ML17229A086: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 115: | Line 115: | ||
: 6) "RCS Flow Determination By Calorimetric Procedure, " St. Lucie Unit 1 Operating Procedure 1-0120051, Revision 16. | : 6) "RCS Flow Determination By Calorimetric Procedure, " St. Lucie Unit 1 Operating Procedure 1-0120051, Revision 16. | ||
I St. Lucie Unit 1 Figure 1 Cycle 14 Core Loading Pattern R P N M L K J H e I I I I I I I I T S FR14 R46 R47 FR10 F E a b a b 21 c d C R30 S04 T16 S10 T18 T24 802 R37 102 105 20 R18 T02 T59 T30 S29 S12 832 T32 T67 T04 R20 G 137 92 302 136 82 19 R22 T25 S24 S47 S72 T70 S37 T80 S75 S46 S21 T10 R23 e 201 139 107 93 138 204 16 R40 T05 S23 R34 T81 T46 R14 T33 R15 T48 T58 R36 S17 T06 R32 81 94 96 142 S05 T89 S44 T62 S55 857 T75 R02 T76 S50 S54 841 T73 S08 141 123 127 140 16 see T38 S74 T49 852 S25 S63 T54 862 S28 860 T55 S69 T39 T12 143 84 114 103 113 97 79 FR16 FR12 a b T21 S34 T66 R08 T69 S65 T57 R10 T79 S67 T65 R04 T64 S35 T22 a b G d 89 88 99 132 91 90 C CI R42 R44 12 S13 S15 S40 T29 R12 T45 R07 R25 R06 T56 R11 T40 S39 S16 S14 305 109 135 104 303 | I St. Lucie Unit 1 Figure 1 Cycle 14 Core Loading Pattern R P N M L K J H e I I I I I I I I T S FR14 R46 R47 FR10 F E a b a b 21 c d C R30 S04 T16 S10 T18 T24 802 R37 102 105 20 R18 T02 T59 T30 S29 S12 832 T32 T67 T04 R20 G 137 92 302 136 82 19 R22 T25 S24 S47 S72 T70 S37 T80 S75 S46 S21 T10 R23 e 201 139 107 93 138 204 16 R40 T05 S23 R34 T81 T46 R14 T33 R15 T48 T58 R36 S17 T06 R32 81 94 96 142 S05 T89 S44 T62 S55 857 T75 R02 T76 S50 S54 841 T73 S08 141 123 127 140 16 see T38 S74 T49 852 S25 S63 T54 862 S28 860 T55 S69 T39 T12 143 84 114 103 113 97 79 FR16 FR12 a b T21 S34 T66 R08 T69 S65 T57 R10 T79 S67 T65 R04 T64 S35 T22 a b G d 89 88 99 132 91 90 C CI R42 R44 12 S13 S15 S40 T29 R12 T45 R07 R25 R06 T56 R11 T40 S39 S16 S14 305 109 135 104 303 11 R43 R41 10 T19 S31 T86 R03 T84 861 T78 R09 T92 S64 T77 R05 T74 S30 T20 120 119 F02 87 122 121 FR11 FR15 a b T15 T31 S70 T47 S59 S27 S66 T52 S68 S26 S51 T53 S73 T36 T17 a b G d 83 131 100 110 98 112 80 C S07 T83 S45 T63 S53 S49 T88 R01 T61 S58 S56 T68 S48 T82 S06 128 95 85 126 R31 T07 S18 R35 T71 T50 R16 T37 R13 T51 T85 R33 S20 T01 R39 125 115 116 124 R24 T09 S22 S42 S76 T87 838 T91 S71 843 S19 T23 R21 203 130 106 118 129 205 R19 T08 T60 T34 836 S11 S33 T35 T90 T03 R17 134 117 304 133 101 R38 801 T14 T13 S09 T27 T26 803 R29 108 111 FR09 R48 R45 FR13 a b a b C C d R38 ~ A66eeee5y ¹ 102 m In@eeet ¹ | ||
11 R43 R41 10 T19 S31 T86 R03 T84 861 T78 R09 T92 S64 T77 R05 T74 S30 T20 120 119 F02 87 122 121 FR11 FR15 a b T15 T31 S70 T47 S59 S27 S66 T52 S68 S26 S51 T53 S73 T36 T17 a b G d 83 131 100 110 98 112 80 C S07 T83 S45 T63 S53 S49 T88 R01 T61 S58 S56 T68 S48 T82 S06 128 95 85 126 R31 T07 S18 R35 T71 T50 R16 T37 R13 T51 T85 R33 S20 T01 R39 125 115 116 124 R24 T09 S22 S42 S76 T87 838 T91 S71 843 S19 T23 R21 203 130 106 118 129 205 R19 T08 T60 T34 836 S11 S33 T35 T90 T03 R17 134 117 304 133 101 R38 801 T14 T13 S09 T27 T26 803 R29 108 111 FR09 R48 R45 FR13 a b a b C C d R38 ~ A66eeee5y ¹ 102 m In@eeet ¹ | |||
nverse Count Ratio Plot - Channel B Figure 2 Cb+ 150 Nlode 2 Cb+ 50 Cb 50 88 Qpm 44 ~pm SeenfO 1.0 dilutlen 1.0-0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 | nverse Count Ratio Plot - Channel B Figure 2 Cb+ 150 Nlode 2 Cb+ 50 Cb 50 88 Qpm 44 ~pm SeenfO 1.0 dilutlen 1.0-0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 |
Latest revision as of 12:26, 4 February 2020
ML17229A086 | |
Person / Time | |
---|---|
Site: | Saint Lucie |
Issue date: | 10/18/1996 |
From: | Klein R, Mead W, Ofarrill C FLORIDA POWER & LIGHT CO. |
To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
References | |
L-96-265, NUDOCS 9610240215 | |
Download: ML17229A086 (23) | |
Text
CATEGORY 1 REGULAT INFORMATION DISTRIBUTIONtSTEM (RIDE)
V ACCESSION NBR:9610240215 DOC.DATE: 96/10/18 NOTARIZED: NO DOCKET t FACIL:50-335 St. Lucie Plant, Unit 1, Florida Power 6 Light Co. 05000335 AUTH. NAME AUTHOR AFFILIATION MEAD,W.D. Florida Power 6 Light Co.
KLEIN,R.M; Florida Power & Light Co.
O'FARRILL,C.G. Florida Power 6 Light Co.
RECIP.NAME RECIPIENT AFFILIATION
SUBJECT:
"Startup Physics Testing Rept." W/961018 ltr.
DISTRIBUTION CODE: A001D COPIES RECEIVED:LTR ENCL SIZE:
TITLE: OR Submittal: General Distribution NOTES:
E RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD2-3 LA 1 1 PD2-3 PD 1 1 WIENSFL. 1 1 0 INTERNAL: ACRS 1 1 FILE CENTER~ 1 1 NRR/DE/EMCB 1 1 RR/DRCH/QIC 1 1 NRP/DSSA/SPLB 1 1 NRR/DSSA/SRXB 1 1 NUDOCS-ABSTRACT 1 1 OGC/HDS3 1 0 EXTERNAL: NOAC 1 1 NRC PDR 1 1 D
NOTE TO ALL "RZDS" RECIPIENTS:
PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROL DESK (DCD) ON EXTENSION 415-2083 TOTAL NUMBER OF COPIES REQUIRED: LTTR 13 ENCL 12
y~ ~ S pp Florida Power & Light Company, P.O. Box 128, Fort Pierce, FL 34954-0128 October 18, 1996 L-96-265 10 CFR 50.36 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 Re: St. Lucie Unit 1 Docket 50-335 Pursuant to St. Lucie Unit 1.Technical Specification 6.9.1.1, the enclosed summary report of Cycle 14 plant startup and power escalation testing 'is hereby submitted.
Should you have any questions, please contact us.
Very truly yours, J. A. Stall Vice President St. Lucie Plant JAS/RLD
Enclosure:
St. Lucie Unit 1, Cycle 14, Startup Physics Testing Report (Approved October 16, 1996) cc: Stewart D. Ebneter, Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, St. Lucie Plant 96f0240215 'rr61018 I
,PDR 'i'-"
ADDCK 05000335 P -" PDR an FPL Group company
ST. LVCIE UNIT 1, CYCLE 14 STARTUP PHYSICS TESTING REPORT
~ ~
St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report Author Date Walter D. Mead, Jr.
Reactor Engineering, St. Lucie Plant Reviewed Date 0 /4 Ray M. ein Reactor Engineering, St. Lucie Plant Approved Carl G. O'Farrill Reactor Engineering Supervisor St. Lucie Plant
~ ~
'I 4
h~
P D
I t
,l f
~
~
~,
St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report Ta leof n ents
~Secti n P~ae I Introduction II Cycle 14 Fuel Design III CEA Drop Time Testing IV Approach to Criticality V Zero Power Physics Testing VI Power Ascension Program VII Summary VIII References Li fFi ure F~i ~
1 9 Cycle 14 Core Loading Pattern 2 10 Inverse Count Ratio Plot- Channel B 3 11 Inverse Count Ratio Plot- Channel D 4 12 Power Distribution - 25% Power 5 13 Power Distribution - 50% Power 6 14 Power Distribution - 98% Power 15 Cycle 14 Reload Sub-Batch ID 16 Approach to Criticality 16 CEA Group Worth Summary
St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report I. Introduction The purpose of this report is to provide a description of the fuel design and core load and to summarize the startup physics testing performed at St. Lucie Unit 1 following the cycle 14 refueling outage. The Startup physics testing verifies that key core parameters are as predicted.
The major parts of this testing program include:
- 1) Initial criticality following refueling,
- 2) Zero power physics testing, and
- 3) Power ascension testing.
This Cycle 14 Startup Report is being submitted in accordance with Technical Specification 6.9.1.1 because the significant number of steam generator tubes plugged during the refueling outage may have significantly altered the nuclear, thermal, or hydraulic performance of the unit.
However, the test data collected during startup and summarized in this report indicates that although key thermal-hydraulic parameters exhibited some changes there was no significant impact to the nuclear, thermal, or hydraulic performance of the unit.
II. cle 4FuelDe i n The cycle 14 reload consists entirely of fuel manufactured by Siemens Power Corporation (SPC).
The 217 assemblies of the cycle 14 core are comprised of fuel from three batches. Of these, 88 are fresh assemblies (batch T), 84 are once-burned assemblies (batch S) consisting of 76 natural uranium blanket assemblies and 8 Vessel Fluence Reduction Assemblies (VFRAs), and 45 are twice-burned assemblies from batch R. Table 1 provides enrichment information for the cycle 14 reload sub-batches.
The entire cycle 14 fuel load, batches R, S, and T, consist of the debris resistant fuel assembly design. This design has long fuel rod lower end caps which provides protection against debris induced fretting in the lower end-fitting region.
The cycle 14 core map is represented in Figure 1. The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location. The fuel is arranged in a low leakage pattern with no significant differences from the cycle 13 loading pattern. Twenty four twice-irradiated batch R assemblies were placed on the core periphery with the VFRAs occupying the the corner positions of each dog-ear. The remaining irradiated and fresh fuel was loaded inboard.
St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report III. EA Dro Time Testin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed. The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit) to the 90% inserted position under hot, full flow conditions. The average CEA drop time was found to be 2.21 seconds with maximum and minimum times of 2.39 seconds and 2.1 seconds, respectively. All drop times were within the requirements of technical specification 3.1.3.4 and the reload PC/M 054-196 (Reference 5).
IV. A roach to riticali The approach to criticality involved diluting from a non-critical boron concentration of 1820 ppm to a predicted critical boron concentration of 1503 ppm. Inverse countrate ratio (ICRR) plots were maintained during the dilution process using wide range channels B and D. Refer to Figures 2 and 3 for ICRR information. Table 2 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.
Initial criticality for St. Lucie Unit 1, Cycle 14, was achieved on July 23, 1996 at 1722 with CEA group 7 at 60 inches withdrawn and all other CEAs at the all-rods-out (ARO) position. The actual critical concentration was observed to be 1476 ppm. A calculation of post-criticality conditions variance showed the actual critical conditions to be within 224 pcm of predicted. This satisfied the criteria that predicted conditions should be within 1000 pcm of the observed condition.
V. Zero P wer Ph ic Te tin To ensure that the operating charateristics of the cycle 14 core were consistent with the design predictions, the following tests were performed:
- 1) Reactivity Computer Checkout,
- 2) Dual CEDM Symmetry Test,
- 3) All Rods Out Critical Boron Concentration,
St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report
- 4) Isothermal Temperature Coefficient Measurement, and
- 5) CEA Group Rod Worth Measurements.
Proper operation of the reactivity computer was verified through the performance of two tests.
In the first, reactor power was elevated sufficiently high to ensure maximum sensitivity of the reactivity measuring system and at the same time preserve adequate margin to the point of adding heat. The second test ascertains the response to a known value of positive or negative reactivity by measuring the values of positive or negative reactor periods that result. The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 056-194 (Reference 5). Satisfactory agreement was obtained.
Verification of proper CEA latching is confirmed throught the use of a CEA symmetry test for those groups which contain dual CEAs (shutdown banks AHAB). The prescribed acceptance criteria is that the reactivity measured for each dual CEA shall be within +15.0 pcm of the average reactivity measured for the entire group. There were no unlatched CEAs for either group.
The measurement of the all-rods-out (ARO) critical boron concentration was performed. The measured value was 1519 ppm which compared favorably with the design value of 1545 ppm.
This was within the acceptance limits of+ 100 ppm.
The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was obtained. The MTC was determined to be 2.458 pcm/'F which fell well within the acceptance criteria of+ 2.0 pcm/'F of the design MTC of 2.716 pcm/'F (corrected). This satisfies the Unit 1 Technical Specification which states that the MTC shall be less positive than 5.0 pcm/'F.
The final section of interest for zero power physics testing is in the measurement of CEA group worths. Rod worth measurements were performed using the rod swap methodology. This method involves exchanging the reference group, which is measured by the boration dilution technique, with each of the remaining test groups. A comparison of the measured and design CEA reactivity worths is provided in Table 3. The following acceptance criteria applies to the measurements made:
- 1) The measured value of each test group, or Supergroup measured, is within+15% or
+100 pcm of its corresponding design CEA worths, whichever is greater;
- and,
- 2) The measure worth of the reference group and the total worth for all the CEA groups measured is within+ 10% of the total design worth.
St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report All acceptance criteria were met.
VI. P wer A cen ion Pro ram During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and that there are no abnormalities occuring in various core parameters (core peaking factors, linear heat rate, and tilt) for power plateaus at 25%, 50%, and greater than 98%
rated thermal power. A shape annealing factor (SAF) test was performed in conjunction with the power ascension. This test was necessitated by the replacement of the "B" Linear Range nuclear instrument channel detector.
A summary of the flux maps at the 25%, 45% and 98% power levels is provided in Figures 4, 5 Ec 6. These flux maps are used for comparing the measured power distribution with the predicted power distribution. For the purposes of the power ascension, the acceptance criteria requires the RMS value of the power deviation be less than or equal to 5%. In addition, for the 25% and 98%
plateaus, the individual assembly powers should be within 10% of the predicted power (both) and the relative power density (RPD) should be within 0.1 RPD units of predicted for the 25%
power case. These criteria were satisfied.
When the unit reached 98% power, a calorimetric was performed in accordance with reference 6 for the purpose of calculating the RCS flowrate. The RCS flowrate was determined to have been reduced from 394,420 gpm (measured in cycle 13) to 374,674 gpm in cycle 14. This value of flow remains above the Technical Specification minimum of 345,000 gpm.
Within seven effective full power days of attaining the equilibrium value of 100% power, a hot full power (HFP) MTC test was performed by maintaining power constant and varying temperature. The center CEA (7-1) was operated to permit compensation of the resulting reactivity changes. The HFP MTC was measured to be -7.364 pcm/'F which was within the
+2.0 pcm/'F of the design value of -7.293 pcm/'F (corrected). This test also verified compliance with Technical Specification 3.1.1.4 which requires the measured MTC be less negative than
-28.0 pcm/'F and less positive than+2.0 pcm/'F while thermal power is greater than 70%. The power coefficient was not measured.
VII. $ ummary The test data collected during startup and summarized in this report indicates that although key thermal-hydraulic parameters exhibited some changes there was no significant impact to the
St. Lucio Unit 1, Cycle 14 Startup Physics Testing Report nuclear, thermal, or hydraulic performance of the unit. Compliance with the applicable Unit 1 Technical Specifications was satisfactory and all acceptance criteria were met.
VIII.References
- 1) "Initial Criticality, " Pre-Operational Procedure 1-3200088, Revision 9.
- 2) "Reload Startup Physics Testing, " Pre-Operational Procedure 3200091, Revision 6.
- 3) "Reactor Engineering Power Ascension Program," Pre-Operational Procedure 3200092, Revisions 9%10.
- 4) St. Lucie Unit 1 Technical Specifications.
- 5) St. Lucie Unit 1, Cycle 14 Fuel Reload PC/M 054-196.
- 6) "RCS Flow Determination By Calorimetric Procedure, " St. Lucie Unit 1 Operating Procedure 1-0120051, Revision 16.
I St. Lucie Unit 1 Figure 1 Cycle 14 Core Loading Pattern R P N M L K J H e I I I I I I I I T S FR14 R46 R47 FR10 F E a b a b 21 c d C R30 S04 T16 S10 T18 T24 802 R37 102 105 20 R18 T02 T59 T30 S29 S12 832 T32 T67 T04 R20 G 137 92 302 136 82 19 R22 T25 S24 S47 S72 T70 S37 T80 S75 S46 S21 T10 R23 e 201 139 107 93 138 204 16 R40 T05 S23 R34 T81 T46 R14 T33 R15 T48 T58 R36 S17 T06 R32 81 94 96 142 S05 T89 S44 T62 S55 857 T75 R02 T76 S50 S54 841 T73 S08 141 123 127 140 16 see T38 S74 T49 852 S25 S63 T54 862 S28 860 T55 S69 T39 T12 143 84 114 103 113 97 79 FR16 FR12 a b T21 S34 T66 R08 T69 S65 T57 R10 T79 S67 T65 R04 T64 S35 T22 a b G d 89 88 99 132 91 90 C CI R42 R44 12 S13 S15 S40 T29 R12 T45 R07 R25 R06 T56 R11 T40 S39 S16 S14 305 109 135 104 303 11 R43 R41 10 T19 S31 T86 R03 T84 861 T78 R09 T92 S64 T77 R05 T74 S30 T20 120 119 F02 87 122 121 FR11 FR15 a b T15 T31 S70 T47 S59 S27 S66 T52 S68 S26 S51 T53 S73 T36 T17 a b G d 83 131 100 110 98 112 80 C S07 T83 S45 T63 S53 S49 T88 R01 T61 S58 S56 T68 S48 T82 S06 128 95 85 126 R31 T07 S18 R35 T71 T50 R16 T37 R13 T51 T85 R33 S20 T01 R39 125 115 116 124 R24 T09 S22 S42 S76 T87 838 T91 S71 843 S19 T23 R21 203 130 106 118 129 205 R19 T08 T60 T34 836 S11 S33 T35 T90 T03 R17 134 117 304 133 101 R38 801 T14 T13 S09 T27 T26 803 R29 108 111 FR09 R48 R45 FR13 a b a b C C d R38 ~ A66eeee5y ¹ 102 m In@eeet ¹
nverse Count Ratio Plot - Channel B Figure 2 Cb+ 150 Nlode 2 Cb+ 50 Cb 50 88 Qpm 44 ~pm SeenfO 1.0 dilutlen 1.0-0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3
~
0.2 0.2 0.1 0.1 0.0 0.0 0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000 16500 Page 10
nverse Cou atio Plot- Chan el D Figure 3 Cb+ t50 Cb+ 50 Cb Cb 50 Mode 2 88 gpm 44 Itpm I eecuf0 1.0 I dilution 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3
~
0.2 0.2 0.1 0.1 0.0 0.0 0 1500 ~3000 ~4500 ~6000 ~7500 9000 ~10500 12000 13500 15000 16500 otto ne Diluted Page 11
w
~ ~
Flguro: Page.
4 ST. LUCIE UNIT 1, CYCLE 14 Startup Physics Testing Report 12 Figure 4 Power Distribution - 25%
unl) LSQ Moaourod: tBEACON) Design:
Source SPDQSOUT P'C/)1454-'196 Power Loco l 2$ 7 257+
Exooouro 1.7 5 CEA Poeirlon I122 122 Boron Cone. 7480 147$ R ~ R II k K 4 H I I I I I I 217 )IC )Is 114 N80 rk300 03 OA8 0085 a)97 lk297 OAOS OAX6 aoo) 0.003 DANS SA I.o III SA
)I3 212 2 II ll0 20$ 207 206 )OS IVI OAT 09$ I.)2 I.I2 099 ik61 IVI IVIS 067$ 0983 I.Ill I.lI) 0984 IL675 IUI4 440$ NNT OAN6 0.00$ Akool
.IA 4.7 4J ILT OA 0.7 .I J 204 203 202 lol l99 l98 Itl l96 l95 l94 0 OA) IAN ISC IJS I.I9 IJS 1.19 I JC I 96 IA8 OA) I 8 OA)3 I.o)6 IA6$ IJ4$ I.)9 IJ69 I.)9 I J49 I 959 IAOS OA)l ALOD) 4.006 LOO) OAN) OAKN LOll OANO aol I LOOI OAN) 4AN) 4.1 aC 0.2 0.2 0.0 0.9 0.9 0.1 IL2 -O.T
'9)
X 193 l9l l90 I 89 ISS IST l86 ISS I)4 l)3 IS) ISI OAl I,I I.IS I.I5 I.I6 I.2 I Jl IJ I.ll I,IS I.I9 I.ll OA)
OA)3 I.IOS I.IS) I.IS I.I68 I.I93 I J16 1.193 I.I69 I.ISI 1.186 I.)0$ OA23 4.00) aais 490$ NNT 4ANC NNT OSOI OAXN OSI) 4.7 IA OAI 4.7 OA 4S OA O.l 4J I.I ALT ISO l79 ITS lll I 76 Ils )74 ll)
I Jl Ill Ill I TO l69 at)
I 44 l67 l46 IVI 0)i IAO I.IS 092 I.I6 I J6 L96 lk96 I JC I.I6 I.I9 IA8 0314 IS)8 I.)86 Lt)4 I.I6 IJ62 0969 I J)2 a968 I JCI I.IC) 0924 I.lo) IAN6 IVI 5 4.00$ 4ANI OAKN AklXQ 4AX8 4402 4AKO 4,00I 4.004 OAKVI 0001 490$
~ L) ALT 00 4.2 4.9 4.2 4J L4 ~ IA l65 l64 IC) l62 l4l l60 IS9 IS) Isl ls6 lss l$4 lsl Is) ISI OAT ISS I.IS I.ll I.IS I.lI I.I6 I AU I.I6 IJ I.ll I.16 1.15 ISC O.CS 0475 1459 I.IS4 I.IC) I.ISS 1.22l I.I79 I 0$ 4 I.I74 I J1 I, I.ISS l.l6 1.15 I.OSS OA75 4AN$ 4.009 SANT 4AN$ ALOII 4AII9 4.024 4414 4.01l 4SIS OAXN NXN 0.001 0.005 ALT Akt -OJ OA 4,4 Akt .I A .14 -I.2 ~ IS ~ IJ 0.0 0.2 0.7 I 49 14$ 147 146 I 45 l44 143 Ill l41 140 l)t l38 I37 I)6 I JS l.l6 I JT I Jl I J) IJ I J4 I,I9 IJ) IJ I JC I.I6 IJC 099 I J49 I.169 I JCI I J2 ) I J42 I J)4 I JC) IJ)4 I J41 I Jl I I J61 I.ICS IJ48 0983 LOOI AL08 LOOC 4AII) ALOI) 4424 4.013 49) I 4ANS 0.012 OSOT Ll OS Akt Akt .1AI .I.t -29 ~ 1.7 .IS 4.2 ALT ILT 134 488 I~
133 l)2 I)I 129 12$
IJ l27 l26 I)S l)4 123 lll Ill l,lt l20 II9 I.ll LOSS I.l) I.I9 IJ 1.16 I.II 094 I.II I I9 I.IC 09$ I.I9 0.00$
I.ll) I.I9 I.)93 1,114 I J24 I JSI 09TI I.I4) IJ14 I.)79 0969 I.I93 I.I9 I.Ill 5A 0.017 0.000 OANT 4AII4 Ako)4 4S) I ALO)I 49) I 4434 49 I 9 4SI9 OAXN 0.00$
I IS IS 0.0 ~ 1.2 .)AI ~ lS JJ -2S ~ 2.9 .IA -2.0 4J OAI 0.1 Ill 0.297 II6 IIS 114 IL1 Ill III I IO l09 I OS Iol 106 I OS I.ll lol le) lol aoo) ISI I J9 IJ) I Jl IS) IJ) 094 LTC L94 I J) IS) I Jl I JS 099 0.001 N I II L98$ I J69 1.2 I 6 I J22 I 454 IJC) Loll 0.794 097l I J63 IAISI I J12 I JI6 I J69 atss IAI Iko)S 00) I ALOOC ALOI2 4.0)l 4433 4S) I 4.0N 4S)I 4433 4424 4AII) 4ANC OAIII LOIN IOI )S IA 4S Lo ~ )J -2.1 JJ AS JJ .2.7 .1J 0.9 OS leo IU OJ Ll97 LOO) 99 I.I4 98 I Jl tl IJ 96 L96 9S I.I6 94 I.I9 93 I.II 91 093 9l LI 90 I.)9
L)97 0003 I.II 2 1.19 1.193 0969 I.lit IJ24 I.I41 OSTI 1.141 I J24 I.174 1.193 I.lt I.IL1 092$ OS)0 OANT 4AN9 44lt 4434 4431 4SII 4441 4ALI4 ALOI~ OAXN Loll 84 )S I.7 OA Akt .IA .2.9 .14 J.T .2.9 .1.2 0.0 IS 83 IU8 009 IUNS 82 Sl $0 T9 TS 71 76 1$ 74 73 72 ll 70 69 68 Iko!6 aoos ISI I JS I.I8 IJT I JI I J) 1.19 IJ) I.IS I Jl I.2 I J6 1.17 IJC 099 aoos I.l(4 I J62 l.2) I I J42 IJC) I J41 I.2)l I J64 I.)69 I J49 0984 06
<<.6 0983 0027 1.24$
Nul LOI2 OAKN 44 I I 4.021 1.224 4431 4AN3 l.124
&044 ~ OAO) 4.01 I ~ 0.004 'oo) OS)I 0406 1.7 I II OA 4.9 .I.T ~ 2.9 J.5 J.T ~ )A .IS 4J 0.1 0.9 OA 67 66 63 62 61 60 $9 5$ $7 55 $4 $3 Ikl IS9 I.ll I.IS I.I9 I Jl I,IC ISl I.IS IJ I.ll I.I4 I,IS IAVI OAS L67S I ASS I.IS I.I6 I.ISS I J1 1 I.1 74 ISSI I.179 I Jll I.ISS I.IC) I.ISI 1459 067$
ao)s LLI) 0.00$ 4SI I 4414 4S)4 492) Akols Loll NK6 3.6 2.9 I.T l.l .1.2 ~ IS ~ IJ 0.7
$2 5l $0 49 48 47 46 45 44 43 42 41 40 38 a)2 I.I3 I Jl IL94 LI8 I JS L96 I J) 09$ I JS I.I6 0.91 IJ I.I OJ2 IVI 5 ISSC I.IS) 0924 I.IC) I JCI 096$ I J)2 IL969 I JC) IJ6 IL924 I,186 ISOS Llll Leos aoN 0.031 0.016 O.oil OAII6 4AOS 4AII2 4.019 4SI) 4ANI O.OI4 0.012 OAN6 IA 3.9 )AI I.T IA IJ -IAI -)AI ~ IS os l.l I.l 1.9
)7 3$ 34 33 )2 )I 30 29 28 27 26 Ls OA4 I.IS I J2 l.l) I!9 I.lI I.22 IJ l,ll I.IS I.I9 I,ll OA)
OAll I.IOS 1.186 I.ISI I.169 LI93 I JI6 l.l93 I.I68 I.ls I.IS) I.IOS OA)3 Loll IL042 IULN IS Loll IA O.0 IT OJ OAOI OANT NN2 os 0.000 OA 0007 I.l OS I) IA 0.407 L9 3.7 1.2 0.2 24 23 22 1) 20 lt IS IT IC IS ll OA4 1.13 I.I I Jt IJl IJ IJI IJT ISO I.I I 0.43 OA13 ISIS IS59 I J49 I.I9
'o)0 I J69 I.lt I J4$ I ASS ISSC OAll ILOI1 OANl O.OII 094l Lo) I Ikolo )Loll L012 OAI14 OANT L9 3.7 L7 L2 )A I.T I.T lAI 2.2 IA l3 ll II Io 9 8 7 6 5 IU2 0.7 IS) I.I6 IAI) I.IS IAII OA9 OJl IUI4 OA15 0984 I.II) 0985 I.II 2
'o)$ ik9$3 LCTS OSIS aooC 092$ 0.036 0.047 ao)s 0.0)7 091$ aoos I.9 3A )S ~ .I )A 3S 2.7 L2 I.6 2 I
- 0) I OJI IU8 OJ97 L297 OAOS 0.013 OS 1 3 NNS 4.2 4J RMS Oevlation: 1.84%
Koln OK uellerre Orrllo 12 Dona 9 Dirk
Fig uro: Pago:
4 ST. LUCIE UNIT 1, CYCLE 14 Startup Physics Testing Roport Figure 5 Power Distribution - 45%
unu Measured: i BEACON DesIgn:
Source IISPDQS.OUT ',PC/M 454.1 S6 Power Level t4$ )4 Sore Exposure Id.)3 '10 CEA Position i122 !122 eoron Conc. 1374 ~1N6 R R II L K ) H I I I I I I 217 116 MS IN f 6 0090 R)00 IU 0)8 ROSS a)02 IUO) 0AN6 LOOI 4.002 4AN) L004 4A ALT ALT IA
)D 212 ill 210 209 207 206 20$
IUI Odl IL67 IL9$ I.I tk9$ I.l lk97 lk67 092 OAI7$ IL97$ 1.104 0941 1.10$ 097$ IU19 4910 4ANS OAN) 4ANI J.2 .Id lk2 AL4 4.1 ~ 1.2 .2.9 2N 20$ 102 201 100 199 198 197 196 195 194 0 OA) I AN ISS Id4 I.IS Id6 I.ld Id4 195 IAN OA2 I t I AN), 195$ Id)9 I.IS I Id)6 I.ldl Id4 IANC IAN4 OA2$
OAST ALOOT LOSI 4.001 OAN4 4ANI 'ANO 4ON 4.00$
~ 1.1 0.1 ak) 4,1 oa aS ~ 1.9 193 191 191 190 IS9 1$$ 1$ 1 1$ 6 ISS 1$ 4 1$ 3 1$ 2 1$ 1 OA2 I.l 1.17 1.14 1.16 1,19 1.21 1.19 1.16 1.14 I.IS I.lI OA)
OA2$ 1.10$ I,ITS I.)47 1.16$ 1.19 22)2 1.19 1.166 1,151 1.1$ 2 1,105 OA27 4ANS L01$ Akim@ Akeo) LANO 4.002 L000 40) I ALOO) ROOS
~ I.' IA 09 AL2 4.2 ~ 1.1 Iso 119 Ild Ill 176 175 174 173 172 ITI I TO 169 16$ 167 166 Odl 197 1.11 092 1.16 1dS 096 Id) 096 IdC I.IC 092 I.IS IA8 odl 0919 1984 I.1d) 092$ 1.161 1.261 0976 1d26 0975 Id6$ 1,144 IL928 1.179 I AN) 092 4914 4AI12 4.00S Akool 4ANI 4916 at006 4015 4AKkl 4.00$ OANI 0007 0.000
.2.9 ~ rd -I AI 4.9 ALI ALI .I.T as .IS 4.1 ad 4.9 OA 0.6 0.0 16$ 164 163 162 161 160 1$ 9 154 1ST 156 15$ 154 153 152 151 OST 195 1.14 I.IT 1.1$ Idl Idl I AN I.ll ldl I.ll 196 I.IS IA6 06$
lk67$ 1956 1.1$ 1 1.164 1.186 Id11 I.IN !AN) 1.179 ldll ).116 1.141 1.141 136$ 0.67$
AkOOS 4AIII OAN6 4.011 4814 ate)2 4.011 4916 4.001 LOO) 0.00S 0.002
~ 1.2 -06 ~ 1.0 0.$ 4S AL9 ~ 1.2 -2.1 4.9 .I A 4.1 0.5 lk) 150 149 14) 141 144 14$ 144 143 142 141 140 l)9 I)$ 1$ 7 1$ 6 09S Id4 1.16 IdC ldl )93 Id) Id) ld Id) Idl Id6 I.IC IdS L99 097$ I dr 1.166 Id4$ ldll 1942 Id)9 Id69 Id)$ 1942 ldll Id61 1.16S ld)9 IL97$
OAN) OAKN 4AKk) 4.011 49I) 49)9 4919 492$ 4922 4 el I 4ANI 0.011 OAI12 135 0.2 0.0 4.2 4.9 4.9 .IS .IS .29 .I.T Ake Ak I aA lk9 1.2 1$ 4 OAI9 OAI9 OAN6 1$ 3 l)1 I)I 130 129 12d 121 126 l)S 124 ID 122 121 110 119 0986 1.12 I.IS 1.19 096 I.IT ld I.l) L94 1.13 Id I.IT 096 Id 1.19 1.12 OAKN IA 1.10$ I.I8 I 1.19 R97$ 1.179 Id)S 1.1$ 1 0985 I.I5 I Id 29 I.IN 0976 1.19 I.ldl 1.104 4A OAIIS 4ANI OAKN ALOI5 4821 ALOIS 4 01) Ake)9 401 ~ 4.016 lkele OAK8 OAN6 IIS Id 4.1 OAI ~ IS ~ 19 ~ 1.9 .2A ~ 1.2 I.T ILS IA Ill 031 od odo) 116 11$ II~ 113 112 I II II 0 109 108 107 106 I OS 104 103 102 0902 OAKN I 1.2S Idl 1.22 I AN Id4 0.9S 0.7$ 0.9S Idd I AN Id) Idl 1.21 099 0901 n
)S 0.981 Id)4 Idl) 1.226 1.061 Id69 09S5 OAI) L985 Id69 1962 Id 26 Idl) Ide6 0981 ALT OAI19 0.024 AL002 ALOOC 4 022 4ALIS 4933 Aka)5 4929 4.022 4ANC 4)N) 0914 M8 1 01 1.9 I.9 AL2 .21 .29 J.l 41 J.T .'29 .1.1 I.I lke 100 031 IU 0902 98 91 96 95 N 9) 92 91 $7 1$ 0902 OANS 1.14 Id ld 096 1.16 ld 1.12 095 1.12 1.19 1.16 0.96 1.19 1.19 1.12 4AN) 1S 1.104 I.1dl 1,19 0976 1.184 ld29 1.151 0945 I,ISI I.'22$ 1,179 0975 1.19 I.IS! I,IOS ALT OAOC 0919 0.010 4916 4024 4 029 4)k) I 4lk)S 4.031 4.019 4.015 'OOO OAN9 O.0 IS N 3.2 IS ~ 1.1 .2.1 .)A J.T -28 J.2 ~ IS .IS Le OS Id $3 OA8 0)8 I OAN6 $2 $1 SO 7$ 77 76 7$ 14 7$ 72 1) 69 2086 LON IAI2 1.21 I.IS IdS ldl Id) 1.19 Id) 1,19 Idl Id IdC 1.16 IdS 0.004 IA 0978 1.2)9 1.165 1.261 ldll 1941 1.228 Id49 1.229 1942 ldll Id63 1.166 id) 097S IA OAN) OAI)I ROIS 4ANI 4.011 4022 Ake)8 4AL8 ALL)9 48)2 4.021 4AN) 0.010 0 012 4.1 2A Id ALI 4.9 ~ 1,1 J.2 J.3 -TA .I.d 4.2 OA 1.2 67 66 65 63 42 61 40 $9 51 56 55 $4 S) iLT IA8 I.IT I.ll I.ld Idl 1.16 IAQ I.IS ld I.'ll I.ll I.IS IAIT OS9 LCTS IA65 1.147 1.161 1.186 Id21 1.179 IAKI) I.IN ld)l 1.1$ 6 1.164 1.151 ISSC 067$
IL022 La)$ 0.023 OAN9 4906 4911 ALOI9 4ALI) 4821 4 016 OANC 4ANI OSI ~ LOI) 11 22 2.0 OA jk9 ~ IS J.l ~ IA .I A os ALI Id I.T 52 51 $0 49 4$ 47 46 IS 44 43 42 41 40 39 )8 Od) 1.12 Idl 094 I.ld IdT 091 ldl 096 ldS 1,16 IL93 Id I.l Odl I AN) 1.119 092$ 1,164 Id61 097S IdlC 0976 Id61 1.161 lk9)S 1.1$ 1 IAN4 0919 0.010 0.0)7 LO) I OAII2 O.OIC OAKYI 4.00S 48)6 Ak016 4ANI ALOOI 0802 0.01$ OAII6 OANI ld
'A
)0 39 )S 2$ 0.6 ~ ~ 1.1 4.1 4.1 0.2 IS IS Od
)7 3$ $4 33 32 3) 30 19 2$ 27 2$
OA4 1.14 1,22 I,IS I.D ldl ld2 ld I ll 1,16 ld I.D I.IOS OA)
OA)1 I.IOS Iddl 1.151 1.166 1,19 Id12 1,19 ).16$ 1,147 1.179 OA)$
LOI) O.L)5 OALIS lk029 0.01 ~ Leis O.OOS LOIO 0.00$ L013 LOll OAVl) OAN) 21 21 1.2 1.7 0.1 os L4 1.1 I.T 1.2 os 24 2) 21 21 20 19 ld IT 16 IS 14 OA4 I.I2 IA8 Idd Idl Id9 Idl Idl I AN I.II OA)
OA2S IAN4 1866 1.24 I.ldl Id5$ I.IS I Id)9 1955 I AN) OA21 OAI12 LO)6 OA)4 0929 LO)2 OAI)9 09)l OAI)5 0.021 0.00$
2.1 )A ).I IA 25 24 Id )A ILT I) 12 II Ie 9 8 1 6 5 lU) 0.7 I92 I.IS 281 I.)4 ISI O.T Lll 0919 OATS IL978 I.IOS lk981 I.IOI R97$ oSTS L)1 OANI Le)2 0.011 004$ 0.019 OAI)2 LO)1 ROIO
)9 21 4.1 ).9 1.9 ).2 ).2 ).I 20 4 ) 1 I OA8, LOSS IUI 0302 IUI 0302 OA8 LOSS O.NN OAKN OANS OAKN 4A )S 4A RMS Deviation: 1.83%
Key:
ox llwweea Oeetea 13 Delta S Duk
Figuro: Pago:
4 ST. LUCIE UNIT 1, CYCLE 14 Startup Physics Testing Report Flguro 6 Power Distribution -98%
unit p1~
Measured: BEACON Design:
Source ',U1072888 0213 08%pie PC/M4$ 4288 Power Lovel $$% j100%
Exposure Ill 75 CEA Poolrlon l138 IAOIO Boron Cene. ~8102 '1103 R ~ R IO L K I I I I I 217 216 115 214 e O.I>>0 0300 0300 OANI al>>0 0314 0314 IU>>
NNO ALOI4 4314 aoeo 00 A.T 4.7 0JI 213 212 111 210 ?I8 20$ 207 206 205 0320 OA10 a950 IAOO a960 1360 a9)0 0350 IL)le 0327 OATS 0357 IAO6 a98 I ANT 0951 lk676 IV)6 ALOCS 4.007 4AN6 4320 4A)7 4.021 Ako)6 4316
.2.2 AKT ALT .1.1 ~ kS .2.9 201 IIO 202 201 200 199 198 197 196 195 194 0 OA)0 IAKN I)NO 1.210 I.I40 1,240 I.1 40 1,180 IN0 1.040 OA20 I j OA)7 I A)67 I AOT 1d II I.IT 1.159 1.17 1312 IAO9 IA6$ OAlT 4.007 4ANT aoo ukool 4AII0 4.019 4AOO uke)2 Ako)9 Ake)$ 4AII7
.IA ALT 03 AI 4.9 .IS -)A -2.7 -23 .1.7 AAI 193 192 191 190 1$ 9 ISS 1$ 1 186 185 184 Icl 182 IS I OA)0 IA>>0 1.110 1.140 1.160 1.190 ldoo 1.170 1.130 IDIO 1.140 I ANO OA)0 OA)7 !.101 1.111 1,142 1.159 1.185 1,212 1,185 1.16 1.145 1374 I.I0 I OA)1 4.007 ALOII 4ANI AL002 ILOOI OAN5 Akoll 43 IS 403$ uko) I 4.007
.IA ~ IN ALI Ak) 0.1 .Ill .13 -2.7 3.2 .1.9 .IA 180 IT9 178 177 I T6 11$ 174 173 111 171 170 169 16$ 16T 166 IV)0 IA60 1.170 09)0 I.I)0 I JTO 0990 IJ)0 a910 1340 1340 IL920 1.160 IAKN 0320 IU26 I)X'3 1374 a941 1.161 1356 a99 1.229 IL989 1357 1.163 0.941 I 171 I AI67 0317 Akeos 4AIII 0.009 OAII4 OANO OANI 4319 ukoI7 4.01) 4311 4ANT 4ANT
.13 4JI ~ 1.2 o.s I.l OAI 0.1 -1AI ~ IA -2A) 4.9 ALT -2.2 165 164 16) 162 161 160 159 158 151 156 155 ISI IS) 151 151 lk670 IAOO 1.140 1.170 I JOO Id)0 1.190 IA>>0 1.180 Idle 1.110 1.150 1.130 IAOO a6$ 0 OA76 IAO9 1.145 1,16)
'ces 1.195 ldll 1.194 I A>>9 1.189 I J)1 1.195 1.161 1.142 I AOT 0.6TS AL006 4AK>> Akoos 0.007 4.002 4.004 4.009 4022 4AO5 ALOII 4.011 aoos 0.00$
4.9 4.9 4A OA OA AL2 43 ~ 13 .2.1 .I Al ~ 1.1 03 a7 150 149 14$ 141 146 145 144 14) 141 141 140 139 I)8 137 136 0960 Idle 1.160 1370 Id)0 1350 Id)0 I JTO 1320 13)0 I 3 10 Idso 1.150 1320 Ik970 0957 ldll 1.16 I JST Id)1 1352 134) 1.178 134) 1352 I J)1 1356 1.1$ 9 ldll Ik9S7 aoo 4AN) M00 aol3 Akoo) 4.002 431) Akoos 4)ro 4022 uk006 4AX>> ae>> 0.01)
I)5 0.3 -0.2 O.o I Al 4.2 4.1 ~ I.I 4.6 .1.9 ~ I.T ~ 13 4,5 43 O.T 13 I)4 OA>>0 OA>>0 I~
OAI9 l)l 132 ISI 1.190 130 a980 119 12$
Id)0 121 1.140 126 I AX>>
11$
I.lso 124 1320 12) 1.180 121 IL980 121 120 119 1.100 OA>>
OANO 0.000 1.100 1.170 1.190 1.190 1.170 Ol Iko IA07 O.OU 1.17
'ceo 1.18$
aoos a989
'col 1.189 1343
.'l.l 4313 1.11) 401)
IAI9 4319 1.11) 4AI)3 1341 4323 1,194 4AI14 039 uke le 1.185 OAX5 111 I A>>6 0.014 OO I IS 1.2 00 OA 4.9 O. I .1.1 .1.9 .ID .1.2 ~ 1.0 OA ao 13 117 IU20 0310 IU14 116 11$ 114 I IS 112 III I IO 109 10$ 107 106 10$ 104 10) 102 0314 OAN6 I A>>0 1310 Idle Id)0 I)NO 1340 0340 IJ40 IAKN I J)0 I 3 10 1370 a990 4ANI O 1.9 IL9S 1359 ldll 1319 137$ I Allo 0349 IAI19 137$ IAI79 I J19 I Jll 1359 a98 ~ 13 0.010 0.01 I 4AN) OANI 4019 4318 4029 Ako)9 43I 8 4019 OANI 0.011 0.010 I0 I 2.0 a9 4.2 O. I ~ 13 .I A .2.9 .2.9 .IA .13 0.1 4.'2 a9 IAI 100 0320 '6 0310 IO 0314 99 97 96 9$ 94 93 92 91 90 89 81 8$ 0314 OAN6 I.l)0 1.190 I doe a980 1.180 1320 1.150 Ik990 Llso I 3 10 Lllo 1.190 1,180 1.100 4ANI 4 18 IAN6 I.IT 1.18$ 099 1.194 1343 1.113 IAII9 I.IT) 1341 I.'189 1.1$ $ I.'11 I ANT -13 OAOI OA IS ALOIO 4314 4023 Ako)3 4AI29 Ako)3 4AIO OLO5 OAI0 a013
$4 k9 1.7 1.2 .I AI .1.2 ~ 18 ~ 2.9 .2.7 OA 03 1.2 0.100 OA>> 82 $1 80 T9 7$ TT 16 7$ 74 7) 11 Tl 70 69 OAI0 IAKKI 1340 1380 I JTO Id)0 1330 I3 10 I Jso I3 10 1320 IDIO 1.240 1.160 IJ30 I ILO 0357 id)I 1.159 1356 Id)2 1351 1341 I JTS Ido) 13$ 1 Id)2 1351 1.16 Id I 1 OAO) 0AO9 Ikoll aol ~ 4AI) 4AI12 432$ Ako)3 4AO) Ako)2 aNO 0.000 0.018 43 )8 I Jl Ll .I)I .1.7 .2.7 ~ 2.2 .2.7 -kc MLS 0.2 0.0 Ls 67 66 65 64 6) 61 61 60 59 5$ 57 56 55 54 $ )
0.710 IAOI 1,110 1.1$ 0 idee 1320 1.180 IA50 1.170 Idio 1.180 1.110 I.Iso 1.060 OA90 OATS IAOT 1.142 1.161 1.195 ld)2 1.189 IA179 1.194 Id)1 1.19$ 1.16) 134$ IAO9 OA76 NOS OAO) NQS 0.019 OANS 4AII2 4AI29 Ake)4 4022 ALOIS aoos OAQI aol4 48 4AI I JI ~ IAI .2.1 .I JI 43 OA )AI 52 51 $0 49 48 47 46 4$ 44 4) 41 41 40 )9 0340 1.110 I JIO a950 1.190 1310 a9$ 0 1320 0980 1360 1.160 0940 1,190 IA>>0 IL3)0 0321 1367 1.111 a941 1.163 1357 0.989 Id)9 OPI 1356 1.161 a94I 1.174 1368 IU)6 Ikel) 0AO) NO9 a009 OAOT 0313 4AKI9 4AN9 4.010 NNI Akeo) 4ANI aol6 0022 OANI L2 0.9 I AI -a7 .I Jl ao ALI ID ke 1.2
)1 36 )5 )4 3) )2 )I 28 21 26 25 OA50 1.140 1.210 1.180 I 180 1.210 1320 1,200 I.ITO 1.150 1.190 1,120 OA40 OA)7 1,101 1.174 1.145 LI6 1.1$ $ I Jll 1.1$ 5 1.159 1.141 I.IT I I.lol OA)1 IL01) rkal9 0.036 OAOS OAOS OANS a015 aoll OA0$ 0019 0.019 OAKO 28 )A SAI 1.7 1.1 ILT 1.2 0.9 0.7 IA I.T 0.7 24 11 11 20 19 1$ 11 16 IS I~
aoso I.II 0 IA>>0 1360 l doe 1.290 1.190 1340 IAI70 I A>>0 OA40 OA31 IA68 I A>>9 ldll I.IT 1359 1.11 ldlI IAO7 I ANT OA)1 aokl aoo) OA51 aoo O.olo NO I 0.020 0.029 OAOl ao)3 NXO ke ~ .7 25 2A 1.7 23 kl kl 0.7 IS 12 II 10 9 8 1 6 5 IU40 0.710 IAKN I.l)0 Let o I.) 20 a990 0.700 IU)0 0326 OA76 lk9$ 1 1387 a98 I A>>6 a9$ 1 a67s IU11 OAI14 OAO4 aoo OAO) O.IOO OAO4 ao)3 ao)$ O.OIO 43 3AI 3AI 0.9 2 I 0300 IV10 IU20 0.090 009 0314 Lll4 0.09 0AI I 0 0.006 0.006 OANO 10.0 1.9 1.9 0.0 RMS Deviation: 1.96%
Key.
x uiawie 14 cence eeffo S Oxk
St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report Table 1 Cycle 14 Reload Sub-Batch ID Sub-Batch Number of Assemblics Enrichment Rl 16 3.9 3.88 20 3.81 Sl 16 3.9 S2 12 3.88 S3 12 3.81 S4 16 3.78 SS 12 3.79 S6 3.76 S7 0.30 4.45 20 4.45 T3 12 4.45 T4 12 4.45 T5 36 4.45 15
St. Lucie Unit 1, Cycle 14 Startup Physics Testing Report Table 2 Approach to Critcality Dilution Rate Initial Boron Final Boron Dilution Time Concentration Concentration (minutes) 132 gpm NA 3 pumps not used 88 gpm 1818 1553 177 44 gpm 1553 1476 247 Table 3 CEA Group Worth Summary CKA Group Measured Worth Design
- Worth Percent Difference (pcm) (pcm)
Reference Group A 928.94 896.00 3.55 595.11 584.00 1.87 658.78 633.00 3.91 649.75 650.00 -0.04 761.36 779.00 -2.32 B&6 749.00 788.00 -5.21 5&3 859.30 868.00 -1.01 Total 5202.24 5198.00 0.08
- Reference 5.
Percent difference = (Measured-Design)/(Measured) *100 16
F