
SteamGenerator PressureandMSSVReliefRateFigure31a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:
Pressurizer ReliefRateFigure32a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
Pressurizer PressureandWaterVolumeFigure33a-b:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
NuclearPowerandDNBRFigure34a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
CoreAverageTemperature andLoopTemperature Figure35a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
SteamGenerator PressureandMSSVReliefRateFigure36a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:
Pressurizer ReliefRateFigure37a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
Pressurizer PressureandWaterVolumeFigure38a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
NuclearPowerandDNBRFigure39a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
CoreAverageTemperature andLoopTemperature Figure40a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
SteamGenerator PressureandMSSVReliefRateFigure41a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:
Pressurizer ReliefRate91429R2.wpfv SECI91-429,Revision2CustomerReference No(s).PO:04877-040-IN Westinghouse Reference No(s).WESTINGHOUSE NUCLEARSAFETYSAFETYEVALUATION CHECKLIST1)NUCLEARPLANT(S):
DONALD'CCOOKNITS1AND22)SUBJECT(TITLE):RELAXATINFMSSVSETPOINTTOLERANCE TO+/-%3)Thewrittensafetyevaluation oftherevisedprocedure, designchangeormodification requiredby1OCFR50.59 (b)hasbeenpreparedtotheextentrequiredandisattached.
Ifasafetyevaluation isnotrequiredorisincomplete foranyreason,explainonPage2.PartsAandBofthisSafetyEvaluation CheckListaretobecompleted onlyonthebasisofthesafetyevaluation performed.
CHECKLIST-PARTA10CFR50.59(a)(1)
(3.1)YesXNoAchangetotheplantasdescribed intheUFSAR?(3.2)YesNoX,,Achangetoprocedures asdescribed intheUFSAR?(3.3)YesNoXAtestorexperiment notdescribed intheUFSAR?(3.4)YesXNoAchangetotheplanttechnical specifications?
(SeenoteonPage2.)4)CHECKLIST-PartB10CFR50.59(a)(2)
(Justification forPartBanswersmustbeincludedonPage2.)(4.1)Yes(4.2)Yes(4.3)Yes(4.4)Yes(4.5)Yes(4.6)Yes(4.7)YesNoXWilltheprobability ofanaccidentpreviously evaluated intheUFSARbeincreased?
NoXWilltheconsequences ofanaccidentpreviously evaluated intheUFSARbeincreased?
NoXMaythepossibility ofanaccidentwhichisdifferent thananyalreadyevaluated intheUFSARbecreated?NoXWilltheprobability ofamalfunction ofequipment important tosafetypreviously evaluated intheUFSARbeincreased?
NoXWilltheconsequences ofamalfunction ofequipment important tosafetypreviously evaluated intheUFSARbeincreased?
NoXMaythepossibility ofamalfunction ofequipment important tosafetydifferent thananyalreadyevaluated intheUFSARbecreated?NoXWillthemargin'of safetyasdefinedinthebasestoanytechnical specifications bereduced?91429R2.wpf vi SECL-91-429, Revision2NOTES:Iftheanswerstoanyoftheabovequestions areunknown,indicateunder5)REMARKSandexplainbelow.Iftheanswerstoanyoftheabovequestions inPartA3.4orPartBcannotbeansweredinthenegative, basedonthewrittensafetyevaluation, thechangereviewwouldrequireanapplication forlicenseamendment asrequiredby10CFR50.59(c) andsubmitted totheNRCpursuantto1OCFR50.90.
5)REMARKS:Theattachedsafetyevaluation summarizes thejustification foranswersgiveninPartA3.4andPartBofthissafetyevaluation checklist:'Reference todocuments containing writtensafetyevaluation:
FRUFARPDATEPages:Tables:Figures:Reasonfor/Description ofChange:UFSARMark-userovidedbsearatetransmittal 6)SAFETYEVALUATION APPROVALLADDER:16.1)Preparedby(NuclearSafety):6.2)Reviewedby(NuclearSafety):dccook.wp f-121093vn SECI91<29,Revision2DONALDC.COOKUNITS1&2INCREASED IVORY&#xc3;ST1MHSAFRXYVALVESEIPOINTTOLERANCE SAFEIYEVALUATION I.INTRODUCTI NAmericanElectricPowerServiceCorporation (AEPSC)hasfoundthatoveranoperating cyclethesetpointoftheMainSteamSafetyValves(MSSVs)canchangebymorethan1%fromtheoriginalset-pressure.
AEPSChasrequested thatWestinghouse performanevaluation toincreasetheliftsetpointtolerance ontheMSSVsatDonaldC.CookUnits1&2.Thefollowing safetyevaluation isprovidedtosupportchangingtheas-foundliftsetpointtolerance asstatedbytheTechnical Specifications fromJ1%to+3%.Duringnormalsurveillance, ifthevalvesarefoundtobewithin+3%,theywillbewithinthebasesoftheaccidentanalyses, however,thevalveswillberesettoJ1%toaccountforfutureaccumulation ofdrift.Thus,thisevaluation permitsaJ3%setpointtolerance toaddressas-foundconditions.
TheMSSVsarelocatedoutsidecontainment upstreamoftheMainSteamIsolation Valves.Thepurposeofthevalvesistopreventoverpressurization ofthesteamgenerators.
Inordertoaccomplish this,abankoffivevalvesislocatedoneachofthefoursteamgenerators, andthereliefcapacityisdesignedsuchthatthetotalsteamflowfromthe20valveswillboundthatproducedbythelimitinglicensing-basis analysis.
ForDonaldC.Cook,thetotalreliefcapacityofthe20valvesis17.153E6ibm/hrat1186.5psia(1171.5psig).Theliftsetpoints oftheindividual valvesoneachsteamline arestaggered atdifferent pressures tominimizechattering oncethevalvesareactuated.
Staggering thevalvesalsominimizes thetotalnumberofvalvesactuatedduringthosetransients wherelessthanthemaximumreliefcapacityisrequiredtherebyreducingmaintenance requirements onthevalves.Theactualsetpoints areprovidedinTable1andaredocumented inTables4.7-1and3.7-4oftheUnits1and2Technical Specifications, respectively (Reference 1).91429Rz.wpf SECL-91<29, Revision2Theoperation oftheClass2mainsteamsafetyvalves(MSSVs)isgovernedbytheASMECode(Reference 2).AEPSCwillmaintainthedesignbasisoftheMSSVsbyensuringthatthevalves,ifoutsidetheJ1%tolerance, willberecalibrated towithinJ1%.Thepurposeofthisevaluation istoprovideaquantification oftheeffectsofahigheras-foundliftsetpointtolerance.
Thissafetyevaluation willaddresstheeffectsoftheJ3%as-foundtolerance onUFSARaccidentanalyses(non-LOCA, LOCA,SGTR)andwilldocumenthowtheeffectsareaccounted forwithintheaccidentanalysesandtheacceptability oftheincreaseintheliftsetpointtolerance.
91<29R2.wpf SECI91-429,Revision2TABLE1MAINSTEAMSATINYVALVELIFI'ETPOINT ValueNumberSV-1SV-1SV-2SV-2SV-3.LiftSeoint11065psig(1080psia)1065psig(1080psia)1075psig(1090psia)1075psig(1090psia)1085psig(1100psia)


==References:==
==References:==
Table4.7-1oftheUnit1TechnicalSpecificationsandTable3.7-4oftheUnit2TechnicalSpecifications91429R2.wpf


SECL-91<29,Revision2II.LICENSINGBASISTitle10oftheCodeofFederalRegulations,Section50.59(10CFR50.59)allowstheholderofalicenseauthorizingoperationofanuclearpowerfacilitythecapacitytoinitiatecertainchanges,testsandexperimentsnotdescribedintheUpdatedFinalSafetyAnalysisReport(UFSAR).PriorNuclearRegulatoryCommission(NRC)approvalisnotrequiredtoimplementthemodificationprovidedthattheproposedchange,testorexperimentdoesnotinvolveanunreviewedsafetyquestionorresultinachangetotheplanttechnicalspecificationsincorporatedinthelicense.WhiletheproposedchangetotheMSSVliftsetpointtolerancesinvolvesachangetotheDonaldC.CookTechnicalSpecificationsandrequiresalicensingamendmentrequest,thisevaluationwillbeperformedusingthemethodoutlinedunder10CFR50.59toprovidethebasesforthedeterminationthattheproposedchangedoesnotinvolveanunreviewedsafetyquestion.Inaddition,anevaluationwilldemonstratethattheproposedchangedoesnotrepresentasignificanthazardsconsideration,asrequiredby10CFR50.91(a)(1)andwilladdressthethreetestfactorsrequiredby10CFR50.92(c).Thenon-LOCAsafetyanalyseswillbeexaminedtodeterminetheimpactoftheMSSVliftsetpointtolerancerelaxationontheDNBdesignbasisaswellastheapplicableprimaryandsecondarysystempressurelimits.Thelong-termcorecoolingcapabilityofthesecondarysidewillalsobeconsidered.TheLOCAevaluationwillinvestigatetheeffectsonthelicensingbasissmallbreakanalysisintermsofpeakcladtemperature,andanyadverseeffectsonthesteamgeneratortuberuptureeventandsubsequentdosereleasecalculationswillalsobedetermined.91429R2.wpf SECI91<29,Revision2III.EVALUATIONSTheresultsofthevariousevaluationsfromtheNuclearSafetyrelateddisciplineswithinWestinghousescopearediscussedinthefollowingsections.1.Non-LOCAEvaluationThenon-LOCAaccidentanalysesthatarecurrentlypresentedintheUFSARmodelledtheMSSVsasa'ankoffivevalves,allofwhichhavingaliftsetpointequaltothatofthehighestsetvalve(1100psia)plus3%toaccountforaccumulation.AlloftheanalysesandevaluationsperformedforthisreportmodelledthestaggeredbehavioroftheMSSVs.Specifically,eachvalvewasassumedtooperateindividually.Moreover,theanalyses/evaluationsofthisreportmodelledtheflowrateofeachvalvetoramplinearlyfromnoflowatitsliftsetpoint(nominalTechnicalSpecificationsetpointplusorminusthe3%tolerancevalue)tofullopenflowatitsfullopenpoint(3%abovethepressureatwhichthevalveswereassumedtopopopen-i.e.,accumulationeffect).Forthepurposesofthisevaluation,all20MSSVsareassumedtolift3%abovetheTechnicalSpecificationliftsetpointandachievefullratedflow(normallyat3%abov::thesetpoint)6%abovethesetpoint.hTProtectionTheincreaseintheMSSVliftsetpointtolerancehasthepotentialtoimpacttheOvertemperaturehTandOverpowerhTsetpointequations.ReferringtoFigurelaforUnit1andFigures1band1c(whicharethemostlimitingcaseforeachunit/coretype),increasingthepointatwhichtheMSSVsliftwilllowerthesteamgeneratorsafetyvalveline.IfthecurrentOTATsetpointcoefficients(K1throughK3)resultinprotectionlinesthatjustboundthethermalcorelimits,itispossiblethatbyloweringtheSGsafetyvalvelinetotheright,aportionofthecorelimitswillbeuncovered.'1429R2.wpf SECI91<29,Revision2,Inordertoevaluatetheeffectsoftheincreaseinthesetpointtolerance,theOvertemperaturehTandOverpowerdTsetpointequations(K1throughK6)wereexaminedtodetermineiftheequationsremainedvalidassumingthatall20MSSVsopenedwitha+3%tolerance.TheresultsofthatevaluationshowedthattherewassufficientmargininthegenerationofthecurrentsetpointequationstooffsettheloweringoftheSGsafetyvalveline.Thus,changestotheOvertemperatureandOverpowerTechnicalSpecificationsarenotneeded.TheresultsofthisevaluationarepresentedasFiguresla,lb,and1c.~DNBEvenThetransientsidentifiedinTable2areanalyzedintheD.C.CookUFSARtodemonstratethattheDNBdesignbasisissatisfied.Withoneexception,theseeventsarea)ofsuchashortdurationthattheydonotresultintheactuationoftheMSSVs,b)core-relatedanalysesthatfocusontheactivefuelregiononly(i.e.,onlythecoreismodelled),orc)cooldowneventswhichresultinadecreaseinsecondarysteampressure.Thesingleexceptionisthelossofexternalload/turbinetripeventwhichisaddressedexplicitlyintheANALYSISsectionofthissafetyevaluation.Thus,basedontheabove,theseyon-LOCADNBtransientsarenotadverselyimpactedbytheproposedchange,andtheresultsandconclusionspresentedintheUFSARremainvalid,BoronDilutionEventTheborondilutionevent(14.1.5)isanalyzedtodemonstratethattheoperators(ortheautomaticmitigationcircuitry)havesufficienttimetorespondpriortoreactorcriticality.Thesecondarysystemisnotmodeledintheanalysisofthisevent,andthus,changestotheMSSVshavenoimpactonthisevent.Therefore,theresultsandconclusionspresentedintheUFSARremainvalid.SteamlineBreakMass&:EneReleasesForthesteamlinebreakmassandenergyreleases,the'steamreleasecalculationsareinsensitivetothechangesintheMSSVliftsetpointssincethevastmajorityofthesecalculationsresultindepressurizationsofthesecondarysidesuchthattheMSSVsarenotactuated.Forthe91429Rz.wpf SECI91-429,Revision2TABLE2DNBDESIGNBASISTRANSIENTSNOTAFFECTEDBYMSSVLIFI'ETPOINTTOLERANCEINCREASE"'ventExcessiveHeatRemovalDuetoFeedwaterSystemMalfunctionExcessiveLoadIncreaseIncidentRuptureofaSteamPipe(SteamlineBreak-CoreResponse)LossofReactorCoolantFlowincludesLockedRotorAnalysis)UncontrolledRCCABankWithdrawalFromaSubcriticalConditionUncontrolledRCCABankWithdrawalatPowerRCCAMisalignmentUFSARSection14.1.1014.1.1114.2.514.1.614.1.114.1.214.1.391429R2.wpf SECI91-429,Revision2smallerbreakcasesthatmightresultinaheatup,oneMSSVpersteamgeneratorissufficient(basedontheexistinganalyses)toprovideanyrequiredheatremovalfollowingreactortrip.Thesecondarypressureswillbenogreaterthanthosepresentlycalculated.Thustheexistingsteamlinebreakmassandenergyreleasecalculationsremainvalid.EventSteamlineRuptureMass&EnergyReleasesInsideContainment'teamlineRuptureMass&EnergyReleasesOutsideContainmentforEquipmentEnvironmentalQualificationUFSARSectioWCAP-11902Supplement1.WCAP-10961Rev1(current)SubmittalAEP:NRC:1140*(approved11/20/91)SubmittalAEP:NRC:1140"TechnicalSpecificationChangeRequest,BITBoronConcentrationReduction,"March26,1991.(includedinWCAP-11902,Supplement1)Lon-TermHeatRemovalEventsTheonlynon-LOCAtransientsremainingarethelong-termheatupevents.Thelong-termheatremovaleventsareanalyzedtodetermineiftheauxiliaryfeedwater(AFW)heatremovalcapabilityissufficienttoensurethatthepeakRCSandsecondarypressuresdonotexceedallowablelimits,thepressurizerdoesnotfill(LONF/LOOP),andthecoreremainscoveredandinaeoolablegeometry(FLB).Thesetransientsarelistedbelow.EventLossofAllACPowertothePlantAuxiliaries(LossofOffsitePower-LOOP)LossofNormalFeedwater(LONF)14.1.1214.1.914.1.8FeedwaterSystemPipeBreak(FLB)*C*TheFeedwaterSystemPipeBreakeventisnotpartoftheUnit1licensingbasisandispresentedintheUnit1UFSARforinformationpurposesonly.ThesetransientsareimpactedbytheincreaseintheMSSVliftsetpointtolerancebecausethecalculationsdeterminingtheamountofAFWflowavailablemustassumeamaximumgivensteamgeneratorbackpressureinordertodeterminetheamountofAFWthatcanbedelivered.Asthesteam491429Rz.wpf SECL-91<29,Revision2generatorbackpressureincreases,theamountofAFWdeliveredwillbereduced.ForthelossofnormalfeedwaterandthelossofallACpowertothePlantAuxiliariesevents,evaluationswereperformedinwhichthestaggeredactuationoftheMSSVswastakenintoaccount.ThesafetyanalysispresentedinthecurrentUFSARassumedanAFWflowrateof450gpm,splitevenlytoallfoursteamgenerators.Theevaluationsdoneforthisreportconcerninglossofnormalfeedwater(LONF)forUnits1and2,aswellaslossofallACpowertotheplantauxiliaries(LOOP)forUnit1,demonstratedthatthesecondarysidepressureswillnotexceed1123psiaduringthetimeAFWisdeliveredtothesteamgenerators.BasedonReference10,theAFWassumptionsmodeledinthesafetyanalysisremainvalidforsteamgeneratorbackpressuresupto1123psia.Sincetheevaluation,inwhicha+3%MSSVsetpointtolerancewasassumed,showedthatthesecondarysidepressuretransientwillnotprecludetheAFWflowratesassumedintheanalysisfrombeingsuppliedtothesteamgenerators,theexistinganalysesremainvalidforUnit1LONF/LOOPandUnit2LONF.TheLossofOffsitePowerevent(LOOP)forUnit2wasalsoevaluatedforthis-report.TheLOOPsafetyanalysispresentedinthecurrentUFSARforUnit2assumedanAFWflowrateof430gpmsplitevenlytoallfoursteamgenerators.Therecent'evaluationdoneforthisreporttookcreditforthestaggeredactuationoftheMSSVsaswellasa+3%setpointtolerance,asdiscussedearlier.TheevaluationyieldedresultssimilartothosediscussedaboveforUnit1.ThesecondarysidepressureforthisUnit2evaluationwasdemonstratednottoexceed1133psiaduringtheperiodAFWissupplied.BasedonReference10,thesecondarysidepressuretransientwasfoundnottoprecludetheAFWflowratesassumedintheanalysisfrombeingdeliveredtothesteamgenerators.Therefore,theexistingLossofOffsitePoweranalysisforUnit2remainvalid.TheevaluationsfortheLONF/LOOPeventsforbothUnit1andUnit2,asdiscussedabove,demonstratethattherespectiveanalysesarestillapplicableevenifaMSSVliftsetpointtoleranceof+3%isassumed.ThereforetheresultsandconclusionspresentedintheDonaldC.CookUnit1&2UFSARremainvalid.TheevaluationdoneforthisreportfortheUnit2FeedlineBreakeventdemonstratedthat,thesecondarysidepressurewillnotexceed1133psiaduringtheperiodwhenAFWisbeingdelivered.91429R2.wpf  
Table4.7-1oftheUnit1Technical Specifications andTable3.7-4oftheUnit2Technical Specifications 91429R2.wpf  


SECL-91<29,Revision2At1133psia,anAFWflowrateof685gpmwithasymmetricflowsplitstothethreeintactsteamgeneratorscouldbesuppliedbasedoninformationcontainedinReference,10.ThecurrentanalysisforthiseventassumedatotalAFWflowrateof600gpmwithanevensplitof200gpmtothethreeintactsteamgenerators.SincethetotalAFWflowrateismorethansufficienttoaccommodateAFWflowsplitdeviationsofasmuchas25gpmperloop,thecurrentFeedlineBreakanalysiscontinuetobeapplicableandremainboundingforthisevaluation.Therefore,theresultsandconclusionspresentedintheUnit2UFSAR(14.2.8)remainvalid.-3%Tolerance:ThesecondarysteamreleasesgeneratedforthelockedrotoroffsitedosecalculationsforUnit2couldbepotentiallyaffectedbyanincreaseintheMSSVsetpointtolerancefrom-1%to-3%.Reference9transmittedthemostrecentlockedrotordoseanalysis.GiventhattheradiologicalassumptionsusedintheReference9analysisdonotchangewithanincreaseinMSSVsetpointtolerance(i.e.,rods-in-DNBandprimarytosecondaryleakageremainat11%and1gpmrespectively)theonlyeffectthetoleranceincreasewouldhavewouldbeonthemassreleasevalues.ThemethodologyusedtocalculatethesemassesisbasedondeterminingtheamountofsecondarysideinventoryrequiredtocooldowntheRCS.Duringthefirsttwohours(0-2hours),theoperatorsareassumedtolowertheRCSaveragetemperaturetono-loadconditions(547'F)bybleedingsteam.Overthenext6hours(2-8hours),theoperatorswillcooltheplantdownsuchthatMode4operation(hotshutdown)canbeentered.Theexistingsteamreleasecalculationsforthe0-2hourperiodusedenthalpiescorrespondingtosaturatedconditionsatboththenominalfullpowerRCSaveragetemperatureandtheno-loadtemperature(581.3'Fand547'F,respectively).Thus,aslongastheincreasedliftsetpointtolerance(-3%)doesnotresultintheMSSVsremainingopenatasaturationtemperatureoutsideoftherangeidentifiedabove,theexistingmassreleasesremainvalid(Reference9),Theexistingmassreleasecalculationswereperformedusingthetemperaturespreviouslyidentified(581.3'Fand547'F).PertheDonaldC.CookTechnicalSpecifications,thelowestsetMSSVoneachsteamgeneratorwillopenat1080psia(1065psig)notincludinganytolerance.BasedontheASMESteamTables(Reference6)atsaturatedconditions,547'Fcorrespondsto1020.1psiaand9l-429R2.wpf10 SECL-91-429,Revision2representstheloweststeampressureconsideredinthemasscalculations.Thus,theexistingreleasesincludeareseatpressureapproximately5.5%belowthelowestTechnicalSpecificationliftsetpoint.Aslongasthevalvescontinuetoreseatwithinthis.pressurerange,thecurrentmassreleasesremainvalid.TheoperatingwindowsthatareapplicableforUnit1operationareboundedbytheUnit2doseanalysis.Therefore,themassreleasesforUnit2,asfoundinReference9,areapplicabletoUnit1.EvaluationSummaThus,basedonthediscussionspresentedabove,onlyoneUFSARnon-LOCAtransientisimpacted'uchthatanewanalysismustbeperformedinordertoaddresstheeffectsoftheMSSVliftsetpointtoleranceincreasefromJ1%toJ3%.Thiseventisthelossofexternalload/turbinetripaccident.Fortheothertransients,theresultsandconclusionspresentedintheDonaldC.CookUnit1&2UFSARremainvalid.LossofExternalLoad/TurbineTriThelossofexternalload/turbinetripeventispresentedinSection14.1.8oftheDonaldC.CookUFSAR.Thistransientiscausedbyaturbine-generatortripwhichresultsintheimmediateterminationofsteamflow.Sincenocreditistakenforadirectreactortriponturbinetrip,primaryandsecondarypressureandtemperaturewillbegintoincrease,actuatingthepressurizerandsteamgeneratorsafetyvalves.Thereactorwilleventuallybetrippedbyoneoftheotherreactorprotectionsystem(RPS)functions;specifically,overtemperaturehT,highpressurizerpressure,orlow-lowsteamgeneratorwaterlevel.Theturbinetripeventisthelimitingnon-LOCAeventforpotentialoverpressurization,i.e.,thistransientformsthedesignbasisfortheprimaryandsecondarysafetyvalves.SincetheMSSVswillnowpotentiallybeopeningatahigherpressureduetotheincreaseintheliftsetpointtolerance,itisnecessarytoanalyzethistransientinordertodemonstratethatalltheapplicableacceptancecriteria91429R2.wpf SECL-91<29,Revision2aresatisfied.AturbinetripisclassifiedasanANSconditionIIevent,afaultofmoderatefrequency.Assuch,theappropriateacceptancecriteriaareDNBR,peakprimarypressure,andpeaksecondarypressure.ThetransientisdescribedingreaterdetailintheUFSAR.TheturbinetripeventisanalyzedusingamodifiedversionoftheLOFTRANdigitalcomputercode(Reference6).ThismodifiedversionofLOFTRANonlydiffersfromthestandardcodeversioninthewaytheMSSVsaremodelled.Theprogramsimulatesneutronkinetics,reactorcoolantsystem,pressurizer,pressurizerreliefandsafetyvalves,pressurizerspray,steamgenerators,andmainsteamsafetyvalves.Withthemodifiedcode,theMSSVsareexplicitlymodeledasabankof5valvesoneachsteamgeneratorwithstaggeredliftsetpoints.WhereasthestandardLOFTRANversionprogramconservativelymodelstheMSSVsasabankoffivevalves,allhavingonecommonliftsetpoint.BymodellingthestaggeredbehavioroftheMSSVs,amoreaccuratesimulationofhowthevalvesactuallybehaveisachieved.Sincehighersteampressuresareconservativeforthisevent,noblowdownorhysteresisbehaviorwasassumed.ConsistentwiththeexistingUFSARanalysis,allassumptionswerethesameaspreviouslyusedunlessspecificallynoted.Thefollowingassumptionswereusedinthisanalysis:a.Initialpower,temperature,andpressurewereattheirnominalvaluesconsistentwith:1)ITDPmethodology(WCAP-8567)forUnit1,withtheexceptionthata2%conservatismoninitialcorepowerwasassumed.2)RTDPmethodology(WCAP-11397)forUnit2,withnoexceptions.b.Turbinetripwasanalyzedwithbothminimumandmaximumreactivityfeedback.C.Turbinetripwasanalyzedbothwithandwithoutpressurizerpressurecontrol.ThePORVsandsprayswereassumedoperableinthe'caseswithpressurecontrol.ThecaseswithpressurecontrolminimizetheincreaseinprimarypressurewhichisconservativefortheDNBRtransient.ThecaseswithoutpressurecontrolmaximizetheincreaseinpressurewhichisconservativefortheRCSoverpressurizationcriterion.91429R2.wpf.12 SECI91<29,Revision2d.ThesteamgeneratorPORVandsteamdumpvalveswerenotassumedoperable.ThisassumptionmaximizessecondarypressurewhichinturnmaximizestheprimarytemperatureforDNBRandprimarypressureforpressurecases.e.Mainfeedwaterflowwasassumedtobelostcoincidentwiththeturbinetrip.Thisassumptionmaximizestheheatupeffects.f.OnlytheovertemperaturedT,highpressurizerpressure,andlow-lowsteamgeneratorwaterlevelreactortripswereassumedoperableforthepurposesofthisanalysis.g.TheflowrateforeachMSSVwasmodelledtoramplinearlyfromnoflowatitsliftsetpoint(3%abovethenominalTechnicalSpecificationsetpoint)tofullopenflowatitsfullopenpoint(6%abovethenominalsetpoint),Thefullopenflowrateisbasedonareferencefullflowcapacityof238ibm/secat1186.5psia(basedontheASMEratedflowforthesevalves).Forsecondarysidepressuresbetweentheinitialfullopenpointforeachvalveand1186.5psia,thefullopenflowratewasmodelledtovaryproportionallywithpressure.ThisassumptionmaximizessecondarypressurewhichinturnmaximizestheprimarytemperatureforDNBRandprimarypressureforpressurecases.R~esulFourcasesforeachunit/coretype(i.e.Unit1,Unit2mixedcore,andUnit2fullV5core)wereanalyzed:a)minimumfeedbackwithoutpressurecontrol,b)maximumfeedbackwithoutpressurecontrol,c)maximumfeedbackwithpressurecontrol,andd)minimumfeedbackwithpressurecontrol.ThemostlimitingcasesinthecurrentUFSARcontinuetobethemostlimitingcases.ThecalculatedsequenceofeventsforthefourcasesforeachunitarepresentedinTables3and4.9l429R2.wpf13 SECI91<29,Revision2CaseA:Figures2through6showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithoutpressurecontrol.Thereactoristrippedonhighpressurizerpressure.Theneutronfluxremainsessentiallyconstantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseB:Figures7through11showthetransientresponsefortheturbinetripeventunderrnaxirnumreactivityfeedbackconditionswithoutpressurecontrol.Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytheincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizerpressure.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseC:Figures12through16showthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithpressurecontrol~Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristripped\onlow-lowsteamgeneratorwaterlevel.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue,Thepressurizerreliefvalves.andspraysmaintainprimarypressure91429R2.wpf14 SECI91-429,Revision2below110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseD:Figures17through21showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithpressurecontrol.Thereactoristrippedonhighpressurizerpressure.AlthoughtheDNBRvaluedecreasesbelowtheinitialvalue,itremainswellabovethelimitthroughouttheentiretransient.Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.AnaliConclionnit1BasedontheresultsoftheseUnit1turbinetripanalyseswitha+3%toleranceontheMSSVliftsetpoints,alloftheapplicableacceptancecriteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondarypressuresremainbelow110%ofdesignatalltimes.UNIT2:amixedandbfullV-5coresCaseA:Figures22athrough26b("a"designatesmixedcorefiguresand"b"denotesfullV-5corefigures)showthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithoutpressurecontrolforbothcoretypes.Thereactoristrippedonhighpressurizerpressure.,Theneutronfluxremainsessentiallyconstantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.91429R2.wpf15 SECL-91<29,Revision2CaseB:Figures27athrough31bshowthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithoutpressurecontrolforbothmixedandfullV-5coretypes.Thecorepowerisobservedtoundergoamomentaryincrease,Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizerpressure.TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue.Thepressurizersafetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseC:Figures32athrough36bshowthetransientresponsefortheturbinetripeventundermaximumreactivityfeedbackconditionswithpressurecontrolforthetwoapplicableUnit2coretypes.Thecorepowerisobservedtoundergoamomentaryincrease.Thisisduetopositivereactivitybeinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.Thisaffectisquicklycounteredbythesubsequenttemperaturerisebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonlow-lowsteamgeneratorwaterlevel~TheDNBRincreasesthroughoutthetransientandneverdropsbelowtheinitialvalue..Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.CaseD:Figures37athrough41bshowthetransientresponsefortheturbinetripeventunderminimumreactivityfeedbackconditionswithpressurecontrolforboththemixedandfullV-5cores.ThereactoristripPedonhighpressurizerpressure.AlthoughtheDNBRvaluedecreasesbelowtheinitialvalue,itremainswellabovethelimitthroughouttheentiretransient.Thepressurizerreliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.The91429R2.wpf16 SECL-91<29,Revision2mainsteamsafetyvalvesarealsoactuatedandmaintainsecondarypressurebelow110%ofthedesignvalue.AnalisConclusionnit2BasedontheresultsoftheseUnit2mixedandfullcoreturbinetripanalyseswitha+3%toleranceontheMSSVliftsetpoints,alloftheapplicableacceptancecriteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondarypressuresremainbelow110%ofdesignatalltimes.Nn-AConclusioTheeffectsofincreasingtheas-foundliftsetpointtoleranceonthemainsteamsafetyvalveshavebeenexamined,andithasbeendeterminedthat,withoneexception,thecurrentaccidentanalysesaspresentedintheUFSARremainvalid.Thelossofload/turbinetripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerancerelaxation.Aspreviouslydemonstratedinthissafetyevaluation,allapplicableacceptancecriteriaforthiseventhavebeensatisfiedandtheconclusionspresentedintheUFSARares'tillvalid.Thus,withrespecttothenon-LOCAtransients,theproposedTechnicalSpecificationchangedoesnotconstituteanunreviewedsafetyquestion,andthenon-LOCAaccidentanalyses,aspresentedinthereport,supporttheproposedchange,2.CAandARelatedEvaluationsLaeBreakCAThecurrentlargebreakLOCAanalysesforDonaldC.CookUnits1and2wereperformedwiththeNRCapproved1981EvaluationModelplusBASH.AfterapostulatedlargebreakLOCAoccurs,theheattransferbetweenthereactorcoolantsystem(RCS)andthesecondarysystemmaybeineitherdirection,dependingontherelativetemperatures.Inthecaseofcontinuedheatadditiontothesecondarysystem,thesecondarysystempressureincreasesandtheMSSVsmayactuatetolimitthepressure.However,thisdoesnotoccurinthelargebreakevaluationmodelsincenocreditistakenforauxiliaryfeedwateractuation.Consequently,thesecondarysystemactsasaheatsource.inthe91429R2.wpf17 SECL-91<29,Revision2lpostulatedlargebreakLOCAtransientandthesecondarypressuredoesnotincrease.Sincethesecondarysystempressuredoesnotincrease,itisnotnecessarytomodeltheMSSVsetpointinthelargebreakevaluationmodel.Therefore,anincreaseintheallowableMSSVsetpointtoleranceforDonaldC.CookUnits1and2willnotimpactthecurrentUFSARlargebreakLOCAanalyses.mallBreakCAThesmallbreakLOCAanalysesforDonaldC.CookUnits1and2wereperformedwiththeNRCapprovedEvaluationModelusingtheNOTRUMPcode.AfterapostulatedsmallbreakLOCAoccurs,theheattransferbetweentheRCSandthesecondarysystemmaybeineitherdirectiondependingontherelativetemperatures.Inthecaseofcontinuedheatadditiontothesecondarysystem,thesecondarysystempressureincreaseswhichleadstosteamreliefviatheMSSVs.InthesmallbreakLOCA,thesecondaryflowaidsinthereductionofRCSpressure.Subsequently,DonaldC.CookUnits1and2werereanalyzedtodeterminetheimpactofanincreasedMSSVsetpointtoleranceof3%.ThelicensingbasissmallbreakLOCAanalysisforDonaldC.CookUnit1includedasafetyevaluationtoaddressa25gpmchargingpumpflowimbalanceandoperationwiththehighheadsafetyinjectioncrosstievalveclosedat3250MWtcorepowerlevel.Also,asafetyevaluationhadbeenperformedwhichmodeledanincreasedauxiliaryfeedwaterenthalpydelaytime.TheseassumptionswereincorporatedintheincreasedMSSVsetpointtoleranceNOTRUMPanalysisofthelimiting3inchbreakforUnit1.However,inordertoobtainadirectsensitivityfortheincreasedMSSVsetpointtolerance,aNOTRUMPanalysiswasalsoperformedincorporatingtheseassumptionsbutmodellingtheoriginalMSSVsetpoints.Inaddition,a3inchNOTRUMPanalysiswasperformedforthelowpressure,hightemperatureoperatingconditionforUnit1sinceasafetyevaluationhadbeenoriginallyperformedaspartofthelicensingbasisanalysis.TheincreasedMSSVsetpointtolerance,acorepowerlevelof3250MWt.withthe.highheadcrosstievalveclosed,anda25gpmchargingpumpflowimbalancewereassumedfortheanalysisofthelowpressure,hightemperaturecase.91429Rz.wpf18 SECL-91-429,Revision2DonaldC.CookUnit2wasreanalyzedforthelimiting3inchbreak,lowpressureandhightemperatureoperatingconditionwiththehighheadcrosstievalveclosed.Thepowershapeaxialoffsetwasreducedfromthelicensingbasisanalysisof+30%to+13%fortheMSSVincreaseanalysis.Anaxialoffsetof+13%isequaltothevalueassumedinthelicensingbasislargebreakLOCAanalysis.Inaddition,thelicensingbasisanalysisconservativelyassumedamaximum"assemblyaveragepower(P+of1.519.The3%increasedMSSVsetpointtoleranceanalysisassumedaP~whichwasreducedto1.46.InordertoobtainadirectsensitivityfortheincreasedMSSVsetpointtolerance,aNOTRUMPanalysiswasperformedincorporatingtheseassumptionsbutmodellingtheoriginalMSSVsetpoints.Tables5and6summarizetheMSSVsetpointsusedintheDonaldC.CookUnits1and2currentlicensingbasissmallbreakLOCAanalysesandtheincreasedMSSVsetpointtoleranceanalyses,respectively.Tables7and8summarizetheinitialinputassumptionsusedintheUnit1analysis.TheUnit2initialinputassumptionsaresummarizedinTable9,ThetimesequenceofeventsandresultsoftheUnit1analysisaresummarizedinTables10and11,respectively.Thelimitingpeakcladtemperaturecalculatedis1879'F,includinga25'Fburstandblockagepenalty,forthe3%increasedMSSVsetpointtolerancecaseat3250MWtandthelowpressure,lowtemperatureoperatingconditions'.Thisvalueislessthantheacceptancecriterialimitof2200'F.Themaximumlocalmetal-waterreactionis3A7%,whichiswellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.ThetimesequenceofeventsandresultsoftheUnit2analysisaresummarizedinTables12and13,respectively.'Ihelimitingpeakcladtemperaturecalculatedis2125'F,includinga12'Fartificialleak-bypenaltyand157'Fburstandblockagepenalty,forthe3%increasedMSSVsetpointtolerancecaseat3250MWtandlowpressure,hightemperatureoperatingcondition.Thisvalueislessthantheacceptancecriterialimitof2200'F.Themaximumlocalmetal-waterreactionis4.26%,whichisTheseresultsarefromcalculationsusinganominalauxiliaryfcedwaterflow.Asubsequentanalysisusingamorcconservativeminimumauxiliaryfeedwaterflowrateispresentedinthcnextsection.91429R2.wpf19 SECI91<29,Revision2wellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.AdditionalSmallBreakCAAnalsesThesmallbreakLOCAanalysisforCookUnit1,previouslydiscussed,usednominalAuxiliaryFeedwater(AFW)flowrates(1258gpmtotaldelivery),whereasminimumAFWflowrateswereusedforCookUnit2,SinceminimumAFWflowratesaremorelimiting,thesmallbreakLOCAforCookUnit1for+3%MMSVsetpointtolerancewasreanalyzedusinglowerauxiliaryfeedwaterflowrates(750gpmtotaldelivery).ThefollowingpresentstheresultsoftherevisedsmallbreakLOCAanalysesperformedforDonaldC.CookUnit1.BasedontheCookUnit1analysespresentedintheprevioussection,twoadditionalsmallbreakLOCAcaseswereruntoaddressarelaxationto+3%fortheMSSVsetpointtolerance.First,theoriginalLPLT(LowPressure,LowTemperature)casepresentedabove,theresultsofwhichareshowninTables10and11,wasrerunmodeling750gpmtotalAFWsystemflowrate.AswasdemonstratedinReferences11and12,theLPLTcaseisthelimitingcaseforthepressure/temperatureoperatingwindowforCookUnit1,andthatwillnotchangeduetothereductioninAFWflow.Inaddition,sinceonlythelimitingbreaksize(3inch)waspreviouslyanalyzed,a2inchbreakwasalsoanalyzedforthe750gpmAFWflowratetoprovidefurtherassurancethatthelimitingbreaksizehasnotshiftedtoasmallerbreaksizeduetothereductionintheAFWflowrate.NotethatsinceboththereductioninAFWdeliveredflowandtheincreaseinthesetpointtoleranceto>3%tendtoshiftthelimitingbreaksizetoasmallerbreak,itisnotnecessarytoconsiderthatthelimitingbreakcouldbelargerthanwaspresentedinthecurrentlicensingbasisanalysiswhichdemonstratedthatthe3inchbreakislimiting.TheMSSVperformanceassumedinthesenewcasesisshowninTable6.TheinitialinputparametersassumedforthesenewcasesareshowninTable7a,andarecomparedwiththeoriginallicensingbasisinReference11.IfthenewanalysisvaluesfromTable7aarecomparedwiththeoriginalevaluationcasesshowninTable7,veryfewdifferencesareevident.Exceptfortheauxiliaryfeedwaterflowratean'daslightincreaseintheaccumulatorwatertemperature,theinitialRCS91429R2.wpf20 SECL-91<29,Revision2pressurewasloweredtocoverasafetyevaluationthatwasperformedforpressurizerpressureuncertainty.IncorporatingthisnewRCSpressurehadanegligibleeffectonthevesselinletandoutlettemperaturesandthesteampressureassumedforreactorsteady-stateoperation(priortoinitiationofthetransient).OnefinaladditionalchangeisintheAFWenthalpydelay.ThelowerAFWflowratewouldresultinalongerdelay.ThecurrentNOTRUMPmodelhasbeenimprovedtomodelthevolumeofhotmainfeedwaterthatmustbepurgedfromthepipingpriortocoldAFWbeingdeliveredtothesteamgenerator,andthedelayiscalculatedbythemodel.Otherthantheseminordifferences,andtheintendedchange(i.e.,reduceAFWflowrateandincreaseaccumulatorwatertemperature),theinitialconditionsassumedfortheadditionalrunsareidenticaltotherunsperformedfortheprevioussection.ThetimesequenceofeventsandresultsoftheUnit1analysesaresummarizedinTables10aand11a,respectively.ThelimitingPeakCladTemperature(P~calculatedis2068'F,includinga117'Fburstandblockagepenalty,forthe+3%increasedMSSVsetpointtolerancecaseat3250MWtandlowpressure,lowtemperatureoperatingcondition.Thisvalueislessthantheacceptancecriterialimitof2200'F,andisalmostthesamecomputedresultthatisseenforD.'.CookUnit2(thepre-burst/blockagePCTof1951'Fversus1956'F).Themaximumlocalmetal-waterreactionis5.06%,whichiswellbelowtheembrittlementlimitof17%asrequiredby10CFR50.46.Thetotalcoremetal-waterreactionislessthan1.0%,correspondingtolessthan1.0percenthydrogengeneration,ascomparedtothe1%criterionof10CFR50.46.The>3%increasedMSSVsetpointtolerancehasbeenanalyzedfortheDonaldC.CookNuclearPlantUnit1forthesmallbreakLOCAanalysesperformedbyWestinghouse.ThepotentialeffectofthischangeontheFSARanalysisresultsforthesmallbreakLOCAanalysiswasexaminedviareanalysisandalthoughtheresultsaremorelimitingthanpreviousanalysiscases,itwasshownthattheeffectoftheincreasedMSSVsetpointtolerancedidnotresultinexceedinganyofthefollowingdesignorregulatorylimits:1.Thecalculatedpeakfuelelementcladdingtemperatureisbelowtherequirementsof2200'F.2.Theamountoffuelelementcladdingthatreactschemicallywithwaterorsteamdoesnotexceed1percentofthetotalamountofZircaloyinthereactor.91429Rz.wpf21 SECI91-429,Revision23.Thecladdingtemperaturetransientisterminatedatatimewhenthecoregeometryisstillamenabletocooling.Thelocalizedcladdingoxidationlimitof17percentisnotexceededduringorafterquenching.4.Thecoreremainsamenabletocoolingduringandafterthebreak.5.Thecoretemperatureisreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-livedradioactivityremaininginthecore.Therefore,itisconcludedthatarelaxationtoJ3%fortheMSSVsetpointtoleranceisacceptablefromthestandpointofthesmallbreakLOCAFSARaccidentanalysesdiscussedinthissafetyevaluation.Post-LOCALonTermCoreCoolinTheWestinghouselicensingpositionforsatisfyingtherequirementsof10CFR50.46Paragraph(b),Item(5),"LongTermCooling,"concludesthatthereactorwillremainshutdownbyboratedECCSwaterresidingintheRCS/sumpafteraLOCA.Sincecreditforthecontrolrods.isnottakenforalargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulatorsandtheRWSTmusthaveaboronconcentrationthat',whenmixedwithotherwatersources,willresultinthereactorcoreremainingsubcriticalassumingallcontrolrodsout.ThecalculationisbaseduponthereactorsteadystateconditionsattheinitiationofaLOCAandconsiderssourcesofbothboratedandunboratedfluidinthepost-LOCAcontainmentsump.ThesteadystateconditionsareobtainedfromthelargebreakLOCAanalysiswhich,asstatedabove,doesnottakecreditforMSSVactuation.Thusthepost-LOCAlong-termcorecoolingevaluationisindependentoftheMSSVsetpointtolerance,andtherewillbenochangeinthecalculatedRCS/sumpboronconcentrationafterapostulatedLOCAforDonaldC.CookUnits1and2.HotSwitchovertoPreventPotentialBoronPreciitationPost-LOCAhotlegrecirculationtimeisdeterminedforinclusioninemergencyoperatingprocedurestoensurenoboronprecipitationinthereactorvesselfollowingboilinginthecore.Thistimeis91429R2.wpf22
SECL-91<29, Revision2II.LICENSING BASISTitle10oftheCodeofFederalRegulations, Section50.59(10CFR50.59) allowstheholderofalicenseauthorizing operation ofanuclearpowerfacilitythecapacitytoinitiatecertainchanges,testsandexperiments notdescribed intheUpdatedFinalSafetyAnalysisReport(UFSAR).PriorNuclearRegulatory Commission (NRC)approvalisnotrequiredtoimplement themodification providedthattheproposedchange,testorexperiment doesnotinvolveanunreviewed safetyquestionorresultinachangetotheplanttechnical specifications incorporated inthelicense.WhiletheproposedchangetotheMSSVliftsetpointtolerances involvesachangetotheDonaldC.CookTechnical Specifications andrequiresalicensing amendment request,thisevaluation willbeperformed usingthemethodoutlinedunder10CFR50.59 toprovidethebasesforthedetermination thattheproposedchangedoesnotinvolveanunreviewed safetyquestion.
Inaddition, anevaluation willdemonstrate thattheproposedchangedoesnotrepresent asignificant hazardsconsideration, asrequiredby10CFR50.91 (a)(1)andwilladdressthethreetestfactorsrequiredby10CFR50.92 (c).Thenon-LOCAsafetyanalyseswillbeexaminedtodetermine theimpactoftheMSSVliftsetpointtolerance relaxation ontheDNBdesignbasisaswellastheapplicable primaryandsecondary systempressurelimits.Thelong-term corecoolingcapability ofthesecondary sidewillalsobeconsidered.
TheLOCAevaluation willinvestigate theeffectsonthelicensing basissmallbreakanalysisintermsofpeakcladtemperature, andanyadverseeffectsonthesteamgenerator tuberuptureeventandsubsequent dosereleasecalculations willalsobedetermined.
91429R2.wpf SECI91<29,Revision2III.EVALUATIONS Theresultsofthevariousevaluations fromtheNuclearSafetyrelateddisciplines withinWestinghouse scopearediscussed inthefollowing sections.
1.Non-LOCAEvaluation Thenon-LOCAaccidentanalysesthatarecurrently presented intheUFSARmodelledtheMSSVsasa'ankoffivevalves,allofwhichhavingaliftsetpointequaltothatofthehighestsetvalve(1100psia)plus3%toaccountforaccumulation.
Alloftheanalysesandevaluations performed forthisreportmodelledthestaggered behavioroftheMSSVs.Specifically, eachvalvewasassumedtooperateindividually.
: Moreover, theanalyses/evaluations ofthisreportmodelledtheflowrateofeachvalvetoramplinearlyfromnoflowatitsliftsetpoint(nominalTechnical Specification setpointplusorminusthe3%tolerance value)tofullopenflowatitsfullopenpoint(3%abovethepressureatwhichthevalveswereassumedtopopopen-i.e.,accumulation effect).Forthepurposesofthisevaluation, all20MSSVsareassumedtolift3%abovetheTechnical Specification liftsetpointandachievefullratedflow(normally at3%abov::thesetpoint) 6%abovethesetpoint.
hTProtection TheincreaseintheMSSVliftsetpointtolerance hasthepotential toimpacttheOvertemperature hTandOverpower hTsetpointequations.
Referring toFigurelaforUnit1andFigures1band1c(whicharethemostlimitingcaseforeachunit/core type),increasing thepointatwhichtheMSSVsliftwilllowerthesteamgenerator safetyvalveline.IfthecurrentOTATsetpointcoefficients (K1throughK3)resultinprotection linesthatjustboundthethermalcorelimits,itispossiblethatbyloweringtheSGsafetyvalvelinetotheright,aportionofthecorelimitswillbeuncovered.
'1429R2.wpf SECI91<29,Revision2,Inordertoevaluatetheeffectsoftheincreaseinthesetpointtolerance, theOvertemperature hTandOverpower dTsetpointequations (K1throughK6)wereexaminedtodetermine iftheequations remainedvalidassumingthatall20MSSVsopenedwitha+3%tolerance.
Theresultsofthatevaluation showedthattherewassufficient margininthegeneration ofthecurrentsetpointequations tooffsettheloweringoftheSGsafetyvalveline.Thus,changestotheOvertemperature andOverpower Technical Specifications arenotneeded.Theresultsofthisevaluation arepresented asFiguresla,lb,and1c.~DNBEvenThetransients identified inTable2areanalyzedintheD.C.CookUFSARtodemonstrate thattheDNBdesignbasisissatisfied.
Withoneexception, theseeventsarea)ofsuchashortdurationthattheydonotresultintheactuation oftheMSSVs,b)core-related analysesthatfocusontheactivefuelregiononly(i.e.,onlythecoreismodelled),
orc)cooldowneventswhichresultinadecreaseinsecondary steampressure.
Thesingleexception isthelossofexternalload/turbine tripeventwhichisaddressed explicitly intheANALYSISsectionofthissafetyevaluation.
Thus,basedontheabove,theseyon-LOCADNBtransients arenotadversely impactedbytheproposedchange,andtheresultsandconclusions presented intheUFSARremainvalid,BoronDilutionEventTheborondilutionevent(14.1.5)isanalyzedtodemonstrate thattheoperators (ortheautomatic mitigation circuitry) havesufficient timetorespondpriortoreactorcriticality.
Thesecondary systemisnotmodeledintheanalysisofthisevent,andthus,changestotheMSSVshavenoimpactonthisevent.Therefore, theresultsandconclusions presented intheUFSARremainvalid.Steamline BreakMass&:EneReleasesForthesteamline breakmassandenergyreleases, the'steam releasecalculations areinsensitive tothechangesintheMSSVliftsetpoints sincethevastmajorityofthesecalculations resultindepressurizations ofthesecondary sidesuchthattheMSSVsarenotactuated.
Forthe91429Rz.wpf SECI91-429,Revision2TABLE2DNBDESIGNBASISTRANSIENTS NOTAFFECTEDBYMSSVLIFI'ETPOINT TOLERANCE INCREASE"'vent Excessive HeatRemovalDuetoFeedwater SystemMalfunction Excessive LoadIncreaseIncidentRuptureofaSteamPipe(Steamline Break-CoreResponse)
LossofReactorCoolantFlowincludesLockedRotorAnalysis)
Uncontrolled RCCABankWithdrawal FromaSubcritical Condition Uncontrolled RCCABankWithdrawal atPowerRCCAMisalignment UFSARSection14.1.1014.1.1114.2.514.1.614.1.114.1.214.1.391429R2.wpf SECI91-429,Revision2smallerbreakcasesthatmightresultinaheatup,oneMSSVpersteamgenerator issufficient (basedontheexistinganalyses) toprovideanyrequiredheatremovalfollowing reactortrip.Thesecondary pressures willbenogreaterthanthosepresently calculated.
Thustheexistingsteamline breakmassandenergyreleasecalculations remainvalid.EventSteamline RuptureMass&EnergyReleasesInsideContainment
'teamline RuptureMass&EnergyReleasesOutsideContainment forEquipment Environmental Qualification UFSARSectioWCAP-11902 Supplement 1.WCAP-10961 Rev1(current)
Submittal AEP:NRC:1140*
(approved 11/20/91)Submittal AEP:NRC:1140 "Technical Specification ChangeRequest,BITBoronConcentration Reduction,"
March26,1991.(included inWCAP-11902, Supplement 1)Lon-TermHeatRemovalEventsTheonlynon-LOCAtransients remaining arethelong-term heatupevents.Thelong-term heatremovaleventsareanalyzedtodetermine iftheauxiliary feedwater (AFW)heatremovalcapability issufficient toensurethatthepeakRCSandsecondary pressures donotexceedallowable limits,thepressurizer doesnotfill(LONF/LOOP),
andthecoreremainscoveredandinaeoolablegeometry(FLB).Thesetransients arelistedbelow.EventLossofAllACPowertothePlantAuxiliaries (LossofOffsitePower-LOOP)LossofNormalFeedwater (LONF)14.1.1214.1.914.1.8Feedwater SystemPipeBreak(FLB)*C*TheFeedwater SystemPipeBreakeventisnotpartoftheUnit1licensing basisandispresented intheUnit1UFSARforinformation purposesonly.Thesetransients areimpactedbytheincreaseintheMSSVliftsetpointtolerance becausethecalculations determining theamountofAFWflowavailable mustassumeamaximumgivensteamgenerator backpressure inordertodetermine theamountofAFWthatcanbedelivered.
Asthesteam491429Rz.wp f
SECL-91<29, Revision2generator backpressureincreases, theamountofAFWdelivered willbereduced.Forthelossofnormalfeedwater andthelossofallACpowertothePlantAuxiliaries events,evaluations wereperformed inwhichthestaggered actuation oftheMSSVswastakenintoaccount.Thesafetyanalysispresented inthecurrentUFSARassumedanAFWflowrateof450gpm,splitevenlytoallfoursteamgenerators.
Theevaluations doneforthisreportconcerning lossofnormalfeedwater (LONF)forUnits1and2,aswellaslossofallACpowertotheplantauxiliaries (LOOP)forUnit1,demonstrated thatthesecondary sidepressures willnotexceed1123psiaduringthetimeAFWisdelivered tothesteamgenerators.
BasedonReference 10,theAFWassumptions modeledinthesafetyanalysisremainvalidforsteamgenerator backpressures upto1123psia.Sincetheevaluation, inwhicha+3%MSSVsetpointtolerance wasassumed,showedthatthesecondary sidepressuretransient willnotprecludetheAFWflowratesassumedintheanalysisfrombeingsuppliedtothesteamgenerators, theexistinganalysesremainvalidforUnit1LONF/LOOP andUnit2LONF.TheLossofOffsitePowerevent(LOOP)forUnit2wasalsoevaluated forthis-report.
TheLOOPsafetyanalysispresented inthecurrentUFSARforUnit2assumedanAFWflowrateof430gpmsplitevenlytoallfoursteamgenerators.
Therecent'evaluation doneforthisreporttookcreditforthestaggered actuation oftheMSSVsaswellasa+3%setpointtolerance, asdiscussed earlier.Theevaluation yieldedresultssimilartothosediscussed aboveforUnit1.Thesecondary sidepressureforthisUnit2evaluation wasdemonstrated nottoexceed1133psiaduringtheperiodAFWissupplied.
BasedonReference 10,thesecondary sidepressuretransient wasfoundnottoprecludetheAFWflowratesassumedintheanalysisfrombeingdelivered tothesteamgenerators.
Therefore, theexistingLossofOffsitePoweranalysisforUnit2remainvalid.Theevaluations fortheLONF/LOOP eventsforbothUnit1andUnit2,asdiscussed above,demonstrate thattherespective analysesarestillapplicable evenifaMSSVliftsetpointtolerance of+3%isassumed.Therefore theresultsandconclusions presented intheDonaldC.CookUnit1&2UFSARremainvalid.Theevaluation doneforthisreportfortheUnit2FeedlineBreakeventdemonstrated that,thesecondary sidepressurewillnotexceed1133psiaduringtheperiodwhenAFWisbeingdelivered.
91429R2.wpf


SECL-91<29,Revision2dependentonpowerlevelandtheRCS,RWST,andaccumulatorwatervolumesandwiththeirassociatedboronconcentrations.TheproposedMSSVsetpointtoleranceincreaseto3%doesnotaffectthepowerlevelortheboronconcentrationsassumedfortheRCS,RWST,andaccumulatorinthehotlegswitchovercalculationforUnit1.TheproposedMSSVsetpointtoleranceincreaseto3%'oesnotaffecttheboronconcentrationsassumedfortheRCS,RWST,andaccumulatorinthehotlegswitchovercalculationforUnit2.Thecurrentlicensingbasishotleg.switchovercalculationforUnit2isatfullpower,3413MWt,withcrosstievalveatclosedposition.WithMSSVsetpointtoleranceincreasedto3%,Unit2LOCAanalysesassumedareducedcorepower,3250MWt,withcrosstievalveatclosedposition.Areductioninpowerreducestheboil-offrateinthehotlegswitchovercalculation.Areductionintheboilwffrateresultsintherateofboronbuildupalsobeingreduced.Therefore,thelicensingbasishotlegswitchovercalculationfortheDonaldC.CookUnits1and2remainsbounding.LOCAHdraulicForciFunctionsThepeakhydraulicforcingfunctionsonthereactorvesselandinternalsoccurveryearlyinthelargebreakLOCAtransient.Typically,thepeakforcingfunctionsoccurbetween10and50milliseconds(0.01and0.05seconds)andhavesubsidedwellbefore500milliseconds(0.50seconds).AnychangeintimeassociatedwithanincreasedMSSVsetpointtolerancewouldoccurseveralsecondsintothetransient.SincetheLOCAhydraulicforcingfunctionshavepeakedandsubsidedbeforethetimeatwhichtheMSSVmayactuate,theincreaseintheMSSVsetpointtoleranceto3%willnotimpacttheLOCAhydraulicforcingfunctionscalculationforDonaldC.CookUnits1and2.LOCAConclusioTheeffectofincreasingtheMSSVsetpointtoleranceto3%forDonaldC.CookUnits1and2hasbeenevaluatedforeachoftheLOCArelatedanalysesaddressedintheUFSAR.Forcurrentlyanalyzedconditions,orforUnit2operationatareducedpowerlevelof3250MWtwhenthehighheadcrosstievalvesareclosed,itwasshownthatthe3%MSSVsetpointtolerancedoesnotresultinanydesignorRegulatorylimitbeingexceeded.Therefore,withrespecttotheLOCAanalyses,itcanbeconcludedthatincreasingtheMSSVsetpointtoleranceto3%forDonaldC.CookUnits1and2willbeacceptablefrom.thestandpointoftheUFSARaccidentanalysesdiscussedinthesafety'valuation.91429Rz.wpf23 SECI91429,Revision23.ContainmentTntriEvaluation~~RelaxationoftheDonaldC.CookUnits1&2TechnicalSpecificationMainSteamSafetyValvesetpointtolerancesfrom+1%to+3%donotadverselyaffecttheshorttermorlongtermLOCAmassandenergyreleasesand,subsequently,therelatedcontainmentanalyses.Sincethereisnoimpactonthemainsteamlincbreakmassandenergyreleasecalculations,thereisalsonoimpactonthatassociatedcontainmentresponseanalysis.Theproposedchangedoesnotaffectthenormalplantoperatingparameters,systemactuations,accidentmitigatingcapabilitiesorassumptionsimportanttothemassandenergyreleaseandcontainmentanalyses,orcreatemorelimitingconditionsthanthosealreadyassumedinthecurrentanalyses.Therefore,theconclusionspresentedintheDonaldC,CookUFSARremainvalidwithrespecttocontainment.4.SteamGeneratorTubeRutureTodemonstratethatanunreviewedsafetyquestiondoesnotexistforthesteamgeneratortuberupture(SGTR)event,theincreasedMSSVsetpointtolerancewasevaluatedforDonaldC.CookUnits1and2.Theanalysisforupratingto3600MWTconsideredupto15%steamgeneratortubepluggingforbothUnits1and2.ThelimitingcasesfromthisanalysiswerereevaluatedfortheincreasedMSSVsetpointtolerance.Anincreasedsteamgeneratortubeplugginglevelof20%wasalsoconsideredatpowerlevelsof3262MWTforUnit1and3425MWTforUnit2.ThecriteriastatedintheUFSARanalysisforDonaldC.CookwereusedinestablishingthecontinuedapplicabilityoftheSGTRlicensingbasissafetyanalysisbydemonstratingthattheconclusionsforSGTRUFSARanalysisremainvalid.AnevaluationhasbeenperformedtodeterminetheimpactontheDonaldC.CookUnits'GTRanalysisofrecordforincreasedMSSVsetpointtoleranceforallthecaseswithdifferentsteamgeneratortubepluggingandpowerlevelsstatedabove.TheprimarythermalhydraulicparameterswhichaffectthecalculationofoffsiteradiationdosesforaSGTRaretheamountofradioactivityassumedtobepresentinthereactorcoolant,theaniountofreactorcoolanttransferredtothesecondarysideoftherupturedsteamgeneratorthroughtherupturedtube,andtheamountofsteamreleasedfromtherupturedsteamgeneratortotheatmosphere.Thus,thecalculatedoffsiteradiationdosesforanSGTR'forDonaldC.Cookaredependentonthesethreefactors.91429R2.wpf24 SECI91<29,Revision2FortheUFSARSGTRanalysis,theactivityinthereactorcoolantisbasedonanassumptionof1%defectivefuel,andthisassumptionwillnotbeaffectedbytheincreasedMSSVsetpointtolerance.ThetworemainingfactorsareaffectedbytheincreasedMSSVsetpointtolerance,andtheevaluationwasperformedtoquantifythiseffect.ToevaluatetheeffectoftheincreasedMSSVsetpointtoleranceontheDonaldC.CookSGTRanalysis,therevisedSGsafetyvalvesetpressurewasloweredby3%from1080psiato1047.6psia.Thisresultedinaslightlyhigherequilibriumprimary-to-secondarybreakflow(approximately0.5%),sincetherewasanincreaseinthepressuredifferentialbetweentheRCSandsecondarysideassumedintheanalysis.Thesteamreleasedtotheatmospheresubsequentlyincreased(byapproximately0.2%)becauseofthelowerpressureassumedforthemainsteamsafetyvalves.Thelimitingcases,forallpowerlevelsandsteamgeneratortubeplugginglevelsconsidered,wereat3600MVft.ThethyroidandwholebodydosesestimatedforUnits1and2,basedontheanalysesdescribedabove,areboundedbythosepreviouslydeterminedforthereratingprogram.Theactualestimateddosefactors(comparedtotheresultsofthereratingcalculation)areasfollows:Unitf:thyroid0.7,wholebody1.005Unit2:thyroid0.99,wholebody0.98AlthoughtheUnit1wholebodydoseexceedsthepreviousvaluebyapproximately0.5%,thisincreaseiswellwithintheacceptablelimit.Thus,theresultsandconclusionintheDonaldC.CookUFSARthattheoffsitedosesforanSGTReventwouldbewithinasmallfractionofthe10CFR100guidelinesremainsvalid.5.ComnentPerformanceTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.Cookdoesnotdirectlyorindirectlyinvolvemechanicalcomponenthardwareconsiderations.Directeffectsaswellasindirecteffectsonequipmentimportanttosafety(ITS)havebeenconsidered.Indirecteffectsincludeactivitieswhichinvolvenon-safetyrelatedequipmentwhichmayaffectITSequipment.Componenthardwareconsiderationsmayincludeoverallcomponentintegrity,sub-componentintegrity,andthe9I429R2.wpf25 SECI91<29,Revision2adequacyofcomponentsupportsduringallplantconditions.Anevaluationisnotrequiredtodeterminewhethertheconditionaltersthedesign,material,constructionstandards,functionormethodofperformingthefunctionofanyITSequipment.6.SsteEvaluationTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.Cookasdescribedwouldnotaffecttheintegrityofaplantauxiliaryfluidsystemortheabilityofanyauxiliarysystemtoperformitsintendedsafetyfunction.7.RadioloicalEvaluationTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.CookasdescribeddonotaffectradiologicalconcernsotherthanthoseidentifiedaboveinSectionIII.4orpost-LOCAhydrogenproduction.TheevaluationinSectionsIII.1andGI.3concludedthattheexistingmassreleasesusedintheremainingoffsitedosecalculations(i.e.,steamlinebreak,rodejection,lockedrotor,andshort-term&long-termLOCA)arestillapplicable,8.PlantRikAnalactivitiesaffectiIPTherelaxationoftheliftsetpointtolerancefortheMSSVsatDonaldC.CookdoesnotadverselyaffecttheIndividualPlantExamination/PE)fortheplant.Thistestdoesnotaffectthenormalplantoperatingparameters,systemactuations,accidentmitigatingcapabilities,operatingproceduresorassumptionsimportanttotheIPEanalyses,orcreateconditionsthatwouldsignificantlyaffectcoredamageorplantdamagefrequencyorthefrequencyofcoredamageinitiatingevents.Therefore,theconclusionspresentedintheIPEremainvalid.9.PlantRiskAnaleschesotherthanIPFrelatTherelaxationoftheliftsetpointtolerancefortheMSSVsdoesnotresultinanincreaseintheprobabilityofoccurrenceofaccidentspreviouslyevaluatedintheUFSAR.ThisproposedchangetotheTechnicalSpecificationsdoesnotresultin,anincreaseintheprobabilityofoccurrenceofa91429R2.wpf26 SECI91<29,Revision2malfunctionofequipmentimportanttosafetyorofequipmentthatcouldindirectlyaffectequipmentimportanttosafety.10.TherelaxationoftheliftsetpointtolerancefortheMSSVsdoesnotdirectlyorindirectlyinvolveelectricalsystems,components,orinstrumentationconsiderations.Directeffectsaswellasindirecteffectsonequipmentimportanttosafetyhavebeenconsidered.Indirecteffectsincludeconditionsoractivitieswhichinvolvenon-safetyrelatedelectricalequipmentwhichmayaffectClass1E,postaccidentmonitoringsystems,orplantcontrolelectricalequipment.Considerationhasbeengiventoseismicandenvironmentalqualification,designandperformancecriteriaperIEEEstandards,functionalrequirements,andplanttechnicalspecificationswithrespecttoallplantconditions.AnevaluationisnotrequiredtodeterminewhethertheMSSVsetpointtolerancerelaxationaltersthedesign,configuration,qualification,orperformanceofsafetyrelatedelectricalsystemsorcomponents.TheMSSVsetpointtolerancerelaxationhasnopotentialforimpacttotheidentification1ofanunresolvedsafetyquestionasitwouldrelatetothesafetyrelatedfunctionofelectricalsystemsofcomponents.11.TechnicalSficatioAreviewoftheDonaldC.CookUnit1andUnit2TechnicalSpecificationswasperformedtoaddressachangeintheliftsetpointtolerancefortheMainSteamSafetyValves.TheTechnicalSpecificationreview,inclusiveofAmendments157and141forUnits1and2,respectively.ProposedmarkupsareattachedtothisevaluationforbothUnit1andUnit2,andreflectchangestoTable4.7-1and3.7-4,respectively.AchangetothebasisforbothunitsisalsoproposedanddiscussestherelationshipbetweentheJ1%andJ3%tolerances.91429R2.wpf27
SECL-91<29, Revision2At1133psia,anAFWflowrateof685gpmwithasymmetric flowsplitstothethreeintactsteamgenerators couldbesuppliedbasedoninformation contained inReference,10.
ThecurrentanalysisforthiseventassumedatotalAFWflowrateof600gpmwithanevensplitof200gpmtothethreeintactsteamgenerators.
SincethetotalAFWflowrateismorethansufficient toaccommodate AFWflowsplitdeviations ofasmuchas25gpmperloop,thecurrentFeedlineBreakanalysiscontinuetobeapplicable andremainboundingforthisevaluation.
Therefore, theresultsandconclusions presented intheUnit2UFSAR(14.2.8)remainvalid.-3%Tolerance:
Thesecondary steamreleasesgenerated forthelockedrotoroffsitedosecalculations forUnit2couldbepotentially affectedbyanincreaseintheMSSVsetpointtolerance from-1%to-3%.Reference 9transmitted themostrecentlockedrotordoseanalysis.
Giventhattheradiological assumptions usedintheReference 9analysisdonotchangewithanincreaseinMSSVsetpointtolerance (i.e.,rods-in-DNB andprimarytosecondary leakageremainat11%and1gpmrespectively) theonlyeffectthetolerance increasewouldhavewouldbeonthemassreleasevalues.Themethodology usedtocalculate thesemassesisbasedondetermining theamountofsecondary sideinventory requiredtocooldowntheRCS.Duringthefirsttwohours(0-2hours),theoperators areassumedtolowertheRCSaveragetemperature tono-loadconditions (547'F)bybleedingsteam.Overthenext6hours(2-8hours),theoperators willcooltheplantdownsuchthatMode4operation (hotshutdown) canbeentered.Theexistingsteamreleasecalculations forthe0-2hourperiodusedenthalpies corresponding tosaturated conditions atboththenominalfullpowerRCSaveragetemperature andtheno-loadtemperature (581.3'Fand547'F,respectively).
Thus,aslongastheincreased liftsetpointtolerance
(-3%)doesnotresultintheMSSVsremaining openatasaturation temperature outsideoftherangeidentified above,theexistingmassreleasesremainvalid(Reference 9),Theexistingmassreleasecalculations wereperformed usingthetemperatures previously identified (581.3'Fand547'F).PertheDonaldC.CookTechnical Specifications, thelowestsetMSSVoneachsteamgenerator willopenat1080psia(1065psig)notincluding anytolerance.
BasedontheASMESteamTables(Reference 6)atsaturated conditions, 547'Fcorresponds to1020.1psiaand9l-429R2.wp f10 SECL-91-429, Revision2represents theloweststeampressureconsidered inthemasscalculations.
Thus,theexistingreleasesincludeareseatpressureapproximately 5.5%belowthelowestTechnical Specification liftsetpoint.
Aslongasthevalvescontinuetoreseatwithinthis.pressurerange,thecurrentmassreleasesremainvalid.Theoperating windowsthatareapplicable forUnit1operation areboundedbytheUnit2doseanalysis.
Therefore, themassreleasesforUnit2,asfoundinReference 9,areapplicable toUnit1.Evaluation SummaThus,basedonthediscussions presented above,onlyoneUFSARnon-LOCAtransient isimpacted'uchthatanewanalysismustbeperformed inordertoaddresstheeffectsoftheMSSVliftsetpointtolerance increasefromJ1%toJ3%.Thiseventisthelossofexternalload/turbine tripaccident.
Fortheothertransients, theresultsandconclusions presented intheDonaldC.CookUnit1&2UFSARremainvalid.LossofExternalLoad/Turbine TriThelossofexternalload/turbine tripeventispresented inSection14.1.8oftheDonaldC.CookUFSAR.Thistransient iscausedbyaturbine-generator tripwhichresultsintheimmediate termination ofsteamflow.Sincenocreditistakenforadirectreactortriponturbinetrip,primaryandsecondary pressureandtemperature willbegintoincrease, actuating thepressurizer andsteamgenerator safetyvalves.Thereactorwilleventually betrippedbyoneoftheotherreactorprotection system(RPS)functions; specifically, overtemperature hT,highpressurizer
: pressure, orlow-lowsteamgenerator waterlevel.Theturbinetripeventisthelimitingnon-LOCAeventforpotential overpressurization, i.e.,thistransient formsthedesignbasisfortheprimaryandsecondary safetyvalves.SincetheMSSVswillnowpotentially beopeningatahigherpressureduetotheincreaseintheliftsetpointtolerance, itisnecessary toanalyzethistransient inordertodemonstrate thatalltheapplicable acceptance criteria91429R2.wpf SECL-91<29, Revision2aresatisfied.
Aturbinetripisclassified asanANScondition IIevent,afaultofmoderatefrequency.
Assuch,theappropriate acceptance criteriaareDNBR,peakprimarypressure, andpeaksecondary pressure.
Thetransient isdescribed ingreaterdetailintheUFSAR.TheturbinetripeventisanalyzedusingamodifiedversionoftheLOFTRANdigitalcomputercode(Reference 6).ThismodifiedversionofLOFTRANonlydiffersfromthestandardcodeversioninthewaytheMSSVsaremodelled.
Theprogramsimulates neutronkinetics, reactorcoolantsystem,pressurizer, pressurizer reliefandsafetyvalves,pressurizer spray,steamgenerators, andmainsteamsafetyvalves.Withthemodifiedcode,theMSSVsareexplicitly modeledasabankof5valvesoneachsteamgenerator withstaggered liftsetpoints.
WhereasthestandardLOFTRANversionprogramconservatively modelstheMSSVsasabankoffivevalves,allhavingonecommonliftsetpoint.
Bymodelling thestaggered behavioroftheMSSVs,amoreaccuratesimulation ofhowthevalvesactuallybehaveisachieved.
Sincehighersteampressures areconservative forthisevent,noblowdownorhysteresis behaviorwasassumed.Consistent withtheexistingUFSARanalysis, allassumptions werethesameaspreviously usedunlessspecifically noted.Thefollowing assumptions wereusedinthisanalysis:
a.Initialpower,temperature, andpressurewereattheirnominalvaluesconsistent with:1)ITDPmethodology (WCAP-8567) forUnit1,withtheexception thata2%conservatism oninitialcorepowerwasassumed.2)RTDPmethodology (WCAP-11397) forUnit2,withnoexceptions.
b.Turbinetripwasanalyzedwithbothminimumandmaximumreactivity feedback.
C.Turbinetripwasanalyzedbothwithandwithoutpressurizer pressurecontrol.ThePORVsandsprayswereassumedoperableinthe'cases withpressurecontrol.Thecaseswithpressurecontrolminimizetheincreaseinprimarypressurewhichisconservative fortheDNBRtransient.
Thecaseswithoutpressurecontrolmaximizetheincreaseinpressurewhichisconservative fortheRCSoverpressurization criterion.
91429R2.wpf
.12 SECI91<29,Revision2d.Thesteamgenerator PORVandsteamdumpvalveswerenotassumedoperable.
Thisassumption maximizes secondary pressurewhichinturnmaximizes theprimarytemperature forDNBRandprimarypressureforpressurecases.e.Mainfeedwater flowwasassumedtobelostcoincident withtheturbinetrip.Thisassumption maximizes theheatupeffects.f.Onlytheovertemperature dT,highpressurizer
: pressure, andlow-lowsteamgenerator waterlevelreactortripswereassumedoperableforthepurposesofthisanalysis.
g.TheflowrateforeachMSSVwasmodelledtoramplinearlyfromnoflowatitsliftsetpoint(3%abovethenominalTechnical Specification setpoint) tofullopenflowatitsfullopenpoint(6%abovethenominalsetpoint),
Thefullopenflowrateisbasedonareference fullflowcapacityof238ibm/secat1186.5psia(basedontheASMEratedflowforthesevalves).Forsecondary sidepressures betweentheinitialfullopenpointforeachvalveand1186.5psia,thefullopenflowratewasmodelledtovaryproportionally withpressure.
Thisassumption maximizes secondary pressurewhichinturnmaximizes theprimarytemperature forDNBRandprimarypressureforpressurecases.R~esulFourcasesforeachunit/core type(i.e.Unit1,Unit2mixedcore,andUnit2fullV5core)wereanalyzed:
a)minimumfeedbackwithoutpressurecontrol,b)maximumfeedbackwithoutpressurecontrol,c)maximumfeedbackwithpressurecontrol,andd)minimumfeedbackwithpressurecontrol.ThemostlimitingcasesinthecurrentUFSARcontinuetobethemostlimitingcases.Thecalculated sequenceofeventsforthefourcasesforeachunitarepresented inTables3and4.9l429R2.wp f13 SECI91<29,Revision2CaseA:Figures2through6showthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withoutpressurecontrol.Thereactoristrippedonhighpressurizer pressure.
Theneutronfluxremainsessentially constantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.
Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseB:Figures7through11showthetransient responsefortheturbinetripeventunderrnaxirnum reactivity feedbackconditions withoutpressurecontrol.Thecorepowerisobservedtoundergoamomentary increase.
Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytheincreaseinprimarypressure.
Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizer pressure.
TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue.Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseC:Figures12through16showthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withpressurecontrol~Thecorepowerisobservedtoundergoamomentary increase.
Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.
Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristripped\onlow-lowsteamgenerator waterlevel.TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue,Thepressurizer reliefvalves.and spraysmaintainprimarypressure91429R2.wpf 14 SECI91-429,Revision2below110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseD:Figures17through21showthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withpressurecontrol.Thereactoristrippedonhighpressurizer pressure.
AlthoughtheDNBRvaluedecreases belowtheinitialvalue,itremainswellabovethelimitthroughout theentiretransient.
Thepressurizer reliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.AnaliConclionnit1BasedontheresultsoftheseUnit1turbinetripanalyseswitha+3%tolerance ontheMSSVliftsetpoints, alloftheapplicable acceptance criteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondary pressures remainbelow110%ofdesignatalltimes.UNIT2:amixedandbfullV-5coresCaseA:Figures22athrough26b("a"designates mixedcorefiguresand"b"denotesfullV-5corefigures)showthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withoutpressurecontrolforbothcoretypes.Thereactoristrippedonhighpressurizer pressure.,
Theneutronfluxremainsessentially constantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.
Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.91429R2.wpf 15 SECL-91<29, Revision2CaseB:Figures27athrough31bshowthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withoutpressurecontrolforbothmixedandfullV-5coretypes.Thecorepowerisobservedtoundergoamomentary
: increase, Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.
Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizer pressure.
TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue.Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseC:Figures32athrough36bshowthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withpressurecontrolforthetwoapplicable Unit2coretypes.Thecorepowerisobservedtoundergoamomentary increase.
Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.
Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonlow-lowsteamgenerator waterlevel~TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue..Thepressurizer reliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseD:Figures37athrough41bshowthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withpressurecontrolforboththemixedandfullV-5cores.ThereactoristripPedonhighpressurizer pressure.
AlthoughtheDNBRvaluedecreases belowtheinitialvalue,itremainswellabovethelimitthroughout theentiretransient.
Thepressurizer reliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.The91429R2.wpf 16 SECL-91<29, Revision2mainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.AnalisConclusion nit2BasedontheresultsoftheseUnit2mixedandfullcoreturbinetripanalyseswitha+3%tolerance ontheMSSVliftsetpoints, alloftheapplicable acceptance criteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondary pressures remainbelow110%ofdesignatalltimes.Nn-AConclusio Theeffectsofincreasing theas-foundliftsetpointtolerance onthemainsteamsafetyvalveshavebeenexamined, andithasbeendetermined that,withoneexception, thecurrentaccidentanalysesaspresented intheUFSARremainvalid.Thelossofload/turbine tripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerance relaxation.
Aspreviously demonstrated inthissafetyevaluation, allapplicable acceptance criteriaforthiseventhavebeensatisfied andtheconclusions presented intheUFSARares'tillvalid.Thus,withrespecttothenon-LOCAtransients, theproposedTechnical Specification changedoesnotconstitute anunreviewed safetyquestion, andthenon-LOCAaccidentanalyses, aspresented inthereport,supporttheproposedchange,2.CAandARelatedEvaluations LaeBreakCAThecurrentlargebreakLOCAanalysesforDonaldC.CookUnits1and2wereperformed withtheNRCapproved1981Evaluation ModelplusBASH.Afterapostulated largebreakLOCAoccurs,theheattransferbetweenthereactorcoolantsystem(RCS)andthesecondary systemmaybeineitherdirection, depending ontherelativetemperatures.
Inthecaseofcontinued heatadditiontothesecondary system,thesecondary systempressureincreases andtheMSSVsmayactuatetolimitthepressure.
However,thisdoesnotoccurinthelargebreakevaluation modelsincenocreditistakenforauxiliary feedwater actuation.
Consequently, thesecondary systemactsasaheatsource.inthe91429R2.wpf 17 SECL-91<29, Revision2lpostulated largebreakLOCAtransient andthesecondary pressuredoesnotincrease.
Sincethesecondary systempressuredoesnotincrease, itisnotnecessary tomodeltheMSSVsetpointinthelargebreakevaluation model.Therefore, anincreaseintheallowable MSSVsetpointtolerance forDonaldC.CookUnits1and2willnotimpactthecurrentUFSARlargebreakLOCAanalyses.
mallBreakCAThesmallbreakLOCAanalysesforDonaldC.CookUnits1and2wereperformed withtheNRCapprovedEvaluation ModelusingtheNOTRUMPcode.Afterapostulated smallbreakLOCAoccurs,theheattransferbetweentheRCSandthesecondary systemmaybeineitherdirection depending ontherelativetemperatures.
Inthecaseofcontinued heatadditiontothesecondary system,thesecondary systempressureincreases whichleadstosteamreliefviatheMSSVs.InthesmallbreakLOCA,thesecondary flowaidsinthereduction ofRCSpressure.
Subsequently, DonaldC.CookUnits1and2werereanalyzed todetermine theimpactofanincreased MSSVsetpointtolerance of3%.Thelicensing basissmallbreakLOCAanalysisforDonaldC.CookUnit1includedasafetyevaluation toaddressa25gpmchargingpumpflowimbalance andoperation withthehighheadsafetyinjection crosstievalveclosedat3250MWtcorepowerlevel.Also,asafetyevaluation hadbeenperformed whichmodeledanincreased auxiliary feedwater enthalpydelaytime.Theseassumptions wereincorporated intheincreased MSSVsetpointtolerance NOTRUMPanalysisofthelimiting3inchbreakforUnit1.However,inordertoobtainadirectsensitivity fortheincreased MSSVsetpointtolerance, aNOTRUMPanalysiswasalsoperformed incorporating theseassumptions butmodelling theoriginalMSSVsetpoints.
Inaddition, a3inchNOTRUMPanalysiswasperformed forthelowpressure, hightemperature operating condition forUnit1sinceasafetyevaluation hadbeenoriginally performed aspartofthelicensing basisanalysis.
Theincreased MSSVsetpointtolerance, acorepowerlevelof3250MWt.withthe.highheadcrosstievalveclosed,anda25gpmchargingpumpflowimbalance wereassumedfortheanalysisofthelowpressure, hightemperature case.91429Rz.wp f18 SECL-91-429, Revision2DonaldC.CookUnit2wasreanalyzed forthelimiting3inchbreak,lowpressureandhightemperature operating condition withthehighheadcrosstievalveclosed.Thepowershapeaxialoffsetwasreducedfromthelicensing basisanalysisof+30%to+13%fortheMSSVincreaseanalysis.
Anaxialoffsetof+13%isequaltothevalueassumedinthelicensing basislargebreakLOCAanalysis.
Inaddition, thelicensing basisanalysisconservatively assumedamaximum"assemblyaveragepower(P+of1.519.The3%increased MSSVsetpointtolerance analysisassumedaP~whichwasreducedto1.46.Inordertoobtainadirectsensitivity fortheincreased MSSVsetpointtolerance, aNOTRUMPanalysiswasperformed incorporating theseassumptions butmodelling theoriginalMSSVsetpoints.
Tables5and6summarize theMSSVsetpoints usedintheDonaldC.CookUnits1and2currentlicensing basissmallbreakLOCAanalysesandtheincreased MSSVsetpointtolerance
: analyses, respectively.
Tables7and8summarize theinitialinputassumptions usedintheUnit1analysis.
TheUnit2initialinputassumptions aresummarized inTable9,ThetimesequenceofeventsandresultsoftheUnit1analysisaresummarized inTables10and11,respectively.
Thelimitingpeakcladtemperature calculated is1879'F,including a25'Fburstandblockagepenalty,forthe3%increased MSSVsetpointtolerance caseat3250MWtandthelowpressure, lowtemperature operating conditions'.
Thisvalueislessthantheacceptance criterialimitof2200'F.Themaximumlocalmetal-water reactionis3A7%,whichiswellbelowtheembrittlement limitof17%asrequiredby10CFR50.46.
Thetotalcoremetal-water reactionislessthan1.0%,corresponding tolessthan1.0percenthydrogengeneration, ascomparedtothe1%criterion of10CFR50.46.
ThetimesequenceofeventsandresultsoftheUnit2analysisaresummarized inTables12and13,respectively.
'Ihelimitingpeakcladtemperature calculated is2125'F,including a12'Fartificial leak-bypenaltyand157'Fburstandblockagepenalty,forthe3%increased MSSVsetpointtolerance caseat3250MWtandlowpressure, hightemperature operating condition.
Thisvalueislessthantheacceptance criterialimitof2200'F.Themaximumlocalmetal-water reactionis4.26%,whichisTheseresultsarefromcalculations usinganominalauxiliary fcedwater flow.Asubsequent analysisusingamorcconservative minimumauxiliary feedwater flowrateispresented inthcnextsection.91429R2.wpf 19 SECI91<29,Revision2wellbelowtheembrittlement limitof17%asrequiredby10CFR50.46.
Thetotalcoremetal-water reactionislessthan1.0%,corresponding tolessthan1.0percenthydrogengeneration, ascomparedtothe1%criterion of10CFR50.46.
Additional SmallBreakCAAnalsesThesmallbreakLOCAanalysisforCookUnit1,previously discussed, usednominalAuxiliary Feedwater (AFW)flowrates(1258gpmtotaldelivery),
whereasminimumAFWflowrateswereusedforCookUnit2,SinceminimumAFWflowratesaremorelimiting, thesmallbreakLOCAforCookUnit1for+3%MMSVsetpointtolerance wasreanalyzed usinglowerauxiliary feedwater flowrates(750gpmtotaldelivery).
Thefollowing presentstheresultsoftherevisedsmallbreakLOCAanalysesperformed forDonaldC.CookUnit1.BasedontheCookUnit1analysespresented intheprevioussection,twoadditional smallbreakLOCAcaseswereruntoaddressarelaxation to+3%fortheMSSVsetpointtolerance.
First,theoriginalLPLT(LowPressure, LowTemperature) casepresented above,theresultsofwhichareshowninTables10and11,wasrerunmodeling750gpmtotalAFWsystemflowrate.Aswasdemonstrated inReferences 11and12,theLPLTcaseisthelimitingcaseforthepressure/temperature operating windowforCookUnit1,andthatwillnotchangeduetothereduction inAFWflow.Inaddition, sinceonlythelimitingbreaksize(3inch)waspreviously
: analyzed, a2inchbreakwasalsoanalyzedforthe750gpmAFWflowratetoprovidefurtherassurance thatthelimitingbreaksizehasnotshiftedtoasmallerbreaksizeduetothereduction intheAFWflowrate.Notethatsinceboththereduction inAFWdelivered flowandtheincreaseinthesetpointtolerance to>3%tendtoshiftthelimitingbreaksizetoasmallerbreak,itisnotnecessary toconsiderthatthelimitingbreakcouldbelargerthanwaspresented inthecurrentlicensing basisanalysiswhichdemonstrated thatthe3inchbreakislimiting.
TheMSSVperformance assumedinthesenewcasesisshowninTable6.Theinitialinputparameters assumedforthesenewcasesareshowninTable7a,andarecomparedwiththeoriginallicensing basisinReference 11.IfthenewanalysisvaluesfromTable7aarecomparedwiththeoriginalevaluation casesshowninTable7,veryfewdifferences areevident.Exceptfortheauxiliary feedwater flowratean'daslightincreaseintheaccumulator watertemperature, theinitialRCS91429R2.wpf 20 SECL-91<29, Revision2pressurewasloweredtocoverasafetyevaluation thatwasperformed forpressurizer pressureuncertainty.
Incorporating thisnewRCSpressurehadanegligible effectonthevesselinletandoutlettemperatures andthesteampressureassumedforreactorsteady-state operation (priortoinitiation ofthetransient).
Onefinaladditional changeisintheAFWenthalpydelay.ThelowerAFWflowratewouldresultinalongerdelay.ThecurrentNOTRUMPmodelhasbeenimprovedtomodelthevolumeofhotmainfeedwater thatmustbepurgedfromthepipingpriortocoldAFWbeingdelivered tothesteamgenerator, andthedelayiscalculated bythemodel.Otherthantheseminordifferences, andtheintendedchange(i.e.,reduceAFWflowrateandincreaseaccumulator watertemperature),
theinitialconditions assumedfortheadditional runsareidentical totherunsperformed fortheprevioussection.ThetimesequenceofeventsandresultsoftheUnit1analysesaresummarized inTables10aand11a,respectively.
ThelimitingPeakCladTemperature (P~calculated is2068'F,including a117'Fburstandblockagepenalty,forthe+3%increased MSSVsetpointtolerance caseat3250MWtandlowpressure, lowtemperature operating condition.
Thisvalueislessthantheacceptance criterialimitof2200'F,andisalmostthesamecomputedresultthatisseenforD.'.CookUnit2(thepre-burst/blockage PCTof1951'Fversus1956'F).Themaximumlocalmetal-water reactionis5.06%,whichiswellbelowtheembrittlement limitof17%asrequiredby10CFR50.46.Thetotalcoremetal-water reactionislessthan1.0%,corresponding tolessthan1.0percenthydrogengeneration, ascomparedtothe1%criterion of10CFR50.46.The>3%increased MSSVsetpointtolerance hasbeenanalyzedfortheDonaldC.CookNuclearPlantUnit1forthesmallbreakLOCAanalysesperformed byWestinghouse.
Thepotential effectofthischangeontheFSARanalysisresultsforthesmallbreakLOCAanalysiswasexaminedviareanalysis andalthoughtheresultsaremorelimitingthanpreviousanalysiscases,itwasshownthattheeffectoftheincreased MSSVsetpointtolerance didnotresultinexceeding anyofthefollowing designorregulatory limits:1.Thecalculated peakfuelelementcladdingtemperature isbelowtherequirements of2200'F.2.Theamountoffuelelementcladdingthatreactschemically withwaterorsteamdoesnotexceed1percentofthetotalamountofZircaloyinthereactor.91429Rz.wpf 21 SECI91-429,Revision23.Thecladdingtemperature transient isterminated atatimewhenthecoregeometryisstillamenabletocooling.Thelocalized claddingoxidation limitof17percentisnotexceededduringorafterquenching.
4.Thecoreremainsamenabletocoolingduringandafterthebreak.5.Thecoretemperature isreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-lived radioactivity remaining inthecore.Therefore, itisconcluded thatarelaxation toJ3%fortheMSSVsetpointtolerance isacceptable fromthestandpoint ofthesmallbreakLOCAFSARaccidentanalysesdiscussed inthissafetyevaluation.
Post-LOCA LonTermCoreCoolinTheWestinghouse licensing positionforsatisfying therequirements of10CFR50.46 Paragraph (b),Item(5),"LongTermCooling,"
concludes thatthereactorwillremainshutdownbyboratedECCSwaterresidingintheRCS/sumpafteraLOCA.Sincecreditforthecontrolrods.isnottakenforalargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulators andtheRWSTmusthaveaboronconcentration that',whenmixedwithotherwatersources,willresultinthereactorcoreremaining subcritical assumingallcontrolrodsout.Thecalculation isbaseduponthereactorsteadystateconditions attheinitiation ofaLOCAandconsiders sourcesofbothboratedandunborated fluidinthepost-LOCA containment sump.Thesteadystateconditions areobtainedfromthelargebreakLOCAanalysiswhich,asstatedabove,doesnottakecreditforMSSVactuation.
Thusthepost-LOCA long-term corecoolingevaluation isindependent oftheMSSVsetpointtolerance, andtherewillbenochangeinthecalculated RCS/sumpboronconcentration afterapostulated LOCAforDonaldC.CookUnits1and2.HotSwitchover toPreventPotential BoronPreciitationPost-LOCA hotlegrecirculation timeisdetermined forinclusion inemergency operating procedures toensurenoboronprecipitation inthereactorvesselfollowing boilinginthecore.Thistimeis91429R2.wpf 22


SECL-91-429,Revision2IV.ASSESSMENTOFNOSAI'KFVUPONTherelaxationintheliftsetpointtolerancefortheMSSVsatDonaldC.CookUnits1and2hasbeenevaluatedconsistentwiththerequirementsof10CFR50.59anddoesnotinvolveanunreviewedsafetyquestiononthebasisofthefollowingjustifications:WilltheprobabilityofanaccidentpreviouslyevaluatedintheSARbeincreased?No.The+3%toleranceontheMSSVsetpointdoesnotincreasetheprobabilityofanaccidentpreviouslyevaluatedintheUFSAR.Therearenohardwaremodificationstothevalvesand,therefore,thereisnoincreaseintheprobabilityofaspuriousopeningofaMSSV.TheMSSVsareactuatedtoprotectthesecondarysystemsfromoverpressurizationafteranaccidentisinitiated.Sufficientmarginexistsbetweenthenormalsteamsystemoperatingpressureandthevalvesetpointswiththeincreasedtolerancetoprecludeanincreaseintheprobabilityofactuatingthevalves.Therefore,theprobabilityofanaccidentpreviouslyevaluatedintheUFSARwouldnotbeincreasedasaresultofincreasingtheMSSVliftsetpointtoleranceby3%aboveorbelowthecurrentTechnicalSpecificationsetpointvalue.2.WilltheconsequencesofanaccidentpreviouslyevaluatedintheSARbeincreased?No.Basedonthe'discussionspresentedwithin,alloftheapplicableLOCAandnon-LOCAdesignbasisacceptancecriteriaremainvalidbothforthetransientsevaluatedandthesingleeventanalyzed.Additionally,nonewlimitingsinglefailureisintroducedbytheproposedchange.TheDNBRandPCTvaluesremainwithinthespecifiedlimits'ofthelicensingbasis.AlthoughincreasingthevalvesetpointwillincreasethesteamreleasefromtherupturedsteamgeneratorabovetheUFSARvaluebyapproximately0.2%,theSGTRanalysisindicatesthat,thecalculateddosesareboundedbythosedeterminedforthereratingprogramwhich,inturn,arewithinasmallfractionofthe10CFR100doseguidelines.Theevaluationalsoconcludedthattheexistingmassreleasesusedintheoffsitedosecalculationsfortheremainingtransients(i.e.,steamlinebreak,rodejation)arestillapplicable.Therefore,basedontheabove,thereisnoincreaseinthedoseconsequences.91429R2.wpf28
SECL-91<29, Revision2dependent onpowerlevelandtheRCS,RWST,andaccumulator watervolumesandwiththeirassociated boronconcentrations.
TheproposedMSSVsetpointtolerance increaseto3%doesnotaffectthepowerlevelortheboronconcentrations assumedfortheRCS,RWST,andaccumulator inthehotlegswitchover calculation forUnit1.TheproposedMSSVsetpointtolerance increaseto3%'oesnotaffecttheboronconcentrations assumedfortheRCS,RWST,andaccumulator inthehotlegswitchover calculation forUnit2.Thecurrentlicensing basishotleg.switchover calculation forUnit2isatfullpower,3413MWt,withcrosstievalveatclosedposition.
WithMSSVsetpointtolerance increased to3%,Unit2LOCAanalysesassumedareducedcorepower,3250MWt,withcrosstievalveatclosedposition.
Areduction inpowerreducestheboil-offrateinthehotlegswitchover calculation.
Areduction intheboilwffrateresultsintherateofboronbuildupalsobeingreduced.Therefore, thelicensing basishotlegswitchover calculation fortheDonaldC.CookUnits1and2remainsbounding.
LOCAHdraulicForciFunctions Thepeakhydraulic forcingfunctions onthereactorvesselandinternals occurveryearlyinthelargebreakLOCAtransient.
Typically, thepeakforcingfunctions occurbetween10and50milliseconds (0.01and0.05seconds)andhavesubsidedwellbefore500milliseconds (0.50seconds).
Anychangeintimeassociated withanincreased MSSVsetpointtolerance wouldoccurseveralsecondsintothetransient.
SincetheLOCAhydraulic forcingfunctions havepeakedandsubsidedbeforethetimeatwhichtheMSSVmayactuate,theincreaseintheMSSVsetpointtolerance to3%willnotimpacttheLOCAhydraulic forcingfunctions calculation forDonaldC.CookUnits1and2.LOCAConclusio Theeffectofincreasing theMSSVsetpointtolerance to3%forDonaldC.CookUnits1and2hasbeenevaluated foreachoftheLOCArelatedanalysesaddressed intheUFSAR.Forcurrently analyzedconditions, orforUnit2operation atareducedpowerlevelof3250MWtwhenthehighheadcrosstievalvesareclosed,itwasshownthatthe3%MSSVsetpointtolerance doesnotresultinanydesignorRegulatory limitbeingexceeded.
Therefore, withrespecttotheLOCAanalyses, itcanbeconcluded thatincreasing theMSSVsetpointtolerance to3%forDonaldC.CookUnits1and2willbeacceptable from.thestandpoint oftheUFSARaccidentanalysesdiscussed inthesafety'valuation.
91429Rz.wp f23 SECI91429,Revision23.Containment TntriEvaluation
~~Relaxation oftheDonaldC.CookUnits1&2Technical Specification MainSteamSafetyValvesetpointtolerances from+1%to+3%donotadversely affecttheshorttermorlongtermLOCAmassandenergyreleasesand,subsequently, therelatedcontainment analyses.
Sincethereisnoimpactonthemainsteamlincbreakmassandenergyreleasecalculations, thereisalsonoimpactonthatassociated containment responseanalysis.
Theproposedchangedoesnotaffectthenormalplantoperating parameters, systemactuations, accidentmitigating capabilities orassumptions important tothemassandenergyreleaseandcontainment
: analyses, orcreatemorelimitingconditions thanthosealreadyassumedinthecurrentanalyses.
Therefore, theconclusions presented intheDonaldC,CookUFSARremainvalidwithrespecttocontainment.
4.SteamGenerator TubeRutureTodemonstrate thatanunreviewed safetyquestiondoesnotexistforthesteamgenerator tuberupture(SGTR)event,theincreased MSSVsetpointtolerance wasevaluated forDonaldC.CookUnits1and2.Theanalysisforupratingto3600MWTconsidered upto15%steamgenerator tubepluggingforbothUnits1and2.Thelimitingcasesfromthisanalysiswerereevaluated fortheincreased MSSVsetpointtolerance.
Anincreased steamgenerator tubeplugginglevelof20%wasalsoconsidered atpowerlevelsof3262MWTforUnit1and3425MWTforUnit2.ThecriteriastatedintheUFSARanalysisforDonaldC.Cookwereusedinestablishing thecontinued applicability oftheSGTRlicensing basissafetyanalysisbydemonstrating thattheconclusions forSGTRUFSARanalysisremainvalid.Anevaluation hasbeenperformed todetermine theimpactontheDonaldC.CookUnits'GTR analysisofrecordforincreased MSSVsetpointtolerance forallthecaseswithdifferent steamgenerator tubepluggingandpowerlevelsstatedabove.Theprimarythermalhydraulic parameters whichaffectthecalculation ofoffsiteradiation dosesforaSGTRaretheamountofradioactivity assumedtobepresentinthereactorcoolant,theaniountofreactorcoolanttransferred tothesecondary sideoftherupturedsteamgenerator throughtherupturedtube,andtheamountofsteamreleasedfromtherupturedsteamgenerator totheatmosphere.
Thus,thecalculated offsiteradiation dosesforanSGTR'forDonaldC.Cookaredependent onthesethreefactors.91429R2.wpf 24 SECI91<29,Revision2FortheUFSARSGTRanalysis, theactivityinthereactorcoolantisbasedonanassumption of1%defective fuel,andthisassumption willnotbeaffectedbytheincreased MSSVsetpointtolerance.
Thetworemaining factorsareaffectedbytheincreased MSSVsetpointtolerance, andtheevaluation wasperformed toquantifythiseffect.Toevaluatetheeffectoftheincreased MSSVsetpointtolerance ontheDonaldC.CookSGTRanalysis, therevisedSGsafetyvalvesetpressurewasloweredby3%from1080psiato1047.6psia.Thisresultedinaslightlyhigherequilibrium primary-to-secondary breakflow(approximately 0.5%),sincetherewasanincreaseinthepressuredifferential betweentheRCSandsecondary sideassumedintheanalysis.
Thesteamreleasedtotheatmosphere subsequently increased (byapproximately 0.2%)becauseofthelowerpressureassumedforthemainsteamsafetyvalves.Thelimitingcases,forallpowerlevelsandsteamgenerator tubeplugginglevelsconsidered, wereat3600MVft.Thethyroidandwholebodydosesestimated forUnits1and2,basedontheanalysesdescribed above,areboundedbythosepreviously determined forthereratingprogram.Theactualestimated dosefactors(compared totheresultsofthereratingcalculation) areasfollows:Unitf:thyroid0.7,wholebody1.005Unit2:thyroid0.99,wholebody0.98AlthoughtheUnit1wholebodydoseexceedsthepreviousvaluebyapproximately 0.5%,thisincreaseiswellwithintheacceptable limit.Thus,theresultsandconclusion intheDonaldC.CookUFSARthattheoffsitedosesforanSGTReventwouldbewithinasmallfractionofthe10CFR100guidelines remainsvalid.5.ComnentPerformance Therelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookdoesnotdirectlyorindirectly involvemechanical component hardwareconsiderations.
Directeffectsaswellasindirecteffectsonequipment important tosafety(ITS)havebeenconsidered.
Indirecteffectsincludeactivities whichinvolvenon-safety relatedequipment whichmayaffectITSequipment.
Component hardwareconsiderations mayincludeoverallcomponent integrity, sub-component integrity, andthe9I429R2.wpf 25 SECI91<29,Revision2adequacyofcomponent supportsduringallplantconditions.
Anevaluation isnotrequiredtodetermine whetherthecondition altersthedesign,material, construction standards, functionormethodofperforming thefunctionofanyITSequipment.
6.SsteEvaluation Therelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookasdescribed wouldnotaffecttheintegrity ofaplantauxiliary fluidsystemortheabilityofanyauxiliary systemtoperformitsintendedsafetyfunction.
7.RadioloicalEvaluation Therelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookasdescribed donotaffectradiological concernsotherthanthoseidentified aboveinSectionIII.4orpost-LOCA hydrogenproduction.
Theevaluation inSectionsIII.1andGI.3concluded thattheexistingmassreleasesusedintheremaining offsitedosecalculations (i.e.,steamline break,rodejection, lockedrotor,andshort-term
&long-term LOCA)arestillapplicable, 8.PlantRikAnalactivities affectiIPTherelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookdoesnotadversely affecttheIndividual PlantExamination
/PE)fortheplant.Thistestdoesnotaffectthenormalplantoperating parameters, systemactuations, accidentmitigating capabilities, operating procedures orassumptions important totheIPEanalyses, orcreateconditions thatwouldsignificantly affectcoredamageorplantdamagefrequency orthefrequency ofcoredamageinitiating events.Therefore, theconclusions presented intheIPEremainvalid.9.PlantRiskAnaleschesotherthanIPFrelatTherelaxation oftheliftsetpointtolerance fortheMSSVsdoesnotresultinanincreaseintheprobability ofoccurrence ofaccidents previously evaluated intheUFSAR.ThisproposedchangetotheTechnical Specifications doesnotresultin,anincreaseintheprobability ofoccurrence ofa91429R2.wpf 26 SECI91<29,Revision2malfunction ofequipment important tosafetyorofequipment thatcouldindirectly affectequipment important tosafety.10.Therelaxation oftheliftsetpointtolerance fortheMSSVsdoesnotdirectlyorindirectly involveelectrical systems,components, orinstrumentation considerations.
Directeffectsaswellasindirecteffectsonequipment important tosafetyhavebeenconsidered.
Indirecteffectsincludeconditions oractivities whichinvolvenon-safety relatedelectrical equipment whichmayaffectClass1E,postaccidentmonitoring systems,orplantcontrolelectrical equipment.
Consideration hasbeengiventoseismicandenvironmental qualification, designandperformance criteriaperIEEEstandards, functional requirements, andplanttechnical specifications withrespecttoallplantconditions.
Anevaluation isnotrequiredtodetermine whethertheMSSVsetpointtolerance relaxation altersthedesign,configuration, qualification, orperformance ofsafetyrelatedelectrical systemsorcomponents.
TheMSSVsetpointtolerance relaxation hasnopotential forimpacttotheidentification 1ofanunresolved safetyquestionasitwouldrelatetothesafetyrelatedfunctionofelectrical systemsofcomponents.
11.Technical SficatioAreviewoftheDonaldC.CookUnit1andUnit2Technical Specifications wasperformed toaddressachangeintheliftsetpointtolerance fortheMainSteamSafetyValves.TheTechnical Specification review,inclusive ofAmendments 157and141forUnits1and2,respectively.
Proposedmarkupsareattachedtothisevaluation forbothUnit1andUnit2,andreflectchangestoTable4.7-1and3.7-4,respectively.
Achangetothebasisforbothunitsisalsoproposedanddiscusses therelationship betweentheJ1%andJ3%tolerances.
91429R2.wpf 27


SECL-91<29,Revision23.MaythepossibilityofanaccidentwhichisdifferentthananyalreadyevaluatedintheSARbecreated?No.AspreviouslyindicatedinSectionIII.1,theInadvertentOpeningofaSGRelieforSafetyValveeventiscurrentlypresentedintheDonaldC.CookUFSAR(Section14.2.5)andisboundedbytheSteamlineBreakanalysis.Increasingtheas-foundliftsetpointtoleranceontheMSSVsdoesnotintroduceanewaccidentinitiatormechanism.Nonewfailuremodeshavebeendefinedforanysystemorcomponentimportanttosafetynorhasanynewlimitingsinglefailurebeenidentified.NoaccidentwillbecreatedthatwillincreasethechallengetotheMSSVsandresultinincreasedactuationofthevalves.Therefore,thepossibilityofanaccidentdifferentthananyalreadyevaluatedintheUFSARisnotcreated.4.WilltheprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheSARbeincreased?No.Althoughtheproposedchangetakesplaceinequipmentutilizedtopreventoverpressurizationonthesecondarysideandtoprovideanadditionalheatremovalpath,increasingtheas-foundliftsetpointtoleranceontheMSSVswillnotadverselyaffecttheoperationofthereactorprotectionsystem,anyoftheprotectionsetpoints,oranyotherdevicerequiredforaccidentmitigation.Therefore,theprobabilityofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheUFSARwillnotbeincreased.5.WilltheconsequencesofamalfunctionofequipmentimportanttosafetypreviouslyevaluatedintheSARbeincreased?No.AsdiscussedintheresponsetoQuestions2and4,thereisnoincreaseinthedosereleaseconsequencesasaresultofincreasingtheas-foundliftsetpointtoleranceontheMSSVsasdefinedintheattachedsafetyevaluation.91429R2.wpf29 SECI91429,Revision26.MaythepossibilityofamalfunctionofequipmentimportanttosafetydifferentthananyalreadyevaluatedintheSARbecreated?No.AsdiscussedinQuestion4,anincreaseintheas-foundliftsetpointtoleranceontheMSSVswillnotimpactanyotherequipmentimportanttosafety.Therefore,thepossibilityofamalfunctionofequipmentimportanttosafetydifferenttharianyalreadyevaluatedintheUFSARwillnotbecreated.7.Willthemarginofsafetyasdefinedinthebasestoanytechnicalspecificationbereduced?No.Asdiscussedinthea~chedsafetyevaluation,theproposedincreaseintheas-foundMSSVliftsetpointtolerancewillnotinvalidatetheLOCAornon-LOCAconclusionspresentedintheUFSARaccidentanalyses.Thenewlossofload/turbinetripanalysisconcludedthatallapplicableacceptancecriteriaarestillsatisfied.ForalltheUFSARnon-LOCAtransients,theDNBdesignbasis,primaryandsecondarypressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperaturesremainbelowthelimitsspecifiedin10CFR50.46.Thecalculateddosesresultingfromasteamgeneratortuberuptureeventremainwithinasmallfractionofthe10CFR100permissiblereleases.Thus,thereisnoreductioninthemargintosafety.Notethat,asidentifiedearlier,changeswillberequiredtotheplantTechnicalSpecificationsinordertoimplementtheproposedchange.9l429R2.wpf30 SECL-91<29,Revision2SDTheproposedchangetomainsteamsafetyvalveliftsetpointtolerancesfrom+1%to+3%hasbeenevaluatedbyWestinghouse.TheprecedinganalysesandevaluationshavedeterminedthatoperationwiththeMSSVsetpointswithinaJ3%toleranceaboutthenominalvalueswillhavenoadverseimpactuponthelicensingbasisanalyses,aswellasthesteamlinebreakmass&energyreleaseratesinsideandoutsideofcontainment.Inaddition,itisconcludedthattheJ3%toleranceontheMSSVsetpointdoesnotadverselyaffecttheoverpowerorovertemperatureprotectionsystem.Asaresult,adequateprotectiontothecorelimitlinescontinuestoexists.Therefore,alllicensingbasiscriteriacontinuetobesatisfiedandtheconclusionsintheUFSARremainvalid.Thus,basedontheinformationpresentedabove,itcanbeconcludedthattheproposedincreaseofmainsteamsafetyvalveliftsetpointtolerancesfromJ1%toJ3%doesnotrepresentanunreviewedsafetyquestionperthedefinitionandrequirementsdefinedin10CFR50.59.TherecommendedTechnicalSpecificationchanges,alongwithanosignificanthazardsevaluation,arepresentedasappendicestothisevaluation.91429Rz.wpf31 SECL-91-429,Revision2VI.REFERENCES1)DonaldC.CookUnits1&2TechnicalSpecificationsthroughAmendments157and141,respectively,10/1/91.2)ANSI/ASMEBPV-I11-1-NB,"ASMEBoilerandPressureVesselCode-SectionIIIRulesforConstructionofNuclearPowerPlantComponents,"ASME,1983.3)ANSUASMEOM-1-1981,"RequirementsforInservicePerformanceTestingofNuclearPowerPlantPressureReliefDevices,"ASME,1981.4)"DonaldC.CookUnits1&2UpdatedFinalSafetyAnalysisReport(UFSAR),datedthroughJuly1991.5)ASMESteamTables,FifthEdition,1983.6)'urnett,T.W.T.,etal.,"LOFTRANCodeDescription,"WCAP-7907-P-A,June1972.7)Chelemer,H.etal~,"ImprovedThermalDesignProcedure,"WCAP-8567-P-A,February1989.8)Butler,J.C.andD.S.Love,"SteamlineBreakMass/EnergyReleasesforEquipmentEnvironmentalQualificationOutsideContainment,"WCAP-10961-P,October1985.9)90AE*-G4126W/AEP2-0098Transmittalregarding"LockedRotorDoseAnalysisforDonaldC.CookUnit2Cycles8&9,"7/19/90.10)LetterregardingAFWflowratesfromR.B.BennettofAmericanElectricPowertoJ.N.SteinmetzofWestinghouseElectric,9/24/91.11)WCAP-10054-P-A(Proprietary),WCAP-10081(Non-Proprietary),Lee,H.,etal.,WestinghouseSmallBreakECCSEvaluationModelUsingtheNOTRUMPCode,August1985.12)WCAP-12135,DonaldC.CookNuclearPlantUnits1and2ReratingEngineeringReport,Vol.1,September1989.91429R2.wpf32 SECL-91<29,Revision2TABLE3UNITITURBINETRIPSEQUENCEAccidentWithoutpressurizercontrol(minimumreactivityfeedback)Withoutpressurizercontrol(maximumreactivityfeedback)Withpressurizercontrol(maximumreactivityfeedback)Withpressurizercontrol(minimumreactivityfeedback)'ventTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowPeakpressurizerpressureoccursLow-lowsteamgeneratorwaterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHigh-pressurizerpressurereactortripsetpointreachedTimesec0.0779.710.50.07.99.910.50.010.047.149.10.012.491429Rz.wpf33 SECL-91<29,Revision2TABLE3(continued)UNITITURBINETRIPSEQUENCEAccidentEventRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursT~imesec14.416.015.5*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf34 SECL-91<29,Revision2TABLE4UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithoutpressurizercontrol(minimumreactivityfeedback)Withoutpressurizercontrol(maximumreactivityfeedback)EventTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccursT~imeeeeInixedcore0.05.57.59.50.05.57.59.0fullcore0.07.59.511.00.07.69.610.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf35
SECL-91-429, Revision2IV.ASSESSMENT OFNOSAI'KFVUPONTherelaxation intheliftsetpointtolerance fortheMSSVsatDonaldC.CookUnits1and2hasbeenevaluated consistent withtherequirements of10CFR50.59 anddoesnotinvolveanunreviewed safetyquestiononthebasisofthefollowing justifications:
Willtheprobability ofanaccidentpreviously evaluated intheSARbeincreased?
No.The+3%tolerance ontheMSSVsetpointdoesnotincreasetheprobability ofanaccidentpreviously evaluated intheUFSAR.Therearenohardwaremodifications tothevalvesand,therefore, thereisnoincreaseintheprobability ofaspuriousopeningofaMSSV.TheMSSVsareactuatedtoprotectthesecondary systemsfromoverpressurization afteranaccidentisinitiated.
Sufficient marginexistsbetweenthenormalsteamsystemoperating pressureandthevalvesetpoints withtheincreased tolerance toprecludeanincreaseintheprobability ofactuating thevalves.Therefore, theprobability ofanaccidentpreviously evaluated intheUFSARwouldnotbeincreased asaresultofincreasing theMSSVliftsetpointtolerance by3%aboveorbelowthecurrentTechnical Specification setpointvalue.2.Willtheconsequences ofanaccidentpreviously evaluated intheSARbeincreased?
No.Basedonthe'discussions presented within,alloftheapplicable LOCAandnon-LOCAdesignbasisacceptance criteriaremainvalidbothforthetransients evaluated andthesingleeventanalyzed.
Additionally, nonewlimitingsinglefailureisintroduced bytheproposedchange.TheDNBRandPCTvaluesremainwithinthespecified limits'of thelicensing basis.Althoughincreasing thevalvesetpointwillincreasethesteamreleasefromtherupturedsteamgenerator abovetheUFSARvaluebyapproximately 0.2%,theSGTRanalysisindicates that,thecalculated dosesareboundedbythosedetermined forthereratingprogramwhich,inturn,arewithinasmallfractionofthe10CFR100doseguidelines.
Theevaluation alsoconcluded thattheexistingmassreleasesusedintheoffsitedosecalculations fortheremaining transients (i.e.,steamline break,rodejation)arestillapplicable.
Therefore, basedontheabove,thereisnoincreaseinthedoseconsequences.
91429R2.wpf 28


SECL-91<29,Revision2TABLE4(continued)UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithpressurizercontrol(maximumreactivityfeedback)Withpressurizercontrol(minimumreactivityfeedback)EventTurbinetrip,lossofmainfeedwaterflowPeakpressurizerpressureoccursLow-lowsteamgeneratorwaterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwaterflowHighpressurizerpressurereactortripsetpointreachedRodsbegintodropPeakpressurizerpressureoccursMinimumDNBRoccurscore0.07.060.162.10.010.612.613.514.5Timeecfullcore0.07.552.854.80.011.213.214.515.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf36 SECI91-429,Revision2TABLE5CURREN'I'ICENSINGBASISSTEAMLINESAFETYVALVESPERLOOPSafetyValve1A1B2A2BSetpoint10651065107510751085PercentAccumulation10.010.08.988.98,7.97Accumulation1171.51171.51171.51171.51171.5FlowrateAcc.857690857690857690857690857690Theratedvalvecapacityatfullaccumulationpressurewascalculatedasfollows:51.5xAxKxP=ActualFlowratewhere:A=Valveorificearea=16in'=Coefficientofdischarge=0.975P=Pressure(psia)ataccumulationpressureTheaboveactualfiowrateisreducedby0.9togetthevalveratedcapacity.91429R2.wpf37 SECI91<29,Revision2TABLE6MSSVSETPOINTINCREASESTEAMLINESAFEIVVALVESPERLOOPSafetyValve1A1B2A2BSetpointPressure1096.951096.951107.251107.251117.55Percentccumulation3.03.03.03.03.0Accumulation1129.861129.861140.471140.471151.08FlowrateAcc827585.6827585.6835257.2835257.2842928.9Theratedvalvecapacityatfullaccumulationpressurewascalculatedasfollows:51.5xAxKxP'=ActualFlowratewhere:A=Valveorificearea=16inK=Coefficientofdischarge=0.975P=Pressure(psia)ataccumulationpressureTheaboveactualflowrateisreducedby0.9togetthevalveratedcapacity.91429R2.wpf38 SECL-91-429,Revision?PRESSURE,LOWTEMPERATURECurrentLicensingBasis3588'.32+301.551.433159461350600354000509.89581.712100564.361512012027518601715271010Closed2.04,40.08.060'able5LicenseCorePower'MWt)TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulatorWaterVolume(ft')AccumulatorTankVolume(ft')MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)'esselOutletTemperature(F)'CSPressure(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperature(F)MaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpin)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.32+301.551.433'15OFA9461350600354000513.23578.572100596.481512012027518601715271025Closed4,44,40.08.0272Table6Twopercentisaddedtothispowertoaccountforcalorimetricerror.Asafetyevaluationfor25gpmchargingflowimbalancelimitsoperationwithHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.Asafetyevaluationwasperformedtoaccountforaauxiliaryfeedwaterenthalpydelayof272seconds.9l429R2.wpf39 SECI91-429,Revision2TABLE7aInitialInputParametersfortheSmallBreakLOCAAnalysisLicenseCorePower'MWt)TotalPeakingFactor,F<.AxMOffset(%)HotChannelEnthalpyRiseFactor,P~MaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulatorWaterVolume(ft')AccumulatorTankVolume(ft)MirumumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature('F)'esselOutletTemperature('F)'CSPressure(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperatureMaximumCondensateStorageTankTemperature('F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterTotalDelivery(gpm)AuxiliaryFeedwaterDeliveryDelayTime(sec)MainSteamSafetyValveSetpoint(psia)AccumulatorTemperature('F)('F)CurrentLicensing~Bas'588'.32+301.551.43315X1509461350600354000509.89581.712100564.361512012027518601715271010Closed2.04.40.08.0125860'able1120MSSVSetpointIncrease32502'.32+301.551.433FA9461350600354000513.20578.442033596.111512012027518601715271025Closed4.44.40.08.075060'able2130Twopercentisaddedtothispowertoaccountforcalorimetricerror.Asafetyevaluationfor25gpmchargingfiowimbalancelimitsoperationwithHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTAvo..Asafetyevaluationwasperformedtoaccountforanauxiliaryfeedwaterenthalpydelayof272seconds.EnthalpydelaycomputedinternallybasedonAFWflowrateand75ft'urgevolume.40
SECL-91<29, Revision23.Maythepossibility ofanaccidentwhichisdifferent thananyalreadyevaluated intheSARbecreated?No.Aspreviously indicated inSectionIII.1,theInadvertent OpeningofaSGRelieforSafetyValveeventiscurrently presented intheDonaldC.CookUFSAR(Section14.2.5)andisboundedbytheSteamline Breakanalysis.
Increasing theas-foundliftsetpointtolerance ontheMSSVsdoesnotintroduce anewaccidentinitiator mechanism.
Nonewfailuremodeshavebeendefinedforanysystemorcomponent important tosafetynorhasanynewlimitingsinglefailurebeenidentified.
Noaccidentwillbecreatedthatwillincreasethechallenge totheMSSVsandresultinincreased actuation ofthevalves.Therefore, thepossibility ofanaccidentdifferent thananyalreadyevaluated intheUFSARisnotcreated.4.Willtheprobability ofamalfunction ofequipment important tosafetypreviously evaluated intheSARbeincreased?
No.Althoughtheproposedchangetakesplaceinequipment utilizedtopreventoverpressurization onthesecondary sideandtoprovideanadditional heatremovalpath,increasing theas-foundliftsetpointtolerance ontheMSSVswillnotadversely affecttheoperation ofthereactorprotection system,anyoftheprotection setpoints, oranyotherdevicerequiredforaccidentmitigation.
Therefore, theprobability ofamalfunction ofequipment important tosafetypreviously evaluated intheUFSARwillnotbeincreased.
5.Willtheconsequences ofamalfunction ofequipment important tosafetypreviously evaluated intheSARbeincreased?
No.Asdiscussed intheresponsetoQuestions 2and4,thereisnoincreaseinthedosereleaseconsequences asaresultofincreasing theas-foundliftsetpointtolerance ontheMSSVsasdefinedintheattachedsafetyevaluation.
91429R2.wpf 29 SECI91429,Revision26.Maythepossibility ofamalfunction ofequipment important tosafetydifferent thananyalreadyevaluated intheSARbecreated?No.Asdiscussed inQuestion4,anincreaseintheas-foundliftsetpointtolerance ontheMSSVswillnotimpactanyotherequipment important tosafety.Therefore, thepossibility ofamalfunction ofequipment important tosafetydifferent tharianyalreadyevaluated intheUFSARwillnotbecreated.7.Willthemarginofsafetyasdefinedinthebasestoanytechnical specification bereduced?No.Asdiscussed inthea~chedsafetyevaluation, theproposedincreaseintheas-foundMSSVliftsetpointtolerance willnotinvalidate theLOCAornon-LOCAconclusions presented intheUFSARaccidentanalyses.
Thenewlossofload/turbine tripanalysisconcluded thatallapplicable acceptance criteriaarestillsatisfied.
ForalltheUFSARnon-LOCAtransients, theDNBdesignbasis,primaryandsecondary pressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperatures remainbelowthelimitsspecified in10CFR50.46.
Thecalculated dosesresulting fromasteamgenerator tuberuptureeventremainwithinasmallfractionofthe10CFR100permissible releases.
Thus,thereisnoreduction inthemargintosafety.Notethat,asidentified earlier,changeswillberequiredtotheplantTechnical Specifications inordertoimplement theproposedchange.9l429R2.wpf 30 SECL-91<29, Revision2SDTheproposedchangetomainsteamsafetyvalveliftsetpointtolerances from+1%to+3%hasbeenevaluated byWestinghouse.
Thepreceding analysesandevaluations havedetermined thatoperation withtheMSSVsetpoints withinaJ3%tolerance aboutthenominalvalueswillhavenoadverseimpactuponthelicensing basisanalyses, aswellasthesteamline breakmass&energyreleaseratesinsideandoutsideofcontainment.
Inaddition, itisconcluded thattheJ3%tolerance ontheMSSVsetpointdoesnotadversely affecttheoverpower orovertemperature protection system.Asaresult,adequateprotection tothecorelimitlinescontinues toexists.Therefore, alllicensing basiscriteriacontinuetobesatisfied andtheconclusions intheUFSARremainvalid.Thus,basedontheinformation presented above,itcanbeconcluded thattheproposedincreaseofmainsteamsafetyvalveliftsetpointtolerances fromJ1%toJ3%doesnotrepresent anunreviewed safetyquestionperthedefinition andrequirements definedin10CFR50.59.
Therecommended Technical Specification changes,alongwithanosignificant hazardsevaluation, arepresented asappendices tothisevaluation.
91429Rz.wp f31 SECL-91-429, Revision2VI.REFERENCES 1)DonaldC.CookUnits1&2Technical Specifications throughAmendments 157and141,respectively, 10/1/91.2)ANSI/ASME BPV-I11-1-NB, "ASMEBoilerandPressureVesselCode-SectionIIIRulesforConstruction ofNuclearPowerPlantComponents,"
ASME,1983.3)ANSUASMEOM-1-1981, "Requirements forInservice Performance TestingofNuclearPowerPlantPressureReliefDevices,"
ASME,1981.4)"DonaldC.CookUnits1&2UpdatedFinalSafetyAnalysisReport(UFSAR),datedthroughJuly1991.5)ASMESteamTables,FifthEdition,1983.6)'urnett, T.W.T.,etal.,"LOFTRANCodeDescription,"
WCAP-7907-P-A, June1972.7)Chelemer, H.etal~,"Improved ThermalDesignProcedure,"
WCAP-8567-P-A, February1989.8)Butler,J.C.andD.S.Love,"Steamline BreakMass/Energy ReleasesforEquipment Environmental Qualification OutsideContainment,"
WCAP-10961-P, October1985.9)90AE*-G4126 W/AEP2-0098 Transmittal regarding "LockedRotorDoseAnalysisforDonaldC.CookUnit2Cycles8&9,"7/19/90.10)Letterregarding AFWflowratesfromR.B.BennettofAmericanElectricPowertoJ.N.Steinmetz ofWestinghouse
: Electric, 9/24/91.11)WCAP-10054-P-A (Proprietary),
WCAP-10081 (Non-Proprietary),
Lee,H.,etal.,Westinghouse SmallBreakECCSEvaluation ModelUsingtheNOTRUMPCode,August1985.12)WCAP-12135, DonaldC.CookNuclearPlantUnits1and2ReratingEngineering Report,Vol.1,September 1989.91429R2.wpf 32 SECL-91<29, Revision2TABLE3UNITITURBINETRIPSEQUENCEAccidentWithoutpressurizer control(minimumreactivity feedback)
Withoutpressurizer control(maximumreactivity feedback)
Withpressurizer control(maximumreactivity feedback)
Withpressurizer control(minimumreactivity feedback)'vent Turbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowPeakpressurizer pressureoccursLow-lowsteamgenerator waterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowHigh-pressurizer pressurereactortripsetpointreachedTimesec0.0779.710.50.07.99.910.50.010.047.149.10.012.491429Rz.wp f33 SECL-91<29, Revision2TABLE3(continued)
UNITITURBINETRIPSEQUENCEAccidentEventRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursT~imesec14.416.015.5*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf 34 SECL-91<29, Revision2TABLE4UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithoutpressurizer control(minimumreactivity feedback)
Withoutpressurizer control(maximumreactivity feedback)
EventTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursT~imeeeeInixedcore0.05.57.59.50.05.57.59.0fullcore0.07.59.511.00.07.69.610.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wp f35


SECI91-429,Revision2TABLE8LOWPRESSURE,HIGHTEMPERATURELicenseCorePower'MWt)TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,PuFuelAssemblyArrayAccumulatorWaterVolume(ft')AccumulatorTankVolume(ft')MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)'esselOutletTemperature(F)'CSPressure(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperature(F)MaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint('psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)CurrentLicensingBasisNANANANANANANANANANANANANANANANANANANANANANANANANANANANANANAMSSVSetpointIncrease3250232+301.55'.43315X15OFA9461350600354000543.63606.792100793.901512012027518601715271025Closed4.44.40.08.0272Table61Twopercentisaddedtothispowertoaccountforcalorimetricerror.2Asafetyevaluationforthelowpressure,hightemperatureoperatingconditionwasperformedinthelicensingbasisanalysis.3Valueisbased.on102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.91429R2.wpf41 SECL-91<29,Revision2TABLE9LOWPRESSURE,HIGHTEMPERATURECurrentLicensingBasis34132.34+30Factor,F1.644ePower,Pn1.519179461350600354000544.41610.192100807.031512012027518601715271025Closed4.74.40.08.0349Table5LicenseCorePower'MWt)TotalPeakingFactor,FzAxialOffset(%)HotChannelEnthalpyRiseMaximumAssemblyAveragFuelAssemblyArrayAccumulatorWaterVolume(fP)AccumulatorTankVolume(ft')MinimumAccumulatorGasPressure,(psia)LoopFlow(gpm)VesselInletTemperature(F)~VesselOutletTemperature(F)'CSPressureIncludingUncertainties(psia)SteamPressure(psia)'teamGeneratorTubePluggingLevel(%)MaximumRefuelingWaterStorageTankTemperature(F)MaximumCondensateStorageTankTemperature(F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjectionSignalSetpoint(psia)SafetyInjectionDelayTime(sec)SafetyInjectionPumpDegradation(%)ChargingPumpFlowImbalance(gpm)HHSICrossTieValvePositionSignalProcessingDelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwaterIsolationDelayTime(sec)MainFeedwaterValveClosureTime(sec)AuxiliaryFeedwaterEnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.357+131.6661.46'17V59461350600354000544.41610.192100807.031512012027518601715271025Closed4.7442.06.0349Table61Twopercentisaddedtothispowertoaccountforcalorimetricerror.2Valueisbasedon102%corepower,maincoolantpumpheatneglected,andbestestimateTavg.91<29R2.wpf SECI91<29,Revision2TABLE10TIMESEQUENCEOFEVENTSEventLPLTLPLTLPHTLPHTw/MSSVw/oMSSVw/MSSVw/oMSSVBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionsignalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorecoveredSIflowrateexceedsbreakflowrate011.2319.2846.28643.4NANA1139.21730.01935.5NA198800011.2313.5413.5419.2822.4222.4246.2849.4249.42644.7601.8608.3NANANANANANA1077.31073.41057.81751.01647.81695.81831.41872.31824.7NANANA202422932284LPLTislowpressure,lowtemperatureoperatingcondition.LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3250MWtcorepower.91429R2.wpf43 TABLE10aTIMESEQUENCEOFEVFATSSECL-91-429,Revision2EventLPLTw/MSSV2inchBreakTime(seconds)LPLTw/MSSV3inchBreakBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionStartofauxiliaryfeedwaterdeliveryLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccurs'opofcorecoveredSIflowrateexceedsbreakflowrate0.08.6417.1344.1368.6592N/AN/A98416801890N/A18900.019.0337.1164.1179.11390N/AN/A2312N/A4042N/A4091LPLTislowpressure,lowtemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.
SECL-91<29, Revision2TABLE4(continued)
SECL-91-429,Revision2TABLE11SUMMITRYOFRFSULTSNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H,OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature('F)LPLTw/MSSV1853.711.751935.53.4711.75<1.0None251878.7LPLTw/oMSSV1772.911.751831.42.4711.75<1.0None151787.9LPHTLPHTw/MSSVw/oMSSV1837.71710.311.7511.751872.31824.73.131.8211.7511.75<1.0<1.0NoneNone16151853.71725.3LPLTislowpressure,lowtemperatureoperatingcondition.LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3250MWtcorepower.91429R2.wpf45
UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithpressurizer control(maximumreactivity feedback)
Withpressurizer control(minimumreactivity feedback)
EventTurbinetrip,lossofmainfeedwater flowPeakpressurizer pressureoccursLow-lowsteamgenerator waterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccurscore0.07.060.162.10.010.612.613.514.5Timeecfullcore0.07.552.854.80.011.213.214.515.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wp f36 SECI91-429,Revision2TABLE5CURREN'I'ICENSING BASISSTEAMLINESAFETYVALVESPERLOOPSafetyValve1A1B2A2BSetpoint10651065107510751085PercentAccumulation 10.010.08.988.98,7.97Accumulation 1171.51171.51171.51171.51171.5FlowrateAcc.857690857690857690857690857690Theratedvalvecapacityatfullaccumulation pressurewascalculated asfollows:51.5xAxKxP=ActualFlowratewhere:A=Valveorificearea=16in'=Coefficient ofdischarge
=0.975P=Pressure(psia)ataccumulation pressureTheaboveactualfiowrateisreducedby0.9togetthevalveratedcapacity.
91429R2.wpf 37 SECI91<29,Revision2TABLE6MSSVSETPOINTINCREASESTEAMLINESAFEIVVALVESPERLOOPSafetyValve1A1B2A2BSetpointPressure1096.951096.951107.251107.251117.55Percentccumulation 3.03.03.03.03.0Accumulation 1129.861129.861140.471140.471151.08FlowrateAcc827585.6827585.6835257.2835257.2842928.9Theratedvalvecapacityatfullaccumulation pressurewascalculated asfollows:51.5xAxKxP'=ActualFlowratewhere:A=Valveorificearea=16inK=Coefficient ofdischarge
=0.975P=Pressure(psia)ataccumulation pressureTheaboveactualflowrateisreducedby0.9togetthevalveratedcapacity.
91429R2.wpf 38 SECL-91-429, Revision?
: PRESSURE, LOWTEMPERATURE CurrentLicensing Basis3588'.32+301.551.433159461350600354000509.89581.712100564.361512012027518601715271010Closed2.04,40.08.060'able5LicenseCorePower'MWt)
TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulator WaterVolume(ft')Accumulator TankVolume(ft')MinimumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature (F)'esselOutletTemperature (F)'CSPressure(psia)SteamPressure(psia)'team Generator TubePluggingLevel(%)MaximumRefueling WaterStorageTankTemperature (F)MaximumCondensate StorageTankTemperature (F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint(psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation
(%)ChargingPumpFlowImbalance (gpin)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwater Isolation DelayTime(sec)MainFeedwater ValveClosureTime(sec)Auxiliary Feedwater EnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.32+301.551.433'15OFA9461350600354000513.23578.572100596.481512012027518601715271025Closed4,44,40.08.0272Table6Twopercentisaddedtothispowertoaccountforcalorimetric error.Asafetyevaluation for25gpmchargingflowimbalance limitsoperation withHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected, andbestestimateTavg.Asafetyevaluation wasperformed toaccountforaauxiliary feedwater enthalpydelayof272seconds.9l429R2.wpf 39 SECI91-429,Revision2TABLE7aInitialInputParameters fortheSmallBreakLOCAAnalysisLicenseCorePower'MWt)
TotalPeakingFactor,F<.AxMOffset(%)HotChannelEnthalpyRiseFactor,P~MaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulator WaterVolume(ft')Accumulator TankVolume(ft)MirumumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature
('F)'essel OutletTemperature
('F)'CSPressure(psia)SteamPressure(psia)'team Generator TubePluggingLevel(%)MaximumRefueling WaterStorageTankTemperature MaximumCondensate StorageTankTemperature
('F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint(psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation
(%)ChargingPumpFlowImbalance (gpm)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwater Isolation DelayTime(sec)MainFeedwater ValveClosureTime(sec)Auxiliary Feedwater TotalDelivery(gpm)Auxiliary Feedwater DeliveryDelayTime(sec)MainSteamSafetyValveSetpoint(psia)Accumulator Temperature
('F)('F)CurrentLicensing
~Bas'588'.32
+301.551.43315X1509461350600354000509.89581.712100564.361512012027518601715271010Closed2.04.40.08.0125860'able1120MSSVSetpointIncrease32502'.32+301.551.433FA9461350600354000513.20578.442033596.111512012027518601715271025Closed4.44.40.08.075060'able2130Twopercentisaddedtothispowertoaccountforcalorimetric error.Asafetyevaluation for25gpmchargingfiowimbalance limitsoperation withHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected, andbestestimateTAvo..Asafetyevaluation wasperformed toaccountforanauxiliary feedwater enthalpydelayof272seconds.Enthalpydelaycomputedinternally basedonAFWflowrateand75ft'urgevolume.40


TABLE11aSUMMARYOFRESULTSSECL-91-429,Revision2LPLTw/MSSV3inchBreakLPLTw/MSSV2inchBreakNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(I)LocalZr/H~OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature('F)195112.018905.0612.00.568None1172068183312.040423.7512.00.397None151848LPLTislowpressure,lowtemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.46 SECI91<29,Revision2TABLE12TIIKESEQUENCEOFEVI<22lTSEventBreakOccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionsignalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorecoveredSIflowrateexceedsbreakflowrateLPHTw/MSSV011.0120.9247.92620.0NANA620.01604.31691.0NA1683.0TimeLPHT~w/0MSV011.0120.9247.92627.2NANA627.21631.71720.6NA1984.0LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3413MWtcorepower.91429R2.wpf47 SECI91429,Revision2TABLE13SUlVPdARYOFRESULTSNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H>0ReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstArtificialLeak-ByPenalty('F)BurstandBlockagePenalty('F)TotalPeakCladTemperature('F)LPHTw/MSSV1955.911.751691.04.2611.75<1.0None121572124.9LPHTw/oMSSV1947.111.751720.64.8311.75<1.0None121432102.1LPHTislowpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MWtcorepower.W/0MSSVislicensingbasismainsteamsafetyvalvesetpointtolerancecaseat3413MWtcorepower.91429R2.wpf48 SECL-91<29,Revision2FIGU1H~591429R2.wpf49 WQQRSIA24OOPSIA681840>SIA'000iPsaA2100xPSIA45~gglgQTOl~VA1.VESO'EN578575598..5955"8'l5688685613615628625638avg(P:eaaaaap+CoreLtmitsNominalTave~578.7'F.'(ominalPI.assure~2100ps.'aOONALOC.COOKUNIT1FIGURElaILLUSTRATIONOFOVERTEHPERATUREANO.OVERPOWEROELTATPROTECTIONi'I 75OPaT651922PSIA2250PSIA402000PSIA2400PSlA<5STEANGENERATORSAPPYVALVESOPEN56856S57857558B5855'%'tS688685618615628625TeveleF')-----OTaTProtectfonLfnesCarsThsrtaslSsfstyLtsftsNominalVesselAverageTeaperature576'FNoafnalPressurfzerPressure2250psfaDONALDCCOOKUNIT2(MIXEDCORE)FIGURE1bILLUSTRATIONOFOVERTEMPERATUREANOOVERPOWERDELTATPROTECTION 73~1922PSIAOPaT2400'.PSIA532000PSIASTGNGENERATORSAFETYVALVESOPEN2250PSIA575S885855I8S~S6886856186I5628625ai3nvg(~F'!-----OTaTProtect)onLinesCoreTherssalSafetyLfeitsNominalVesselAverageTemperature5S1.3'FNominalPressurizerPressure2100psia.DONALDC.COOKUNIT2(FULLV5CORE)FIGUREIcILLUSTRATIONOFOVERTEHPERATUREANDOVERPOWERDELTATPROTECTION' h~vVVI:CC~4hVACvpl'v4II"lCC."300.l900.2300.lo.20.30.40.50.60.~C,80.90.TMK(SEC~F800.>6001~00'41200JlIQOO.0.10.20.30.40.50'0.70.80.90.>00.TME(SEC)DONALDC.COOKUNITIFIGURE2TURBINETRIPEVENT'WITHOUTPRESSURECONTROL,HINUHUHREACTIVITYFEEDBACK
SECI91-429,Revision2TABLE8LOWPRESSURE, HIGHTEMPERATURE LicenseCorePower'MWt)
TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,PuFuelAssemblyArrayAccumulator WaterVolume(ft')Accumulator TankVolume(ft')MinimumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature (F)'esselOutletTemperature (F)'CSPressure(psia)SteamPressure(psia)'team Generator TubePluggingLevel(%)MaximumRefueling WaterStorageTankTemperature (F)MaximumCondensate StorageTankTemperature (F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint('psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation
(%)ChargingPumpFlowImbalance (gpm)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwater Isolation DelayTime(sec)MainFeedwater ValveClosureTime(sec)Auxiliary Feedwater EnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)CurrentLicensing BasisNANANANANANANANANANANANANANANANANANANANANANANANANANANANANANAMSSVSetpointIncrease3250232+301.55'.433 15X15OFA9461350600354000543.63606.792100793.901512012027518601715271025Closed4.44.40.08.0272Table61Twopercentisaddedtothispowertoaccountforcalorimetric error.2Asafetyevaluation forthelowpressure, hightemperature operating condition wasperformed inthelicensing basisanalysis.
3Valueisbased.on102%corepower,maincoolantpumpheatneglected, andbestestimateTavg.91429R2.wpf 41 SECL-91<29, Revision2TABLE9LOWPRESSURE, HIGHTEMPERATURE CurrentLicensing Basis34132.34+30Factor,F1.644ePower,Pn1.519179461350600354000544.41610.192100807.031512012027518601715271025Closed4.74.40.08.0349Table5LicenseCorePower'MWt)
TotalPeakingFactor,FzAxialOffset(%)HotChannelEnthalpyRiseMaximumAssemblyAveragFuelAssemblyArrayAccumulator WaterVolume(fP)Accumulator TankVolume(ft')MinimumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature (F)~VesselOutletTemperature (F)'CSPressureIncluding Uncertainties (psia)SteamPressure(psia)'teamGenerator TubePluggingLevel(%)MaximumRefueling WaterStorageTankTemperature (F)MaximumCondensate StorageTankTemperature (F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint(psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation
(%)ChargingPumpFlowImbalance (gpm)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwater Isolation DelayTime(sec)MainFeedwater ValveClosureTime(sec)Auxiliary Feedwater EnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.357+131.6661.46'17V59461350600354000544.41610.192100807.031512012027518601715271025Closed4.7442.06.0349Table61Twopercentisaddedtothispowertoaccountforcalorimetric error.2Valueisbasedon102%corepower,maincoolantpumpheatneglected, andbestestimateTavg.91<29R2.wpf SECI91<29,Revision2TABLE10TIMESEQUENCEOFEVENTSEventLPLTLPLTLPHTLPHTw/MSSVw/oMSSVw/MSSVw/oMSSVBreakOccursReactortripsignalSafetyinjection signalStartofsafetyinjection signalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulator injection beginsPeakcladtemperature occursTopofcorecoveredSIflowrateexceedsbreakflowrate011.2319.2846.28643.4NANA1139.21730.01935.5NA198800011.2313.5413.5419.2822.4222.4246.2849.4249.42644.7601.8608.3NANANANANANA1077.31073.41057.81751.01647.81695.81831.41872.31824.7NANANA202422932284LPLTislowpressure, lowtemperature operating condition.
LPHTislowpressure, hightemperature operating condition.
W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.W/0MSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3250MWtcorepower.91429R2.wpf 43 TABLE10aTIMESEQUENCEOFEVFATSSECL-91-429, Revision2EventLPLTw/MSSV2inchBreakTime(seconds)
LPLTw/MSSV3inchBreakBreakOccursReactortripsignalSafetyinjection signalStartofsafetyinjection Startofauxiliary feedwater deliveryLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulator injection beginsPeakcladtemperature occurs'op ofcorecoveredSIflowrateexceedsbreakflowrate0.08.6417.1344.1368.6592N/AN/A98416801890N/A18900.019.0337.1164.1179.11390N/AN/A2312N/A4042N/A4091LPLTislowpressure, lowtemperature operating condition.
W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.
SECL-91-429, Revision2TABLE11SUMMITRYOFRFSULTSNOTRUMPPeakCladTemperature
('F)PeakCladTemperature Location(ft)PeakCladTemperature Time(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H,OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature
('F)LPLTw/MSSV1853.711.751935.53.4711.75<1.0None251878.7LPLTw/oMSSV1772.911.751831.42.4711.75<1.0None151787.9LPHTLPHTw/MSSVw/oMSSV1837.71710.311.7511.751872.31824.73.131.8211.7511.75<1.0<1.0NoneNone16151853.71725.3LPLTislowpressure, lowtemperature operating condition.
LPHTislowpressure, hightemperature operating condition.
W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.W/0MSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3250MWtcorepower.91429R2.wpf 45
 
TABLE11aSUMMARYOFRESULTSSECL-91-429, Revision2LPLTw/MSSV3inchBreakLPLTw/MSSV2inchBreakNOTRUMPPeakCladTemperature
('F)PeakCladTemperature Location(ft)PeakCladTemperature Time(sec)LocalZr/H,OReactionMaximum(I)LocalZr/H~OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature
('F)195112.018905.0612.00.568None1172068183312.040423.7512.00.397None151848LPLTislowpressure, lowtemperature operating condition.
W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.46 SECI91<29,Revision2TABLE12TIIKESEQUENCEOFEVI<22lTS EventBreakOccursReactortripsignalSafetyinjection signalStartofsafetyinjection signalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulator injection beginsPeakcladtemperature occursTopofcorecoveredSIflowrateexceedsbreakflowrateLPHTw/MSSV011.0120.9247.92620.0NANA620.01604.31691.0NA1683.0TimeLPHT~w/0MSV011.0120.9247.92627.2NANA627.21631.71720.6NA1984.0LPHTislowpressure, hightemperature operating condition.
W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.W/0MSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3413MWtcorepower.91429R2.wp f47 SECI91429,Revision2TABLE13SUlVPdARY OFRESULTSNOTRUMPPeakCladTemperature
('F)PeakCladTemperature Location(ft)PeakCladTemperature Time(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H>0ReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstArtificial Leak-ByPenalty('F)BurstandBlockagePenalty('F)TotalPeakCladTemperature
('F)LPHTw/MSSV1955.911.751691.04.2611.75<1.0None121572124.9LPHTw/oMSSV1947.111.751720.64.8311.75<1.0None121432102.1LPHTislowpressure, hightemperature operating condition.
W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.W/0MSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3413MWtcorepower.91429R2.wpf 48 SECL-91<29, Revision2FIGU1H~591429R2.wpf 49 WQQRSIA24OOPSIA681840>SIA'000iPsaA2100xPSIA45~gglgQTOl~VA1.VESO'EN578575598..5955"8'l5688685613615628625638avg(P:eaaaaap+CoreLtmitsNominalTave~578.7'F.'(ominal PI.assure
~2100ps.'aOONALOC.COOKUNIT1FIGURElaILLUSTRATION OFOVERTEHPERATURE ANO.OVERPOWER OELTATPROTECTION i'I 75OPaT651922PSIA2250PSIA402000PSIA2400PSlA<5STEANGENERATOR SAPPYVALVESOPEN56856S57857558B5855'%'tS688685618615628625TeveleF')-----OTaT Protectfon LfnesCarsThsrtaslSsfstyLtsftsNominalVesselAverageTeaperature 576'FNoafnalPressurfzer Pressure2250psfaDONALDCCOOKUNIT2(MIXEDCORE)FIGURE1bILLUSTRATION OFOVERTEMPERATURE ANOOVERPOWER DELTATPROTECTION 73~1922PSIAOPaT2400'.PSIA532000PSIASTGNGENERATOR SAFETYVALVESOPEN2250PSIA575S885855I8S~S6886856186I5628625ai3nvg(~F'!-----OTaT Protect)on LinesCoreTherssalSafetyLfeitsNominalVesselAverageTemperature 5S1.3'FNominalPressurizer Pressure2100psia.DONALDC.COOKUNIT2(FULLV5CORE)FIGUREIcILLUSTRATION OFOVERTEHPERATURE ANDOVERPOWER DELTATPROTECTION
'
h~vVVI:CC~4hVACvpl'v4II"lCC."300.l900.2300.lo.20.30.40.50.60.~C,80.90.TMK(SEC~F800.>6001~00'41200JlIQOO.0.10.20.30.40.50'0.70.80.90.>00.TME(SEC)DONALDC.COOKUNITIFIGURE2TURBINETRIPEVENT'WITHOUTPRESSURECONTROL,HINUHUHREACTIVITY FEEDBACK
~~
~~
rD~z~~iZIIIII4i1020ic4053607080:CT~E(SEC)4551.510203040506070809C1'K(SEC'ONALDC.COOKUNITIFIGURE3TURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HINUHUMREACTIVITYFEEDBACK 5605~0520i53056C5'0520500010203C<050607080iClCT0=(SEC)EGG'805605<052G5002560560i5<0520500010203040506070SG90t"3v=(SEC,'ONALDC.COOKUNITIFIGURE4ITURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINUMUMREACTIVITYFEEDBACK.
rD~z~~iZIIIII4i1020ic4053607080:CT~E(SEC)4551.510203040506070809C1'K(SEC'ONALD C.COOKUNITIFIGURE3TURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HINUHUMREACTIVITY FEEDBACK 5605~0520i53056C5'0520500010203C<050607080iClCT0=(SEC)EGG'805605<052G5002560560i5<0520500010203040506070SG90t"3v=(SEC,'ONALD C.COOKUNITIFIGURE4ITURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINUMUMREACTIVITY FEEDBACK.
I~CC11'JCO9CC.;9CG.;700.50C.5000.IO.20.30.40.50.60.70.90.90.lQQ.TuE(SEC)400tQ350300250200150C',100500-5010203040505070dO90'COTi&(SEC)DONALDC.COOKUNITIFIGURE5IITURSINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITYFEEDBACK 35sp252015OCtvip5Ul0-5-100,102030405050708090tCOTlhtK(SEC)OONALOC.COOKUNIT1FIGURE6TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITYFEEDBACK
I~CC11'JCO9CC.;9CG.;700.50C.5000.IO.20.30.40.50.60.70.90.90.lQQ.TuE(SEC)400tQ350300250200150C',100500-5010203040505070dO90'COTi&(SEC)DONALDC.COOKUNITIFIGURE5IITURSINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITY FEEDBACK 35sp252015OCtvip5Ul0-5-100,102030405050708090tCOTlhtK(SEC)OONALOC.COOKUNIT1FIGURE6TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITY FEEDBACK


OC<OCahAQVnC1i~]V'30Ct800.Io.20.30.io.50.60.~0.50.90.<OC.T:~E(SEC)"300.1900>500accri400>200.Jl>300.0.10.20.JO.40.50.60.70.60.90.IOC.ri~K(sEc)OONALDC.COOKUNITIFI6URETURBINETRIPEVENTWITHOUTPRESSURECONTROL,:NXINNREACTIVITYFEEOBACK 0.102030+0506070d090lCQTvK(SEC,'2.51.51.010203040506070d090tCQTisK(SEC)DONALDC.CMKUNITIFIGURE8TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HAXII%NREACTIVITYFEEDBACK 66G620~~V!30560dr.o520500tO20SOiO50doIo8090rvc(sac)>oo6606606<o62050085doseo5~0520500to20304050do708090tooritz(sec)ONALOC.COOKUNITIFISNETURBINETRIPEVENTltITH0UTNESSVRECONTROL,'NXINNREACTIVITYFEEDBACK
OC<OCahAQVnC1i~]V'30Ct800.Io.20.30.io.50.60.~0.50.90.<OC.T:~E(SEC)"300.1900>500accri400>200.Jl>300.0.10.20.JO.40.50.60.70.60.90.IOC.ri~K(sEc)OONALDC.COOKUNITIFI6URETURBINETRIPEVENTWITHOUTPRESSURECONTROL,:NXINNREACTIVITY FEEOBACK 0.102030+0506070d090lCQTvK(SEC,'2.51.51.010203040506070d090tCQTisK(SEC)DONALDC.CMKUNITIFIGURE8TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HAXII%NREACTIVITY FEEDBACK 66G620~~V!30560dr.o520500tO20SOiO50doIo8090rvc(sac)>oo6606606<o62050085doseo5~0520500to20304050do708090tooritz(sec)ONALOC.COOKUNITIFISNETURBINETRIPEVENTltITH0UTNESSVRECONTROL,'NXINNREACTIVITY FEEDBACK
~nC2C'A'.300A300I'J)3CC,;700.500.5000.10.20.30.40.50.60.70.80.90.100.TlMK(SEC)400350300250200150100500-500tQ2Q3040505070d090100TIME(SEC)DNALDC.CXKUNITIFIGURE10TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINPlREACTIVITYFEEDBACK 2520tQ1510acQC5A4-5-10010~2030405060,70SO901COTlsK(SEC)0ONALPC.COOKUNIT1FIGURE11TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEDBACK aoaga4~"500n50C5h40Cj"'CCI"2OCn'OC23001900.18000.10.20.30.io.50.do.70.40.80.iCCtivK(SKC)2300.isoo.tdoo.c>400.1200.nnt000.)0.20,go.io.50.do.70~80,90.~OC.Till(5CC)OQWLDC.COOKNIT1FIQNE12mamTaIeEVENVITHPRESSVRECNTROL~NXINNREACTIVITYFEEoMCK 8520102030<050d0108090T>MK(SEC)45.3.52.510203040506010809GTlirt(5KC)ONEC.COOK.NITIFIGNE13TtWSINETRIPEVENT'KITHPRESSNECONTROL,NXINNREACTIVITYFEEDBACK 580560520cBS~60540520500700lO2030+05050VOT'Mg(SKC)5605iQ520500258056054010203040508010d09GtCSTIIC(SEC)XNALDC.COOKUNIT1,FI6URE14TUNMTRIPEVBITQlTHPRESSNECONTROL,NX1NNREACTIV?TYFEEDBACK IIQQ1500.300.BOO.700:600.5000.10.20.30.40..50.60.70.60.TlhlK(SEC)400350I3OO250200150100I5000102030405060708090100T1QK(SEC)OelALDC.COOKUNIT2(FULLYSCORE)FIGURE15TURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIYITYFEEOBACK 2520Ql15105-10010203040505070d090100Ti~K(SEC)ONALGC.COOKUNIT2(FULLVSCORE)FIGURE16TURBINETRIPEVENTWITHPRESSURECONTROL,NXINtwREACTIVITYFEEOBACK 2500.2400.nn"~"C'v'n2OOO.l800.ld00,0.l0.20.30.'0,50d070g0.90.laC.T<~g(SKC)2300.l800.1d00.1400.I200.l000,800.lo2030.40.50.50,70.So90lo(SEC)OONLDC.COOKUNIT1FI6NE17TURSINETRIPEVENTMITHPRESSURECONTROL,NINNNREACTIVITYFEEOBACK
~nC2C'A'.300A300I'J)3CC,;700.500.5000.10.20.30.40.50.60.70.80.90.100.TlMK(SEC)400350300250200150100500-500tQ2Q3040505070d090100TIME(SEC)DNALDC.CXKUNITIFIGURE10TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINPlREACTIVITY FEEDBACK 2520tQ1510acQC5A4-5-10010~2030405060,70SO901COTlsK(SEC)0ONALPC.COOKUNIT1FIGURE11TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITY FEEDBACK aoaga4~"500n50C5h40Cj"'CCI"2OCn'OC23001900.18000.10.20.30.io.50.do.70.40.80.iCCtivK(SKC)2300.isoo.tdoo.c>400.1200.nnt000.)0.20,go.io.50.do.70~80,90.~OC.Till(5CC)OQWLDC.COOKNIT1FIQNE12mamTaIeEVENVITHPRESSVRECNTROL~NXINNREACTIVITY FEEoMCK 8520102030<050d0108090T>MK(SEC)45.3.52.510203040506010809GTlirt(5KC)ONEC.COOK.NITIFIGNE13TtWSINETRIPEVENT'KITHPRESSNECONTROL,NXINNREACTIVITY FEEDBACK 580560520cBS~60540520500700lO2030+05050VOT'Mg(SKC)5605iQ520500258056054010203040508010d09GtCSTIIC(SEC)XNALDC.COOKUNIT1,FI6URE14TUNMTRIPEVBITQlTHPRESSNECONTROL,NX1NNREACTIV?TY FEEDBACK IIQQ1500.300.BOO.700:600.5000.10.20.30.40..50.60.70.60.TlhlK(SEC)400350I3OO250200150100I5000102030405060708090100T1QK(SEC)OelALDC.COOKUNIT2(FULLYSCORE)FIGURE15TURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIYITY FEEOBACK 2520Ql15105-10010203040505070d090100Ti~K(SEC)ONALGC.COOKUNIT2(FULLVSCORE)FIGURE16TURBINETRIPEVENTWITHPRESSURECONTROL,NXINtwREACTIVITY FEEOBACK 2500.2400.nn"~"C'v'n2OOO.l800.ld00,0.l0.20.30.'0,50d070g0.90.laC.T<~g(SKC)2300.l800.1d00.1400.I200.l000,800.lo2030.40.50.50,70.So90lo(SEC)OONLDC.COOKUNIT1FI6NE17TURSINETRIPEVENTMITHPRESSURECONTROL,NINNNREACTIVITY FEEOBACK


25a4x201020304050do70do9C)C"1'iuK(SKC)52.52~0102030io500070doMiOOTiitE(SEC)ONNLDC.COOKUNITIFI6NE18TNSINETRIPEVENT'WITHPRESQNECONTlSL,NINNNREACTIVITYFEEDBACK 56C'5@i52"5~0'$5560s~c520500102030405060TO809C'C"T'lK(SEC)7006805606<0525600580515555<052041420304050T1IC~(SEC)DNQLD'C.CONNITIFINRE-IgTNSINETRIPEVENTWITHPRESSVRECONTROL,NINNNREACTIVITYFEEDBACK 1000.900.800.700.500.5000.lp,20,30.40.50.dp.70.80.90.100.TiuK(SEC)500CJ4JVl<004300200l000-10001020304050dp708090100TiVK(SEC)00NALOC.CONNITIFIGURE20TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITYFEEDBACK 302520)510QC5tAac0CL-t00I02030405060708090100Ti&(SEC)ONNLDC.CONUNITIFI6URE21TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITYFEEDBACK 2500.n250C.5<OC~COx'V:2QC.2100."00F900.1/000.t0.20.30.40.50.50.70.50.9Q,)GGt~c(sac>2000.1800.1d00.x[400.1200.1300.0.10.20.30.40.50.80.10.80.90.t00.re%(5')OINEDC.COOKNIT2(NIXEOCORK)FIQNK22aTNSNETRIPEVENTltITHOUTPRESSNECONTROL,NINNYREhCTIVITYFKEDBAC<
25a4x201020304050do70do9C)C"1'iuK(SKC)52.52~0102030io500070doMiOOTiitE(SEC)ONNLDC.COOKUNITIFI6NE18TNSINETRIPEVENT'WITHPRESQNECONTlSL,NINNNREACTIVITY FEEDBACK 56C'5@i52"5~0'$5560s~c520500102030405060TO809C'C"T'lK(SEC)7006805606<0525600580515555<052041420304050T1IC~(SEC)DNQLD'C.CONNITIFINRE-IgTNSINETRIPEVENTWITHPRESSVRECONTROL,NINNNREACTIVITY FEEDBACK 1000.900.800.700.500.5000.lp,20,30.40.50.dp.70.80.90.100.TiuK(SEC)500CJ4JVl<004300200l000-10001020304050dp708090100TiVK(SEC)00NALOC.CONNITIFIGURE20TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITY FEEDBACK 302520)510QC5tAac0CL-t00I02030405060708090100Ti&(SEC)ONNLDC.CONUNITIFI6URE21TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITY FEEDBACK 2500.n250C.5<OC~COx'V:2QC.2100."00F900.1/000.t0.20.30.40.50.50.70.50.9Q,)GGt~c(sac>2000.1800.1d00.x[400.1200.1300.0.10.20.30.40.50.80.10.80.90.t00.re%(5')OINEDC.COOKNIT2(NIXEOCORK)FIQNK22aTNSNETRIPEVENTltITHOUTPRESSNECONTROL,NINNYREhCTIVITY FKEDBAC<
n50C<c,PC'CCI\+yA~oerV43tOCC""OC>90C.18000~le20'0~<0~50.60.70.<0.g0.~PC~MK(SEC)"30CtSOC.l500.t40C.I200.1300.0.t0.20.30.40.50.60.70.50.90.lOC(MC)tOMLDC.CONNIT2(fULLV5CONK)fIQNK22bTlNSINETRIPEV9fTVITHOUTPRKSSlNKCONTROL,NINNNREKTIVITYFEEDSACK Cc5x200l02030~05050>08090~Co'Tissu(SKC)2.52.2t.dl.24>02030<05050.1050.SOiCaTilg(SEC)OOOOC.COOKNIT2(NIXEOCORE)FICNE23aTlNSINETRIPEVBITWITHOUTPRESQNKCSlTROf.,NINNNREhCTIVITYFEEO84<<
n50C<c,PC'CCI\+yA~oerV43tOCC""OC>90C.18000~le20'0~<0~50.60.70.<0.g0.~PC~MK(SEC)"30CtSOC.l500.t40C.I200.1300.0.t0.20.30.40.50.60.70.50.90.lOC(MC)tOMLDC.CONNIT2(fULLV5CONK)fIQNK22bTlNSINETRIPEV9fTVITHOUTPRKSSlNKCONTROL,NINNNREKTIVITY FEEDSACK Cc5x200l02030~05050>08090~Co'Tissu(SKC)2.52.2t.dl.24>02030<05050.1050.SOiCaTilg(SEC)OOOOC.COOKNIT2(NIXEOCORE)FICNE23aTlNSINETRIPEVBITWITHOUTPRESQNKCSlTROf.,
tOZO3O.Oa6O(sec)to20304050607080KiCQ7:~K(SEC)tONU)C;COOKUNIT2(FVLl,NCORE)FINRE23bTVRIINETRIPEVENTitITHOUTPRESSURE@NIAL,NINNNREACTIVITYFEEDBACK 0
NINNNREhCTIVITY FEEO84<<
560diQ520I5305605cQ520500700Ql0203040506070809Q~Ti~E(SEC)6806606+06206009MQMO5<0]420'04050d0>06090Ti&(SEC)DONALDC.CNXNlT2(NlXEDCORE)FENRK24aTNSlNETRlPEVENTQlTHOUTPRESQNECONTROL,MINN%REACT[VlTYFEEOBACK 53IIc605ao5ZQ5:c.'30c6szo500OlOZOSO4O50.6OrOaoaC.CgrQK(SEC).00Sao5605io520500580I5605co5200~02030iO50607040SOiCOrw(sKc)ONEDC.COOKNIT2(RKLV5CORK)FIQNE24bTURSINETRIPEVENTWITHOUTNESSNECOKTROL,NINNNREACTIVITYFEEDBACK
tOZO3O.Oa6O(sec)to20304050607080KiCQ7:~K(SEC)tONU)C;COOKUNIT2(FVLl,NCORE)FINRE23bTVRIINETRIPEVENTitITHOUTPRESSURE@NIAL,NINNNREACTIVITY FEEDBACK 0
'20C1000.z300.BQO.o700.600.500.0.Io.20.30.<0.50.60.70.60.9Q.IQQ.TIME(SEC)400350zoo2502001501005000t02030405060708090>007i&(SEC)DNALDC.COOKNIT2(MIXEDCORE)FIGURE25aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINN@REACTIVITYFEEDBACK
560diQ520I5305605cQ520500700Ql0203040506070809Q~Ti~E(SEC)6806606+06206009MQMO5<0]420'04050d0>06090Ti&(SEC)DONALDC.CNXNlT2(NlXEDCORE)FENRK24aTNSlNETRlPEVENTQlTHOUTPRESQNECONTROL,MINN%REACT[VlTY FEEOBACK 53IIc605ao5ZQ5:c.'30c6szo500OlOZOSO4O50.6OrOaoaC.CgrQK(SEC).00Sao5605io520500580I5605co5200~02030iO50607040SOiCOrw(sKc)ONEDC.COOKNIT2(RKLV5CORK)FIQNE24bTURSINETRIPEVENTWITHOUTNESSNECOKTROL,NINNNREACTIVITY FEEDBACK
:ocP11QQ.100.300.BCQ.700.500.5000.10.20.30.40.50.SO.70.80.90.1OO.TIME(SEC)400rn3503002502OO150100500-50102030<050do708090100TiME(SEC)00NLDC.'COOKUNIT2(FULLVSCORE)FIGURE251TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NINNNREACTIVITYFEEOBACK 4030252015105Vl0-5-1001020304050d0705090)QQTivK(SEC)DONALOC.COOKUNIT2(MIXEDCORK)FIGURE264TURBINETRIPEVENTWITHOUT'RESSURECONTROL,.NINLNNREACTIVITYFEEOBACK 403530252015(Y1050-5-10010203040505070d090100Ti~E(SEC)DONALDC.COOKUNIT2(FULLVSCORE)FIGURE26bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MIHUNNREACTIVITYFEEDBACK tV"50Cn"50C=~OCivs~1hPaavlon2lQCC2300.1300.1500.'0.10.20.30.40.50.5070.dO.90.100TiIE(SEC)2'300.1800.le00.ct1400.'V1200.'1000.800.0.10.20.JO.40.$0.60.70.80.90.100.Ti~KfMC)004lLDC.CONNIT2(MIXEDCORE)FIQURE27aTURBINETRIP'VENTM?THOUTPRESSURECONTROL,NXINPIREACTIVITYFEEDBACK OAA~4"5GCn"504CIhca%%2tQC"300>900.>5000.t0.ZQ.30.44.50.d0(~C)94>004.300I/00.i500.'00.>200.I300.0.10.20.30.44,50.d0.70.60.90.F00TsK(MC)'ONANC.COOKUNIT2(FULLV5CORE)FI6NE27bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,.NXISNREACTIVITYFEEDBACK 0.l0203040505070d09QT~vE(SKC)2.d2.62.4j2,1020304050d070d090lC"(sac)OONLDC.COOKUNIT2(NIXEQCORE)FIQNE28aTVRSINETRIPEVENTWITHOUTPRESQNECONTROL,NXINNREACTIVITYFEEDBACK CIQ2Q30+0506070I509C'CQT:MK(SKC)5525>.5l.OtO2OaO4O5O6O~OaOeCtCaT:VK(SEC)OIWL9C.COOKNIT2(RJLLVSCORE}fNNf28bTlJRSINETRIPEVENT'WITHOUTl%ESSVRECONTROL,NXINNREACTIVITYFEED8ACK g2hi1.~'0II5605<0c2h500010203040506070dOQQrME(sEC)7005805606<06206008580580540520IO.2030405060'10dO90ICQrim(sac)ONlLDC.COOKLNIT2(MIXEDCORE)'I6URK29aTNSINETRIPEVENTWITHOUTPRESSURECNTROL,NXINNREACTIVITYFEEDSACK, 60540520500%%0>020304050607060ypTvK(SEC)51505ip62050085ao5605iO5200>020SOip505070.80SCiCOT'MK(SKC)NNALDC.CONUNIT2(FULLVSCNE)FIQNE29bTNBINETRIPEVENTMlTHGUT-PRESSURECNTROL,NXINNREACTIVITYFEEDBACK QCg1~0090C.nHPC700.500.5000,10.20.30.40.50,60.10.bp.90.100.~TIME(SEC),300250200150w100CC500n500102030405060708090100T1&(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FI6URE30aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITYFEEDBACK 300.30C700.500.500.0.IO.20.30<050607080.90.IOC.TME(SKC)400350300250200l50100500-50]02Q304050dQ70d0901COruE(SEC)Ot)NALOC.COOKUNIT2(FULLVSCORE)FIGURE30bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXII%NREACTIVITYFEEDBACK
'20C1000.z300.BQO.o700.600.500.0.Io.20.30.<0.50.60.70.60.9Q.IQQ.TIME(SEC)400350zoo2502001501005000t02030405060708090>007i&(SEC)DNALDC.COOKNIT2(MIXEDCORE)FIGURE25aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINN@REACTIVITY FEEDBACK
:ocP11QQ.100.300.BCQ.700.500.5000.10.20.30.40.50.SO.70.80.90.1OO.TIME(SEC)400rn3503002502OO150100500-50102030<050do708090100TiME(SEC)00NLDC.'COOKUNIT2(FULLVSCORE)FIGURE251TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NINNNREACTIVITY FEEOBACK 4030252015105Vl0-5-1001020304050d0705090)QQTivK(SEC)DONALOC.COOKUNIT2(MIXEDCORK)FIGURE264TURBINETRIPEVENTWITHOUT'RESSURECONTROL,.NINLNNREACTIVITY FEEOBACK 403530252015(Y1050-5-10010203040505070d090100Ti~E(SEC)DONALDC.COOKUNIT2(FULLVSCORE)FIGURE26bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MIHUNNREACTIVITY FEEDBACK tV"50Cn"50C=~OCivs~1hPaavlon2lQCC2300.1300.1500.'0.10.20.30.40.50.5070.dO.90.100TiIE(SEC)2'300.1800.le00.ct1400.'V1200.'1000.800.0.10.20.JO.40.$0.60.70.80.90.100.Ti~KfMC)004lLDC.CONNIT2(MIXEDCORE)FIQURE27aTURBINETRIP'VENT M?THOUTPRESSURECONTROL,NXINPIREACTIVITY FEEDBACK OAA~4"5GCn"504CIhca%%2tQC"300>900.>5000.t0.ZQ.30.44.50.d0(~C)94>004.300I/00.i500.'00.>200.I300.0.10.20.30.44,50.d0.70.60.90.F00TsK(MC)'ONANC.COOKUNIT2(FULLV5CORE)FI6NE27bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,.NXISNREACTIVITY FEEDBACK 0.l0203040505070d09QT~vE(SKC)2.d2.62.4j2,1020304050d070d090lC"(sac)OONLDC.COOKUNIT2(NIXEQCORE)FIQNE28aTVRSINETRIPEVENTWITHOUTPRESQNECONTROL,NXINNREACTIVITY FEEDBACK CIQ2Q30+0506070I509C'CQT:MK(SKC)5525>.5l.OtO2OaO4O5O6O~OaOeCtCaT:VK(SEC)OIWL9C.COOKNIT2(RJLLVSCORE}fNNf28bTlJRSINETRIPEVENT'WITHOUTl%ESSVRECONTROL,NXINNREACTIVITY FEED8ACK g2hi1.~'0II5605<0c2h500010203040506070dOQQrME(sEC)7005805606<06206008580580540520IO.2030405060'10dO90ICQrim(sac)ONlLDC.COOKLNIT2(MIXEDCORE)'I6URK29aTNSINETRIPEVENTWITHOUTPRESSURECNTROL,NXINNREACTIVITY
: FEEDSACK, 60540520500%%0>020304050607060ypTvK(SEC)51505ip62050085ao5605iO5200>020SOip505070.80SCiCOT'MK(SKC)NNALDC.CONUNIT2(FULLVSCNE)FIQNE29bTNBINETRIPEVENTMlTHGUT-PRESSURECNTROL,NXINNREACTIVITY FEEDBACK QCg1~0090C.nHPC700.500.5000,10.20.30.40.50,60.10.bp.90.100.~TIME(SEC),300250200150w100CC500n500102030405060708090100T1&(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FI6URE30aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITY FEEDBACK 300.30C700.500.500.0.IO.20.30<050607080.90.IOC.TME(SKC)400350300250200l50100500-50]02Q304050dQ70d0901COruE(SEC)Ot)NALOC.COOKUNIT2(FULLVSCORE)FIGURE30bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXII%NREACTIVITY FEEDBACK


25201510acac5'4ac0ac-5-100102030405060"708090)COTIME(SEC)DONALDC.COOK'NIT2(MIXEDCORE}FIGURE3laTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MAXIHLNREACTIVITYFEEDBACK.
25201510acac5'4ac0ac-5-100102030405060"708090)COTIME(SEC)DONALDC.COOK'NIT2(MIXEDCORE}FIGURE3laTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MAXIHLNREACTIVITY FEEDBACK.
2520V)IO50-5-100102030<050d070Soeo.COTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE}FIGURE31bTURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HAXIHNREACTIVITYFEEOBACK q%sarv25CC500"<cc~leer~,vvvltIAeevbr2'QC300.i90C.It8002300.10.20.30.40.5050T'LIE(ggg)1300.1500.<z14QQ.'V1200.'AtQQQ.0.10.20.30.io.50.dO.ZO.50.90.tQC.TiMK(SKC)ONAu)C.COOKUNIT2(lIIXH)CORE)FIGVRE32aTURBINETRIPEVENTMITHPRESSVRECONTROL,NXINNREACTIVITYFEEDBACK
2520V)IO50-5-100102030<050d070Soeo.COTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE}FIGURE31bTURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HAXIHNREACTIVITY FEEOBACK q%sarv25CC500"<cc~leer~,vvvltIAeevbr2'QC300.i90C.It8002300.10.20.30.40.5050T'LIE(ggg)1300.1500.<z14QQ.'V1200.'AtQQQ.0.10.20.30.io.50.dO.ZO.50.90.tQC.TiMK(SKC)ONAu)C.COOKUNIT2(lIIXH)CORE)FIGVRE32aTURBINETRIPEVENTMITHPRESSVRECONTROL,NXINNREACTIVITY FEEDBACK
~~%A%VI50Ct.cQCCn~<hFaVVC'900'80020.30.<0.50.60.70.50.90:GCTvK(SEC)2".00>30C..~:tlj~i~>500>400>200nt300.0.10,20.30.40.50.d0.10.50.90.iOCr~C'(SCC)'ONlDC.COOKUNIT2(FULLV5CQRE)FI6NE321TURBINETRIPEVENTMITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK dt4Z0.102030<0505070809CrvK(SKC)2.63~.z~2010203040505070d090Tlat@(SEC)OOQLGC.COOKNIT2(MIXEDCORE)FI6NE33aTURBINETRIP.EVENTMITHPRESQNECONTROL,NXINNREACTIVITYFEEOSACK l02030405050108090~vK(SKC)lO20304050dO10609CT~K(SKC)ONIALOC.COOKUNIT2(FULLVSCORE)FISuaz33bTlJRSINETRIPEVBITMITHPRESSURECONTROL,NXINNREACTIVITYFEEDSACK 5~0620IIrvSCar<<V5605<05205000!02030405060l0809Cr~E'SEc)7005805606405205008580g5605L05200l02030405060108090lC"TivK(SKC)00NLDC.COOKUNIT2(NIXEQCORE}FI6URE348TURBINETRIPEVENTKITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK 550t54Ce5205000'02030<050607080TvK(SKC',0III5305~062050C258035605c0520500io2030io5060~0aoec:COTilK(SEC)ONALDC.COOKUNIT2(FULLV5CORE)FIeNE34bTURSINETRIPEVENT'KITHPRESSURECONTROL,NXINNREACTIVITYFEE08aCV.
~~%A%VI50Ct.cQCCn~<hFaVVC'900'80020.30.<0.50.60.70.50.90:GCTvK(SEC)2".00>30C..~:tlj~i~>500>400>200nt300.0.10,20.30.40.50.d0.10.50.90.iOCr~C'(SCC)'ONlDC.COOKUNIT2(FULLV5CQRE)FI6NE321TURBINETRIPEVENTMITHPRESSURECONTROL,NXINNREACTIVITY FEEDBACK dt4Z0.102030<0505070809CrvK(SKC)2.63~.z~2010203040505070d090Tlat@(SEC)OOQLGC.COOKNIT2(MIXEDCORE)FI6NE33aTURBINETRIP.EVENTMITHPRESQNECONTROL,NXINNREACTIVITY FEEOSACK l02030405050108090~vK(SKC)lO20304050dO10609CT~K(SKC)ONIALOC.COOKUNIT2(FULLVSCORE)FISuaz33bTlJRSINETRIPEVBITMITHPRESSURECONTROL,NXINNREACTIVITY FEEDSACK 5~0620IIrvSCar<<V5605<05205000!02030405060l0809Cr~E'SEc)7005805606405205008580g5605L05200l02030405060108090lC"TivK(SKC)00NLDC.COOKUNIT2(NIXEQCORE}FI6URE348TURBINETRIPEVENTKITHPRESSURECONTROL,NXINNREACTIVITY FEEDBACK 550t54Ce5205000'02030<050607080TvK(SKC',0III5305~062050C258035605c0520500io2030io5060~0aoec:COTilK(SEC)ONALDC.COOKUNIT2(FULLV5CORE)FIeNE34bTURSINETRIPEVENT'KITHPRESSURECONTROL,NXINNREACTIVITY FEE08aCV.
c?.-QC.J7z30C.BCC.D700.500.500.p.30010'0'0.40.50.60.70.80.9p.1pcTMK(SEC)250200150OC10QCZ500n-501020304050'6070SO901CPTlute(SEC)DONALDC.COOKUNIT2(HIXEDCORE)FIGURE35aTURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIVITYFEEDBACK P'009CC600.500.40010.20.30'0.50.60.70.80.9p.IppT:ME(SEC)350300250200150100500-50102030405060708090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE35bTURBINETRIPEVENTWITHPRESSURECONTROL,AXINGREACTIVITYFEEDBACK 2520'A)5)0QCac550-5)Q2030405050708090)GOT)MK(SKC)PONALDC.COOKUNIT2(HIXEOCORE)-FIGURE361TURBINETRIPFVENTMITHPRESSURECONTROL,NX'INNREACTIVITYFEEOBACK 252010ac5ac0-5-100t02030405050'08090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE36bTURBINETRIPEVENTMITHPRESSURECONTROL,MAX!NNREACTIVITYFEEDBACK
c?.-QC.J7z30C.BCC.D700.500.500.p.30010'0'0.40.50.60.70.80.9p.1pcTMK(SEC)250200150OC10QCZ500n-501020304050'6070SO901CPTlute(SEC)DONALDC.COOKUNIT2(HIXEDCORE)FIGURE35aTURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIVITY FEEDBACK P'009CC600.500.40010.20.30'0.50.60.70.80.9p.IppT:ME(SEC)350300250200150100500-50102030405060708090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE35bTURBINETRIPEVENTWITHPRESSURECONTROL,AXINGREACTIVITY FEEDBACK 2520'A)5)0QCac550-5)Q2030405050708090)GOT)MK(SKC)PONALDC.COOKUNIT2(HIXEOCORE)-FIGURE361TURBINETRIPFVENTMITHPRESSURECONTROL,NX'INNREACTIVITY FEEOBACK 252010ac5ac0-5-100t02030405050'08090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE36bTURBINETRIPEVENTMITHPRESSURECONTROL,MAX!NNREACTIVITY FEEDBACK
:5CC"5CC1nIC2ICC".QG.:900.I800.0.300tp.20.30.iP.50.60.70.50.ypTuK(SKC)t300.'6QCac'<OCCv>200nnIQOC.0.l0.20.30.40.50.60.70.80,90.IOO.T5VK(SE'C)DONALDC.COOKUNIT2(IIIXEDCORE)FIGURE37aTURBINETRIPEVENTQITHPRESSURECONTROL,MINN@REACTIVITYFEEOBACK
:5CC"5CC1nIC2ICC".QG.:900.I800.0.300tp.20.30.iP.50.60.70.50.ypTuK(SKC)t300.'6QCac'<OCCv>200nnIQOC.0.l0.20.30.40.50.60.70.80,90.IOO.T5VK(SE'C)DONALDC.COOKUNIT2(IIIXEDCORE)FIGURE37aTURBINETRIPEVENTQITHPRESSURECONTROL,MINN@REACTIVITY FEEOBACK


5QCnwgAQevC~'n2~00V)1600)0.20.30.40.50.50.10.80.90.:OC.T:VK(SEC)2'300.1800.1600.I400."4l200.1000.600.0.~0.20.30.i0.50.60.10.d0.90.~OC.7~&(SEC)OONLOC.COOKNIT2(FULLVSCORE)FIQIRE37bTURBINETRIPEVENT'MITHPRESSURECONTROL,NINNNREACTIVITYFEE08ACK 102050<050607Q60gCrvK(SgC)286"2164~Q203040'0647060g)T1QK(SEC)OONU)C.COOKUNIT2(llIXEOCORE)fI6NE38'URSINETRIPEVENTMITHPRESSURECONTROL,NINNPlREACTIVITYFEEDBACK Z0.ic20304050d010d090TMK(SEC}45352.5I.Sl.0102030.io50107080SOtCOTi&(SEC)OQNLDC;COOKUNIT2(FULLVSCORE)FIQNE38b'URSIHETRIPEVENTNITHPRESSURECONTROLSINN@REACTIVITYFEEDBACK 560t520500010203040506070809C'"0IMK(SEC)6805605~0~5205005505605405205000"102030405060108090'00TivK(SEC)00NALDC.COOKUN?T2(NIXEDCORE)FlGURE39aTURSlNETRlPEVENT'MlTHPRESSURECONTROL,NlHUNNREACTLVITYFEEOBACK
5QCnwgAQevC~'n2~00V)1600)0.20.30.40.50.50.10.80.90.:OC.T:VK(SEC)2'300.1800.1600.I400."4l200.1000.600.0.~0.20.30.i0.50.60.10.d0.90.~OC.7~&(SEC)OONLOC.COOKNIT2(FULLVSCORE)FIQIRE37bTURBINETRIPEVENT'MITHPRESSURECONTROL,NINNNREACTIVITY FEE08ACK 102050<050607Q60gCrvK(SgC)286"2164~Q203040'0647060g)T1QK(SEC)OONU)C.COOKUNIT2(llIXEOCORE)fI6NE38'URSINE TRIPEVENTMITHPRESSURECONTROL,NINNPlREACTIVITY FEEDBACK Z0.ic20304050d010d090TMK(SEC}45352.5I.Sl.0102030.io50107080SOtCOTi&(SEC)OQNLDC;COOKUNIT2(FULLVSCORE)FIQNE38b'URSIHETRIPEVENTNITHPRESSURECONTROLSINN@REACTIVITY FEEDBACK 560t520500010203040506070809C'"0IMK(SEC)6805605~0~5205005505605405205000"102030405060108090'00TivK(SEC)00NALDC.COOKUN?T2(NIXEDCORE)FlGURE39aTURSlNETRlPEVENT'MlTHPRESSURECONTROL,NlHUNNREACTLVITY FEEOBACK


4,IIcogiII5205000>02030<0506070TvK(SEC)30I68G6605<0r.2r.63058035605i0520500'l02030405060708090iCQTivK(SKC)NXQLO'C.COOKUNIT2(FULLV5CORE)FIGURE3SbTURBINETRIPEVENTQITHPRESSURECONTROL,NINNNREACTIVITYFEEDBACK n13QC.700.500.500.40Q10.20.30.40.50.60.70.80.9Q.!QC.TME(SEC)s)350300"50200150100500500.102030405060708090>00TiMK(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE40aTURBINETRIPEVENTQITHPRESSURECONTROL,MINIMUMREACTIVITYFEEDBACK el'00.3PG.MV7PG.500.5000~10'2030'0'0'0'0~80.90.'CC.TME(SEC)500n4001I(3OO<I200i100J)0n-100010203040506070do90iCOTlMK(SEC)OONALOC.COOKUNIT2(FULLVSCORE)FIGURE40b.TURBINE.TRIPEVENTWITHPRESSURECONTROL,HININNREACTIYITYFEEOBACK 403530252015gA'4]Q5-5-100102030405060lO8090'C3T'ME(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE41aTURBINETRIPEVENTMITHPRESSURECONTROL,HINIMNREACTIVITVFEEDBACK 30412c20151QAgJ70-1Q0102030405060708090TIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE41bTURBINETRIPEVENTMITMPRESSURECONTROL,MINIHUHREACTIVITYFEEOBACK APPENDIXASIGNIFICANTHAZARDSEVALUATION
4,IIcogiII5205000>02030<0506070TvK(SEC)30I68G6605<0r.2r.63058035605i0520500'l02030405060708090iCQTivK(SKC)NXQLO'C.COOKUNIT2(FULLV5CORE)FIGURE3SbTURBINETRIPEVENTQITHPRESSURECONTROL,NINNNREACTIVITY FEEDBACK n13QC.700.500.500.40Q10.20.30.40.50.60.70.80.9Q.!QC.TME(SEC)s)350300"50200150100500500.102030405060708090>00TiMK(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE40aTURBINETRIPEVENTQITHPRESSURECONTROL,MINIMUMREACTIVITY FEEDBACK el'00.3PG.MV7PG.500.5000~10'2030'0'0'0'0~80.90.'CC.TME(SEC)500n4001I(3OO<I200i100J)0n-100010203040506070do90iCOTlMK(SEC)OONALOC.COOKUNIT2(FULLVSCORE)FIGURE40b.TURBINE.TRIPEVENTWITHPRESSURECONTROL,HININNREACTIYITY FEEOBACK 403530252015gA'4]Q5-5-100102030405060lO8090'C3T'ME(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE41aTURBINETRIPEVENTMITHPRESSURECONTROL,HINIMNREACTIVITV FEEDBACK 30412c20151QAgJ70-1Q0102030405060708090TIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE41bTURBINETRIPEVENTMITMPRESSURECONTROL,MINIHUHREACTIVITY FEEOBACK APPENDIXASIGNIFICANT HAZARDSEVALUATION
>A SIGNIFICANTHAZARDSEVALUATIONDONALDC.COOKUNITS1&2MSSVLIFTSETPOINTTOLERANCETECHNICALSPECIFICATIONCHANGEINTRODUCTION:Pursuantto10CFR50.92,eachapplicationforamendmenttoanoperatinglicensemustbereviewedtodetermineiftheproposedchangeinvolvesasignificanthazardsconsideration.TheCommissionhasprovidedstandardsfordeterminingwhetherasignificanthazardsconsiderationexists(1OCFR50.92(c)).Aproposedamendmenttoanoperatinglicenseforafacilityinvolvesnosignificanthazardsconsiderationifoperationofthefacilityinaccordancewiththeproposedamendmentwouldnot:1)involveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated,or2)createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated,or3)involveasignificantreductioninamarginofsafety.DESCRIPTIONOfAMENDMENTREVEST:ThepurposeofthisamendmentrequestistoreviseTechnicalSpecificationSection3/4.7forbothDonaldC.Cookunitsinordertorelaxthemainsteamsafetyvalve(MSSV)liftsetpointtolerancefrom<1%toJ3%.ThecurrentlyspecifiedtoleranceofJ1%oftheliftsetpointcanbedifficulttomeetwhenthevalvesaretestedduetosetpointdriftoverthedurationoftheoperatingcycle.ThisevaluationwillprovidemarginforAmericanElectricPowerServiceCorporation(AEPSC)whentheyperformtheirsurveillancetesting.TheASMECoderequiresthatthevalvesliftwithin1%ofthespecifiedsetpoint(NB-7512.2).Thecodealsostatesthatthevalvesmustattainratedlift(i.e.,fullflow)within3%ofthespecifiedsetpoint(NB-7512.1).ThisevaluationwillformthebasisfortakingexceptiontotheASMECodewithrespecttotheliftsetpointtolerances.AsdefinedinNB-7512.2,exceptionscanbemadetothecodeprovidingtheeffectsareaccountedforintheaccidentanalyses.A-1  
>A SIGNIFICANT HAZARDSEVALUATION DONALDC.COOKUNITS1&2MSSVLIFTSETPOINTTOLERANCE TECHNICAL SPECIFICATION CHANGEINTRODUCTION:
Pursuantto10CFR50.92, eachapplication foramendment toanoperating licensemustbereviewedtodetermine iftheproposedchangeinvolvesasignificant hazardsconsideration.
TheCommission hasprovidedstandards fordetermining whetherasignificant hazardsconsideration exists(1OCFR50.92(c)).
Aproposedamendment toanoperating licenseforafacilityinvolvesnosignificant hazardsconsideration ifoperation ofthefacilityinaccordance withtheproposedamendment wouldnot:1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, or2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated, or3)involveasignificant reduction inamarginofsafety.DESCRIPTION OfAMENDMENT REVEST:Thepurposeofthisamendment requestistoreviseTechnical Specification Section3/4.7forbothDonaldC.Cookunitsinordertorelaxthemainsteamsafetyvalve(MSSV)liftsetpointtolerance from<1%toJ3%.Thecurrently specified tolerance ofJ1%oftheliftsetpointcanbedifficult tomeetwhenthevalvesaretestedduetosetpointdriftoverthedurationoftheoperating cycle.Thisevaluation willprovidemarginforAmericanElectricPowerServiceCorporation (AEPSC)whentheyperformtheirsurveillance testing.TheASMECoderequiresthatthevalvesliftwithin1%ofthespecified setpoint(NB-7512.2).
Thecodealsostatesthatthevalvesmustattainratedlift(i.e.,fullflow)within3%ofthespecified setpoint(NB-7512.1).Thisevaluation willformthebasisfortakingexception totheASMECodewithrespecttotheliftsetpointtolerances.
AsdefinedinNB-7512.2, exceptions canbemadetothecodeproviding theeffectsareaccounted forintheaccidentanalyses.
A-1  


BASISFORNOSINIFICANTHAZAIU)SDETERMINATION:Theeffectsofincreasingtheas-foundliftsetpointtoleranceonthemainsteamsafetyvalvehavebeenexaminedforthenon-LOCAaccidents,andithasbeendeterminedthat,withoneexception,thecurrentaccidentanalysesaspresentedintheUFSARremainvalid.Thelossofload/turbinetripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerancerelaxation.Aspreviouslydemonstratedinthisevaluation,allapplicableacceptancecriteriaforthiseventhavebeensatisfiedandtheconclusionspresentedintheUFSARarestillvalid.Thus,theproposedTechnicalSpecificationchangedoesnotconstituteanunreviewedsafetyquestion,andthenon-LOCAaccidentanalyses,aspresentedinthereport,supporttheproposedchange.TheeffectofanincreaseintheallowableMainSteamSafetyValvesetpressuretolerancefrom+1%to+3%ontheUFSARLOCAanalyseshasbeenevaluated.Ineachcasetheapplicableregulatoryordesignlimitwassatisfied.SpecificanalyseswereperformedforsmallbreakLOCAassumingthecurrentMSSVTechnicalSpecificationsetpressuresplustheproposedadditional3%uncertainty.Thecalculatedpeakcladdingtemperaturesremainedbelowthe10CFR50.462200'Flimit.Thesteamgeneratortuberuptureeventwasalsoanalyzedtodeterminetheeffectsoftheliftsetpointtoleranceincrease.TheresultsoftheanalysisconcludedthattherewasaveryslightincreaseinthewholebodydosereleaseforUnit1,butthemagnitudeoftheincreasewasSECL-91%29,Revision1withintheuncertaintyassociatedwiththecalculationitself,andthatthereleasesgeneratedfortheDonaldC.CookReratingProgramboundthosecalculatedforthisevaluation.TheevaluationalsodeterminedthatthecurrentUnit2dosesremainbounding.Thus,theconclusionspresentedintheDonaldC.CookUFSARremainvalid.Neitherthemassandenergyreleasetothecontainmentfollowingapostulatedlossofcoolantaccident(LOCA),northecontainmentresponsefollowingtheLOCAanalysis,credittheMSSVinmitigatingtheconsequencesofanaccident.Therefore,changingtheMSSVliftsetpointtoleranceswillhavenoimpactonthecontainmentintegrityanalysis.Inaddition,basedontheconclusionofthetransientanalyses,thechangetotheMSSVtolerancewillnotaffectthecalculatedsteamlinebreakmassandenergyreleasesinsidecontainment.A-2 TheproposedchangehasbeenevaluatedinaccordancewiththeSignificantHazardscriteriaof10CFR50.92.Theresultsoftheevaluationdemonstratethatthechangedoesnotinvolveanysignificanthazardsasdescribedbelow.1.Asignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated.RelaxationoftheMSSVsetpointtolerancefrom+1%toJ3%doesnotincreasetheprobabilityorconsequencesofanaccidentpreviouslyevaluated.Componentandsystemperformancewillnotbeadverselyaffectedsinceequipmentandsystemdesigncriteriacontinuetobemet.TheMSSVsdonotinitiateanyaccidentnotalreadydiscussedintheUFSAR.Neitherthemassandenergyreleasetothecontainmentfollowingapostulatedlossofcoolantaccident(LOCA),northecontainmentresponsefollowingtheLOCAanalysis,credittheMSSVinmitigatingtheconsequencesofanaccident.Fortheeventsanalyzed,allapplicableacceptancecriteriaweresatisfied,andtherewasnoincreaseinthedosesoverthosepreviouslygenerated.Asaresult,theconclusionspresentedintheDonaldC.CookUFSARareunaffectedbytheproposedchange.Therefore,changingtheMSSVliftsetpointtoleranceswouldhavenoimpactontheconsequencesofanaccident.2.Createthepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated.Thepossibilityforanaccidentormalfunctionofadifferenttypethanevaluatedpreviouslyinthesafetyanalysisreportisnotcreated.IncreasingtheliftsetpointtoleranceontheMSSVsdoesnotintroduceanewaccidentinitiatormechanism.Nonewfailuremodeshavebeendefinedforanysystemorcomponentimportanttosafetynorhasanynewlimitingsinglefailurebeenidentified.NoaccidentwillbecreatedthatwillincreasethechallengetotheMSSVsorresultinincreasedactuationofthevalves.Therefore,thepossibilityofanaccidentdifferentthanpreviouslyevaluatedisnotcreated.3.Involveasignificantreductioninamarginofsafety.ThemarginofsafetyasdefinedinthebasisoftheTechnicalSpecificationsisnotreducedbythechangeintheMSSVliftsetpointtolerance.TheproposedIncreaseintheas-foundMSSVliftPA-3 setpointtolerancewillnotInvalidatetheLOCAornon-LOCAconclusionspresentedintheUFSARaccidentanalyses.Thenewlossofload/turbinetripanalysisconcludedthatallapplicableacceptancecriteriaarestillsatisfied.ForalltheUFSARnon-LOCAtransients,theDNBdesignbasis,primaryandsecondarypressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperaturesremainbelowthelimitsspecifiedin10CFR50.46.Thecalculateddosesresultingfromasteamgeneratortuberuptureeventremainwithinasmallfractionofthe10CFR100permissiblereleases.Thus,thereisnoreductioninthemargintosafety.Note,however,inordertoimplementtheproposedchange,theTechnicalSpecificationswillhavetobechanged.
BASISFORNOSINIFICANTHAZAIU)SDETERMINATION:
3.7.1.1AllaainstomalinecodasafetyvalveaaasocLaeedvieheachsees.generatorshallboOPEkASLE.IIIC4HLBX:thCGM:aob.VLeh4reactorcoolantloopaandaaaociatadseaaageneracot..sLnoperation'assdviehonaoraoraaainateaalimacodesefecyvalvoaLnoyorabla,operationLnNOES1,Rand3aayproceedyrovidad,thatwithin4houra,eitherehoLnoparablavalveLsraatoradtoOPXMLIatatuaorehahwer4ngeNeutronfLuxHighSatpointtriyiareducedyorTable3.1-1.;othe~a,ioLnatlaaatNTSTARlTviehinehanaxtChouraandLnCogSMVTKNNvithinehofollowing30boura.>teVLeh3raactorcoolantlooyaan4aaaociatadstaaagaaeraeogsLnoyoratiossan4viehoneormraaainataaalinacodesafeeyvalveaaaaociatadviehanoperaticloopLnoporabla,operaeLonLnNRC3aaluproceedprovidad,that&thin4houri,eithertheLnoporablovalveLaraatoradtoOHRALLCaeatuaorchereactortripbreakersareopane4;othariiao,boinCOLOSRUTEOQNvtthinehanext30bours.C~TheproviaionaofSpocificatioo3.0.4arenotapylicable.4.7.1.1Eachaaina~liaocodeaafaeyvalveahaGbo4eeonaeraeedOPEMlJ,richlifeaottiagsandorificeaixaaaaebsLnTable4,71,Lnaccordanceetch,SoetiossZIofehoAQCloilarandPraaauraVaaaalCoda,1914gee.D.C.COCC~URXZ13/47-1agamaNO.ig0 TABLE3.7-lHNIINNALLONkEONERRAHGKlKUTRONfLUNHIGHSETPOINTMITUINOPERhBLESTEANlEFWlKflll~~eCNaxtamNakeroffeeyorableSafetyValvesoalaatiSteaaCaaaratorHexf~Al)owablePowerRangeNeutronfluxHighSetpointPercentofRATKDTERNALPSKR13.6  
Theeffectsofincreasing theas-foundliftsetpointtolerance onthemainsteamsafetyvalvehavebeenexaminedforthenon-LOCAaccidents, andithasbeendetermined that,withoneexception, thecurrentaccidentanalysesaspresented intheUFSARremainvalid.Thelossofload/turbine tripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerance relaxation.
Aspreviously demonstrated inthisevaluation, allapplicable acceptance criteriaforthiseventhavebeensatisfied andtheconclusions presented intheUFSARarestillvalid.Thus,theproposedTechnical Specification changedoesnotconstitute anunreviewed safetyquestion, andthenon-LOCAaccidentanalyses, aspresented inthereport,supporttheproposedchange.Theeffectofanincreaseintheallowable MainSteamSafetyValvesetpressuretolerance from+1%to+3%ontheUFSARLOCAanalyseshasbeenevaluated.
Ineachcasetheapplicable regulatory ordesignlimitwassatisfied.
Specificanalyseswereperformed forsmallbreakLOCAassumingthecurrentMSSVTechnical Specification setpressures plustheproposedadditional 3%uncertainty.
Thecalculated peakcladdingtemperatures remainedbelowthe10CFR50.46 2200'Flimit.Thesteamgenerator tuberuptureeventwasalsoanalyzedtodetermine theeffectsoftheliftsetpointtolerance increase.
Theresultsoftheanalysisconcluded thattherewasaveryslightincreaseinthewholebodydosereleaseforUnit1,butthemagnitude oftheincreasewasSECL-91%29, Revision1withintheuncertainty associated withthecalculation itself,andthatthereleasesgenerated fortheDonaldC.CookReratingProgramboundthosecalculated forthisevaluation.
Theevaluation alsodetermined thatthecurrentUnit2dosesremainbounding.
Thus,theconclusions presented intheDonaldC.CookUFSARremainvalid.Neitherthemassandenergyreleasetothecontainment following apostulated lossofcoolantaccident(LOCA),northecontainment responsefollowing theLOCAanalysis, credittheMSSVinmitigating theconsequences ofanaccident.
Therefore, changingtheMSSVliftsetpointtolerances willhavenoimpactonthecontainment integrity analysis.
Inaddition, basedontheconclusion ofthetransient
: analyses, thechangetotheMSSVtolerance willnotaffectthecalculated steamline breakmassandenergyreleasesinsidecontainment.
A-2 Theproposedchangehasbeenevaluated inaccordance withtheSignificant Hazardscriteriaof10CFR50.92.
Theresultsoftheevaluation demonstrate thatthechangedoesnotinvolveanysignificant hazardsasdescribed below.1.Asignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated.
Relaxation oftheMSSVsetpointtolerance from+1%toJ3%doesnotincreasetheprobability orconsequences ofanaccidentpreviously evaluated.
Component andsystemperformance willnotbeadversely affectedsinceequipment andsystemdesigncriteriacontinuetobemet.TheMSSVsdonotinitiateanyaccidentnotalreadydiscussed intheUFSAR.Neitherthemassandenergyreleasetothecontainment following apostulated lossofcoolantaccident(LOCA),northecontainment responsefollowing theLOCAanalysis, credittheMSSVinmitigating theconsequences ofanaccident.
Fortheeventsanalyzed, allapplicable acceptance criteriaweresatisfied, andtherewasnoincreaseinthedosesoverthosepreviously generated.
Asaresult,theconclusions presented intheDonaldC.CookUFSARareunaffected bytheproposedchange.Therefore, changingtheMSSVliftsetpointtolerances wouldhavenoimpactontheconsequences ofanaccident.
2.Createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated.
Thepossibility foranaccidentormalfunction ofadifferent typethanevaluated previously inthesafetyanalysisreportisnotcreated.Increasing theliftsetpointtolerance ontheMSSVsdoesnotintroduce anewaccidentinitiator mechanism.
Nonewfailuremodeshavebeendefinedforanysystemorcomponent important tosafetynorhasanynewlimitingsinglefailurebeenidentified.
Noaccidentwillbecreatedthatwillincreasethechallenge totheMSSVsorresultinincreased actuation ofthevalves.Therefore, thepossibility ofanaccidentdifferent thanpreviously evaluated isnotcreated.3.Involveasignificant reduction inamarginofsafety.ThemarginofsafetyasdefinedinthebasisoftheTechnical Specifications isnotreducedbythechangeintheMSSVliftsetpointtolerance.
TheproposedIncreaseintheas-foundMSSVliftPA-3 setpointtolerance willnotInvalidate theLOCAornon-LOCAconclusions presented intheUFSARaccidentanalyses.
Thenewlossofload/turbine tripanalysisconcluded thatallapplicable acceptance criteriaarestillsatisfied.
ForalltheUFSARnon-LOCAtransients, theDNBdesignbasis,primaryandsecondary pressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperatures remainbelowthelimitsspecified in10CFR50.46.
Thecalculated dosesresulting fromasteamgenerator tuberuptureeventremainwithinasmallfractionofthe10CFR100permissible releases.
Thus,thereisnoreduction inthemargintosafety.Note,however,inordertoimplement theproposedchange,theTechnical Specifications willhavetobechanged.
3.7.1.1AllaainstomalinecodasafetyvalveaaasocLaeed vieheachsees.generator shallboOPEkASLE.
IIIC4HLBX:
thCGM:aob.VLeh4reactorcoolantloopaandaaaociatad seaaageneracot..s Lnoperation'assd viehonaoraoraaainateaalimacodesefecyvalvoaLnoyorabla, operation LnNOES1,Rand3aayproceedyrovidad, thatwithin4houra,eitherehoLnoparabla valveLsraatoradtoOPXMLIatatuaorehahwer4ngeNeutronfLuxHighSatpointtriyiareducedyorTable3.1-1.;othe~a,ioLnatlaaatNTSTARlTviehinehanaxtChouraandLnCogSMVTKNNvithinehofollowing 30boura.>teVLeh3raactorcoolantlooyaan4aaaociatad staaagaaeraeogs Lnoyoratioss an4viehoneormraaainataaalinacodesafeeyvalveaaaaociatad viehanoperaticloopLnoporabla, operaeLon LnNRC3aaluproceedprovidad, that&thin4houri,eithertheLnoporablo valveLaraatoradtoOHRALLCaeatuaorchereactortripbreakersareopane4;othariiao, boinCOLOSRUTEOQNvtthinehanext30bours.C~Theproviaiona ofSpocificatioo 3.0.4arenotapylicable.
4.7.1.1Eachaaina~liaocodeaafaeyvalveahaGbo4eeonaeraeed OPEMlJ,richlifeaottiagsandorificeaixaaaaebsLnTable4,71,Lnaccordance etch,SoetiossZIofehoAQCloilarandPraaauraVaaaalCoda,1914gee.D.C.COCC~URXZ13/47-1agamaNO.ig0 TABLE3.7-lHNIINNALLONkEONERRAHGKlKUTRONfLUNHIGHSETPOINTMITUINOPERhBLE STEANlEFWlKflll
~~eCNaxtamNakeroffeeyorable SafetyValvesoalaatiSteaaCaaarator Hexf~Al)owable PowerRangeNeutronfluxHighSetpointPercentofRATKDTERNALPSKR13.6  


n5%1Cin.LCin1Cln1Cin.1Cin.ooNl$0CSyeiyhN1$045peiy'IIooN-35075peigI4eNR$07IyeiyW~oN3k$peiyIA+fholttcattpraaaaroaballoorroayqn4toaabieataedltloneottheyalyaat.aoaiaaloporatiaytaeperaturaae1proeeur'  
n5%1Cin.LCin1Cln1Cin.1Cin.ooNl$0CSyeiyhN1$045peiy'IIooN-35075peigI4eNR$07IyeiyW~oN3k$peiyIA+fholttcattpraaaaroaballoorroayqn4 toaabieataedltlone ottheyalyaat.aoaiaaloporatiay taeperatura ae1proeeur'  


ThoOPERAITLI.YofehaaainseoaalinecodasafoeyvalvooanagramIocondatyIyocooproasurovil1boLiiieo4eovichinieados'.gnpzoaguroof10f5paiddurinjtheoooesovoroaneicipaeodsyseoNopera.eionaleranaionc.Theaux~'oliovinicapaeieyi4aaoociaeidvihIeutbinoeripfroa100%RATSTHERMALt5CLcoincidentviehanaaavuaod.':ofeondonsothoacsinJa(i.o..noseaaabyyaaaeoehocondonaot).TheIpooifiodvalvelifecoceinlaan@roliovingcapaeieiooareinaocozdaneoviAehozoquiroaeneaof5occionZTZofehoQlCSoklorandprooqutoCodeL97LCdicion.ThececalroliovingcayaoicyforalLvalvoonaogcoaanoooL7~L53.lOOLba/htvhiehiaapyroaiaacolyLRpot'coneofchoeoealsecondaryacornGeeofLL.L20,000LboAgae[00'ATZyatagg.tOQXR.Aaint'f2OPCRAILCaafoeyvalvooperoporabl~gcaaagonotaeoronourooehacouffioionerolieCagcapacityiaevailoforehoallowableZHQ8ALPNCtoactiot&aLnTable3.7~L.STARTUtand/ortQCLOPERATIONinoyorablo+%chanchoLiiicacionaofofehoreduction.insecondaryoyseeebyehorodueodreactoretiyooccingachannela.ThereactorerfyaocyointfoLLovingbaooo:For4LooyoporaeioniiallerahloviehaafocyvaltheiCZZMr~iroaoncsonehobao'.ae~fZovaadTRLLCQ.tOMERzoq.~fcholoverRangeNoueronFlaxro4acionaaredarivo4onehoa(L0%)%hero:5P~N4acodtoaccoteriyooeyointiapotconeofRATtDTHELVL8%lLLV~eaaSaanuabetotinoyotailoaafocyvalvooporscoaa1inoL.,2or3.X~Toealrolkovingcayaaityotalloafoeyvalve!poraeocaLine~4.off,454Lbo/beut.Y~Naciluaroliovinleayacicyotanyonecato'eyvalve~f57,C94Lbo/hour,(109)~RoverRanchoNeutronFicta-HighTtiySoepoinefot4loopoyoracion.O..C.CXC~UNION1)3/i$LAN~tKNTNO.  
ThoOPERAITLI.Y ofehaaainseoaalinecodasafoeyvalvooanagramIocondaty Iyocooproasurovil1boLiiieo4eovichinieados'.gnpzoaguroof10f5paiddurinjtheoooesovoroaneicipaeod syseoNopera.eionaleranaionc.
Theaux~'oliovini capaeieyi4aaoociaeid vihIeutbinoeripfroa100%RATSTHERMALt5CLcoincident viehanaaavuaod.':ofeondonsot hoacsinJa(i.o..noseaaabyyaaaeoehocondonaot).
TheIpooifiod valvelifecoceinlaan@rolioving capaeieioo areinaocozdaneo viAehozoquiroaenea of5occionZTZofehoQlCSoklorandprooqutoCodeL97LCdicion.Thececalrolioving cayaoicyforalLvalvoonaogcoaanoooL7~L53.lOOLba/htvhiehiaapyroaiaaco lyLRpot'coneofchoeoealsecondary acornGeeofLL.L20,000 LboAgae[00'ATZyatagg.tOQXR.Aaint'f2OPCRAILCaafoeyvalvooperoporabl~gcaaagonotaeor onourooehacouffioione rolieCagcapacityiaevailoforehoallowable ZHQ8ALPNCtoactiot&a LnTable3.7~L.STARTUtand/ortQCLOPERATION inoyorablo
+%chanchoLiiicaciona ofofehoreduction.
insecondary oyseeebyehorodueodreactoretiyooccingachannela.
ThereactorerfyaocyointfoLLoving baooo:For4Looyoporaeion iiallerahlo viehaafocyvaltheiCZZMr~iroaoncs onehobao'.ae~fZovaadTRLLCQ.tOMERzoq.~fcholoverRangeNoueronFlaxro4aciona aredarivo4onehoa(L0%)%hero:5P~N4acodtoaccoteriyooeyointiapotconeofRATtDTHELVL8%lLLV~eaaSaanuabetotinoyotailo aafocyvalvooporscoaa1inoL.,2or3.X~Toealrolkoving cayaaityotalloafoeyvalve!poraeocaLine~4.off,454 Lbo/beut.
Y~Naciluaroliovinl eayacicyotanyonecato'eyvalve~f57,C94Lbo/hour, (109)~RoverRanchoNeutronFicta-High TtiySoepoinefot4loopoyoracion.
O..C.CXC~UNION1)3/i$LAN~tKNTNO.  


3,7,1.1hL1matnseaaaleonecodasa.aeyvalvesassoc'.acidviAeachsteanjenaraeorsha11beOPELQQv'.5Lifeseer'gsasspeci'fed'.nTabLe3:I-'a.%Egal2i~aob.Vkeh4reactorcoolaneLoopsandassociatedseeaageneraeosLncyerae'onandviehoneormoraIaknseeaaLWcoda.saeeyvalves~rable,eparaetonLaCNS1,2andSmayproceedyrovided,chatvtdgn4bees,etchereheinoperablevalvetsreseoredeoOPQhlLXjeacQ$Qrehe?4%%riange&#xc3;oLeronF11%EkghTripSec[oint.iareducedyearTableS.l-l:otherwise,beinatLeaseBet~~vichinehoneatC~sca@LaCOTE51CTtRKNNvtehfaehefollm4ag30heats.iVSch3reaotorcoolantlooyaaaLassociatedsteamgeneratorsbioperationaa4etchoneorsereaaSasteamLhsecodesa"oeyvalvesaaaoetato4&than~racial3eoytaeporable,eyeraef.ontaMDL3mayyrocoo4ytevtdad,chatvtthtalbeati,eiehetthei.noyerablevalveSareaeoredteOZQQLXstatuserehereactortrLybrewersareeyeaed;etheaCae,beQxCOLOSRUTI%witheehenext30hexa.'Theyxevta5.oaaofSpoctNcaeton3.0.Iarenotayylfcable,4.?.L.LIoe44LCLeaaiSerretlLcaeeteqCr~taeehezthanchose~redby4.t.$.S/a7~1Ajg&#xc3;KICRT50.82 TABLE3.l-lINXINllALL@NB.KPSKRRANGENK~U~FSETPOIIITlIITIIINOPERABLESTEAHSaxi~NuwberofVavesoaleSafetyorNax)mmh))mab)ePoserRangeNeNtroaFluxlllghSetpoiatCerementofRATEOTIIENHLPONER87.2 VMa.SV-lli.SV-lc.SV-21.SV-2,e.SV-3ZAlkf3.7-hSTEINLtdSQ'HYVALVfSffNlOOP81+llfTSEHll065psig)065psigl075psigl075prig)NSysiSORIFlCESIZEl6i16in.~)6in.~l6in.2l6in.~l%mmeXI'ressureslullcerrespoaltooehieatcoa4itioasofQevalveateewiaaloyeratiayteayerebee.aalyra5ssre.
3,7,1.1hL1matnseaaaleonecodasa.aeyvalvesassoc'.acid viAeachsteanjenaraeor sha11beOPELQQv'.5Lifeseer'gsasspeci'fed'.nTabLe3:I-'a.%Egal2i~aob.Vkeh4reactorcoolaneLoopsandassociated seeaageneraeosLncyerae'on andviehoneormoraIaknseeaaLWcoda.saeeyvalves~rable,eparaeton LaCNS1,2andSmayproceedyrovided, chatvtdgn4bees,etchereheinoperable valvetsreseoredeoOPQhlLXjeacQ$Qrehe?4%%riange&#xc3;oLeronF11%EkghTripSec[oint.
ThoOHRQIUTTofchocatasceaaltnoeo4aaafecy~aireseaaeea~ceeseceataxyIystaa)casanova<11Qltatca4ceWN,all0ooftcs4ast~yciseureof104$Pstg4ctagChoaesCseversanctctpace4eyscaaoPoractana1transient.TheaaxtaaralteCagceyaaicytsassoctaca4vSchaoazbtnecrt'~104i~TRENT8$ZRaotnatdancrichanass~41oisofaen4ensorbeaCsink(L,e.,Ms~l+asscecheaon4ansaz).Tbesyoetfto4Mw1SAsottSILgsan4reltovtagecyacittasaretnaeeor4anaeetchchoreqatr~csofSoertoaIIIofchoA58R&tieran4~gggg~pPros~eCo4e,1071MicoeTbececaltoit~ecyactcyofa11aafocyvresoaes~lineaLalT,U$,000lhsiht~ahtaaclease10f~tcancofche84%~soaon~sc440AMraceae100'ATZO~g,5ggR.iNtsga%of!OMAlLSaafecyM&sPors~gonatacartoglkgoschaseatttatanereit~aayaetryta~ladleferIhealletahlotRQNAL?OCRtoscrta!SoitaTaile3.7l.STIRXQPea4/ot8$CLOPmliTKONteallowableetchsafely~tseyerailowitheche1$akcactoesottheAC?TM~reeencsoathehastaofchere4saciootasoaea4axyaye~s~fleesniThtlsg.8&#xc3;CR-r~atxe4iyChete4aae4reaecer.eriyeeeeSNgeefAePeatRange'1~chIRhllsoThereeccer~ee~tkcf04Nrtooeare4ert~eOchefellatiobases:gal1eeyeyeracQea(i')Aero:Stare~reeeceeartyeeeyeLaeLaPoreeneoflCClTIRlh8%&1aaml~aeAerefSaeyetahlesafeeyWeelPerseem@asY=-&#x17d;10'IeiilrelS~eoyoetryofallsafoeyvalvesPerstable~SBQe./beese4,Q!,4S~~rolteviageayac&yef~onesafoeyva1veSaO~.Pe+&#x17d;aSt,SeeteatOsageSee~Plm~ltdSeeyets!fer1leep~yera@tee~WCLCaatLaamta1$/4liLsammyIo.$2.  
iareducedyearTableS.l-l:otherwise, beinatLeaseBet~~vichinehoneatC~sca@LaCOTE51CTtRKNN vtehfaehefollm4ag30heats.iVSch3reaotorcoolantlooyaaaLassociated steamgenerators bioperation aa4etchoneorsereaaSasteamLhsecodesa"oeyvalvesaaaoetato4
&than~racial3eoytaeporable, eyeraef.on taMDL3mayyrocoo4ytevtdad, chatvtthtalbeati,eiehetthei.noyerable valveSareaeoredteOZQQLXstatuserehereactortrLybrewersareeyeaed;etheaCae, beQxCOLOSRUTI%witheehenext30hexa.'Theyxevta5.oaa ofSpoctNcaeton 3.0.Iarenotayylfcable, 4.?.L.LIoe44LCLeaai SerretlLcaee teqCr~taeehezthanchose~redby4.t.$.S/a7~1Ajg&#xc3;KICRT 50.82 TABLE3.l-lINXINllALL@NB.KPSKRRANGENK~U~FSETPOIIIT lIITIIINOPERABLE STEAHSaxi~NuwberofVavesoaleSafetyorNax)mmh))mab)ePoserRangeNeNtroaFluxlllghSetpoiatCerementofRATEOTIIENHLPONER87.2 VMa.SV-lli.SV-lc.SV-21.SV-2,e.SV-3ZAlkf3.7-hSTEINLtdSQ'HYVALVfSffNlOOP81+llfTSEHll065psig)065psigl075psigl075prig)NSysiSORIFlCESIZEl6i16in.~)6in.~l6in.2l6in.~l%mmeXI'ressure slullcerrespoal tooehieatcoa4itioas ofQevalveateewiaaloyeratiay teayerebee.aal yra5ssre.
ThoOHRQIUTTofchocatasceaaltnoeo4aaafecy~aireseaaeea~ceeseceataxy Iystaa)casanova
<11Qltatca4ceWN,all0ooftcs4ast~yciseureof104$Pstg4ctagChoaesCseversanctctpace4 eyscaaoPoractana1 transient.
TheaaxtaaralteCagceyaaicytsassoctaca4 vSchaoazbtnecrt'~104i~TRENT8$ZRaotnatdanc richanass~41oisofaen4ensor beaCsink(L,e.,Ms~l+asscecheaon4ansaz).
Tbesyoetfto4 Mw1SAsottSILgs an4reltovtag ecyacittas aretnaeeor4anae etchchoreqatr~cs ofSoertoaIIIofchoA58R&tieran4~gggg~pPros~eCo4e,1071MicoeTbececaltoit~ecyactcyofa11aafocyvresoaes~lineaLalT,U$,000lhsiht~ahtaaclease10f~tcancofche84%~soaon~sc440AMraceae100'ATZO~g,5ggR.iNtsga%of!OMAlLSaafecyM&sPors~gonatacar toglkgoschaseatttatane reit~aayaetryta~ladleferIhealletahlo tRQNAL?OCRtoscrta!Soi taTaile3.7l.STIRXQPea4/ot8$CLOPmliTKON teallowable etchsafely~tseyerailo witheche1$akcactoes ottheAC?TM~reeencsoathehastaofchere4sacioo tasoaea4axy aye~s~fleesniThtlsg.8&#xc3;CR-r~atxe4iyChete4aae4reaecer.eriy eeeeSNgeefAePeatRange'1~chIRhllso Thereeccer~ee~tkcf04Nrtooe are4ert~eOchefellatiobases:gal1eeyeyeracQea(i')Aero:Stare~reeeceeartyeeeyeLaeLaPoreeneoflCClTIRlh8%&1aaml~aeAerefSaeyetahle safeeyWeelPerseem@asY=-&#x17d;10'IeiilrelS~eoyoetryofallsafoeyvalvesPerstable~SBQe./beese4,Q!,4S~~rolteviag eayac&yef~onesafoeyva1veSaO~.Pe+&#x17d;aSt, SeeteatOsageSee~Plm~ltdSeeyets!fer1leep~yera@tee~WCLCaatLaamta1$/4liLsammyIo.$2.  


INNTAhesafetynl>e)sOPERABLE~)tha1)ftsettingof'Waboutthenmfnalvalue.H~r,thesafetyvalveshallberesettothenoa)nalvalue+]%wheneverf~outs1dethe+1%tolerance.}}
INNTAhesafetynl>e)sOPERABLE~)tha1)ftsettingof'Waboutthenmfnalvalue.H~r,thesafetyvalveshallberesettothenoa)nalvalue+]%wheneverf~outs1dethe+1%tolerance.}}

Revision as of 07:15, 29 June 2018

DC Cook Units 1 & 2 Main Steam Safety Valve Lift Setpoint Tolerance Relaxation.
ML17331B133
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 12/31/1993
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17331B132 List:
References
SECL-91-429, SECL-91-429-R02, SECL-91-429-R2, NUDOCS 9312230047
Download: ML17331B133 (157)


Text

DONALDC.COOKUNITS1R2MIJNSTEAMSAHHYVALVELIFI'ETPOINT TOLERANCE RELAXATION NuclearandAdvancedTechnology DivisionWestinghouse ElectricCorporation December1993e1993Westinghouse ElectricCorporation AllRightsReserved9312230047 931217PDRADOCK05000315.PPDR SECL-91<29, Revision2TABLEOFCONTENTS~SEI~NPAEListofTablesListofFiguresnISafetyEvaluation CheckListIntroduction Licensing BasisEvaluations VINon-LOCALOCAContainment Integrity SteamGenerator TubeRuptureComponent Performance SystemsEvaluation Radiological Evaluation PlantRiskAnalysis/PE)PlantRiskAnalysis(non-IPE)

I&CSystemsTechnical Specifications 517242425262626262727Assessment ofNoUnreviewed SafetyQuestionConclusion References AppendixA:Significant HazardsEvaluation AppendixB:Recommended Technical Specification Marked-Ups 28313291429R2.wpf LISTOFTABLESTABLEPAETable1:MainSteamSafetyValveLiftSetpoints Table2:DNBDesignBasisTransients NotAffectedbyMSSVLiftSetpointTolerance IncreaseTable3:Unit1TurbineTripSequenceofEventsTable4:Unit2TurbineTripSequenceofEventsTable5:CurrentLicensing BasisSteamLineSafetyValvesperLoopTable6:MSSVSetpointIncreaseSteamLineSafetyValvesperLoopTable7:Unit1LowPressureLowTemperature InputParameters Table7a:Unit1InitialInputParameters fortheSmallBreakLOCAAnalysisTable8:Unit1LowPressureHighTemperature InputParameters Table9:Unit2LowPressureHighTemperature InputParameters Table10:Unit1SmallBreakLOCAEvaluation TimeSequenceofEventsTable10a:Unit1SmallBreakLOCAAnalysisTimeSequenceofEventsTable11:Unit1SmallBreakLOCAEvaluation SummaryofResultsTable11a:Unit1SmallBreakLOCAAnalysisSummaryofResults333537383941424345Table12:Unit.2SmallBreakLOCAEvaluation 46TimeSequenceofEvents47Table13:Unit2SmallBreakLOCAEvaluation SummaryofResults48ubxxx.wpf:

Id-121393 SECI91<29,Revision2LISTOFFIGURES~IGURBFigurela:Illustration ofOvertemperature andOverpower hTProtection forUnit1Figure1b-c:Illustration ofOvertemperature andOverpower hTProtection forUnit2(mixedandfullV-SHcores)Figure2:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure3:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

NuclearPowerandDNBRFigure4:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure5:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback; SteamGenerator PressureandMSSVReliefRateFigure6:Unit1TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

Pressurizer ReliefRateFigure7:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure8:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

NuclearPowerandDNBRFigure9:'nit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure10:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

SteamGenerator PressureandMSSVReliefRateFigure11:Unit1TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

Pressurizer ReliefRateFigure12:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure13:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

NuclearPowerandDNBRFigure14:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

CoreAverageTemperature andLoopTemperature

'1429R2.wp f

SECL-91<29, Revision2LISTOFFIGURES(Continued)

~FI@REFigure15:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

SteamGenerator PressureandMSSVReliefRateFigure16:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

Pressurizer ReliefRateFigure17:Unit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure18:Figure19:Unit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

NuclearPowerandDNBRUnit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure20:Unit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

SteamGenerator PressureandMSSVReliefRateFigure21:Unit1TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

Pressurizer ReliefRateFigure22a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure23a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

NuclearPowerandDNBRFigure24a-b:Figure25a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Unit2TurbineTripEventWithoutOPressure Control,MinimumReactivity Feedback:

SteamGenerator PressureandMSSVReliefRateFigure26a-b:Unit2TurbineTripEventWithoutPressureControl,MinimumReactivity Feedback:

Pressurizer ReliefRateFigure27a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure28a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

NuclearPowerandDNBR91429Rz.wpf 1v

SECI91-429,Revision2LISTOFFIGURES(Continued)

FIUREFigure29a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure30a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

SteamGenerator PressureandMSSVReliefRateFigure31a-b:Unit2TurbineTripEventWithoutPressureControl,MaximumReactivity Feedback:

Pressurizer ReliefRateFigure32a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure33a-b:Unit1TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

NuclearPowerandDNBRFigure34a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure35a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

SteamGenerator PressureandMSSVReliefRateFigure36a-b:Unit2TurbineTripEventWithPressureControl,MaximumReactivity Feedback:

Pressurizer ReliefRateFigure37a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

Pressurizer PressureandWaterVolumeFigure38a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

NuclearPowerandDNBRFigure39a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

CoreAverageTemperature andLoopTemperature Figure40a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

SteamGenerator PressureandMSSVReliefRateFigure41a-b:Unit2TurbineTripEventWithPressureControl,MinimumReactivity Feedback:

Pressurizer ReliefRate91429R2.wpfv SECI91-429,Revision2CustomerReference No(s).PO:04877-040-IN Westinghouse Reference No(s).WESTINGHOUSE NUCLEARSAFETYSAFETYEVALUATION CHECKLIST1)NUCLEARPLANT(S):

DONALD'CCOOKNITS1AND22)SUBJECT(TITLE):RELAXATINFMSSVSETPOINTTOLERANCE TO+/-%3)Thewrittensafetyevaluation oftherevisedprocedure, designchangeormodification requiredby1OCFR50.59 (b)hasbeenpreparedtotheextentrequiredandisattached.

Ifasafetyevaluation isnotrequiredorisincomplete foranyreason,explainonPage2.PartsAandBofthisSafetyEvaluation CheckListaretobecompleted onlyonthebasisofthesafetyevaluation performed.

CHECKLIST-PARTA10CFR50.59(a)(1)

(3.1)YesXNoAchangetotheplantasdescribed intheUFSAR?(3.2)YesNoX,,Achangetoprocedures asdescribed intheUFSAR?(3.3)YesNoXAtestorexperiment notdescribed intheUFSAR?(3.4)YesXNoAchangetotheplanttechnical specifications?

(SeenoteonPage2.)4)CHECKLIST-PartB10CFR50.59(a)(2)

(Justification forPartBanswersmustbeincludedonPage2.)(4.1)Yes(4.2)Yes(4.3)Yes(4.4)Yes(4.5)Yes(4.6)Yes(4.7)YesNoXWilltheprobability ofanaccidentpreviously evaluated intheUFSARbeincreased?

NoXWilltheconsequences ofanaccidentpreviously evaluated intheUFSARbeincreased?

NoXMaythepossibility ofanaccidentwhichisdifferent thananyalreadyevaluated intheUFSARbecreated?NoXWilltheprobability ofamalfunction ofequipment important tosafetypreviously evaluated intheUFSARbeincreased?

NoXWilltheconsequences ofamalfunction ofequipment important tosafetypreviously evaluated intheUFSARbeincreased?

NoXMaythepossibility ofamalfunction ofequipment important tosafetydifferent thananyalreadyevaluated intheUFSARbecreated?NoXWillthemargin'of safetyasdefinedinthebasestoanytechnical specifications bereduced?91429R2.wpf vi SECL-91-429, Revision2NOTES:Iftheanswerstoanyoftheabovequestions areunknown,indicateunder5)REMARKSandexplainbelow.Iftheanswerstoanyoftheabovequestions inPartA3.4orPartBcannotbeansweredinthenegative, basedonthewrittensafetyevaluation, thechangereviewwouldrequireanapplication forlicenseamendment asrequiredby10CFR50.59(c) andsubmitted totheNRCpursuantto1OCFR50.90.

5)REMARKS:Theattachedsafetyevaluation summarizes thejustification foranswersgiveninPartA3.4andPartBofthissafetyevaluation checklist:'Reference todocuments containing writtensafetyevaluation:

FRUFARPDATEPages:Tables:Figures:Reasonfor/Description ofChange:UFSARMark-userovidedbsearatetransmittal 6)SAFETYEVALUATION APPROVALLADDER:16.1)Preparedby(NuclearSafety):6.2)Reviewedby(NuclearSafety):dccook.wp f-121093vn SECI91<29,Revision2DONALDC.COOKUNITS1&2INCREASED IVORYÃST1MHSAFRXYVALVESEIPOINTTOLERANCE SAFEIYEVALUATION I.INTRODUCTI NAmericanElectricPowerServiceCorporation (AEPSC)hasfoundthatoveranoperating cyclethesetpointoftheMainSteamSafetyValves(MSSVs)canchangebymorethan1%fromtheoriginalset-pressure.

AEPSChasrequested thatWestinghouse performanevaluation toincreasetheliftsetpointtolerance ontheMSSVsatDonaldC.CookUnits1&2.Thefollowing safetyevaluation isprovidedtosupportchangingtheas-foundliftsetpointtolerance asstatedbytheTechnical Specifications fromJ1%to+3%.Duringnormalsurveillance, ifthevalvesarefoundtobewithin+3%,theywillbewithinthebasesoftheaccidentanalyses, however,thevalveswillberesettoJ1%toaccountforfutureaccumulation ofdrift.Thus,thisevaluation permitsaJ3%setpointtolerance toaddressas-foundconditions.

TheMSSVsarelocatedoutsidecontainment upstreamoftheMainSteamIsolation Valves.Thepurposeofthevalvesistopreventoverpressurization ofthesteamgenerators.

Inordertoaccomplish this,abankoffivevalvesislocatedoneachofthefoursteamgenerators, andthereliefcapacityisdesignedsuchthatthetotalsteamflowfromthe20valveswillboundthatproducedbythelimitinglicensing-basis analysis.

ForDonaldC.Cook,thetotalreliefcapacityofthe20valvesis17.153E6ibm/hrat1186.5psia(1171.5psig).Theliftsetpoints oftheindividual valvesoneachsteamline arestaggered atdifferent pressures tominimizechattering oncethevalvesareactuated.

Staggering thevalvesalsominimizes thetotalnumberofvalvesactuatedduringthosetransients wherelessthanthemaximumreliefcapacityisrequiredtherebyreducingmaintenance requirements onthevalves.Theactualsetpoints areprovidedinTable1andaredocumented inTables4.7-1and3.7-4oftheUnits1and2Technical Specifications, respectively (Reference 1).91429Rz.wpf SECL-91<29, Revision2Theoperation oftheClass2mainsteamsafetyvalves(MSSVs)isgovernedbytheASMECode(Reference 2).AEPSCwillmaintainthedesignbasisoftheMSSVsbyensuringthatthevalves,ifoutsidetheJ1%tolerance, willberecalibrated towithinJ1%.Thepurposeofthisevaluation istoprovideaquantification oftheeffectsofahigheras-foundliftsetpointtolerance.

Thissafetyevaluation willaddresstheeffectsoftheJ3%as-foundtolerance onUFSARaccidentanalyses(non-LOCA, LOCA,SGTR)andwilldocumenthowtheeffectsareaccounted forwithintheaccidentanalysesandtheacceptability oftheincreaseintheliftsetpointtolerance.

91<29R2.wpf SECI91-429,Revision2TABLE1MAINSTEAMSATINYVALVELIFI'ETPOINT ValueNumberSV-1SV-1SV-2SV-2SV-3.LiftSeoint11065psig(1080psia)1065psig(1080psia)1075psig(1090psia)1075psig(1090psia)1085psig(1100psia)

References:

Table4.7-1oftheUnit1Technical Specifications andTable3.7-4oftheUnit2Technical Specifications 91429R2.wpf

SECL-91<29, Revision2II.LICENSING BASISTitle10oftheCodeofFederalRegulations, Section50.59(10CFR50.59) allowstheholderofalicenseauthorizing operation ofanuclearpowerfacilitythecapacitytoinitiatecertainchanges,testsandexperiments notdescribed intheUpdatedFinalSafetyAnalysisReport(UFSAR).PriorNuclearRegulatory Commission (NRC)approvalisnotrequiredtoimplement themodification providedthattheproposedchange,testorexperiment doesnotinvolveanunreviewed safetyquestionorresultinachangetotheplanttechnical specifications incorporated inthelicense.WhiletheproposedchangetotheMSSVliftsetpointtolerances involvesachangetotheDonaldC.CookTechnical Specifications andrequiresalicensing amendment request,thisevaluation willbeperformed usingthemethodoutlinedunder10CFR50.59 toprovidethebasesforthedetermination thattheproposedchangedoesnotinvolveanunreviewed safetyquestion.

Inaddition, anevaluation willdemonstrate thattheproposedchangedoesnotrepresent asignificant hazardsconsideration, asrequiredby10CFR50.91 (a)(1)andwilladdressthethreetestfactorsrequiredby10CFR50.92 (c).Thenon-LOCAsafetyanalyseswillbeexaminedtodetermine theimpactoftheMSSVliftsetpointtolerance relaxation ontheDNBdesignbasisaswellastheapplicable primaryandsecondary systempressurelimits.Thelong-term corecoolingcapability ofthesecondary sidewillalsobeconsidered.

TheLOCAevaluation willinvestigate theeffectsonthelicensing basissmallbreakanalysisintermsofpeakcladtemperature, andanyadverseeffectsonthesteamgenerator tuberuptureeventandsubsequent dosereleasecalculations willalsobedetermined.

91429R2.wpf SECI91<29,Revision2III.EVALUATIONS Theresultsofthevariousevaluations fromtheNuclearSafetyrelateddisciplines withinWestinghouse scopearediscussed inthefollowing sections.

1.Non-LOCAEvaluation Thenon-LOCAaccidentanalysesthatarecurrently presented intheUFSARmodelledtheMSSVsasa'ankoffivevalves,allofwhichhavingaliftsetpointequaltothatofthehighestsetvalve(1100psia)plus3%toaccountforaccumulation.

Alloftheanalysesandevaluations performed forthisreportmodelledthestaggered behavioroftheMSSVs.Specifically, eachvalvewasassumedtooperateindividually.

Moreover, theanalyses/evaluations ofthisreportmodelledtheflowrateofeachvalvetoramplinearlyfromnoflowatitsliftsetpoint(nominalTechnical Specification setpointplusorminusthe3%tolerance value)tofullopenflowatitsfullopenpoint(3%abovethepressureatwhichthevalveswereassumedtopopopen-i.e.,accumulation effect).Forthepurposesofthisevaluation, all20MSSVsareassumedtolift3%abovetheTechnical Specification liftsetpointandachievefullratedflow(normally at3%abov::thesetpoint) 6%abovethesetpoint.

hTProtection TheincreaseintheMSSVliftsetpointtolerance hasthepotential toimpacttheOvertemperature hTandOverpower hTsetpointequations.

Referring toFigurelaforUnit1andFigures1band1c(whicharethemostlimitingcaseforeachunit/core type),increasing thepointatwhichtheMSSVsliftwilllowerthesteamgenerator safetyvalveline.IfthecurrentOTATsetpointcoefficients (K1throughK3)resultinprotection linesthatjustboundthethermalcorelimits,itispossiblethatbyloweringtheSGsafetyvalvelinetotheright,aportionofthecorelimitswillbeuncovered.

'1429R2.wpf SECI91<29,Revision2,Inordertoevaluatetheeffectsoftheincreaseinthesetpointtolerance, theOvertemperature hTandOverpower dTsetpointequations (K1throughK6)wereexaminedtodetermine iftheequations remainedvalidassumingthatall20MSSVsopenedwitha+3%tolerance.

Theresultsofthatevaluation showedthattherewassufficient margininthegeneration ofthecurrentsetpointequations tooffsettheloweringoftheSGsafetyvalveline.Thus,changestotheOvertemperature andOverpower Technical Specifications arenotneeded.Theresultsofthisevaluation arepresented asFiguresla,lb,and1c.~DNBEvenThetransients identified inTable2areanalyzedintheD.C.CookUFSARtodemonstrate thattheDNBdesignbasisissatisfied.

Withoneexception, theseeventsarea)ofsuchashortdurationthattheydonotresultintheactuation oftheMSSVs,b)core-related analysesthatfocusontheactivefuelregiononly(i.e.,onlythecoreismodelled),

orc)cooldowneventswhichresultinadecreaseinsecondary steampressure.

Thesingleexception isthelossofexternalload/turbine tripeventwhichisaddressed explicitly intheANALYSISsectionofthissafetyevaluation.

Thus,basedontheabove,theseyon-LOCADNBtransients arenotadversely impactedbytheproposedchange,andtheresultsandconclusions presented intheUFSARremainvalid,BoronDilutionEventTheborondilutionevent(14.1.5)isanalyzedtodemonstrate thattheoperators (ortheautomatic mitigation circuitry) havesufficient timetorespondpriortoreactorcriticality.

Thesecondary systemisnotmodeledintheanalysisofthisevent,andthus,changestotheMSSVshavenoimpactonthisevent.Therefore, theresultsandconclusions presented intheUFSARremainvalid.Steamline BreakMass&:EneReleasesForthesteamline breakmassandenergyreleases, the'steam releasecalculations areinsensitive tothechangesintheMSSVliftsetpoints sincethevastmajorityofthesecalculations resultindepressurizations ofthesecondary sidesuchthattheMSSVsarenotactuated.

Forthe91429Rz.wpf SECI91-429,Revision2TABLE2DNBDESIGNBASISTRANSIENTS NOTAFFECTEDBYMSSVLIFI'ETPOINT TOLERANCE INCREASE"'vent Excessive HeatRemovalDuetoFeedwater SystemMalfunction Excessive LoadIncreaseIncidentRuptureofaSteamPipe(Steamline Break-CoreResponse)

LossofReactorCoolantFlowincludesLockedRotorAnalysis)

Uncontrolled RCCABankWithdrawal FromaSubcritical Condition Uncontrolled RCCABankWithdrawal atPowerRCCAMisalignment UFSARSection14.1.1014.1.1114.2.514.1.614.1.114.1.214.1.391429R2.wpf SECI91-429,Revision2smallerbreakcasesthatmightresultinaheatup,oneMSSVpersteamgenerator issufficient (basedontheexistinganalyses) toprovideanyrequiredheatremovalfollowing reactortrip.Thesecondary pressures willbenogreaterthanthosepresently calculated.

Thustheexistingsteamline breakmassandenergyreleasecalculations remainvalid.EventSteamline RuptureMass&EnergyReleasesInsideContainment

'teamline RuptureMass&EnergyReleasesOutsideContainment forEquipment Environmental Qualification UFSARSectioWCAP-11902 Supplement 1.WCAP-10961 Rev1(current)

Submittal AEP:NRC:1140*

(approved 11/20/91)Submittal AEP:NRC:1140 "Technical Specification ChangeRequest,BITBoronConcentration Reduction,"

March26,1991.(included inWCAP-11902, Supplement 1)Lon-TermHeatRemovalEventsTheonlynon-LOCAtransients remaining arethelong-term heatupevents.Thelong-term heatremovaleventsareanalyzedtodetermine iftheauxiliary feedwater (AFW)heatremovalcapability issufficient toensurethatthepeakRCSandsecondary pressures donotexceedallowable limits,thepressurizer doesnotfill(LONF/LOOP),

andthecoreremainscoveredandinaeoolablegeometry(FLB).Thesetransients arelistedbelow.EventLossofAllACPowertothePlantAuxiliaries (LossofOffsitePower-LOOP)LossofNormalFeedwater (LONF)14.1.1214.1.914.1.8Feedwater SystemPipeBreak(FLB)*C*TheFeedwater SystemPipeBreakeventisnotpartoftheUnit1licensing basisandispresented intheUnit1UFSARforinformation purposesonly.Thesetransients areimpactedbytheincreaseintheMSSVliftsetpointtolerance becausethecalculations determining theamountofAFWflowavailable mustassumeamaximumgivensteamgenerator backpressure inordertodetermine theamountofAFWthatcanbedelivered.

Asthesteam491429Rz.wp f

SECL-91<29, Revision2generator backpressureincreases, theamountofAFWdelivered willbereduced.Forthelossofnormalfeedwater andthelossofallACpowertothePlantAuxiliaries events,evaluations wereperformed inwhichthestaggered actuation oftheMSSVswastakenintoaccount.Thesafetyanalysispresented inthecurrentUFSARassumedanAFWflowrateof450gpm,splitevenlytoallfoursteamgenerators.

Theevaluations doneforthisreportconcerning lossofnormalfeedwater (LONF)forUnits1and2,aswellaslossofallACpowertotheplantauxiliaries (LOOP)forUnit1,demonstrated thatthesecondary sidepressures willnotexceed1123psiaduringthetimeAFWisdelivered tothesteamgenerators.

BasedonReference 10,theAFWassumptions modeledinthesafetyanalysisremainvalidforsteamgenerator backpressures upto1123psia.Sincetheevaluation, inwhicha+3%MSSVsetpointtolerance wasassumed,showedthatthesecondary sidepressuretransient willnotprecludetheAFWflowratesassumedintheanalysisfrombeingsuppliedtothesteamgenerators, theexistinganalysesremainvalidforUnit1LONF/LOOP andUnit2LONF.TheLossofOffsitePowerevent(LOOP)forUnit2wasalsoevaluated forthis-report.

TheLOOPsafetyanalysispresented inthecurrentUFSARforUnit2assumedanAFWflowrateof430gpmsplitevenlytoallfoursteamgenerators.

Therecent'evaluation doneforthisreporttookcreditforthestaggered actuation oftheMSSVsaswellasa+3%setpointtolerance, asdiscussed earlier.Theevaluation yieldedresultssimilartothosediscussed aboveforUnit1.Thesecondary sidepressureforthisUnit2evaluation wasdemonstrated nottoexceed1133psiaduringtheperiodAFWissupplied.

BasedonReference 10,thesecondary sidepressuretransient wasfoundnottoprecludetheAFWflowratesassumedintheanalysisfrombeingdelivered tothesteamgenerators.

Therefore, theexistingLossofOffsitePoweranalysisforUnit2remainvalid.Theevaluations fortheLONF/LOOP eventsforbothUnit1andUnit2,asdiscussed above,demonstrate thattherespective analysesarestillapplicable evenifaMSSVliftsetpointtolerance of+3%isassumed.Therefore theresultsandconclusions presented intheDonaldC.CookUnit1&2UFSARremainvalid.Theevaluation doneforthisreportfortheUnit2FeedlineBreakeventdemonstrated that,thesecondary sidepressurewillnotexceed1133psiaduringtheperiodwhenAFWisbeingdelivered.

91429R2.wpf

SECL-91<29, Revision2At1133psia,anAFWflowrateof685gpmwithasymmetric flowsplitstothethreeintactsteamgenerators couldbesuppliedbasedoninformation contained inReference,10.

ThecurrentanalysisforthiseventassumedatotalAFWflowrateof600gpmwithanevensplitof200gpmtothethreeintactsteamgenerators.

SincethetotalAFWflowrateismorethansufficient toaccommodate AFWflowsplitdeviations ofasmuchas25gpmperloop,thecurrentFeedlineBreakanalysiscontinuetobeapplicable andremainboundingforthisevaluation.

Therefore, theresultsandconclusions presented intheUnit2UFSAR(14.2.8)remainvalid.-3%Tolerance:

Thesecondary steamreleasesgenerated forthelockedrotoroffsitedosecalculations forUnit2couldbepotentially affectedbyanincreaseintheMSSVsetpointtolerance from-1%to-3%.Reference 9transmitted themostrecentlockedrotordoseanalysis.

Giventhattheradiological assumptions usedintheReference 9analysisdonotchangewithanincreaseinMSSVsetpointtolerance (i.e.,rods-in-DNB andprimarytosecondary leakageremainat11%and1gpmrespectively) theonlyeffectthetolerance increasewouldhavewouldbeonthemassreleasevalues.Themethodology usedtocalculate thesemassesisbasedondetermining theamountofsecondary sideinventory requiredtocooldowntheRCS.Duringthefirsttwohours(0-2hours),theoperators areassumedtolowertheRCSaveragetemperature tono-loadconditions (547'F)bybleedingsteam.Overthenext6hours(2-8hours),theoperators willcooltheplantdownsuchthatMode4operation (hotshutdown) canbeentered.Theexistingsteamreleasecalculations forthe0-2hourperiodusedenthalpies corresponding tosaturated conditions atboththenominalfullpowerRCSaveragetemperature andtheno-loadtemperature (581.3'Fand547'F,respectively).

Thus,aslongastheincreased liftsetpointtolerance

(-3%)doesnotresultintheMSSVsremaining openatasaturation temperature outsideoftherangeidentified above,theexistingmassreleasesremainvalid(Reference 9),Theexistingmassreleasecalculations wereperformed usingthetemperatures previously identified (581.3'Fand547'F).PertheDonaldC.CookTechnical Specifications, thelowestsetMSSVoneachsteamgenerator willopenat1080psia(1065psig)notincluding anytolerance.

BasedontheASMESteamTables(Reference 6)atsaturated conditions, 547'Fcorresponds to1020.1psiaand9l-429R2.wp f10 SECL-91-429, Revision2represents theloweststeampressureconsidered inthemasscalculations.

Thus,theexistingreleasesincludeareseatpressureapproximately 5.5%belowthelowestTechnical Specification liftsetpoint.

Aslongasthevalvescontinuetoreseatwithinthis.pressurerange,thecurrentmassreleasesremainvalid.Theoperating windowsthatareapplicable forUnit1operation areboundedbytheUnit2doseanalysis.

Therefore, themassreleasesforUnit2,asfoundinReference 9,areapplicable toUnit1.Evaluation SummaThus,basedonthediscussions presented above,onlyoneUFSARnon-LOCAtransient isimpacted'uchthatanewanalysismustbeperformed inordertoaddresstheeffectsoftheMSSVliftsetpointtolerance increasefromJ1%toJ3%.Thiseventisthelossofexternalload/turbine tripaccident.

Fortheothertransients, theresultsandconclusions presented intheDonaldC.CookUnit1&2UFSARremainvalid.LossofExternalLoad/Turbine TriThelossofexternalload/turbine tripeventispresented inSection14.1.8oftheDonaldC.CookUFSAR.Thistransient iscausedbyaturbine-generator tripwhichresultsintheimmediate termination ofsteamflow.Sincenocreditistakenforadirectreactortriponturbinetrip,primaryandsecondary pressureandtemperature willbegintoincrease, actuating thepressurizer andsteamgenerator safetyvalves.Thereactorwilleventually betrippedbyoneoftheotherreactorprotection system(RPS)functions; specifically, overtemperature hT,highpressurizer

pressure, orlow-lowsteamgenerator waterlevel.Theturbinetripeventisthelimitingnon-LOCAeventforpotential overpressurization, i.e.,thistransient formsthedesignbasisfortheprimaryandsecondary safetyvalves.SincetheMSSVswillnowpotentially beopeningatahigherpressureduetotheincreaseintheliftsetpointtolerance, itisnecessary toanalyzethistransient inordertodemonstrate thatalltheapplicable acceptance criteria91429R2.wpf SECL-91<29, Revision2aresatisfied.

Aturbinetripisclassified asanANScondition IIevent,afaultofmoderatefrequency.

Assuch,theappropriate acceptance criteriaareDNBR,peakprimarypressure, andpeaksecondary pressure.

Thetransient isdescribed ingreaterdetailintheUFSAR.TheturbinetripeventisanalyzedusingamodifiedversionoftheLOFTRANdigitalcomputercode(Reference 6).ThismodifiedversionofLOFTRANonlydiffersfromthestandardcodeversioninthewaytheMSSVsaremodelled.

Theprogramsimulates neutronkinetics, reactorcoolantsystem,pressurizer, pressurizer reliefandsafetyvalves,pressurizer spray,steamgenerators, andmainsteamsafetyvalves.Withthemodifiedcode,theMSSVsareexplicitly modeledasabankof5valvesoneachsteamgenerator withstaggered liftsetpoints.

WhereasthestandardLOFTRANversionprogramconservatively modelstheMSSVsasabankoffivevalves,allhavingonecommonliftsetpoint.

Bymodelling thestaggered behavioroftheMSSVs,amoreaccuratesimulation ofhowthevalvesactuallybehaveisachieved.

Sincehighersteampressures areconservative forthisevent,noblowdownorhysteresis behaviorwasassumed.Consistent withtheexistingUFSARanalysis, allassumptions werethesameaspreviously usedunlessspecifically noted.Thefollowing assumptions wereusedinthisanalysis:

a.Initialpower,temperature, andpressurewereattheirnominalvaluesconsistent with:1)ITDPmethodology (WCAP-8567) forUnit1,withtheexception thata2%conservatism oninitialcorepowerwasassumed.2)RTDPmethodology (WCAP-11397) forUnit2,withnoexceptions.

b.Turbinetripwasanalyzedwithbothminimumandmaximumreactivity feedback.

C.Turbinetripwasanalyzedbothwithandwithoutpressurizer pressurecontrol.ThePORVsandsprayswereassumedoperableinthe'cases withpressurecontrol.Thecaseswithpressurecontrolminimizetheincreaseinprimarypressurewhichisconservative fortheDNBRtransient.

Thecaseswithoutpressurecontrolmaximizetheincreaseinpressurewhichisconservative fortheRCSoverpressurization criterion.

91429R2.wpf

.12 SECI91<29,Revision2d.Thesteamgenerator PORVandsteamdumpvalveswerenotassumedoperable.

Thisassumption maximizes secondary pressurewhichinturnmaximizes theprimarytemperature forDNBRandprimarypressureforpressurecases.e.Mainfeedwater flowwasassumedtobelostcoincident withtheturbinetrip.Thisassumption maximizes theheatupeffects.f.Onlytheovertemperature dT,highpressurizer

pressure, andlow-lowsteamgenerator waterlevelreactortripswereassumedoperableforthepurposesofthisanalysis.

g.TheflowrateforeachMSSVwasmodelledtoramplinearlyfromnoflowatitsliftsetpoint(3%abovethenominalTechnical Specification setpoint) tofullopenflowatitsfullopenpoint(6%abovethenominalsetpoint),

Thefullopenflowrateisbasedonareference fullflowcapacityof238ibm/secat1186.5psia(basedontheASMEratedflowforthesevalves).Forsecondary sidepressures betweentheinitialfullopenpointforeachvalveand1186.5psia,thefullopenflowratewasmodelledtovaryproportionally withpressure.

Thisassumption maximizes secondary pressurewhichinturnmaximizes theprimarytemperature forDNBRandprimarypressureforpressurecases.R~esulFourcasesforeachunit/core type(i.e.Unit1,Unit2mixedcore,andUnit2fullV5core)wereanalyzed:

a)minimumfeedbackwithoutpressurecontrol,b)maximumfeedbackwithoutpressurecontrol,c)maximumfeedbackwithpressurecontrol,andd)minimumfeedbackwithpressurecontrol.ThemostlimitingcasesinthecurrentUFSARcontinuetobethemostlimitingcases.Thecalculated sequenceofeventsforthefourcasesforeachunitarepresented inTables3and4.9l429R2.wp f13 SECI91<29,Revision2CaseA:Figures2through6showthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withoutpressurecontrol.Thereactoristrippedonhighpressurizer pressure.

Theneutronfluxremainsessentially constantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.

Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseB:Figures7through11showthetransient responsefortheturbinetripeventunderrnaxirnum reactivity feedbackconditions withoutpressurecontrol.Thecorepowerisobservedtoundergoamomentary increase.

Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytheincreaseinprimarypressure.

Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizer pressure.

TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue.Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseC:Figures12through16showthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withpressurecontrol~Thecorepowerisobservedtoundergoamomentary increase.

Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.

Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristripped\onlow-lowsteamgenerator waterlevel.TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue,Thepressurizer reliefvalves.and spraysmaintainprimarypressure91429R2.wpf 14 SECI91-429,Revision2below110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseD:Figures17through21showthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withpressurecontrol.Thereactoristrippedonhighpressurizer pressure.

AlthoughtheDNBRvaluedecreases belowtheinitialvalue,itremainswellabovethelimitthroughout theentiretransient.

Thepressurizer reliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.AnaliConclionnit1BasedontheresultsoftheseUnit1turbinetripanalyseswitha+3%tolerance ontheMSSVliftsetpoints, alloftheapplicable acceptance criteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondary pressures remainbelow110%ofdesignatalltimes.UNIT2:amixedandbfullV-5coresCaseA:Figures22athrough26b("a"designates mixedcorefiguresand"b"denotesfullV-5corefigures)showthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withoutpressurecontrolforbothcoretypes.Thereactoristrippedonhighpressurizer pressure.,

Theneutronfluxremainsessentially constantatfullpoweruntilthereactoristripped,andtheDNBRremainsabovetheinitialvalueforthedurationofthetransient.

Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.91429R2.wpf 15 SECL-91<29, Revision2CaseB:Figures27athrough31bshowthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withoutpressurecontrolforbothmixedandfullV-5coretypes.Thecorepowerisobservedtoundergoamomentary

increase, Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.

Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonhighpressurizer pressure.

TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue.Thepressurizer safetyvalvesareactuatedandmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseC:Figures32athrough36bshowthetransient responsefortheturbinetripeventundermaximumreactivity feedbackconditions withpressurecontrolforthetwoapplicable Unit2coretypes.Thecorepowerisobservedtoundergoamomentary increase.

Thisisduetopositivereactivity beinginsertedasaresultoftheincreaseincoolantdensitycausedbytherapidincreaseinprimarypressure.

Thisaffectisquicklycountered bythesubsequent temperature risebroughtonbytheabruptlossoftheheatsink.Thereactoristrippedonlow-lowsteamgenerator waterlevel~TheDNBRincreases throughout thetransient andneverdropsbelowtheinitialvalue..Thepressurizer reliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.Themainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.CaseD:Figures37athrough41bshowthetransient responsefortheturbinetripeventunderminimumreactivity feedbackconditions withpressurecontrolforboththemixedandfullV-5cores.ThereactoristripPedonhighpressurizer pressure.

AlthoughtheDNBRvaluedecreases belowtheinitialvalue,itremainswellabovethelimitthroughout theentiretransient.

Thepressurizer reliefvalvesandspraysmaintainprimarypressurebelow110%ofthedesignvalue.The91429R2.wpf 16 SECL-91<29, Revision2mainsteamsafetyvalvesarealsoactuatedandmaintainsecondary pressurebelow110%ofthedesignvalue.AnalisConclusion nit2BasedontheresultsoftheseUnit2mixedandfullcoreturbinetripanalyseswitha+3%tolerance ontheMSSVliftsetpoints, alloftheapplicable acceptance criteriaaremet.TheminimumDNBRforeachcaseisgreaterthanthelimitvalue.Thepeakprimaryandsecondary pressures remainbelow110%ofdesignatalltimes.Nn-AConclusio Theeffectsofincreasing theas-foundliftsetpointtolerance onthemainsteamsafetyvalveshavebeenexamined, andithasbeendetermined that,withoneexception, thecurrentaccidentanalysesaspresented intheUFSARremainvalid.Thelossofload/turbine tripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerance relaxation.

Aspreviously demonstrated inthissafetyevaluation, allapplicable acceptance criteriaforthiseventhavebeensatisfied andtheconclusions presented intheUFSARares'tillvalid.Thus,withrespecttothenon-LOCAtransients, theproposedTechnical Specification changedoesnotconstitute anunreviewed safetyquestion, andthenon-LOCAaccidentanalyses, aspresented inthereport,supporttheproposedchange,2.CAandARelatedEvaluations LaeBreakCAThecurrentlargebreakLOCAanalysesforDonaldC.CookUnits1and2wereperformed withtheNRCapproved1981Evaluation ModelplusBASH.Afterapostulated largebreakLOCAoccurs,theheattransferbetweenthereactorcoolantsystem(RCS)andthesecondary systemmaybeineitherdirection, depending ontherelativetemperatures.

Inthecaseofcontinued heatadditiontothesecondary system,thesecondary systempressureincreases andtheMSSVsmayactuatetolimitthepressure.

However,thisdoesnotoccurinthelargebreakevaluation modelsincenocreditistakenforauxiliary feedwater actuation.

Consequently, thesecondary systemactsasaheatsource.inthe91429R2.wpf 17 SECL-91<29, Revision2lpostulated largebreakLOCAtransient andthesecondary pressuredoesnotincrease.

Sincethesecondary systempressuredoesnotincrease, itisnotnecessary tomodeltheMSSVsetpointinthelargebreakevaluation model.Therefore, anincreaseintheallowable MSSVsetpointtolerance forDonaldC.CookUnits1and2willnotimpactthecurrentUFSARlargebreakLOCAanalyses.

mallBreakCAThesmallbreakLOCAanalysesforDonaldC.CookUnits1and2wereperformed withtheNRCapprovedEvaluation ModelusingtheNOTRUMPcode.Afterapostulated smallbreakLOCAoccurs,theheattransferbetweentheRCSandthesecondary systemmaybeineitherdirection depending ontherelativetemperatures.

Inthecaseofcontinued heatadditiontothesecondary system,thesecondary systempressureincreases whichleadstosteamreliefviatheMSSVs.InthesmallbreakLOCA,thesecondary flowaidsinthereduction ofRCSpressure.

Subsequently, DonaldC.CookUnits1and2werereanalyzed todetermine theimpactofanincreased MSSVsetpointtolerance of3%.Thelicensing basissmallbreakLOCAanalysisforDonaldC.CookUnit1includedasafetyevaluation toaddressa25gpmchargingpumpflowimbalance andoperation withthehighheadsafetyinjection crosstievalveclosedat3250MWtcorepowerlevel.Also,asafetyevaluation hadbeenperformed whichmodeledanincreased auxiliary feedwater enthalpydelaytime.Theseassumptions wereincorporated intheincreased MSSVsetpointtolerance NOTRUMPanalysisofthelimiting3inchbreakforUnit1.However,inordertoobtainadirectsensitivity fortheincreased MSSVsetpointtolerance, aNOTRUMPanalysiswasalsoperformed incorporating theseassumptions butmodelling theoriginalMSSVsetpoints.

Inaddition, a3inchNOTRUMPanalysiswasperformed forthelowpressure, hightemperature operating condition forUnit1sinceasafetyevaluation hadbeenoriginally performed aspartofthelicensing basisanalysis.

Theincreased MSSVsetpointtolerance, acorepowerlevelof3250MWt.withthe.highheadcrosstievalveclosed,anda25gpmchargingpumpflowimbalance wereassumedfortheanalysisofthelowpressure, hightemperature case.91429Rz.wp f18 SECL-91-429, Revision2DonaldC.CookUnit2wasreanalyzed forthelimiting3inchbreak,lowpressureandhightemperature operating condition withthehighheadcrosstievalveclosed.Thepowershapeaxialoffsetwasreducedfromthelicensing basisanalysisof+30%to+13%fortheMSSVincreaseanalysis.

Anaxialoffsetof+13%isequaltothevalueassumedinthelicensing basislargebreakLOCAanalysis.

Inaddition, thelicensing basisanalysisconservatively assumedamaximum"assemblyaveragepower(P+of1.519.The3%increased MSSVsetpointtolerance analysisassumedaP~whichwasreducedto1.46.Inordertoobtainadirectsensitivity fortheincreased MSSVsetpointtolerance, aNOTRUMPanalysiswasperformed incorporating theseassumptions butmodelling theoriginalMSSVsetpoints.

Tables5and6summarize theMSSVsetpoints usedintheDonaldC.CookUnits1and2currentlicensing basissmallbreakLOCAanalysesandtheincreased MSSVsetpointtolerance

analyses, respectively.

Tables7and8summarize theinitialinputassumptions usedintheUnit1analysis.

TheUnit2initialinputassumptions aresummarized inTable9,ThetimesequenceofeventsandresultsoftheUnit1analysisaresummarized inTables10and11,respectively.

Thelimitingpeakcladtemperature calculated is1879'F,including a25'Fburstandblockagepenalty,forthe3%increased MSSVsetpointtolerance caseat3250MWtandthelowpressure, lowtemperature operating conditions'.

Thisvalueislessthantheacceptance criterialimitof2200'F.Themaximumlocalmetal-water reactionis3A7%,whichiswellbelowtheembrittlement limitof17%asrequiredby10CFR50.46.

Thetotalcoremetal-water reactionislessthan1.0%,corresponding tolessthan1.0percenthydrogengeneration, ascomparedtothe1%criterion of10CFR50.46.

ThetimesequenceofeventsandresultsoftheUnit2analysisaresummarized inTables12and13,respectively.

'Ihelimitingpeakcladtemperature calculated is2125'F,including a12'Fartificial leak-bypenaltyand157'Fburstandblockagepenalty,forthe3%increased MSSVsetpointtolerance caseat3250MWtandlowpressure, hightemperature operating condition.

Thisvalueislessthantheacceptance criterialimitof2200'F.Themaximumlocalmetal-water reactionis4.26%,whichisTheseresultsarefromcalculations usinganominalauxiliary fcedwater flow.Asubsequent analysisusingamorcconservative minimumauxiliary feedwater flowrateispresented inthcnextsection.91429R2.wpf 19 SECI91<29,Revision2wellbelowtheembrittlement limitof17%asrequiredby10CFR50.46.

Thetotalcoremetal-water reactionislessthan1.0%,corresponding tolessthan1.0percenthydrogengeneration, ascomparedtothe1%criterion of10CFR50.46.

Additional SmallBreakCAAnalsesThesmallbreakLOCAanalysisforCookUnit1,previously discussed, usednominalAuxiliary Feedwater (AFW)flowrates(1258gpmtotaldelivery),

whereasminimumAFWflowrateswereusedforCookUnit2,SinceminimumAFWflowratesaremorelimiting, thesmallbreakLOCAforCookUnit1for+3%MMSVsetpointtolerance wasreanalyzed usinglowerauxiliary feedwater flowrates(750gpmtotaldelivery).

Thefollowing presentstheresultsoftherevisedsmallbreakLOCAanalysesperformed forDonaldC.CookUnit1.BasedontheCookUnit1analysespresented intheprevioussection,twoadditional smallbreakLOCAcaseswereruntoaddressarelaxation to+3%fortheMSSVsetpointtolerance.

First,theoriginalLPLT(LowPressure, LowTemperature) casepresented above,theresultsofwhichareshowninTables10and11,wasrerunmodeling750gpmtotalAFWsystemflowrate.Aswasdemonstrated inReferences 11and12,theLPLTcaseisthelimitingcaseforthepressure/temperature operating windowforCookUnit1,andthatwillnotchangeduetothereduction inAFWflow.Inaddition, sinceonlythelimitingbreaksize(3inch)waspreviously

analyzed, a2inchbreakwasalsoanalyzedforthe750gpmAFWflowratetoprovidefurtherassurance thatthelimitingbreaksizehasnotshiftedtoasmallerbreaksizeduetothereduction intheAFWflowrate.Notethatsinceboththereduction inAFWdelivered flowandtheincreaseinthesetpointtolerance to>3%tendtoshiftthelimitingbreaksizetoasmallerbreak,itisnotnecessary toconsiderthatthelimitingbreakcouldbelargerthanwaspresented inthecurrentlicensing basisanalysiswhichdemonstrated thatthe3inchbreakislimiting.

TheMSSVperformance assumedinthesenewcasesisshowninTable6.Theinitialinputparameters assumedforthesenewcasesareshowninTable7a,andarecomparedwiththeoriginallicensing basisinReference 11.IfthenewanalysisvaluesfromTable7aarecomparedwiththeoriginalevaluation casesshowninTable7,veryfewdifferences areevident.Exceptfortheauxiliary feedwater flowratean'daslightincreaseintheaccumulator watertemperature, theinitialRCS91429R2.wpf 20 SECL-91<29, Revision2pressurewasloweredtocoverasafetyevaluation thatwasperformed forpressurizer pressureuncertainty.

Incorporating thisnewRCSpressurehadanegligible effectonthevesselinletandoutlettemperatures andthesteampressureassumedforreactorsteady-state operation (priortoinitiation ofthetransient).

Onefinaladditional changeisintheAFWenthalpydelay.ThelowerAFWflowratewouldresultinalongerdelay.ThecurrentNOTRUMPmodelhasbeenimprovedtomodelthevolumeofhotmainfeedwater thatmustbepurgedfromthepipingpriortocoldAFWbeingdelivered tothesteamgenerator, andthedelayiscalculated bythemodel.Otherthantheseminordifferences, andtheintendedchange(i.e.,reduceAFWflowrateandincreaseaccumulator watertemperature),

theinitialconditions assumedfortheadditional runsareidentical totherunsperformed fortheprevioussection.ThetimesequenceofeventsandresultsoftheUnit1analysesaresummarized inTables10aand11a,respectively.

ThelimitingPeakCladTemperature (P~calculated is2068'F,including a117'Fburstandblockagepenalty,forthe+3%increased MSSVsetpointtolerance caseat3250MWtandlowpressure, lowtemperature operating condition.

Thisvalueislessthantheacceptance criterialimitof2200'F,andisalmostthesamecomputedresultthatisseenforD.'.CookUnit2(thepre-burst/blockage PCTof1951'Fversus1956'F).Themaximumlocalmetal-water reactionis5.06%,whichiswellbelowtheembrittlement limitof17%asrequiredby10CFR50.46.Thetotalcoremetal-water reactionislessthan1.0%,corresponding tolessthan1.0percenthydrogengeneration, ascomparedtothe1%criterion of10CFR50.46.The>3%increased MSSVsetpointtolerance hasbeenanalyzedfortheDonaldC.CookNuclearPlantUnit1forthesmallbreakLOCAanalysesperformed byWestinghouse.

Thepotential effectofthischangeontheFSARanalysisresultsforthesmallbreakLOCAanalysiswasexaminedviareanalysis andalthoughtheresultsaremorelimitingthanpreviousanalysiscases,itwasshownthattheeffectoftheincreased MSSVsetpointtolerance didnotresultinexceeding anyofthefollowing designorregulatory limits:1.Thecalculated peakfuelelementcladdingtemperature isbelowtherequirements of2200'F.2.Theamountoffuelelementcladdingthatreactschemically withwaterorsteamdoesnotexceed1percentofthetotalamountofZircaloyinthereactor.91429Rz.wpf 21 SECI91-429,Revision23.Thecladdingtemperature transient isterminated atatimewhenthecoregeometryisstillamenabletocooling.Thelocalized claddingoxidation limitof17percentisnotexceededduringorafterquenching.

4.Thecoreremainsamenabletocoolingduringandafterthebreak.5.Thecoretemperature isreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-lived radioactivity remaining inthecore.Therefore, itisconcluded thatarelaxation toJ3%fortheMSSVsetpointtolerance isacceptable fromthestandpoint ofthesmallbreakLOCAFSARaccidentanalysesdiscussed inthissafetyevaluation.

Post-LOCA LonTermCoreCoolinTheWestinghouse licensing positionforsatisfying therequirements of10CFR50.46 Paragraph (b),Item(5),"LongTermCooling,"

concludes thatthereactorwillremainshutdownbyboratedECCSwaterresidingintheRCS/sumpafteraLOCA.Sincecreditforthecontrolrods.isnottakenforalargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulators andtheRWSTmusthaveaboronconcentration that',whenmixedwithotherwatersources,willresultinthereactorcoreremaining subcritical assumingallcontrolrodsout.Thecalculation isbaseduponthereactorsteadystateconditions attheinitiation ofaLOCAandconsiders sourcesofbothboratedandunborated fluidinthepost-LOCA containment sump.Thesteadystateconditions areobtainedfromthelargebreakLOCAanalysiswhich,asstatedabove,doesnottakecreditforMSSVactuation.

Thusthepost-LOCA long-term corecoolingevaluation isindependent oftheMSSVsetpointtolerance, andtherewillbenochangeinthecalculated RCS/sumpboronconcentration afterapostulated LOCAforDonaldC.CookUnits1and2.HotSwitchover toPreventPotential BoronPreciitationPost-LOCA hotlegrecirculation timeisdetermined forinclusion inemergency operating procedures toensurenoboronprecipitation inthereactorvesselfollowing boilinginthecore.Thistimeis91429R2.wpf 22

SECL-91<29, Revision2dependent onpowerlevelandtheRCS,RWST,andaccumulator watervolumesandwiththeirassociated boronconcentrations.

TheproposedMSSVsetpointtolerance increaseto3%doesnotaffectthepowerlevelortheboronconcentrations assumedfortheRCS,RWST,andaccumulator inthehotlegswitchover calculation forUnit1.TheproposedMSSVsetpointtolerance increaseto3%'oesnotaffecttheboronconcentrations assumedfortheRCS,RWST,andaccumulator inthehotlegswitchover calculation forUnit2.Thecurrentlicensing basishotleg.switchover calculation forUnit2isatfullpower,3413MWt,withcrosstievalveatclosedposition.

WithMSSVsetpointtolerance increased to3%,Unit2LOCAanalysesassumedareducedcorepower,3250MWt,withcrosstievalveatclosedposition.

Areduction inpowerreducestheboil-offrateinthehotlegswitchover calculation.

Areduction intheboilwffrateresultsintherateofboronbuildupalsobeingreduced.Therefore, thelicensing basishotlegswitchover calculation fortheDonaldC.CookUnits1and2remainsbounding.

LOCAHdraulicForciFunctions Thepeakhydraulic forcingfunctions onthereactorvesselandinternals occurveryearlyinthelargebreakLOCAtransient.

Typically, thepeakforcingfunctions occurbetween10and50milliseconds (0.01and0.05seconds)andhavesubsidedwellbefore500milliseconds (0.50seconds).

Anychangeintimeassociated withanincreased MSSVsetpointtolerance wouldoccurseveralsecondsintothetransient.

SincetheLOCAhydraulic forcingfunctions havepeakedandsubsidedbeforethetimeatwhichtheMSSVmayactuate,theincreaseintheMSSVsetpointtolerance to3%willnotimpacttheLOCAhydraulic forcingfunctions calculation forDonaldC.CookUnits1and2.LOCAConclusio Theeffectofincreasing theMSSVsetpointtolerance to3%forDonaldC.CookUnits1and2hasbeenevaluated foreachoftheLOCArelatedanalysesaddressed intheUFSAR.Forcurrently analyzedconditions, orforUnit2operation atareducedpowerlevelof3250MWtwhenthehighheadcrosstievalvesareclosed,itwasshownthatthe3%MSSVsetpointtolerance doesnotresultinanydesignorRegulatory limitbeingexceeded.

Therefore, withrespecttotheLOCAanalyses, itcanbeconcluded thatincreasing theMSSVsetpointtolerance to3%forDonaldC.CookUnits1and2willbeacceptable from.thestandpoint oftheUFSARaccidentanalysesdiscussed inthesafety'valuation.

91429Rz.wp f23 SECI91429,Revision23.Containment TntriEvaluation

~~Relaxation oftheDonaldC.CookUnits1&2Technical Specification MainSteamSafetyValvesetpointtolerances from+1%to+3%donotadversely affecttheshorttermorlongtermLOCAmassandenergyreleasesand,subsequently, therelatedcontainment analyses.

Sincethereisnoimpactonthemainsteamlincbreakmassandenergyreleasecalculations, thereisalsonoimpactonthatassociated containment responseanalysis.

Theproposedchangedoesnotaffectthenormalplantoperating parameters, systemactuations, accidentmitigating capabilities orassumptions important tothemassandenergyreleaseandcontainment

analyses, orcreatemorelimitingconditions thanthosealreadyassumedinthecurrentanalyses.

Therefore, theconclusions presented intheDonaldC,CookUFSARremainvalidwithrespecttocontainment.

4.SteamGenerator TubeRutureTodemonstrate thatanunreviewed safetyquestiondoesnotexistforthesteamgenerator tuberupture(SGTR)event,theincreased MSSVsetpointtolerance wasevaluated forDonaldC.CookUnits1and2.Theanalysisforupratingto3600MWTconsidered upto15%steamgenerator tubepluggingforbothUnits1and2.Thelimitingcasesfromthisanalysiswerereevaluated fortheincreased MSSVsetpointtolerance.

Anincreased steamgenerator tubeplugginglevelof20%wasalsoconsidered atpowerlevelsof3262MWTforUnit1and3425MWTforUnit2.ThecriteriastatedintheUFSARanalysisforDonaldC.Cookwereusedinestablishing thecontinued applicability oftheSGTRlicensing basissafetyanalysisbydemonstrating thattheconclusions forSGTRUFSARanalysisremainvalid.Anevaluation hasbeenperformed todetermine theimpactontheDonaldC.CookUnits'GTR analysisofrecordforincreased MSSVsetpointtolerance forallthecaseswithdifferent steamgenerator tubepluggingandpowerlevelsstatedabove.Theprimarythermalhydraulic parameters whichaffectthecalculation ofoffsiteradiation dosesforaSGTRaretheamountofradioactivity assumedtobepresentinthereactorcoolant,theaniountofreactorcoolanttransferred tothesecondary sideoftherupturedsteamgenerator throughtherupturedtube,andtheamountofsteamreleasedfromtherupturedsteamgenerator totheatmosphere.

Thus,thecalculated offsiteradiation dosesforanSGTR'forDonaldC.Cookaredependent onthesethreefactors.91429R2.wpf 24 SECI91<29,Revision2FortheUFSARSGTRanalysis, theactivityinthereactorcoolantisbasedonanassumption of1%defective fuel,andthisassumption willnotbeaffectedbytheincreased MSSVsetpointtolerance.

Thetworemaining factorsareaffectedbytheincreased MSSVsetpointtolerance, andtheevaluation wasperformed toquantifythiseffect.Toevaluatetheeffectoftheincreased MSSVsetpointtolerance ontheDonaldC.CookSGTRanalysis, therevisedSGsafetyvalvesetpressurewasloweredby3%from1080psiato1047.6psia.Thisresultedinaslightlyhigherequilibrium primary-to-secondary breakflow(approximately 0.5%),sincetherewasanincreaseinthepressuredifferential betweentheRCSandsecondary sideassumedintheanalysis.

Thesteamreleasedtotheatmosphere subsequently increased (byapproximately 0.2%)becauseofthelowerpressureassumedforthemainsteamsafetyvalves.Thelimitingcases,forallpowerlevelsandsteamgenerator tubeplugginglevelsconsidered, wereat3600MVft.Thethyroidandwholebodydosesestimated forUnits1and2,basedontheanalysesdescribed above,areboundedbythosepreviously determined forthereratingprogram.Theactualestimated dosefactors(compared totheresultsofthereratingcalculation) areasfollows:Unitf:thyroid0.7,wholebody1.005Unit2:thyroid0.99,wholebody0.98AlthoughtheUnit1wholebodydoseexceedsthepreviousvaluebyapproximately 0.5%,thisincreaseiswellwithintheacceptable limit.Thus,theresultsandconclusion intheDonaldC.CookUFSARthattheoffsitedosesforanSGTReventwouldbewithinasmallfractionofthe10CFR100guidelines remainsvalid.5.ComnentPerformance Therelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookdoesnotdirectlyorindirectly involvemechanical component hardwareconsiderations.

Directeffectsaswellasindirecteffectsonequipment important tosafety(ITS)havebeenconsidered.

Indirecteffectsincludeactivities whichinvolvenon-safety relatedequipment whichmayaffectITSequipment.

Component hardwareconsiderations mayincludeoverallcomponent integrity, sub-component integrity, andthe9I429R2.wpf 25 SECI91<29,Revision2adequacyofcomponent supportsduringallplantconditions.

Anevaluation isnotrequiredtodetermine whetherthecondition altersthedesign,material, construction standards, functionormethodofperforming thefunctionofanyITSequipment.

6.SsteEvaluation Therelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookasdescribed wouldnotaffecttheintegrity ofaplantauxiliary fluidsystemortheabilityofanyauxiliary systemtoperformitsintendedsafetyfunction.

7.RadioloicalEvaluation Therelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookasdescribed donotaffectradiological concernsotherthanthoseidentified aboveinSectionIII.4orpost-LOCA hydrogenproduction.

Theevaluation inSectionsIII.1andGI.3concluded thattheexistingmassreleasesusedintheremaining offsitedosecalculations (i.e.,steamline break,rodejection, lockedrotor,andshort-term

&long-term LOCA)arestillapplicable, 8.PlantRikAnalactivities affectiIPTherelaxation oftheliftsetpointtolerance fortheMSSVsatDonaldC.Cookdoesnotadversely affecttheIndividual PlantExamination

/PE)fortheplant.Thistestdoesnotaffectthenormalplantoperating parameters, systemactuations, accidentmitigating capabilities, operating procedures orassumptions important totheIPEanalyses, orcreateconditions thatwouldsignificantly affectcoredamageorplantdamagefrequency orthefrequency ofcoredamageinitiating events.Therefore, theconclusions presented intheIPEremainvalid.9.PlantRiskAnaleschesotherthanIPFrelatTherelaxation oftheliftsetpointtolerance fortheMSSVsdoesnotresultinanincreaseintheprobability ofoccurrence ofaccidents previously evaluated intheUFSAR.ThisproposedchangetotheTechnical Specifications doesnotresultin,anincreaseintheprobability ofoccurrence ofa91429R2.wpf 26 SECI91<29,Revision2malfunction ofequipment important tosafetyorofequipment thatcouldindirectly affectequipment important tosafety.10.Therelaxation oftheliftsetpointtolerance fortheMSSVsdoesnotdirectlyorindirectly involveelectrical systems,components, orinstrumentation considerations.

Directeffectsaswellasindirecteffectsonequipment important tosafetyhavebeenconsidered.

Indirecteffectsincludeconditions oractivities whichinvolvenon-safety relatedelectrical equipment whichmayaffectClass1E,postaccidentmonitoring systems,orplantcontrolelectrical equipment.

Consideration hasbeengiventoseismicandenvironmental qualification, designandperformance criteriaperIEEEstandards, functional requirements, andplanttechnical specifications withrespecttoallplantconditions.

Anevaluation isnotrequiredtodetermine whethertheMSSVsetpointtolerance relaxation altersthedesign,configuration, qualification, orperformance ofsafetyrelatedelectrical systemsorcomponents.

TheMSSVsetpointtolerance relaxation hasnopotential forimpacttotheidentification 1ofanunresolved safetyquestionasitwouldrelatetothesafetyrelatedfunctionofelectrical systemsofcomponents.

11.Technical SficatioAreviewoftheDonaldC.CookUnit1andUnit2Technical Specifications wasperformed toaddressachangeintheliftsetpointtolerance fortheMainSteamSafetyValves.TheTechnical Specification review,inclusive ofAmendments 157and141forUnits1and2,respectively.

Proposedmarkupsareattachedtothisevaluation forbothUnit1andUnit2,andreflectchangestoTable4.7-1and3.7-4,respectively.

Achangetothebasisforbothunitsisalsoproposedanddiscusses therelationship betweentheJ1%andJ3%tolerances.

91429R2.wpf 27

SECL-91-429, Revision2IV.ASSESSMENT OFNOSAI'KFVUPONTherelaxation intheliftsetpointtolerance fortheMSSVsatDonaldC.CookUnits1and2hasbeenevaluated consistent withtherequirements of10CFR50.59 anddoesnotinvolveanunreviewed safetyquestiononthebasisofthefollowing justifications:

Willtheprobability ofanaccidentpreviously evaluated intheSARbeincreased?

No.The+3%tolerance ontheMSSVsetpointdoesnotincreasetheprobability ofanaccidentpreviously evaluated intheUFSAR.Therearenohardwaremodifications tothevalvesand,therefore, thereisnoincreaseintheprobability ofaspuriousopeningofaMSSV.TheMSSVsareactuatedtoprotectthesecondary systemsfromoverpressurization afteranaccidentisinitiated.

Sufficient marginexistsbetweenthenormalsteamsystemoperating pressureandthevalvesetpoints withtheincreased tolerance toprecludeanincreaseintheprobability ofactuating thevalves.Therefore, theprobability ofanaccidentpreviously evaluated intheUFSARwouldnotbeincreased asaresultofincreasing theMSSVliftsetpointtolerance by3%aboveorbelowthecurrentTechnical Specification setpointvalue.2.Willtheconsequences ofanaccidentpreviously evaluated intheSARbeincreased?

No.Basedonthe'discussions presented within,alloftheapplicable LOCAandnon-LOCAdesignbasisacceptance criteriaremainvalidbothforthetransients evaluated andthesingleeventanalyzed.

Additionally, nonewlimitingsinglefailureisintroduced bytheproposedchange.TheDNBRandPCTvaluesremainwithinthespecified limits'of thelicensing basis.Althoughincreasing thevalvesetpointwillincreasethesteamreleasefromtherupturedsteamgenerator abovetheUFSARvaluebyapproximately 0.2%,theSGTRanalysisindicates that,thecalculated dosesareboundedbythosedetermined forthereratingprogramwhich,inturn,arewithinasmallfractionofthe10CFR100doseguidelines.

Theevaluation alsoconcluded thattheexistingmassreleasesusedintheoffsitedosecalculations fortheremaining transients (i.e.,steamline break,rodejation)arestillapplicable.

Therefore, basedontheabove,thereisnoincreaseinthedoseconsequences.

91429R2.wpf 28

SECL-91<29, Revision23.Maythepossibility ofanaccidentwhichisdifferent thananyalreadyevaluated intheSARbecreated?No.Aspreviously indicated inSectionIII.1,theInadvertent OpeningofaSGRelieforSafetyValveeventiscurrently presented intheDonaldC.CookUFSAR(Section14.2.5)andisboundedbytheSteamline Breakanalysis.

Increasing theas-foundliftsetpointtolerance ontheMSSVsdoesnotintroduce anewaccidentinitiator mechanism.

Nonewfailuremodeshavebeendefinedforanysystemorcomponent important tosafetynorhasanynewlimitingsinglefailurebeenidentified.

Noaccidentwillbecreatedthatwillincreasethechallenge totheMSSVsandresultinincreased actuation ofthevalves.Therefore, thepossibility ofanaccidentdifferent thananyalreadyevaluated intheUFSARisnotcreated.4.Willtheprobability ofamalfunction ofequipment important tosafetypreviously evaluated intheSARbeincreased?

No.Althoughtheproposedchangetakesplaceinequipment utilizedtopreventoverpressurization onthesecondary sideandtoprovideanadditional heatremovalpath,increasing theas-foundliftsetpointtolerance ontheMSSVswillnotadversely affecttheoperation ofthereactorprotection system,anyoftheprotection setpoints, oranyotherdevicerequiredforaccidentmitigation.

Therefore, theprobability ofamalfunction ofequipment important tosafetypreviously evaluated intheUFSARwillnotbeincreased.

5.Willtheconsequences ofamalfunction ofequipment important tosafetypreviously evaluated intheSARbeincreased?

No.Asdiscussed intheresponsetoQuestions 2and4,thereisnoincreaseinthedosereleaseconsequences asaresultofincreasing theas-foundliftsetpointtolerance ontheMSSVsasdefinedintheattachedsafetyevaluation.

91429R2.wpf 29 SECI91429,Revision26.Maythepossibility ofamalfunction ofequipment important tosafetydifferent thananyalreadyevaluated intheSARbecreated?No.Asdiscussed inQuestion4,anincreaseintheas-foundliftsetpointtolerance ontheMSSVswillnotimpactanyotherequipment important tosafety.Therefore, thepossibility ofamalfunction ofequipment important tosafetydifferent tharianyalreadyevaluated intheUFSARwillnotbecreated.7.Willthemarginofsafetyasdefinedinthebasestoanytechnical specification bereduced?No.Asdiscussed inthea~chedsafetyevaluation, theproposedincreaseintheas-foundMSSVliftsetpointtolerance willnotinvalidate theLOCAornon-LOCAconclusions presented intheUFSARaccidentanalyses.

Thenewlossofload/turbine tripanalysisconcluded thatallapplicable acceptance criteriaarestillsatisfied.

ForalltheUFSARnon-LOCAtransients, theDNBdesignbasis,primaryandsecondary pressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperatures remainbelowthelimitsspecified in10CFR50.46.

Thecalculated dosesresulting fromasteamgenerator tuberuptureeventremainwithinasmallfractionofthe10CFR100permissible releases.

Thus,thereisnoreduction inthemargintosafety.Notethat,asidentified earlier,changeswillberequiredtotheplantTechnical Specifications inordertoimplement theproposedchange.9l429R2.wpf 30 SECL-91<29, Revision2SDTheproposedchangetomainsteamsafetyvalveliftsetpointtolerances from+1%to+3%hasbeenevaluated byWestinghouse.

Thepreceding analysesandevaluations havedetermined thatoperation withtheMSSVsetpoints withinaJ3%tolerance aboutthenominalvalueswillhavenoadverseimpactuponthelicensing basisanalyses, aswellasthesteamline breakmass&energyreleaseratesinsideandoutsideofcontainment.

Inaddition, itisconcluded thattheJ3%tolerance ontheMSSVsetpointdoesnotadversely affecttheoverpower orovertemperature protection system.Asaresult,adequateprotection tothecorelimitlinescontinues toexists.Therefore, alllicensing basiscriteriacontinuetobesatisfied andtheconclusions intheUFSARremainvalid.Thus,basedontheinformation presented above,itcanbeconcluded thattheproposedincreaseofmainsteamsafetyvalveliftsetpointtolerances fromJ1%toJ3%doesnotrepresent anunreviewed safetyquestionperthedefinition andrequirements definedin10CFR50.59.

Therecommended Technical Specification changes,alongwithanosignificant hazardsevaluation, arepresented asappendices tothisevaluation.

91429Rz.wp f31 SECL-91-429, Revision2VI.REFERENCES 1)DonaldC.CookUnits1&2Technical Specifications throughAmendments 157and141,respectively, 10/1/91.2)ANSI/ASME BPV-I11-1-NB, "ASMEBoilerandPressureVesselCode-SectionIIIRulesforConstruction ofNuclearPowerPlantComponents,"

ASME,1983.3)ANSUASMEOM-1-1981, "Requirements forInservice Performance TestingofNuclearPowerPlantPressureReliefDevices,"

ASME,1981.4)"DonaldC.CookUnits1&2UpdatedFinalSafetyAnalysisReport(UFSAR),datedthroughJuly1991.5)ASMESteamTables,FifthEdition,1983.6)'urnett, T.W.T.,etal.,"LOFTRANCodeDescription,"

WCAP-7907-P-A, June1972.7)Chelemer, H.etal~,"Improved ThermalDesignProcedure,"

WCAP-8567-P-A, February1989.8)Butler,J.C.andD.S.Love,"Steamline BreakMass/Energy ReleasesforEquipment Environmental Qualification OutsideContainment,"

WCAP-10961-P, October1985.9)90AE*-G4126 W/AEP2-0098 Transmittal regarding "LockedRotorDoseAnalysisforDonaldC.CookUnit2Cycles8&9,"7/19/90.10)Letterregarding AFWflowratesfromR.B.BennettofAmericanElectricPowertoJ.N.Steinmetz ofWestinghouse

Electric, 9/24/91.11)WCAP-10054-P-A (Proprietary),

WCAP-10081 (Non-Proprietary),

Lee,H.,etal.,Westinghouse SmallBreakECCSEvaluation ModelUsingtheNOTRUMPCode,August1985.12)WCAP-12135, DonaldC.CookNuclearPlantUnits1and2ReratingEngineering Report,Vol.1,September 1989.91429R2.wpf 32 SECL-91<29, Revision2TABLE3UNITITURBINETRIPSEQUENCEAccidentWithoutpressurizer control(minimumreactivity feedback)

Withoutpressurizer control(maximumreactivity feedback)

Withpressurizer control(maximumreactivity feedback)

Withpressurizer control(minimumreactivity feedback)'vent Turbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowPeakpressurizer pressureoccursLow-lowsteamgenerator waterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowHigh-pressurizer pressurereactortripsetpointreachedTimesec0.0779.710.50.07.99.910.50.010.047.149.10.012.491429Rz.wp f33 SECL-91<29, Revision2TABLE3(continued)

UNITITURBINETRIPSEQUENCEAccidentEventRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursT~imesec14.416.015.5*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wpf 34 SECL-91<29, Revision2TABLE4UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithoutpressurizer control(minimumreactivity feedback)

Withoutpressurizer control(maximumreactivity feedback)

EventTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccursT~imeeeeInixedcore0.05.57.59.50.05.57.59.0fullcore0.07.59.511.00.07.69.610.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wp f35

SECL-91<29, Revision2TABLE4(continued)

UNIT2TURBINETRIPSEQUENCEOFEVENTSAccidentWithpressurizer control(maximumreactivity feedback)

Withpressurizer control(minimumreactivity feedback)

EventTurbinetrip,lossofmainfeedwater flowPeakpressurizer pressureoccursLow-lowsteamgenerator waterlevelreactortripsetpointreachedRodsbegintodropMinimumDNBRoccursTurbinetrip,lossofmainfeedwater flowHighpressurizer pressurereactortripsetpointreachedRodsbegintodropPeakpressurizer pressureoccursMinimumDNBRoccurscore0.07.060.162.10.010.612.613.514.5Timeecfullcore0.07.552.854.80.011.213.214.515.0*DNBRdoesnotdecreasebelowitsinitialvalue.91429R2.wp f36 SECI91-429,Revision2TABLE5CURREN'I'ICENSING BASISSTEAMLINESAFETYVALVESPERLOOPSafetyValve1A1B2A2BSetpoint10651065107510751085PercentAccumulation 10.010.08.988.98,7.97Accumulation 1171.51171.51171.51171.51171.5FlowrateAcc.857690857690857690857690857690Theratedvalvecapacityatfullaccumulation pressurewascalculated asfollows:51.5xAxKxP=ActualFlowratewhere:A=Valveorificearea=16in'=Coefficient ofdischarge

=0.975P=Pressure(psia)ataccumulation pressureTheaboveactualfiowrateisreducedby0.9togetthevalveratedcapacity.

91429R2.wpf 37 SECI91<29,Revision2TABLE6MSSVSETPOINTINCREASESTEAMLINESAFEIVVALVESPERLOOPSafetyValve1A1B2A2BSetpointPressure1096.951096.951107.251107.251117.55Percentccumulation 3.03.03.03.03.0Accumulation 1129.861129.861140.471140.471151.08FlowrateAcc827585.6827585.6835257.2835257.2842928.9Theratedvalvecapacityatfullaccumulation pressurewascalculated asfollows:51.5xAxKxP'=ActualFlowratewhere:A=Valveorificearea=16inK=Coefficient ofdischarge

=0.975P=Pressure(psia)ataccumulation pressureTheaboveactualflowrateisreducedby0.9togetthevalveratedcapacity.

91429R2.wpf 38 SECL-91-429, Revision?

PRESSURE, LOWTEMPERATURE CurrentLicensing Basis3588'.32+301.551.433159461350600354000509.89581.712100564.361512012027518601715271010Closed2.04,40.08.060'able5LicenseCorePower'MWt)

TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulator WaterVolume(ft')Accumulator TankVolume(ft')MinimumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature (F)'esselOutletTemperature (F)'CSPressure(psia)SteamPressure(psia)'team Generator TubePluggingLevel(%)MaximumRefueling WaterStorageTankTemperature (F)MaximumCondensate StorageTankTemperature (F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint(psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation

(%)ChargingPumpFlowImbalance (gpin)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwater Isolation DelayTime(sec)MainFeedwater ValveClosureTime(sec)Auxiliary Feedwater EnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.32+301.551.433'15OFA9461350600354000513.23578.572100596.481512012027518601715271025Closed4,44,40.08.0272Table6Twopercentisaddedtothispowertoaccountforcalorimetric error.Asafetyevaluation for25gpmchargingflowimbalance limitsoperation withHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected, andbestestimateTavg.Asafetyevaluation wasperformed toaccountforaauxiliary feedwater enthalpydelayof272seconds.9l429R2.wpf 39 SECI91-429,Revision2TABLE7aInitialInputParameters fortheSmallBreakLOCAAnalysisLicenseCorePower'MWt)

TotalPeakingFactor,F<.AxMOffset(%)HotChannelEnthalpyRiseFactor,P~MaximumAssemblyAveragePower,P~FuelAssemblyArrayAccumulator WaterVolume(ft')Accumulator TankVolume(ft)MirumumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature

('F)'essel OutletTemperature

('F)'CSPressure(psia)SteamPressure(psia)'team Generator TubePluggingLevel(%)MaximumRefueling WaterStorageTankTemperature MaximumCondensate StorageTankTemperature

('F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint(psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation

(%)ChargingPumpFlowImbalance (gpm)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwater Isolation DelayTime(sec)MainFeedwater ValveClosureTime(sec)Auxiliary Feedwater TotalDelivery(gpm)Auxiliary Feedwater DeliveryDelayTime(sec)MainSteamSafetyValveSetpoint(psia)Accumulator Temperature

('F)('F)CurrentLicensing

~Bas'588'.32

+301.551.43315X1509461350600354000509.89581.712100564.361512012027518601715271010Closed2.04.40.08.0125860'able1120MSSVSetpointIncrease32502'.32+301.551.433FA9461350600354000513.20578.442033596.111512012027518601715271025Closed4.44.40.08.075060'able2130Twopercentisaddedtothispowertoaccountforcalorimetric error.Asafetyevaluation for25gpmchargingfiowimbalance limitsoperation withHHSIcrosstievalveclosedto3250MWt.Valueisbasedon102%corepower,maincoolantpumpheatneglected, andbestestimateTAvo..Asafetyevaluation wasperformed toaccountforanauxiliary feedwater enthalpydelayof272seconds.Enthalpydelaycomputedinternally basedonAFWflowrateand75ft'urgevolume.40

SECI91-429,Revision2TABLE8LOWPRESSURE, HIGHTEMPERATURE LicenseCorePower'MWt)

TotalPeakingFactor,F<AxialOffset(%)HotChannelEnthalpyRiseFactor,FMaximumAssemblyAveragePower,PuFuelAssemblyArrayAccumulator WaterVolume(ft')Accumulator TankVolume(ft')MinimumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature (F)'esselOutletTemperature (F)'CSPressure(psia)SteamPressure(psia)'team Generator TubePluggingLevel(%)MaximumRefueling WaterStorageTankTemperature (F)MaximumCondensate StorageTankTemperature (F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint('psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation

(%)ChargingPumpFlowImbalance (gpm)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwater Isolation DelayTime(sec)MainFeedwater ValveClosureTime(sec)Auxiliary Feedwater EnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)CurrentLicensing BasisNANANANANANANANANANANANANANANANANANANANANANANANANANANANANANAMSSVSetpointIncrease3250232+301.55'.433 15X15OFA9461350600354000543.63606.792100793.901512012027518601715271025Closed4.44.40.08.0272Table61Twopercentisaddedtothispowertoaccountforcalorimetric error.2Asafetyevaluation forthelowpressure, hightemperature operating condition wasperformed inthelicensing basisanalysis.

3Valueisbased.on102%corepower,maincoolantpumpheatneglected, andbestestimateTavg.91429R2.wpf 41 SECL-91<29, Revision2TABLE9LOWPRESSURE, HIGHTEMPERATURE CurrentLicensing Basis34132.34+30Factor,F1.644ePower,Pn1.519179461350600354000544.41610.192100807.031512012027518601715271025Closed4.74.40.08.0349Table5LicenseCorePower'MWt)

TotalPeakingFactor,FzAxialOffset(%)HotChannelEnthalpyRiseMaximumAssemblyAveragFuelAssemblyArrayAccumulator WaterVolume(fP)Accumulator TankVolume(ft')MinimumAccumulator GasPressure, (psia)LoopFlow(gpm)VesselInletTemperature (F)~VesselOutletTemperature (F)'CSPressureIncluding Uncertainties (psia)SteamPressure(psia)'teamGenerator TubePluggingLevel(%)MaximumRefueling WaterStorageTankTemperature (F)MaximumCondensate StorageTankTemperature (F)FuelBackfillPressure(psig)ReactorTripSetpoint(psia)SafetyInjection SignalSetpoint(psia)SafetyInjection DelayTime(sec)SafetyInjection PumpDegradation

(%)ChargingPumpFlowImbalance (gpm)HHSICrossTieValvePositionSignalProcessing DelayandRodDropTime(sec)ReactorCoolantPumpDelayTime(sec)MainFeedwater Isolation DelayTime(sec)MainFeedwater ValveClosureTime(sec)Auxiliary Feedwater EnthalpyDelayTime(sec)MainSteamSafetyValveSetpoint(psia)MSSVSetpointIncrease32502.357+131.6661.46'17V59461350600354000544.41610.192100807.031512012027518601715271025Closed4.7442.06.0349Table61Twopercentisaddedtothispowertoaccountforcalorimetric error.2Valueisbasedon102%corepower,maincoolantpumpheatneglected, andbestestimateTavg.91<29R2.wpf SECI91<29,Revision2TABLE10TIMESEQUENCEOFEVENTSEventLPLTLPLTLPHTLPHTw/MSSVw/oMSSVw/MSSVw/oMSSVBreakOccursReactortripsignalSafetyinjection signalStartofsafetyinjection signalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulator injection beginsPeakcladtemperature occursTopofcorecoveredSIflowrateexceedsbreakflowrate011.2319.2846.28643.4NANA1139.21730.01935.5NA198800011.2313.5413.5419.2822.4222.4246.2849.4249.42644.7601.8608.3NANANANANANA1077.31073.41057.81751.01647.81695.81831.41872.31824.7NANANA202422932284LPLTislowpressure, lowtemperature operating condition.

LPHTislowpressure, hightemperature operating condition.

W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.W/0MSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3250MWtcorepower.91429R2.wpf 43 TABLE10aTIMESEQUENCEOFEVFATSSECL-91-429, Revision2EventLPLTw/MSSV2inchBreakTime(seconds)

LPLTw/MSSV3inchBreakBreakOccursReactortripsignalSafetyinjection signalStartofsafetyinjection Startofauxiliary feedwater deliveryLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulator injection beginsPeakcladtemperature occurs'op ofcorecoveredSIflowrateexceedsbreakflowrate0.08.6417.1344.1368.6592N/AN/A98416801890N/A18900.019.0337.1164.1179.11390N/AN/A2312N/A4042N/A4091LPLTislowpressure, lowtemperature operating condition.

W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.

SECL-91-429, Revision2TABLE11SUMMITRYOFRFSULTSNOTRUMPPeakCladTemperature

('F)PeakCladTemperature Location(ft)PeakCladTemperature Time(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H,OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature

('F)LPLTw/MSSV1853.711.751935.53.4711.75<1.0None251878.7LPLTw/oMSSV1772.911.751831.42.4711.75<1.0None151787.9LPHTLPHTw/MSSVw/oMSSV1837.71710.311.7511.751872.31824.73.131.8211.7511.75<1.0<1.0NoneNone16151853.71725.3LPLTislowpressure, lowtemperature operating condition.

LPHTislowpressure, hightemperature operating condition.

W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.W/0MSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3250MWtcorepower.91429R2.wpf 45

TABLE11aSUMMARYOFRESULTSSECL-91-429, Revision2LPLTw/MSSV3inchBreakLPLTw/MSSV2inchBreakNOTRUMPPeakCladTemperature

('F)PeakCladTemperature Location(ft)PeakCladTemperature Time(sec)LocalZr/H,OReactionMaximum(I)LocalZr/H~OReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstBurstandBlockagePenalty('F)TotalPeakCladTemperature

('F)195112.018905.0612.00.568None1172068183312.040423.7512.00.397None151848LPLTislowpressure, lowtemperature operating condition.

W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.46 SECI91<29,Revision2TABLE12TIIKESEQUENCEOFEVI<22lTS EventBreakOccursReactortripsignalSafetyinjection signalStartofsafetyinjection signalLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulator injection beginsPeakcladtemperature occursTopofcorecoveredSIflowrateexceedsbreakflowrateLPHTw/MSSV011.0120.9247.92620.0NANA620.01604.31691.0NA1683.0TimeLPHT~w/0MSV011.0120.9247.92627.2NANA627.21631.71720.6NA1984.0LPHTislowpressure, hightemperature operating condition.

W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.W/0MSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3413MWtcorepower.91429R2.wp f47 SECI91429,Revision2TABLE13SUlVPdARY OFRESULTSNOTRUMPPeakCladTemperature

('F)PeakCladTemperature Location(ft)PeakCladTemperature Time(sec)LocalZr/H,OReactionMaximum(%)LocalZr/H>0ReactionLocation(ft)TotalZr/H,OReaction(%)RodBurstArtificial Leak-ByPenalty('F)BurstandBlockagePenalty('F)TotalPeakCladTemperature

('F)LPHTw/MSSV1955.911.751691.04.2611.75<1.0None121572124.9LPHTw/oMSSV1947.111.751720.64.8311.75<1.0None121432102.1LPHTislowpressure, hightemperature operating condition.

W/MSSVismainsteamsafetyvalvesetpointtolerance increasecaseat3250MWtcorepower.W/0MSSVislicensing basismainsteamsafetyvalvesetpointtolerance caseat3413MWtcorepower.91429R2.wpf 48 SECL-91<29, Revision2FIGU1H~591429R2.wpf 49 WQQRSIA24OOPSIA681840>SIA'000iPsaA2100xPSIA45~gglgQTOl~VA1.VESO'EN578575598..5955"8'l5688685613615628625638avg(P:eaaaaap+CoreLtmitsNominalTave~578.7'F.'(ominal PI.assure

~2100ps.'aOONALOC.COOKUNIT1FIGURElaILLUSTRATION OFOVERTEHPERATURE ANO.OVERPOWER OELTATPROTECTION i'I 75OPaT651922PSIA2250PSIA402000PSIA2400PSlA<5STEANGENERATOR SAPPYVALVESOPEN56856S57857558B5855'%'tS688685618615628625TeveleF')-----OTaT Protectfon LfnesCarsThsrtaslSsfstyLtsftsNominalVesselAverageTeaperature 576'FNoafnalPressurfzer Pressure2250psfaDONALDCCOOKUNIT2(MIXEDCORE)FIGURE1bILLUSTRATION OFOVERTEMPERATURE ANOOVERPOWER DELTATPROTECTION 73~1922PSIAOPaT2400'.PSIA532000PSIASTGNGENERATOR SAFETYVALVESOPEN2250PSIA575S885855I8S~S6886856186I5628625ai3nvg(~F'!-----OTaT Protect)on LinesCoreTherssalSafetyLfeitsNominalVesselAverageTemperature 5S1.3'FNominalPressurizer Pressure2100psia.DONALDC.COOKUNIT2(FULLV5CORE)FIGUREIcILLUSTRATION OFOVERTEHPERATURE ANDOVERPOWER DELTATPROTECTION

'

h~vVVI:CC~4hVACvpl'v4II"lCC."300.l900.2300.lo.20.30.40.50.60.~C,80.90.TMK(SEC~F800.>6001~00'41200JlIQOO.0.10.20.30.40.50'0.70.80.90.>00.TME(SEC)DONALDC.COOKUNITIFIGURE2TURBINETRIPEVENT'WITHOUTPRESSURECONTROL,HINUHUHREACTIVITY FEEDBACK

~~

rD~z~~iZIIIII4i1020ic4053607080:CT~E(SEC)4551.510203040506070809C1'K(SEC'ONALD C.COOKUNITIFIGURE3TURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HINUHUMREACTIVITY FEEDBACK 5605~0520i53056C5'0520500010203C<050607080iClCT0=(SEC)EGG'805605<052G5002560560i5<0520500010203040506070SG90t"3v=(SEC,'ONALD C.COOKUNITIFIGURE4ITURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINUMUMREACTIVITY FEEDBACK.

I~CC11'JCO9CC.;9CG.;700.50C.5000.IO.20.30.40.50.60.70.90.90.lQQ.TuE(SEC)400tQ350300250200150C',100500-5010203040505070dO90'COTi&(SEC)DONALDC.COOKUNITIFIGURE5IITURSINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITY FEEDBACK 35sp252015OCtvip5Ul0-5-100,102030405050708090tCOTlhtK(SEC)OONALOC.COOKUNIT1FIGURE6TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HININNREACTIVITY FEEDBACK

OC<OCahAQVnC1i~]V'30Ct800.Io.20.30.io.50.60.~0.50.90.<OC.T:~E(SEC)"300.1900>500accri400>200.Jl>300.0.10.20.JO.40.50.60.70.60.90.IOC.ri~K(sEc)OONALDC.COOKUNITIFI6URETURBINETRIPEVENTWITHOUTPRESSURECONTROL,:NXINNREACTIVITY FEEOBACK 0.102030+0506070d090lCQTvK(SEC,'2.51.51.010203040506070d090tCQTisK(SEC)DONALDC.CMKUNITIFIGURE8TURBINETRIPEVENTWITHOUTPRESSURECONTROL,HAXII%NREACTIVITY FEEDBACK 66G620~~V!30560dr.o520500tO20SOiO50doIo8090rvc(sac)>oo6606606<o62050085doseo5~0520500to20304050do708090tooritz(sec)ONALOC.COOKUNITIFISNETURBINETRIPEVENTltITH0UTNESSVRECONTROL,'NXINNREACTIVITY FEEDBACK

~nC2C'A'.300A300I'J)3CC,;700.500.5000.10.20.30.40.50.60.70.80.90.100.TlMK(SEC)400350300250200150100500-500tQ2Q3040505070d090100TIME(SEC)DNALDC.CXKUNITIFIGURE10TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINPlREACTIVITY FEEDBACK 2520tQ1510acQC5A4-5-10010~2030405060,70SO901COTlsK(SEC)0ONALPC.COOKUNIT1FIGURE11TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITY FEEDBACK aoaga4~"500n50C5h40Cj"'CCI"2OCn'OC23001900.18000.10.20.30.io.50.do.70.40.80.iCCtivK(SKC)2300.isoo.tdoo.c>400.1200.nnt000.)0.20,go.io.50.do.70~80,90.~OC.Till(5CC)OQWLDC.COOKNIT1FIQNE12mamTaIeEVENVITHPRESSVRECNTROL~NXINNREACTIVITY FEEoMCK 8520102030<050d0108090T>MK(SEC)45.3.52.510203040506010809GTlirt(5KC)ONEC.COOK.NITIFIGNE13TtWSINETRIPEVENT'KITHPRESSNECONTROL,NXINNREACTIVITY FEEDBACK 580560520cBS~60540520500700lO2030+05050VOT'Mg(SKC)5605iQ520500258056054010203040508010d09GtCSTIIC(SEC)XNALDC.COOKUNIT1,FI6URE14TUNMTRIPEVBITQlTHPRESSNECONTROL,NX1NNREACTIV?TY FEEDBACK IIQQ1500.300.BOO.700:600.5000.10.20.30.40..50.60.70.60.TlhlK(SEC)400350I3OO250200150100I5000102030405060708090100T1QK(SEC)OelALDC.COOKUNIT2(FULLYSCORE)FIGURE15TURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIYITY FEEOBACK 2520Ql15105-10010203040505070d090100Ti~K(SEC)ONALGC.COOKUNIT2(FULLVSCORE)FIGURE16TURBINETRIPEVENTWITHPRESSURECONTROL,NXINtwREACTIVITY FEEOBACK 2500.2400.nn"~"C'v'n2OOO.l800.ld00,0.l0.20.30.'0,50d070g0.90.laC.T<~g(SKC)2300.l800.1d00.1400.I200.l000,800.lo2030.40.50.50,70.So90lo(SEC)OONLDC.COOKUNIT1FI6NE17TURSINETRIPEVENTMITHPRESSURECONTROL,NINNNREACTIVITY FEEOBACK

25a4x201020304050do70do9C)C"1'iuK(SKC)52.52~0102030io500070doMiOOTiitE(SEC)ONNLDC.COOKUNITIFI6NE18TNSINETRIPEVENT'WITHPRESQNECONTlSL,NINNNREACTIVITY FEEDBACK 56C'5@i52"5~0'$5560s~c520500102030405060TO809C'C"T'lK(SEC)7006805606<0525600580515555<052041420304050T1IC~(SEC)DNQLD'C.CONNITIFINRE-IgTNSINETRIPEVENTWITHPRESSVRECONTROL,NINNNREACTIVITY FEEDBACK 1000.900.800.700.500.5000.lp,20,30.40.50.dp.70.80.90.100.TiuK(SEC)500CJ4JVl<004300200l000-10001020304050dp708090100TiVK(SEC)00NALOC.CONNITIFIGURE20TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITY FEEDBACK 302520)510QC5tAac0CL-t00I02030405060708090100Ti&(SEC)ONNLDC.CONUNITIFI6URE21TURBINETRIPEVENTWITHPRESSURECONTROL,NININNREACTIVITY FEEDBACK 2500.n250C.5<OC~COx'V:2QC.2100."00F900.1/000.t0.20.30.40.50.50.70.50.9Q,)GGt~c(sac>2000.1800.1d00.x[400.1200.1300.0.10.20.30.40.50.80.10.80.90.t00.re%(5')OINEDC.COOKNIT2(NIXEOCORK)FIQNK22aTNSNETRIPEVENTltITHOUTPRESSNECONTROL,NINNYREhCTIVITY FKEDBAC<

n50C<c,PC'CCI\+yA~oerV43tOCC""OC>90C.18000~le20'0~<0~50.60.70.<0.g0.~PC~MK(SEC)"30CtSOC.l500.t40C.I200.1300.0.t0.20.30.40.50.60.70.50.90.lOC(MC)tOMLDC.CONNIT2(fULLV5CONK)fIQNK22bTlNSINETRIPEV9fTVITHOUTPRKSSlNKCONTROL,NINNNREKTIVITY FEEDSACK Cc5x200l02030~05050>08090~Co'Tissu(SKC)2.52.2t.dl.24>02030<05050.1050.SOiCaTilg(SEC)OOOOC.COOKNIT2(NIXEOCORE)FICNE23aTlNSINETRIPEVBITWITHOUTPRESQNKCSlTROf.,

NINNNREhCTIVITY FEEO84<<

tOZO3O.Oa6O(sec)to20304050607080KiCQ7:~K(SEC)tONU)C;COOKUNIT2(FVLl,NCORE)FINRE23bTVRIINETRIPEVENTitITHOUTPRESSURE@NIAL,NINNNREACTIVITY FEEDBACK 0

560diQ520I5305605cQ520500700Ql0203040506070809Q~Ti~E(SEC)6806606+06206009MQMO5<0]420'04050d0>06090Ti&(SEC)DONALDC.CNXNlT2(NlXEDCORE)FENRK24aTNSlNETRlPEVENTQlTHOUTPRESQNECONTROL,MINN%REACT[VlTY FEEOBACK 53IIc605ao5ZQ5:c.'30c6szo500OlOZOSO4O50.6OrOaoaC.CgrQK(SEC).00Sao5605io520500580I5605co5200~02030iO50607040SOiCOrw(sKc)ONEDC.COOKNIT2(RKLV5CORK)FIQNE24bTURSINETRIPEVENTWITHOUTNESSNECOKTROL,NINNNREACTIVITY FEEDBACK

'20C1000.z300.BQO.o700.600.500.0.Io.20.30.<0.50.60.70.60.9Q.IQQ.TIME(SEC)400350zoo2502001501005000t02030405060708090>007i&(SEC)DNALDC.COOKNIT2(MIXEDCORE)FIGURE25aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MINN@REACTIVITY FEEDBACK

ocP11QQ.100.300.BCQ.700.500.5000.10.20.30.40.50.SO.70.80.90.1OO.TIME(SEC)400rn3503002502OO150100500-50102030<050do708090100TiME(SEC)00NLDC.'COOKUNIT2(FULLVSCORE)FIGURE251TURBINETRIPEVENTWITHOUTPRESSURECONTROL,NINNNREACTIVITY FEEOBACK 4030252015105Vl0-5-1001020304050d0705090)QQTivK(SEC)DONALOC.COOKUNIT2(MIXEDCORK)FIGURE264TURBINETRIPEVENTWITHOUT'RESSURECONTROL,.NINLNNREACTIVITY FEEOBACK 403530252015(Y1050-5-10010203040505070d090100Ti~E(SEC)DONALDC.COOKUNIT2(FULLVSCORE)FIGURE26bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MIHUNNREACTIVITY FEEDBACK tV"50Cn"50C=~OCivs~1hPaavlon2lQCC2300.1300.1500.'0.10.20.30.40.50.5070.dO.90.100TiIE(SEC)2'300.1800.le00.ct1400.'V1200.'1000.800.0.10.20.JO.40.$0.60.70.80.90.100.Ti~KfMC)004lLDC.CONNIT2(MIXEDCORE)FIQURE27aTURBINETRIP'VENT M?THOUTPRESSURECONTROL,NXINPIREACTIVITY FEEDBACK OAA~4"5GCn"504CIhca%%2tQC"300>900.>5000.t0.ZQ.30.44.50.d0(~C)94>004.300I/00.i500.'00.>200.I300.0.10.20.30.44,50.d0.70.60.90.F00TsK(MC)'ONANC.COOKUNIT2(FULLV5CORE)FI6NE27bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,.NXISNREACTIVITY FEEDBACK 0.l0203040505070d09QT~vE(SKC)2.d2.62.4j2,1020304050d070d090lC"(sac)OONLDC.COOKUNIT2(NIXEQCORE)FIQNE28aTVRSINETRIPEVENTWITHOUTPRESQNECONTROL,NXINNREACTIVITY FEEDBACK CIQ2Q30+0506070I509C'CQT:MK(SKC)5525>.5l.OtO2OaO4O5O6O~OaOeCtCaT:VK(SEC)OIWL9C.COOKNIT2(RJLLVSCORE}fNNf28bTlJRSINETRIPEVENT'WITHOUTl%ESSVRECONTROL,NXINNREACTIVITY FEED8ACK g2hi1.~'0II5605<0c2h500010203040506070dOQQrME(sEC)7005805606<06206008580580540520IO.2030405060'10dO90ICQrim(sac)ONlLDC.COOKLNIT2(MIXEDCORE)'I6URK29aTNSINETRIPEVENTWITHOUTPRESSURECNTROL,NXINNREACTIVITY
FEEDSACK, 60540520500%%0>020304050607060ypTvK(SEC)51505ip62050085ao5605iO5200>020SOip505070.80SCiCOT'MK(SKC)NNALDC.CONUNIT2(FULLVSCNE)FIQNE29bTNBINETRIPEVENTMlTHGUT-PRESSURECNTROL,NXINNREACTIVITY FEEDBACK QCg1~0090C.nHPC700.500.5000,10.20.30.40.50,60.10.bp.90.100.~TIME(SEC),300250200150w100CC500n500102030405060708090100T1&(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FI6URE30aTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXINNREACTIVITY FEEDBACK 300.30C700.500.500.0.IO.20.30<050607080.90.IOC.TME(SKC)400350300250200l50100500-50]02Q304050dQ70d0901COruE(SEC)Ot)NALOC.COOKUNIT2(FULLVSCORE)FIGURE30bTURBINETRIPEVENTWITHOUTPRESSURECONTROL,NXII%NREACTIVITY FEEDBACK

25201510acac5'4ac0ac-5-100102030405060"708090)COTIME(SEC)DONALDC.COOK'NIT2(MIXEDCORE}FIGURE3laTURBINETRIPEVENTWITHOUTPRESSURECONTROL,MAXIHLNREACTIVITY FEEDBACK.

2520V)IO50-5-100102030<050d070Soeo.COTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE}FIGURE31bTURBINETRIP.EVENTWITHOUTPRESSURECONTROL,HAXIHNREACTIVITY FEEOBACK q%sarv25CC500"<cc~leer~,vvvltIAeevbr2'QC300.i90C.It8002300.10.20.30.40.5050T'LIE(ggg)1300.1500.<z14QQ.'V1200.'AtQQQ.0.10.20.30.io.50.dO.ZO.50.90.tQC.TiMK(SKC)ONAu)C.COOKUNIT2(lIIXH)CORE)FIGVRE32aTURBINETRIPEVENTMITHPRESSVRECONTROL,NXINNREACTIVITY FEEDBACK

~~%A%VI50Ct.cQCCn~<hFaVVC'900'80020.30.<0.50.60.70.50.90:GCTvK(SEC)2".00>30C..~:tlj~i~>500>400>200nt300.0.10,20.30.40.50.d0.10.50.90.iOCr~C'(SCC)'ONlDC.COOKUNIT2(FULLV5CQRE)FI6NE321TURBINETRIPEVENTMITHPRESSURECONTROL,NXINNREACTIVITY FEEDBACK dt4Z0.102030<0505070809CrvK(SKC)2.63~.z~2010203040505070d090Tlat@(SEC)OOQLGC.COOKNIT2(MIXEDCORE)FI6NE33aTURBINETRIP.EVENTMITHPRESQNECONTROL,NXINNREACTIVITY FEEOSACK l02030405050108090~vK(SKC)lO20304050dO10609CT~K(SKC)ONIALOC.COOKUNIT2(FULLVSCORE)FISuaz33bTlJRSINETRIPEVBITMITHPRESSURECONTROL,NXINNREACTIVITY FEEDSACK 5~0620IIrvSCar<<V5605<05205000!02030405060l0809Cr~E'SEc)7005805606405205008580g5605L05200l02030405060108090lC"TivK(SKC)00NLDC.COOKUNIT2(NIXEQCORE}FI6URE348TURBINETRIPEVENTKITHPRESSURECONTROL,NXINNREACTIVITY FEEDBACK 550t54Ce5205000'02030<050607080TvK(SKC',0III5305~062050C258035605c0520500io2030io5060~0aoec:COTilK(SEC)ONALDC.COOKUNIT2(FULLV5CORE)FIeNE34bTURSINETRIPEVENT'KITHPRESSURECONTROL,NXINNREACTIVITY FEE08aCV.

c?.-QC.J7z30C.BCC.D700.500.500.p.30010'0'0.40.50.60.70.80.9p.1pcTMK(SEC)250200150OC10QCZ500n-501020304050'6070SO901CPTlute(SEC)DONALDC.COOKUNIT2(HIXEDCORE)FIGURE35aTURBINETRIPEVENTWITHPRESSURECONTROL,NXINNREACTIVITY FEEDBACK P'009CC600.500.40010.20.30'0.50.60.70.80.9p.IppT:ME(SEC)350300250200150100500-50102030405060708090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE35bTURBINETRIPEVENTWITHPRESSURECONTROL,AXINGREACTIVITY FEEDBACK 2520'A)5)0QCac550-5)Q2030405050708090)GOT)MK(SKC)PONALDC.COOKUNIT2(HIXEOCORE)-FIGURE361TURBINETRIPFVENTMITHPRESSURECONTROL,NX'INNREACTIVITY FEEOBACK 252010ac5ac0-5-100t02030405050'08090ICOTIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE36bTURBINETRIPEVENTMITHPRESSURECONTROL,MAX!NNREACTIVITY FEEDBACK

5CC"5CC1nIC2ICC".QG.:900.I800.0.300tp.20.30.iP.50.60.70.50.ypTuK(SKC)t300.'6QCac'<OCCv>200nnIQOC.0.l0.20.30.40.50.60.70.80,90.IOO.T5VK(SE'C)DONALDC.COOKUNIT2(IIIXEDCORE)FIGURE37aTURBINETRIPEVENTQITHPRESSURECONTROL,MINN@REACTIVITY FEEOBACK

5QCnwgAQevC~'n2~00V)1600)0.20.30.40.50.50.10.80.90.:OC.T:VK(SEC)2'300.1800.1600.I400."4l200.1000.600.0.~0.20.30.i0.50.60.10.d0.90.~OC.7~&(SEC)OONLOC.COOKNIT2(FULLVSCORE)FIQIRE37bTURBINETRIPEVENT'MITHPRESSURECONTROL,NINNNREACTIVITY FEE08ACK 102050<050607Q60gCrvK(SgC)286"2164~Q203040'0647060g)T1QK(SEC)OONU)C.COOKUNIT2(llIXEOCORE)fI6NE38'URSINE TRIPEVENTMITHPRESSURECONTROL,NINNPlREACTIVITY FEEDBACK Z0.ic20304050d010d090TMK(SEC}45352.5I.Sl.0102030.io50107080SOtCOTi&(SEC)OQNLDC;COOKUNIT2(FULLVSCORE)FIQNE38b'URSIHETRIPEVENTNITHPRESSURECONTROLSINN@REACTIVITY FEEDBACK 560t520500010203040506070809C'"0IMK(SEC)6805605~0~5205005505605405205000"102030405060108090'00TivK(SEC)00NALDC.COOKUN?T2(NIXEDCORE)FlGURE39aTURSlNETRlPEVENT'MlTHPRESSURECONTROL,NlHUNNREACTLVITY FEEOBACK

4,IIcogiII5205000>02030<0506070TvK(SEC)30I68G6605<0r.2r.63058035605i0520500'l02030405060708090iCQTivK(SKC)NXQLO'C.COOKUNIT2(FULLV5CORE)FIGURE3SbTURBINETRIPEVENTQITHPRESSURECONTROL,NINNNREACTIVITY FEEDBACK n13QC.700.500.500.40Q10.20.30.40.50.60.70.80.9Q.!QC.TME(SEC)s)350300"50200150100500500.102030405060708090>00TiMK(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE40aTURBINETRIPEVENTQITHPRESSURECONTROL,MINIMUMREACTIVITY FEEDBACK el'00.3PG.MV7PG.500.5000~10'2030'0'0'0'0~80.90.'CC.TME(SEC)500n4001I(3OO<I200i100J)0n-100010203040506070do90iCOTlMK(SEC)OONALOC.COOKUNIT2(FULLVSCORE)FIGURE40b.TURBINE.TRIPEVENTWITHPRESSURECONTROL,HININNREACTIYITY FEEOBACK 403530252015gA'4]Q5-5-100102030405060lO8090'C3T'ME(SEC)DONALDC.COOKUNIT2(MIXEDCORE)FIGURE41aTURBINETRIPEVENTMITHPRESSURECONTROL,HINIMNREACTIVITV FEEDBACK 30412c20151QAgJ70-1Q0102030405060708090TIME(SEC)DONALDC.COOKUNIT2(FULLV5CORE)FIGURE41bTURBINETRIPEVENTMITMPRESSURECONTROL,MINIHUHREACTIVITY FEEOBACK APPENDIXASIGNIFICANT HAZARDSEVALUATION

>A SIGNIFICANT HAZARDSEVALUATION DONALDC.COOKUNITS1&2MSSVLIFTSETPOINTTOLERANCE TECHNICAL SPECIFICATION CHANGEINTRODUCTION:

Pursuantto10CFR50.92, eachapplication foramendment toanoperating licensemustbereviewedtodetermine iftheproposedchangeinvolvesasignificant hazardsconsideration.

TheCommission hasprovidedstandards fordetermining whetherasignificant hazardsconsideration exists(1OCFR50.92(c)).

Aproposedamendment toanoperating licenseforafacilityinvolvesnosignificant hazardsconsideration ifoperation ofthefacilityinaccordance withtheproposedamendment wouldnot:1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, or2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated, or3)involveasignificant reduction inamarginofsafety.DESCRIPTION OfAMENDMENT REVEST:Thepurposeofthisamendment requestistoreviseTechnical Specification Section3/4.7forbothDonaldC.Cookunitsinordertorelaxthemainsteamsafetyvalve(MSSV)liftsetpointtolerance from<1%toJ3%.Thecurrently specified tolerance ofJ1%oftheliftsetpointcanbedifficult tomeetwhenthevalvesaretestedduetosetpointdriftoverthedurationoftheoperating cycle.Thisevaluation willprovidemarginforAmericanElectricPowerServiceCorporation (AEPSC)whentheyperformtheirsurveillance testing.TheASMECoderequiresthatthevalvesliftwithin1%ofthespecified setpoint(NB-7512.2).

Thecodealsostatesthatthevalvesmustattainratedlift(i.e.,fullflow)within3%ofthespecified setpoint(NB-7512.1).Thisevaluation willformthebasisfortakingexception totheASMECodewithrespecttotheliftsetpointtolerances.

AsdefinedinNB-7512.2, exceptions canbemadetothecodeproviding theeffectsareaccounted forintheaccidentanalyses.

A-1

BASISFORNOSINIFICANTHAZAIU)SDETERMINATION:

Theeffectsofincreasing theas-foundliftsetpointtolerance onthemainsteamsafetyvalvehavebeenexaminedforthenon-LOCAaccidents, andithasbeendetermined that,withoneexception, thecurrentaccidentanalysesaspresented intheUFSARremainvalid.Thelossofload/turbine tripeventwasanalyzedinordertoquantifytheimpactofthesetpointtolerance relaxation.

Aspreviously demonstrated inthisevaluation, allapplicable acceptance criteriaforthiseventhavebeensatisfied andtheconclusions presented intheUFSARarestillvalid.Thus,theproposedTechnical Specification changedoesnotconstitute anunreviewed safetyquestion, andthenon-LOCAaccidentanalyses, aspresented inthereport,supporttheproposedchange.Theeffectofanincreaseintheallowable MainSteamSafetyValvesetpressuretolerance from+1%to+3%ontheUFSARLOCAanalyseshasbeenevaluated.

Ineachcasetheapplicable regulatory ordesignlimitwassatisfied.

Specificanalyseswereperformed forsmallbreakLOCAassumingthecurrentMSSVTechnical Specification setpressures plustheproposedadditional 3%uncertainty.

Thecalculated peakcladdingtemperatures remainedbelowthe10CFR50.46 2200'Flimit.Thesteamgenerator tuberuptureeventwasalsoanalyzedtodetermine theeffectsoftheliftsetpointtolerance increase.

Theresultsoftheanalysisconcluded thattherewasaveryslightincreaseinthewholebodydosereleaseforUnit1,butthemagnitude oftheincreasewasSECL-91%29, Revision1withintheuncertainty associated withthecalculation itself,andthatthereleasesgenerated fortheDonaldC.CookReratingProgramboundthosecalculated forthisevaluation.

Theevaluation alsodetermined thatthecurrentUnit2dosesremainbounding.

Thus,theconclusions presented intheDonaldC.CookUFSARremainvalid.Neitherthemassandenergyreleasetothecontainment following apostulated lossofcoolantaccident(LOCA),northecontainment responsefollowing theLOCAanalysis, credittheMSSVinmitigating theconsequences ofanaccident.

Therefore, changingtheMSSVliftsetpointtolerances willhavenoimpactonthecontainment integrity analysis.

Inaddition, basedontheconclusion ofthetransient

analyses, thechangetotheMSSVtolerance willnotaffectthecalculated steamline breakmassandenergyreleasesinsidecontainment.

A-2 Theproposedchangehasbeenevaluated inaccordance withtheSignificant Hazardscriteriaof10CFR50.92.

Theresultsoftheevaluation demonstrate thatthechangedoesnotinvolveanysignificant hazardsasdescribed below.1.Asignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated.

Relaxation oftheMSSVsetpointtolerance from+1%toJ3%doesnotincreasetheprobability orconsequences ofanaccidentpreviously evaluated.

Component andsystemperformance willnotbeadversely affectedsinceequipment andsystemdesigncriteriacontinuetobemet.TheMSSVsdonotinitiateanyaccidentnotalreadydiscussed intheUFSAR.Neitherthemassandenergyreleasetothecontainment following apostulated lossofcoolantaccident(LOCA),northecontainment responsefollowing theLOCAanalysis, credittheMSSVinmitigating theconsequences ofanaccident.

Fortheeventsanalyzed, allapplicable acceptance criteriaweresatisfied, andtherewasnoincreaseinthedosesoverthosepreviously generated.

Asaresult,theconclusions presented intheDonaldC.CookUFSARareunaffected bytheproposedchange.Therefore, changingtheMSSVliftsetpointtolerances wouldhavenoimpactontheconsequences ofanaccident.

2.Createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated.

Thepossibility foranaccidentormalfunction ofadifferent typethanevaluated previously inthesafetyanalysisreportisnotcreated.Increasing theliftsetpointtolerance ontheMSSVsdoesnotintroduce anewaccidentinitiator mechanism.

Nonewfailuremodeshavebeendefinedforanysystemorcomponent important tosafetynorhasanynewlimitingsinglefailurebeenidentified.

Noaccidentwillbecreatedthatwillincreasethechallenge totheMSSVsorresultinincreased actuation ofthevalves.Therefore, thepossibility ofanaccidentdifferent thanpreviously evaluated isnotcreated.3.Involveasignificant reduction inamarginofsafety.ThemarginofsafetyasdefinedinthebasisoftheTechnical Specifications isnotreducedbythechangeintheMSSVliftsetpointtolerance.

TheproposedIncreaseintheas-foundMSSVliftPA-3 setpointtolerance willnotInvalidate theLOCAornon-LOCAconclusions presented intheUFSARaccidentanalyses.

Thenewlossofload/turbine tripanalysisconcluded thatallapplicable acceptance criteriaarestillsatisfied.

ForalltheUFSARnon-LOCAtransients, theDNBdesignbasis,primaryandsecondary pressurelimits,anddoselimitscontinuetobemet.Peakcladdingtemperatures remainbelowthelimitsspecified in10CFR50.46.

Thecalculated dosesresulting fromasteamgenerator tuberuptureeventremainwithinasmallfractionofthe10CFR100permissible releases.

Thus,thereisnoreduction inthemargintosafety.Note,however,inordertoimplement theproposedchange,theTechnical Specifications willhavetobechanged.

3.7.1.1AllaainstomalinecodasafetyvalveaaasocLaeed vieheachsees.generator shallboOPEkASLE.

IIIC4HLBX:

thCGM:aob.VLeh4reactorcoolantloopaandaaaociatad seaaageneracot..s Lnoperation'assd viehonaoraoraaainateaalimacodesefecyvalvoaLnoyorabla, operation LnNOES1,Rand3aayproceedyrovidad, thatwithin4houra,eitherehoLnoparabla valveLsraatoradtoOPXMLIatatuaorehahwer4ngeNeutronfLuxHighSatpointtriyiareducedyorTable3.1-1.;othe~a,ioLnatlaaatNTSTARlTviehinehanaxtChouraandLnCogSMVTKNNvithinehofollowing 30boura.>teVLeh3raactorcoolantlooyaan4aaaociatad staaagaaeraeogs Lnoyoratioss an4viehoneormraaainataaalinacodesafeeyvalveaaaaociatad viehanoperaticloopLnoporabla, operaeLon LnNRC3aaluproceedprovidad, that&thin4houri,eithertheLnoporablo valveLaraatoradtoOHRALLCaeatuaorchereactortripbreakersareopane4;othariiao, boinCOLOSRUTEOQNvtthinehanext30bours.C~Theproviaiona ofSpocificatioo 3.0.4arenotapylicable.

4.7.1.1Eachaaina~liaocodeaafaeyvalveahaGbo4eeonaeraeed OPEMlJ,richlifeaottiagsandorificeaixaaaaebsLnTable4,71,Lnaccordance etch,SoetiossZIofehoAQCloilarandPraaauraVaaaalCoda,1914gee.D.C.COCC~URXZ13/47-1agamaNO.ig0 TABLE3.7-lHNIINNALLONkEONERRAHGKlKUTRONfLUNHIGHSETPOINTMITUINOPERhBLE STEANlEFWlKflll

~~eCNaxtamNakeroffeeyorable SafetyValvesoalaatiSteaaCaaarator Hexf~Al)owable PowerRangeNeutronfluxHighSetpointPercentofRATKDTERNALPSKR13.6

n5%1Cin.LCin1Cln1Cin.1Cin.ooNl$0CSyeiyhN1$045peiy'IIooN-35075peigI4eNR$07IyeiyW~oN3k$peiyIA+fholttcattpraaaaroaballoorroayqn4 toaabieataedltlone ottheyalyaat.aoaiaaloporatiay taeperatura ae1proeeur'

ThoOPERAITLI.Y ofehaaainseoaalinecodasafoeyvalvooanagramIocondaty Iyocooproasurovil1boLiiieo4eovichinieados'.gnpzoaguroof10f5paiddurinjtheoooesovoroaneicipaeod syseoNopera.eionaleranaionc.

Theaux~'oliovini capaeieyi4aaoociaeid vihIeutbinoeripfroa100%RATSTHERMALt5CLcoincident viehanaaavuaod.':ofeondonsot hoacsinJa(i.o..noseaaabyyaaaeoehocondonaot).

TheIpooifiod valvelifecoceinlaan@rolioving capaeieioo areinaocozdaneo viAehozoquiroaenea of5occionZTZofehoQlCSoklorandprooqutoCodeL97LCdicion.Thececalrolioving cayaoicyforalLvalvoonaogcoaanoooL7~L53.lOOLba/htvhiehiaapyroaiaaco lyLRpot'coneofchoeoealsecondary acornGeeofLL.L20,000 LboAgae[00'ATZyatagg.tOQXR.Aaint'f2OPCRAILCaafoeyvalvooperoporabl~gcaaagonotaeor onourooehacouffioione rolieCagcapacityiaevailoforehoallowable ZHQ8ALPNCtoactiot&a LnTable3.7~L.STARTUtand/ortQCLOPERATION inoyorablo

+%chanchoLiiicaciona ofofehoreduction.

insecondary oyseeebyehorodueodreactoretiyooccingachannela.

ThereactorerfyaocyointfoLLoving baooo:For4Looyoporaeion iiallerahlo viehaafocyvaltheiCZZMr~iroaoncs onehobao'.ae~fZovaadTRLLCQ.tOMERzoq.~fcholoverRangeNoueronFlaxro4aciona aredarivo4onehoa(L0%)%hero:5P~N4acodtoaccoteriyooeyointiapotconeofRATtDTHELVL8%lLLV~eaaSaanuabetotinoyotailo aafocyvalvooporscoaa1inoL.,2or3.X~Toealrolkoving cayaaityotalloafoeyvalve!poraeocaLine~4.off,454 Lbo/beut.

Y~Naciluaroliovinl eayacicyotanyonecato'eyvalve~f57,C94Lbo/hour, (109)~RoverRanchoNeutronFicta-High TtiySoepoinefot4loopoyoracion.

O..C.CXC~UNION1)3/i$LAN~tKNTNO.

3,7,1.1hL1matnseaaaleonecodasa.aeyvalvesassoc'.acid viAeachsteanjenaraeor sha11beOPELQQv'.5Lifeseer'gsasspeci'fed'.nTabLe3:I-'a.%Egal2i~aob.Vkeh4reactorcoolaneLoopsandassociated seeaageneraeosLncyerae'on andviehoneormoraIaknseeaaLWcoda.saeeyvalves~rable,eparaeton LaCNS1,2andSmayproceedyrovided, chatvtdgn4bees,etchereheinoperable valvetsreseoredeoOPQhlLXjeacQ$Qrehe?4%%riangeÃoLeronF11%EkghTripSec[oint.

iareducedyearTableS.l-l:otherwise, beinatLeaseBet~~vichinehoneatC~sca@LaCOTE51CTtRKNN vtehfaehefollm4ag30heats.iVSch3reaotorcoolantlooyaaaLassociated steamgenerators bioperation aa4etchoneorsereaaSasteamLhsecodesa"oeyvalvesaaaoetato4

&than~racial3eoytaeporable, eyeraef.on taMDL3mayyrocoo4ytevtdad, chatvtthtalbeati,eiehetthei.noyerable valveSareaeoredteOZQQLXstatuserehereactortrLybrewersareeyeaed;etheaCae, beQxCOLOSRUTI%witheehenext30hexa.'Theyxevta5.oaa ofSpoctNcaeton 3.0.Iarenotayylfcable, 4.?.L.LIoe44LCLeaai SerretlLcaee teqCr~taeehezthanchose~redby4.t.$.S/a7~1AjgÃKICRT 50.82 TABLE3.l-lINXINllALL@NB.KPSKRRANGENK~U~FSETPOIIIT lIITIIINOPERABLE STEAHSaxi~NuwberofVavesoaleSafetyorNax)mmh))mab)ePoserRangeNeNtroaFluxlllghSetpoiatCerementofRATEOTIIENHLPONER87.2 VMa.SV-lli.SV-lc.SV-21.SV-2,e.SV-3ZAlkf3.7-hSTEINLtdSQ'HYVALVfSffNlOOP81+llfTSEHll065psig)065psigl075psigl075prig)NSysiSORIFlCESIZEl6i16in.~)6in.~l6in.2l6in.~l%mmeXI'ressure slullcerrespoal tooehieatcoa4itioas ofQevalveateewiaaloyeratiay teayerebee.aal yra5ssre.

ThoOHRQIUTTofchocatasceaaltnoeo4aaafecy~aireseaaeea~ceeseceataxy Iystaa)casanova

<11Qltatca4ceWN,all0ooftcs4ast~yciseureof104$Pstg4ctagChoaesCseversanctctpace4 eyscaaoPoractana1 transient.

TheaaxtaaralteCagceyaaicytsassoctaca4 vSchaoazbtnecrt'~104i~TRENT8$ZRaotnatdanc richanass~41oisofaen4ensor beaCsink(L,e.,Ms~l+asscecheaon4ansaz).

Tbesyoetfto4 Mw1SAsottSILgs an4reltovtag ecyacittas aretnaeeor4anae etchchoreqatr~cs ofSoertoaIIIofchoA58R&tieran4~gggg~pPros~eCo4e,1071MicoeTbececaltoit~ecyactcyofa11aafocyvresoaes~lineaLalT,U$,000lhsiht~ahtaaclease10f~tcancofche84%~soaon~sc440AMraceae100'ATZO~g,5ggR.iNtsga%of!OMAlLSaafecyM&sPors~gonatacar toglkgoschaseatttatane reit~aayaetryta~ladleferIhealletahlo tRQNAL?OCRtoscrta!Soi taTaile3.7l.STIRXQPea4/ot8$CLOPmliTKON teallowable etchsafely~tseyerailo witheche1$akcactoes ottheAC?TM~reeencsoathehastaofchere4sacioo tasoaea4axy aye~s~fleesniThtlsg.8ÃCR-r~atxe4iyChete4aae4reaecer.eriy eeeeSNgeefAePeatRange'1~chIRhllso Thereeccer~ee~tkcf04Nrtooe are4ert~eOchefellatiobases:gal1eeyeyeracQea(i')Aero:Stare~reeeceeartyeeeyeLaeLaPoreeneoflCClTIRlh8%&1aaml~aeAerefSaeyetahle safeeyWeelPerseem@asY=-Ž10'IeiilrelS~eoyoetryofallsafoeyvalvesPerstable~SBQe./beese4,Q!,4S~~rolteviag eayac&yef~onesafoeyva1veSaO~.Pe+ŽaSt, SeeteatOsageSee~Plm~ltdSeeyets!fer1leep~yera@tee~WCLCaatLaamta1$/4liLsammyIo.$2.

INNTAhesafetynl>e)sOPERABLE~)tha1)ftsettingof'Waboutthenmfnalvalue.H~r,thesafetyvalveshallberesettothenoa)nalvalue+]%wheneverf~outs1dethe+1%tolerance.