ML17229A042: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 46: Line 46:
FlGURE8-7(PRED-ACT)CUTSHIFTFORALLMELDSFrequencLjHistogram-ee-4e-aeae4e6e8e-B FIGURE8-8(PRED-~CT)SHRIFTFORMELDSC-E8Meat.NormalProb.DensityFncae.Baei8163l~QUlCGle.81a3l~Qe.Bee0EL8'84II(IIt"'""'I'IIIIIIIIIa/I/\..L....\\I1\\\1\\~'-14e-Se-4e186e11e16eCUTShif't.Dil.let"enae(Deg.F)-B-17-C-E4lestinghouse FIGUREB-9(PRED-ACT)SH1FTFORMELDSCNormalProgabilitLjDensityFunction<xe.e.e1>163l12~QILGlCllU04CL-13e-Be-3e12eCUTShif'tDif'f'erence(Deg.F)
FlGURE8-7(PRED-ACT)CUTSHIFTFORALLMELDSFrequencLjHistogram-ee-4e-aeae4e6e8e-B FIGURE8-8(PRED-~CT)SHRIFTFORMELDSC-E8Meat.NormalProb.DensityFncae.Baei8163l~QUlCGle.81a3l~Qe.Bee0EL8'84II(IIt"'""'I'IIIIIIIIIa/I/\..L....\\I1\\\1\\~'-14e-Se-4e186e11e16eCUTShif't.Dil.let"enae(Deg.F)-B-17-C-E4lestinghouse FIGUREB-9(PRED-ACT)SH1FTFORMELDSCNormalProgabilitLjDensityFunction<xe.e.e1>163l12~QILGlCllU04CL-13e-Be-3e12eCUTShif'tDif'f'erence(Deg.F)
APPENDIXCEFFECTOFWELDFLUXLOTONWELDCHEMICALCONTENT APPENDIXCC.IINTRODUCTIONC.2WELDFLUXTYPE-C C.3~DFLUXLOT-C  
APPENDIXCEFFECTOFWELDFLUXLOTONWELDCHEMICALCONTENT APPENDIXCC.IINTRODUCTIONC.2WELDFLUXTYPE-C C.3~DFLUXLOT-C  
]-C TABLEC-1ExpectedEffectofFluxTypeontheAs-DepositedWeldPropertiesUsingtheSameWeldWire TABLEC-2As-DepositedWeldChemistriesasaFunctionofFluxType-C TABLEC-3As-DepositedWeldChemistriesasaFunctionofFluxLot(WeldWireHeat&#xb9;4P7869)-C  
]-C TABLEC-1ExpectedEffectofFluxTypeontheAs-DepositedWeldPropertiesUsingtheSameWeldWire TABLEC-2As-DepositedWeldChemistriesasaFunctionofFluxType-C TABLEC-3As-DepositedWeldChemistriesasaFunctionofFluxLot(WeldWireHeat&#xb9;4P7869)-C-7-}}
}}

Revision as of 15:32, 18 May 2018

Rev 1 to CEN-405-NP, Application of Reactor Vessel Surveillance Data for Embrittlement Mgt.
ML17229A042
Person / Time
Site: Saint Lucie  NextEra Energy icon.png
Issue date: 09/30/1996
From:
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY, ASEA BROWN BOVERI, INC.
To:
Shared Package
ML17229A041 List:
References
CEN-405-NP, CEN-405-NP-R01, CEN-405-NP-R1, L-96-233, NUDOCS 9609260162
Download: ML17229A042 (86)


Text

/,'t.LucieUnits1and2~DocketNos.50-335and50-389'-96-233EnclosureACOMBUSllONENGINEERINGOWNERSGROUPCEN-405-NPRevision1APPLICATIONOFREACTORVESSELSURVEILLANCEDATAFORKMBRITTLKMKNTMANAGEMENTPreparedfortheC-E07>'NKRSGROUPSeptember1996qz<>qoso1s29so+oPDRADODRPABBCombustionEngineeringNuclearOperationsCopyrightl996CombustionEngineering,Inc.hllrightsreservedllew,QDQDliQODOD LEGALNOTICEThisreportwaspreparedasanaccountofworksponsoredbytheCombustionEngineeringOwnersGroupandABBCombustionEngineering.NeitherCombustionEngineering,Inc.noranypersonactingonitsbehalf:A.makesanywarrantyorrepresentation,expressorimpliedincludingthewarrantiesoffitnessforaparticularpurposeormerchantability,withrespecttotheaccuracy,completeness,orusefulnessoftheinformationcontainedinthisreport,orthattheuseofanyinformation,apparatus,method,orprocessdisclosedinthisreportmaynotinfringeprivatelyownedrights;oreB.assumesanyliabilitieswithrespecttotheuseof,orfordamagesresultingfromtheuseof,anyinformation,apparatus,methodorprocessdisclosedinthisreport.CombustionEngineering,Inc.

FOREWORDThepurposeofRevision01ofCEN-405-NPistoincludeportionsofthatdocumentthatarenolongerconsideredbyCombustionEngineering,Inc.,tocontainproprietaryinformation.Portionsmadenon-proprietaryincludethepost-irradiationsurveillancedataandanalysisresultsforCombustionEngineeringfabricatedreactorvesselsurveillancematerials,applicationofinitialreferencetemperatureuncertainty,andapplicationoftheRegulatoryGuide1.99Position2.1reductionfactorforreferencetemperatureshiftuncertainty.ThisinformationhasbecomepubliclyavailablethroughindustrystandardsandregulationsorbeenacceptedforcommonusagesincetheCEOwnersGroupprojectwasinitiated.Revision01containsnotechnicalchanges.ItspredecessorwasissuedinJuly1993anddidcontainextensivetechnicalchangespreparedinresponsetoquestionsraisedbytheNRCStaff.

WINDSOR,CONNECTICUTTABLEFE~eci~nNTitle~PeSUMMARYINTRODUCTIONBACKGROUNDIV.RATIONALE12v.VI.INTEGRATEDSURVEILLANCEAPPROACHMARGINREDUCTIONAPPROACH2029VII.CONCLUSIONS37VIII.REFERENCES39APPENDIXASTATISTICALANALYSIS,PLATEDATABASEANDRESULTSA-1APPENDIXBSTATISTICALANALYSIS,WELDDATABASEANDRESULTSB-1APPENDIXCEFFECTOFWELDFLUXLOTONWELDCHEMICALCONTENTC-1 LITFFIR+i~m~rT~ilDecisionTreeforSelectionofIntegratedSurveillanceApproach(ISA)orMarginReductionApproach(MRA)PredictedversusMeasuredWeldRTND~ShiftResultsP16TrendCurveforA533BReferenceMaterial24MarginReductionApproach36BLSummaryofBasicStatisticsforCharpyShiftsDifferenceSampleSets19 i.MMARYThesurveillanceprogramforCombustionEngineering(C-E)designedreactorvesselsprovidesforthemonitoringofirradiationdamageinaccordancewith10CFR50,AppendixH."'anyofthoseprograms,however,donotincludethecontrollingvesselmaterialaspresentlydefinedusingRegulatoryGuide1.99,Revision02.<"OneconsequenceisthatdatafromanapprovedAppendixHprogramcannotbeusedforevaluationofvesselintegrityissues.Morespecifically,directapplicationofRegulatoryGuide1.99,Position2.1torefineembrittlementpredictionsisnotavailableformanyvessels.ThisreportpresentstwoapproachesforC-EownerstoapplyRegulatoryPosition2.1inthespecificcasewhereasubjectplant'ssurveillancedataarecredibleinallrespectsexceptthatthecontrollingmaterialinthevesselgsnotoneofthesurveillanceprogrammaterials.Ifthecontrollingmaterialofonereactorvesselislocatedinthesurveillanceprogramofanothervessel,theIntegratedSurveillanceApproach{ISA)maybeapplied.Whenthecontrollingmaterialofavesselcannotbetracedtoanyothervessel'ssurveillanceprogram,theIntegratedSurveillanceApproachcannotbeusedandtheMarginReductionApproach{MRA)isapplicable.Figure1givesadecisiontreedefiningunderwhatcircumstancestheISAorMRAistobeused.IntheIntegratedSurveillanceApproach,controllingmaterialdataforthesubjectvesselisavailablefromanotherC-Efabricatedvessel(the"host"vessel)surveillanceprogram{e.g.,fromaWestinghousevessel).['Oncetheprecedinghavebeenestablished,thechemistryfactorandmarginaredeterminedforthesubjectvesselfollowingRegulatoryPosition2.1.IntheMarginReductionApproach,plant-specificsurveillancedataareusedtoreducethemargintobeaddedtothepredictedshift.

Rationaleisprovidedtosupportuseofthetwoapproaches.[

Figure1DecisionTreeforSeIectionofIntegratedSurveiIlanceApproach(ISA)orMarginReductionApproach(MRA)LimitingMaterialinSurveillanceCapsuleNOYESFoIIowRegulatoryPosition2.1ApproachLirnit.ingMateriaIinSisterVesselSurveiIlanceProgramYESFollowISAperCEN-405P,SectionVNOFollowMRAperCEN-405P,SectionVI iLRDTIThereactorpressurevesselisdesignedsuchthatitsfracturetoughnesswillbesufficienttoprovideadequatemarginsofsafetyagainstbrittlefractureduringitsservicelife.Thus,theoriginalconstructionemployedthicksectionlowalloysteelbaseandweldmaterialswhichwereinherentlytough,ascharacterizedbytheinitialreferencetemperature,RT>>~.Particularattentionwasgiventothereactorvesselbeltline,theregionofthereactorvesselthatsurroundstheeffectiveheightoftheactivecore.Thisregionisexposedtoarelativelyhighlevelofneutronirradiationwhich,overtime,willreducethetoughnessof(i.e.,embrittle)thebaseandweldmaterials.Eachoperatingplantisrequiredtohaveareactorvesselsurveillanceprogramwhichmonitorsthoseirradiationinducedchangesinthetoughnesspropertiesofthebeltlinematerials.Neutronirradiationembrittlementofthereactorvesselbeltlineisaddressedforbothnormaloperationandfordesignbaseaccidents.Heat-upandcool-downlimitsonpressureandtemperatureareadjustedtoaccountforthepredictedirradiationinducedelevationofRT~Y.Accidentanalysesascertainthatvesselintegritywillbemaintainedintheeventofapostulatedtransient,suchaspressurizedthermalshock<'",despitepredictedembrittlementofthevessel.Ineithercase,predictionsofirradiationembrittlementarebasedonRegulatoryGuide1.99<".Insituationswhere"credible"surveillanceprogramresultsareavailable,thosepredictionsforestablishingoperatinglimitscanbeadjustedbasedonthesurveillancedata.Thisreportaddressesthespecificcasewhereaplant'ssurveillancedataarecredibleinallrespectsexceptthatthecontrollingmaterialinthevesselisnotoneofthesurveillanceprogrammaterials.Twoprescriptiveapproachesaredevelopedinordertomaximizethevaluefromplantspecificsurveillancemeasurements.IntheIntegratedSurveillanceApproach,thechemistryfactorandmarginisadjustedusingsurveillancedatafromanotherCombustionEngineering(CE)fabricatedreactorvesselofCEorWestinghousedesign.IntheMarginReduction-Approach,plant-specificsurveillancedataareusedtoreducethemargintobeaddedtothepredictedshift.RationaleisprovidedtosupportuseofRegulatory Position2.1ofRegulatoryGuide1.99tuinthesespecificcases.Supplementalcriteriaareprovidedfordemonstratingtheviabilityofeachapproach.

Surveillanceprogramsweredesignedtoprovideameansofomniorio;irradiationbehaviorofreactorvesselbeltlinematerials.Theconceptinthe1960'swastomeasuretheextentofembrittlementtoverifytheoriginaldesignestimates.Surveillancecapsulescontainedmonitorstomeasurepeaktemperatureandneutronflux,andtestspecimenstomeasurechangesinstrengthandtoughness.Thetestspecimenswerefrommaterialsselectedto~r~re~enthebeltlinematerials,whereselectioncriteriareflectedthethencurrentunderstandingofradiationembrittlementtrends.Presently,surveillanceprogramrequirementsaregivenby10CFR50,AppendixH"'nd,byreference,ASTME185-82~'.Thestatedpurposeisstilltomonitorpropertychangeswiththeadditionthattheresultantdataaretobeusedinsupportof10CFR50,AppendixGanalysis.RegulatoryGuide1.99<'>providesameansforpredictingRT>>Yshiftbasedonthechemicalcontentofthevesselmaterialandtheneutronfluence.TheGuidealsopresentsamethod,RegulatoryPosition2.1,bywhichcrediblesurveillancedatacanbeusedtorefinetheshiftpredictionandtoreducetheuncertaintyfactor(margin)whichmustbeaddedtothemeanpredictedshift.Adichotomyexistsgivensurveillanceprogramsdesignedinthe1960'sandearly1970'sandthecurrentRegulatoryGuide1.99u'.ThemeansbywhichsurveillancematerialswereselectedforencapsulationdifferssubstantiallyfromthemethodcurrentlyprescribedintheGuide.Forexample,forthePalisadesreactorvessel,thebeltlineplateswerecomparedonthebasisofdropweightNDTTandtheCharpyimpacttestresults;"'heplatewiththehighestNDTTandthehighesttemperatureatthe30ft-lbCharpyimpactvaluewasselectedforinclusioninthesurveillanceprogram.Theassumptionwasthatdifferencesintheinitialtoughnesswouldberetainedafterirradiationforplatespurchasedtothesamespecification.Itwasnotrecognizedatthetimethatsmalldifferencesinresidualchemistrycontentcould~~~~resultinalargedifferenceinirradiationsensitivity(NDTTshift).IfthesameplateswereevaluatedusingthecurrentRegulatoryGuide1.99"',amorerigorousanalysiswouldbeperformedonthebasisofRT>>Yandirradiationinducedchangesinthetransition temperature(shift)anduppershelfenergy.Theplateselectedonthisbasisforthesurveillanceprogramwouldverylikelybedifferentfromtheoneoriginallyselected.Therefore,thepost-irradiationsurveillanceplatedatawouldnotbecrediblebecauseitwouldnotmeetthefirstRegulatoryGuide1.99credibilitycriterion"Materialsinthecapsulesshouldbethosejudgedmostlikelytobecontrollingwithregardtoradiationembrittlementaccordingtotherecommendationsofthisguide."'"Hence,thedichotomyexists;thenon-crediblereactorvesselsurveillancedatacannotbeusedtocomputethebest-fitchemistryfactor,andanyfurtheruseofthesurveillancedatamustbejustifiedtotheNRCeventhoughthesurveillanceprogramcomplieswiththeversionofASTME185ineffectatthetimetheprogramwasdesigned.Thissituationexistsformanyreactorvesselsbecauseofdifferencesinmethodstodefineinitialtoughnessandtopredictshift.RT~YwasusedinthesurveillancematerialselectionprocessforthosevesselsbuilttotheSummer1972AddendatotheASMEBoilerandPressureVesselCode.<">Forearliervessels,ND'IToraCharpyindextemperaturewasusedtodifferentiateinitialtoughnesspropertiesofthecandidatematerials.Shiftpredictionsformaterialselectionwerebasedonrangesofcoppercontent;separatetrendcurveswereusedfor0to0.10%Cu,0.11to0.15%Cu,andgreaterthan0.15%Cu.Typically,thebeltlineplatesfromonevesselwouldallfallwithinonerangeofcoppercontentand,therefore,bepredictedtoexhibitthesameshift.Thebeltlineweldswouldhaveasimilarsituation.Incontrast,RegulatoryGuide1.99<"predictionsarebasedonexplicitvaluesofcopperandnickelcontentsuchthateachbeltlineplateandweldwouldhaveauniquepredictedshift.Giventhemajordifferencesinmethodsusedtoselectthesurveillancematerialandpresentdaycriteria"'oridentifyingthecontrollingmaterial,theprobabilityofhavingtheprecisecontrollingmaterialinthesurveillancecapsuleislow.Asaconsequence,presentruleswillseverelylimitth'enumberofreactorvesselstowhichRegulatoryPosition2.1iucanbeapplied.e eactorvesselsdesignedandbuiltbyBabcock&Wilcoxencounteredaproblemwiththesurveillanceprogramwhichpromptedtheestablishmentofanintegratedsurveillanceprogram(seeforexampleReference6).Theprobleminvolvedboththeforcedremovalofsurveillancecapsulesfromseveralreactorvesselsandtheneedforcontinuedsurveillanceofthebeltlinematerialsfromthosevessels.TheB&WsituationwastheimpetusforSectionII.Cof10CFR50,AppendixH<'>whichdetailedrequirementsandacceptancecriteriaforestablishinganintegratedsurveillanceprogram.Thebasicapproachentailsirradiationofrepresentativematerialinahostreactorforusebyotherreactorshavingsimilardesignandoperatingfeatures.Presumably,thatdatacouldalsobeusedinaccordancewithRegulatoryPosition2.1<"forAppendixG<'>analyses.IntheB&Wsituation,numerousvesselswerefabricatedusingsimilarmaterialsandprocesses,includingthosevesselsmadeforuseinWestinghousedesignedPWRs.SimilartoB&W,CombustionEngineeringalsofabricatedvesselsforWestinghouse.Therefore,surveillancematerialsfromWestinghousedesignedvesselsrepresentapotentialsourceofdataonspecificheatsandtypesofvesselbeltlinematerials.Establishmentofanintegratedsurveillanceprogrambetweentwovesselssuppliedbythesamefabricatorcould,innumerouscases,providesurveillancedataonthecontrollingvesselmaterialforoneorbothofthosevessels.IncontrasttotheB&Wsituation,wheresomevesselshadtohavethesurveillancecapsulesremoved,alloftheC-EdesignedPWRsstillhavesurveillancecapsules,Therefore,measurementsofneutronflux,irradiationtemperature,andsurveillancematerialirradiationsensitivitycanbeobtainedforeachC-Evessel.ThisprovidesforthemonitoringrequiredbyAppendixHPandimplementationofanintegratedsurveillanceprogramcouldprovidethedataonthecontrollingmaterialasinputforanalysesrequiredbyAppendixG<4>and10CFR50.61."'11-tV.TheobjectiveofthisreportistoestablishtwoapproachesforimplementingRegulatoryPosition2.1"'orC-EdesignedPWRsforwhichthesurveillanceprogramiscredibleinallrespectsexceptthatthecontrollingmaterialinthevesselisnotinthesurveillanceprogram.IntheIntegratedSurveillanceApproach,dataforthecontrollingmaterialisobtainedfromanotherreactorvesselsurveillanceprogram.IntheMarginReductionApproach,theplant-specificdataareusedwhendataonthecontrollingmaterialareunavailable.BothapproachesareintendedtoaddresstheRegulatoryPosition2.1"'aseinwhich"...surveillancedataarecredibleinallrespectsexceptthatthe(surveillance)materialdoesnotrepresentthecriticalmaterialinthevessel..."Theprimarypurposeistorealizeasfullyasreasonablethebenefitsfromthesurveillanceprogramoncecertaincriteriahavebeensatisfied.ThosecriteriaincludethesurveillancedatacredibilityfactorsgiveninRegulatoryGuide1.99"'nd,whereapplicable,thecriteriagivenin10CFR50,AppendixEP'oran~~~~~integratedsurveillanceprogram.TheaddedcertaintyobtainedthroughsurveillancecapsulemeasurementsjustifiesrealizationofthebenefitsfromapplicationofRegulatoryPosition2.1<nThepurposeofthissectionistodescribetherationaleusedinestablishingtheIntegratedSurveillanceandMarginReductionApproaches.'NotethatthesecondandthirdrationaleelementsaredirectedprimarilyattheIntegratedSurveillanceApproach.)Thethreeelementsaredetailedbelow.

FIGURE2PREDICTEDVERSUSMEASUREDWETNDTSEEFTRESULTS4003503000SURVEILLANCEDATAEXPERIMENTALDATA(WELD-1,LCP)250200aZ~rra0150100POSITIOH2.1.RG1.99REV.2CURVEFITTOSURVEILLANCEWELDDATAWITH1rr=28FBOUNDS500.10.20.40.60.81.02.04.06.08.010.0-FLUENCE(E>1MeV).10n/cm Table1SUMMARYOFBASICSTATISTICSFORCHARPYSHIFTDIFFERENCESAMPLESETSPredictedMinusMeasuredShiftSampleStatistics(DegreesF)~SamieSetPlates:C-EWestinghousePooledNumberofData28741024.18-0.820.55Standard~eviatie16.9419.0918.54-32Range.,...e343636Welds:C-EWestinghousePooled14307.574.875.7321.4027.5325.7964 V.IERATEDREILLAEAPPRThepurposeofthissectionistoestablishthecriteriawhichneedtobeaddressedandtheproceduretobefollowedinordertoutilizesurveillancedatafromanotherreactorvesselinsupportofaRegulatoryPosition2.1<"analysis.TheapproachcombinesthecredibilitycriteriaofRegulatoryGuide1.99"'iththeconceptofintegratedsurveillanceprogramsdefinedin10CFR50,AppendixH."'riortoapplyingRegulatoryPosition2.1perthisapproachasshowninSectionV.E.,thefollowingmustbeestablished:traceabilityofthecontrollingmaterial(SectionV.A.),thecredibilityofthesubjectvessel(SectionV.B.)andhostvesselsurveillancedata(SectionV.C.),andthesimilarityoftheirradiationenvironmentofbothvessels(SectionV.D.).A.~M'I%-A'h'dihh<<llprogramisequivalenttothecontrollingmaterialinthesubjectvessel.

V1rvileDrI'l'Thesurveillancedatafromthesubjectreactorvesselmustbecredibleinallrespectsexceptthatthesurveillancematerialdoesnotrepresentthecriticalmaterialinthevessel.ThisisestablishedbysatisfyingthefollowingfivecriteriawhicharetakenfromReference1withmodificationstoitems1and5:1.Materialsinthecapsuleshallberepresentativeofthe.reactorvesselbeltlinematerials,includingbothbasemetalandweldmetaL[

2.Determinationofthe30ft-lbindextemperatureandtheupper-shelfenergyshallbedoneunambiguouslyforboththeirradiatedandunirradiatedCharpydata.<'>3.Twoormoresetsofpost-irradiationsurveillancedataforbothbaseandweldmetalshallbeavailablefromthesubjectreactorvessel,andaRegulatoryPosition2.1analysisshallbeperformed.ThemeasurementsshallbewithinJlo~ofthemeancurveoftheactualsurveillancedata,wherea~is17'Fforbasemetaland28'Fforweldmetal."'fthefluencerangeistwoordersofmagnitudeorgreater,themeasurementsmustbewithin+2o,.<"4TheirradiationtemperatureoftheCharpyspecimensshallbewithinJ25'Fofthevesselwalltemperatureatthecladding/basemetalsurface.'"TheCharpyspecimentemperatureshallbeestimatedbasedonevaluationofthetemperaturemonitorsincludedinthesurveillancecapsulesorfromheattransfercalculations.Thevesselwalltemperatureshallbebasedoncoldlegorvesselwallmeasurements.5.OneofthesurveillancecapsulesusedintheevaluationshouldincludeCharpyspecimensfromastandardreferencematerial.(CEOGvesselsurveillanceprogramsuseHSST01forreferencematerial.)Themeasuredshiftforthestandardreferencematerialshallfallwithinthescatterband(+2agofthedatabaseforthatmaterialasgiveninFigure3.""C.HstReacrurveillanDredibilit-Theprincipalinterestinthehostreactordataistheonesurveillanceplateorweldrepresentingthesubjectreactor'scontrollingmaterial.ThefollowingcriteriaarebasedonthefivecriteriafromReference1,withmodificationstoitems1,4and5.Eachofthefollowingcriteriaaretobesatisfiedtoestablishthecredibilityofdataforthatonematerial:

1.ThetraceabilitybetweenthecontrollingmaterialfromthesubjectreactorandsurveillancematerialfromthehostreactoristohavebeenestablishedasdetailedinV.A.2.Determinationofthe30ft-lbindextemperatureandtheupper-shelfenergyshallbedoneunambiguouslyforboththeirradiatedandunirradiatedCharpydata.<'>3.4,Twoormoresetsofpost-irradiationsurveillancedataforthecontrollingmaterialshallbeavailablefromthehostreactorvessel,andaRegulatoryPosition2.1analysisshallbeperformed.ThemeasurementsshallbewithinJla~ofthemeancurveoftheactualsurveillancedata,whereo~is17'Fforbasemetaland28'Fforweldmetal."'fthefluencerangeistwoordersofmagnitudeorgreater,themeasurementsmustbewithin+2o~."'heirradiationtemperatureoftheCharpyspecimensshallbewithin+25'Fofthevesselwalltemperatureatthecladding/basemetalsurface."'heCharpyspecimentemperatureshallbeestimatedbasedonevaluationofthetemperaturemonitorsincludedinthesurveillancecapsulesifavailable.Thevesselwalltemperatureshallbebasedoncoldlegorvesselwallmeasurements.5.Standardreferencematerial(SRM)isnotavailableinsomehostreactorvesselsurveillanceprograms.However,ifSRMisavailableforoneormorehostreactorcapsules,themeasuredshiftfortheSRMshallfallwithinthescatterband(+2'fthedatabaseforthatmaterialasgiveninFigure3.""

iZ5ZOOICIi50M4.maiooCflaIo50vv/till~vv%SurvolllancoCapoulooHSSTO?.0SurvolllancoCapaulosHSSTOihBSRIrradlattons(HSSTO?)VORR-PSFIrradiatlone(HSST03)ioo75Ola50Z50.000.50i.00i.50Z.OOZ.50"'.003.504.004.505.00HE19Fluanco(6>i.OHav)FIGURE3TRENDCURVEFORA533BREFERENCEMATERIALEmbrittlementoftheA533BreferencematerialrelativetothedraftReg.Guide1.99,Revision2.ThevaluesforHSST01andHSST03platesareadjustedrelativetoHSST02platetoaccountfordifferencesinchemistry.Theupperandlowercurvesarethe34'Funcertaintybounds(20)specifiedbyReg.Guide1.99.(Source:Reference15)

D.Iiinnvirnmnmri-AscertainthattheirradiationenvironmentforthehostreactorsurveillancecapsuleiscomparabletothatforthesubjectreactorsurveillancecapsuleusingthefollowingfactorsandprovideaqualitativerankingofthetwocapsulesintermsofthesignificanceofanydifferencesonRT>>rshift.1.ReactorCoolantInletTemperature72.NeutronFluxE.AiinfR1Piin2l-Oncethefourprecedingitemshavebeensatisfactorilyaddressed,thehostreactor'surveillancedataforthecontrollingmaterialmaybeusedtodeterminetheadjustedreferencetemperatureforthatmaterialinaccordancewithRegulatoryPosition2.1"'sfollows:

Theoverallequivalenceofthesubjectreactorvessel'scontrollingmaterialandthehostreactorvessel'ssurveillancematerialwasestablishedinSectionV.A.Ifthereportedcopperandnickelcontentofbothmaterialsisidentical,thenproceedtostep2.If,however,theyarenotidentical,thenthemeasuredvaluesofshift,AT>>>,shallbeadjustedbymultiplyingthembytheratioofthechemistryfactorforthevesselmaterialtothatofthesurveillancematerialinaccordancewithRegulatoryPosition2.1.Fitthesurveillancedatatoobtaintherelationshipofd,RT>>Ttofluenceusingthefollowingequation:QgZ(gp)f(0.28-0.102+gE)NDTwhere:CF=chemistryfactorf=neutronfluence(10"n/cm2,E)1Mev)Todoso,calculatethechemistryfactor,CF,forthebe"tfitbymultiplyingeachdRT>>~(ortheadjustedvaluesfromstep1)byitscorrespondingfluencefactor,summingtheproducts,anddividingbythesumofthesquaresofthefluencefactors.TheresultantvalueofCFisthentobeenteredintoequation1forcalculatingd,RT>>T.Note:Ifthehostreactorsurveillancedataarelessthanpredicted,butthesubjectreactorsurveillancedataaregreaterthanpredicted,thenapplicationoftheCFderivedfromthehostreactorcouldbenon-conservativeforthesubjectreactor.Inthissituation,thehostreactorcalculatedchemistryfactorcanbeadjustedasfollows:CF(H)xQFj~)=AdjustedCFCF(S,P) where:CF(H)isthecalculatedCFforthehostreactorfromstep2CF(S,C)isthecalculatedCFforthecorrespondingplateorweldforthesubjectreactorfollowingstep2CF(S,P)isthe,predictedCFforthesamesubjectreactormaterialbasedonTable1or2ofReference1IIAThelargerofthetwovalues,AdjustedCForCF(H)shouldthenbeenteredintoequation1.3.Calculatemarginasfollows:Margin=2a~+a<2ewhere:o;=standarddeviationfortheinitialRTNDYa~=standarddeviationforhRTNDYIncaseswheretheinitialRTND~hasbeendeterminedforthesubjectmaterialinaccordancewiththeASMEBoilerandPressureVesselCode"",o;=0.Incaseswhereagenericvalueof-56'FisassumedforsubmergedarcweldsfabricatedusingLinde0091,1092,or124flux,o;=17'F."~(IncaseswhereagenericvalueisassumedforSA533BClass1orSA302B(Modified)plates,o;istobedeterminedbasedonthevarianceofthedatausedtoderivethegenericvalue.)0 Thestandarddeviationforshift,ocanbereducedto8.5'Fforbasemetal.and14'FforweldsifthesurveillancedatacredibilityhasbeenestablishedinaccordancewithsectionsV.BandV.CperRegulatoryPosition2.1tuandtheirradiationenvironmentshavebeenestablishedtobecomparableinaccordancewithSectionV.D.4.CalculateadjustedRTND~(ART)asfollows:ART=RT~+d,RT~~+Marginwhere:RTNDYd,RTNDg=Margin=initialRT>>~,measuredorgenericvalueshift,usingrevisedchemistryfactorinequation1valueusingequation2includingvaluesofr,and0~fromstep35.DocumentresultsoftheevaluationfollowingSectionV.AthroughV.E,includingassumptionsemployedandconclusionsreached.

VI.MARIREDTIAPPRAHTheprevioussectionaddressedthespecialcaseinwhichanintegratedsurveillanceprogramapproachcouldbeusedtoaugmentplant-specificsurveillancedata.Thepurposeofthissectionistoaddressthecaseinwhichsurveillancedataonthecontrollingmaterialisnotavailablefromeithertheplant-specificprogramoranotherreactorvessel,butthesurveillancedataarecredibleinallotherrespects.AnapproachisgivenfordetermininghowmuchthestandarddeviationforART>>~,0~,canbereducedbasedonthedegreeofcredibilityofthesurveillancecapsulemeasurementsor,asphrasedinRegulatoryPosition2.1<'>,"dependingonwherethemeasuredvaluesfallrelativetothemeancalculatedforthesurveillancematerials".ThefollowingprocedurepresentsarecommendedapproachforsatisfyingRegulatoryPosition2.1<"inordertoreducethevalueof0~.Theprocedurewhichfollowsaddressestwoissues,representativematerialsandpredictabilityofthesurveillancemeasurements,asthebasisforreducingthevalueof0~.A.v'EachsurveillanceprogramforaC-EdesignedreactorvesselincludesencapsulatedCharpyspecimensfromaplate,weld,heat-affected-zone,andstandardreferencematerial(SRM).InaccordancewiththeeditionofASTME185ineffectatthetime,thesurveillancematerials(exclusiveofSRM)wereselectedtorepresentthereactorvesselbeltline.Thesurveillanceplatewasselectedfromoneofthestx(typical)betttineplates.[

Thesurveillanceweldwasfabricatedusingportionsoftwobeltlineplatesfollowingthesameprocedureandweldconsumablesasoneofthebeltlinewelds.Insummary~dii-gfGdfd*999"'9*ff*fjdggcredibilityofsurveillancedata.ThefourRegulatoryGuidecriteriadealingwith1)scatteroftheCharpydata,2)scatteraboutthehRTND~versusneutronfluencebestfitcurve,3)capsuleirradiationtemperature,and4)SRMtestresultsshallbeevaluated.Oncethosecriteriaaresatisfieddatapredictabilityneedstobeevaluatedtoprovidethebasisforreducingthevalueof0~.

Thesurveillancedatatobeevaluatedarethemeasuredshiftsforthebasematerialandweld.ThesemeasurementsaretobecomparedtothemeanpredictedshiftsbasedonRegulatoryPosition1.1'",Equation2.Thevalueof0~isthenreducedbyanamount"dependingonwherethemeasuredvaluesfellrelativetothemeancalculated(shift)forthesurveillancematerials"inaccordancewithRegulatoryPosition2.1tuTherationaletobeusedinthiscomparisonisthatifsurveillancemeasurementsconsistentlyfallatorbelowthequantity(MeanPredictedShift+0~/2),thentheRegulatoryGuide1.99shiftpredictiontechniqueisaccurateorconservative,forthatreactorvessel'sbeltlinematerial.Therefore,theshiftspredictedforthecontrollingvesselmaterialwillalsobeaccurateorconservativesuchthatthevalueof0~canbereducedtoalimitofonehalftheprescribedvalue.Ifmeasurementsareabovethequantity(meanpredictedshift+0~/2),thentheamountbywhich0~canbereducedwilldependontheextentofthisvariation.Thecriteriatobeusedfordeterminingtheamountbywhich0~maybereducedforthecontrollingmaterialareasfollows:criteria1)M-P~0.50~forallmeasurements2)M-P~0.60~forallmeasurements3)M-P~0.70~forallmeasurements4)M-P<0.8r~forallmeasurements5)M-P~0.90~forallmeasurements0.50.60.70.80.9where:PpredictedshiftbasedonEquation2ofRegulatoryGuide1.99measuredshiftforbasemetal(longitudinalortransverseorientation)andweld.a~=standarddeviationford,RTNDYwhichis17Fforplatesand28'Fforwelds"'31-Itshouldbenotedthatforallsituationsinwhichpredictionsexceedmeasurements(i.e.,M-P<0),noadditionalcreditforo~reductionisprovided;thatis,thereductionfactorisnottobelessthan0.5.0ThemarginreductionapproachisshowngraphicallyinFigure4.IfforeachofthesurveillanceplateandweldmeasurementstheM-Pvalueisequaltoorlessthan0.5o~(thecross-hatchedregioninFiguie'4),thereductionfactortobeappliedfortheo~ofthecontrollingmaterialwouldbe0.5.Smallerreductionsofr~wouldapplyifoneormoreofthesurveillanceM-Pvaluesfellabove0.5o~uptoalimitof0.9r~asillustratedbythedashedlinesinFigure4.Ifthemostrestrictivemeasurement(largestM-P)differssubstantiallyfromtheothermeasurements,asupplementalevaluationmustbeperformedbeforethatsinglemeasurementisdisregarded.Asupplementalevaluationispermittedonlyifthedatummeetsthefollowingcriteria:2.3.4.M-Pdoesnotexceed1o~.Itisfromthelowestfluencecapsule.Itisadifferentproductformfromthecontrollingvesselmaterial.M-Pforallothermeasurementsislessthan0.5n~.C.AlicatinfReulPiin1.1withMarinRcion-Oncethetwoprecedingitemshavebeensatisfactorilyaddressed,theknowninformationonthecontrollingmaterialmaybeusedtodeterminetheadjustedreferencetemperatureforthatmaterialinaccordancewithRegulatoryPosition1.1"'sfollows:ObtainthevalueofhRTND~basedonthechemistryfactorofthecontrollingmaterialandthefluenceusingthefollowing'equation:(ggf028-0.10log/)

where:CF=chemistryfactorf=neutronfluence(10"n/cm',E)1Mev)Todoso,calculatethechemistryfactor,CF,forthecontrollingmaterialusingtheknownchemicalcompositionasprescribedinRegulatoryPosition1.1ofReference1.Iftheexactchemicalcompositionisnotknown,usetheguidelinesofReference1todeterminetheappropriatechemistryfactor.2.Calculatemarginasfollows:Margin=2o>+(RFaz)(2)where:0;=standarddeviationfortheinitialRTND~0'~=standarddeviationforARTNDTRF=reductionfactorfromSectionVI.BandasdescribedbelowIncaseswheretheinitialRTNDYhasbeendeterminedforthecontrollingImaterialinaccordancewiththeASMEBoilerandPressureVesselCode"",0;=0.Incaseswhereagenericvalueof-56'FisassumedforsubmergedarcweldfabricatedusingLinde0091,1092,or124flux,e,=17'F."~(IncaseswhereagenericvalueisassumedforSA533BClass1orSA302B(Modified)plates,0;istobedeterminedbasedonthevarianceofthedatausedtoderivethegenericvalue.)

ThestandarddeviationinBRTNDY,0~,asdefinedinRegulatoryGuide1.99is:0~=28'Fforweldsand0~=17'Fforbasemetal.TheMarginReductionApproachmaythenbeappliedtothecontrollingmaterialbasedontheresultsoftestingoftheavailablecrediblesurveillancedatatoreducetherequiredvalueof0~asfollows:grit~eri1)M-P~0.50~forallmeasurements2)M-P~0.6~~forallmeasurements3)M-P~0.70~forallmeasurements4)M-P~0.8r~forallmeasurements5)M-P~0.9o~forallmeasurementswhere:ReductinFactorRF0.50.60.70.80.9P=predictedshiftbasedonEquation2ofRegulatoryGuide1.99"'=measuredshiftforbasemetallongitudinalortransverseorientation)andweld0~=standarddeviationfordRTND~whichis17Fforplatesand28'Fforwelds"'3.CalculateadjustedRT>>Y(ART)asfollows:.ART=RTD+hRTND+Marginwhere:RTm~ARTND7MargininitialRTNDr,measuredorgenericvalueshift,usingequation1valueusingequation2includingvaluesof0;and0~fromstep2

-YhIfhpRig'bd&.NshouldincludedemonstrationthatthesurveillancematerialsarerepresentativeofthereactorvesselbeltlinematerialsasdescribedinSectionVI.A,ThesurveillancedatacredibilityshallbeestablishedusingdatasetsfromtwoormoresurveillancecapsulesandthefourRegulatoryGuide1.99criteriaidentifiedinVI.B.Finally,thesurveillancematerialpredictabilityandtheresultant0~reductionfactorshallbeestablishedfollowingtheproceduregiveninSectionVI.C.

FrGURE4MARCaxaEDUCnONAPPROACH0@y~~6b~~O~ooooo///i//QQQQQ1.00.00.00.V:OAPREDICTEDSHIFT(P)

Advancementsintechnologyforpredictingtheextentofneutronirradiationembrittlementinpressurevesselsteelshavecausedsignificantchangesinthedefinitionofthe"controlling"vesselbeltlinematerial.Oneconsequenceisthesurveillancecapsulesdonotcontainthatcontrollingmaterial.RegulatoryPosition2.1ofRegulatoryGuide1.99'"permitstheuseofdatafromthereactorvesselsurveillanceprogramtorefineshiftpredictionsbutonlyfor.thoseprogramswhichincludethecontrollingvesselmaterial.Thisreportprovidesthejustificationforemployingsurveillancedatainsupportofvesselembrittlementanalyseswhenthesurveillancedataarecredibleinallrespectsexceptthecontrollingmaterialisnotoneofthesurveillanceprogrammaterials.ApproachesareprovidedforIntegratedSurveillanceandMarginReductiontomaximizethevaluegainedfromplant-specificsurveillancemeasurements.IntheIntegratedSurveillanceApproach,dataforthecontrollingmaterialfromahostreactorvesselsurveillanceprogramisusedinconjunctionwithplant-specificdatatoadjustthechemistryfactorandreducetherequiredstandarddeviationforshift.ThisdatasharingbetweenWestinghouseandCombustionEngineeringreactorvesselsurveillanceprogramsisjustifiedbasedonthefollowingrationale:

TheIntegratedSurveillanceApproachidentifiescriteriatobeaddressedandaproceduretofollowinordertoutilizethehostreactorsurveillancedatainsupportofaRegulatoryPosition2.1<uanalysisforaC-Evessel.IntheMarginReductionApproach,theplant-specificsurveillancedataareusedtoreducethemarginforpredictedshiftofthecontrollingmaterialbasedonthepredictabilityofthesurveillancemeasurements.ThetwoapproachespresentedinthisreportareapplicabletosurveillanceprogramsforC-Edesignedreactorvessels.TheiruseisnotintendedforothervesseldesignsandsurveillanceprogramsbecausetheapproacheswerebasedinpartonpracticesanddesigncharacteristicsuniquetoC-E.

RIII.R~RRRNN1.USNRCRegulatoryGuide1.99,Revision2,"RadiationEmbrittlementofReactorVesselMaterials,"May1988.2.AmericanSocietyforTestingandMaterials,"StandardPracticeforConductingSurveillanceTestsforLight-WaterCooledNuclearPowerReactorVessels"ASTME185-82,July1982.3.10CFRPart50,AppendixH,"ReactorVesselMaterialsSurveillanceProgramRequirements,"FederalRegister,Vol.48,No.104,May27,1983.4.10CFRPart50,AppendixG,"FractureToughnessRequirements,"Ibid."SummaryReportonManufactureofTestSpecimensandAssemblyofCapsulesforIrradiationSurveillanceofPalisadesReactorVesselMaterials,"CombustionEngineeringReportP-NLM-019,April1971."Babcock&WilcoxOwnersGroupProgramforEvaluationofReactorVesselProperties,"BAW-1474,Rev.4,December1986.7.AmericanSocietyforTestingandMaterials,"StandardPracticeforCharacterizingNeutronExposuresinFerriticSteelsinTermsofDisplacementsperAtom(DPA),"ASTME693-79,August1979.W.N.McElroy,"LWRPressureVesselSurveillanceDosimetryImprovementProgram:LWRPowerReactorSurveillancePhysic-DosimetryDataBaseCompendium,"NUREG/CR-3319,preparedbyHanfordEngineeringDevelopmentLaboratory,HEDL-TME85-3,August1985.

9.R.K.Nanstad,et.al,"Effectsof50'CSurveillanceandTestReactorIrradiationsonFerriticPressureVesselSteelEmbrittlement,"presentedatthe14thInternationalASTMSymposiumontheEffectsofRadiationonMaterials,Andover,Massachusetts,June1988.10."EvaluationoftheFirstMaineYankeeAcceleratedSurveillanceCapsule,"EffectsTechnology,Inc.,ReportCR75-317,August15,1975.11."MaineYankeeNuclearPlantReactorPressureVesselSurveillanceProgram-Capsule263,"BattelleColumbusLaboratoriesReportBCL-385-21,December12,1980.12."AnalysisoftheMaineYankeeReactorVesselSecondAcceleratedSurveillanceCapsule,"WestinghouseReportWCAP-9875,March1981.13.J.R.Hawthorne,J.J.Koziol,andS.T.Byrne,"EvaluationofCommercialProductionA533-BSteelPlatesandWeldDepositswithExtra-LowCopperContentforRadiationResistance,"NRLReport8136,October21,1977.14.J.R.Hawthorne,"NotchDuctilityDegradationofLowAlloySteelswithLow-to-IntermediateNeutronFluenceExposures,"NRLReport8357(NUREG/CR-1053),January14,1980.15.F.W.Stallman,"AnalysisoftheSA302BandSA533BStandardReferenceMaterialsinSurveillanceCapsulesofCommercialPowerReactors,"NUREG/CR-4947,preparedbyOakRidgeNationalLaboratory,ORNL/TM-10459,January1988.16.AmericanSocietyofMechanicalEngineering,SectionIII,"NuclearPowerPlantComponents,"ofMEBilrnPrrV1,NewYork.

"EvaluationofPressurizedThermalShockEffectsDuetoSmallBreakLOCA'swithLossofFeedwaterfortheCombustionEngineeringNSSS,"CombustionEngineeringReportCEN-189,December1981.18.F.W.Stallman,et.al.,"PR-EDB:PowerReactorEmbrittlementDataBase,Version1,"NUREG/CR-4816,preparedbyOakRidgeNationalLaboratory,ORNL/TM-10328,June1990.19.10CFRPart50,Section50.61,"FractureToughnessRequirementsforProtectionAgainstPressurizedThermalShockEvents,"FederalRegister,Vol.56,No.94,May15,1991.

0 APPENDIXASTATISTICALANALYSISPLATEDATABASEANDRESULTS A.1DATABASEAPPENDIXAThereactorvesselsurveillanceplqtedatabaseusedinthestatisticalanalysisislistedinTablesA-1andA-2forCombustionEngineeringandWestinghouseNSSSs,respectively.ThedatabaseislimitedtovesselmaterialsoriginatingintheC-EChattanoogafacilityandtocorrelationmonitormaterialsincludedinthecapsules.The"MaterialHeatID"referstothedesignationintheORNLEngineeringDataBase(seeORNLReportNUREG/CR-4816,June1990).Thereported.chemicalcontent,specimenorientation,neutronfluenceandmeasuredshift(BCv30)inTableA-1arethevaluesjudgedtobemostrepresentativeofthesurveillancematerials.ThedatainTableA-2aretheas--reportedvaluesfromORNL-EDBortheindividualpost-irradiationevaluationreport;oneexceptionisthatA302Bdatawereassigned'anickelcontentof0.20%ifnovaluewasreported(seeTableA-3).Forbothtables,thelistedneutronfluencereflects,inorderofpreference,therecomputedvaluesfromNUREG/CR-3319(August1985),themostrecentcomputedvalue,orthevaluegivenintheoriginalcapsulereport.Valuesgiveninparenthesesarethechemistry,fluenceorshiftreportedonORNL-EDBwhichwerechangedasdescribedabove.A.2STATISTICALANALYSISRESULTSTheresultsofthestatisticalanalysisweresummarizedinTable1ofthereport.Thatanalysiswasperformedusing"predictedminusactual"(P-A)shiftsforthetwosets(i.e.,TablesA-1andA-2)usingRegulatoryGuide1.99,Revision2topredictshift.Thefollowingpresentstheseresultsgraphically.FiguresAl,A2,A3andA4areplotsofP-Aversuscoppercontent,nickelcontent,fastneutronfluenceandflux.TheplottingsymbolsdifferentiateC-EfromWestinghouseNSSSdata.Thereisnoapparentbiasforthefourvariablesforthepooledresultsorforthevendor-specificdata.Themajorityoftheoutliersarefornickel-alloyedplates(A533BandA302B-Modified)(FigureA2)andforfluencesbelow10"n/cm'FigureA3).-A FiguresA5andA6presentthedatainfrequencyhistogramsforC-EandWestinghousedata,respectively.FigureA7isahistogramofthepooleddata.Normalprobabilitydensity.functionsforthetwodatasetsarecomparedinFigureA8,andthepooledresultsareshowninFigureA9.TheWestinghouse,.datacenteronP-A=-0.82,andtheC-EdatacenteronP-A=4.18asshowninFigureA8.Thepooled.datacenteronP-A=0.55asshownin,FigureA9.SeveraltestswereperformedtodeterminewhethertheC-EandWestinghousedatasetswerecomparable:a)One-WayAnalysisofVariance-ForaratioofvariancesF=1.480,variabilitybetweengroupsisarandomoccurrenceatthe0.2267significancelevel.b)Two-SampleAnalysis-Fora"t"statistic=1.216,thedifferencebetweengroupcentralvalues(means)isarandomoccurrenceatthe0.2267significancelevel.c)Kruskal-WallisAnalysis-Forateststatistic=1.056,thedifferencebetweencentralvaluesisarandomoccurrenceatthe0.3041significancelevel.d)Kolmogorov-SmirnovTwoSampleTest-'oranestimatedoverallstatisticDN=0.1631,thecombineddifference.betweencentralvaluesandvariancesisarandomoccurrenceatthe0.9996significancelevel.Insummary,theindividualC-E'andWestinghouseplatesurveillancedatasetsarenotsufficientlydifferenttoindicateasignificantdifferenceinresponsetofastneutronirradiation.Therefore,surveillanceplatedatafromaWestinghousedesignedNSSSwill,onaverage,berepresentativeofsurveillanceplatedatafromaC-ENSSS,andvice-versa,forreactorvesselsmanufacturedintheC-EChattanoogafacility.Thelattertwotests(candd)wereperformedasanovercheckonthemoretraditionalFandttests.e-A REACTORVESSELPLATESURVEILLANCEDATACOMBUSTIONENGINEERINGNSSSReactorVesselasuleIdentitArkansasNuclearOneUnit2MaterialSpec.ChemistryHeatiDQrien~Cu~o~Ni%NeutronNeutronFluenceFluxShiftP-A~lD"I~lOPW-97W-97.CalvertCliffsUnit1PAN201LT.08PAN201TL.08.60.603.413.416.396.24211550~-14W-263W-263CalvertCliffsUnit2W-263W-263PCC103LT.12SHSS01LT.18PCC202LT.14SHSS01LT.18.64.66.66.666.005.908.068.146.476.365.585.646088841281229121FortCalhounW-225W-225W-265W-265PFC101LT.10.485.83(4.5)SHSS01LT.18(NA).66(N/A)5.83(4.8)PFC101LT.10.488.30PFC101TL.10.488.705.605.604.785.01601247470-5-8-12-8 ReactorVesselauleIdentitMillstoneUnit2MaterialHeatIDSpec.QrienTableA-1(continued)Chemistry~u~~o~Ni~oNeutronFluence~IO"n/cmNeutronFluxShift~IO"IBW-97W-97MaineYankeeA-25A-25A-35A-35.W-263W-263PalisadesA-240A-240W-290W-290St.Lucie1W-97W-97St.Lucie2W-83W-83SanOnofreUnit2W-97W-97PML201PML201PMY01SHSS01PMY01PMY01PMY01PMY01PPAL01PPAL01PPAL01PPAL01PSL101PSL101PSL201PSL201PSO201PS0201LTTLLTLTLTTLLTTLLTTLLTTLLTTLLTTLLTTL.14.14.15.18(NA).15.15.15.15.25.25.25.25.15.15.10.10.61.61.59.66(NA).59.59.59.59.53.53.53.53.57.57~61.61.60.603.753.6717.60(13.0)17.60(13.0)77.30(83.9)77.30(85.2)5.67(6.6)5.67(6.6)60.60(44.0)60.60(45.0)11.0011.305.405.401.621.635.07(5.54)5.07(5.54)'.963.8743.043.061.461.44.704.7062.062.07.017.203.673.674.604.634.804.80709612015018519597932052051751556870352155(51.1)35(44.5)3-2478-22-32-403434-5172220318-218 TableA-2REACTORVESSELPLATESURVEILLANCEDATAWESTINGHOUSENSSSReactorVesselasuleIdentitBeaverValleyUnit1MaterialHeatIDSpec.ChemistryQrien~Cu%~Ni~oNeutronFluence~10"n/cmNeutronFluxShiftP-A~lD"IPP.UUVVWWD.C.CookUnit1PBV101PBV101PBV101PBV101PBV101PBV101LTTLLTTLLT.TL.20.20.20.20.20.20.54.54.54.54.54.546.546.542.91(2.55)2.91(2.55)9.499.495.795.797.927.925.115.111206135-9130~-35140-45150-9185'44TTTYYYCallawayUnit1UUPCK101PCK101SHSS02PCK101PCK101SHSS02PCL101PCL101LTTLLTLTTLLTLTTL.14.14.14.14.14.14.07.07.49.49~68.49.49.68.59.592.71(1.8)2.71(1.8)2.71(1.8)13.4010.6012.003.273.276.796.796.798.596.807.696070601051151100302-86-1-17-3300 TableA-2(continued)ReactorVesselasuleIdentitHaddamNeckMaterialHeatIDSpec.QrienChemistry~u~o~NioNeutronNeutronFluenceFluxShift~ltl"I~l"I'PP.ADFHDiabloCanyonUnit1SASTMSASTMSASTMSASTMLTLTLTLT.20.20.20.20.18.18.18.183.16(2.07)6.0422.206.686.06(4.04)7.9220.00(17.9)8.378514080127-17-186-8S'SDiabloCanyonUnit2UUFarleyUnit1UUXXYYFarleyUnit2UUWWPDC103SSHS02PDC201PDC201PFA101PFA101PFA101PFA101PFA101PFA101PFA201PFA201PFA201PFA201LTLT.LTTLLTTLLTTLLTTLLTTLLTTL.077.14;15.15.14.14.14.14.14.14.20.20.20.20.46.68.67.67.55.55.55.55.55.55.60.60.60.602.982.983.513.5116.5016.6028.30(28.0)28.30(28.0)5.835.835.615.6115.4015.407.517.5111.211.217.317.314.714.716.316.316.216.2,12.512.50(-2)666573115901351058555103133165165332157-322-1020-22822-8220 TableA-2tinued)ReactorVesselauleIdentitH.B.RobinsonUnit2MaterialHeatIDSpec.QrienChemistry~u~o~Ni~oNeutronNeutronFluenceFlux~IO"/~lD"hlShift~oFOOISSSSTTVVIndianPointUnit2YYIndianPointUnit3TTTYYZZZKewauneeRVPHB201PHB202PHB203SASTMPHB203SASTMPHB202SASTMPIP203SASTMPIP301PIP304PIP304PIP304SHSS02PIP303PIP304PIP304SHSS02SHSS02LTLTLTLTLTLTLTLT.LTLTLTLTTLTLLTLTLTTLLTLT.12.10.09.20.09.20.10.20.14.20.18.24.24.24.14.19.24.24.14.14.20(NA).20(NA).20(NA).18.20(NA).18.20(NA).18.57.18.50.52.52.52.6849,52.52.68.683.91(3.69)3.91(3.69)3.91(3.69)3.91(3.69)41.1041.107.24(4.51)7.24(4.51)4.724.723.23(2.92)3.23(2.92)3.23(2.92)8.058.0510.7010.7010.7020.706.41(5.59)9.299.299.299.2918.118.16.906.906.406.407.677.677.678.158.156.116.116.1114.515.830(0)20(0)15(0)707515045(0)70(0)1457089137118150140150170155140952023244-3-14821-679-2-26-71-44-17-69-18-6 TableA-2(continued)ReactorVesselasleIdentitMcGuireUnit1MaterialHeatIDSpec.OrienChemistry~Cu~oN~i%NeutronNeutronFluenceFluxkilo"I~10'9/Shift~FUUXXSalemUnit1TTTTYYSalemUnit2PMC101PMC101PMC101PMC101PSA101PSA102PSA103SHSS02PSA103SHSS02LTTLLTTLLTLT.LTLTLT'T.087.087.087.087.22.23..22.14;22.14.60.60.60.60.53.54.52.68.52.684.144.1413.8013.802.84(2.56)2.84(2.56)2.84(2.56)2.84(2.56)8.918.9114.214.210.110.1,8.29.8.298.298.298.338.33455045651001007560110'25-3-816-40424736-26SanOnofreUnit1PSA201LTPSA201.TL.10.10.61.612.562.566.996.995070-9-29AADDDDFFPS0103SASTMPSO101PS0102PS0103SASTMPSO102SASTMLTLTLTLTLTLTLTLT.18.20.17.18.18.20.18.20.20(NA).18.20(NA).20(NA).20(NA).18.20(NA).1828.6028.6056.2056.2056.2056.2057.3057.3049.149.163.363.3.63.363.323.523.5100120140110130150120130188-15211-81113 TableA-2ntinued)ReactorVesselauleIentiWolfCreekUnit1MaterialSpec.ChemistryHeatIDQrien~~~o~HI%NeutronFluence~IO"ncmNeutronFluxShiftP-A~lo'l'c.c'eUUPWC101LT.07PWC101TL.07.62.623.393.3912.012.03025 TableA-3A302BPLATENICKELCONTENTmVmalYankeeRoweN/ABigRockH.B.Robinsoneri1InifiinUpperShellPlateTestMaterialYA9HSSTPlateSurveillancePlateW-9807-3W-9807-5W-9807-9W-10201-1W-10201-2W-10201-3W-10201-4W-10201-5W-10201-6iklnoo0.210.190.180.180.100.100.150.110.250.080.090.120.09MeanValue:0.14%NiRange:0.08to0.25%NiStandardDeviation:0.055%Ni (FRED-ACT)CVTSHRIFTusCUCON~ENTC-E8-Mest'.inghousePlates4828+++c:0000-2800-48-68-88Bo868~18~168.28~26CuContent'%)-A-12-C-E+Mest,inghouse FlGUREA-2t.'PRED-ACT)CVTSHIFTusNXCONTENTC-E8MastinghousePj.ates4e1ItGlGlDRBgB0CII-ae~QCl-4B~QZI+0+0+Qp-eee.aB~4e.ee.8Ni.Content(%)C-E+Masti.nghousa

'IGUREA'-3(r~ED-ACT)CVTSHRIFTuaFASTF~UENC~C-E8.4leatinghuuaePlatea4eBB28-4e-ee-8Bae1eeFaatFluent=e(x1818n/c:rn"2)-A-14-C-E+Weatinghouae FIGUREA-4CPRED-ACT)CVTSHIFTusNEUTRONFLUXC-EaWestingtousePlates4eaeg8DCIQ-ae~QQ-4e~QZ0-ee00.----'++000(l'00++-----++t-----@I-+II--ee18188Flux(x1.8"18/am"2sea)0C-E+Westinghouse FIGUREA-5(PRED-ACT)CUTSHIFTFORC-EPLATESFrequenc:gHi~t.agram-4e-ae284eCUTShit't'.,Dif'f'erence(Deg.F)-A FIGUREA-6(PRED-ACT)CVTSHIFTFORMESTPLATESFl"mguenc:gHimtugrmm-ee-ee4B4BCVTShit'tDif'f'erence(Deg.F)-A FIGUREA-7(PRED-ACT3CVTSHIFTFORALLPLATESFrequencgHistogram1248-2B2B4BeeCVTShit'tDif'f'erence(Deg.F)-A FIGUREA-8(PRED-ACT7CVTSHIFTFORPLATESC-E84laat..NarmalPrab.Dan+i.tLIFane(xe.eel)3l~Q0C5DaeIIIII3lxa~Q~QXlGJDQ.IIJIIII-wee-ee'aezeeCVTShif't'.Di:f'f'aranca(DagF)C-E--.Maetinghuuee FIGUREA-9(PRED-ACT)CVTSHIFTFORPLATESNormalProbabilityDensitLNFunction(x8.881)28~Q16illGlCl12-1ee-68-286e188CVTShif't'.Dif'f'erence(Deg.F)-A APPENDIXBSTATISTICALANALYSISWELDDATABASEANDRESULTS B.1DATABASEAPPENDIXBThereactorvesselsurveillancewelddatabaseusedinthestatisticalanalysisislistedinTablesB-1andB-2forCombustionEngineeringandWestinghouseNSSSs,respectively.ThedatabaseislimitedtovesselmaterialsoriginatingintheC-EChattanoogafacility.The"MaterialHeatID"referstothedesignationintheORNLEngineeringDataBase(seeORNLReportNUREG/CR-4816,June1990).Thereportedchemicalcontent,neutronfluence,andmeasuredshift(B,Cv30)inTableB-1are'thevaluesjudgedtobemostrepresentativeofthesurveillancematerials.ThedatainTableB-2aretheas-reportedvaluesfromORNL-EDBortheindividualpost-irradiationevaluationreport.Forbothtables,thelistedneutronfluencereflects,inorderofpreference,therecomputedvaluesfromNUREG/CR-3319(August1985),themostrecentcomputedvalue,orthevaluegivenintheoriginalsurveillancecapsulereport.Valuesgiveninparenthesesarethechemistry,fluence~~orshiftreportedinORNL-EDBwhichwerechangedasdescribedabove.B.2STATISTICALANALYSISRESULTSTheresultsofthestatisticalanalysisweresummarizedinTable1ofthereport.Thatanalysiswasperformedusing"predictedminusactual"(P-A)shiftsforthetwosets(i.e.,TablesB-1andB-2)usingRegulatoryGuide1.99,Revision2topredictshift.Thefollowingpresentsthoseresultsgraphically.FiguresBl,B2,B3andB4areplotsofP-Aversuscoppercontent,nickelcontent,fastneutronfluenceandflux.TheplottingsymbolsdifferentiateC-EfromWestinghouseNSSSdata.Thereisatendencyforover-predictionofshiftforlowcopper(lessthat0.1%)weldsinFigureB1,andforover-predictionofshiftforallbutfouroftheC-Esurveillancewelddataatalllevelsofcoppercontent.FromFigureB2itcanbeseenthattheover-predictiontendencyalsoappliestotheentirerangeofnickelcontentsoftheC-Edata.However,thereisnoapparent'trendwithcopperornickelcontentforthepooleddatatosuggestthe-B ChemistryFactorfromRegulatoryGuide1.99isinaccurate.ThetrendwithneutronfluenceinFigureB3isforthegreatestscattertooccurbelow10"n/cm,wheretherangeofP-Ais-46'Fto+53'F;above10"n/cm,therangeis-24'Fto+64'F.(NotethattheplatedatainFigureA3ofAppendixAexhibitedasimilartrend.)Thistrendwithfluenceindicatesthatdatasharingbetweenvesselsofdifferentdesignwouldbemostreliableabove10"n/cm.ThereisnoobvioustrendwithneutronfluxinFigureB4whichsuggeststhatoneorderofmagnitudevariationinfluxisinsignificantto'datasharing.FiguresBSandB6presentdatainfrequencyhistogramsforC-EandWestinghousedata,respectively.FigureB7isahistogramofthepooleddata.NormalprobabilitydensityfunctionsforthetwodatasetsarecomparedinFigureB8,andthepooledresultsareshowninFigureB9.TheWestinghousedatacenteronP-A=4.87,andtheC-EdatacenteronP-A=7.57,asshowninFigureB8.ThepooleddatacenteronP-A=5.73,asshowninFigureB9.SeveraltestswereperformedtodeterminewhethertheC-EandWestinghousedatasetswerecomparable:a)One-WayAnalysisofVariance-ForaratioofvariancesF=0.105,variabilitybetweengroupsisarandomoccurrenceatthe0.7510significancelevel.b)Two-SampleAnalysis-Fora"t"statistic=0.3240,thedifferencebetweengroupcentralvalues(means)isarandomoccurrenceatthe0.7475significancelevel.c)Kruskal-WallisAnalysis-Forateststatistic=0.7343,thedifferencebetweencentralvaluesisarandomoccurrenceatthe0.3915significancelevel.d)Kolmogorov-SmirnovTwoSampleTest-ForanestimatedoverallstatisticDN=0.3476,thecombineddifferencebetweencentralvaluesandvariancesisarandomoccurrenceatthe0.1989significancelevel.-B Insummary,theindividualC-EandWestinghouseweldsurveillancedatasetsarenotsufficientlydifferenttoindicateasignificantdifferenceinresponsetofastneutronirradiation.Therefore,surveillancewelddatafromaWestinghousedesignedNSSSwill,onaverage;berepresentativeofsurveillancewelddatafromaC-ENSSS,andvice-versa,forreactorvesselsmanufacturedattheC-EChattanoogafacility.Thelattertwotests(candd)wereperformedasanovercheckonthemoretraditionalFandttests.-B TableB-1REACTORVESSELWELDSURVEILLANCEDATACOMBUSTIONENGINEERINGNSSSReactorVesselasuleIenitArkansasNuclearOneUnit2MaterialHeatIDChemistryQi~oNii~oNeutronFluence~10'4n/cm'eutronFluxShiA~l~"/'B.W-97CalvertCliffsUnit1W-263CalvertCliffsUnit2W-263FortCalhounWAN20.04WCC101.24WCC201.20.08.18.043.346.107.976.266.585.52105969f24415W-225W-265MillstoneUnit2WFC101.35WFC101..35.60.605.83(4.2)5.608.004.61205(238)-25221-22W-97MaineYankeeWML201.30.063.773.987623A-25A-35W-263WMY01.36WMY01.36WMY01.36.78.78.7817.60(13.0)43.077.30(86.9)61.45.67(6.80)4.702703452221013-18 ReactorVesselaleIdentitMaterial~HeaIDTableB-1(continuChemistryg~o~Ni%NeutronFluence~l'~num~NeutronFluxShiftElla'Sl'LPPP-A~OFPalisadesA-240W-290St.LucieUnit1WPAL101.22WPAL101.221.271.2760.60(46.0)62.010.306.5635029033-22W-97St.LucieUnit2W-83SanOnofreUnit2WSL101.23WSL201.05.11.075.301.623.604.60741617W-97WSO201.03.125.07(5.54)4.80'15'(7.2)10 TableB-2REACTORVESSELSURVEILLANCEDATAWESTINGHOUSENSSSReactorVesselauleIdeniBeaverValleyUnit1MaterialHeatIDChemistryQiJt~oNii~oNeutronFluence~/0"n/cm'eutronFlux-Shift~O'SlP-A~FUVWD.C.CookUnit1WBV101.26WBV101.26WBV101.26.62.62.626.545.792.91(2.55)7.929.495.11'551501856-29TYCallawayUnit1UHaddamNeckWCK101.27WCK101.27WCL101.06.7474~072.71(1.8)10.603.27.6.796.80)2.180~20070539-46A.DDiabloCanyonUnit1WCTY01.22WCTY01.22.046.0463.16(2.07)6.0422.206.6895110-2710DiabloCanyonUnit2UWDC101.21WDC201.22.98~832.983.517.5111.211017441-28 ReactorVesselaleIdentitFarleyUnit1TableB-2(continuMaterialChemistry~HcaIDg~u%~Ni%NeutronFluence~l"ccm~NeutronFlux10'/cm'cShiftP-AoF.~oFUXYFarleyUnit2WFA101.14WFA101.14WFA101.14.19.19.1916.5017.328.30(28.0)14.75.8316.3801008090-14UWH.B.RobinsonUnit2TVIndianPointUnit2IndianPointUnit3TYzKewauneeRV%FA201.03WFA201.03WHB201.34WHB201.34%IP201.23%IP301.15WIP301.15WIP301.15%KWE01.20WKWE01.20.90.90.66.661.061.021.021.025.6115.4041.107.24(4:51)5.893.23(2.92)8.0510.7020.706.41(5.59)16.212.518.16.907.997.678.156.1114.515.81010.285'751951431802202351752436112214-110-24-9-10 ReactorVesselasuleIdentitMcGuireUnit1MaterialHeatIDTableB-2(continued)Chemistry~u~%~Ni~oNeutronFluence(10"n/cm~)NeutronFluxShift(10"n/cm'sec)('F)P-A(F)UXSalemUnit1SalemUnit2SanOnofreUnit1WMC101.21WMC101.21WSA101.16WSA201.23.88.881.26.714.1413.808.912.5614.210.18.33'p6.99160165165155-16443-37AFWolfCreekUnit1WSO101.19WSO101.19.20(NA)28.60(12.0)49.1.20(NA)57.30(51.4)23.580'4548-6UWWC101.04.093.3912.020 CVTShit'tDif'f'eI"enaa(Deg.F)+"'OO,'O+O..-++-0;0+-++OO0ICl9N'o3Q0Lmm0XIC3IQWC00Dzz FIGUREB-2'PRED-ACT)CVTSHIFT'uaNj:CONTENTC-E8MeatinghouaaMazda88Be48280+0+-+++++0-ae~QM-48U00-eeBe28~4e.e8~6le21~4NiContent(%)-B-11-0C-Er+4Jest.inghouse FlGURE8-3(PRED-ACT)CVTSHIFTusFASTFLUENCEC-EaWestinghouseWalds8B8B4B0-aB-4B-8B1B1BBFastFluence(xi,e18n/cm"2)-B-12-+Westinghouse FIGUREB-4(PRED-ACT)CUTSH1FTuaNEUTRONFLUXC-E8rMeatinghauaeMeld+886e4eI0CI285Gl~Q0-48O68xe188Flux(xie"18n/am2mac:)-B-13-oC-E+Mant.inghuuat PIGVREB-S(PRED-ACT)CVTSH1FTFORC-EMELDSFraciue'ncLIHistogram-4e-2eae4e6e-B FIGUREB-6(PRED-ACT)CUTSHIFTFORMEST.MELDSFrequencyHiatagram-6B-4B-2B4e6e8BCVTShif'tDif'f'erence(Deg.F)

FlGURE8-7(PRED-ACT)CUTSHIFTFORALLMELDSFrequencLjHistogram-ee-4e-aeae4e6e8e-B FIGURE8-8(PRED-~CT)SHRIFTFORMELDSC-E8Meat.NormalProb.DensityFncae.Baei8163l~QUlCGle.81a3l~Qe.Bee0EL8'84II(IIt"'""'I'IIIIIIIIIa/I/\..L....\\I1\\\1\\~'-14e-Se-4e186e11e16eCUTShif't.Dil.let"enae(Deg.F)-B-17-C-E4lestinghouse FIGUREB-9(PRED-ACT)SH1FTFORMELDSCNormalProgabilitLjDensityFunction<xe.e.e1>163l12~QILGlCllU04CL-13e-Be-3e12eCUTShif'tDif'f'erence(Deg.F)

APPENDIXCEFFECTOFWELDFLUXLOTONWELDCHEMICALCONTENT APPENDIXCC.IINTRODUCTIONC.2WELDFLUXTYPE-C C.3~DFLUXLOT-C

]-C TABLEC-1ExpectedEffectofFluxTypeontheAs-DepositedWeldPropertiesUsingtheSameWeldWire TABLEC-2As-DepositedWeldChemistriesasaFunctionofFluxType-C TABLEC-3As-DepositedWeldChemistriesasaFunctionofFluxLot(WeldWireHeat¹4P7869)-C-7-