ML17256A708: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 03/08/1983
| issue date = 03/08/1983
| title = App C to Structural Reanalysis Program, Utility Pole Tornado Missile Trajectory Analysis.
| title = App C to Structural Reanalysis Program, Utility Pole Tornado Missile Trajectory Analysis.
| author name = DUNN W L, TWISDALE L A
| author name = Dunn W, Twisdale L
| author affiliation = APPLIED RESEARCH ASSOCIATES, INC.
| author affiliation = APPLIED RESEARCH ASSOCIATES, INC.
| addressee name =  
| addressee name =  
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:APPENDIXCtotheSTRUCTURALREANALYSISPROGRAMForTheR.EGINNANUCLEARPOWERPLANT8305310157830519PDRADOCK05000244PPDR March8,1983ARAReportC556RTIReport44T-2488-1UTILITYPOLETORNADOMISSILETRAJECTORYANALYSISL.A.TwisdaleW.L.DunnAppliedResearchAssociates,Inc.SoutheastDivision4917ProfessionalCourtRaleigh,NorthCarolina27609PreparedforResearchTriangleInstituteP.O.Box12194ResearchTrianglePark,NorthCarolina27709andGilbertAssociates,Inc.P.O.Box1498Reading,Pennsylvania19603UnderPurchaseOrder201494 TABLEOFCONTENTSl.INTRODUCTION.2.APPROACH.a.TornadoWindfield...................b.TrajectoryModelc.MissileAerodynamicsd.InjectionModelPage53.TRAJECTORYSIMULATIONRESULTS...............84.COMPARISONSTOOTHERWORKANDFIELDOBSERVATIONS......13a.6-DTrajectoryModelPredictions...........14b.3-DBallisticModel..................14c.UtilityPoleTransport:Xenia,OhioTornado.....15d.StoredUtilityPoles:Brandenburg,Kentucky.....165~CONCLUSIONS~~~~~~'~~~~~~~~~~'~~~~~~18REFERENCES19
{{#Wiki_filter:APPENDIX C to the STRUCTURAL REANALYSIS PROGRAM For The R. E GINNA NUCLEAR POWER PLANT 8305310157 830519 PDR ADOCK 05000244 P             PDR
-UTILITYPOLETORNADOMISSILETRAJECTORYANALYSIS1.INTRODUCTIONTheobjectiveofthisstudywastoperformtrajectorycalculationsofutilitypolemissilesintornadowindfields.TheNuclearRegulatoryCoomission(NRC)-definedutilitypole[1]wasspecifiedasthepostulatedmissilefortheseanalyses.Tornadowindfieldswithpeakvelocitiesof132,150,and188mphwerespecified.Theutilitypoleswereinjectedat20ftabovegrade,whichcorrespondsapproximatelytothecenterofmassofastanding35ftpole.Trajectorycalculationsweremadeusingtherandom-orientationsix-degree-of-freedom(R06-D)trajectorymodel[2,3,4g,whichaccountsfordrag,lift,andsideaerodynamicforcesinatimehistoryintegrationoftheequationsofmotion.Themaximumheight,range,andspeedattainedbythemissileswereextractedfromthetime-historyflightdata.Inadditiontothesenumericalcalculations,severalcomparisonsoffieldobservationsandtrajectorypredictionsofutilitypolemissileshavebeenmade.Thisreportdocumentsthemethodsandresultsofthisstudy.2.APPROACHTheapproachusedforthetrajectoryanalysesisbasedprimarilyonthemodelsanddatareportedinRefs.2-10.Abriefsummaryofthetornadowindfieldmodel,traj'ectorymodel,missileaerodynamics,andinjectionmodelarepresentedinthefollowingparagraphs.a.TornadoWindfield,ThetornadowindfieldmodelusedhereinisdocumentedindetailinRef.4.Thissynthesizedwindfieldmodelwasdevelopedexplicitlyformissiletransportanalysisandincludes5basicparametersthatdefinethe3-dimensionalflowcharacteristicsgiventhepeakspeedUmaxandpathwidth
-I-Mt.Theseparametersare:translationalspeed(UT);theratioofradialtotangentialflowcomponents(y);theradiustomaximumwindspeed(pm);coreslope(S);andreferenceboundarylargerthickness(6o).Asensitivityanalysiswas,performedI4,6]usingaone-at-a-timeexperimentaldesignandthreelevelinputpattern.ThebasicconclusionsofthisanalysisfortornadoeswithUax=300mphandtwotypesofmissileswere:(1)Forgiventornadointensity,thenumberofmissilesgeneratedandtheirtransportcharacteristicsaremostsensitivetothetranslationalspeed(UT)ofthestorm.LowvaluesofUTresultinmoremissileinjectionsandhighermissilevelocitiesforspecifiedUmax.(2)Forgiventornadointensity,anincreaseintheradialinflowcomponentrelativetothetangentialcomponentincreasesthenumberofmissilesinjectedandleadstohigheraveragevaluesofmaximumvelocities,ranges,andaltitudes.(3)Missilesinjectedandtransportedbylarge-coretornadoesgenerallyattainhighermaximumvelocitiesbutlowerpeakaltitudesthanthosepredictedwithsmallerpm.Theabsolutenumbersofmissilesproducedareproportionaltotheradiusofthecore.(4)Theslopeofthecoredoesnothaveanappreciableeffectonmissiletransport,evenformissilesinjectedathighelevations.(5)Relativelysmallvariationsinairdensitycanproduceproportionalchangesinmissilerange,buttheeffectofairdensity(duetoentraineddust,etc.)onmaximumvelocitiesisheavilydependentonthemissileinjectionheight.Hence,fromthisanalysiswehaveabetterunderstandingofhowtocharacterizethetornadowindfield(giventhepeakwindspeed)tomaximizemissiletransportparameters.Asecondsensitivityanalysiswasmadetoassesstheimportanceofcertainuniqueflowcharacteristicsthatexistinseveralprominenttornado models.Toevaluateexplicitlytheeffectsofbasicdifferencesamong'indfielddefinitions,apairwisecomparisonstudywasperformedL4,6]withthesynthesizedmodelinaseriesofmatchedcomparisonswithothermodels.Fromtheresultsofthefirstphaseofthesensitivityanalysis,themoreimportantvariablesinthesynthesizedwindfieldwereidentifiedasUT,y,andpm.Inthisphase,thepairwisemodelcomparisonsweremadewiththeUT,y,andpmvaluesinthesynthesizedmodelmatchedtotherespectivevaluesusedinthewindfieldmodelselectedforcomparison.Threemodelswereselectedonthebasisoftheirdistinguishingfeaturesrelativetothesynthesizedmodelandrecentnessofdevelopment:theFujitaDBT-77tornadomodel[11],theFujitasuctionvortexDBT-78flip,andtheTRWPhaseIIImodelL12].Theresultsofthecomparativemissiletransportanalysisindicateinsignificantdifferencesformostofthevelocityandrangestatistics.FortheFujitaDBT-77comparisons,thesynthesizedmodelinjectsmoremissileswithhighermeanvaluesofmaximumvelocities,whereastheFujitamodelpredictsslightlyhighervariancesandextremevalues.ThecomparisondataexhibitdifferencesthataremuchlessthanthoseobtainedfromvariationsinUTandyforthesynthesizedmodelalone.Forthesuctionvortexmodel,anumberofsimulationsweremadewithsingleandmultiplesuctionvorticeswithboththepipeandautomissiles.Theresultsindicatethatthemissilegenerationandimpactpositionsareinfluencedbyembeddedvortices.However,forthesamereferencewindspeedintensity,atornadowithnosuctionvorticesyieldshighermissiletransportcharacteristicswhencomparedtoasysteminwhichthesamemaximumwindsoccurinthefast-movingembeddedvortices.Thus,forconservative l
-predictionsofmissiletransport,thereisnoneedtomodelsuctionvorticesformissi1etrajectoryanalysis.FortheTRWmodel,moreinjectionsresultforthepipemissile,butthesynthesizedmodelpredictshighervelocityandrangestatistics.Ingeneral,thedatasuggestthatthetransportdifferencesinthemodels,withthesameUma,p,andy,arelimitedprimarilytolowinjectionheights.TheTRWmodelgenerallydominatesatz=10ft,andthesynthesizedmodelat33ftwithsimilartransportstatisticsoverthecombinedelevations.OnthebasisofthesesensitivitystudiesandtheresultingupdatingoftheUT,y,andpparametersinRef.4,thesynthesizedwindmodelprovidesatestedwindfieldmodelfor'utilitypoletransportcalculations.b.TrajectoryModelrTrajectorymodelsthathavebeenusedintornadomissiletrajectoryanalysesinclude:(1)theballistic3-Dmodel,whichassumesaconstantdragforceandneglectsliftandsideforces;(2)therandomorientation,6-D(R06-D)model,inwhichaerodynamicdrag,lift,andsideforcesaredependentonmissileorientation,whichisperiodicallyupdated;and(3)theconventional6-0model,whichtracksmissiletranslationandrotationusingasystemof6coupleddifferentialequations.DetaileddiscussionandcomparisonsofthesemodelsarepresentedinRef.4.TrajectorycomparisonsofthesemodelshavebeenmadeusingutilitypolemissilesL2],.12-inpipeandautomobilemissiles[43.Onthebasisofthesecomparisons,theballistic3-Dmodelhasbeenshowntounderpredictvelocity,lift,andrangecharacteristics.TheR06-Dmodelprovidespredictionsthattendtoboundthoseofthe6-Dmodelanditisconsiderablymorecomputationallyefficient.
c.MissileAerodynamicsAmodeloftheaerodynamiccoefficientsforageneralclassofmissileswasdevelopedinRef.2andlaterupdated[4)toreflectnewaerodynamicdatabasedonfullandsubscaletests(12,133.Amodifiedcrossflowtechniquehasbeendevelopedtopredictdrag,lift,andsideforcecoefficientsasafunctionofangleofattackandrollangle,giventhedragforcecoefficientsfortheobjectinflownormaltothemajorbodyaxes.Table1summarizesthemodelforcylindralmissilessuchastheutilitypole.Aplotofthemodelpredictedvs.utilitypolewindtunneldata[13]for3differentRenumbersisshowninFigure1.Theseresultsindicatecloseagreementbetweentheaerodynamicmodelandmeasuredcoefficients.d.InjectionModelAsthetornadowindfieldpassesoveranobject,thedynamicpressureinducesaerodynamicforcesthataredependentonthemissileshape,orientation,surfaceroughness,andproximitytootherobjectsandsurfaces.Iftheseaerodynamicforcesaregreaterthantherestrainingforces,suchasgravity,slidingfriction,andfoundationembedment,theobjectwillbedisplacedbythewindfield.Ingeneral,theseaerodynamicforceswillnotactthroughthecenterofmassofthebodyandthemissiletumblesandinteractswiththegroundandotherobjectsduringthisinjectionphase.Hence,detailedmodelingofinjectionrequiresinformationonrestrainingforcetime'historiesandinteractionmodelstosimulatemissilecollisions.Inviewofthecomplexitiesofmissileinjection,tornadomissiletrajectoryanalysesgenerallytreatinjectionparametricallythroughthespecificationoftheinitialconditionsofthemissileattheinstantitisreleasedtothetornado.Oncereleased,themissileisassumedtobeactedon ll
'TABLEl.AERODYNAMICCOEFFICIENTSFORCYLINDRICALMISSILESGeometricalshapeMissiletypeMissilesetnumbers[2]Axialdragcoefficient,CDaSkinfrictioncorrection,fCross-flowcoefficient,CDcRightcircularcylinderRods,pipes,poles1,2,3,41.16Solid(rods,poles)0.812Hollow(pipes)1,L/dc10.724+0.276e2(L/d-1)1<L/d<4'0.681+0.0108L/d,L/del.25,(subcritica1)1.80.85[1.9--a],(supercritical)Aspect-ratiocorrection,k1-8(d/L),d/LC.02058q042e-(0.51+5.6(d/L-0.02))d/L>0.02Dragcoefficient,CDmd4La--.CDf)cosa(+CDcksinaLiftcoefficient,CLSidecoefficient,CSRef.area,A1fd---CDafcosa[cose)sinu+4LCDckcosasjn2aLd 0lI Table1oooo44oo<<IW~4I.<<4I.NoRef.(13)p~<<r<<<<<<<<<<<<<<w(a)DragCoefficientTable144oo4oo4ooo<<~l04E.S04lgloLwooRef.(13)oo~<<<<<<<<<<<<<<<<~y<<4(b)LiftCoefficientFigure1.AerodynamicCoefficientsforUtilityPoleHissile
!onlybygravityandaerodynamicforces.AmissileinjectionmethodologywasdevelopedinRef.[2]andsubsequentlyrefined[4]toconservativelyaccount"forthecomplexitiesanduncertaintiesinaparametricinjectionmodel.Theapproachinvolvesatwo-stepprocedure:(1)theverticalandhorizontalaerodynamicforcetimehistoriesonthemissilearecalculatedasfunctionoftornadoposition,and(2)thepositionofthetornadocorrespondingtopeakaerodynamicforcesarethendetermined.Thispositiondefinesthetimeofreleaseofthemissilewithrespecttothemovingwindfield.Injectionstudieshaveshownthatthismethodprovidesforoptimummissiletransportandtendstoresultinmissiletrajectoriesthatboundthosedocumentedinfieldobservations.Thisoptimumreleasecriterionisusedhereinintheutilitypoletrajectoryanalysis.!-:3.TRAJECTORYSIMULATIONRESULTSUsingthemodelspreviouslydescribed,trajectorycalculationshavebeenmadefortheutilitypolemissle[1].Thepostulatedmissileis35ftlongwithadiameterof13.5inchesandweightof1,122lbs.Thecenterofmassofthemissileispositionedat20ftabovegrade.PeakUmaxwindspeedsof132,150,and188mphareconsidered.Giventhesepeakwindspeeds,theremainingtornadoparametershavebeendefinedfromtheinformationinRef.4.Amediancasewindfield,correspondingtothemeansofthedistributionsonUT,y,pm,S,and6fortherespectiveintensitylevelhasbeenspecified,asnotedinTable2.Forexample,fora150mphtornado,thedistributionontranlationalspeedisassumedinRef.4tobetruncatednormal,rangingfrom5to55mphwithameanof35mphandastandarddeviationof11mph.Hence,forthemediancase,UTisassignedavalueof35mph.Inaddition,amoreseveresetofparametershasbeendefinedusingtheresultsofthepreviouslyreported


TASLE2.TORNADOWINDFIELDPARAMETERS(-.ParameterCaseParameterValuesForEachWindfieldUm=132mphUm=150mphUm=188mphTranslationalMedianSpeed,UT(mph)2o30535134520RadialInflow,yMedian260.71.1,0.71.10.71.1Rax(<<)Median20375200375200500300Median200.1500.1500.150I-s(ft)Median20450500450500450500 IIsensitivityanalysis[4,6].Thissetisdenotedasthe2acaseinTable2sinceeachparameterhasbeensetatitsp+2a(ory-2adependingonthesignthatmaximizesmissiletransport).Thus,sincelowUT,highY,arelowpmaximizemissiletransport(givenU),theseparametersaresetmax'espectivelyatp-2a,p+2o,andp-2o,respectively.This2vcasewasincludedtostudytheinfluenceofvariationsinthethreedimensionalwindfieldonthetrajectoryoftheutilitypolemissile.Theycorrespondtoaboutthe95percentileofeachrespectivedistribution.Thetornadoispositioned(seeFig.2)relativetothemissileatthat'offsetpositionthatcorrespondstothepeakwindswithinthetornado.AsnotedinRefs.L3,4],thisoffsetpositionisgivenbypcos(tany).Themissileisreleasedtothemovingtornadoatpeakaerodynamicforce.and.theequationsofmotionarenumericallyintegratedtotrackthemotiontimehistoryofthemissile.Drag'ndliftforces(theradiallysymmetricutilitypolehasnosideforce)arecalculatedusingthecross-flowequationsinTable1.Themissileistrackeduntilthecenterofmassofthepolereachesgroundelevation(z=0).Thehorizontaldistancetraveleduntilthecenterofmassofthepolefallsfromz=20fttoz=0isdefinedastherangeofthetrajectory.Table3summarizestheresultsofthesetransportsimulationsforboththe.medianand2awindfields.Forthe132mphtornado,theutilitypoledoesnotliftforanyoftheorientationsconsidered.Thepeakaerodynamicforceatinjectionisabout1,800,lbsandisdirectedhorizontallyfortheverticalandhorizontalpoleorientations.Whenthepoleispitchedintowind(orientations3and4),thepeakverticalinjectionforceisabout700lbs.Hence,thepoledropsassoonasitisreleased.Forthe132mphtornado,weestimateapeakrangeofabout34ftandapeakvelocityof37mph.10 0
March 8, 1983 ARA  Report C556 RTI Report 44T-2488-1 UTILITY POLE    TORNADO  MISSILE TRAJECTORY ANALYSIS L. A. Twisdale W. L. Dunn Applied Research Associates, Inc.
PlantTargetArea~mo(X;,Y;,Z;)MissiIeInitiaIPositionfi,gure2.TrackLengthandOffsetCoordinateSystemforMissileInjectionModel11 MI'.'lTABLE3.TRANSPORTCHARACTERISTICSOFUTILITYPOLEMISSILESimulationParametersTransportCharacteristicsByPeakNndspeed(mph)CaseDescriptionHissileOrientationAAA(x,y,z)IHaximumHeight(ft)2HaximumRange(ft)3HaximumVelocity(mph)Um~132Um~150Um~188Um~132Um~150U'm~188Q~132UmI150Um~188Hedianllindfield:(UT~YPm,60~5atmidvalue)Vertical(0,0,1)Horizontal(0,1,0)45X(-0.71,0,0.71)45XY(-0.5,-0.5,0.71)2020202020202020202020.1202726232735342941495411188243330304040323650536457Hedian+2oWndfield:(UT,Y,P,ao,satu+2o)Vertical(0,0,1)Horizontal(0,1,0)45'(-0.71,0,0.71)45'Y(-0.5,-0.5,0.71)202020202020202020202221273127343641345854571549435-4335383735364555577658Heightabovegrade;missileinjectedat20ft.lRangeinX-Yplaneuntilgroundimpact.3Usuallyoccursatgroundimpact.
Southeast Division 4917 Professional Court Raleigh, North Carolina 27609 Prepared  for Research  Triangle  Institute P.O. Box 12194 Research  Triangle Park, North Carolina    27709 and Gilbert Associates, Inc.
P.O. Box 1498 Reading, Pennsylvania      19603 Under Purchase    Order 201494


!--Theresultsforthe150mphtornadoaresimilartothoseforthe132mphtornadointhattheaerodynamicforcesarenotsufficienttoliftthepole.Thepeakaerodynamicforceatinjectionisabout2,200lbs,ofwhichabout900lbsactverticallyforthefavorableorientations.Sincethepoleweighs1,122lbs,itacceleratesdownwarduponrelease.Maximumpredictedrangeandspeedare41"ftand45mph,respectively.Forthe188mphtornado,thewindspeedsproduceverticalaerodynamicforcesthatexceedtheweightofthemissile(fororientations3and4),whichproducesliftatinjection.Themaximumliftisabout2ft(from20to22ftabovegrade),amodestamountthatisconsistentwiththepeakverticalaerodynamicforceofabout1,400lbs.Thisliftresultsinamuchlongerrange(upto154ft),andimpactvelocity(76mph)sincetheobjectissustainedinthewindsabouttwiceaslongasbefore(2secvs1sec).AfewadditionalsimulationsweremadewiththepolepositionedatzerooffsetforthecasesgiveninTable3.TheresultsshowreducedtransportcharacteristicswhencomparedtothevaluesinTable3.ItisnotedthatotheroffsetsmightresultintransportthatcouldapproachorslightlyexceedthoseinTable3.However,previousstudieswithratherdenseinjectiongridshaveshownthattheoffsetpmcos(tan-1.y)generallyprovidesaccurateestimatesofpeaktransportparameters.4.COMPARISONS,TOOTHERWORKANDFIELDOBSERVATIONSThepreviousresultsindicateverylittleliftandtransportlessthan200ftforutilitypoletypemissilesinjectedintornadoeswithpeakwindspeedsupto188mph.Thesepredictionscanbecomparedtoothercalculationsandfieldobservations.Theavailablecomparisonsgenerally13 correspondtohigherwindspeeds,butwillneverthelessprovidesomebasisforjudgingtheseresults.a.6-DTrajectoryModelPredictionsRedmannetal.513)simulatedthetrajectoriesofutilitypolemissilesin255mphtornadoes.Withtheutilitypoleat20ftelevationpitchedintothewindata45degreeangle,themissileliftedtoamaximumheightof40ftduringa339ftflightandimpactedthegroundat113mph.Foraninitialangularvelocityof10rpm,whichisamorerealisticinjectioncondition,thepoleliftedonly4fttoanelevationof24ftandlandedat91mphwitha140ftrange.TheseresultstendtosupportthetrendestablishedinTable3.At188mph,wenotedthattheverticalaerodynamicforceswerebeginningtoexceedmissileweightandsomeliftwasnoted.At255mph,onewouldexpectthemissiletoliftsubstantiallyhighersincetheaerodynamicforceswouldbeabout(255/188)2='1.8timesgreater.AsafurthertestoftheR06-DmodelusedinthedevelopmentofTable3,10simulationsweremadeusinga255mphtornadowithinitialorientation3,similartothatreportedinRef.13.TheR06-Dmodelpredictsanaveragemaximumheightof43feetwithrangesuptoabout500ftandimpactspeedsupto133mph.Theseresultstendtoboundthe6-Dmodelpredictions,andaresimilartopreviouscomparisonsofthe6-DandR06-DmodelsI2,4].b.3-DBallisticModelSimiuandCordesf14]usedthesimplifiedballistic3-Dmodelforcalculationofmaximumhorizontalmissilespeeds.Forthe35ftutilitypole,theypredictpeakhorizontalspeedof60mphina240mphtornadowhentheutilitypoleisinjectedat131ftelevation.Theseresultsareclearly
TABLE OF CONTENTS Page
: l. INTRODUCTION    .
: 2. APPROACH    .
: a. Tornado Windfield . . . . . . . . . . . . . . . . . . .
: b. Trajectory      Model
: c. Missile Aerodynamics
: d. Injection    Model                                                  5
: 3. TRAJECTORY SIMULATION RESULTS          ...............                   8
: 4. COMPARISONS TO OTHER WORK AND FIELD            OBSERVATIONS......       13
: a. 6-D    Trajectory    Model  Predictions    ...........             14
: b. 3-D    Ballistic  Model..................                          14
: c. Utility Pole Transport: Xenia, Ohio Tornado            .....       15
: d. Stored Utility Poles: Brandenburg, Kentucky            . . . . . 16 5~ CON CLU S I ONS  ~  ~  ~ ~  ~ ~    ~ ~  ~ ~ ~  ~ ~ ~ ~ ~
                                                            ' ~ ~ ~ ~ ~ ~  18 REFERENCES                                                                19


unconservativewhencomparedtothe6-DandR06-Dmodelpredictions(forzo=20ft)presentedpreviouslyandraisequestionsregardingtheadequacyofthe3-Dballisticmodelforslenderbodyshapes.~~I.:c.UtilityPoleTransport:Xenia,OhioTornadoVMcDonald$15]andMehtaetal.I16]reportthetransportofautilitypoleintheXenia,Ohio,tornadoofApril3,1974.Thepolefailed2ftabovethegroundandwastransportedatotaldistanceof160ftbyF5tornadowindsestimatedatabout'250mph.Thepolewas10in.indiameterand25.5ftinlength.Mehtaetal.[16]notethattheotherutilitypolesthathadfailedatthislocationinthetornadopathwerefoundwithin10to15ftoftheiroriginalpositions.TheR06-Dtrajectorymodelandpeakaerodynamicforceinjectionmodelhasbeentestedagainstthesefieldobservations[4g.TosimilatetheF5tornadowindspeeds,a250mphtornadowithpm=500ft,y=0.7,andUT=40mphwasusedastheinputtothetransportmodel.The250-mphintensityat33ftisbaseduponTwisdale's[2,8]estimatedmidrangeofF'5storms.Theutilitypolewaspositionedatzo=15fttocorrespondtotheinitialheightofthecenterofmassabovethegroundplane.Simulationswithaninitialverticalorientationofthepoleresultinmaximumpredictedtransportrangeslessthan53ft.Usingfavorableorientationstoaccountforinitialrepositioningafterthepolefails,maximumtransportrangesof283,651,and161ftarepredictedformissileoffsetsontherightsideofthetornadocenter.Amaximumimpactvelocityofabout140mphispredicted.Fora200-mphtornadowithpmo=300ft,thepredictedrangesare62,121,and91ftforoffsetsof100,150,and200ft,andthemaximumimpactvelocityis63mph.Theresultssuggestthat,withafavorableinitialmissileorientation,windspeedsinthe15
UTILITY POLE  TORNADO    MISSILE TRAJECTORY ANALYSIS
- 1. INTRODUCTION The  objective of this study      was  to perform trajectory calculations of utility pole    missiles in tornado windfields.        The Nuclear    Regulatory Coomission (NRC)-defined      utility pole [1] was    specified  as the  postulated missile for these analyses.         Tornado windfields with peak        velocities of 132, 150, and 188    mph were  specified. The  utility poles  were  injected at    20  ft above grade, which corresponds        approximately to the center of        mass  of  a standing 35  ft pole. Trajectory calculations      were made using the random-orientation six-degree-of-freedom          (R06-D)  trajectory  model    [2,3,4g, which accounts  for drag,    lift, and  side aerodynamic forces in      a  time history integration of the equations of motion.           The maximum  height, range,     and speed attained by the missiles were extracted from the time-history                flight  data. In addition to these numerical calculations, several comparisons of field observations and trajectory predictions of          utility pole    missiles    have been made. This report documents the methods and results of            this study.
: 2. APPROACH The approach    used  for the trajectory analyses is      based    primarily  on  the models and data reported      in Refs. 2-10.     A brief  summary    of the tornado windfield model, traj'ectory model, missile aerodynamics,             and  injection    model are presented    in the following paragraphs.
: a. Tornado Windfield The  tornado windfield model used herein is documented in detail in Ref. 4. This synthesized windfield model        was developed    explicitly for missile transport analysis      and  includes  5  basic parameters that define the
, 3-dimensional flow characteristics          given the peak speed    Umax and  path width


;I:200to250mphintervalcouldhaveproducedtheobserved160-fttransportrange.Thefactthatmanyofthefailedpoleswerenotsignificantlydisplacedconfirms,thepredictionsoftheR06-DtrajectoryanalysiswithunfavorableinitialorientationsandtendstosupporttheuseoftheR06-Dtransportmodel.d.StoredUtilityPoles:Brandenbur,KentuckTheBrandenburgtornadoofApril3,1974,witharatedintensityofF5passeddirectlythroughthestorageyardoftheRuralElectricCooperative.HcDonald[15]andMehtaetal.[16)presentphotographsthatdocumenttheeffectsofthestormonvariousobjectsinitspath.Ofparticularinterestisanumberof8-in.-diameterby20-ft-longutilitypolesthatwerestoredhorizontallyonarackabout5ftabovethegroundelevation.Thepolesweredisplacedfromtherack,butnoneweretransportedsignificantly.TheeffectsofanF'5tornadoontheseobjectshasbeensimulated[4gwiththeuseofboththeinitialhorizontalstorageconditionsofthemissilesandafavorableinitialorientation.A250-mphtornadowasassumedinbothcases.Forthehorizontalinjectionmode,themodelpredictsthatthepolesmayexperiencetotalforcesthatapproach1,400lb,butonlyasmallfractionofthisisdirectedvertically.Hence,thepredictedtrajectoriesareparabolic,andthepolesdroptothegroundwithin30ftoftherack,asindicatedinFigure3.Thistransportcomparescloselytothepost-tornadoobservationsofthemajorityofthepoles.Favorableinitialmissileorientationswerealsosimulatedthatcouldhaveresultedforseveralmissilesinthestackastheyinteractedduringtheirinitialresponsetothetornadicwinds.Transportrangesbetween50and273ftresultedforthesesimulations,dependingupontheexactorientation16
Mt. These parameters    are:  translational      speed  (UT); the    ratio of radial to
- tangential flow components (y); the radius to slope (S); and reference boundary larger thickness (6o).
maximum windspeed        (pm); core A sensitivity analysis      was, performed    I 4,6] using    a  one-at-a-time experimental design and three level input pattern.               The  basic conclusions of this analysis for    tornadoes with    U  ax
                                                  = 300 mph and    two types    of missiles were:   (1) For given tornado      intensity, the      number  of missiles generated        and their transport characteristics        are most sensitive to the translational              speed (UT)  of the storm.     Low  values of    UT  result in    more  missile injections        and higher missile velocities for specified            Umax.   (2) For given tornado intensity,  an  increase in the radial inflow component relative to the tangential component increases the          number  of missiles injected        and leads  to higher average values of      maximum  velocities, ranges,      and    altitudes.
(3) Missiles injected and transported by large-core tornadoes generally attain I- higher  maximum  velocities but lower        peak  altitudes than those predicted with smaller  pm. The  absolute numbers of missiles produced are proportional to the radius of the core.       (4) The slope of the core does not have              an  appreciable effect  on  missile transport,     even  for missiles injected at high elevations.
(5) Relatively small variations in air density can produce proportional changes  in missile range, but the effect of air density (due to entrained dust, etc.)  on maximum    velocities is heavily      dependent    on  the missile injection height.       Hence, from  this analysis      we  have  a  better understanding of how  to characterize the tornado windfield (given the              peak windspeed)      to maximize  missile transport parameters.
A second  sensitivity analysis      was made    to assess    the importance of certain unique flow characteristics that exist in several prominent tornado


Uma=250mph5ft//Xw/PredictedRange~30ft(a)HorizontalInitialOrientationUmax250mph32ftPredictedRange<273ft(b)FavorableRandomInitialOrientationFigure3.PredictedRangesforBrandenburgUtilityPoles17 CJandtheoffsetfromthetornadocenter.Themaximumheightandrangepredictedare32feetand273ft,respectively,asnotedinFigure2.Thepeakvelocityattainedbythepolewas95mph.ItisnotedthatsimulationswithUmax=200mphpredictrangesof13ftand100ft,respectively,forthehorizontalandrandominitialorientations.TheBrandenburgpolesaresignificantinthesensethattheobjectsrespondedtothewihdfield,butfew,ifany,alignedfavorablytobeliftedbythewindsandhencetobetransportedthedistancethatwaspredictedforfavorableinitialorientation.5.CONCLUSIONSOnthebasisofthisbriefstudy,thefollowingconclusionsaremade:'2.Tornadoeswithpeakwindspeedsof132and150mphgenerateaerodynamicliftforcesthatarelessthantheweightofthepostulatedutilitypolemissile.Estimatesofthepeakrange,foraninjectionheight(heightabovegradeofpolecenterofmass)of20ftare27ftand41ft,respectively,forthe132and150mphwindfields.Rangeisdefinedasthehorizontaldistancetraveledasthepolecenterofmassfallsfromz=20fttoz=0.Maximumvelocitiesareestimatesatabout37and45mph,respectively,forthe132and150mphtornadoes.Tornadoeswithpeakwindspeedsof188mphcanproduceabouta2ftlift(from20ftinitialelevation),arangeupto154ft,andapeakvelocityofabout76mphfortheutilitypolemissile.These.conditionsoccurwhenthepoleispitchedintothewindatabouta45degreeangleandreleasedatpeakaerodynamicforce.Theseareidealizedandveryconservativereleaseconditionsthatwouldbedifficulttoduplicateinanactualtornadostrike.3.Maximumheightattainedduringatumblingwind-bornetransportforUmax<188mphbyanypartofa35ftutilitypolewouldprobablynotexceed35to40ft.Otherinjectionmodes,suchasaramp-typeinjectioncouldproduceupwardricochetofahorizontally-translatingpole.However,thisinjectionmodewouldrequire"ideal"missileoriginposition,terrain,andtargetconfigurationinordertoposearealisticthreattoelevatedtargets.Theseresultsareconservativeinthemissileinjectionreleasecriterion,definitionofrangeandpeakvelocity,positioningofthemissilerelativetothewindfield,andthewindfieldflowcharacteristics.Forexample,thetipofthepolewillstrikethegroundasthepolebeginstodropandthis18 interactionwillreducethehorizontalmomentum.Hence,theestimatesofpeakrangeandhorizontalvelocityareveryconservative.Inaddition,theweightofthepoleislessthanthe1,490lbsusedinsometornadomissilecalculations=[e.g.,17].Usingthe1,490lbweight,themaximum154ftrangeinthep+2cr188mphtornado(seeTable3)reducestolessthan100ft.Ingeneral,fieldobservationsdonotconfirmsignificantutilitypoletransportforthewindspeedsconsideredherein.OurbestestimateoftypicalutilitypoleresponseforUmax<188mphwouldbeatrajectoryrangefrom0to50ftwithhorizontalmissilespeedsapproaching50-60mph.REFERENCESl.U.S.NuclearRegulatoryCommission,StandardReviewPlan,"MissilesGeneratedbyNaturalPhenomena,"Section...,Washington,D.C.,November1975.2.Twisdale,L.A.,etal.,"TornadoMissileRiskAnalysis,"ElectricPower,ResearchInstitute,PaloAlto,California,NP-768andNP-769,May1978.!3.Twisdale,L.A.,Dunn.W.L.,andDavis,T.L.,"TornadoMissileTransportAnalysis,"NuclearEnineerinandDesin,52,1979,pp.296-308.4.Twisdale,L.A.,andDunn,W.L.,"TornadoMissileSimulationonDesignMethodology,"EPRINP-2005,ElectricPowerResearchInstitute,PaloAlto,California,August1981.5.Dunn,W.L.,andTwisdale,L.A.,"ASynthesizedWindfieldModelforTornadoMissileTransport,"NuclearEnineerinandDesin,52,1979,pp134-144.6.Twisdale,L.A.,"AnAssessmentofTornadoWindfieldCharacteristicsforMissileLoadingPrediction,"Proceedins,FourthU.S.NationalConferenceonWindEngineeringesearch,UniversityofWashington,Seattle,Washington,July1981.7,.Twisdale,L.A.,"ARisk-BasedDesignAgainstTornadoMissiles,"ProceedinsoftheThirdASCESpecialtyConferenceonStructuralDesignoucearPlantFacilities,Boston,Massachusetts;April1979.8.Twisdale,L.A.,"TornadoDataCharacterizationandWindspeedRisk,"JournaloftheStructuralDivision,ProceedingsASCE,Vol.104,No.ctober8.9.Twisdale,L.A.,"RegionalTornadoDataHaseandErrorAnalysis,"Prerints,AMS12thConferenceonSevereLocalStorms,SanAntonio,exas,anuary1982.19 10.Twisdale,L.A.,andDunn,W.L.,ProbabilisticAnalysisofTornadoWindRisks,"JournalofStructuralEnineerin,Vol.109,No.2,February1983.12.13.14.Fujita,T.T.,"WorkbookofTornadoesandHighWinds,"SMRP165,UniversityofChicago,Chicago,Illinois,September1978.Redmann,G.H.,etal.,"WindFieldandTrajectoryModelsforTornado-PropelledObjects,"ElectricPowerResearchInstitute,PaloAlto,California,Draft,1980.Redmann,G.H.,etal.,"WindFieldandTrajectoryModelsforTornado-PropelledObjects,"EPRINP-748,ElectricPowerResearchInstitute,PaloAlto,California,May1978.Simiu,E.,andCordes,M.,"TornadoBorneMissileSpeeds,"NBSIR-76-10-50,NationalBureauofStandards,Washington,D.C.,April1976.15.McDonald,J.R.,"Tornado-GeneratedMissilesandTheirEffects,"ProceedingsoftheSymposiumonTornadoes,Texas,TechUniversity,Lubbock,Texas,June1976.16.Mehta,K.C.,etal.,"EngineeringAspectsoftheTornadoesofApril3-4,1974,"CommitteeonNationalDisasters,NationalAcademyofsciences,1976."SafetyRelatedSiteParametersforNuclearPowerPlants,"WASH-1361,U.S.AtomicEnergyComission,DirectorateofLicensing,OfficeofSafety,Washington,D.C.,January1975.20 4tI
models. To  evaluate  explicitly    the effects of basic differences among'indfield definitions,    a  pairwise comparison study        was performed      L4,6] with the synthesized model in        a series of matched comparisons with other models.
}}
From  the results of the      first  phase    of the sensitivity analysis, the                    more important variables in the synthesized windfield were identified                    as UT,              y,  and pm. In  this  phase,  the pairwise model comparisons were          made  with the UT, y, and  pm  values in the synthesized model matched to the respective values used in the windfield      model  selected for comparison.          Three models were selected                    on the basis of    their distingui shing features relative to the synthesized                            model and recentness    of development:      the Fujita    DBT-77  tornado model [11], the Fujita suction vortex      DBT-78  flip, and      the TRW Phase    III model  L12].
The  results of the comparative missile transport analysis indicate insignificant differences for        most    of the velocity    and range  statistics.                  For the Fujita DBT-77 comparisons, the synthesized model injects more missiles with higher    mean  values of maximum      velocities,  whereas the    Fujita                model predicts slightly higher variances            and extreme  values. The comparison                  data exhibit differences that are        much    less than those obtained from variations in UT and  y for the synthesized      model    alone.
For the suction vortex model,          a  number  of simulations were    made                with single  and  multiple suction vortices with both the pipe              and auto    missiles.
The  results indicate that the missile generation              and impact    positions are influenced by    embedded  vortices.      However,  for the  same  reference windspeed intensity,    a  tornado with no suction vortices yields higher missile transport characteristics      when compared    to  a  system in which the same maximum winds occur in the fast-moving embedded vortices.              Thus,  for conservative
 
l predictions of missile transport, there is          no need  to  model  suction vortices for
-      mi ssi1 e For the trajectory analysi s.
TRW  model, more    injections result for the pipe missile, but the synthesized model predicts higher velocity and range              statistics. In general, the data suggest that the transport differences in the models, with the                same Uma,  p  , and  y, are limited primarily to low injection heights.            The  TRW model  generally dominates at      z = 10  ft, and  the synthesized model at 33      ft with similar transport statistics over the combined elevations.
On  the basis of these    sensitivity studies    and  the resulting updating of the UT, y, and    p  parameters    in Ref. 4, the synthesized wind      model  provides  a tested windfield      model  for 'utility pole transport calculations.
: b. Trajectory    Model Trajectory models that      have been used  in tornado missile trajectory analyses    include:    (1) the  ballistic  3-D model, which assumes        constant drag r
a force  and  neglects  lift and    side forces; (2) the random orientation, 6-D (R06-D) model,    in which aerodynamic drag,      lift, and  side forces are dependent on  missile orientation, which is periodically updated;            and (3) the conventional 6-0 model, which tracks missile translation and rotation using                  a system of    6 coupled    differential equations.      Detailed discussion    and comparisons    of these models are presented in Ref. 4.          Trajectory comparisons of these models      have been made using    utility pole    missiles L2],. 12-in pipe    and automobile missiles [43.        On  the basis of these comparisons, the        ballistic  3-D model has been shown      to underpredict velocity,      lift, and    range characteristics.      The R06-D model    provides predictions that tend to bound those of the 6-D model and        it  is considerably  more  computationally    efficient.
: c. Missile Aerodynamics A model  of the aerodynamic coefficients for          a  general class of missiles    was developed      in Ref. 2 and  later  updated  [4) to reflect      new aerodynamic data based on        full  and subscale  tests (12,133.      A  modified cross flow technique    has been developed      to predict drag,    lift, and    side force coefficients    as a  function of angle of attack        and  roll angle,    given the drag force coefficients for the object in flow normal to the major                body axes.
Table  1  summarizes    the model for cylindral missiles such          as  the  utility pole.
A  plot of the  model  predicted vs.      utility pole  wind tunnel data      [13] for    3 different  Re  numbers    is  shown  in Figure 1. These  results indicate close agreement  between the aerodynamic model and measured            coefficients.
: d. Injection    Model As  the tornado windfield passes        over an object, the dynamic pressure induces aerodynamic forces that are dependent            on  the missile shape, orientation, surface roughness,          and  proximity to other objects        and  surfaces.
If these  aerodynamic forces are greater than the            restraining forces,        such as gravity, sliding friction,        and  foundation embedment, the object will            be displaced by the windfield.          In general, these aerodynamic forces          will    not act through the center of      mass  of the  body and the  missile tumbles      and  interacts with the ground    and  other objects during this injection phase.            Hence, detailed modeling of injection requires information              on  restraining force time
'histories  and  interaction    models to simulate    missile collisions.
In view of the complexities of missile          injection, tornado missile trajectory analyses generally treat injection parametrically through the specification of the      initial  conditions of the missile at the instant            it is released to the tornado.          Once  released,  the missile is assumed to          be  acted  on
 
l l
              'TABLE  l. AERODYNAMIC COEFFICIENTS FOR CYLINDRICAL MISSILES Geometrical shape                        Right  circular cylinder Missile type                            Rods, pipes, poles Missile set  numbers  [2]              1, 2, 3, 4 Axial drag coefficient,    CDa          1.16 Solid (rods, poles) 0.812 Hollow (pipes)
Skin friction correction,    f          1,L/dc      1 0.724  + 0.276 e 2(L/d-1) 1<L/d<4
                                        '0.681  + 0.0108 L/d, L/de Cross-flow coefficient,    CDc          l. 25,        (subcri t i ca 1 )
0.85 [1.9 -
1.8 a],          (supercritical)
Aspect-ratio correction,    k            1  -  8 (d/L), d/LC.02 0 58 q 0    42e-(0.51    + 5.6 (d/L - 0.02) )
d/L>0. 02 d
Drag coefficient,                        -m        f  )cos  a( + CDc k      sin a CD 4L-.CD a 1f Lift coefficient,  CL                  - - -d  CDa  f cosa  [cose)    sinu+
4 L CDc k  cosa sjn2a Side coefficient,  CS Ref. area,  A                            Ld
 
0 lI
 
4          o 4      o Table    1                o
                                                        << I W~
4 I.<<
4  I.N o
o              Ref. (13) oo p    ~ <<r <<<<<<<<<<<<<<w (a)     Drag    Coefficient
                                                        <<~  l0 44                    4 E.S 0          4  lgl o Lw Table 1                      o o        Ref. (13) o o    o          o 4      o o o 4    o        o
              ~  <<<<<<<<<<<<<<<<        ~y <<4 (b)     Lift Coefficient Figure 1. Aerodynamic    Coefficients for              Utility Pole Hissile
 
only by gravity and aerodynamic forces.                A missile injection methodology          was
[2]                        refined [4] to conservatively account
!    developed in Ref.            and subsequently "for  the complexities and uncertainties            in  a  parametric injection model.          The approach involves      a  two-step procedure:        (1) the vertical and horizontal aerodynamic force time        histories    on  the missile are calculated as function of tornado position, and (2) the position of the tornado corresponding to peak aerodynamic forces are then determined.               This position defines the time of release of the missile with respect to the moving windfield.                     Injection studies have      shown  that this    method provides      for optimum  missile transport        and tends to result in missile          trajectories that        bound those documented        in  field observations.        This optimum release      criterion is      used herein  in the    utility pole trajectory analysis.
: 3. TRAJECTORY SIMULATION RESULTS Using the models previously described,            trajectory calculations        have been
!-:  made  for the    utility pole    missle    [1]. The  postulated missile is        35  ft long with  a  diameter of 13.5 inches and weight of 1,122 lbs.                The center    of  mass  of the missile is positioned at 20            ft above    grade. Peak Umax windspeeds        of 132, 150, and 188 mph are considered.            Given these peak windspeeds,        the remaining tornado parameters        have been    defined from the information in Ref. 4.              A median case  windfield, corresponding to the          means  of the distributions      on UT,    y,  pm, S, and    6  for the respective intensity level            has been  specified,    as noted    in Table 2.      For example,    for  a 150 mph    tornado, the distribution        on  tranlational speed  is  assumed  in Ref. 4  to  be  truncated normal, ranging from          5  to  55 mph with    a mean  of  35 mph and a standard      deviation of      11 mph. Hence,    for the median case,      UT  is  assigned  a  value of 35 mph.        In  addition,  a more    severe set of parameters      has been  defined using the results of the previously reported
 
TASLE  2. TORNADO WINDFIELD PARAMETERS
(-.                                      Parameter Values For Each Windfield Parameter        Case      Um =  132 mph    Um = 150 mph    Um = 188 mph Translational        Median          30              35            45 Speed,  UT  (mph)  2o              5              13            20 Radial              Median            0.7              0.7            0.7 Inflow, y            26              1.1,            1.1            1.1 R ax  (<<)            Median          375              375            500 20            200              200            300 Medi an          0. 15            0.15          0.15 20              0                0              0 s (ft)              Median          450              450            450 20            500              500            500 I-
 
sensitivity analysis [4,6]. This set is              denoted as the 2a case in Table 2 since each parameter has been set at            its  p + 2a            (or  y  -  2a depending on      the I  sign that maximizes missile transport).
p  maximize    missile transport (given        U max Thus, since low UT, high Y, are low
                                                          ), these            parameters      are set at  p  -  2a, p + 2o, and p - 2o, respectively.
                                                          'espectively This 2v case was included to study the influence of variations in the three dimensional windfield on  the trajectory of the      utility pole      missile.              They correspond      to about the 95    percentile of      each  respective distribution.
The  tornado is positioned(see          Fig. 2) relative to the missile at that position that corresponds to the          peak winds              within the tornado.          As  'offset noted  in Refs. L3,4], this offset position is given                          by  p    cos (tan      y). The missile is released to the moving tornado at                          peak aerodynamic force .and .the equations of motion are numerically integrated to track the motion time history of the missile.      Drag'nd      lift forces    (the radially symmetric                    utility pole    has I  no  side force) are calculated using the cross-flow equations in Table 1.
missile is tracked until the center of            mass              of the pole reaches        ground The elevation (z    =  0). The  horizontal distance traveled until the center of                            mass of the pole falls from        z = 20  ft to  z = 0    is defined            as  the range of the trajectory.
Table  3 summarizes    the results of these transport simulations for both the
  . median and 2a    windfields.      For the 132    mph              tornado, the    utility pole    does not lift for any    of the orientations considered.                        The peak aerodynamic        force at injection is about      1,800,    lbs and is directed horizontally for the vertical                                  and horizontal pole orientations.            When  the pole is pitched into wind (orientations 3 and  4), the  peak  vertical injection force is about                      700    lbs. Hence, the pole drops as soon as      it is  released. For the 132 mph tornado, we estimate                        a  peak range  of about  34  ft and    a  peak  velocity of                37 mph.
10
 
0 Plant Target Area
~mo (X;,Y;, Z;)
Missi I e Ini t i a I Posi t ion fi,gure 2. Track Length and Offset Coordinate System  for Missile Injection        Model 11
 
MI'.  'l TABLE    3. TRANSPORT CHARACTERISTICS OF            UTILITY POLE MISSILE Simulation Parameters                                        Transport Characteristics    By Peak      Nndspeed  (mph)
I                                    2                                    3 Hissi le Orientation A A A Haximum Height    (ft)            Haximum Range        (ft)            Haximum Veloci ty    (mph)
Case  Description                (x,y,z)          Um ~  132  Um ~  150  Um ~  188  Um ~  132  Um ~  150      U'm ~  188  Q  ~  132 Um  I  150  Um ~  188 Hedian  llindfield:          Vertical (0,0,1)            20        20        20          27          35              49          24        40          50 (UT ~ Y  Pm, 60~ 5 at    Horizontal (0,1,0)          20        20        20          26          34              54          33        40          53 mid value)                45 X(-0.71,0,0.71)          20        20        20.1        23          29            111          30        32          64 45 XY(-0.5,-0.5,0.71)        20        20        20          27          41              88          30        36          57 Hedian + 2o Wndfield:        Vertical (0,0,1)            20        20        20          27          36              54          35        -43          55 (UT, Y, P, ao, s at        Horizontal (0,1,0)          20        20        20          31          41              57          35        38          57 u+2o)                      45'(-0.71,0,0.71)            20        20        22          27          34            154          37        35          76 45'Y(-0.5,-0.5,0.71)        20        20        21          34          58              94          36        45          58 l                                                ft.
Height above grade; missile injected at 20 Range in X-Y plane until ground impact.
3 Usually occurs at ground impact.
 
The  results for the      150 mph tornado are      similar to those for the        132 mph tornado in that the aerodynamic forces are not              sufficient to    lift the    pole.
The peak aerodynamic      force at injection is about 2,200 lbs, of which about 900 lbs act vertically for the favorable orientations.                Since the pole weighs 1,122  lbs, it accelerates      downward upon    release. Maximum  predicted range and speed are  41"ft    and 45 mph,    respectively.
For the 188 mph tornado, the windspeeds            produce  vertical    aerodynamic forces that exceed the weight of the missile (for orientations                  3 and  4), which produces  lift at    injection.      The maximum  lift is  about  2  ft  (from 20 to 22      ft above grade),    a  modest amount    that is consistent with the        peak  vertical aerodynamic force of about 1,400          lbs. This    lift results    in  a much    longer range (up  to  154  ft),  and impact  velocity    (76 mph) since the object        is sustained in the winds about twice as long            as  before (2 sec vs      1  sec).
A few additional simulations were made with the pole positioned at zero
!-- offset for the      cases  given in Table 3.      The  results  show reduced      transport characteristics      when compared    to the values in Table 3.        It is  noted  that other offsets might result in transport that could approach or slightly exceed those in Table 3.        However, previous studies with        rather  dense    injection grids have shown  that the offset      pm  cos (tan-1. y) generally provides accurate estimates of peak transport parameters.
: 4. COMPARISONS, TO OTHER WORK AND FIELD OBSERVATIONS The  previous results indicate very          little lift and    transport less than 200 ft for utility pole        type missiles injected in tornadoes with peak windspeeds    up  to  188 mph. These  predictions    can be compared    to other calculations    and  field observations.      The  available comparisons generally 13
 
correspond to higher windspeeds,            but  will nevertheless provide        some    basis    for judging these results.
: a. 6-D  Trajectory    Model  Predictions Redmann  et al. 513) simulated the trajectories of              utility pole missiles in    255 mph  tornadoes.      With the  utility pole      at 20  ft elevation pitched into the wind at        a 45 degree    angle, the missile      lifted  to  a maximum height of 40    ft during    a  339  ft flight and    impacted the ground at 113 mph.
For an    initial  angular velocity of        10 rpm, which      is  a  more  realistic injection condition, the pole lifted only          4  ft to  an  elevation of      24  ft and  landed at 91 mph  with  a 140  ft  range.
These  results tend to support the trend established in Table 3.                    At 188 mph, we noted    that the vertical aerodynamic forces              were beginning    to exceed missile weight    and some    lift was    noted. At 255 mph, one would expect the missile to    lift substantially      higher since the aerodynamic forces would                be about (255/188)2 ='1.8 times greater.              As a  further test of the      R06-D model used  in the development of Table 3,           10 simulations were      made  using  a  255 mph tornado with    initial orientation        3, similar to that reported in Ref. 13.                The R06-D model    predicts  an  average maximum height of 43 feet with ranges up                to about 500  ft and  impact speeds      up  to  133 mph. These    results tend to    bound the 6-D model  predictions,    and are    similar to previous comparisons of the            6-D and R06-D models I 2,4].
: b. 3-D  Ballistic    Model Simiu and Cordes      f14]  used the    simplified ballistic      3-D model      for calculation of    maximum    horizontal missile speeds.            For the 35  ft utility pole, they predict peak horizontal speed of 60            mph  in  a  240 mph tornado when      the utility pole    is injected at      131  ft elevation.      These    results are clearly
 
unconservative when compared to the 6-D and R06-D model predictions (for zo = 20    ft)    presented    previously    and  raise questions regarding the adequacy of the 3-D    ballistic model for slender body shapes.
: c. Utility Pole Transport: Xenia, Ohio Tornado V
McDonald $ 15] and Mehta      et al. I16] report the transport of            a utility pole        in the Xenia, Ohio, tornado of April 3, 1974.              The pole    failed    2 ft above      the ground and    was  transported      a  total distance of    160  ft by    F5 tornado winds estimated at about'250 mph.                  The pole  was 10  in. in  diameter and 25.5   ft  in length.      Mehta  et al. [16] note that the other          utility poles      that had  failed at this location in the tornado                path were found within 10 to 15          ft of their original positions.
The R06-D      trajectory  model and peak aerodynamic          force injection    model has
~ ~
been  tested against these        field  observations [4g.        To  similate the    F5  tornado windspeeds,       a  250 mph tornado    with  pm
                                                        = 500    ft, y =  0.7,  and UT = 40 mph was I.: used as the      input to the transport model.            The 250-mph  intensity at    33  ft  is based upon Twisdale's        [2,8] estimated      midrange of F'5 storms.        The  utility pole  was    positioned at    zo = 15  ft to    correspond to the      initial height of the center of      mass  above the ground plane.          Simulations  with an initial vertical orientation of the pole result in            maximum    predicted transport ranges less than 53  ft. Using favorable      orientations to account for        initial    repositioning after the pole fails,        maximum  transport ranges of 283, 651,          and 161    ft are predicted for missile offsets          on  the right side of the tornado center.              A maximum    impact      velocity of about    140 mph    is predicted.      For  a 200-mph    tornado with  pmo
                  = 300  ft, the predicted ranges are 62, 121, and            91 ft for    offsets of 100, 150, and        200 ft, and the maximum impact velocity is            63 mph. The    results suggest    that, with    a favorable    initial    missile orientation, windspeeds in the 15
 
200  to  250 mph  interval could      have produced the observed      160-ft transport range.     The  fact that    many  of the failed poles      were not  significantly
; displaced confirms, the predictions of the              R06-D  trajectory analysis with unfavorable      initial orientations      and tends    to support the    use  of the  R06-D transport    model .
: d. Stored    Utility Poles:      Brandenbur, Kentuck The Brandenburg      tornado of April 3, 1974, with        a  rated intensity of F5 passed    directly through the storage yard of the            Rural  Electric Cooperative.
HcDonald    [15]  and Mehta  et  al. [16)    present photographs that document the effects of the storm        on  various objects in      its  path. Of  particular interest is  a  number  of 8-in.-diameter by 20-ft-long          utility poles    that  were stored horizontally      on a  rack about    5  ft above    the ground elevation.        The  poles were displaced from the rack, but none were transported significantly.
The  effects of    an  F'5 tornado    on  these objects has been simulated [4g I: with the    use  of both the    initial    horizontal storage conditions of the missiles and  a  favorable    initial orientation.        A 250-mph  tornado  was assumed    in both cases.      For the horizontal      injection    mode, the model    predicts that the poles may  experience    total forces that      approach 1,400    lb,  but only    a  small  fraction of this is directed vertically. Hence, the predicted trajectories are parabolic,      and  the poles drop to the ground within 30          ft of    the rack,  as indicated in Figure 3.          This transport compares closely to the post-tornado observations of the majority of the poles.
Favorable    initial  missile orientations      were also simulated      that could have resulted      for several missiles in the stack          as  they interacted during their initial      response  to the tornadic winds.        Transport ranges between 50 and 273  ft  resulted for these simulations, depending            upon the exact    orientation 16
 
Uma= 250 mph 5ft
                      //X w/
Predicted Range ~ 30ft (a)   Horizontal  Initial Orientation Umax 250 mph 32 ft Predicted  Range  < 273 ft (b)  Favorable  Random  Initial Orientation Figure 3. Predicted Ranges for Brandenburg  Utility Poles 17
 
and  the offset from the tornado center.            The maximum    height  and range predicted are 32 feet      and 273  ft, respectively,     as  noted in Figure 2.      The peak  velocity attained      by the pole was 95 mph.
It is noted that simulations        with  Umax
                                                          = 200 mph    predict ranges of    13  ft and  100 ft, respectively, for the        horizontal    and random    initial orientations.
The Brandenburg    poles are    significant in the      sense  that the objects    responded to the wihdfield, but few,        if any,  aligned favorably to        be lifted  by the winds and hence  to  be  transported the distance that          was  predicted for favorable initial orientation.
CJ
: 5. CONCLUSIONS On the basis of this brief study, the following conclusions are                  made:
Tornadoes with peak windspeeds of 132 and 150 mph generate aerodynamic      lift  forces that are less than the weight of the postulated    utility pole    missile. Estimates of the peak range, for an injection height (height        above grade    of pole center of mass) of 20 ft are        ft          ft,  respectively, for the 132 and 150 mph 27      and 41 windfields.      Range is  defined  as the horizontal      distance traveled as the pole center of mass falls from z = 20 ft to z = 0. Maximum velocities are estimates at about 37 and 45 mph, respectively, for the  132 and 150 mph      tornadoes.
: 2. Tornadoes with peak windspeeds          of 188 mph can produce about a 2          ft lift (from 20 ft initial elevation),           a range up to 154      ft, and a peak  velocity of about      76 mph  for  the  utility  pole missile. These       .
conditions occur      when  the pole is pitched into the wind at about a 45 degree    angle and released      at peak aerodynamic force. These are idealized and very conservative release conditions that would be difficult to duplicate in an actual tornado strike.
: 3. Maximum    height attained during a tumbling wind-borne transport for Umax < 188 mph      by any part of a 35 ft utility pole would probably not exceed    35 to 40 ft. Other injection modes, such as a ramp-type injection could produce upward ricochet of a horizontally-translating pole. However, this injection mode would require "ideal" missile origin position, terrain, and target configuration in order to pose a realistic threat to elevated targets.
These  results are conservative in the missile injection release criterion, definition of  range and peak      velocity, positioning of the missile relative to the windfield,   and  the windfield flow characteristics.           For example, the    tip of the pole will strike the ground          as the pole begins to drop        and  this 18
 
interaction will reduce the horizontal        momentum. Hence, the estimates  of peak range and horizontal      velocity are very conservative.       In addition, the weight of the pole is less than the 1,490 lbs        used  in some  tornado missile calculations= [e.g., 17].       Using the 1,490  lb weight, the  maximum 154  ft range in the    p + 2cr 188 mph  tornado (see Table 3) reduces to less than 100      ft.
In general,   field  observations  do not confirm significant    utility pole transport for the windspeeds considered herein.           Our best estimate  of typical utility pole    response  for  Umax < 188 mph  would be a  trajectory  range from 0 to  50  ft with  horizontal missile    speeds  approaching 50-60 mph.
REFERENCES
: l. U.S. Nuclear Regulatory Commission, Standard Review Plan, "Missiles Generated by Natural Phenomena," Section         . . . , Washington, D.C.,
November 1975.
: 2. Twisdale, L. A., et      al., "Tornado Missile Risk Analysis,"     Electric Power
      , Research    Institute,   Palo Alto, California,   NP-768 and NP-769, May 1978.
: 3. Twisdale, L. A., Dunn. W. L., and Davis, T. L., "Tornado Missile
!        Transport Analysis," Nuclear En ineerin and Desi n, 52, 1979, pp. 296-308.
: 4. Twisdale, L. A., and Dunn, W. L., "Tornado Missile Simulation on Design Methodology," EPRI NP-2005, Electric Power Research Institute, Palo Alto, California,   August 1981.
: 5. Dunn, W. L., and  Twisdale, L. A., "A Synthesized Windfield Model for Tornado Missile Transport," Nuclear En ineerin and Desi n, 52, 1979, pp 134-144.
: 6. Twisdale, L. A., "An Assessment      of Tornado Windfield Characteristics for Missile Loading Prediction," Proceedin s, Fourth U.S. National Conference on Wind Engineering esearch, University of Washington, Seattle, Washington, July 1981.
7,. Twisdale, L. A., "A Risk-Based Design Against Tornado Missiles,"
Proceedin s of the Third ASCE Specialty Conference on Structural Design o    uc ear Plant Facilities, Boston, Massachusetts; April 1979.
: 8. Twisdale, L. A., "Tornado Data Characterization          and Windspeed Risk,"
Journal of the Structural Division, Proceedings          ASCE, Vol. 104, No.
ctober      8.
: 9. Twisdale, L. A., "Regional Tornado Data Hase        and  Error Analysis,"
Pre  rints,   AMS  12th Conference on Severe Local Storms, San Antonio, exas,   anuary 1982.
19
: 10. Twisdale, L. A., and Dunn, W. L., Probabilistic Analysis of Tornado Wind Risks," Journal of Structural En ineerin , Vol. 109, No. 2, February 1983.
Fujita, T. T., "Workbook of Tornadoes and High Winds," SMRP    165, University of Chicago, Chicago, Illinois, September 1978.
: 12. Redmann, G. H., et al., "Wind Field and Trajectory Models for Tornado-Propelled Objects," Electric Power Research Institute, Palo Alto, California, Draft,   1980.
: 13. Redmann, G. H., et  al., "Wind Field  and Trajectory Models for Tornado-Propelled Objects,"   EPRI NP-748, Electric Power Research Institute, Palo Alto, California,   May 1978.
: 14. Simiu, E., and Cordes, M., "Tornado Borne Missile Speeds,"
NBSIR-76-10-50, National Bureau of Standards, Washington, D.C., April 1976.
: 15. McDonald, J. R., "Tornado-Generated Missiles and Their    Effects,"
Proceedings of the Symposium on Tornadoes, Texas, Tech    University, Lubbock, Texas, June 1976.
: 16. Mehta, K. C., et al., "Engineering Aspects of the Tornadoes of April 3-4, 1974," Committee on National Disasters, National Academy of sciences, 1976.
    "Safety Related Site Parameters for Nuclear Power Plants," WASH-1361, U.S. Atomic Energy Comission, Directorate of Licensing, Office of Safety, Washington, D.C., January 1975.
20
 
4 t I}}

Latest revision as of 11:20, 4 February 2020

App C to Structural Reanalysis Program, Utility Pole Tornado Missile Trajectory Analysis.
ML17256A708
Person / Time
Site: Ginna Constellation icon.png
Issue date: 03/08/1983
From: Dunn W, Twisdale L
APPLIED RESEARCH ASSOCIATES, INC.
To:
Shared Package
ML17256A706 List:
References
44T-2488-1, C556, NUDOCS 8305310157
Download: ML17256A708 (33)


Text

APPENDIX C to the STRUCTURAL REANALYSIS PROGRAM For The R. E GINNA NUCLEAR POWER PLANT 8305310157 830519 PDR ADOCK 05000244 P PDR

March 8, 1983 ARA Report C556 RTI Report 44T-2488-1 UTILITY POLE TORNADO MISSILE TRAJECTORY ANALYSIS L. A. Twisdale W. L. Dunn Applied Research Associates, Inc.

Southeast Division 4917 Professional Court Raleigh, North Carolina 27609 Prepared for Research Triangle Institute P.O. Box 12194 Research Triangle Park, North Carolina 27709 and Gilbert Associates, Inc.

P.O. Box 1498 Reading, Pennsylvania 19603 Under Purchase Order 201494

TABLE OF CONTENTS Page

l. INTRODUCTION .
2. APPROACH .
a. Tornado Windfield . . . . . . . . . . . . . . . . . . .
b. Trajectory Model
c. Missile Aerodynamics
d. Injection Model 5
3. TRAJECTORY SIMULATION RESULTS ............... 8
4. COMPARISONS TO OTHER WORK AND FIELD OBSERVATIONS...... 13
a. 6-D Trajectory Model Predictions ........... 14
b. 3-D Ballistic Model.................. 14
c. Utility Pole Transport: Xenia, Ohio Tornado ..... 15
d. Stored Utility Poles: Brandenburg, Kentucky . . . . . 16 5~ CON CLU S I ONS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

' ~ ~ ~ ~ ~ ~ 18 REFERENCES 19

UTILITY POLE TORNADO MISSILE TRAJECTORY ANALYSIS

- 1. INTRODUCTION The objective of this study was to perform trajectory calculations of utility pole missiles in tornado windfields. The Nuclear Regulatory Coomission (NRC)-defined utility pole [1] was specified as the postulated missile for these analyses. Tornado windfields with peak velocities of 132, 150, and 188 mph were specified. The utility poles were injected at 20 ft above grade, which corresponds approximately to the center of mass of a standing 35 ft pole. Trajectory calculations were made using the random-orientation six-degree-of-freedom (R06-D) trajectory model [2,3,4g, which accounts for drag, lift, and side aerodynamic forces in a time history integration of the equations of motion. The maximum height, range, and speed attained by the missiles were extracted from the time-history flight data. In addition to these numerical calculations, several comparisons of field observations and trajectory predictions of utility pole missiles have been made. This report documents the methods and results of this study.

2. APPROACH The approach used for the trajectory analyses is based primarily on the models and data reported in Refs. 2-10. A brief summary of the tornado windfield model, traj'ectory model, missile aerodynamics, and injection model are presented in the following paragraphs.
a. Tornado Windfield The tornado windfield model used herein is documented in detail in Ref. 4. This synthesized windfield model was developed explicitly for missile transport analysis and includes 5 basic parameters that define the

, 3-dimensional flow characteristics given the peak speed Umax and path width

Mt. These parameters are: translational speed (UT); the ratio of radial to

- tangential flow components (y); the radius to slope (S); and reference boundary larger thickness (6o).

maximum windspeed (pm); core A sensitivity analysis was, performed I 4,6] using a one-at-a-time experimental design and three level input pattern. The basic conclusions of this analysis for tornadoes with U ax

= 300 mph and two types of missiles were: (1) For given tornado intensity, the number of missiles generated and their transport characteristics are most sensitive to the translational speed (UT) of the storm. Low values of UT result in more missile injections and higher missile velocities for specified Umax. (2) For given tornado intensity, an increase in the radial inflow component relative to the tangential component increases the number of missiles injected and leads to higher average values of maximum velocities, ranges, and altitudes.

(3) Missiles injected and transported by large-core tornadoes generally attain I- higher maximum velocities but lower peak altitudes than those predicted with smaller pm. The absolute numbers of missiles produced are proportional to the radius of the core. (4) The slope of the core does not have an appreciable effect on missile transport, even for missiles injected at high elevations.

(5) Relatively small variations in air density can produce proportional changes in missile range, but the effect of air density (due to entrained dust, etc.) on maximum velocities is heavily dependent on the missile injection height. Hence, from this analysis we have a better understanding of how to characterize the tornado windfield (given the peak windspeed) to maximize missile transport parameters.

A second sensitivity analysis was made to assess the importance of certain unique flow characteristics that exist in several prominent tornado

models. To evaluate explicitly the effects of basic differences among'indfield definitions, a pairwise comparison study was performed L4,6] with the synthesized model in a series of matched comparisons with other models.

From the results of the first phase of the sensitivity analysis, the more important variables in the synthesized windfield were identified as UT, y, and pm. In this phase, the pairwise model comparisons were made with the UT, y, and pm values in the synthesized model matched to the respective values used in the windfield model selected for comparison. Three models were selected on the basis of their distingui shing features relative to the synthesized model and recentness of development: the Fujita DBT-77 tornado model [11], the Fujita suction vortex DBT-78 flip, and the TRW Phase III model L12].

The results of the comparative missile transport analysis indicate insignificant differences for most of the velocity and range statistics. For the Fujita DBT-77 comparisons, the synthesized model injects more missiles with higher mean values of maximum velocities, whereas the Fujita model predicts slightly higher variances and extreme values. The comparison data exhibit differences that are much less than those obtained from variations in UT and y for the synthesized model alone.

For the suction vortex model, a number of simulations were made with single and multiple suction vortices with both the pipe and auto missiles.

The results indicate that the missile generation and impact positions are influenced by embedded vortices. However, for the same reference windspeed intensity, a tornado with no suction vortices yields higher missile transport characteristics when compared to a system in which the same maximum winds occur in the fast-moving embedded vortices. Thus, for conservative

l predictions of missile transport, there is no need to model suction vortices for

- mi ssi1 e For the trajectory analysi s.

TRW model, more injections result for the pipe missile, but the synthesized model predicts higher velocity and range statistics. In general, the data suggest that the transport differences in the models, with the same Uma, p , and y, are limited primarily to low injection heights. The TRW model generally dominates at z = 10 ft, and the synthesized model at 33 ft with similar transport statistics over the combined elevations.

On the basis of these sensitivity studies and the resulting updating of the UT, y, and p parameters in Ref. 4, the synthesized wind model provides a tested windfield model for 'utility pole transport calculations.

b. Trajectory Model Trajectory models that have been used in tornado missile trajectory analyses include: (1) the ballistic 3-D model, which assumes constant drag r

a force and neglects lift and side forces; (2) the random orientation, 6-D (R06-D) model, in which aerodynamic drag, lift, and side forces are dependent on missile orientation, which is periodically updated; and (3) the conventional 6-0 model, which tracks missile translation and rotation using a system of 6 coupled differential equations. Detailed discussion and comparisons of these models are presented in Ref. 4. Trajectory comparisons of these models have been made using utility pole missiles L2],. 12-in pipe and automobile missiles [43. On the basis of these comparisons, the ballistic 3-D model has been shown to underpredict velocity, lift, and range characteristics. The R06-D model provides predictions that tend to bound those of the 6-D model and it is considerably more computationally efficient.

c. Missile Aerodynamics A model of the aerodynamic coefficients for a general class of missiles was developed in Ref. 2 and later updated [4) to reflect new aerodynamic data based on full and subscale tests (12,133. A modified cross flow technique has been developed to predict drag, lift, and side force coefficients as a function of angle of attack and roll angle, given the drag force coefficients for the object in flow normal to the major body axes.

Table 1 summarizes the model for cylindral missiles such as the utility pole.

A plot of the model predicted vs. utility pole wind tunnel data [13] for 3 different Re numbers is shown in Figure 1. These results indicate close agreement between the aerodynamic model and measured coefficients.

d. Injection Model As the tornado windfield passes over an object, the dynamic pressure induces aerodynamic forces that are dependent on the missile shape, orientation, surface roughness, and proximity to other objects and surfaces.

If these aerodynamic forces are greater than the restraining forces, such as gravity, sliding friction, and foundation embedment, the object will be displaced by the windfield. In general, these aerodynamic forces will not act through the center of mass of the body and the missile tumbles and interacts with the ground and other objects during this injection phase. Hence, detailed modeling of injection requires information on restraining force time

'histories and interaction models to simulate missile collisions.

In view of the complexities of missile injection, tornado missile trajectory analyses generally treat injection parametrically through the specification of the initial conditions of the missile at the instant it is released to the tornado. Once released, the missile is assumed to be acted on

l l

'TABLE l. AERODYNAMIC COEFFICIENTS FOR CYLINDRICAL MISSILES Geometrical shape Right circular cylinder Missile type Rods, pipes, poles Missile set numbers [2] 1, 2, 3, 4 Axial drag coefficient, CDa 1.16 Solid (rods, poles) 0.812 Hollow (pipes)

Skin friction correction, f 1,L/dc 1 0.724 + 0.276 e 2(L/d-1) 1<L/d<4

'0.681 + 0.0108 L/d, L/de Cross-flow coefficient, CDc l. 25, (subcri t i ca 1 )

0.85 [1.9 -

1.8 a], (supercritical)

Aspect-ratio correction, k 1 - 8 (d/L), d/LC.02 0 58 q 0 42e-(0.51 + 5.6 (d/L - 0.02) )

d/L>0. 02 d

Drag coefficient, -m f )cos a( + CDc k sin a CD 4L-.CD a 1f Lift coefficient, CL - - -d CDa f cosa [cose) sinu+

4 L CDc k cosa sjn2a Side coefficient, CS Ref. area, A Ld

0 lI

4 o 4 o Table 1 o

<< I W~

4 I.<<

4 I.N o

o Ref. (13) oo p ~ <<r <<<<<<<<<<<<<<w (a) Drag Coefficient

<<~ l0 44 4 E.S 0 4 lgl o Lw Table 1 o o Ref. (13) o o o o 4 o o o 4 o o

~ <<<<<<<<<<<<<<<< ~y <<4 (b) Lift Coefficient Figure 1. Aerodynamic Coefficients for Utility Pole Hissile

only by gravity and aerodynamic forces. A missile injection methodology was

[2] refined [4] to conservatively account

! developed in Ref. and subsequently "for the complexities and uncertainties in a parametric injection model. The approach involves a two-step procedure: (1) the vertical and horizontal aerodynamic force time histories on the missile are calculated as function of tornado position, and (2) the position of the tornado corresponding to peak aerodynamic forces are then determined. This position defines the time of release of the missile with respect to the moving windfield. Injection studies have shown that this method provides for optimum missile transport and tends to result in missile trajectories that bound those documented in field observations. This optimum release criterion is used herein in the utility pole trajectory analysis.

3. TRAJECTORY SIMULATION RESULTS Using the models previously described, trajectory calculations have been

!-: made for the utility pole missle [1]. The postulated missile is 35 ft long with a diameter of 13.5 inches and weight of 1,122 lbs. The center of mass of the missile is positioned at 20 ft above grade. Peak Umax windspeeds of 132, 150, and 188 mph are considered. Given these peak windspeeds, the remaining tornado parameters have been defined from the information in Ref. 4. A median case windfield, corresponding to the means of the distributions on UT, y, pm, S, and 6 for the respective intensity level has been specified, as noted in Table 2. For example, for a 150 mph tornado, the distribution on tranlational speed is assumed in Ref. 4 to be truncated normal, ranging from 5 to 55 mph with a mean of 35 mph and a standard deviation of 11 mph. Hence, for the median case, UT is assigned a value of 35 mph. In addition, a more severe set of parameters has been defined using the results of the previously reported

TASLE 2. TORNADO WINDFIELD PARAMETERS

(-. Parameter Values For Each Windfield Parameter Case Um = 132 mph Um = 150 mph Um = 188 mph Translational Median 30 35 45 Speed, UT (mph) 2o 5 13 20 Radial Median 0.7 0.7 0.7 Inflow, y 26 1.1, 1.1 1.1 R ax (<<) Median 375 375 500 20 200 200 300 Medi an 0. 15 0.15 0.15 20 0 0 0 s (ft) Median 450 450 450 20 500 500 500 I-

sensitivity analysis [4,6]. This set is denoted as the 2a case in Table 2 since each parameter has been set at its p + 2a (or y - 2a depending on the I sign that maximizes missile transport).

p maximize missile transport (given U max Thus, since low UT, high Y, are low

), these parameters are set at p - 2a, p + 2o, and p - 2o, respectively.

'espectively This 2v case was included to study the influence of variations in the three dimensional windfield on the trajectory of the utility pole missile. They correspond to about the 95 percentile of each respective distribution.

The tornado is positioned(see Fig. 2) relative to the missile at that position that corresponds to the peak winds within the tornado. As 'offset noted in Refs. L3,4], this offset position is given by p cos (tan y). The missile is released to the moving tornado at peak aerodynamic force .and .the equations of motion are numerically integrated to track the motion time history of the missile. Drag'nd lift forces (the radially symmetric utility pole has I no side force) are calculated using the cross-flow equations in Table 1.

missile is tracked until the center of mass of the pole reaches ground The elevation (z = 0). The horizontal distance traveled until the center of mass of the pole falls from z = 20 ft to z = 0 is defined as the range of the trajectory.

Table 3 summarizes the results of these transport simulations for both the

. median and 2a windfields. For the 132 mph tornado, the utility pole does not lift for any of the orientations considered. The peak aerodynamic force at injection is about 1,800, lbs and is directed horizontally for the vertical and horizontal pole orientations. When the pole is pitched into wind (orientations 3 and 4), the peak vertical injection force is about 700 lbs. Hence, the pole drops as soon as it is released. For the 132 mph tornado, we estimate a peak range of about 34 ft and a peak velocity of 37 mph.

10

0 Plant Target Area

~mo (X;,Y;, Z;)

Missi I e Ini t i a I Posi t ion fi,gure 2. Track Length and Offset Coordinate System for Missile Injection Model 11

MI'. 'l TABLE 3. TRANSPORT CHARACTERISTICS OF UTILITY POLE MISSILE Simulation Parameters Transport Characteristics By Peak Nndspeed (mph)

I 2 3 Hissi le Orientation A A A Haximum Height (ft) Haximum Range (ft) Haximum Veloci ty (mph)

Case Description (x,y,z) Um ~ 132 Um ~ 150 Um ~ 188 Um ~ 132 Um ~ 150 U'm ~ 188 Q ~ 132 Um I 150 Um ~ 188 Hedian llindfield: Vertical (0,0,1) 20 20 20 27 35 49 24 40 50 (UT ~ Y Pm, 60~ 5 at Horizontal (0,1,0) 20 20 20 26 34 54 33 40 53 mid value) 45 X(-0.71,0,0.71) 20 20 20.1 23 29 111 30 32 64 45 XY(-0.5,-0.5,0.71) 20 20 20 27 41 88 30 36 57 Hedian + 2o Wndfield: Vertical (0,0,1) 20 20 20 27 36 54 35 -43 55 (UT, Y, P, ao, s at Horizontal (0,1,0) 20 20 20 31 41 57 35 38 57 u+2o) 45'(-0.71,0,0.71) 20 20 22 27 34 154 37 35 76 45'Y(-0.5,-0.5,0.71) 20 20 21 34 58 94 36 45 58 l ft.

Height above grade; missile injected at 20 Range in X-Y plane until ground impact.

3 Usually occurs at ground impact.

The results for the 150 mph tornado are similar to those for the 132 mph tornado in that the aerodynamic forces are not sufficient to lift the pole.

The peak aerodynamic force at injection is about 2,200 lbs, of which about 900 lbs act vertically for the favorable orientations. Since the pole weighs 1,122 lbs, it accelerates downward upon release. Maximum predicted range and speed are 41"ft and 45 mph, respectively.

For the 188 mph tornado, the windspeeds produce vertical aerodynamic forces that exceed the weight of the missile (for orientations 3 and 4), which produces lift at injection. The maximum lift is about 2 ft (from 20 to 22 ft above grade), a modest amount that is consistent with the peak vertical aerodynamic force of about 1,400 lbs. This lift results in a much longer range (up to 154 ft), and impact velocity (76 mph) since the object is sustained in the winds about twice as long as before (2 sec vs 1 sec).

A few additional simulations were made with the pole positioned at zero

!-- offset for the cases given in Table 3. The results show reduced transport characteristics when compared to the values in Table 3. It is noted that other offsets might result in transport that could approach or slightly exceed those in Table 3. However, previous studies with rather dense injection grids have shown that the offset pm cos (tan-1. y) generally provides accurate estimates of peak transport parameters.

4. COMPARISONS, TO OTHER WORK AND FIELD OBSERVATIONS The previous results indicate very little lift and transport less than 200 ft for utility pole type missiles injected in tornadoes with peak windspeeds up to 188 mph. These predictions can be compared to other calculations and field observations. The available comparisons generally 13

correspond to higher windspeeds, but will nevertheless provide some basis for judging these results.

a. 6-D Trajectory Model Predictions Redmann et al. 513) simulated the trajectories of utility pole missiles in 255 mph tornadoes. With the utility pole at 20 ft elevation pitched into the wind at a 45 degree angle, the missile lifted to a maximum height of 40 ft during a 339 ft flight and impacted the ground at 113 mph.

For an initial angular velocity of 10 rpm, which is a more realistic injection condition, the pole lifted only 4 ft to an elevation of 24 ft and landed at 91 mph with a 140 ft range.

These results tend to support the trend established in Table 3. At 188 mph, we noted that the vertical aerodynamic forces were beginning to exceed missile weight and some lift was noted. At 255 mph, one would expect the missile to lift substantially higher since the aerodynamic forces would be about (255/188)2 ='1.8 times greater. As a further test of the R06-D model used in the development of Table 3, 10 simulations were made using a 255 mph tornado with initial orientation 3, similar to that reported in Ref. 13. The R06-D model predicts an average maximum height of 43 feet with ranges up to about 500 ft and impact speeds up to 133 mph. These results tend to bound the 6-D model predictions, and are similar to previous comparisons of the 6-D and R06-D models I 2,4].

b. 3-D Ballistic Model Simiu and Cordes f14] used the simplified ballistic 3-D model for calculation of maximum horizontal missile speeds. For the 35 ft utility pole, they predict peak horizontal speed of 60 mph in a 240 mph tornado when the utility pole is injected at 131 ft elevation. These results are clearly

unconservative when compared to the 6-D and R06-D model predictions (for zo = 20 ft) presented previously and raise questions regarding the adequacy of the 3-D ballistic model for slender body shapes.

c. Utility Pole Transport: Xenia, Ohio Tornado V

McDonald $ 15] and Mehta et al. I16] report the transport of a utility pole in the Xenia, Ohio, tornado of April 3, 1974. The pole failed 2 ft above the ground and was transported a total distance of 160 ft by F5 tornado winds estimated at about'250 mph. The pole was 10 in. in diameter and 25.5 ft in length. Mehta et al. [16] note that the other utility poles that had failed at this location in the tornado path were found within 10 to 15 ft of their original positions.

The R06-D trajectory model and peak aerodynamic force injection model has

~ ~

been tested against these field observations [4g. To similate the F5 tornado windspeeds, a 250 mph tornado with pm

= 500 ft, y = 0.7, and UT = 40 mph was I.: used as the input to the transport model. The 250-mph intensity at 33 ft is based upon Twisdale's [2,8] estimated midrange of F'5 storms. The utility pole was positioned at zo = 15 ft to correspond to the initial height of the center of mass above the ground plane. Simulations with an initial vertical orientation of the pole result in maximum predicted transport ranges less than 53 ft. Using favorable orientations to account for initial repositioning after the pole fails, maximum transport ranges of 283, 651, and 161 ft are predicted for missile offsets on the right side of the tornado center. A maximum impact velocity of about 140 mph is predicted. For a 200-mph tornado with pmo

= 300 ft, the predicted ranges are 62, 121, and 91 ft for offsets of 100, 150, and 200 ft, and the maximum impact velocity is 63 mph. The results suggest that, with a favorable initial missile orientation, windspeeds in the 15

200 to 250 mph interval could have produced the observed 160-ft transport range. The fact that many of the failed poles were not significantly

displaced confirms, the predictions of the R06-D trajectory analysis with unfavorable initial orientations and tends to support the use of the R06-D transport model .
d. Stored Utility Poles: Brandenbur, Kentuck The Brandenburg tornado of April 3, 1974, with a rated intensity of F5 passed directly through the storage yard of the Rural Electric Cooperative.

HcDonald [15] and Mehta et al. [16) present photographs that document the effects of the storm on various objects in its path. Of particular interest is a number of 8-in.-diameter by 20-ft-long utility poles that were stored horizontally on a rack about 5 ft above the ground elevation. The poles were displaced from the rack, but none were transported significantly.

The effects of an F'5 tornado on these objects has been simulated [4g I: with the use of both the initial horizontal storage conditions of the missiles and a favorable initial orientation. A 250-mph tornado was assumed in both cases. For the horizontal injection mode, the model predicts that the poles may experience total forces that approach 1,400 lb, but only a small fraction of this is directed vertically. Hence, the predicted trajectories are parabolic, and the poles drop to the ground within 30 ft of the rack, as indicated in Figure 3. This transport compares closely to the post-tornado observations of the majority of the poles.

Favorable initial missile orientations were also simulated that could have resulted for several missiles in the stack as they interacted during their initial response to the tornadic winds. Transport ranges between 50 and 273 ft resulted for these simulations, depending upon the exact orientation 16

Uma= 250 mph 5ft

//X w/

Predicted Range ~ 30ft (a) Horizontal Initial Orientation Umax 250 mph 32 ft Predicted Range < 273 ft (b) Favorable Random Initial Orientation Figure 3. Predicted Ranges for Brandenburg Utility Poles 17

and the offset from the tornado center. The maximum height and range predicted are 32 feet and 273 ft, respectively, as noted in Figure 2. The peak velocity attained by the pole was 95 mph.

It is noted that simulations with Umax

= 200 mph predict ranges of 13 ft and 100 ft, respectively, for the horizontal and random initial orientations.

The Brandenburg poles are significant in the sense that the objects responded to the wihdfield, but few, if any, aligned favorably to be lifted by the winds and hence to be transported the distance that was predicted for favorable initial orientation.

CJ

5. CONCLUSIONS On the basis of this brief study, the following conclusions are made:

Tornadoes with peak windspeeds of 132 and 150 mph generate aerodynamic lift forces that are less than the weight of the postulated utility pole missile. Estimates of the peak range, for an injection height (height above grade of pole center of mass) of 20 ft are ft ft, respectively, for the 132 and 150 mph 27 and 41 windfields. Range is defined as the horizontal distance traveled as the pole center of mass falls from z = 20 ft to z = 0. Maximum velocities are estimates at about 37 and 45 mph, respectively, for the 132 and 150 mph tornadoes.

2. Tornadoes with peak windspeeds of 188 mph can produce about a 2 ft lift (from 20 ft initial elevation), a range up to 154 ft, and a peak velocity of about 76 mph for the utility pole missile. These .

conditions occur when the pole is pitched into the wind at about a 45 degree angle and released at peak aerodynamic force. These are idealized and very conservative release conditions that would be difficult to duplicate in an actual tornado strike.

3. Maximum height attained during a tumbling wind-borne transport for Umax < 188 mph by any part of a 35 ft utility pole would probably not exceed 35 to 40 ft. Other injection modes, such as a ramp-type injection could produce upward ricochet of a horizontally-translating pole. However, this injection mode would require "ideal" missile origin position, terrain, and target configuration in order to pose a realistic threat to elevated targets.

These results are conservative in the missile injection release criterion, definition of range and peak velocity, positioning of the missile relative to the windfield, and the windfield flow characteristics. For example, the tip of the pole will strike the ground as the pole begins to drop and this 18

interaction will reduce the horizontal momentum. Hence, the estimates of peak range and horizontal velocity are very conservative. In addition, the weight of the pole is less than the 1,490 lbs used in some tornado missile calculations= [e.g., 17]. Using the 1,490 lb weight, the maximum 154 ft range in the p + 2cr 188 mph tornado (see Table 3) reduces to less than 100 ft.

In general, field observations do not confirm significant utility pole transport for the windspeeds considered herein. Our best estimate of typical utility pole response for Umax < 188 mph would be a trajectory range from 0 to 50 ft with horizontal missile speeds approaching 50-60 mph.

REFERENCES

l. U.S. Nuclear Regulatory Commission, Standard Review Plan, "Missiles Generated by Natural Phenomena," Section . . . , Washington, D.C.,

November 1975.

2. Twisdale, L. A., et al., "Tornado Missile Risk Analysis," Electric Power

, Research Institute, Palo Alto, California, NP-768 and NP-769, May 1978.

3. Twisdale, L. A., Dunn. W. L., and Davis, T. L., "Tornado Missile

! Transport Analysis," Nuclear En ineerin and Desi n, 52, 1979, pp. 296-308.

4. Twisdale, L. A., and Dunn, W. L., "Tornado Missile Simulation on Design Methodology," EPRI NP-2005, Electric Power Research Institute, Palo Alto, California, August 1981.
5. Dunn, W. L., and Twisdale, L. A., "A Synthesized Windfield Model for Tornado Missile Transport," Nuclear En ineerin and Desi n, 52, 1979, pp 134-144.
6. Twisdale, L. A., "An Assessment of Tornado Windfield Characteristics for Missile Loading Prediction," Proceedin s, Fourth U.S. National Conference on Wind Engineering esearch, University of Washington, Seattle, Washington, July 1981.

7,. Twisdale, L. A., "A Risk-Based Design Against Tornado Missiles,"

Proceedin s of the Third ASCE Specialty Conference on Structural Design o uc ear Plant Facilities, Boston, Massachusetts; April 1979.

8. Twisdale, L. A., "Tornado Data Characterization and Windspeed Risk,"

Journal of the Structural Division, Proceedings ASCE, Vol. 104, No.

ctober 8.

9. Twisdale, L. A., "Regional Tornado Data Hase and Error Analysis,"

Pre rints, AMS 12th Conference on Severe Local Storms, San Antonio, exas, anuary 1982.

19

10. Twisdale, L. A., and Dunn, W. L., Probabilistic Analysis of Tornado Wind Risks," Journal of Structural En ineerin , Vol. 109, No. 2, February 1983.

Fujita, T. T., "Workbook of Tornadoes and High Winds," SMRP 165, University of Chicago, Chicago, Illinois, September 1978.

12. Redmann, G. H., et al., "Wind Field and Trajectory Models for Tornado-Propelled Objects," Electric Power Research Institute, Palo Alto, California, Draft, 1980.
13. Redmann, G. H., et al., "Wind Field and Trajectory Models for Tornado-Propelled Objects," EPRI NP-748, Electric Power Research Institute, Palo Alto, California, May 1978.
14. Simiu, E., and Cordes, M., "Tornado Borne Missile Speeds,"

NBSIR-76-10-50, National Bureau of Standards, Washington, D.C., April 1976.

15. McDonald, J. R., "Tornado-Generated Missiles and Their Effects,"

Proceedings of the Symposium on Tornadoes, Texas, Tech University, Lubbock, Texas, June 1976.

16. Mehta, K. C., et al., "Engineering Aspects of the Tornadoes of April 3-4, 1974," Committee on National Disasters, National Academy of sciences, 1976.

"Safety Related Site Parameters for Nuclear Power Plants," WASH-1361, U.S. Atomic Energy Comission, Directorate of Licensing, Office of Safety, Washington, D.C., January 1975.

20

4 t I